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AIS data er originalt tiltænkt at hjælpe skibe med at navigere mellem andre skibe og forhindringer til havs. Historisk AIS
data giver et data grundlag, som kan bruges til forskellige typer af analyse, som fx at finde mønstre i skibs trafik.

Eftersom AIS data består af både manuel indtastning og automatisk sensor data, er der et stort behov for rensning inden
nogen nyttefuld analyse kan udføres. Ligeledes er det nødvendigt at omstrukturere dataen fra temporale punkter til linjestrenge
af skibs-ture, for at undgå tung konstruktion af linjestrenge under forespørgelser.

DIPAAL er en komplet platform der både renser, transformerer og indlæser den rå AIS data ind i et Data Warehouse (DW).
DW’et er designet til at understøtte effektive distribuerede efterspørgsler. Denne artikel præsenterer en udvidelse af DIPAAL.
Eftersom det ikke kan forventes at alle brugere af DIPAAL er DW eksperter, er der udviklet en API der muliggør meget
analyse uden kendskab til det underliggende DW design.

DIPAAL introducerer en celle repræsentation, som simplificerer en linjestrengs-tur til et antal af celler som turen har krydset.
Ved at konvertere turene tilbage til en punkt-baseret repræsentation, er det både hurtigt at søge i og aggregere data. For at
undgå at efterspørgsler på store områder er unødvendigt tunge, men samtidig beholde en fin granularitet, understøtter DIPAAL
fire granulariteter af celler med sidelængderne 50m, 200m, 1000m og 5000m.

Ud fra celle repræsentationen udregner DIPAAL heatmaps ved hjælp af spatielle aggregeringer som gemmes som rasters.
Disse rasters kan derefter kombineres på tværs af tid, skibs type, mobil type, og om skibet var i bevægelse eller ej. DIPAAL
udregner i øjeblikket fem typer af heatmaps, hvoraf en måler hvor lang tid skibe bruger i et område.

For at kunne distribuere disse spatielle aggregering, så er celle repræsentationen og heatmaps distribueret spatielt i et
balanceret kd-træ.

Denne artikel præsenterer en omfattende evaluering af DIPAAL, som måler ikke blot hvor hurtigt en række af efterspørgsler
kan udføres, men måler også hvor meget hurtigere efterspørgslerne udføres, når antallet af maskiner udvides fra en til fem.
Resultaterne viser både fremragende resultater i forhold til aktuelt køretid, hvor selv de mest krævende efterspørgsler bliver
færdige på under to minutter, men også at skalering fra en til fem giver en forbedring på køretiden mellem 354% og 1164%
på store efterspørgsler. Dette viser at den spatielle opdelings metode er god til at udnytte de ekstra maskiner.

Med den spatielle distribuering er det forventeligt at data over tid vil blive ubalanceret. De spatielle opdelinger er baseret
på data fra 2021. Evaluering af den spatielle distribuering viser at sekventielle år ikke har stor forskel i trafik mønstre, men
over en periode på 10 år bliver de spatielle opdelinger lidt ubalanceret.

DIPAAL har i skrivende stund indlæst 5 år af dansk AIS data. Dette involverer 414 millioner tilbagelagte kilometer over
13.9 millioner linjestrenge af 57 238 skibe, som sammenlagt har været i bevægelse i 1 111 143 døgn.



PREFACE

This paper is a continuation of the original DIPAAL paper [1], which explored creating a distributed platform for loading
AIS data and performing analytics on the loaded data. The platform was implemented with a modular Python-based ETL
process, and a PostgreSQL [2] data warehouse, using the extensions Citus [3] for distribution, PostGIS [4] for spatial and
raster functionality, and MobilityDB [5] for spatio-temporal and temporal functionality. Furthermore, the original DIPAAL
paper [1] introduced a cell representation which improves the query runtime of small spatial areas. This paper presents further
contributions to this platform, where some contributions are fixes and improvements, while others are new features and extensive
design changes.

For this reason, some of the content of this paper overlaps with the original DIPAAL paper [1]. To make it clear what
is changed, each subsection is designated as either “minor changes”, “major changes”, or “new”. Minor changes refer to
reformulations, and small corrections. Major changes refer to subsections where the substance of the subsection differs from the
original paper and thus include conceptual differences. New subsections are completely new sections or rewritten. Subsections
with no markings indicate no changes.

Section Subsection Change
Abstract Major Changes
Introduction Major Changes
Architecture Minor Changes

ETL Design

File Download Module Minor Changes
Data Cleaning Module Minor Changes
Trajectory Construction Module Major Changes
Bulk Inserter Module Minor Changes
Rollup Module Major Changes

Data Warehouse Design Major Changes
Spatial Distribution New
API Design New
Data Preparation Minor Changes

Implementation

Line Simplification Minor Changes
Rollup Major Changes
Spatial Relationship New
Indices Minor Changes
API Implementation New
Reducing Storage Cost New

Evaluation New
Related Work Major Changes
Conclusion New
Future Work New
Acknowledgements Major Changes

Appendix

Danish Geodata Agency Major Changes
Sample API Queries New
Benchmark Plans New
Relation Statistics New

TABLE I: Overview of the changes of specific sections and subsections.

The section Data Preparation is a new section, but consists entirely of re-used work from the implementation section in the
original DIPAAL paper [1], with minor changes.

The AI-based search engine Phind1 has been used to facilitate the development of DIPAAL in regards to Python, LATEX ,
and SQL code by serving as an advanced search engine. None of the text in this paper is written by or facilitated with AI.
Likewise, none of the published source code is written by Phind. GitHub Copilot2 has been used during development, where
it has been used to suggest and auto complete code snippets.

All aerial imagery used in the figures of this paper are supplied by Bing Maps3.

1https://phind.com
2https://github.com/features/copilot
3https://learn.microsoft.com/en-us/bingmaps/rest-services/imagery/

https://phind.com
https://github.com/features/copilot
https://learn.microsoft.com/en-us/bingmaps/rest-services/imagery/


DIPAAL: DIstributed PostgreSQL-based AIS
Analytics and Loading

Alex Skov Klitgaard
Department of Computer Science

Aalborg University
Aalborg, Denmark

aklitg13@student.aau.dk

Lau Ernebjerg Josefsen
Department of Computer Science

Aalborg University
Aalborg, Denmark

ljosef18@student.aau.dk

Mikael Vind Mikkelsen
Department of Computer Science

Aalborg University
Aalborg, Denmark

mimikk21@student.aau.dk

Abstract—AIS data show promise for analytical purposes, but
as the data are not intended for analysis, the data need to be
cleaned, processed, and stored before being usable. This paper
presents an extension of DIPAAL, a system consisting of an
efficient and modular ETL process for loading AIS data, as
well as a distributed data warehouse storing the trajectories of
ships. A spatially distributed data warehouse, with granularized
cell and heatmap representations, is designed, developed, and
evaluated. At the time of writing, DIPAAL stores 414 million
kilometres of ship trajectories and more than 10 billion rows in
the largest relation. It is found that the introduced granularized
cell representation resolved out-of-memory errors of previous
work, while improving the runtime of up to 324% compared
to a trajectory-based query. It is also found that the spatially
divided shards enable a consistently good scale up for both cell
and heatmap analytics in large areas, ranging between 354% to
1164% with a 5x increase in workers. Lastly, it is found that
the spatial divisions become slightly skewed over time, as traffic
patterns evolve.

Index Terms—Spatio-temporal, AIS, Trajectory, Distributed,
ETL, RDBMS, Moving object, Cell representation, Heatmaps,
Spatial partitioning, Spatial distribution, PostgreSQL, PostGIS,
MobilityDB, Citus

I. INTRODUCTION

Although the automatic identification system (AIS) was
introduced as a tool for automatic identification of vessels at
sea, the data collected from it shows promise for analytics [6].
The explosions at the Nord Stream gas lines on the 26th of
September 2022 [7] are examples of where analytics of AIS
data shows promise, as it can be used to determine which ships
were near the gas lines within a specific area and temporal
span.

Although AIS data show great promise for analytics, suffi-
cient care must be taken to overcome its inherent limitations
[6]. One of the inherent limitations of AIS data are that it is
dirty, as the protocol is originally designed to help increase the
safety at sea by automatically identifying vessels. Therefore,
before using AIS data for analytics, it is necessary to clean
the data based on knowledge about the ship domain. Danish
AIS data have been stored for more than a decade resulting
in a large amount of available AIS data for analytics, such as
traffic pattern mining [8] and minimum draught maps [9].

The large volume of available AIS data makes storing and
processing the data on a single machine infeasible. Therefore,

(a) Trajectory representation.

(b) Cell representation with rollup.

Fig. 1: Representations of AIS data in DIPAAL with spatial
divisions.

systems proposed for efficient handling of trajectory data, such
as [10, 11, 1], use a distributed storage engine to store the data
across a cluster of workers.

The original DIPAAL platform [1] consisted of a modular
ETL process responsible for cleaning and transforming the
AIS data before loading the data into a PostgreSQL-based
Data Warehouse (DW). The DW of the original DIPAAL
platform introduced a cell representation, transforming com-
plex trajectories into sets of simple geometries. This paper
works toward extending the platform created in the original
DIPAAL paper [1], while rectifying the shortcomings of the
cell representation.
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DIPAAL stores representations of the AIS data in the form
of trajectories and cells, which are depicted in Figure 1.
Trajectories are chronologically ordered sets of AIS points,
as shown in Figure 1a, where the green circles are individual
AIS data points. Whereas, cells are spatial areas that aggregate
trajectory information, as shown in Figure 1b. The cell repre-
sentation is updated to now consist of a hierarchy that stores
the resulting cells at multiple granularities instead of solely
consisting of 50m cells. This hierarchy alleviates the out-of-
memory conditions and slow query runtimes experienced in
the evaluation of the original DIPAAL paper [1].

The Citus PostgreSQL extension enables distribution by
sharding the data in the DIPAAL DW across a cluster of
workers. To enable spatial aggregations on the cell and
heatmap representations, a spatial distribution approach is
used. This approach creates spatial divisions which divides
the cell and heatmap data across all available workers. These
spatial divisions are created using a kd-tree approach and is
based on an entire year’s worth of AIS data. An example of
spatial divisions are shown as the yellow lines in Figure 1
which shows a large division on the right and two smaller
divisions on the left. It is evident from Figures 1a and 1b that
the cell representation is more suited for spatial distribution
than the trajectory representation, as trajectories can span
multiple divisions, whereas cells fit within a single division.

To increase the analytical capabilities of DIPAAL both the
design and implementation of the ETL process are extended
to support querying heatmaps in the form of rasters. Adding
support for heatmaps as an additional analytical capability
originates from discussions with domain experts, see Ap-
pendix A.

The API proposed in the original DIPAAL paper [1] is
implemented. It is implemented both to provide visualisation
for the added heatmap functionality, as well as make param-
eterisable and pre-optimised queries available for non-DW
users.

This paper explores how a kd-tree-based spatial distribution
approach impacts the query runtime of different query types
and the utilisation of the underlying hardware. Additionally,
how well the spatial distribution approach scales when going
from a one- to five-worker setup is evaluated for queries with
areas of different sizes.

The storage requirements of the multiple representations
stored in DIPAAL and the viability of lazily calculating the
fine-grained representations are explored.

The contributions of this paper are:
• Implementation of a spatial distribution approach that

reduces query runtime on the cell representation by
ensuring spatial data locality on the workers and enabling
push down of spatial aggregation to the workers.

• Extended analytical capabilities in the form of on-demand
distributed heatmap creation.

• Extensive evaluation of the extended DIPAAL platform
which offers insights into the query runtime performance
of the platform and how well it scales on one- and five-
worker setups.

• Show feasibility of the design of DIPAAL by loading,
storing, and performing analytics on five years’ worth of
AIS data.

At the time of writing, 5 years are loaded into the DW, con-
sisting of 414 million kilometres of ship trajectories between
13.9 million trajectories over a duration of 1 111 143 days.
A total of 57 238 unique MMSIs have been observed. The
largest relation contains 10 billion rows.

The rest of the paper is structured as follows; the defi-
nitions used and the architecture of DIPAAL are described
in Section II. Section III explain the design behind the ETL
process used to load data into the DIPAAL DW. The structure
and design choices behind the DIPAAL DW are illustrated
in Section IV. Section V discuss possible approaches to
create spatial divisions for the DIPAAL DW. The principles
and design choices behind the DIPAAL API are listed in
Section VI. Implementation details of the DIPAAL platform
are described in Sections VII and VIII. Section VII covers the
interesting parts of the data preparation implementation for
the ETL process, and Section VIII covers the parts related to
insertion of data and methods to increase the efficiency of the
DW. Section IX evaluates the efficiency of the DIPAAL DW.
Related work are explained in Section X. Finally, Section XI
concludes the paper and Section XII describes possible future
work for DIPAAL.

II. ARCHITECTURE

In order to describe the architecture of DIPAAL, the key
definitions are given.

A. Definitions

Definition 1: Point: A point p = {t, lng, lat,MMSI, ais},
where t is the timestamp at which the point was created,
lng and lat are abbreviations of the longitude and latitude
coordinates. MMSI refers to the Maritime Mobile Service Iden-
tity (MMSI) of the transmitting ship, and ais are additional
optional AIS attributes.

MMSI is a 9-digit identification number that is manda-
tory to use for identification [12]. The additional optional
attributes ais, in Definition 1, are the attributes contained
within the AIS message data related to the ship. Examples
of additional attributes are the speed over ground (SOG),
destination, heading, and navigational status, as explained by
Bereta, Chatzikokolakis, and Zissis [12].

Definition 2: Trajectory: A trajectory T is a sequence of
points sorted on their timestamp in ascending order T =
{p1, p2, ..., pn}, where n ≥ 2 ∧ p1.t < p2.t < ... < pn.t.

A trajectory must consist of at least two points in DIPAAL
as otherwise it is incapable of expressing movement over
time. The points of the trajectory must be strictly temporally
ordered.

Definitions 1 and 2 are data source independent and can be
applied to any AIS dataset.

As both the sharding and partitioning techniques are used
in DIPAAL, it is necessary to clearly define the difference
between sharding and partitioning.
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ETL API
Client

Data Warehouse

AIS
Data

Fig. 2: The architecture of the DIPAAL platform.

Definition 3: Shard: Relations are divided into shards to
horizontally scale database queries. Each shard is a subset of
the parent relation and may be located on different workers.
The process of dividing a relation into shards is called
sharding [13, sec. 4.2].

Definition 4: Partition: A partition, or the process of parti-
tioning, refers to the process of splitting a logical PostgreSQL
relation into multiple physical smaller PostgreSQL relations
on the same worker [14, sec. 5.11].

B. Platform

The architecture of DIPAAL is seen in Figure 2, where
purple arrows depict data processing, green arrows depict
requests for data, and blue arrows depict the responses to the
requested data. Cylinders indicate data storage, while boxes
are software components.

AIS data are noisy and must therefore undergo data cleaning
as part of the ETL process, to improve data quality [6].
The ETL process is modelled as a pipeline, which is further
described in Section III.

For data cleaning to improve data quality, a set of cleaning
rules are defined. The ETL process follows the same cleaning
rules laid out by Nielsen et al. [9], which are designed to filter
out noise from the AIS data. These cleaning rules are similar
to the work of Graser [15].

