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Introduction 1
For the last three years, the situation of the world has been very uncertain. First,
in 2020 the COVID-19 pandemic shook the world [Bluemel and Henley, 2021]. The
massive health crisis and the following lockdowns resulted in multiple industries clos-
ing, people being laid off, and a general uncertainty towards the future, both in terms
of health and economy. Later, on the 24th of February 2022, Russia invaded Ukraine
resulting in sanctions as well as much uncertainty on the gas market. In Septem-
ber 2022 the bombing of the Nordstream pipelines further supported these struggles.
Both the COVID-19 pandemic and the uncertainty referring to Russia’s invasion of
Ukraine have affected the global economy greatly and the uncertainty in the economic
market has risen. The aftermath of the events has caused a spike in the inflation and
unemployment rates as well as a lot of companies going bankrupt, which has reduced
the production capacity [Economics, 2021].

These events, and the financial influence they have had on the world in regards to job
loss, reduced salary incomes, and general uncertainty among businesses, have made
it more popular to invest in order to seek safety and wealth preservation [Bilimoria,
2021]. A popular investment approach is to base one’s investment choices on the
S&P500 index. This index features the 500 leading U.S. publicly traded companies.
Because of the index’s depth and diversity, it is widely considered one of the best
gauges of the entire equities market [Kenton, 2023].
However, when investing, one of the most important things to consider is the risk of
your investment. One of the most popular risk measurements is the Value-at-Risk,
which quantifies how much capital one can assume to lose in a given period and
with a given probability [Lu et al., 2011]. The measure is used to compare different
investments and the goal is to minimize the expected loss at the given probability
level. Often, the 95% Value-at-Risk and the 99% Value-at-Risk are observed.

The economic uncertainty of the world has resulted in the S&P500 index being very
volatile in the last three years. This can be observed in the below figure which shows
the prices of the index from the 1st of January 2020 until the 27th of February 2023.
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Figure 1.1: Prices of the S&P500 Index from 1st of January 2020 until 27th of
February 2023

A common approach to modelling the volatility of the prices is by ARMA-GARCH
models. These models are appropriate for time series data where the variance of the
error term is serially autocorrelated and follows an autoregressive moving average
process. Moreover, ARMA-GARCH models are useful to assess risk for assets that
exhibit clustered periods of volatility in returns [Ruppert and Matteson, 2015].

When observing risk, it is always of interest to limit the risk of the investment. This
is most often done by diversifying one’s investment, e.g. by observing an index such
as the S&P500 index and investing in multiple assets from the index. However, since
this index contains 500 different assets, investments based on the index can require
investing in a lot of different assets. This is not always beneficial, e.g. in regard
to the requirement of a large initial capital as well as the fact that it is very time-
consuming to invest in many assets. A way of dealing with these disadvantages is by
constructing a smaller portfolio based on only a fraction of the assets from the index.
It is then possible to analyze the portfolio by modelling the joint distribution of the
assets by copula models. A common approach when building portfolios consisting
of volatile assets is to make use of copula-GARCH models, e.g. as proposed by [Lu
et al., 2011] and [Huang and So, 2018]. Thus, the marginal distributions of the
copulas are modelled by ARMA-GARCH models in order to capture the volatility of
the individual assets in the portfolio.

Thus, this project seeks to examine the Value-at-Risk of a portfolio based on copula-
GARCH models. This leads to the following problem statement:

2
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Problem Statement

How can the Value-at-Risk be used to evaluate an equally weighted portfolio based on
copula-GARCH theory? Moreover, how do the Value-at-Risk models of the portfolio
compare to the Value-at-Risk estimation of the S&P500 index?

The project seeks to answer the above problem statement by first introducing relevant
theory regarding copulas. This theory includes definitions and examples of copulas, a
description of tail dependence, and calibration of copulas. Afterwards, the Value-at-
Risk is defined and different estimation and evaluation methods are presented. Next,
the presented theory is applied to the daily closing prices of an equally weighted
portfolio consisting of the 10 largest assets of the S&P500 index as of the 28th of
February 2023. This is done on data from three different periods; first, the full
period consisting of daily closing prices in the period from the 1st of June 2012 until
the 27th of February 2023, afterwards in the period from the 1st of June 2012 until
the 31st of March 2020 and lastly in the period from the 1st of April 2020 until the
27th of February 2023. Finally, the found Value-at-Risk models of the portfolio are
compared to the Value-at-Risk estimation of the S&P500 index in the period from
the 1st of May 2013 until the 27th of February 2023.

3





Copulas 2
This chapter is based on [Nelsen, 2006, pp. 7-46] and [Ruppert and Matteson, 2015,
Chapter 8].

Copulas are used to define a framework for multivariate distributions and modelling
of multivariate data. The copula of a multidimensional random vector, or more
specifically of its distribution, is a function characterizing the dependence structure,
thus the characteristics of its distribution, which do not depend on the margins.
However, they can be combined with any set of univariate marginal distributions to
form a joint distribution. Thus, copulas are widely used in regard to the construction
of univariate models for multivariate data.

Before being able to formally define copulas, some important notation should be
introduced. For any positive integer n, let R̄n denote the extended n-space R̄× R̄×
· · · × R̄. For a ≤ b let [a,b] denote the n-box B = [a1, b1] × [a2, b2] × · · · × [an, bn].
The vertices of an n-box B are the points c = (c1, c2, . . . , cn) where each ck is equal
to either ak or bk. An n-place real function H is a function whose domain, Dom(H),
is a subset of R̄n and whose range, Ran(H), is a subset of R. Moreover, the unit
n-cube In denotes the product I× I× · · · × I, where I = [0, 1].

First, the H-volume of an n-box can be defined.

Definition 2.1.
Let S1, S2, . . . , Sn be nonempty subsets of R̄, and let H be an n-place real function
such that Dom(H) = S1×S2× · · · ×Sn. Let B = [a,b] be an n-box all of whose
vertices are in Dom(H). Then the H-volume of B is given by

VH(B) =
∑

sign(c)H(c), (2.1)

where the sum is taken over all vertices of c of B, and

sign(c) =

1 if ck = ak for an even number of k’s.

−1 if ck = ak for an odd number of k’s.
(2.2)

5
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The knowledge of the H-volume of a box is used in the following definition regarding
n-increasing functions:

Definition 2.2.
An n-place real function H is n-increasing if VH(B) ≥ 0 for all n-boxes B whose
vertices lie in Dom(H). Suppose that the domain of an n-place real function H

is given by Dom(H) = S1 × S2 × · · · × Sn, where each Sk has a least element ak.
Then H is grounded if H(t) = 0, ∀t ∈ Dom(H), such that tk = ak for at least
one k. If each Sk is nonempty and has a greatest element bk, then H is said to
have margins, and the one-dimensional margins of H are the functions Hk given
by Dom(Hk) = Sk, where

Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn), ∀x ∈ Sk. (2.3)

Now that the definition of n-increasing functions is in place, subcopulas can be defined
as below.

Definition 2.3.
An n-dimensional subcopula is a function C ′ with the following properties:

1. Dom(C ′) = S1 × S2 × · · · × Sn, where each Sk is a subset of I containing 0

and 1,

2. C ′ is grounded and n-increasing,

3. C ′ has margins C ′
k, k = 1, 2, . . . , n, which satisfy

C ′
k(u) = u, ∀u ∈ Sk. (2.4)

Next, copulas can be defined based on the definition of subcopulas. More specifically,
n-dimensional real-valued copulas will be defined, which are generalized versions of
real-valued n-dimensional subcopulas with domain In.

Definition 2.4.
An n-dimensional copula is an n-subcopula C whose domain is In. Equivalently,
an n-copula is a function C : [0, 1]n → [0, 1] that satisfies:

1. C(u1, . . . , un) = 0, whenever ui = 0, for at least one i = 1, . . . , d.

2. C(u1, . . . , un) = ui, if uj = 1, ∀j = 1, . . . , n and j ̸= i.

6
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3. For every a and b in In such that a ≤ b,

VC([a,b]) ≥ 0.

This definition clarifies that a copula is a restriction to [0, 1]n of a distribution func-
tion with uniform margins. Thus, considering a random variable X : Ω → R with
continuous distribution FX : R → [0, 1], then

P(X ≤ x) = FX(x).

Based on this, a general result is that FX(x) ∼ Unif(0, 1). Consequently, CY con-
tains all information on the dependencies of the components of Y, however no infor-
mation about the marginal CDFs of Y. Since CY is the CDF of {FY1(Y1), . . . , FYn(Yn)},
it holds that

CY(u1, . . . , un) = P(FY1(Y1) ≤ u1, . . . , FYn(Yn) ≤ un)

= P
(
Y1 ≤ F−1

Y1
(u1), . . . , Yn ≤ F−1

Yn
(un)

)
= FY

(
F−1
Y1

(u1), . . . , F
−1
Yn

(un)
)
. (2.5)

If uj = FYj (yj) for j = 1, 2, . . . , n then (2.5) results in

FY(y1, . . . , yn) = CY(FY1(y1), . . . , FYn(yn)). (2.6)

This leads to the following important result:

Theorem 2.1 (Sklar’s Theorem).
Let H be an n-dimensional distribution function with margins F1, F2, . . . , Fn.
Then there exists an n-copula C such that for all x ∈ R̄n,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (2.7)

If F1, F2, . . . , Fn are all continuous, then C is unique. Otherwise, C is uniquely
determined on Ran(F1) × Ran(F2) × · · · × Ran(Fn). Conversely, if C is an n-
copula and F1, F2, . . . , Fn are distribution functions, then the function H defined
by (2.7) is an n-dimensional distribution function with margins F1, F2, . . . , Fn.

Thus, Sklar’s Theorem states that a random vector Y can be expressed as its copula
CY, which contains all information about the dependencies among (Y1, . . . , Yn), and
its marginals FYj (yj), which contain all information about the univariate marginal
distributions.

7
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2.1 Examples of Copulas

In this section, multiple examples of copulas will be presented. These copulas will
be used in the application to find which one provides the best fit for the chosen
data. First, Gaussian and t-copulas are presented, and afterwards, four different
Archimedean copulas are defined.

Gaussian and t-Copulas

It can be useful to generate families of copulas which are based on multivariate normal
and multivariate t-distributions. Let Y = (Y1, . . . , Yn) have a multivariate normal
distribution. As CY only depends on the dependencies within Y, it only depends on
the n×n correlation matrix of Y, noted Ω. Thus, there is a correspondence between
correlation matrices and Gaussian copulas. The Gaussian copula with correlation
matrix Ω is noted CGauss(u1, . . . , un | Ω) and is defined as below.

Definition 2.5.
Let F (·) denote the CDF of a univariate normal distribution. The n-dimensional
Gaussian copula with covariance matrix Ω is given by

CGauss(u1, . . . , un | Ω) = FGauss(F
−1(u1), . . . , F

−1(un)),

where FGauss is the CDF of the n-dimensional Gaussian distribution with mean
0 and covariance matrix Ω.

A random vector is said to have a meta-Gaussian distribution if it has a Gaussian
copula.

The copula Ct(u1, . . . , un | Ω, ν) is the copula of a random vector which has a mul-
tivariate t-distribution with tail index ν and correlation matrix Ω. The tail index ν

affects both the univariate marginal distributions and the tail dependence between
the components. Thus, ν is also a parameter of Ct. The t-copula is defined below.

Definition 2.6.
Let tν denote the CDF of a univariate t-distribution with ν degrees of freedom.
The n-dimensional t-copula with covariance matrix Ω and ν degrees of freedom
is given by

Ct(u1, . . . , un | Ω, ν) = tν,Ω(t
−1
ν (u1), . . . , t

−1
ν (un)),

where tν,Ω is the CDF of an n-dimensional t-distribution.

8



2.1. Examples of Copulas Aalborg University

In the same manner, as the Gaussian copula, a random vector that has a t-copula is
said to have a meta-t distribution.