The DW stores the AIS data processed by the ETL process,
which results in multiple representations being available in
the DW, with the finest representation being trajectories, as
defined in Definition 2.

The DW can be queried directly by power users with a
deep understanding of the DW design. Other users can send
API requests to pre-optimized API endpoints without worrying
about performance, removing the requirement of the user to
understand the underlying DW design.

The design of the DIPAAL platform is not locked to a
particular AIS data foundation. However, Danish AIS data1

published by Danish Maritime Authority (DMA) are used for
development, evaluation, and demonstration of DIPAAL.

C. Data Warehouse

To create an efficient query platform for large-scale trajec-
tory data, the underlying storage engine must support spatio-
temporal data and distributed storage.

PostgreSQL [2] does not natively support spatio-temporal
data or distributed storage. Nevertheless, PostgreSQL is ex-
tendable, and its extension API allows multiple extensions

1https://web.ais.dk/aisdata/

to co-exist and work in unison [14, sec. 38.1]. Utilising the
extensions Citus [3], PostGIS [4], and MobilityDB [5], the
missing support are added to PostgreSQL, making it a viable
storage engine for DIPAAL.

Distributed Storage Support: Citus enables distribution of
PostgreSQL by sharding relations and storing these shards
across a cluster of workers. Citus support co-located relations
[16, sec. 12.4], meaning rows with the same value in their dis-
tribution attribute are located on the same worker. Co-location
increases data locality and enables local joins [16, sec. 14.4.4],
which significantly reduces query runtime. In contrast, non-co-
located joins must transfer data between workers to perform
a join.

Distribution of the data also enables the workers in the
Citus cluster to share the workload by each computing part
of a query result from its local data, which are combined and
presented to the user [17].

Spatio-temporal Support: PostGIS extends PostgreSQL
with a range of spatial data types, operators, and functions.
PostGIS is used for raster operations, to enable the heatmap
functionality of DIPAAL, as well as provide spatial join
conditions.

MobilityDB builds on top of the PostGIS extension and adds
support for temporal and spatio-temporal data by lifting the
operations and functions provided by PostgreSQL and PostGIS
[18]. By defining multiple type constructors, MobilityDB
enables working with both discrete spatio-temporal data, as
well as providing Moving Object Database (MOD) capabilities
[18].

III. ETL DESIGN

The ETL process consists of interchangeable and self-
contained modules to facilitate the separation of concerns and
improve modularity,

The pipeline of the ETL process is shown in Figure 3,
describing the concern of each module and their respective in-
puts and outputs, with arrows depicting the data flow between
modules. The base use case is the synchronous execution of the
pipeline, as ordered by the numbers in Figure 3. Additional use
cases are to clean the AIS data by running the DW-independent
modules, indicated by the red box, or load previously cleaned
data by running the DW-dependent modules, indicated by the
blue box. This separation enables the DW-independent parts
to be executed in parallel on multiple machines, with no
coordination, besides transferring the result to the bulk inserter
module. The individual modules are described in more detail
below.

A. File Download Module

This module provides a thin integration that enables the ETL
process to find, download, and prepare the raw AIS source files
automatically. An example of file preparation is the unzipping
of archived files.

3
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cleaning rules.
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Fig. 3: Pipeline of the ETL process. The modules in the
red box are DW-independent and can be run anywhere. The
modules in the blue box are DW-dependent and must be run
on the cluster.

B. Data Cleaning Module

Due to the circumstances regarding AIS data described in
Section I, it is necessary to improve the data quality. This
module removes noisy AIS data by enforcing the following
domain-specific cleaning rules, defined by Nielsen et al. [9].
These cleaning rules coincide with some of the steps in the
protocol created by Graser [15], which helps identify common
problems in moving data.

1) Remove duplicate rows
2) Remove ships with unnatural dimensions
3) Remove ships with an MMSI that does not follow the

correct format

4) Remove ships with a position on land
5) Remove ships outside of defined geometric bounds

C. Trajectory Construction Module

The trajectory construction module is responsible for con-
structing the trajectory facts to be stored in the DW, as defined
in Definition 2.

The module creates trajectories from a temporally ordered
AIS data set. To handle each ship in isolation, the input data
are grouped based on the ship’s MMSI value. MMSI is a
mostly unique identifier, as it uniquely identifies a ship at a
given time, but it may change under certain circumstances [19,
12]. Although the International Maritime Organisation (IMO)
number is a unique identifier, it is not used for grouping, as
it is not required for AIS transmissions [19, 12].

The trajectories are classified as either stopped or moving,
enabling analysis to focus on either classification.

To construct trajectories, the trajectory construction module
iterates over the temporally ordered AIS data set and exam-
ines the points pairwise. From this examination, the module
determines which set of points represents moving and stopped
ships, creating trajectories for each. The pairwise examination
is further used to improve the data quality by removing spatio-
temporal outliers, as defined in the work of Nielsen et al. [9].

D. Bulk Inserter Module

The bulk inserter module is responsible for inserting data
from the trajectories into the appropriate relations in the DW.
The bulk inserter module is able to insert many rows at a time
but also split extensive inserts into multiple batches. If an iden-
tical row already exists in the DW, the bulk inserter module
instead returns the primary key identifier of the existing row,
which can be used for referencing. The case where an identical
row already exists only happens on dimension relations, such
as previously inserted ships.

E. Rollup Module

After the insertion of the produced trajectories, the rollup
module is responsible for executing the rollup queries that
aggregate existing data in the DW into new representations.
An example of a rollup query is the transformation of trajec-
tory facts into cell facts, as seen in Figure 1. The work is
trivially distributed and parallelised using the DW, as Citus
automatically creates a distributed query plan.

IV. DATA WAREHOUSE DESIGN

No golden standard exists for designing and implementing
a moving object DW, especially in a distributed scenario. The
design of DIPAAL is thus created from a collection of sources
and recommendations and serves as a proposal on efficiently
distributing analytics of large scale moving object data.

The DW design of DIPAAL is partially based on the
recommendations of Kimball and Ross [20]. It is partially
based since Kimball and Ross do not make recommendations
for some aspects of the spatio-temporal and moving-object
world, such as spatial references and representations. For these
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aspects, the DW design is based on the recommendations made
by Vaisman and Zimányi [21] and from consultations with
domain experts, see Appendix A. The overall DW design
is based on a star schema with an RDBMS as the physical
foundation, which Kimball and Ross recommend as an option
[20, chap. 1, p. 9].

The complete DW design is seen in Figure 4. The DW
comprises six fact tables that individually are part of a partially
snow-flaked star schema with conformed dimensions except
for the time and date dimensions which are role-playing di-
mensions. The complete schema is a fact constellation schema
[22].

Each attribute in the fact constellation schema is depicted
using three sections, where the leftmost section specifies if
the attribute is part of the primary key (PK) and/or a foreign
key (FK). The middle section is the attribute’s name, and the
rightmost section is the datatype. Attributes that are both part
of the PK and a FK are represented with a green colour, while
attributes that are only part of a PK are represented with a blue
colour. If a PK attribute is the distribution attribute, it has a
purple gradient. The distribution attribute determines which
Citus shard the row lies in. Each arrow points from a FK
to the attribute it references, as seen in Figure 4. Arrows to
dim_spatial_division, dim_date, and dim_time
are not shown but are implicit for all attributes named with
division id, date id and time id. Tgeompoint, stbox, and
tfloat are types from MobilityDB, where tgeompoint repre-
sents temporal geometric points, stbox represents a spatio-
temporal box, and tfloat represents temporal floats [5].

Four granularities are chosen for the cell representation.
These granularities are chosen as a result of collaboration with
domain experts combined with the findings of the original
DIPAAL paper [1]. The chosen granularities are 5000m,
1000m, 200m, and 50m.

A. Facts

Kimball and Ross recommend the fact table foundation
builds on atomic events [20, chap. 1, p. 17]. However, the data
foundation of each row in the fact table fact_trajectory
is a series of points traversed by a ship, i.e., a trajectory.
This granularity is used for fact_trajectory, as no
information is lost by aggregating points into trajectories; see
Definitions 1 and 2.
Fact_trajectory contains measures that describe a

ship’s trajectory, as defined in Definition 2 and seen in Fig-
ure 1a. The measures duration and length represent the
timespan of the trajectory and its length in meters, respectively,
and are both additive measures [20, chap. 2, p. 47]. Lastly, the
measure infer_stopped is a boolean where TRUE means
the trajectory is inferred to represent a non-moving ship within
a small area, for example, an anchored ship, and FALSE means
the ship is moving.

The four cell fact relations are aggregate fact tables based
on fact_trajectory, as shown in Figure 1, and contain
measures for events within defined cells. These events describe
the movement of a ship between it entering and exiting a

cell. The SOG averages the ship’s SOG during the cell event.
Delta course over ground (COG) and heading are
measures of how much the ship’s course and heading changed
inside a cell. The attribute bounding_box describes the
spatio-temporal bound of a cell fact and is solely included
for indexing to reduce the query runtime of spatio-temporal
queries. The bounding_box is necessary for the index as
PostgreSQL as of version 15 does not support cross-relation
indices [14]. Lastly, draught is the minimum draught of the
ship inside of the cell, as the minimum draught can be used
to complete a minimum depth chart as performed by Nielsen
et al. [9]. The draught of a ship can change inside of a cell, but
if analysis of draught is desired on a finer granularity than the
grid provides, the data in dim_trajectory should be used
instead. All of these measures are additive, except draught,
which is non-additive [20, chap. 2, p. 47].

The fact_heatmap relation contains entries defining a
raster for a 5 by 5km cell. The 5 by 5km raster contains
the finer granularities by storing multiple pixels in the raster.
For example, the 50m resolution raster is a 5 by 5km raster
containing 10 000 pixel values. This is a design choice, as
it reduces query runtime by aggregating fewer, larger rasters,
compared to many, smaller rasters [23, p. 6].

Rast, is an advanced [21] and semi-additive measure, as
it cannot be aggregated across different heatmap types or
granularities. The fact_heatmap relation serves as an
intermediary pre-aggregate of the four cell fact relations,
where entries of the relation can be aggregated further to
create heatmaps. Pre-aggregation minimises the computation
needed at query time, while preserving the ability to create
parameterised heatmaps.

The fact_heatmap relation also contains measures
for the spatial and temporal resolution in spatial reference
units, which for the Danish data foundation is meters from
EPSG:30342, and seconds, respectively. These measures serves
to enable storing multiple resolutions. DIPAAL currently pre-
aggregate heatmaps with spatial resolution of the four cell
granularities, and one day as the temporal resolution, as per
request by domain experts, see Appendix A.

B. Dimensions

Both fact_trajectory and the four cell fact relations
reference the dimension dim_trajectory. This dimension
is responsible for storing the variable length fields of a trajec-
tory. It stores a tgeompoint, representing the trajectory, but
also tfloats for the rate of turn (ROT), heading, and draught.
Lastly, it has a varchar attribute representing a trajectory’s
destination.

The dim_heatmap_type stores metadata about different
heatmap types, such as how to aggregate the rasters, and its
name and description. DIPAAL, at the time of writing, pre-
aggregates five heatmap types; count of ships crossing a cell,
accumulated time spent in a cell, average delta change in
heading in a cell, average delta change in COG in a cell,

2https://epsg.io/3034
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Fig. 4: Fact constellation schema for the DW.
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and minimum draught in a cell. A two-band raster is used
to support aggregating average values, with one band being
the sum of the value, and the other being the count. The
dim_heatmap_type enables the possibility of defining new
heatmap types dynamically without any structural changes to
the DW, thus only requiring trivial ETL changes.

Two dimensions describe the date and time of a fact.
Splitting the temporal property into two dimensions reduces
the number of rows needed as it incurs that dim_date only
grows by one row per day, while dim_time is fixed in size.
These dimensions use smart keys [20, chap. 3, p. 101] as
primary keys to simplify queries and the ETL process.
Dim_ship contains the information about ships, except the

mobile type and ship type attributes, which are stored in a fixed
depth hierarchy in dim_ship_type. Dim_ship is a type-0
slowly changing dimension, where the original is stored and
never changes [20, chap. 2, p. 54].
Dim_nav_status contains the navigational statuses

available for the ship crew to set according to the AIS
definition [12]. The navigational status is in its own dimension,
as Kimball and Ross recommend avoiding textual data in the
fact tables [20, chap. 1, p. 12].

The four cell dimensions all store a two-dimensional index
of cells and their physical geometries using the PostGIS
geometry datatype. The four cell dimensions use the same
hierarchy and granularity levels as the four cell facts. The
four cell dimensions are linked in a snow-flake hierarchy, with
smaller cells referencing their larger parent cell.

A snow-flake approach is chosen to avoid the data explosion
which occurs if the hierarchy is represented as a denormalised
star schema hierarchy. Denormalising the hierarchy with
5000m and 50m cells results in the 5000m granularity being
replicated 10 000 times due to a 5000m cell containing 10
000 50m cells. Furthermore, a snow-flake approach trivialises
adjusting the hierarchy in the future.
Dim_direction contains the cross product of the four

directions, which is formed by a cell’s sides and an unknown
direction. These are referenced by dim_direction’s to and
from attributes, determining from which direction a ship en-
tered and exited a cell, respectively. For example, in Figure 1b,
in the right subfigure, the upper left cell has the direction south
to north, while the upper right cell has the direction south to
south.
Dim_spatial_division is a non-changing fixed di-

mension. It contains two attributes, consisting of an id and
a geometry. This dimension is used for every relation that
is spatially distributed. The spatial distribution scheme is
described in depth in Section V.

Besides the fact and dimension relations, an audit table, not
shown in Figure 4, is created to keep track of the ETL runs as
recommended by Kimball and Ross [20, chap. 2, p. 66]. The
audit table contains information such as the ETL version, the
start time of the ETL process, the date that was loaded, and
the runtime of each stage of the ETL process.

C. Distributed Relations and Distribution Attributes

The dimensions dim_nav_status, dim_direction,
dim_spatial_division, and dim_time are fixed size.
The dim_date relation grows on average by one row for
each loaded day, and dim_ship grows by the number of
new ships every day but is expected to grow by less than a
few hundred rows per day. All these relations are configured
as reference relations, meaning all the data in these relations
are replicated to all workers in the Citus cluster to ensure data
locality [16, chap. 10, p. 56].

The relations fact_trajectory, dim_trajectory,
the four cell facts, and fact_heatmap are expected to
grow the fastest. For this reason, these are chosen to be dis-
tributed. The four cell fact and fact_heatmap relations are
distributed spatially using the dim_spatial_division
dimension, which is described in more detail in Section V. The
four cell dimension relations are spatially distributed together
with the four cell fact relations, ensuring data locality.

For the fact_trajectory and dim_trajectory re-
lations to be distributed spatially, it requires the trajectories
to be split into segments that fit inside the divisions defined
in dim_spatial_division. Splitting the trajectories re-
quires trajectory reconstruction if the complete trajectory is
needed for a query, involving cross-node reconstruction and
repartitioning. It is thus chosen to instead use random hash
partitioning for the trajectories. This design choice means that
to create cell facts from the trajectories, a repartitioning has to
occur, as the cell relations are not co-located with the trajectory
relations. This issue is discussed in detail in Section VIII-B.

V. SPATIAL DISTRIBUTION

DIPAAL can produce a variety of heatmaps. The production
of heatmaps is a computationally heavy task, scaling with the
temporal and spatial spans. Therefore, the distribution of such
tasks and the distribution method used are important.