Archimedean Copulas

This section is based on [Huang et al., 2009, pp. 317-318].

Archimedean copulas are widely used in applications, as they are easy to construct,
have a great variety of different families, and possess many nice properties. Moreover,
they have explicit expressions, which is of particular interest in applications. The
definition of an Archimedean copula is given below.

Definition 2.7.
An Archimedean copula with a strict generator has the form

C(u1, . . . , un) = φ−1{φ(u1) + · · ·+ φ(un)}, (2.8)

where the generator function φ satisfies:

1. It is a continuous, strictly decreasing and convex function, that maps [0, 1]

onto [0,∞],

2. φ(0) = ∞,

3. φ(1) = 0.

Below, four different families of Archimedean copulas will be described.

Clayton Copula

The Clayton copula has the generator function

φCl(u | θ) = 1

θ
(u−θ − 1), θ > 0,

and is thus given on the form

CCl(u1, . . . , ud | θ) = (u−θ
1 + · · ·+ u−θ

d + 1− d)−
1
θ .

Frank Copula

The generator of the Frank copula is given as

φFr(u | θ) = − log

(
e−θu − 1

e−θ − 1

)
, −∞ < θ < ∞.

9
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Thus the Frank copula is given on the form

CFr(u1, . . . , ud | θ) = −1

θ
log

(
1 +

(e−θu1 − 1) . . . (e−θu2 − 1)

(e−θ − 1)d−1

)
.

Gumbel Copula

The Gumbel copula has the generator function

φGu(u | θ) = (− log(u))θ, θ ≥ 1,

and is given on the form

CGu(u1, . . . , ud | θ) = exp

(
−
{
(− log(u1))

θ + · · ·+ (− log(ud))
θ
} 1

θ

)
.

Joe Copula

The generator function of the Joe copula is given on the form

φJoe(u | θ) = − log
{
1− (1− u)θ

}
, θ ≥ 1.

Thus, the Joe copula is given as

CJoe(u1, . . . , ud | θ) = 1−
[
1− (1− (1− u1)

θ) . . . (1− (1− ud))
θ
] 1

θ
.

2.2 Tail Dependence

This section is based on [Nelsen, 2006, pp. 214-216] and [Ruppert and Matteson,
2015, pp. 196-198].

In risk management, it is of great use to be able to measure tail dependence, which is
the dependence between the variables in the upper-right quadrant and the lower-left
quadrant of I2. If the returns of assets in a given portfolio do not have any tail
dependence among them, then there will be little risk of simultaneous very negative
returns. The converse holds if tail dependence is present.

The tail dependence is evaluated based on the upper and lower tail dependence pa-
rameters, λU and λL. Assume Y = (Y1, Y2) is a bivariate random vector with cor-
responding copula CY . Then the coefficient of lower tail dependence, λL, is defined
as

10
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λL = lim
q↓0

P
{
Y2 ≤ F−1

Y2
(q) | Y1 ≤ F−1

Y1
(q)
}

= lim
q↓0

P
{
Y1 ≤ F−1

Y1
(q), Y2 ≤ F−1

Y2
(q)
}

P
{
Y1 ≤ F−1

Y1
(q)
}

= lim
q↓0

P
{
FY1(Y1) ≤ q, FY2(Y2) ≤ q

}
P
{
FY1(Y1) ≤ q

}
= lim

q↓0

CY (q, q)

q
.

In the above, it is assumed that FY1 and FY2 are strictly increasing on their supports,
such that their inverses exist. Since λL is defined as the conditional probability of
Y2 ≤ F−1

Y2
(q), it holds that if λL = 0, then Y1 and Y2 act as if they are independent

in the extreme left tail.

The coefficient of upper tail dependence, λU , is defined as

λu = lim
q↑1

P
{
Y2 ≥ F−1

Y2
(q) | Y1 ≥ F−1

Y1
(q)
}

= 2− lim
q↑1

1− CY (q, q)

1− q
.

The above is defined analogously to λL, thus λU is the limit as q ↑ 1 of the conditional
probability.

In regards to the Normal and t-copula, special cases hold. Any bivariate Normal
copula CGauss with ρ ̸= 1, does not exhibit either lower or upper tail dependence. In
regards to the bivariate t-copula Ct with ν degrees of freedom and correlation ρ, the
formula for both the lower and upper tail dependence is given as

λU = λL = 2Ft,ν+1

−

√
(ν + 1)(1− ρ)

1 + ρ

 ,

where Ft, ν + 1 is the CDF of the t-distribution with ν+1 degrees of freedom. Since
Ft,ν+1(−∞) = 0, it holds that λL → 0 as ν → ∞.

Tail dependency is often observed in scatterplots of the different copulas. It appears
as a spike in the data points in the upper-right or lower-left corner of the plot.

11
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2.3 Calibrating Copulas

This section is based on [Cherubini et al., 2004, pp. 153-160].

In this section, two different methods will be presented, which are useful when deter-
mining which copula to work with. It will be assumed that {Yt, t ∈ Z} is a strictly
stationary stochastic process taking values in Rd. Moreover, it will be assumed that
the data consists of a realization of n-dimensional real vectors {Yt, t = 1, 2, . . . , T}.

Maximum Likelihood Estimation

Assume the parametric models for the marginal CDFs,

FY1(· | θ1), . . . , FYd
(· | θn),

as well as a parametric model for the copula density, cY (· | θC), are given. Then, the
log-likelihood is given as

log
{
L(θ1, . . . ,θn,θC)

}
=

d∑
i=1

( log
[
cY
{
FY1(Yi,1 | θ1), . . . , FYn(Yi,n | θn) | θC

}]
+ log

{
fY1(Yi,1 | θ1)

}
+ · · ·+ log

{
fYn(Yi,n | θn)

}
).

However, a disadvantage of this method is that it can be very computationally inten-
sive, especially in the case of high dimensions. This is the case, as it is necessary to
jointly estimate the parameters of the marginal distribution and the parameters of
the dependence structure represented by the copula.

Inference Function For Margins

An alternative to the maximum likelihood estimation method given above, which is
not as computationally burdensome, is the inference for margins (IFM) method. This
method involves estimating the parameters of the margin and the copula density in
two steps instead of jointly:

1. First, estimate the margins’ parameters θ̂m = [θ̂1, . . . , θ̂n]
T by performing the

estimation of the univariate marginal distributions:

θ̂m = argmax
θm

d∑
i=1

(
log{fY1(Yi,1 | θ1)}+ . . .+ log{fYn(Yi,n | θn)}

)
.

12
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2. Second, estimate the copula parameter θC given θ̂m:

θ̂C = argmax
θC

d∑
i=1

(
log
[
cY {FY1(Yi,1 | θ1), . . . , FYn(Yi,n | θn) | θC , θ̂m}

])
.

The IFM estimator is then defined as the vector

θ̂IFM =
(
θ̂m, θ̂C

)T
.

13





Risk Measures 3
This chapter is based on [Ruppert and Matteson, 2015, pp. 553-565] and [Elliott and
Kopp, 2005, pp. 303-315].

In this chapter, the Value-at-Risk will be described, which is one of the most com-
monly used risk measures. Moreover, different ways of estimating and evaluating the
Value-at-Risk will be given. These methods are used in Chapter 4 and 5 to describe
the risk of the constructed portfolio and the index fund.

3.1 Value-at-Risk

The idea behind Value-at-Risk, also denoted VaR, is to determine a level of exposure
in a position that will not be exceeded. This level is determined based on a given
threshold level α ∈ [0, 1], which can vary based on the given scenario and data. As
α can be seen as a confidence level, it must hold that α ∈ [0, 1]. Moreover, VaR also
uses a time horizon, denoted T . Thus, VaR can be seen as a bound such that the
loss over the horizon is less than this bound with probability equal to the confidence
coefficient α.

If L denotes the loss over the holding period T , then VaR(α) is the αth upper quantile
of L. For continuous loss distributions,

P(L > V aR(α)) = P(L ≥ V aR(α)) = α,

and for any loss distribution,

V aR(α) = inf{x : P(L > x) ≤ α}.

Nevertheless, a disadvantage of VaR is that it is not subadditive. Thus, diversification
of positions will not necessarily reduce risk.

15
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3.2 Estimation of VaR

This section is based on [Ruppert and Matteson, 2015, Chapter 19], [Kuester et al.,
2006, pp. 56-60] and [Choudhry, 2013, Chapter 3].

Value-at-Risk can be estimated by the use of multiple different methods. In this
section, historical estimation and parametrical estimation will be given for an asset.
In the following section, Monte Carlo estimation of VaR will be presented.

In the historical estimation, only the prior history of the returns is considered. Thus,
there is no need to assume a parametric family, such as e.g. the normal distribution or
t-distribution. The confidence level, α, is found by estimating the return distribution.
This quantile is then estimated as the α-quantile of a sample of historic returns, which
is denoted q̂(α). Let S be the size of the current position. Then the historical estimate
of VaR is

V̂ aR
hist

(α) = −S × q̂(α),

where the minus sign indicates that potential loss is returned rather than potential
revenue.

Since the historical simulation uses historical data to calculate potential losses, and
assumes that history will repeat itself, it is important to have a large data set to cap-
ture possible fluctuations or special events. However, an advantage of the historical
method is the fact that it does not assume any distributions of the data and thus
cannot misspecify any distributions.

Instead of assuming that the past will repeat itself, the parametric estimation method
assumes that gains and losses are parametrically distributed, e.g. by assuming a
jointly normal distribution or t-distribution. The volatilities and correlations can
be calculated in two different ways. Either by assuming simple historical volatility,
where each past observation is equally weighted in the volatility calculation, or by
assigning different past observations different weights. The latter is often done by
use of either GARCH models or exponentially weighted MA processes to assign the
weights. The parametric estimation is also of great use in smaller sample sizes.

Let F (y | θ) be a parametric family of distributions used to model the return distri-
bution and assume that θ̂ is an estimate of θ, e.g. the MLE computed from historic
returns. Then F−1(α | θ̂) is an estimate of the α-quantile of the return distribution.
In this case, a parametric estimate of V aR(α) is given as

V̂ aR
par

(α) = −S × F−1(α | θ). (3.1)
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3.3 Monte Carlo Estimation

This section is based on [Lu et al., 2011, pp. 340-342].

In this section, a Monte Carlo procedure to forecast one-day ahead VaR is presented.
Only equally weighted portfolios consisting of d assets are considered. From now on,
the number of observations is noted as T , as time observations are observed. The
daily log-returns of asset j are given as

rjt = log

(
P j
t

P j
t−1

)
= log(Pj)− log(P j

t−1), j = 1, . . . , d, (3.2)

where P j
t is the price of asset j at time t. The log-returns of the equally weighted

portfolio at time t are then denoted as

rPt =
1

d
r1t +

1

d
r2t + · · ·+ 1

d
rdt .

Denote the profit and loss (P&L) function of the portfolio composed of d assets at
time t, by Lt, which is given as

Lt =
1

d
P 1
t + · · ·+ 1

d
P d
t −

(
1

d
P 1
t−1 + · · ·+ 1

2
P d
t−1

)
=

1

d
P 1
t−1

(
exp(r1t )− 1

)
+ · · ·+ 1

d
P d
t−1

(
exp(rdt )− 1

)
. (3.3)

The procedure to forecast one-day-ahead VaR based on copulas at a 95% and a 99%

confidence level is as follows:

1. Using T observations, ARMA-GARCH type models, described in Section 4.2,
are fitted, and marginal distributions are estimated for each log-return series.

2. One-step means and variances, denoted r̂jT+1 and ĥjT+1 for j = 1, . . . , d, are
forecasted at time T + 1.

3. The copula parameters κ̂ are estimated by use of the probability integral trans-
forms u1t , . . . , udt of the standardized residuals η1t , . . . , ηdt of the ARMA-GARCH-
type models.