A. Motivation

To facilitate efficient distributed calculation of heatmaps,
all values of a pixel must be located in the same shard, as the
summation can then be pushed down to the workers, which
is visualised in Figure 5. Rasters of the same colours indicate
rasters of the same area but may represent, for example, a
different time, ship type, or mobile type. An example for two
rasters of the same colour is one for the ship type “Cargo”, and
one for the ship type “Passenger”. The notion “area” refers to
the area covered by the raster.

In Figure 5a, a random distribution scheme is used. In
this scheme, each worker node must transmit every raster to
the coordinator, aggregating the rasters into the final raster.
Aggregating the rasters on the coordinator is expensive in
network overhead and limits the system to the computational
power of the coordinator. It is, therefore, not horizontally
scalable. In Figure 5b, a spatial distribution scheme is used.
The spatial distribution guarantees that all rasters for a given
area is located on the same worker. Thus, the workers perform
the raster aggregation for each area, and only transmit one
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(a) Visualisation of calculating rasters distributed randomly.
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(b) Visualisation of calculating rasters distributed spatially.

Fig. 5: Comparison of the calculations in a spatially distributed
scheme versus a randomly distributed scheme.

raster per area to the coordinator. The coordinator perform
less work, as the only operation it has to do is align the areas
into a large raster.

The example in Figure 5a only has two rasters per area,
and four areas, which results in eight rasters being transmitted
using the randomly distributed scheme. If, instead, there are
200 rasters per area, for example, 10 ship types over 20
days, it has to transmit 800 rasters. If horizontal scaling
is desired, random distribution is thus unfeasible. For the
spatial distribution scheme, the number of rasters transmitted
is constant regarding the number of areas, as there is only one
aggregated result from the workers per area.

To horizontally scale spatial aggregates, the cell facts and
dimensions are spatially co-located with the heatmaps.

Quad-tree and kd-tree-based spatial distributions for the
spatial domain of DIPAAL are seen in Figure 6. Figure 6
is explained in further detail in Section V-B.

B. Spatial Distribution Approach

It is shown that spatial distribution is necessary to scale
spatial aggregations, such as heatmaps, horizontally. There-
fore, the next step is determining the approach to create the
spatial distributions by dividing the spatial domain.

(a) The resulting quad-tree.

(b) The resulting kd-tree.

Fig. 6: The resulting divisions from the quad-tree and kd-tree
approaches, respectively.

As DIPAAL has a maximum cell granularity of 5km, no
spatial division can have a side length not divisible by 5km,
and no division can thus be smaller than 5 by 5km.

The spatial distribution aims to create divisions, such that
the counts of cell facts are balanced between the shards.
This is because the four cell fact relations are the largest by
far, see Appendix D. By creating equal shards in regards to
cell count, it ensures that both the load, when querying the
cell relations, as well as the storage requirements for each
worker are balanced. As the count of the cell facts of different
granularity is proportional, the count of 5000m cell facts are
used as the foundation of the spatial distribution.

Two division approaches are considered for use in DIPAAL.
The first is a region quad-tree approach [24], and the second
is a kd-tree approach [25]. R-trees can also be used for spatial
division, but since they do not spatially cover the domain, it is
discarded as an option. Using R-trees for spatial division was
explored by Li et al. [26], where the non-covering property
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resulted in a work-around that ended up performing poorly
compared to quad- and kd-trees.

For the quad-tree construction, a global spatial domain is
chosen by finding the shortest side lengths that surround the
global spatial domain of the data while having side lengths,
s, be s ∈ 2n ∗ 5000m where n is a natural number. The
side length must be 5 000m multiplied by a two exponent, as
each quad-tree split divides the cell’s side lengths in half. This
multiplication ensures each cell, even after n splits, is divisible
by 5km. Consequently, n defines the maximum depth of the
quad-tree. For each split, the division with the highest number
of cells is chosen until it reaches a maximum depth, such that
splitting again results in divisions smaller than 5 by 5km.

A similar approach is taken for the kd-tree construction with
the pseudo-code seen in Algorithm 1. The input to the function
is the global spatial domain and a limit on the number of
divisions created. Line 1 counts the total number of cell facts
in the global spatial domain. On line 2, divisions are initialised
as a set consisting of the global domain. Each division in the
divisions set is a tuple consisting of a geometry defining the
division and a number describing the number of 5000m cell
facts contained in the division.

The while loop on lines 3 through 7 loops as long as it
has not reached the maximum number of divisions to create.
Each iteration pops the division with the highest number of
cell facts that is capable of splitting. Being capable of splitting
means having any side length, that can be divided, such that
the new side length is divisible by 5km. The best split for
the largest division is found on line 5 based on a binary-
search approach, where the two new divisions have the highest
balance regarding the number of cell facts. The new divisions
are added to the divisions set on line 6.

Algorithm 1 Spatial Divisions Kd-tree Construction

Input: maxNumDivisions
Input: globalDomain
Output: divisions

1: maxPoints← count(fact cell 5000m)
2: divisions← {(global domain,maxPoints)}
3: while |divisions| < maxNumDivisions do
4: division← pop largest division capable of splitting
5: p1, p2← getBestSplit(division)
6: divisions← division ∪ p1 ∪ p2
7: end while
8: return divisions

An example of a kd-tree construction using the method in
Algorithm 1 is seen in Figure 7. In Figure 7a, the initial
spatial domain is shown. The crosses mark individual cell
facts. The algorithm then pops the global domain and finds
the best split along the x-axis in Figure 7b. The dashed lines
indicate possible split lines. Not all x-coordinates are valid
split lines, as it must align with the 5km grid. Since the best
split is found using a binary-search approach, the centre line
is checked first. It is determined from this check that the best
split must be to the left of the centre line, as there are five

(a) The initial global spatial do-
main and the cell facts within.

(b) The first split is performed
along the x-axis

(c) The second split is per-
formed along the y axis in the
left-most partition.

(d) The third split is performed
along the y-axis in the right-
most division.

Fig. 7: An example showing a global domain being split
into four balanced divisions using the kd-tree algorithm in
Algorithm 1.

cell facts to the left but only three to the right of the centre
line. The line is marked as red to visualise the lines checked
using the binary-search approach. The left half is then divided
in half and checked. This line, marked as the black dashed
line, equally splits the division with four points on each side
and is thus chosen.

In Figure 7c, the new and smaller left division is chosen.
As the kd-tree splits in alternating directions, this level of the
kd-tree is split along the y-axis. The best split is found as
the centre line, dividing the division into two divisions with
two cell facts in each. Lastly, the same is done for the right
division in Figure 7d. In Figure 7d, the two dashed red lines
indicate the splits that are considered using the binary search
approach. First the center line is tested, then the centre line of
the bottom half, before testing the black dashed line, which is
determined to be the best split.

Both the quad- and kd-tree approach has a parameter defin-
ing the maximum number of divisions created. 400 divisions
are chosen as the maximum number of divisions based on
experimentation on the year 2021. This experimentation shows
that creating additional divisions requires splitting divisions
into sizes less than 5km or introducing a higher imbalance of
the divisions.

The resulting spatial divisions of both approaches do not
change over time, i.e. they are static. The static property
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enables push down of spatial aggregation to the workers,
regardless of the query’s temporal range. The consequence of
static division is the possibility of divisions becoming skewed
as traffic patterns evolve or new AIS receivers are installed.
Data deviation over time is evaluated in Section IX-G.

The resulting quad- and kd-tree are shown in Figure 6, with
the quad-tree approach in Figure 6a and the kd-tree approach
in Figure 6b.

The data deviation is compared using the measures Standard
Deviation (SD) [27] and Coefficient of Variance (CV) [28]. For
both metrics, a lower value indicates better balanced shards.
The 2021 data contain 9 million trajectories, travelling a total
of 85 million kilometres by 28k unique ships.

After constructing the quad- and kd-trees on AIS data for
2021, the SD and CV are measured. For the quad-tree, the
SD is 81 192, and the CV is 106%. For the kd-tree, the
SD is 31 814, and the CV is 41%. Kd-tree-based divisions
are better balanced and is used as the distribution approach
for DIPAAL. This result is explained by the unevenness of
the data foundation, which is due to the nature of navigation
on water that mostly follow defined sea lanes, resulting in
high- and low-traffic areas. The dynamic nature of the kd-tree
approach better captures this unevenness compared with the
more rigid quad-tree approach, and thus, these results may not
be applicable to other spatial domains or datasets.

VI. API DESIGN

As mentioned in Section II-B, an API intermediary is
designed which provides non-trivial pre-optimised queries,
written with detailed knowledge of the DW design. To improve
security, the API is restricted to a read-only DW user. The API
is a stateless, OpenAPI3-compliant wrapper.

The API’s queryable resources are restricted to the DW’s
core concepts. The core concepts of the DW are the result
of collaboration with domain experts, as seen in Appendix A,
and lists heatmaps, cell facts of all granularities, trajectories,
and ships.

A. Endpoints

For all queryable resources, besides heatmaps, there is an
URL (Uniform Resource Locator), which links directly to a
single entry of a resource, as well as a query endpoint that
finds all matching resources. For example, /api/v1/ships/123
finds the ship with ship id 123. However, the query
/api/v1/ships?length gt=100&ship type=Passenger find all
ships with the ship type Passenger and a length greater than
100 meters.

All endpoints in DIPAAL use the GET HTTP method, and
all parameters are thus either path- or query-parameters. This
approach is chosen both in order to comply with the HTTP
specification but also to support tools that are used by domain
experts, such as QGIS’s4 raster functionality, which does not
support body-parameters.

3https://github.com/OAI/OpenAPI-Specification
4https://qgis.org/

Parameters that refer to a non-aggregatable hierarchy
in the DW design are path parameters. For example, all
heatmaps with the resolution of 200m and the type count
are found at the path /api/v1/heatmaps/count/200m. All
other parameters are query parameters. For example, to add a
temporal constraint to the previous example, the path would
be /api/v1/heatmaps/count/200m?start timestamp=2022-
01-01T00%3A00%3A00Z. The %3A parts are the URL
encoding of a colon, as the timestamp is of the ISO86015

Zulu time format.
The output format of the endpoints in DIPAAL is JSON, as

there are well-supported JSON standards for moving features
(MFJSON6) and geometries (GeoJSON7). For the heatmap
endpoints, which return rasters, the output format is either a
GeoTIFF, a pre-rendered raster in the form of a PNG image, or
an MPEG-4 video. The pre-rendered results allow the endpoint
users to see a result without having a specialised GIS-client
installed.

The specification for the API and all available endpoints is
available at https://dipaal.dk/docs. Direct SQL-access to the
DW is required if ad-hoc access to non-core concepts are
needed.

B. Example of Usage

One example of the API usage is shown, with more exam-
ples found in Appendix B

This example covers how to get a heatmap from the API. For
the sake of demonstration, the complete count heatmap for the
years 2011, 2019, 2020, 2021, and 2022 for all ship types and
mobile types is requested at a 1000m spatial resolution. This
is done through the URL https://dipaal.dk/api/v1/heatmap/
single/count/1000m?output format=tiff&x min=3480000&
y min=2930000&x max=4495000&y max=3645000&srid=
3034&start timestamp=2011-01-01T00%3A00%3A00Z&
end timestamp=2022-01-01T00%3A00%3A00Z, where the
1000m path parameter determines the 1000m resolution, the
output format=tiff query parameter requests the output as a
GeoTiFF, and the rest of the query parameters determine the
spatio-temporal bounds of the heatmap.

The GeoTiFF output is rendered using QGIS and is seen in
Figure 8.

VII. DATA PREPARATION

This section covers the implementation of selected topics
on AIS data preparation.

Data preparation covers the DW-independent sub-modules
of the ETL process shown in Figure 3.

A custom geometric bound is created for the data cleaning
module to limit the scope of the spatial domain of DIPAAL.
The bound is created from open coastline data made available
by OpenStreetMap8. Changing the area for the cleaning in DI-

5https://www.iso.org/obp/ui/#iso:std:iso:8601:-1:ed-1:v1:en
6http://docs.ogc.org/is/19-045r3/19-045r3.html
7https://datatracker.ietf.org/doc/html/rfc7946
8Data: https://osmdata.openstreetmap.de/data/coastlines.html, attribution:

https://www.openstreetmap.org/copyright
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Fig. 8: Count heatmap of all ships in 2011, 2019, 2020, 2021, and 2022, as requested from the API in 1000m resolution.

PAAL is trivial and only requires defining the new geometric
bound.

The ship’s SOG is used to determine whether a trajectory is
classified to represent either a moving or a stopped ship. If the
SOG is above a threshold of 0.5 knots, the ship is considered
to be moving, and if the SOG is below the threshold for at
least five minutes, the ship is considered stopped [9, sec. 5].

A. Data Cleaning

The data cleaning module, as seen in Figure 3, reads a
single AIS data file and improves the quality of the AIS data
using the cleaning rules defined in Section III-B.

Algorithm 2 describes how the AIS data are cleaned. Line
2 reads the AIS data described by the file path aisfp from
storage. The AIS files must be temporally ordered in DIPAAL.
The raw AIS data are looped through on lines 3 to 7,
which removes data points that are not clean according to
Section III-B.

B. Trajectory Construction

The Algorithms 3 to 5 are implemented as part of the
trajectory construction module seen in Figure 3.

Algorithm 3 describes the entry point for constructing
trajectories. The input is a temporally ordered set of clean AIS

Algorithm 2 AIS Data Cleaning

Input: aisfp← file path to AIS data file
Output: cds← set of clean AIS data points

1: cds← ∅ ▷ Initialise result set
2: points← read csv(aisfp)
3: for p ∈ points do
4: if is clean(p) and is in bounds(p) then
5: cds← cds ∪ p
6: end if
7: end for
8: return cds

points. The algorithm outputs a set of trajectories constructed
from the input set. Line 2 groups the AIS points based on
the ship while keeping the ordering for each group created.
This grouping allows for complete parallelisation of outlier
removal on line 4 and trajectory construction on line 5, as no
trajectory spans multiple ships. The call to constr traj on line
5 takes an additional two arguments, the index in the set at
which to start trajectory construction and whether a moving
or stopped trajectory is constructed. In the call to constr traj,
these arguments have been omitted for readability, but it is
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Algorithm 3 Trajectory Construction: Overview

Input: cds← set of clean AIS data points
Output: ts← set of trajectories

1: ts← ∅ ▷ Initialise result set
2: grouped points← group by ship(cds)
3: parallel for all grp ∈ grouped points do
4: grp← rm outliers(grp) ▷ Algorithm 4
5: trajs← constr traj(grp) ▷ Algorithm 5
6: ts← ts ∪ trajs
7: end for
8: return ts

implicitly called with 0 and TRUE. On line 6, the constructed
trajectories for the ship are added to a shared set of constructed
trajectories, which are outputted on line 8.

Algorithm 4 Trajectory Construction: Remove Outliers

Input: sscps← single ship sorted clean AIS point set
Output: ofcps← outlier free and clean AIS point set

1: ofcps← ∅ ▷ Initialise result set
2: prv pnt← null
3: for pnt ∈ sscps do
4: if prv pnt ̸= null then
5: time diff ← pnt.t− prv pnt.t
6: speed← calc speed(prv pnt, pnt, time diff)
7: if time diff == 0 ∨ speed ≥ SPD THR then
8: continue
9: end if

10: end if
11: prv pnt← pnt
12: ofcps← ofcps ∪ pnt
13: end for
14: return ofcps

Algorithm 4 describes how outliers are removed during
trajectory construction. Algorithm 4 takes as input a tempo-
rally ordered set of clean AIS points sscps. The output is a
temporally ordered set of clean AIS points without outliers
ofcps.