4. The d random variables (u1,kT+1, . . . , u
d,k
T+1) for k = 1, 2, . . . , N are simulated from

the copula1.
1The simulation methods of Normal copulas, t-copulas and Archimedean copulas are mentioned

in [Hofert et al., 2018, pp. 86-90].
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5. The simulated standardized residuals ηj,kT+1, for j = 1, . . . , d and k = 1, . . . , N

are obtained by use of the inverse functions of the estimated marginals,(
η1,kT+1, . . . , η

d,k
T+1

)
=
(
F−1
1,T+1(u

1,k
T+1; θ̂1), . . . , F

−1
d,T+1(u

d,k
T+1; θ̂d)

)
.

6. The simulated asset log-returns are obtained as(
r1,kT+1, . . . , r

d,k
T+1

)
=

(
r̂1T+1 + η1,kT+1 ·

√
ĥ1T+1, . . . , r̂

d
T+1 + ηd,kT+1 ·

√
ĥdT+1

)
.

7. The values of Lk
T+1 are calculated using (3.3) for k = 1, . . . , N.

8. The N values of Lk
T+1 are sorted in increasing order. Then the 95% VaR and

99% VaR are calculated as:

i) The 95% VaR is the absolute value of the N × (1−95%) ordered scenarios
of Lk

T+1;

ii) The 99% VaR is the absolute value of the N × (1− 99%) ordered scenario
of Lk

T+1.

9. Repeat the above steps M times by rolling over the daily returns for a given
time period with one-day increments. Let M be the number of out-of-samples
instances. The 95% VaR and 99% VaR values are then used for backtesting as
described in Section 3.4.

3.4 Backtesting

This section is based on [Lu et al., 2011, pp. 342-343], [Abad et al., 2014] and
[Fantazzini, 2008].

After the forecasting of VaR for each day in the out-of-sample has been performed,
the forecasted VaR estimates should be compared with the real observed portfolio
P&L function. Afterwards, the performance of the constructed models should be
evaluated using backtesting techniques. In this section, two statistical tests and two
loss functions will be introduced in order to backtest the performance of different
VaR models. These methods are used to evaluate the predictive performance of a
model based on historical data.

Define the hit series It as

It =

1 if Lt < −V aRt,

0 if Lt ≥ −V aRt,
for t = 1, . . . , T, (3.4)

18



3.4. Backtesting Aalborg University

where Lt is the observed P&L function. Thus, It is 1 when the value of the observed
P&L function is less than the negative forecasted VaR threshold, and 0 otherwise.
Moreover, define q as the true probability coverage and let ZT =

∑T
t=1 It be the

number of exceptions in a sample size of size T . In the rest of the project ZT will be
denoted as Z however, still under the assumption that it is observed at time T .

The first statistical test is Kupiec’s unconditional coverage test, which is based on bi-
nomial theory and tests the difference between the observed and the expected number
of VaR exceptions of the effective portfolio profits and losses. Generally, the ratio of
VaR exceedances is calculated as Z/T . Following the binomial theory, the probability
of observing Z failures out of T observations is (1− q)T−ZqZ , so the null hypothesis,
which is that the observed exception frequency Z is equal to the expected exceptions,
is given by the likelihood ratio test statistic:

LRUC = −2 log
[
(1− q)T−ZqZ

]
+ 2 log

[
(1− Z/T )T−Z(Z/T )Z

]
,

where T−Z is the successes, Z is the failures and (1−q)T−Z(Z/T )Z is the probability
of having T − Z successes. Thus, the test compares the predicted number of times
VaR is exceeded against the observed number of times VaR is exceeded. In other
words, whether q = Z/T . The test can reject a model for both high and low failures,
however, it ignores conditioning or time variation in the data, and thus cannot cope
with clustering in the observations. When T is large enough, this test statistic is
asymptotically distributed as χ2(1) under H0, which indicates that the observed
number of exceedings statistically equals the predicted number of exceedings. Note,
that (1 − q) is the probability for the losses to exceed the VaR. Thus, if the losses
exceed the VaR more frequently, the test underestimates the risk of the portfolio.
Conversely, if the losses exceed the VaR less frequently the risk of the portfolio is
overestimated.

An alternative approach to Kupiec’s unconditional coverage test, which does not suffer
from the above-mentioned shortcomings, is Christoffersen’s conditional coverage test.
This test tests the joint assumption of unconditional coverage and independence
of failures. Under the null hypothesis, the independence results in a case where a
violation at time t does not have any influence on the probability of violations at
time t+ 1. The test statistic is given as

LRCC = LRUC + LRIND

= −2 log
[
(1− q)T−ZqZ

]
+ 2 log

[
(1− π01)

n00πn01
01 (1− π11)

n10πn11
11

]
,

where nij denotes the number of transitions from state i to state j in the hit series
It, for i, j = 0, 1, and πij = (nij)/(

∑
j nij) are the corresponding probabilities of the
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events. The probabilities are independent if π01 = π11 = (1 − q). Where Kupiec’s
test restricts the number of allowed violations, Christoffersen’s test further restricts
the way the violations occur. Thus, it can reject a model for having too many or too
few clustered violations. This test is distributed as χ2(2) under H0, which is that the
probabilities of VaR exceedings are independent.

Both Kupiec’s and Christoffersen’s test statistics focus on examining the behaviour of
the hit function. They choose acceptable models based on the number of exceptions
and limit the information contained in the number of exceptions. Moreover, they do
not show any power in distinguishing between different, but close, alternatives, which
results in the construction of a general loss function equal to the hit series given in
(3.4). However, multiple alternatives to the general loss function can be considered,
which makes it possible to evaluate the non-covered losses. Thus, the following two
loss functions are based on examining the distance between the observed returns and
the forecasted VaR values when losses are uncovered.

The first loss function proposed by Lopez is given as

CL
t =

1 + (|Lt|−V aRt)
2, if Lt < −V aRt,

0, if Lt ≥ −V aRt,

This measure includes an additional term based on the magnitude of an exception,
except for the score of one when an exception occurs. The inclusion of the quadratic
term ensures that large failures are penalized more than small failures. A backtest
using this loss function would typically be based on the sample average loss,

ĈL =
1

T

T∑
t=1

CL
t .

Another alternative loss function is the one proposed by Bianco and Ihle, which
focuses on the average size of exceptions,

CBI
t =


|Lt|−V aRt

V aRt
, if Lt < −V aRt,

0, if Lt ≥ −V aRt,

Thus, this loss function evaluates how well the VaR model performs on average. The
backtesting using this loss function is similar to that of Lopez’s loss function, thus

ĈBI =
1

T

T∑
t=1

CBI
t .
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As the two proposed loss functions do incorporate the distance between the observed
returns and the forecasted VaR values, they make it possible to rank the performance
of different models to each other. When constructing the VaR models, the goal is to
construct a model which most accurately illustrates the actual risk, thus the q level.
Since ĈL and ĈBI measures the sum of the difference between the observed returns
and the calculated VaR values, the lower the value of Ĉ, the better goodness-of-fit of
the proposed VaR model.
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Application 4
In this chapter, the data application will be conducted. First, the chosen data for
the construction of the portfolio will be presented and analyzed. Then marginal
distributions of each of the chosen assets will be fitted. Afterwards, the portfolio will
be constructed as a copula, which will be based on the theory presented in Section
2.1. Hereafter, the Value-at-Risk is forecasted using the Monte Carlo procedure
introduced in Section 3.3 and evaluated based on the backtesting methods given in
Section 3.4. This procedure will be performed for three different periods, namely the
full sample, the train set, and the test set. Lastly, the copula-GARCH VaR forecasts
for the full sample will be compared with the VaR forecasts of an index fund. This
is done in order to investigate, which procedure results in the best-fitting model in
regards to the Value-at-Risk performance.

4.1 Data Description

The data used for constructing the portfolio is collected from Yahoo Finance, and
consists of daily closing prices in United States Dollars (USD), from now on denoted
prices. The prices are observed in the period from the 1st of June 2012 until the 27th
of February 2023, thus a total number of 2, 802 weekdays. As mentioned in Chapter
1, the application will be based on the S&P500 index. The 10 biggest assets of the
S&P500 index as of the 28th of February 2023 were chosen to construct a portfolio.
These 10 assets make up approximately 28% of the S&P500 index and are thus of
significant influence on the behaviour of the whole index. The chosen assets are:
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No. Company Symbol Sector* Weight %
1 Apple Inc. AAPL Information Technology 7.180
2 Microsoft Corp. MSFT Information Technology 6.292
3 Amazon.com Inc AMZN Consumer Discretionary 2.636
4 NVIDIA Corp. NVDA Information Technology 1.985
5 Alphabet Inc. A GOOGL Communication Services 1.892
6 Alphabet Inc. C GOOG Communication Services 1.659
7 Berkshire Hathaway B BRK.B Financials 1.622
8 Tesla Inc. TSLA Consumer Discretionary 1.543
9 Meta Platforms Inc. A META Communication Services 1.381
10 UnitedHealth Group Inc. UNH Health Care 1.340

Table 4.1: The 10 largest assets of the S&P500 index as of the 28th of February 2023
based on slickcharts.com/sp500
*Based on GICS sectors

From now on, whenever a portfolio is referred to, an equally weighted portfolio con-
sisting of the 10 assets mentioned above is considered. Thus, from now on, they each
take up 10% of the constructed portfolio instead of the previously mentioned weights.

The data is split into two parts; the train set and the test set. The train set consists
of 2, 043 days, thus daily data from the 1st of June 2012 until the 31st of March 2020,
whereas the test set consists of 759 observations, responding to daily data from the
1st of April 2020 until the 27th of February 2023. The price of the equally weighted
portfolio is plotted below with the dotted line corresponding to the division between
the train and test set:

1000

2000

2012 2014 2016 2018 2020 2022

Year

P
ri

c
e

Figure 4.1: Portfolio prices from 1st of June 2012 until 27th of February 2023. The
dotted line represents the division between the train and test set.

It can be seen, that the prices are increasing throughout the period, and especially
in the first half of the test set. Moreover, it can be seen that the prices are relatively
volatile, which is most obvious in 2022 and 2023, where a lot of big increases and
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decreases are seen. However, a large decrease is seen just around the division of the
train and test set, which is most likely because of the corona crisis. This decline
causes the train set to behave differently in the very last period compared to the rest
of the train set, which will likely influence the model fitting later on. Moreover, it
can be seen that the prices behave differently in the train and test set, which might
influence the performance of the Value-at-Risk forecasts in Section 4.4.
To be able to fit ARMA-GARCH models on each of the 10 chosen assets, the daily
prices are converted to log-returns, to ensure stationarity. The log-returns at time t,
rt, are computed by (3.2). The log-returns of each of the 10 assets are shown below
for the full sample:
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Figure 4.2: Log-returns from 1st of June 2012 until 27th of February 2023. The red
lines represent the division between the train and test sets.
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It can be seen that all of the log-returns seem relatively stationary around 0, however,
they still possess a lot of volatility throughout all of the period. The most volatility
is seen in the test set, which was expected from observing Figure 4.1. It can also be
seen, that the fluctuations are larger for GOOGL, META, NVDA and TSLA than for
the rest of the assets. Moreover, it can be seen that all of the assets, except AMZN
and META, have the largest fluctuations around the beginning of 2020, which can
also be observed from Figure 4.1.

Note that since the log-returns are observed, the train set shrunk with 1 observation.
Thus, the train set now consists of daily log-returns in the period from the 2nd of June
2012 until the 31st of March 2023, which accounts for a total of 2, 042 observations.