Line 1 initialises the result set ofcps as an empty set, and
line 2 initialises variable prv pnt, which tracks the last non-
outlier point checked. The for-loop spanning lines 3-13 loops
through the input keeping the temporal order. If it is the first
iteration, then prv pnt is null. In that case, the if-statement on
line 4 jumps directly to lines 11-12, which adds the first point
to the result set. Otherwise, the time difference between the
point’s timestamps is calculated on line 5.

The time difference is used along with pnt and prv pnt by
calc speed to calculate the speed between the points. The
speed is either computed based on the points positions and
time diff, or the SOG attribute of pnt. If SOG is undefined,
the computed speed is always used. Otherwise, the difference
between the computed speed and the SOG of pnt is used to
decide which is used. If the difference is above a configurable
threshold, SOG is used, otherwise, the computed speed is used.

Nielsen et al. determines that SOG is more trustworthy if the
difference between the speeds is above a two knots threshold
[9, sec. 5].

Line 7 checks if pnt is an outlier or a duplicate point. pnt
is regarded as a duplicate if it has the same timestamp as
prv pnt, i.e., time diff = 0, as no two AIS points for the same
ship should have the same timestamp. pnt is an outlier if the
sailing speed exceeds a configurable SPD THR threshold. In
the current implementation, this threshold is set to 100 knots
based on the work of Nielsen et al. [9, sec. 5]. If pnt is neither
an outlier nor a duplicate, it is added to the ofcps result set
and set as prv pnt on lines 12 and 11, respectively.

Algorithm 5 Trajectory Construction: Build Trajectory

Input: grps← set of grouped points
Input: fm idx← from index
Input: cstr mv ← boolean state if constructing moving

trajectories
Output: trajs← set of constructed trajectories

1: trajs← ∅ ▷ Initialise result set
2: stop idx← −1
3: for idx ∈ {fm idx, ..., len(grps)} do
4: moving ← is moving(idx)
5: if cstr mv then
6: stop idx← updt stop(stop idx, idx,moving)
7: if is stopped traj(stop idx, idx) then
8: tj ← fin traj(grps, fm idx, stop idx, T )
9: rest← constr traj(grps, stop idx, F )

10: return trajs← tj ∪ trajs ∪ rest
11: else if split traj(idx, SPLT THR) then
12: tj ← fin traj(grps, fm idx, idx, T )
13: rest← constr traj(grps, idx, T )
14: return trajs← tj ∪ trajs ∪ rest
15: end if
16: else if moving then
17: tj ← fin traj(grps, fm idx, idx, F )
18: rest← constr traj(grps, idx, T )
19: return trajs← tj ∪ traj ∪ rest
20: end if
21: end for
22: tj ← fin traj(grps, fm idx, len(grps), cstr mv)
23: trajs← trajs ∪ tj
24: return trajs

Algorithm 5 describes how trajectories are constructed from
a set of AIS points. Its input is a temporally ordered set of AIS
points for a single ship grps, as well as an index fm idx, which
determines where in grps the construction begins. As a third
input, it takes whether it is constructing a moving or a stopped
trajectory. Its output is a set of constructed trajectories. Capital
T and F in the algorithm represent True and False, respectively.

The algorithm is initialised on lines 1-2, where the set of
constructed trajectories trajs is the empty set, and stop idx is
a variable that holds the index where the ship is suspected
of having stopped moving. On line 3, the points in grps are
iterated through in order beginning with fm idx. The function
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is moving on line 4 determines whether the ship is classified
as moving at index idx. Similar to the outlier detection, seen
in Algorithm 4, DIPAAL uses the computed speed instead of
SOG, if the SOG is undefined.

Lines 5-15 handle if the algorithm is currently in the state
of constructing a moving trajectory. On line 6, the stop idx is
updated if need be. A value of −1 in stop idx means that the
algorithm currently does not suspect the trajectory might be
stopped. updt stop uses the stop idx, idx, and moving vari-
ables to determine whether the currently constructed trajectory
is suspected of being stopped. In case moving is true, stop idx
is reset to −1, otherwise it is updated to idx if stop idx already
is −1.

On line 7, the algorithm checks if the temporal delta
between the AIS points at stop idx and idx are above a
threshold, which is set to five minutes [9, sec. 5]. If that is
the case, line 8-10 finish the current moving trajectory and
returns the finished current moving trajectory unioned with a
recursive call, but with the cstr mv state inverted.

On line 11, the function split traj uses the current in-
dex idx and a configurable threshold SPLT THR to check
whether the trajectory currently under construction is to be
split. Whether the trajectory is split depends on whether
the difference between the timestamps of the current point
idx and its predecessor is below SPLT THR. In the current
implementation SPLT THR is defined as five times the slowest
reporting rate of the AIS transmission, which is three minutes
[12, sec. 1.2.4]. Splitting at the SPLT THR threshold help
reduce the number of trajectories crossing land caused by ships
missing multiple reporting rates.

On line 16, if constructing a stopped trajectory and the
current index is a moving point, it stops constructing the
current stopped trajectory. Afterwards, it outputs the union of
the finished current stopped trajectory and a recursive call,
again with the cstr mv inverted on line 17-19. Lines 22-24
finishes the current trajectory if no more points are present.

VIII. IMPLEMENTATION

This section describes the more interesting implementation
details of DIPAAL. All the described parts are part of the
DW-dependent modules seen in Figure 3.

The source code of DIPAAL is released as Open Source
Software with the MIT license and are found on GitHub9.

The number of lines of code used for developing the
DIPAAL platform are seen in Table II.

Part\CLOC Python SQL Total
ETL 1 587 2 085 3 672
API 2 854 998 3 852
Benchmark 888 446 1 334
Total 5 329 3 529 8 858

TABLE II: The number of lines of code for each part of the
DIPAAL platform.

9ETL: https://github.com/DIPAAL/etl, API: https://github.com/DIPAAL/qpi

A. Line Simplification

During the implementation of the ETL process, it is ob-
served that constructed trajectories contain points with high
spatio-temporal similarity, especially for stopped ships. Each
trajectory is stored as a MobilityDB sequence of points. Mo-
bilityDB sequences imply a linear interpolation between points
with consecutive timestamps, allowing the spatial position of
a ship to be inferred at any given time within a trajectory.
Therefore, removing data points that contribute little to the
precision of the trajectory can thus reduce the query runtime
of DIPAAL without significant precision loss.

Expressing trajectories using fewer points while preserv-
ing their original shape as much as possible is called line
simplification [29]. To increase the performance of DIPAAL,
line simplification is performed for each trajectory in the
dim_trajectory relation. DIPAAL performs line sim-
plification with an error bound of 10 meters, reducing the
number of points stored by a factor of six. The Dou-
glas–Peucker algorithm [30] with Synchronized Euclidean
Distance [31] (SED) is used for line simplification through the
douglasPeuckerSimplify MobilityDB function. SED
differs from the Euclidean distance as it also considers the
temporal aspect [31].

As a consequence of the simplification process, the tra-
jectories are introduced to an error of 10 meters. Domain
experts approve of introducing this error, as the benefits of a
x6 data reduction outweigh the minor error bound introduced,
as described in Appendix A.

Due to the line simplification utilising a MobilityDB func-
tion, the data must first be inserted by the bulk inserter module.
Thus, line simplification is applied as part of the rollup module
seen in Figure 3.

B. Rollup

The rollup module is responsible for applying rollup, result-
ing in aggregated representations of the trajectory data. The
functionality of this module is implemented as a set of SQL
queries, as this module only interacts with the DW, thereby
making the module highly declarative.

Cell Rollup: Trajectories are aggregated to populate the
fact_cell relations for each cell granularity in the DW.

Experiments show that populating fact_cell by directly
joining dim_cell to the geometry representing the trajectory
in dim_trajectory, results in poor performance. This is
due to a combination of PostGIS functions necessary for such
a join, ST_Crossing, ST_Contains, and ST_Touches,
suffering from an inefficient index filtering. Index filtering
gets inefficient when the trajectories’ Minimum Bounding
Rectangle (MBR) is large.

For example, a trajectory representing a ship sailing from
the Danish Island Bornholm through Skagerrak has a bounding
box encapsulating 63 million 50m cells. In contrast, only 21
thousand cells intersect the trajectory. This poor candidate
elimination leads to the R-tree-based index of dim_cell to
be very slow.
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To reduce the query runtime, the trajectories are split to
minimise their MBR. To facilitate this, a staging relation pop-
ulated with split trajectories is created. These split trajectories
are spatially distributed as described in Section VIII-C to
avoid repartitioning on future joins. Trajectories are split using
the spaceSplit MobilityDB function. A size parameter is
provided to the spaceSplit function, which determines the
size of the resulting tiles. The optimal value of this parameter
is found through experimentation, where the results are seen
in Figure 9. A tile size of ∼1 km incurs the best trade-off
between splitting too many times versus having a larger MBR.
The 1 km tile size split takes 16.8 seconds to join on the data
from January 1st 2022.
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Fig. 9: The impact of changing the tile size parameter of the
MoblityDB function spaceSplit before joining trajectories
onto the 50m cell grid.

To avoid re-construction of trajectories, the size of the split
trajectories must correspond to the coarsest cell granularity in
the DW. It is seen that the query runtime of spaceSplit is
increasing after the lowest point at 1.1km. Thus, 5km is chosen
as the tile size, as it is the smallest tile size that encompasses
the 5km cell granularity.

Note that line simplification, as mentioned in Sec-
tion VIII-A, is performed before using the spaceSplit
function, increasing the performance of spaceSplit by
reducing the complexity of the trajectories.

Finally, once the staging relation is populated, each granu-
larity of the fact_cell relations is populated by performing
joins between the staging relation and the dim_cell relation
of the appropriate granularity.

Heatmap Rollup: Cell facts are aggregated into rasters to
populate the fact_heatmap relation with heatmaps.

The efficient creation of heatmaps is facilitated by the spatial
distribution of the fact_cell relations, as explained in
Section V, as it enforces data locality. The spatial distribution
allows each worker to locally create a section of the total
heatmap, a raster. These rasters populate the fact_heatmap
relation and are created for each granularity of fact_cell
in the DW. Additionally, different types of rasters are cre-
ated for each granularity, each aggregating a particular type
of information from fact_cell. DIPAAL implements the

following types of rasters, where each pixel of those rasters
represents aggregated information from all cell facts within
the corresponding cell:

• Count: Pixels represent the count of all cell facts.
• Delta COG: Pixels represent the average change in COG

within the cell.
• Delta Heading: Pixels represent the average change in

heading within the cell.
• Maximum Draught: Pixels represent the maximum

draught recorded within the cell.
• Time: Pixels represent the sum of time spent within the

cell.
To support aggregation of averages, two bands are stored for

the delta heading and delta COG heatmap types. One band
represents the sum of change, and the other represents the
count of events. The sum of these two bands is then divided
to calculate the average.

C. Spatial Relationship

The transformation from the trajectory representation to the
cell representation, as seen in Figure 1, is a multi-step process.

The steps are as follows:
1) Split the trajectories into trajectory segments along the

borders of the 5km grid. An analogy is to imagine
pressing a cookie cutter with 5km squares onto a plate of
spaghetti, where the spaghetti represents the trajectories.

2) Assign a spatial division, see Section V, to each of the
segments by spatially joining the division geometries
from dim_spatial_division.

3) Rollup from the segments to each of the four cell
granularities.

Steps 2 and 3 are interesting, as the spatial joins require a
non-trivial join condition to avoid double-counting and arte-
facts along division edges. For example, consider a segment
that travels on a division’s left edge. If an intersect join is
used, this segment intersects both the division to the left and
the actual division, resulting in double counting.

Spatial Relationship Between Trajectory Segments and Spa-
tial Divisions: As the spatial relationship of intersects results
in double counting, the spatial join when joining divisions to
the segments in step 2 is instead defined as:

ST Covers(division, segment) AND
ST YMax(division) ̸= ST YMin(segment) AND
ST XMax(division) ̸= ST XMin(segment)

(1)

This definition of ST Covers10 is that no point of the
segment is outside of the division. As divisions always have
at least 5km side lengths, it is guaranteed that a segment is
counted in exactly one division, except in the edge case where
a segment may be entirely on the line between two divisions.
To prevent double counting in this scenario, the remainder of
the join conditions ensure that only a division’s left and bottom

10https://postgis.net/docs/ST Covers.html
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edges are inclusive. For example, suppose a segment follows a
horizontal line between two divisions. In this case, it belongs
only to the top division, since the segment follows the bottom
edge of the top division.

Spatial Relationship Between Trajectory Segments and Ref-
erence Cells: In step 3, the spatial join follows mostly the
same definition as in step 2. Except this time, the ST Covers
condition cannot be used since the fine cell granularities are
much smaller than the segments. Instead, a combination of
ST Crosses, ST Contains, and ST Touches is used, as seen
below.

ST Crosses(cell, segment) OR
ST Contains(cell, segment) OR
(ST Touches(cell, segment) AND
ST XMax(cell) ̸= ST XMin(segment) AND
ST YMax(cell) ̸= ST YMin(segment))

(2)

The ST Crosses or ST Contains conditions catch all cases
where a segment is partly in a cell or entirely in a cell,
respectively. The third condition uses ST Touches to check if
the segment is perfectly aligned along a cell edge, and the rest
of the third condition checks if it is along the left or bottom
edge to avoid double counting, as with divisions.

D. Indices

Several indices are created for some DW relations seen in
Figure 4 to reduce the query runtime when running analytical
queries on DIPAAL.

An SP-GiST index [32] is created on the geom attribute in
the four cell dimensions. These indices enable bounding box
candidate elimination for a range of spatial join conditions.

Two B-tree indices are created for the ship identification
attributes mmsi and imo of dim_ship. These reduce the
query runtime of analytical queries that look for specific ships
by either their mmsi or imo.

In order to quickly look up and compare trajectories, a
GiST index [33] is created on the trajectory attribute of
dim_trajectory. This index reduces the query runtime
for spatio-temporal query conditions on trajectories.

To speed up queries involving the lookup of facts for
specific trajectories, a composite B-tree index is created for
the attributes start date id and trajectory sub id, as these are
used as the composite primary key of dim_trajectory.

SP-GiST indices are created for the bounding box attribute
of the four fact cell relations, which help reduce the lookup
time for spatio-temporal bound queries directed at the cell
representation. As the cell representation is intended as the
central feature for analysis in DIPAAL, these indices are
considered the most important.

An SP-GiST index is created from the geom of
dim_spatial_division, which helps speed up the check
to see which spatial division a trajectory segment belongs to,
as described in Section VIII-C.

Besides the above-mentioned indices, b-tree indices are
created for the primary key of each relation in DIPAAL, as
these are automatically created by PostgreSQL [14, sec. 11.6].

E. API Implementation

The API endpoints provide pre-optimised queries as an in-
termediary to the DW. To ease implementation, the FastAPI11

framework is used. FastAPI is OpenAPI-based, which enforces
the API to comply with the OpenAPI specification, and eases
the documentation.