To investigate the log-returns further, the descriptive statistics for both the full sam-
ple, the train set and the test set are given in Table 4.2. It can be seen from the table,
that the means for all 10 assets are approximately 0 for all three samples, however,
they are closer to 0 in the test set than in the train set. Moreover, the standard
deviations are approximately the same for all 10 assets throughout all of the three
samples.
The 95% and 99% VaR values are based on historical estimation, thus calculated
purely on the past data without making assumptions about the parametric distribu-
tions. It can be seen, that both the 95% and 99% VaR values are negative for all
10 assets in all three periods, however, they are all relatively close to 0. Moreover,
it can be seen that BRK.B has the highest 95% and 99% VaR for all three samples.
On the other hand, TSLA is the asset with the lowest 95% and 99% VaRs, thus it is
the asset in which one can expect with 95% and 99% certainty to lose the most.
Regarding the skewness of the assets, it can be seen that both positive and negative
values are present, indicating both right-skewed and left-skewed data. It can be seen
that META is the most skewed asset in the full sample and the test set, whereas
UNH is the most skewed asset in the training set. The same behaviour is seen when
observing the excess kurtosis where it can be seen that META has the heaviest tails
in the full sample and test sample, and UNH has the heaviest tails in the training
set. The Jarque-Bera test, which is a goodness-of-fit test described in Appendix A.1,
rejects the null hypothesis of normally distributed data for all 10 assets in all three
samples. Thus, neither of the log-returns are normally distributed. The ADF test
supports the stationarity seen in Figure 4.2 as it rejects the null hypothesis of a unit
root for all 10 assets in all three samples. Furthermore, the Ljung-Box test fails to
reject the null hypothesis of independently distributed data for AMZN and TSLA for
both the full sample and the train set, however, it only rejects the null hypothesis for
MSFT in the test set. Thus, in the full set and training set most of the assets have
autocorrelation, whereas most of the assets are independently distributed in the test
set.
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It can be seen from Table 4.2 that the assets do possess heavier tails than those of the
normal distribution since the Jarque-Bera test rejects the null hypothesis of normally
distributed data for all 10 assets in all three periods. To investigate the distribution
of the assets further, the Q-Q plots of all 10 assets are shown below in Figure 4.3 for
the full sample.

−0.15

−0.10

−0.05

0.00

0.05

0.10

−2 0 2

Theoretical

S
a
m

p
le

AMZN

−0.10

−0.05

0.00

0.05

0.10

−2 0 2

Theoretical
S

a
m

p
le

BRK.B

−0.1

0.0

0.1

−2 0 2

Theoretical

S
a
m

p
le

GOOG

−0.10

−0.05

0.00

0.05

0.10

0.15

−2 0 2

Theoretical

S
a
m

p
le

GOOGL

−0.3

−0.2

−0.1

0.0

0.1

0.2

−2 0 2

Theoretical

S
a
m

p
le

META

−0.1

0.0

0.1

−2 0 2

Theoretical

S
a
m

p
le

MSFT

−0.2

−0.1

0.0

0.1

0.2

−2 0 2

Theoretical

S
a
m

p
le

NVDA

−0.2

−0.1

0.0

0.1

0.2

−2 0 2

Theoretical

S
a
m

p
le

TSLA

−0.2

−0.1

0.0

0.1

−2 0 2

Theoretical

S
a
m

p
le

UNH

−0.15

−0.10

−0.05

0.00

0.05

0.10

−2 0 2

Theoretical

S
a
m

p
le

AAPL

Figure 4.3: Q-Q plots based on the full sample

It can be seen from Figure 4.3 that all 10 assets have heavy tails. The upper tails
are heaviest for META, NVDA and TSLA, whereas the lower tails are heaviest for
META, NVDA, TSLA and UNH. Thus, a distribution should be fitted which takes
these heavy tails into consideration. In this project, the ARMA-GARCH models will
be used to model the marginal distributions, as they exhibit heavy tails and are a
great choice when modelling volatile data [Ruppert and Matteson, 2015, page 413].
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4.2 Marginal Distributions

This section is based on [Ruppert and Matteson, 2015, pp. 405-443].

In this section, the marginal distributions, from which the copulas will be constructed,
are fitted. As mentioned in Chapter 1, this is done by the use of ARMA-GARCH
models. The inclusion of the GARCH part is of great use in the modelling of economic
and financial data, as it captures time-varying volatility, which is often more common
than constant volatility. Moreover, the GARCH processes also exhibit heavy tails,
which are also often seen in financial data. Moreover, the chosen data exhibit heavy
tails which is seen in Figure 4.3.

An autoregressive moving average (ARMA) model consists of two parts, namely the
autoregressive (AR) part and the moving average (MA) part. An ARMA(p, q) model,
which is a combination of an AR(p) model and a MA(q) model, is defined below.

Definition 4.1 (ARMA Process).
{Xt} is an ARMA(p, q) process if {Xt} is stationary and if for every t,

Xt − ϕ1Xt−1 − · · · − ϕpXt−p = Wt + θ1Wt−1 + · · ·+ θqWt−q,

or equivalently
ϕ(B)Xt = θ(B)Wt,

where {Wt} ∼ WN(0, σ2), and the pth and qth degree polynomials ϕ(z) =

(1− ϕ1z− · · · −ϕpz
p) and θ(z) = (1− θ1z+ · · ·+ θqz

q) have no common factors.

Thus, the ARMA process depends both on lagged values of itself as well as lagged
values of the noise process.

The autoregressive conditional heteroskedasticity process, ARCH, is defined as:

Definition 4.2 (ARCH Process).
The ARCH(p) process, {Yt} is the stationary solution of the equation

Wt = σtεt, {εt} ∼ IIDN(0, 1), (4.1)

where σ2
t is the function of {Ws, s < t} defined by

σ2
t = ω +

p∑
i=1

αiY
2
t−i, (4.2)
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with ω > 0 and α1 ≥ 0 for i = 1, . . . , p.

The generalized ARCH process is defined below.

Definition 4.3 (GARCH Process).
The GARCH(p, r) process is a generalization of the ARCH(p) process, in which
the variance in (4.2) is replaced by

σ2
t = ω +

p∑
i=1

αiY
2
t−i +

r∑
i=1

βiσ
2
t−i, (4.3)

with ω > 0 and αi, βi ≥ 0 for i = 1, 2, . . . .

In this project the ARMA(0, 0)-GARCH(1, 1) model and ARMA(1, 1)-GARCH(1, 1)

model are fitted, which are given as:

ARMA(0, 0) : Xt = Wt,

ARMA(1, 1) : Xt − ϕ1Xt−1 = Wt + θ1W1,

where Wt = σtεt, for {εt} ∼ IIDN(0, 1), and σt =
√
ω + α1Y 2

t−1 + β1 + σ2
t−1.

The assumption of normality in (4.1) can be relaxed, and thus a general GARCH(p, r)

process can be defined as a stationary process {Yt} satisfying (4.3) and the generalized
form of (4.1),

Yt = σtεt, {εt} ∼ IID(0, 1).

However, in this project three different density functions for εt will be assumed;
Normal, Student’s t and skewed Student’s t. The density function for the skewed
Student’s t-distribution is given by

f(x; ν, λ) =

bc(1 + 1
ν−2(

bx+a
1−λ )2)−(ν+1)/2) if x < −a/b,

bc(1 + 1
ν−2(

bx+a
1+λ )2)−(ν+1)/2 if x ≥ −a/b,

where 2 < ν < ∞ denotes the degree of freedom and −1 < λ < 1 denotes the
asymmetry parameter. The constants a, b and c are given by

a = 4λc

(
ν − 2

ν − 1

)
, b =

√
1 + 3λ2 − a2, and c =

Γ(ν+1
2 )√

π(ν − 2)Γ(ν2 )
.

If λ = 0 the skewed Student’s t-distribution reduces to the Student’s t-distribution
and if both λ = 0 and ν → ∞, it reduces to the Normal density.
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One of the notable features of the financial data captured by GARCH models is
the persistence of volatility. Thus, large or small fluctuations in the data are often
followed by fluctuations of comparable magnitude. GARCH models reflect this as
they incorporate correlation in the sequence {σ2

t } of conditional variances.

Now that the ARMA-GARCH models are defined, they can be fitted on the training
set. As seen in Table 4.2 all the 10 assets are stationary, as the ADF test rejects the
null hypothesis for every asset. However, the Ljung-Box test showed that autocorre-
lation was present for most of the 10 assets in the full sample and train set, which
makes it reasonable to fit an ARMA-GARCH model to the data in order to model
the autocorrelation. Both an ARMA(0, 0)-GARCH(1, 1) model and ARMA(1, 1)-
GARCH(1, 1) model are compared assuming three different marginal distributions;
the Normal distribution, the t-distribution and the Skewed t-distribution. The log-
likelihood (LL), Akaike’s Information Criteria (AIC) and Bayes Information Criteria
(BIC) for the ARMA(0, 0)-GARCH(1, 1) model are shown below.

ARMA(0,0)-GARCH(1,1)
Normally distributed standardized residuals

AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL
LL 5, 145.77 6, 318.49 5, 548.41 5, 550.37 4, 794.27 5, 570.06 4, 642.28 4, 107.42 5, 702.88 5, 376.00
AIC −5.295 −6.503 −5.710 −5.712 −4.933 −5.732 −4.777 −4.226 −5.869 −5.532
BIC −5.284 −6.492 −5.699 −5.701 −4.922 −5.721 −4.765 −4.215 −5.858 −5.521

t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 5, 350.52 6, 403.44 5, 764.30 5, 757.59 5, 084.35 5, 761.00 4, 904.63 4, 271.28 5, 705.79 5, 528.04
AIC −5.505 −6.590 −5.931 −5.924 −5.231 −5.928 −5.505 −4.394 −5.977 −5.688
BIC −5.491 −6.575 −5.917 −5.910 −5.217 −5.914 −5.032 −4.379 −5.963 −5.674

Skewed t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 5, 350.97 6, 403.99 5, 764.44 5, 757.59 5, 084.39 5, 761.46 4, 904.79 4, 271.29 5, 808.84 5, 528.07
AIC −5.505 −6.589 −5.930 −5.923 −5.230 −5.927 −5.045 −4.393 −5.976 −5.687
BIC −5.487 −6.572 −5.913 −5.906 −5.213 −5.910 −5.028 −4.376 −5.959 −5.670

Table 4.3: Model selection criteria of the ARMA(0,0)-GARCH(1,1) model

It can be seen that the model with t-distributed residuals performs best for all 10
assets both in regard to the log-likelihood, AIC, and BIC values.

The results for the ARMA(1, 1)-GARCH(1, 1) model are shown below in Table 4.4.
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ARMA(1,1)-GARCH(1,1)
Normally distributed standardized residuals

AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL
LL 5, 247.30 6, 322.36 5, 548.98 5, 550.99 4, 794.36 5, 576.44 4, 644.01 4, 107.46 5, 710.06 5, 376.03
AIC −5.295 −6.505 −5.709 −5.711 −4.931 −5.737 −4.777 −4.224 −5.874 −5.530
BIC −5.278 −5.488 −5.691 −5.693 −4.914 −5.720 −4.759 −4.207 −5.857 −5.513

t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 5, 351.78 6, 408.49 5, 766.07 5, 859.56 5, 089.38 5, 772.30 4, 906.11 4, 271.91 5, 817.63 5, 528.20
AIC −5.504 −6.593 −5.931 −5.924 −5.234 −5.938 −5.045 −4.392 −5.984 −5.686
BIC −5.484 −6.573 −5.911 −5.904 −5.214 −5.917 −5.025 −4.372 −5.964 −5.666

Skewed t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 5, 352.29 6, 408.82 5, 766.21 5, 759.56 5, 089.40 5, 772.37 4, 906.27 4, 271.93 5, 817.96 5, 528.22
AIC −5.504 −6.592 −5.930 −5.923 −5.233 −5.937 −5.045 −4.391 −5.984 −5.685
BIC −5.481 −6.569 5.907 −5.900 −5.210 −5.914 −5.022 −4.368 −5.961 −5.662

Table 4.4: Model selection criteria of the ARMA(1,1)-GARCH(1,1) model

Again, it can be seen that the model with t-distributed residuals performs best for all
10 assets based on both log-likelihood, AIC and BIC. Moreover, it can be seen that
the best model for MSFT and UNH is the ARMA(1, 1)-GARCH(1, 1) model, whereas
the ARMA(0, 0)-GARCH(1, 1) model performs best for the remaining 8 assets.

To check whether it is reasonable to fit an ARMA-GARCH model, and not just an
ARMA model, the heteroskedasticity of the ARMA models is checked. This is done
by performing the Ljung-Box test on the squared residuals of the ARMA models.
The results can be seen below in Table 4.5.

Ljung-Box test on the squared residuals of the ARMA models
AMZN BRK.B GOOG GOOGL META

Lag ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value

5 73.7 1.8e−14 2377.8 < 2e−16 233.5 < 2e−16 236.6 < 2e−16 29.4 1.9e−5

10 104.3 < 2e−16 3231.5 < 2e−16 294.6 < 2e−16 301.1 < 2e−16 35.2 1.2e−4

15 122.1 < 2e−16 4086.4 < 2e−16 349.3 < 2e−16 356.9 < 2e−16 47.3 3.3e−5

MSFT NVDA TSLA UNH AAPL
Lag ARMA(1,1) ARMA(0,0) ARMA(0,0) ARMA(1,1) ARMA(0,0)

Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 764.6 < 2e−16 216.2 < 2e−16 329.0 < 2e−16 895.4 < 2e−16 740.4 < 2e−16

10 912.0 < 2e−16 265.1 < 2e−16 392.1 < 2e−16 1623 < 2e−16 1011.4 < 2e−16

15 1092.0 < 2e−16 288.4 < 2e−16 428.5 < 2e−16 2047.6 < 2e−16 1351.7 < 2e−16

Table 4.5: Test for heteroskedasticity in the squared residuals of the ARMA models

It can be seen that the Ljung-Box test rejects the null hypothesis of no autocorrelation
for both lag 5, 10 and 15 for all 10 assets. Thus, it is reasonable to assume, that
ARMA-GARCH models are more appropriate to fit than pure ARMA models. Thus
the best ARMA-GARCH models, evaluated based on Table 4.3 and 4.4, are fitted.

The parameter estimates and statistical tests for the marginal distributions can be
seen below in Table 4.6 for AMZN, BRK.B, GOOG, GOOGL and META. Note that
all assets’ marginal distributions also include the GARCH(1, 1) part.
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Parameter estimates of the marginal distributions and statistic tests - the first 5 assets
AMZN BRK.B GOOG GOOGL META

ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Value P-value Value P-value Value P-value Value P-value Value P-value

µ 1.43e−3 1.34e−6 5.63e−4 0.002 9.30e−4 0.000 9.63e−4 7.98e−5 1.16e−3 2.75e−4

ϕ
θ
ω 3.62e−5 6.74e−5 8.18e−6 0.000 8.67e−6 0.000 7.80e−6 0.000 1.69e−6 0.467
α 0.156 3.58e−6 0.107 0.000 0.058 0.000 0.053 0.000 0.027 7.03e−5

β 0.746 0.000 0.812 0.000 0.902 0.000 0.909 0.000 0.968 0.000
ν 3.734 0.000 4.897 0.000 3.678 0.000 3.764 0.000 3.671 4.32e−13

Ljung-Box test on the standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 5.379 0.371 9.366 0.095 7.746 0.171 7.792 0.168 2.245 0.814
10 8.534 0.577 16.261 0.092 18.355 0.049 17.859 0.057 4.280 0.934
15 15.102 0.444 17.809 0.273 20.706 0.147 20.186 0.165 7.420 0.945

Ljung-Box test on the squared standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 1.378 0.927 6.199 0.287 0.565 0.990 0.412 0.995 0.134 1
10 2.514 0.991 10.683 0.383 2.246 0.994 1.837 0.997 0.533 1
15 3.080 1 11.839 0.691 3.124 1 2.668 1 0.850 1

Table 4.6: Estimation results for the first 5 assets based on the chosen models

It can be seen in the above table, that µ is significant for all 5 assets. Moreover, µ
has the highest value for AMZN, which is also seen in Table 4.2, where AMZN had
the highest mean value of the five assets in the training set. Furthermore, it can be
seen that both ω, α, β, and ν are significant for all five models, except ω which is
not significant for META. This indicates that the proposed ARMA-GARCH models
are a good choice.
In regard to the statistical tests, the Ljung-Box test has been performed on the stan-
dardized residuals to test for autocorrelation and the squared standardized residuals
to test for GARCH effects. It can be seen that the null hypothesis of no autocorre-
lation in the standardized residuals is not rejected for either lag 5, 10, or 15 on all
five assets except for lag 10 for GOOG. Moreover, the null hypothesis of no autocor-
relation in the squared standardized residuals is also not rejected at either lag 5, 10,
or 15 for either of the assets. These results indicate that the marginal distributions
seem to be nicely fitted for all assets.

The parameter estimates and statistical tests for the marginal distributions can be
seen below in Table 4.7 for MSFT, NVDA, TSLA, UNH and AAPL. Note once more,
that all assets’ marginal distributions also include the GARCH(1, 1) part.
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Parameter estimates of the marginal distributions and statistic tests - the last 5 assets
MSFT NVDA TSLA UNH AAPL

ARMA(1,1) ARMA(0,0) ARMA(0,0) ARMA(1,1) ARMA(0,0)
Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.001 12.43e−10 1.19e−3 0.001 1.26−3 0.015 9.60e−4 1.89e−11 1.10−3 4.88e−5

ϕ 0.820 0.000 0.909 0.000
θ −0.878 0.000 −0.945 0.000
ω 0.000 0.000 5.68e−6 0.162 0.031 1.45e−10 2.16e−6 0.047 1.60e−5 0.022
α 0.111 0.000 0.033 0.000 0.956 1.25e−12 0.047 0.110 0.108 1.96e−4

β 0.840 0.000 0.957 0.000 0.956 0.000 0.945 0.000 0.846 0.000
ν 3.705 0.000 3.384 0.000 3.458 0.000 4.173 0.000 3.650 0.000

Ljung-Box test on the standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 6.948 0.225 3.871 0.568 0.216 0.999 3.964 0.555 5.02 0.413
10 12.791 0236 11.777 0.300 4.506 0.922 6.589 0.764 10.416 0.405
15 22.911 0.086 21.519 0.121 9.164 0.869 9.583 0.845 17.668 0.281

Ljung-Box test on the squared standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 1.359 0.929 1.720 0.886 6.291 0.279 4.329 0.503 5.128 0.400
10 3.132 0.978 2.401 0.992 12.950 0.227 9.135 0.519 7.508 0.677
15 4.636 0.995 3.363 0.999 16.156 0.372 10.817 0.766 11.015 0.752

Table 4.7: Estimation results for the last 5 assets based on the chosen models

Once again, it can be seen from the above table that µ is significant for all five
assets. Moreover, the highest value of µ is found for NVDA, which also supports the
findings of Table 4.2 in the training set. It can be seen that ϕ and θ are significant
for both MSFT and UNH. This makes great sense as it was found from Table 4.3
and Table 4.4 that the ARMA(1, 1, )-GARCH(1, 1) model performed better than the
ARMA(0, 0)-GARCH(1, 1) model based on both the log-likelihood, AIC, and BIC
values. Additionally, it can be seen that ω is significant for all assets except NVDA
and α is significant for all assets except UNH. In regard to β and ν, they were found
to be significant for all five assets. This indicates that the proposed ARMA-GARCH
models seem to be a great choice of models for the data.
Both the Ljung-Box test performed on the standardized residuals and the Ljung-Box
test performed on the squared standardized residuals reject the null hypothesis of no
autocorrelation for all five assets. Thus, the model fits of these five assets also seem
reasonable.

4.3 Copulas

In this section, the Normal copula, the t-copula, and the four Archimedean copulas
described in Section 2.1 are estimated based on the data. All copula models are
fitted with t-distributed marginal distributions, as this was found to be the best-
fitting marginal in Section 4.2. The estimated copula parameters as well as the
log-likelihood, AIC and BIC values are given below.
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Copula Parameter df LL AIC BIC
Normal 0.7206 5, 714 −11, 426 −11, 420
Student’s t 0.5075 4 5, 949 −11, 894 −11, 883
Clayton 1.106 4, 303 −8, 604 −8, 598
Gumbel 1.863 5, 240 −10, 478 −10, 473
Frank 4.874 5, 067 −10, 131 −10, 125
Joe 2.346 4, 549 −9, 096 −9, 091

Table 4.8: Results from fitting copulas

It can be seen that the Student’s t-copula is preferred based on log-likelihood, AIC
and BIC value. The second best copula is the Normal copula followed by the Gumbel
copula and the Frank copula. The worst-fitting copula is the Clayton copula followed
by the Joe copula.

To investigate how well the fitted copulas represent the actual data in regards to
distribution and tail dependency, log-returns have been computed based on 2, 042

simulated values of both the Student’s t-copula, Normal copula, Gumbel copula, and
Frank copula. To visualize the fit of the simulated and observed values, the simulated
and observed log-returns of the pair AMZN & BRK.B are observed below.
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Figure 4.4: Observed vs. simulated log-returns for AMZN and BRK.B from 2nd of
June 2012 until 31st of March 2020
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It can be seen from the plots, that even though the results from Table 4.8 indicated
that a t-copula was the best fit of the proposed copulas, it is not fitting well. The
biggest concern is in regards to the tail dependency, where the t-copula assigns way
more weight to the tails than the data indicates. The observed log-returns do have
weight in the tails, however not as much as the t-copula assumes. Nevertheless, it is
seen that the simulated log-returns from the t-copula, despite having too heavy tails,
still resemble the data better than the other proposed copulas.

4.4 Value-at-Risk Forecast

In this section, one-day-ahead out-of-sample VaR is forecasted using the procedure
described in Section 3.3. In the procedure, N = 10.000 Monte Carlo simulations
and M = 759 one-day-ahead out-of-sample forecasts are used. The obtained VaR
forecasts are evaluated using the described backtesting methods from Section 3.4,
both in regard to the statistical tests and the loss functions.

In the following table, the forecasting performance of the procedure can be seen based
on the four best-fitting copulas found in Table 4.8 with t-distributed standardized
residuals. Both the ratio of VaR exceedances, Z/T , Kupiec’s unconditional coverage
test, LRUC and Christoffersen’s independence test, LRCC , are given for the 95% and
99% VaR.

95% VaR 99% VaR

Copula Z/T LRUC LRCC Z/T LRUC LRCC

Normal 0.01054 43.161 43.257 0 15.256 15.256
P-value 5.04e−11 4.04e−10 9.39e−5 4.87e−4

Student’s t 0.00791 36.218 36.389 0 15.256 15.256
P-value 1.76e−9 1.25e−8 9.39e−5 4.87e−4

Gumbel 0.01728 22.899 23.353 0 15.256 15.256
P-value 1.71e−6 8.49e−6 9.39e−5 4.87e−4

Frank 0.01581 25.190 25.576 0.00395 3.638 3.662
P-value 5.19e−7 2.79e−6 0.056 0.160

Table 4.9: Value-at-Risk forecast performance

The table shows an overall bad performance of all four copulas for both the 95% VaR
and 99% VaR, as the tests result in values way lower than the proposed 0.05 and 0.01

levels. However, it can be seen that the Gumbel copula is closest to the desired ratio
of VaR exceedances for the 95% VaR, whereas the Frank copula is closest for the
99% VaR. Nevertheless, the results do not coincide with the ones found in Table 4.8
in which the t-copula was found to perform best. In regards to the likelihood ratio
tests, the Frank copula for the 99% VaR is the only one for which the null hypothesis
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is not rejected. Thus, the backtesting analysis indicates that the Frank copula is the
preferred copula for modelling the assets of the portfolio.