Due to the custom data types and the spatio-temporal
operators from MobilityDB, it is infeasible to implement the
API using Object-Relational Mapping (ORM). Instead, SQL
queries are built using a query-builder.

To facilitate rendering PNG images and MPEG-4 videos,
as mentioned in Section VI, the heatmap endpoints are imple-
mented using the rasterio12, imageio13, and Pillow14 libraries.
Together, these libraries provide the necessary functionality to
convert the GeoTiff data result from the DW into the requested
format.

F. Reducing Storage Cost

From investigating the size of the DIPAAL relations, it is
found that fact_cell_50m is by far the largest relation.
The fact_cell_50m relation occupies 62% of the storage
space occupied by the continuously growing relations15 when
looking at the data for 2021. During a meeting with domain
experts, see Appendix A, it was discussed whether the ana-
lytics on the 50m cell granularity is interesting in all areas. It
was concluded that analytics on 50m cell granularity is only
interesting in select areas, mainly harbours, as that level of
detail is unnecessary in other areas due to the scale in which
ships operate on open waters. Therefore, keeping 50m cell
facts for the spatial boundary of DIPAAL is unnecessary and
the reduction in storage cost results in more space to load
additional AIS data.

One way to reduce the storage cost of the 50m cell fact
relation is to remove cell facts outside areas of interest. The
definition of cells within Electronic Nautical Charts (ENC)16

are used to identify potential areas of interest and their
geometrical bounds. Two types of ENC cells are considered;
“Harbour” and “Approach”. The spatial coverage of the Danish
set of “Harbour” and “Approach” type ENCs are seen in
Figures 10a and 10b, respectively.

Table III estimates how many years can be loaded with the
10TB disk space available to DIPAAL. These estimates are
based on the storage cost of loading a single year.

Based on the input from domain experts and because it
allows additional years to be loaded into the DW, it is
recommended that 50m cell facts are kept only for the harbour

11https://fastapi.tiangolo.com/
12https://pypi.org/project/rasterio/
13https://pypi.org/project/imageio/
14https://pypi.org/project/Pillow/
15The continuously growing relations refer to all fact relations, as well as

the ship, trajectory, and date dimensions.
16ENC data used are from: https://www.geogarage.com/page/catalog
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(a) Danish ENCs with type “Harbour”.

(b) Danish ENCs with type “Approach”.

Fig. 10: Candidate ENC types to define where to keep 50m
cell facts.

areas. In order to still provide 50m cell facts for non-harbour
areas, a dynamic version of the trajectory to cell rollup query is
defined, which returns transient cell facts based on the spatial
and temporal bounds given.

The removal of 50m cell facts is a responsibility of the final
step of the rollup module, seen in Figure 3, as the 50m cell
data are used for the heatmap rollups.

IX. EVALUATION

This section evaluates the performance of a range of queries
on DIPAAL and the data skewness of the spatial distribution
approach with new and old data.

Change Loadable Years (Estimated)
No Change 6 years
Approach Only 10 years
Harbour Only 19 years
Remove All 21 years

TABLE III: Estimate of how many years can be loaded into
DIPAAL with the current disk space available, based on which
50m cell facts are kept.

The evaluation focus on query runtime in a single-user sce-
nario and thus does not provide any evaluation of a concurrent
multi-user scenario.

A. Hardware/Software

The DW cluster of DIPAAL is a Citus cluster and consists of
six identical machines in a setup of one coordinator and five
workers. The cluster is configured without high availability
since the primary focus of DIPAAL is improving performance.

Each machine has an 8-core, 16-thread AMD Ryzen 7
5800x processor with a base clock speed of 3.8Ghz. Each
machine has 32GB of DDR4 system memory and a 2TB
nVME Solid State Drive. The machines are connected through
Ethernet on a gigabit connection.

Each machine runs a containerised instance of PostgreSQL
15.3 with the extensions PostGIS 3.3.2, MobilityDB 1.1.0 (un-
released; forked17 from the develop branch on April 22th with
cherry-picked fixes, 2023), and Citus 11.3.0 in Kubernetes
[34]. Both the container base image and host OS is Ubuntu
22.04. The evaluation uses Python 3.11.

B. Data Foundation

The dataset, which DIPAAL is evaluated upon, is the
publicly available AIS dataset published by DMA18. The year
2021 is loaded for all benchmarks unless otherwise stated in
the benchmark section.

C. Runtime Evaluation Metrics and Procedure

Evaluations that measure runtime all use two metrics; run-
time and average Worker Idle Fraction (WIF)

The runtime is the duration from sending the query to the
DW to receiving a complete result. WIF is defined as the
fraction of the runtime a worker spends idling. A high WIF
indicates that the computational power of the worker is wasted.
WIF is calculated as defined in Equation (3)

WIFj =
max (Worker Time)−Worker Timej

max (Worker Time)
(3)

In Equation (3), Worker Timej is the time that Worker j
took to finish all shards located on that worker and is defined
in Equation (4)

Worker Timej = max
i∈Worker Shardsj

Shard Timei (4)

17https://github.com/DIPAAL/MobilityDB/tree/
fix-srid-binary-representation-stbox

18https://web.ais.dk/aisdata/
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Average WIF has a lower bound of 0%, but an upper
bound of 1 − 1

|workers| . The upper bound is due to a single
worker always being non-idling. For this reason, the average
WIF is normalized to a range from 0% to 100%, as seen in
Equation (5)

Average WIF =

∑
WIF

|workers|
∗ 1

1− 1
|workers|

(5)

Each query is evaluated through ten iterations in an effort
to remove outliers from the result. The metrics are then
aggregated using a trimmed mean, by removing the two lowest
and two highest results, before taking the mean [35].

To facilitate consistent results, all PostgreSQL instances in
the cluster are restarted, and the OS file cache is cleared before
each query iteration. The cache is then pre-warmed by running
random queries, as explained in Appendix C-A, before the
evaluation query is executed.

Multiple designated areas are tested as part of the run time
benchmarks, which are found in Figure 11.

D. Heatmap Evaluation

This section covers the heatmap performance evaluation
of DIPAAL. A detailed benchmark plan is found in Ap-
pendices C-A and C-B. The heatmap benchmark serves two
purposes; To find the best performing physical storage scheme
and to evaluate the scale up when comparing a one-worker
setup to a five-worker setup.

Three physical storage schemes are evaluated; Row-based
storage, Citus Columnar, and Partitioned Citus Columnar.
The Partitioned Citus Columnar storage scheme uses Citus
Columnar but is partitioned on heatmap type, resolution, and
month, instead of global monthly partitions. The Partitioned
Citus Columnar scheme aims to reduce the Columnar runtime,
by storing data that are likely to be queried together in the
same stripe.

These three physical storage schemes are evaluated on
the five-worker setup. The best performing physical storage
scheme is evaluated on the one-worker setup to compare the
scale up. This results in four configurations.

The evaluation of a configuration consists of a series of
36 queries. The 36 queries are the cross product of the four
cell granularities, three temporal spans, and three spatial areas,
and are seen in Figure 12. The three temporal spans are 1 day
(February 28th, 2021), 30 days (January 26th through February
24th, 2021), and 1 year (2021). The three spatial areas are seen
in Figure 11, with Aarhus Harbour (46.78km2) in red (3), The
Great Belt (3 071km2) in green (7), and the spatial domain
of DIPAAL (725 725km2) in blue (2).

 Aarhus Harbour
The Great Belt

Spatial Domain of DIPAAL

×
 1 day
1 month
1 year

×

5000m
1000m
200m
50m


Fig. 12: Overview of the 36 heatmap configurations to be
evaluated.

The results of the evaluation of heatmaps are seen in
Table IV. The 1 day queries are not included as they are always
below one second and are thus uninteresting. Likewise, the
resolutions of 1000m and 5000m are not included due to space
constraints and the finer granularities being more interesting.

Evaluation of Physical Storage Scheme: In Table IV, the
fastest configuration for each query is marked in bold. It is
noticeable that the five-worker setup with row-based storage
is the fastest at the majority of the queries, besides the queries
with a runtime at or below one second, where the difference
is insignificant.

As it is more important to reduce the runtime of the slow
queries, the row-based physical storage scheme is chosen
as the physical storage scheme used in DIPAAL. The row-
based physical storage scheme is chosen as it has the best
performance across all queries with a significant runtime.

Evaluation of Scale Up: The row-based physical storage
scheme is applied to a one-worker setup and compared to
the row-based physical storage scheme of a five-worker setup.
This result is seen in the right-most column in Table IV. The
scale up is measured in percent, with 100% indicating the
same runtime and 200% indicating a runtime two times faster
on the five-worker setup.

It is seen in Table IV, that the scale up varies significantly.
This variation is expected as smaller areas only engage a few
shards, which is also indicated by the high WIF in the “Aarhus
Harbour” query. It is seen that the WIF is lower the larger the
area queried, as more shards are engaged in calculating the
results. In the “Aarhus Harbour” area, five shards are engaged;
likewise in the “The Great Belt” area, 15 shards are engaged.
In the “spatial domain of DIPAAL ” area, all 400 shards are
engaged.

Even with a low scale up on the small areas, this is deemed
satisfactory as the small areas’ runtimes are fast enough
without a significant scale up. The scale up is consistently
good in the spatial domain of DIPAAL query, where it is
hovering around 400%. This is a satisfactory result, as the
desire to scale up is higher on the slowest queries.

On the queries with a lower runtime, i.e. the queries in
the areas of Aarhus Harbour and the Great Belt, on the five-
worker setup with row configuration, the WIF is consistently
lower for 200m heatmaps than 50m. Likewise, it is observed
that the scale up is worse for 50m than 200m heatmaps. By
investigating the explain analyse dump, it is clear this is due
to shard imbalance. For example, in the one year Great Belt
query, 14 shards are involved in the calculation. The largest
shard holds 2.4GB of raster data, while the next-largest holds
1.9GB of raster data, i.e. there is a 26% size difference. By
investigating the query plan and the individual shard timings,
it is observed that the runtime of the spatial aggregation of the
rasters is linearly proportional to the sum of pixels in the shard.
Thus, a larger time span is expected to be spent during spatial
aggregation in the large shards. This imbalance is relatively
equal in the 200m query with a 24% size difference between
the largest shard holding 170MB of raster data and the next-
largest 137MB of raster data. However, as the absolute size

17



Fig. 11: The eight spatial areas evaluated as parts of the runtime benchmarks.

difference is much lower, it introduces less runtime imbalance
relative to other query plan nodes and thus results in a lower
WIF and higher scale up.

E. Cell Evaluation

This section evaluates the performance difference of running
spatio-temporal range queries on the cell representation versus
the trajectory representation. This evaluation is run on both the
one- and five-worker setups to evaluate the scale up. A more
detailed plan for this benchmark is found in Appendices C-A
and C-C.

For this evaluation, a number of queries are evaluated,
made up of 12 spatio-temporal ranges, which is the cross
product of four spatial areas and three temporal spans. The
three temporal spans consist of a single day (January 10th,
2021), 30 days (January 26th through February 24th, 2021),
and 90 days (January 1st through March 31st, 2021). The four
spatial areas are seen in Figure 11, with the Aabenraa area
(6.6km2) in teal (4), Aarhus Harbour (46.78km2) in red (3),
Skagerrak (5529km2) in Yellow (6), and danish seaborders
(535 557km2) in purple (2). The spatio-temporal parameters
are seen in Figure 13


Aabenraa

Aarhus Harbour
Skagerrak

Danish Seaborders

×
 1 day
30 days
90 days


Fig. 13: Overview of 12 spatio-temporal parameters of the cell
evaluation.

Additionally, the cell queries are repeated on multiple levels
of the cell hierarchy to evaluate how the cell granularity
impacts the runtime on different spatio-temporal ranges. Not
all cell granularities are run on all areas, as this was proven
infeasible in previous work [1]. The details of which gran-
ularities are used for each area are found in Appendix C-C
and Table VIII.

Figure 14 shows the runtime results of the cell evaluation
for the four defined areas. It is seen from the figure that the
five-worker setup mostly outperforms the one-worker setup,
though to a varying degree. An example of this variation is
seen in Figure 14a for the 1 day trajectory query between
the one- and five-worker setup, where the five-worker setup is
more than twice as slow as the one-worker setup.

From investigating the query plans, the cause is narrowed
down to network transmission. Out of the 10 query iterations,
six of the results have a fast execution time below 555ms,
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Five-worker One-worker

Row Columnar Columnar
partitioned Row

Time (s) WIF (%) Time (s) WIF (%) Time (s) WIF (%) Time (s) Scale Up (%)

Aarhus Harbour
30 day 200m 0.37 27 0.35 64 0.35 47 0.59 160

50m 0.36 65 0.34 66 0.34 53 0.55 150

1 year 200m 0.92 56 0.94 80 1.89 35 6.37 693
50m 1.10 68 1.01 82 2.83 42 4.69 424

The Great Belt
30 day 200m 0.36 21 0.47 22 0.36 19 0.93 258

50m 1.17 39 1.36 37 1.28 43 1.80 154

1 year 200m 2.19 20 3.36 27 2.53 23 7.68 350
50m 12.50 37 14.4 38 13.74 42 18.17 145

Spatial Domain of DIPAAL
30 day 200m 1.27 19 4.17 18 1.58 15 8.09 639

50m 11.90 13 14.4 14 12.06 14 42.10 354

1 year 200m 9.18 9 35.58 16 9.36 12 40.19 438
50m 102.35 11 126.37 10 102.81 10 Out of memory

TABLE IV: Heatmap Benchmark Results.

whereas the remaining three iterations have a slow execution
time above 5700ms. When comparing one of the slow and one
of the fast iterations, it is found that the difference between
the longest running Citus task is minimal, with ∼ 10.8ms for
the slow iteration and ∼ 10.4ms for the fast iteration. The
remaining Citus tasks are insignificant, as their runtimes are
roughly the same, as only one shard has any data for the result.
After receiving the 142 bytes of data from the Citus task,
the coordinator node’s final work takes 1.7ms for the slow
iteration. Therefore, the root cause of these outliers must be
a delay in the network data transmission between the workers
and the coordinator for some iterations. Similar observations
are observed for other results as well.

In general, the runtime results are as expected; the increase
in runtime is directly proportional to the size of the spatio-
temporal bounds.

Table V shows a selected set of results from the cell
evaluation. To remove any bias, the selected results include
some of the best and worst results for a given metric. In
Table V, the best of the selected results are highlighted in
bold, while the worst results are underlined.

As expected, both the lowest scale up and highest WIF are
found for the area that occupies only a single shard. The WIF
is high on these queries because the data for the result is stored
on a single worker. This results in one worker calculating the
result, while the other workers ensure they contain no data for
the result and then idle. For the same reason queries for the
single shard area (Aabenraa) also have the worst scale up, as
the difference between running it on single versus five workers
are insignificant.

As expected the highest scale up and the lowest WIF are
found for the largest areas queried, i.e. Skagerrak and spatial
domain of DIPAAL. The high scale up is explained by these
areas intersecting a large number of shards, thereby ensuring
that all workers are utilised and, as a result, the idle time is
reduced.

Table V shows that the Skagerrak area of the trajectory
type has the highest scale up of 992.55%. The high scale
up is partly explained by the random distribution used to
distribute trajectories. The random distribution provides a

better balanced distribution of the work between the workers
that allow faster calculation of the query result. Since the scale
up is super linear, it is also likely that the higher system cache
and memory available on the five-worker setup contributes to
the scale up, in a way that is not present in other queries.