Next, the loss functions given in Section 3.4 are used to determine which copula
performs best. Both backtesting based on the loss function provided by Lopez, ĈL,
and backtesting based on the loss function provided by Blanco and Ihle, ĈBI , is
performed. The results of the loss functions for the 95% VaR are shown below.

95% VaR

Copula ĈL ĈBI

Normal 0.03341 0.00165
Student’s t 0.03891 0.00178
Gumbel 0.14476 0.00326
Frank 0.06844 0.00315

Table 4.10: Loss functions

It can be seen from the table, that the lowest value of both ĈL and ĈBI is found
for the Normal copula. Note that only the 95% VaR is evaluated, as it was found in
Table 4.9 that the 99% VaR resulted in Z/T being 0 for three out of the four tested
copulas.

To illustrate the predictive performance of the VaR, the portfolio returns as well
as the 95% VaR, and 99% VaR, are plotted in Figure 4.5. The figure shows the
forecasts based on the Monte Carlo procedure for the Normal copula, Gumbel copula
and Frank copula. The Normal copula is plotted as this resulted in the lowest ĈL

and ĈBI for the 95% VaR, whereas the Gumbel and Frank copulas provided the best
results of Z/T for the 95% VaR and 99% VaR, respectively.
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Figure 4.5: Visualization of the P&L function with the obtained VaR forecasts from
the Monte Carlo procedure. The blue curve represents the 95% VaR and the red
curve represents the 99% VaR.
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Further Analysis of

Value-at-Risk 5
In this chapter further analysis of the Value-at-Risk will be conducted. This first
implies an analysis of the previously noted train and test sets, to analyze whether
the Value-at-Risk performance is better in these subperiods than in the full period.
Afterwards, the Value-at-Risk performance of the portfolio will be compared with the
Value-at-Risk performance of the S&P500 index. This is done in order to investigate
whether the portfolio is representative of the index in regard to risk estimation.

5.1 Train and Test Set

In this section, the VaR will be estimated for the portfolio for the previously specified
train and test periods. First, the train set, from now on denoted the original train set,
will be observed, which includes daily observations from the 1st of June 2012 until the
31st of March 2020. Afterwards, the test set, from now on denoted the original test
set, will be observed, which includes daily observations in the period from the 1st of
April 2020 until the 27th of February 2023. This decision has been made, as Figure
4.1 shows a significant difference in the prices in the two periods, and it is possible
that the forecasting performance found in Section 4.4 suffered from this. However, the
same procedure will take place, thus firstly the data will be analyzed, then marginal
distributions will be fitted, next the best-fitting copula will be determined and lastly
the Value-at-Risk will be forecasted and evaluated based on the proposed Monte
Carlo procedure, and backtesting techniques.

Train Set

In this subsection, the original train set will be assumed to be the full period. More-
over, a new training and test period will be determined. Thus, the full period is
now from the 1st of June 2012 until the 31st of March 2020 consisting of 2, 043 days,
whereas the training set consists of 1, 565 observations, corresponding to daily data
from the 1st of June 2012 until the 31st of May 2018, and the test set consists of
477 observations, corresponding to daily data from the 1st of June 2018 until the
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31st of March 2020. In the rest of this subsection, whenever a train set or test set is
mentioned, these new subperiods are referred to.
The prices of the portfolio in the period from the 1st of June 2012 until the 31st
of March 2020 can be seen below, with the dotted line responding to the division
between the train and test set:
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1000

2014 2016 2018 2020

Year

P
ri

c
e

Figure 5.1: Portfolio prices from 1st of June 2012 until 31th of March 2020. The
dotted line represents the division between the train and test set.

It can be seen that the prices are increasing throughout the training period, whereas
they are relatively stationary in most of the test period. However, a huge spike is
observed at the end of the test period. Nevertheless, the increase in the prices is not
as large as in the original full period seen in Figure 4.1.

The daily prices are again transformed to log-returns to ensure stationarity. The plots
of the log-returns can be seen in Figure A.1. It can be seen that the volatility is still
at the same level as for the original full sample. However, the most obvious volatility
clustering is not present as it takes place in the original test set. Nevertheless, it
can be seen that the biggest volatility spikes, influenced by the corona pandemic, are
present at the very end of the original train set for all 10 assets.

To further investigate the log-returns in the train and test periods, the descriptive
statistics for these new subperiods are given in Table A.1. Note that the original
train set now acts as the full sample, thus these values are not given. However, they
can be seen in Table 4.2.
In regards to the mean and standard deviation, they are again almost 0 in both
periods for all 10 assets. The historical 95% and 99% VaR values are all negative.
For both the train and test set, the lowest values are seen for TSLA, whereas the
highest values are seen for BRK.B. This coincides with the results found in Table 4.2.
It can again be seen, that both right-skewed and left-skewed data are present. NVDA
is the most skewed asset in the train set, whereas META is the most skewed asset
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in the test set. Note that NVDA is right skewed whereas META is left skewed.
This behaviour is supported by the excess kurtosis. The Jarque-Bera test rejects the
null hypothesis of normally distributed log-returns for all 10 assets in both periods.
Moreover, the ADF test rejects the null hypothesis of a unit root for all 10 assets in
both periods. The Ljung-Box test fails to reject the null hypothesis of independently
distributed observations for AMZN, META, TSLA, UNH and AAPL in the train set,
whereas it only rejects the null hypothesis for TSLA in the test set.

To investigate the distribution of the assets further, the Q-Q plots of the assets are
plotted in Figure A.2. It can be seen that all 10 assets have tails on approximately
the same level as seen for the full sample in Figure 4.3. This motivates the choice of
modelling the marginal distributions as ARMA-GARCH models.

Marginal Distibutions

As for the original full sample, it is again tested whether the marginal distribu-
tions should be modelled as an ARMA(0, 0)-GARCH(0, 0) model or an ARMA(1, 1)-
GARCH(1, 1) model with the assumption of either normally distributed, t-distributed
or skewed t-distributed standardized residuals. This resolves in the following log-
likelihood, AIC and BIC values for the ARMA(0, 0)-GARCH(1, 1) model:

ARMA(0,0)-GARCH(1,1) - Train set
Normally distributed standardized residuals

AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL
LL 3, 844.46 4, 900.90 4, 300.28 4, 296.27 3, 676.80 4, 231.97 3, 614.35 3, 183.51 4, 384.41 4, 104.72
AIC −5.243 −6.685 −5.865 −5.860 −5.014 −5.772 −4.929 −4.341 −5.980 −5.598
BIC −5.229 −6.671 −5.851 −5.845 −5.000 −5.758 −4.914 −4.326 −5.966 −5.584

t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 4, 071.22 4, 928.59 4, 442.85 4, 439.23 3, 865.16 4, 417.77 3, 842.21 3, 288.17 4, 456.98 4, 231.56
AIC −5.551 −6.722 −6.059 −6.054 −5.270 −6.024 −5.239 −4.482 −6.078 −5.770
BIC −5.533 −6.704 −6.040 −6.036 −5.252 −6.006 −5.221 −4.464 −6.060 −5.752

Skewed t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 4, 073.26 4, 930.00 4, 443.58 4, 439.54 3, 865.41 4, 419.94 3, 842.29 3, 288.17 4, 457.03 4, 231.79
AIC −5.553 −6.722 −6.058 −6.053 −5.269 −6.026 −5.237 −4.481 −6.077 −5.769
BIC −5.531 −6.701 −6.037 −6.031 −5.247 −6.004 −5.216 −4.459 −6.055 −5.747

Table 5.1: Model selection criteria of the ARMA(0,0)-GARCH(1,1) model - Train set

It can be seen that the ARMA(0, 0)-GARCH(1, 1) model with skewed t-distributed
standardized residuals perform the best for all 10 assets in regards to the log-likelihood
and AIC values. However, the BIC values show that the model with t-distributed
standardized residuals results in the best model fit. The model selection is based on
the BIC values, thus the ARMA(0, 0)-GARCH(1, 1) model with t-distributed stan-
dardized residuals is chosen as the best-fitting model.

The results for the ARMA(1, 1)-GARCH(1, 1) model can be seen below:
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ARMA(1,1)-GARCH(1,1) - Train set
Normally distributed standardized residuals

AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL
LL 3, 845.18 4, 905.21 4, 300.68 4, 296.59 3, 677.18 4, 235.72 3, 615.92 3, 183.64 4, 390.29 4, 105.15
AIC −5.241 −6.688 −5.863 −5.858 −5.012 −5.774 −4.928 −4.338 −5.985 −5.696
BIC −5.220 −6.667 −5.841 −5.836 −4.990 −5.753 −4.907 −4.316 −5.964 −5.575

t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 4, 073.23 4, 934.53 4, 444.42 4, 440.92 3, 868.32 4, 419.38 3, 842.82 3, 289.01 4, 463.79 4, 232.30
AIC −5.551 −6.727 −6.058 −6.053 −5.271 −6.024 −5.237 −4.481 −6.084 −5.768
BIC −5.526 −6.702 −6.033 −6.028 −5.246 −5.998 −5.211 −4.455 −6.059 −5.743

Skewed t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 4, 075.50 4, 935.41 4, 445.00 4, 441.27 3, 868.53 4, 421.42 3, 842.91 3, 289.02 4, 463.80 4, 232.54
AIC −5.553 −6.727 −6.057 −6.052 −5.270 −6.025 −5.235 −4.479 −6.083 −5.767
BIC −5.524 −6.698 −6.029 −6.023 −5.242 −5.996 −5.207 −4.450 −6.054 −5.738

Table 5.2: Model selection criteria of the ARMA(1,1)-GARCH(1,1) model - Train set

It can be seen from the above table that the ARMA(1, 1)-GARCH(1, 1) model with
skewed t-distributed standardized residuals performs best in regards to the log-
likelihood and AIC value for all 10 assets. However, the BIC value indicated that the
model with t-distributed standardized residuals results in the best model fit. When
comparing Table 5.1 and Table 5.2 it can be seen that the ARMA(0, 0)-GARCH(1, 1)

model with t-distributed standardized residuals performs best in regards to the BIC
value. Since the model choice is based on the BIC value, this model is chosen as the
best-fitting marginal.

To check whether it is reasonable to include the GARCH part in the ARMA-GARCH
model, the heteroskedasticity of the ARMA models is checked by performing the
Ljung-Box test on the squared residuals of the ARMA models. The results can be
seen in Table A.2. The table shows that the Ljung-Box test rejects the null hypothesis
of no autocorrelation for lag 5, 10, and 15 for AMZN, BRK.B, META, TSLA, UNH
and AAPL. However, for MSFT it only rejects for lag 5 and 10, for GOOG and
NVDA it only rejects for lag 5, and for GOOGL it fails to reject the null hypothesis
for any of the tested lags. Thus, GARCH effect is not present for GOOGL. However,
for the purpose of the project, it will be assumed that GARCH effect is present for
all 10 assets.

The parameter estimates and statistical tests of the fitted marginal distributions can
be seen in Table A.3 for AMZN, BRK.B, GOOG, GOOGL and META, and in Table
A.4 for MSFT, NVDA, TSLA, UNH and AAPL. It can be seen from the tables, that
µ is significant for all 10 assets, with the value being 0.001 for all assets. Moreover, it
can be seen that α, β and ν are significant for all assets, whereas ω is only significant
for AMZN, BRK.B, NVDA and TSLA. This indicates that the proposed ARMA-
GARCH models are a reasonable choice. In regards to the statistical tests, it can be
seen that the Ljung-Box test fails to reject the null hypothesis for lag 5, 10 and 15 of
both the standardized residuals and the squared standardized residuals. This again
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indicates that the marginal distributions seem to be nicely fitted for all 10 assets.

Copulas

Next, the Normal copula, t-copula and the four proposed Archimedean copulas are
estimated based on the data. Again, all the models are fitted with t-distributed
marginal distributions, as it was found in Table 5.1 that this was the best-fitting
marginal. The parameter estimates, log-likelihood, AIC and BIC values are given
below.

Copula Parameter df LL AIC BIC
Normal 0.6451 2, 854 −5, 706.42 −5, 701.13
Student’s t 0.6516 6.45 3, 312 −6, 619.27 −6, 608.69
Clayton 0.8054 2, 066 −4, 130.26 −4, 124.97
Gumbel 1.673 2, 660 −5, 318.33 −5, 313.04
Frank 4.125 2, 619 −5, 236.58 −5, 231.29
Joe 2.045 2, 233 −4, 464.24 −4, 458.95

Table 5.3: Results from fitting copulas - Train set

It can be seen that the Student’s t-copula is preferred based on both log-likelihood,
AIC and BIC. The second best copula is the Normal copula followed by the Gumbel
copula and the Frank copula. The worst-fitting copula is the Clayton copula followed
by the Joe copula.

To investigate how well the fitted copulas of the train set represent the actual data,
log-returns have been calculated based on 1, 565 simulated values of both the Stu-
dent’s t-copula, Normal copula, Gumbel copula, and Frank copula. The plots of the
simulated and observed log-returns for the pair AMZN & BRK.B are seen below.
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Figure 5.2: Observed vs. simulated log-returns for AMZN and BRK.B in the period
from 2nd of June 2012 until 31st of May 2018

It can be seen from the plots, that the t-copula provides the best fit as indicated by
Table 5.3, however, the simulated values still possess heavier tails than the actual
data. Moreover, the simulated values for all of the copulas do resemble the actual
data better than in the case of the original full sample seen in Figure 4.4.

Value-at-Risk Forecast

Next, one-day-ahead out-of-sample VaR is forecasted using the procedure described
in Section 3.3. Again, N = 10, 000 is chosen and M = 477 one-day-ahead out-of-
sample forecasts are used. Once more, the obtained VaR forecasts are evaluated using
the backtesting methods described in Section 3.4. The forecasting performance of the
procedure can be seen below based on the four best-fitting copulas found in Table
5.3.
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95% VaR 99% VaR

Copula Z/T LRUC LRCC Z/T LRUC LRCC

Normal 0.02306 9.03544 9.55591 0.00210 4.44533 4.44954
P-value 0.00265 0.00841 0.03500 0.10809
Student’s t 0.02096 10.73508 11.16430 0.00210 4.44533 4.44954
P-value 0.00105 0.00376 0.03500 0.10809
Gumbel 0.03354 3.06095 4.17422 0.00839 0.13284 0.20064
P-value 0.08019 0.12405 0.71551 0.90455
Frank 0.03564 2.29162 3.55117 0.01048 0.01103 0.11719
P-value 0.13007 0.16938 0.91636 0.94309

Table 5.4: Value-at-Risk forecast performance - Train set

The table shows that the Frank copula is closest to the desired ratio of VaR ex-
ceedances for both the 95% and 99% VaR. Moreover, it can be seen that Kupiec’s
unconditional coverage test rejects the null hypothesis of Z/T being equal to the de-
sired ratio of exceedances for the Normal copula and t-copula for both the 95% and
99% VaR. On the contrary, Christoffersen’s independence test only rejects the null
hypothesis for the Normal copula and t-copula for the 95% VaR. Again, this does not
coincide with the results seen in Table 5.3.

Next, the loss functions given in Section 3.4 are used to determine which copula per-
forms best. Both the loss function provided by Lopez and the loss function provided
by Blianco and Ihle are used. The results of the loss functions for the 95% and 99%

VaR are shown below.

95% VaR 99% VaR

Copula ĈL ĈBI ĈL ĈBI

Normal 0.08338 0.00728 0.00259 0.00023
Student’s t 0.07747 0.00711 0.00236 0.00016
Gumbel 0.12919 0.01150 0.01284 0.00121
Frank 0.13437 0.01107 0.02206 0.00235

Table 5.5: Loss functions - Train set

It can be seen from the table that the lowest value of ĈL and ĈBI are found for the
t-copula for both the 95% VaR and the 99% VaR.

To illustrate the predictive performance of the VaR, the portfolio returns as well as
the 95% VaR, and 99% VaR, are plotted in Figure 5.3. The figure shows the forecasts
based on the Monte Carlo procedure for the t-copula and Frank copula.
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Figure 5.3: Visualization of the P&L function with the obtained VaR forecasts from
the Monte Carlo procedure. The blue curve represents the 95% VaR and the red
curve represents the 99% VaR.

Test Set

In this subsection, the original test period will be assumed to be the full period.
Moreover, a new training and test period will be determined. Thus, the full period
is now from the 1st of April 2020 until the 27th of February 2023 consisting of 759
days, whereas the training set consists of 565 observations, corresponding to daily
data from the 1st of April 2020 until the 31st of May 2022, and the test set consists
of 194 observations corresponding to daily data from the 1st of June 2022 until the
27th of February 2023. The prices of the portfolio can be seen below, with the dotted
line denoting the division between the new train and test set:
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Figure 5.4: Portfolio prices from 1st of April 2020 until 27th of March 2023. The
dotted line represents the division between the train and test set.

It can be seen that the prices are increasing through most of the training period
before they decrease at the end of the training period. For the test period, the prices
are relatively stationary but very volatile. The period from 2022 and onwards is the
most volatile of the full period, which is seen in Figure 4.1.

The daily prices are again transformed to log-returns to ensure stationarity. The
plots of the log-returns can be seen in Figure A.3. It can be seen that the plots are
less volatile than the original full sample seen in Figure 4.2 and the original train set
seen in Figure A.1. This indicates that the most volatility is present around 2020 as
a result of the corona pandemic. However, there is a lot of volatility clustering in the
last part of the test set, which is not seen in the previous periods.

To investigate the log-returns in the new train and test periods in more detail, the
descriptive statistics for these subperiods are given in Table A.5. Note that the
original test set acts as the full sample in this case. Since the descriptive statistics of
these are given in Table 4.2, these are not given again.
In regards to the mean and standard deviation, they are approximately 0 for all 10
assets in both periods. The historical 95% and 99% VaR values are all negative. For
both the train and test set, the lowest values are seen for TSLA, whereas the highest
values are seen for BRK.B. This corresponds to the results found in Table 4.2. Once
more, it can be seen that both left-skewed and right-skewed data is present. The
skewness and excess kurtosis tests show that META is the most skewed asset in both
the train and test periods. The Jarque-Bera test rejects the null hypothesis for all
10 assets in both periods except for TSLA in the test period. Once more, the ADF
test rejects the null hypothesis of a unit root for all 10 assets in both periods. The
Ljung-Box test rejects the null hypothesis of independently distributed observations
for GOOG, GOOGL, and MSFT in the train set, but fails to reject the null hypothesis
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for all 10 assets in the test set.

To investigate the distribution of the assets further, the Q-Q plots of the assets are
plotted in Figure A.4. It can be seen that the assets have lighter tails than those of
the original full sample and the original train set, as seen in Figure 4.3 and Figure
A.2. However, some heavy outliers are still seen in the lower tails.

Marginal Distributions

As for the original full sample, it is again tested whether the marginal distributions
should be modelled as an ARMA(0, 0)-GARCH(0, 0) or an ARMA(1, 1)-GARCH(1, 1)

with the assumption of either normally distributed, t-distributed or skewed t-distributed
standardized residuals. This resolves in the following log-likelihood, AIC and BIC
values for the ARMA(0, 0)-GARCH(1, 1) model:

ARMA(0,0)-GARCH(1,1) - Test Set
Normally distributed standardized residuals

AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL
LL 1, 207.78 1, 420.19 1, 252.82 1, 245.62 1, 136.33 1, 277.83 1, 014.90 855.44 1, 296.11 1, 196.62
AIC −5.178 −6.091 −5.371 −5.340 −4.870 −5.479 −4.348 −3.662 −5.558 −5.130
BIC −5.142 −6.055 −5.336 −5.305 −4.835 −5.443 −4.312 −3.627 −5.522 −5.094

t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 1, 225.63 1, 430.25 1, 281.29 1, 271.97 1, 151.97 1, 290.01 1, 022.39 875.67 1, 321.20 1, 210.45
AIC −5.250 −6.130 −5.489 −5.449 −4.933 −5.527 −4.376 −3.745 −5.661 −5.185
BIC −5.206 −6.086 −5.445 −5.405 −4.889 −5.482 −4.331 −3.700 −5.617 −5.140

Skewed t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 1, 225.67 1, 430.32 1, 282.55 1, 272.65 1, 151.98 1, 290.05 1, 022.39 876.64 1, 321.23 1, 210.45
AIC −5.246 −6.126 −5.491 −5.448 −4.929 −5.523 −4.372 −3.745 −5.657 −5.180
BIC −5.193 −6.073 −5.437 −5.395 −4.876 −5.469 −4.318 −3.691 −5.604 −5.127

Table 5.6: Model selection criteria of the ARMA(0,0)-GARCH(1,1) model - Test set

It can be seen that the ARMA(0, 0)-GARCH(1, 1) model with t-distributed stan-
dardized residuals performs the best for all 10 assets. However, the model fit with
the assumption of t-distributed standardized residuals is only slightly better than the
assumption of skewed t-distributed residuals.

Below, the model selection criteria for the ARMA(1, 1)-GARCH(1, 1) are presented.
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ARMA(1,1)-GARCH(1,1) - Test Set
Normally distributed standardized residuals

AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL
LL 1, 208.51 1, 421.38 1, 255.37 1, 247.96 1, 138.70 1, 279.56 1, 017.87 855.95 1, 296.26 1, 198.42
AIC −5.172 −6.088 −5.374 −5.342 −4.872 −5.478 −4.352 −3.656 −5.550 −5.129
BIC −5.119 −6.034 −5.320 −5.288 −4.818 −5.424 −4.299 −3.602 −5.497 −5.085

t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 1, 225.63 1, 431.25 1, 283.54 1, 276.26 1, 156.07 1, 292.87 1, 024.75 876.58 1, 321.57 1, 212.53
AIC −5.241 −6.126 −5.491 −5.459 −4.942 −5.531 −4.377 −3.740 −5.654 −5.185
BIC −5.179 −6.063 −5.429 −5.397 −4.880 −5.468 −4.315 −3.678 −5.592 −5.123

Skewed t-distributed standardized residuals
AMZN BRK.B GOOG GOOGL META MSFT NVDA TSLA UNH AAPL

LL 1, 225.68 1, 431.28 1, 285.01 1, 278.13 1, 156.08 1, 293.03 1, 024.81 877.37 1, 321.62 1, 212.56
AIC −5.237 −6.122 −5.493 −5.463 −4.938 −5.527 −4.373 −3.739 −5.650 −5.181
BIC −5.166 −6.050 −5.421 −5.392 −4.867 −5.456 −4.302 −3.668 −5.579 −5.110

Table 5.7: Model selection criteria of the ARMA(1,1)-GARCH(1,1) model - Test set

The above table indicates, that the ARMA(1, 1)-GARCH(1, 1) model with skewed t-
distributed standardized residuals results in both the highest log-likelihood and lowest
AIC and BIC values for all 10 assets. However, when comparing the model selection
criteria of Table 5.6 and Table 5.7 different results are seen depending on whether the
log-likelihood, AIC or BIC is observed. Based on the log-likelihood, the ARMA(1, 1)-
GARCH(1, 1) model with skewed t-distributed standardized residuals results in the
best model fit, however for the BIC value the ARMA(0, 0)-GARCH(1, 1) model with t-
distributed standardized residuals results in the lowest values. For the AIC value, the
ARMA(0, 0)-GARCH(1, 1) model with t-distributed standardized residuals results in
the best model fit for all assets except GOOGL and META. Nevertheless, the model
choice will be based on the BIC value, thus the ARMA(0, 0)-GARCH(1, 1) model
with t-distributed standardized residuals is chosen as the marginal distribution for
all 10 assets.