From the numbers seen in Table V, it is evident that the
90 days Danish Sea Borders query has a 324% runtime
improvement when queried on the 5000m cells compared
to the trajectory-based query. This improvement shows that
the granularized cell representation can significantly improve
runtimes compared to the more complex trajectories.

F. Lazy Versus Eager 50m Cell Calculation

This evaluation serves as proof of the viability of deleting
50m cell facts outside of ENC harbours, as described in
Section VIII-F, by evaluating the runtime if 50m cells are
requested in areas where they are deleted.

Two types of queries are compared. Both are spatio-
temporal range queries of 50m cell facts. However, one is
eagerly evaluated by querying fact_cell_50m, and the
other is lazily evaluated by querying fact_trajectory
and constructing transient cell facts on demand.

These two query types are executed with six spatio-temporal
ranges, which are the cross product of two spatial areas,
and three temporal spans. The two spatial areas are “Near
Heligoland” (7 189km2) and “South of Laesoe” (164km2),
and are seen as the orange (5) and the pink box (8) in
Figure 11, respectively. The three temporal spans serve to
evaluate a range of temporal spans and are 1 day (May 4th,
2021), 1 week (June 21st through 28th, 2021), and 1 month
(October, 2021).

These six spatio-temporal ranges are evaluated for both
query types, and on both the one- and five-worker setup. This
results in a total of 24 queries, and are shown on Figure 15
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(d) Results for the DIPAAL spatial domain.

Fig. 14: The cell benchmark runtime results for the one- and five-worker setups.

Scale Up
(%)

Five-worker
runtime (s)

One-worker
runtime (s)

WIF
(%)

Cell 1000m 1 day Aabenraa 103 1.25 1.29 35
Cell 1000m 30 days Danish Sea Borders 467 1.70 7.95 13
Cell 50m 90 days Aabenraa 270 1.02 2.76 65
Cell 200m 90 days Aabenraa 365 0.59 2.15 38
Cell 1000m 90 days Danish Sea Borders 870 3.31 28.82 13
Cell 5000m 90 days Danish Sea Borders 583 1.47 7.55 14
Trajectory 90 days Skagerrak 993 0.83 8.19 14
Trajectory 90 days Danish Sea Borders 858 4.78 40.37 13

TABLE V: Selected cell benchmark results.

{
Near Heligoland
South of Laesoe

}
×

 1 day
1 week
1 month

×{
lazy
eager

}
×
{
five workers
one worker

}
Fig. 15: Overview of 24 queries of the lazy cell evaluation.

It is, as expected, much faster to query pre-calculated
results, as seen in Table VI. The speed-up measures how
much faster the eager query is compared to the lazy query.

It is seen the speed-up ranges from 737% through 4177%.
It is also noteworthy that the lazy evaluation scales better
horizontally than the eager evaluation. The better scale up is
due to the lazy query querying fact_trajectory, which
is randomly distributed, compared to the spatial distribution
of fact_cell_50m. Since the areas queried are small, the
spatial distribution does not allow for as large a scale up. This
also indirectly means, the lazy query induces a much higher
worker utilisation, and thus DW load.

Lastly, a key takeaway is that the lazy query is shown to
finish within 14 seconds with the given parameters. This result
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Five-worker One-worker
Time WIF Time Scale Up

N
ea

r
H

el
ig

ol
an

d 1 day
eager 0.23s 72% 0.44s 188%
lazy 9.68s 20% 39.63s 409%
speed-up 4177% 9077%

1 week
eager 1.8s 70% 2.38s 130%
lazy 13.4s 20% 57.95s 430%
speed-up 737% 2430%

1 month
eager 1.36s 57% 1.94s 142%
lazy 13.49s 20% 59.62s 443%
speed-up 987% 3071%

So
ut

h
of

L
ae

so
e 1 day

eager 0.15s 73% 0.20s 137%
lazy 1.33s 8.2% 4.90s 369%
speed-up 900% 2429%

1 week
eager 0.15s 65% 0.32s 218%
lazy 2.26s 15% 9.27s 411%
speed-up 1560% 2936%

1 month
eager 0.16s 55% 0.27s 168%
lazy 4.62s 16% 19.77s 428%
speed-up 2837% 7219%

TABLE VI: Lazy versus eager cell fact evaluation results.

provides a foundation for the argument that deleting 50m cell
facts for non-harbour areas is feasible, as it is a non-frequent
query to request 50m cells in areas outside points of interest,
as argued in Section VIII-F.

G. Spatial Distribution Skew

The spatial distribution skew benchmark differs from the
other benchmarks by evaluating how skewed the spatial dis-
tribution, defined in Section V, becomes over time rather than
measuring runtime.

To measure the skewness, Standard Deviation (SD), as well
as Coefficient of Variance (CV) are used, as introduced in
Section V, where lower values for both metrics indicates better
balanced shards. The metrics are measured for each of the four
cell granularities regarding the count of cell facts and the sum
of the size of heatmap rasters. The evaluation is performed
for 2011, 2021, and 2022, and is shown in Table VII. The
year 2021 is chosen as the reference year, which the spatial
divisions are built upon since it was the last fully available
year at the beginning of the development. 2022 is chosen to
measure the skew in a consequent year, and 2011 is chosen to
get a measurement of the skew across a large temporal gap,
i.e. ten years.

In Table VII, it is seen that the CV of both the count of
cell facts and the size of heatmap rasters for all granularities
are higher in 2011 and 2022 than in 2021. It is also seen
that 2022 is much closer to the 2021 measurement than 2011,
which is to be expected, as traffic patterns are more likely to
have changed over ten years versus one year. The evaluation
shows that querying data of recent years is likely faster than
querying older data.

Another observation is that the CV is generally higher in
the finer cell granularities. The higher CV is caused by the
spatial divisions being built on the foundation of 5000m cells.

X. RELATED WORK

With more and more devices generating trajectory data [36],
systems handling trajectory data must scale with the growing

2011 2021 2022
SD CV SD CV SD CV

C
el

l

50m 3359k 66% 2720k 50% 2734k 51%
200m 836k 65% 671k 49% 6756k 50%
1000m 164k 61% 127k 43% 129k 45%
5000m 36k 56% 32k 41% 34k 44%

H
ea

tm
ap 50m 2388MB 77% 2002MB 61% 1997MB 61%

200m 164MB 73% 136MB 56% 137MB 57%
1000m 18MB 56% 14MB 40% 15MB 42%
5000m 11MB 52% 9MB 38% 9MB 40%

TABLE VII: Spatial Distribution Skewness.

volume of data. Likewise, as the amount of data increases,
these systems must implement efficient algorithms to query
the trajectory data.

Efficiently processing and storing trajectory data has been an
area of research for many years, but it is not purely research-
oriented, with some systems being used in the industry [37].
These systems differ in how they handle trajectory data, with
some systems using a DW approach [9, 38] and others using
a more general trajectory management approach [37, 10, 11,
39].

The underlying storage system varies between using an
RDBMS [9], NoSQL databases [37, 39], and processing
frameworks based on either in-memory storage [11] or storage
in distributed file systems [10]. After discussions with domain
experts, it was ultimately chosen that DIPAAL is based on
the PostgreSQL RDBMS, which is distributed using the Citus
extension.

DIPAAL uses the trajectory-based storage model, storing
the full trajectories as a single row. Other systems that utilise
or support the trajectory-based storage model include Lan et al.
[37], Nielsen et al. [9], and Li et al. [39]. Additional storage
models are also available, such as the point-based model [37,
9], which stores each point of a trajectory individually, and the
segment-based model [37, 10, 11], which stores trajectories in
segments. The trajectory-based model is chosen for DIPAAL
as it incurs no reconstructing cost during query execution and
has reduced storage cost compared to the point-based model
[37]. Segmentation of trajectories is used during the rollup
step of the ETL process, as the reduced MBRs increases the
performance of the rollup step as no reconstruction is needed.

DIPAAL uses spatial distribution to reduce the runtime
when querying data based on the underlying cell grid using
Citus shards to distribute and parallelise queries. DIPAAL
opted to create the spatial divisions utilising a kd-tree approach
from one year’s worth of data, whereas other approaches were
adopted by similar systems, such as Li et al. [26] and Aji et al.
[40]. Li et al. [26] chose to use a quad-tree-based approach
to construct their divisions, as they divide non-point data,
which is more difficult to find kd-splits for [26]. Aji et al.
[40], instead use a custom grid division approach based on
thresholds, where divisions are continuously split as long as
the amount of data within a split is above the threshold. The
spatial distribution approach used in DIPAAL can result in
some divisions spanning very large areas. However, compared
to Aji et al., it is ensured that the largest divisions are split
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first, and all divisions created contain data, enabling a better
balance of data across the cluster.

The static spatial distribution approach of DIPAAL results
in the amount of data stored in the shards becoming skewed
over time. This approach is opposed to the spatio-temporal
distribution approach proposed by Li et al., which results in
changing spatial divisions over time. Spatio-temporal distribu-
tion solves the problems of divisions becoming skewed over
time, but for DIPAAL it results in an increase in runtime as
spatial aggregation across temporal divisions can no longer be
pushed down to the workers. Both Li et al. and Aji et al. use
global indices to look up which shards contain candidate data.
DIPAAL, instead relies on the shards’ local indices to quickly
evaluate whether a shard contain relevant data for a query.

The API for DIPAAL consists of endpoints which all are
GET HTTP-method endpoints, with separate endpoints for
querying the core elements of DIPAAL. Looking at other AIS
data APIs used in production, namely MarineTraffic [41] and
VesselFinder [42], they support requests for live and histor-
ical information about ships and events surrounding ships.
DIPAAL does not support live data but supports querying
trajectory, cell, and heatmap representations of AIS data, while
MarineTraffic and VesselFinder only support AIS point data.
MarineTraffic and VesselFinder both support JSON as an
output format. Similarly, JSON is one of the supported output
formats of DIPAAL.

Various heatmaps are generated as part of DIPAAL’s ETL
process. DIPAAL utilises a binning approach similar to Liu,
Jiang, and Heer [43] by creating small heatmaps based on
the 5km cell grid and spatial divisions, which can then be
combined into a variety of heatmaps.

XI. CONCLUSION

The DIPAAL platform consists of a modular ETL pipeline
which enhances the data quality through well-defined cleaning
rules, as well as running the cleaned AIS data through a
transformation process. The transformation process starts by
creating simplified trajectories from the AIS point data that
are then aggregated into cells, and finally into heatmaps. The
ETL process’s cleaning rules and modularity enables DIPAAL
to be applied to any AIS dataset with minimal changes.
DIPAAL runs on a cluster of six commodity machines, with
the data preparation part of the ETL process capable of running
asynchronously and independently of the DW.

This paper presents an improved version of DIPAAL.
First and foremost, the DW design is updated with a new
heatmap representation of the AIS data, as well as modelling
the cell representation as a snow-flake hierarchy of multiple
granularities. The snow-flake hierarchy reduces the replication
of the coarsest granularity by 10 000 times compared to a
denormalized star-schema. Choosing a coarser cell granularity
for large areas shows that previous out-of-memory errors are
eliminated and up to 324% improvement in runtime compared
to the trajectory-based query.

Secondly, a spatial distribution approach is used for the
raster-based representations, i.e. cells and heatmaps. The spa-

tial distribution approach uses a kd-tree-based approach to
statically divide the spatial domain of DIPAAL into shards,
which stores the cells and heatmaps within each division.

The kd-tree-based approach proves to balance the AIS data
the best. The dynamic splits of the kd-tree approach find better
splits than the fixed splits of the quad-tree approach, due to the
unevenness of the data foundation. The Coefficient of Variance
(CV) of the kd-tree-based built approach with 400 partitions
on the year 2021 is 41%, compared to the 106% of the quad-
tree-based approach.

The spatial distribution ensures data locality and enables
spatial aggregates to be pushed down. The pushed down of
spatial aggregates enables horisontal scaling and thus reduces
the query runtime. For example, a 200m resolution heatmap of
the year 2021 for the spatial domain of DIPAAL (725 725km2)
shows a 438% increase in runtime on a single-worker setup
compared to a five-worker setup, with runtimes of 40.19 and
9.18 seconds, respectively.

Evaluation of the spatial distribution show that static divi-
sions result in the balance between shards becoming skewed
over time. The divisions built on 2021 are compared with the
2011 and 2022 data, with larger skews observed the larger the
temporal distance from the reference year used to create the
divisions. Furthermore, it is found that the utilisation of the
workers and scale up are higher when querying large areas
(> 5 000km2), as large areas generally intersect with more
spatial divisions, resulting in multiple workers being engaged
in calculating the result. Inherently, this results in the slowest
queries scaling the best.

Finally, in collaboration with domain experts, it is found
that a significant reduction in the storage space used can be
achieved by removing cells from the finest cell granularity, i.e.
50m, outside areas of interest. The evaluation shows that it is
viable to lazily calculate cell facts with a maximum runtime
of 13.49 seconds on a five-worker setup. Although there is
a significant difference compared to querying eagerly stored
50m cell facts, it is still considered viable as querying the 50m
granularity outside small areas of interest, such as harbours,
is an infrequent query.

XII. FUTURE WORK

This section proposes future work to improve aspects of
DIPAAL.

A. Split Trajectories

As mentioned in Section VIII-B, querying large trajectories
result in a poor filter performance of an r-tree-based index.
An improvement could be to split trajectories into segments
to improve the bounding box index filtering significantly.

DIPAAL experimented with splitting trajectories using the
MobilityDB function spaceSplit, and then combine the result-
ing segments into the MobilityDB type tgeompoint seqset, i.e.
a set of sequences of geometric points. Storing the segments of
a trajectory in a set enables easy reconstruction of the segments
and allows the segments to be stored without changing the DW
design.
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This experimentation discovered that the r-tree based index
does not benefit from the segmented trajectories. This is
because all the segments of a trajectory reside in a single row
of the dim_trajectory relation, and PostgreSQL GiST
index not supporting multiple bounding boxes per row[44].
To circumvent this, either a DW redesign of the trajectory
dimension is needed, with each trajectory segment being a
row, or PostgreSQL needs to be extended with multi-row GiST
indexing, such as the early work of MGiST19.

Further experimentation weighing the advantages and con-
sequences is needed to determine whether a restructuring of
the trajectory dimension is feasible.

B. Multi-User Evaluation

The evaluation of DIPAAL evaluated the performance of
DIPAAL in a single-user scenario. While the work of this
paper evaluated the isolated performance of the DW, it is
interesting to evaluate how the DW performs with multi-user
concurrent access in the future.

A multi-user concurrent evaluation is especially interesting
regarding the trajectory versus cell queries evaluated in Sec-
tion IX-E. Due to the random distribution of the trajectory
queries, it can use all the compute resources in the cluster,
resulting in the trajectory-based query slightly beating the cell-
based queries on small areas. However, the cell-based query
is significantly more efficient in regards to compute resources,
and thus would outperform the trajectory-based queries in a
concurrent multi-user scenario.
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APPENDIX A
DANISH GEODATA AGENCY

This appendix contains the summaries of meetings with rep-
resentatives from the Danish Geodata Agency (DGA), whom
acted as external domain experts during the development of
DIPAAL.

A. October 2022 Meeting

During a meeting in October 2022 with a representative
from the DGA, the ideas behind DIPAAL were presented and
feedback was provided. The feedback from the meeting was
collected and documented into the following observations.

DGA introduces itself as a governmental organisation. Con-
sequently, this means that they are currently motivated by
green initiatives; therefore the design for DIPAAL should
account for tracking the speed of ships to analyse CO2
emissions.

DGA states that their experience with REST API archi-
tecture has previously encountered issues and performance
decrease when trying to send requests that have a long
response time. During further discussion it was determined to
be an issue with higher load of requests that could be solved
by limiting access to DIPAAL.

DGA showed an interest in trying a new REST API solution,
but note that as a governmental organisation, they have several
restrictions on what network ports they are allowed to use,
which the API for DIPAAL should account for.

DGA uses QGIS for analysis, an open-source geographical
information system. DGA showed interest in DIPAAL being
able to integrate with it.

DGA’s current solutions all use the Lambert conformal
conic (LCC) projection EPSG:303421 and would like DIPAAL
to use the same. This projection encompasses all the waters
surrounding Denmark, which is the area DGA is responsible
for.

DGA is experienced with PostgreSQL databases and is
using it for their back-end for at least one solution. DGA
have no experience with the PostgreSQL extension Citus, but
showed interest in seeing how it will affect performance for
DIPAAL.

DGA directly stated that DIPAAL must support the creation
of heatmaps. DGA uses heatmaps for many of its tasks,
especially when considering where to perform detailed depth
measurements, as only a fraction of the map can be updated
by their organisation each year. Using heatmaps depicting the
density of ship traffic was given as an example for this context.

DGA was presented with the idea of joining trajectories
onto a grid to increase the performance of specific queries,
such as the creation of rasters used in heatmaps projections.
This idea was approved by DGA, who specified that the grid
resolution must be at least 50m, as that is the smallest size
allowed for draught sea maps, one of their main products.
DGA showed scepticism for larger aggregation of grids and

21https://epsg.io/3034

stated that aggregations of aggregations should be done with
care and for a clear purpose.

DGA are currently creating most of their heatmaps using a
system that supports point clouds, which are currently aggre-
gated into 5m grids. DGA are actively working on reducing
the grid size to 1m grids. Therefore, a smaller grid size for
DIPAAL is desirable.

DGA stated that automatic identification system (AIS) data
could be assumed not to receive updates nor changes once
published, allowing DIPAAL to be a read-only with the
exception of a daily extract, transform, load (ETL) run.

B. December 2022 Meeting

During a meeting in December 2022 with two representa-
tives from the DGA, the progress made with DIPAAL was
presented and feedback was provided. The feedback from
the meeting was collected and documented into the following
observations.

DGA would like performance benchmarks to conclude
whether any bottlenecks are CPU-bound or I/O bound.

DGA showed little interest in row counts for each relation,
as they are more interested in the actual data size, with
statistics over the data sizes loaded during the ETL process.
DGA elaborated that they would like to see statistics for data
size of the input files with the time it took to complete for
days and months of data.

DGA want recommendations on if and when Citus’ colum-
nar compression is useful.

DGA wants to see the benchmarks be performed on de-
terministic hardware, as the lack of performance guarantees
from the service Claaudia [45], produced some doubt about
the presented benchmark results.

DGA stated that the frequent updates to Citus could be a
concern for them, as they prefer to be dependent on few and
stable releases.

DGA expressed concerns with the PostgreSQL extension
MobilityDB, as it appears to be more of an academic project
than an actual product. These concerns seemed to be alleviated
as they were assured the developers behind MobilityDB are
working hard towards a more finished product.

DGA would like benchmarks that evaluate how the perfor-
mance of DIPAAL scales with the increase of nodes in the
cluster, starting from a single node.

DGA approved DIPAAL using line simplification, as de-
scribed in Section VIII-A, with an error bound of 10m to
reduce data size of trajectories, showing no concern for the
minor loss in precision given the gain in storage space and
performance.

DGA would value that DIPAAL is able to query on several
years of AIS data, enabling analysis on how ship routes
changes over seasons, as part of future analytical efforts.

DGA was impressed with the execution time of the pre-
sented queries during the live demonstration. The DGA noted
how this proved that the backend is well-built and runs
effectively.
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C. February 2023 Meeting

During a meeting in February 2023 with two representatives
from the DGA, the first version of the paper was sent in
advance of this meeting and a presentation of DIPAAL, and
potential future work was given. The two representatives asked
questions during the presentation and provided feedback. The
feedback from the meeting was collected and documented into
the following observations.

DGA was presented with examples of Citus columnar
ability to compress data in DIPAAL with observations on how
the compression is handled. DGA then stated they would like
to see a comparison on the query performance of DIPAAL
using Citus columnar without spatial indices and row-major
with spatial indices.

DGA was concerned when presented with an issue found in
MobilityDB and asked whether any or all extensions used in
PostgreSQL conflicted with each other. DGA was informed
that the issue presented, which involved the loss of SRID
during serialisation after shard rebalancing, was an issue
within MobilityDB.

DGA want MobilityDB to be evaluated for whether it is
ready to be used in production.

DGA questioned DIPAAL’s availability if made available to
them or others, especially during load from the ETL process.
DGA were told this was outside the scope of the project
and that no such testing had been performed. DGA was also
informed that Citus refers to regular PostgreSQL replication
for this purpose.

DGA was asked the temporal extend they expected to
analyse using DIPAAL, hence how much data should be
loaded in as a minimum. DGA where uncertain but suggested
at least a couple of years.

DGA stated they currently use 50 meter cells to create depth
charts but are currently working towards reducing that to 1
meter cells.

DGA was asked what the largest area a cell in the cell
representation could be while still being useful for analytical
purposes. DGA stated each region of the world would benefit
from different sizes of cell representation, with some regions
benefiting from being very coarse, with 10 kilometres as an
example.

DGA stated that observing the Electronic Navigational
Chart (ENC) cells, which is provided and updated by the
International Hydrographic Organisation (IHO), would provide
insight into what regions of the world would benefit from a
finer or coarser cell representation.

DGA stated that sailing routes changes quite a bit between
seasons, hence they are very interested in analysing these
differences. DGA further stated that a video showcasing these
differences with several heatmaps is very desirable.

DGA stated they are more interested in seeing the results
from analysing years’ worth of data rather than the implemen-
tation of more features for DIPAAL.

D. March 2023 meeting

The meeting in March was a status meeting, where the
current state of DIPAAL was demonstrated, inviting discussion
of design changes.

DGA was inquired how they would like to measure the
density of ships, i.e. different types of heatmaps. DGA stated
they would like to have moving and non-moving heatmaps
separated. DGA also brought up the possibility of “reverse
heatmaps”, i.e. a heatmap indicating where ships are sailing
abnormally.

DGA was asked what the minimum temporal resolution of
heatmaps is, while still being useful for their analytics needs.
DGA could not imagine any useful analysis from having a
temporal resolution lower than one day. Hourly heatmaps were
discussed, but DGA concluded that it is not interesting, as the
data foundation is too sparse for this granularity.

The static spatial distribution scheme was presented to
DGA. DGA was asked if they could see flaws in the scheme’s
assumptions. DGA stated that it was a fair assumption that ship
routes change seldomly. The seldom changes could, however,
be new harbours and industries opening or closing or just
changes to the mandated ship routes. The concern of low-
traffic areas being susceptible to large relative changes was
brought up, but as low-traffic areas should not be the compu-
tationally heavy areas anyway, this concern was discarded.

DGA was presented that one year of loaded data occupied
approximately 1.3 TiB of storage. Since the new cluster has
limited storage, it was discussed if reducing the largest relation
would be beneficial in order to process and store more years’
worth of data. DGA expressed that fast 50m responses are
not needed everywhere and only in specific areas of interest,
such as harbours or problem areas. It was suggested to use
Electronic Nautical Charts22 as a guideline to what areas of
interest should be kept.

APPENDIX B
SAMPLE API QUERIES

This appendix covers some examples of queries the DI-
PAAL API supports, including their meaning and result.

A. Spatio-temporal Range Queries

To ask the DIPAAL API which ships were near one of the
Nord Stream sabotages in 2022 in the bounding rectangle
represented by the EPSG:3034 coordinates pairs (4353000
3196100), (4354100 3197200)23 during the timespan from
a week up until the sabotage, the following query is
made: https://dipaal.dk/api/v1/ships/?search method=cell
200m&start timestamp=2022-09-19T17%3A03%3A00Z&
end timestamp=2022-09-26T17%3A03%3A00Z&x min=
4353000&y min=3196100&x max=4354100&y max=
3197200

22https://eng.gst.dk/danish-hydrographic-office/nautical-charts/
electronic-charts

23https://nautiskinformation.soefartsstyrelsen.dk/details.pdf?
messageId=8166360e-4f40-4b43-b2a1-4aa81f9f1552&language=en,
https://nautiskinformation.soefartsstyrelsen.dk/details.pdf?messageId=
72b2c3b1-0d0d-4a14-9ee0-be96c0a699fb&language=en
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1 [
2 {
3 "ship_id": 13294,
4 "name": "NIKE",
5 "callsign": "9HA2013",
6 "mmsi": 249803000,
7 "imo": 9431032,
8 "mid": 249,
9 "flag_region": "europe",

10 "flag_state": "Malta",
11 "mobile_type": "Class A",
12 "ship_type": "Tanker",
13 "location_system_type": "AIS",
14 "a": 98.0,
15 "b": 24.0,
16 "c": 10.0,
17 "d": 7.0,
18 "length": 122.0,
19 "width": 17.0
20 }
21 ]

Listing 1: JSON output of querying distinct ships spatio-
temporally near one the Nord Stream sabotages.

Please note the search method query parameter, which
determines what representation and granularity is used to
fetch the result. The supported methods are the four cell
granularities and a trajectory based search method. Cell 200m
is chosen as some spatial buffer is allowed, and 50m cells are
not stored for this area.

The output of the above query is a JSON array of ships that
were within the spatio-temporal range. A small sample of the
output is seen in Listing 1

Cell and trajectory resources can also be requested
within a spatio-temporal range. For example to get stopped
trajectories intersecting the spatio-temporal range, the
following query is made: https://dipaal.dk/api/v1/trajectory/
trajectories/?offset=0&limit=10&x min=4353000&y min=
3196100&x max=4354100&y max=3197200&srid=3034&
start timestamp=2022-09-19T17%3A03%3A00Z&end
timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&
time series representation type=GeoJSON. The query
parameter time series representation determines how the
trajectory is encoded into JSON. Currently, GEOJSON and
MF-JSON are supported. The output of this trajectory query is
an empty array, as no stopped trajectories have been observed
around this location. If instead queried with stopped=false,
the result is seen in Listing 2

Likewise, to get the cell fact that spatio-
temporally intersect, the following query is made:
https://dipaal.dk/api/v1/cells/200m?x min=4353000&y min=
3196100&x max=4354100&y max=3197200&cell size=
200m&srid=3034&start timestamp=2022-09-19T17%3A03%

3A00Z&end timestamp=2022-09-26T17%3A03%3A00Z
The output of this query is a JSON-array of seven cell facts,
all for the ship seen in Listing 1, and a small sample of the
output is seen in Listing 3

B. Other Filters

Besides spatio-temporal range queries, cell facts, trajecto-
ries, and the ship resources can all be queried by a range of
filters.

For example, to find all ships registered in Africa, but not in
Liberia, with a length over 100m, the following query is used:
https://dipaal.dk/api/v1/ships/?flag region in=africa&flag
region nin=Liberia%20%28Republic%20of%29&length gt=
100. Like before, the output of the ship endpoint is JSON,
and is seen in Listing 4

C. Heatmap Queries

In addition to the example covered in Section VI, a differ-
ential heatmap example is shown.

If the user want the difference of time spent per pixel,
in the Great Belt between July and January 2021 for the
ship type “Pleasure” in 50m resolution, the query is https:
//dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output
format=png&map algebra expr=%5Brast1.val%5D-%
5Brast2.val%5D&map algebra no data 1 expr=%5Brast2.
val%5D&map algebra no data 2 expr=-%5Brast1.val%
5D&enc cell=Storeb%C3%A6lt%2C%20N-lige%20del&
first mobile types=Class%20B&first ship types=Pleasure&
first start timestamp=2021-01-01T00%3A00%3A00Z&first
end timestamp=2021-02-01T00%3A00%3A00Z&second
mobile types=Class%20B&second ship types=Pleasure&
second start timestamp=2021-07-01T00%3A00%3A00Z&
second end timestamp=2021-08-01T00%3A00%3A00Z

To break down the above query, first it asks for a time
heatmap of 50m as part of the URL path. Then it asks for
an output format of PNG. Then it supplies the needed map
algebra expressions. The map algebra expression defines how
to calculate a pixel value based on the two heatmaps. In this
example, the output heatmap is the difference, i.e. rast2.val-
rast1.val. The MapAlgebra NoData expressions defines what
to do, when either raster value is missing. In this case, just
keep the other’s raster’s value. Then the spatial bound of the
query is specified, to be equal to the spatial definition of the
ENC-cell “Storebælt N-lige del”. Lastly, the temporal spans
of the two rasters are defined, which in this case are August
for the first, and July for the second. The ship type is also
limited to “Pleasure” ships. This results in an output where
negative values indicate more traffic in August, and positive
indicate more traffic in July.

The output of this query is a GeoTiFF, which is rendered
in QGIS and is seen in Figure 16

APPENDIX C
BENCHMARK PLANS

This appendix covers the detailed plans for execution of the
performed evaluations in Section IX.
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https://dipaal.dk/api/v1/trajectory/trajectories/?offset=0&limit=10&x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&time_series_representation_type=GeoJSON
https://dipaal.dk/api/v1/trajectory/trajectories/?offset=0&limit=10&x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&time_series_representation_type=GeoJSON
https://dipaal.dk/api/v1/trajectory/trajectories/?offset=0&limit=10&x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&time_series_representation_type=GeoJSON
https://dipaal.dk/api/v1/trajectory/trajectories/?offset=0&limit=10&x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&time_series_representation_type=GeoJSON
https://dipaal.dk/api/v1/trajectory/trajectories/?offset=0&limit=10&x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&time_series_representation_type=GeoJSON
https://dipaal.dk/api/v1/trajectory/trajectories/?offset=0&limit=10&x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z&stopped=true&time_series_representation_type=GeoJSON
https://dipaal.dk/api/v1/cells/200m?x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&cell_size=200m&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z
https://dipaal.dk/api/v1/cells/200m?x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&cell_size=200m&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z
https://dipaal.dk/api/v1/cells/200m?x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&cell_size=200m&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z
https://dipaal.dk/api/v1/cells/200m?x_min=4353000&y_min=3196100&x_max=4354100&y_max=3197200&cell_size=200m&srid=3034&start_timestamp=2022-09-19T17%3A03%3A00Z&end_timestamp=2022-09-26T17%3A03%3A00Z
https://dipaal.dk/api/v1/ships/?flag_region_in=africa&flag_region_nin=Liberia%20%28Republic%20of%29&length_gt=100
https://dipaal.dk/api/v1/ships/?flag_region_in=africa&flag_region_nin=Liberia%20%28Republic%20of%29&length_gt=100
https://dipaal.dk/api/v1/ships/?flag_region_in=africa&flag_region_nin=Liberia%20%28Republic%20of%29&length_gt=100
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z
https://dipaal.dk/api/v1/heatmap/mapalgebra/time/50m?output_format=png&map_algebra_expr=%5Brast1.val%5D-%5Brast2.val%5D&map_algebra_no_data_1_expr=%5Brast2.val%5D&map_algebra_no_data_2_expr=-%5Brast1.val%5D&enc_cell=Storeb%C3%A6lt%2C%20N-lige%20del&first_mobile_types=Class%20B&first_ship_types=Pleasure&first_start_timestamp=2021-01-01T00%3A00%3A00Z&first_end_timestamp=2021-02-01T00%3A00%3A00Z&second_mobile_types=Class%20B&second_ship_types=Pleasure&second_start_timestamp=2021-07-01T00%3A00%3A00Z&second_end_timestamp=2021-08-01T00%3A00%3A00Z


1 [
2 {
3 "trajectory_sub_id": 1380374154,
4 "start_timestamp": "2022-09-24T16:10:44",
5 "end_timestamp": "2022-09-24T23:59:56",
6 "eta_timestamp": "2022-09-25T15:30:00",
7 "trajectory": {
8 "trajectory": {
9 "crs": { "type": "name", "properties": { "name": "EPSG:4326" } },

10 "type": "LineString",
11 "datetimes": [
12 "2022-09-24T17:16:25.120919+00:00",
13 ...,
14 "2022-09-24T17:17:42.713692+00:00"
15 ],
16 "coordinates": [
17 [ 15.785330243, 55.550880443 ], ..., [ 15.777899126, 55.55150635 ]
18 ]
19 }
20 },
21 "rot": {
22 "type": "MovingFloat",
23 "values": [ 0, 0 ],
24 "datetimes": [ "2022-09-24T16:10:44+00", "2022-09-24T23:59:56+00" ],
25 "lower_inc": true, "upper_inc": true, "interpolation": "Step"
26 },
27 "heading": {
28 "type": "MovingFloat",
29 "values": [277, ..., 269],
30 "datetimes": [ "2022-09-24T16:10:44+00", ..., "2022-09-24T23:59:56+00" ],
31 "lower_inc": true, "upper_inc": true, "interpolation": "Step"
32 },
33 "draught": {
34 "type": "MovingFloat",
35 "values": [ 5.4, 5.4 ],
36 "datetimes": [ "2022-09-24T16:10:44+00", "2022-09-24T23:59:56+00"],
37 "lower_inc": true, "upper_inc": true, "interpolation": "Step"
38 },
39 "destination": "SEGOT", "duration": 28152.0, "length": 164207,
40 "stopped": false, "navigational_status": "Under way using engine",
41 "ship": {
42 "ship_id": 13294, "name": "NIKE",
43 "callsign": "9HA2013", "mmsi": 249803000,
44 "imo": 9431032, "flag_region": "europe", "flag_state": "Malta",
45 "mobile_type": "Class A", "ship_type": "Tanker",
46 "location_system_type": "AIS",
47 "a": 98.0, "b": 24.0, "c": 10.0, "d": 7.0,
48 "length": 122.0, "width": 17.0
49 }
50 }
51 ]

Listing 2: Truncated JSON output of the spatio-temporal query on trajectory facts.
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1 [
2 {
3 "x": 21765,
4 "y": 15980,
5 "trajectory_sub_id": 1380374154,
6 "entry_timestamp":
7 "2022-09-24T17:17:09+00:00",
8 "exit_timestamp":
9 "2022-09-24T17:17:42+00:00",

10 "navigational_status":
11 "Under way using engine",
12 "direction": {
13 "begin": "Unknown",
14 "end": "Unknown"
15 },
16 "sog": 11.784928920198922,
17 "delta_cog": 0.0,
18 "delta_heading": 1.0,
19 "draught": 5.4,
20 "stopped": false,
21 "ship": {
22 "ship_id": 13294,
23 "name": "NIKE",
24 "callsign": "9HA2013",
25 "mmsi": 249803000,
26 "imo": 9431032,
27 "flag_region": "europe",
28 "flag_state": "Malta",
29 "mobile_type": "Class A",
30 "ship_type": "Tanker",
31 "location_system_type": "AIS",
32 "a": 98.0,
33 "b": 24.0,
34 "c": 10.0,
35 "d": 7.0,
36 "length": 122.0,
37 "width": 17.0
38 }
39 },

Listing 3: Truncated JSON output of the spatio temporal query
on 200m cell facts.

A. Runtime Benchmarks

In order to get repeatable measurements of query runtime
performance, a procedure to reduce the impact of the cache
has been implemented.

Before every iteration of a query runtime benchmark, the
cache is cleared and then pre-warmed. The cache is cleared
by clearing the operating system file cache and restarting all
PostgreSQL instances. A range of random queries are run
to avoid testing on a cold cache. The random queries hit
every relation in the data warehouse and uses random query

1 [
2 {
3 "ship_id": 12037,
4 "name": "TIN ZIREN",
5 "callsign": "7THG",
6 "mmsi": 605086070,
7 "imo": 9697325,
8 "mid": 605,
9 "flag_region": "africa",

10 "flag_state": "Algeria",
11 "mobile_type": "Class A",
12 "ship_type": "Cargo",
13 "location_system_type": "AIS",
14 "a": 130.0,
15 "b": 17.0,
16 "c": 17.0,
17 "d": 4.0,
18 "length": 147.0,
19 "width": 21.0
20 },
21 ...
22 ]

Listing 4: Truncated JSON output of querying African ships,
that are not from Liberia, with a length greater than 100m.

parameters. The purpose of the random query execution is
to produce a system cache that is realistic in a real use
scenario, without being influenced by the result of previous
query iterations.

All query runtime benchmarks are run with the state-
ment EXPLAIN (ANALYZE, VERBOSE, TIMINGS,
BUFFERS, FORMAT JSON)24 prefixed. Running with ex-
plain analyse does not only eliminate client-server transmis-
sion of the result, but the result of the explain analyse is saved
and facilitates later analytics of the query performance, such
as the Worker Idle Fraction (WIF), described in Section IX.
Besides the WIF, all query runtime benchmarks produce a
runtime metric in seconds, which does not include server-to-
client latency and communication.

Each query runtime benchmark is evaluated ten times. To
avoid the impact of outliers, a trimmed mean is used, removing
the two fastest and two slowest results.

B. Heatmap Runtime Benchmark

The heatmap runtime benchmark serves three purposes.

1) Evaluate the spatial distribution regarding scale up from
one to five workers.

2) Evaluate the pre-aggregated heatmap performance.
3) Compare the columnar and row-based physical access

method.

24https://www.postgresql.org/docs/current/sql-explain.html
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Fig. 16: Differential time heatmap between “Pleasure” ships
in July and August.

The heatmap runtime benchmark evaluates the query run-
time across a range of heatmap queries. This range of queries
is then evaluated across different worker setups and DW
configurations. Two queries are evaluated with different pa-
rameters. The first query, single heatmap, is to construct
a heatmap within a spatio-temporal range, and the second
query, mapalgebra heatmap, is to construct a heatmap as a
combination of two heatmaps using the mapalgebra operation.

Both queries have a range of parameters. During the eval-
uation, some of the parameters are constant while others are
variable. The variable parameters test different scenarios and
data intensities.

Ship type is a constant parameter. The single heatmap
is always calculated on Cargo ships only. The mapalgebra
heatmap query is the difference between Pleasure and Cargo
ships. Both queries always calculate the heatmap type of
“count”.

The variable parameters are the spatio-temporal range and
resolution of the heatmap. The spatio-temporal range is a cross
product of three spatial ranges; Aarhus Harbour (46.7km2),
The Great Belt (3 071km2), and spatial domain of DIPAAL
(725 725km2), as well as three temporal spans; 1 day (Febru-
ary 28th, 2021), 30 days (January 26th through February 24th,

2021), and 1 year (2021). This results in nine queries. Each
query is then evaluated across each of the four granularities in
DIPAAL, resulting in 36 queries. Each query is evaluated on
the single heatmap query and the mapalgebra heatmap query,
resulting in 72 queries.

These 72 queries are initially run against a cluster with five
workers. The 72 queries are tested for three different relation
access methods; row-based (regular PostgreSQL relation),
columnar-based (Citus Columnar), and columnar-based but
with partitions for each type and granularity. This is evaluated
to find the most optimal access method.

The best-performing access method is then evaluated on
a one-worker setup to evaluate the scale up factor of the
heatmap queries. In total, the 72 queries are evaluated four
times, resulting in 288 results.

The scale up is expected to be close to linear, as the spatial
distribution approach distributes the workload evenly. Larger
spatio-temporal ranges are expected to run slower than smaller
spatio-temporal ranges. Lastly, the row-based access method
is expected to be faster than Citus columnar, as the columnar-
approach cannot use index scans. It is expected that Columnar
performs better if partitioned by heatmap type, granularity, and
month.

C. Cell Runtime Benchmark

The cell runtime benchmark serves two purposes.
1) Evaluate the spatial distribution regarding scale up from

one worker to five workers.
2) Evaluate the cell representation and cell hierarchy versus

the trajectory representation, as seen in Figure 1.
All queries are run both on a one-worker and five-worker

setup to evaluate the spatial distribution regarding scale up. If
the scale up is close to linear, the spatial distribution approach
evenly distributes the work across all workers.

A range of query parameters are used to evaluate the
cell representation and cell hierarchy versus the trajectory
representation. All queries in the cell runtime benchmark is an-
swering the question “What ships were in this spatio-temporal
range?”, with the spatio-temporal range being variable.

The spatio-temporal ranges evaluated are the cross product
of four areas and three temporal spans. The four areas are
chosen strategically. First, a really small area is chosen, as it
is contained within a single shard, which is an interesting edge-
case, as Citus cannot utilise more than one worker, and thus
this query should not be affected by the number of workers
in the cluster. The area chosen is the Aabenraa Harbour, with
an area of 6.6km2. The rest of the areas chosen are Aarhus
Harbour, with an area of 46.7km2, Skagerrak, with an area
of 5 528.8km2, and the danish seaborders, with an area of
535 556km2. These areas are chosen to evaluate how the
performance differs in different sizes.

To evaluate a range of temporal span sizes, a total of three
temporal spans are chosen; one day (January 10th, 2021), 30
days (January 26th through February 24th, 2021), and 90 days
(January 1st through April 30th, 2021).
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Earlier experimentation has shown that querying a large area
in a large temporal span of 50m cell size resulted in out-
of-memory conditions. To combat this, the cell hierarchy is
utilised. For this reason, not all cell granularities are evaluated
for all spatial areas. Likewise, the coarsest granularities are not
evaluated for the smallest areas, as the spatial error is too high.
The configurations evaluated are seen in Table VIII.

50m 200m 1000m 5000m
Aabenraa Habour (6.6km2) ✓ ✓
Aarhus Harbour (46.7km2) ✓
Skagerrak (5528.8km2) ✓ ✓ ✓
Danish Seaborders
(535 556.5km2) ✓ ✓

TABLE VIII: The different configurations chosen of the four
areas and four cell granularities.

The overall ruleset for constructing the matrix seen in
Table VIII is to ensure at least two areas per granularity and
at least two granularities per area. This is to compare how
the query runtime and/or WIF changes dependent on the area
and/or granularity.

For all configurations in the matrix, all three temporal spans
are evaluated. This results in a total of 30 queries, which are
evaluated against both a one- and five-worker setup.

Small areas, especially Aabenraa Harbour, is expected to
result in a high WIF, as it fails to engage many shards. The
large areas should have a near zero WIF and close to linear
scale up, if the spatial distribution approach works as intended.
A coarser granularity is expected to always yield a faster query
runtime result, and a larger area or temporal span slow the
query down.

D. Lazy Cell Calculation Runtime Benchmark

To evaluate whether it is feasible to delete infrequently
queried 50m cell facts to save disk space, a lazy-load query
is evaluated against the eagerly loaded fact cells. This com-
parison gives an idea of how much slower it is to query on
lazy-loaded areas compared to eager-loaded, and thus gives
an understanding of the trade-of of disk space versus query
runtime. This understanding helps decide what areas to delete
50m cell facts from, if any.

A total of six spatio-temporal ranges are compared. These
ranges are the cross-product of two spatial areas and three
temporal spans. The two areas are South West Laesoe, with
an area of 164km2 and Near Heligoland, with an area of
7, 189km7. These two areas are chosen as one small and one
medium-sized area, with low traffic.

The expected result is that the eagerly loaded cell query
runtime is much faster than the lazy loaded cell query runtime,
as no calculation is needed. It is also expected that, due to the
small areas, that the WIF is high on both the eager and lazy
loaded queries.

E. Spatial Distribution Skewness Evaluation

To evaluate the consequences of a static spatial distribution
approach, the shards built on the year 2021 are compared to

Relation name Relation Size Total Relation Size Row Count
(thousand rows)

fact cell 50m 1799 GB 4153 GB 10 589 794
fact cell 200m 455 GB 1085 GB 2 676 381
fact cell heatmap 752 GB 935 GB 2 282 717
fact cell 1000m 96 GB 243 GB 567 293
dim trajectory 37 GB 165 GB 40 254
fact cell 5000m 25 GB 65 GB 145 524
dim cell 50m 18 GB 29 GB 116 092
fact trajectory 3896 MB 9703 MB 40 254
dim cell 200m 1399 MB 2274 MB 8 767
dim ship 62 MB 146 MB 88
dim cell 1000m 68 MB 140 MB 413
dim cell 5000m 5 MB 37 MB 18
Total 3187 GB 6687 GB 16 467 595

TABLE IX: The size of the relations in DIPAAL and the row
count.

older and newer data. The years 2011 and 2022 are chosen as
comparisons.

2011 is chosen as a worst case of the skewness. There is a
10-year difference between the year it was built on, and 2011.
Even though DMA have published AIS data since 2007, with
2008 being the first complete year, 2011 is chosen. 2011 is
chosen over the previous years, as it was uncovered, that the
first couple of years of AIS data are inconsistent, with com-
plete days missing, and intermittently including international
data.

To compare the skewness across the years, the metrics
Standard Deviation (SD) [27] and Coefficient of Variance (CV)
[28] is used. For both metrics, a lower value indicates better-
balanced shards.

The SD and CV of 2022 is expected to be closer to the
SD and CV of 2021 measured in Section V than 2011, as
2022 data are temporally nearer 2021. However, as DGA
explained in Appendix A, major ship traffic pattern changes
rarely happens, which is why it is expected to be close to the
SD of 2021, but not as close as 2022.

APPENDIX D
RELATION STATISTICS

Table IX shows significant relations’ size, total size, and
row count. It is measured using the Citus procedures ci-
tus relation size and citus total relation size. Relation size
excludes indices, free-space map, and visilibity map. The
measurements are taken with 1379 days of AIS data loaded
(2022, 2021, 2011 and most of 2020)

The numbers for fact_cell_50m in Table IX does not
reflect the count after deletion of cell facts outside of areas of
interest. After deletion of 50m cell facts outside Harbor ENCs,
as described in Section VIII-F, only 338 million cell facts
are kept. By assuming the space occupied by the relation is
linear to the count of rows, it is estimated the deletion reduces
the total relation size of the fact_cell_50m relation to
approximately 132GB, thus reducing the total footprint of the
five years from 6.7TB to 2.7TB.
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