To check whether the inclusion of the GARCH part in the ARMA-GARCH models
is reasonable, the heteroskedasticity of the ARMA models is checked in Table A.6. It
can be seen from the table that the Ljung-Box test rejects the null hypothesis of no
autocorrelation for both lag 5, 10 and 15 for all assets except META. For META the
test fails to reject the null hypothesis for all three lags. Thus, GARCH effect is not
present for META, which is also seen in Figure A.3. Nevertheless, for the purpose of
the project, it will again be assumed that GARCH effect is present for all 10 assets.

In Table A.7 the parameter estimates and statistical tests of the fitted marginal
distributions can be seen for AMZN, BRK.B, GOOG, GOOGL, and META. Table
A.8 shows the results for MSFT, NVDA, TSLA, UNH, and AAPL. It can be seen
from the tables that µ is significant for all assets except AMZN, META and UNH
with values between 0.001 and 0.003. Moreover, ω is significant for BRK.B, MSFT
and UNH, and α is significant for all assets except GOOG and GOOGL. Lastly, β
and ν are significant for all 10 assets.
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Copulas

Next, the Normal copula, t-copula as well as the four proposed Archimedean copulas
are estimated based on the data. Again, all the models are fitted with t-distributed
marginal, since it was found in Table 5.6 that this was the best-fitting marginal.
The parameter estimates as well as the log-likelihood, AIC and BIC values are given
below.

Copula Parameter df LL AIC BIC
Normal 0.6399 1, 038 −2, 073.81 −2, 069.67
Student’s t 0.6331 5.45 1, 187 −2, 369.17 −2, 360.89
Clayton 0.9631 929.3 −1, 856.69 −1, 852.55
Gumbel 1.675 968.8 −1, 935.60 −1, 931.45
Frank 4.196 970.4 −1, 938.76 −1, 934.62
Joe 2 755.9 −1, 509.84 −1, 505.70

Table 5.8: Results from fitting copulas

It can be seen that the Student’s t-copula is preferred based on both log-likelihood,
AIC and BIC. The second best copula is the Normal copula followed by the Frank
copula and the Gumbel copula. The worst-fitting copula is the Joe copula followed
by the Clayton copula.

To investigate how well the fitted copulas represent the actual data, log-returns have
been calculated based on 565 simulated values of both the Student’s t-copula, Normal
copula, Gumbel copula and Frank copula. To visualize the fitted and observed values,
the log-returns of the pair AMZN & BRK.B are plotted below.
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Figure 5.5: Observed vs. simulated log-returns for AMZN and BRK.B in the period
from 1st of April 2020 until 31st of May 2022

It can be seen that the proposed copulas fit the data relatively well, however, they
still assume heavier tails than the data possess. Moreover, it can be argued which
copula performs best from a visual point of view, as all of the copulas seem to fit
nicely except for the heavy tails.

Value-at-Risk Forecast

Next, one-day-ahead out-of-sample VaR is forecasted using the procedure described in
Section 3.3. Again, N = 10, 000 is chosen and M = 194 one-day-ahead out-of-sample
forecasts are used. Afterwards, the obtained VaR forecasts are evaluated using the
backtesting methods from Section 3.4. The forecasting performance of the procedure
can be seen below based on the four best-fitting copulas found in Table 5.8.
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95% VaR 99% VaR

Copula Z/T LRUC LRCC Z/T LRUC LRCC

Normal 0.02062 4.48785 4.65717 0.00515 0.55922 0.56963
p-val 0.03414 0.09743 0.45458 0.75215
Student’s t 0.02062 4.48785 4.65717 0 3.89953 3.89953
p-val 0.03414 0.09743 0.04830 0.14231
Gumbel 0.02577 2.89197 3.15796 0.00515 0.55922 0.56963
p-val 0.08902 0.20619 0.45458 0.75215
Frank 0.02577 2.89197 3.15796 0.01546 0.50141 0.59615
p-val 0.08902 0.20619 0.47888 0.74225

Table 5.9: Value-at-Risk forecast performance - Test set

The table shows that the Gumbel copula and Frank copula are closest to the desired
ratio of VaR exceedances for the 95% VaR, whereas the Frank copula is closest for the
99% VaR. Moreover, it can be seen that Kupiec’s unconditional coverage test rejects
the null hypothesis for the Normal copula and t-copula for the 95% VaR and for the
t-copula for the 99% VaR. Christoffersen’s independence test fails to reject the null
hypothesis for all four copulas for the 95% and 99% VaR. Again, the results do not
coincide with those found in Table 5.8.

Next, the loss functions are used to determine which copula performs best. Both
the loss function provided by Lopez and the loss function provided by Blianco and
Ihle are used. The results of the loss functions for the 95% and 99% VaR are shown
below.

95% VaR 99% VaR

Copula ĈL ĈBI ĈL ĈBI

Normal 0.14934 0.00582 0.00553 0.00012
Student’s t 0.15355 0.00602
Gumbel 0.25662 0.00986 0.03628 0.00138
Frank 0.24243 0.00927 0.07433 0.00233

Table 5.10: Loss functions - Test set

It can be seen from the table that the lowest value of ĈL and ĈBI are found for the
Normal copula for both the 95% and the 99% VaR. Note that the loss functions are
not calculated for the t-copula in the 99% VaR, as Z/T was found to be zero in this
case.

To illustrate the predictive performance of the VaR, the portfolio returns as well
as the 95% VaR, and 99% VaR, are plotted in Figure 5.6. The figure shows the
forecasts based on the Monte Carlo procedure for the Normal copula, Gumbel copula
and Frank copula.
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Figure 5.6: Visualization of the P&L function with the obtained VaR forecasts from
the Monte Carlo procedure. The blue curve represents the 95% VaR and the red
curve represents the 99% VaR.
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5.2 Comparison with the S&P500 Index

This section is inspired by [Wang et al., 2022], [Kelepouris and Kelepouris, 2019] and
[Ruppert and Matteson, 2015, page 558].

In this section, an analysis of the Value-at-Risk of the S&P500 index will be con-
ducted. This is done to compare the results with those obtained from the analysis of
the self-constructed equally weighted portfolio consisting of the 10 biggest assets of
the S&P500 index in Chapter 4. In this section, the VaR forecasts will be constructed
based on the parametric VaR estimation described in Section 3.2. First, the data will
be described, next the ARMA-GARCH models will be fitted to the index and lastly
the VaR will be forecasted and evaluated.

The chosen data is collected from [Nasdaq, 2023] and consists of the daily closing
prices of the S&P500 index in the period from the 1st of May 2013 until the 27th
of February 2023, thus consisting of 2, 512 observations. Note that this period is
shorter than the period used for the portfolio, as it was only possible to obtain the
daily closing prices of the index for this shorter period. The data is split into a train
and test set, with the train set consisting of daily data in the period from the 1st of
May 2013 until the 31st of March 2020 with a total of 1, 765 observations. The test
set consists of daily data in the period from the 1st of April 2020 until the 27th of
February 2023, thus a total of 759 observations. Note that the test set of the index
is the same size as the test set of the portfolio. This is done to ensure consistency in
regard to the forecasted VaR. A plot of the daily closing prices of the S&P500 index
can be seen below with the dotted line indicating the division between the train and
test set.
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Figure 5.7: Index prices from 1st of May 2013 until 27th of February 2023. The
dotted line represents the division between the train and test set.
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It can be seen that the prices of the index resemble the prices of the portfolio seen
in Figure 4.1. However, for obvious reasons, the scale of the prices is higher for the
index than for the portfolio. Moreover, it can be seen that the index prices contain
more volatility than the portfolio prices at the very beginning of the period. It can
still be seen that the prices are slowly increasing throughout the train set, whereafter
they decline drastically just around the beginning of 2020. Once again, it can be
seen that the test set contains more volatility than the train part. However, it can be
argued that the behaviour of the train and test set is more alike for the index prices
than for the portfolio prices as volatility is seen throughout the full period. This will
possibly result in better results in regard to VaR forecasting.

To be able to fit ARMA-GARCH models on the index, the daily prices are converted
to log-returns, to ensure stationarity. The log-returns of the index are shown below
for the full sample:
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Figure 5.8: Index log-returns from 1st of May 2013 until 27th of February 2023. The
red line indicates the division between the train and test set.

It can be seen that the log-returns of the index seem pretty stationary around 0,
however with large fluctuations around the beginning of 2020. Moreover, it can be
seen that the most volatility clustering is present around 2016 as well as in 2022 and
2023, and the volatility clusterings seem to represent those found for the 10 assets of
the portfolio in Figure 4.2.

To investigate the log-returns further, the descriptive statistics have been computed
for both the full sample, train set and test set. The statistics can be seen in the below
table.
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Full Sample Train Set Test Set
Mean 0.00037 0.00028 0.00057
St. Deviation 0.01111 0.01044 0.01253
95% VaR −0.0168 −0.0147 −0.0206
99% VaR −0.0330 −0.0310 −0.0358
Skewness −0.83132 −1.28224 −0.21695
Excess Kurtosis 16.68897 28.04336 2.63401
Jarque-Bera 29, 570 58, 286 225.37
P-value < 2.2e−16 < 2.2e−16 < 2.2e−16

ADF test −13.820 −12.191 −9.570
P-value 0.01 0.01 0.01
Ljung-Box 50.683 66.596 3.073
P-value 1.09e−12 < 3.33e−16 0.0796

Table 5.11: Descriptive statistics of the log-returns - Index

It can be seen from the table that the means are approximately 0 for all three samples,
however, they are smaller in the train set than in the test set. Moreover, the standard
deviations are approximately the same in all three periods. The historical 95% and
99% VaR values are negative for all three periods and approximately on the same
level as for the portfolio.
In regards to skewness, it can be seen that the index is left-skewed, and the most
skewness is seen in the train set. The test for excess kurtosis supports this result.
Moreover, the Jarque-Bera test rejects the null hypothesis of normally distributed
data in all three samples. The ADF test supports the stationarity seen in Figure
5.8, as it rejects the null hypothesis in all three periods. Lastly, the Ljung-Box test
rejects the null hypothesis in all three samples indicating that the assets contain
autocorrelation. To investigate the distribution of the index further, a Q-Q plot is
given below for the full sample.
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Figure 5.9: Q-Q plot of the index based on the full sample
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It can be seen from Figure 5.9 that the index does posses heavy tails. However, the
tails are smaller than those of AMZN, META, NVDA, TSLA, UNH and AAPL from
the portfolio, as seen in Figure 4.3. As stated earlier, the ARMA-GARCH models are
a reasonable choice for modelling the tails. Thus, these are fitted on the training set.
Again, an ARMA(0, 0)-GARCH(1, 1) model and an ARMA(1, 1)-GARCH(1, 1) model
is fitted assuming that the standardized residuals are either normally distributed, t-
distributed, or skewed t-distributed. The log-likelihood, AIC, and BIC values can be
seen in the below table.

ARMA(0,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)
Normal t Skewed t Normal t Skewed t

LL 8, 168.20 8, 267.95 8, 257.35 8, 172.35 8, 262.95 8, 257.29
AIC −6.739 −6.812 −6.809 −6.741 −6.812 −6.812
BIC −6.729 −6.800 −6.800 −6.726 −6.800 −6.800

Table 5.12: Model selection criteria - Index

It can be seen that the ARMA(0, 0)-GARCH(1, 1) model with t-distributed standard-
ized residuals results in the highest log-likelihood and lowest AIC and BIC values of
the six tested models. To test whether it is reasonable to fit an ARMA-GARCH
model, and not just an ARMA model, the heteroskedasticity of the ARMA(0, 0)

model is checked. The results can be seen in the table below.

Ljung-Box test on the squared residuals
ARMA(0, 0)

Q-stat. P-value
Lag 5 3, 138.9 < 2.2e−16

Lag 10 4, 335.6 < 2.2e−16

Lag 15 5, 375.6 < 2.2e−16

Table 5.13: Test for heteroskedasticity in the residuals of the ARMA(0, 0) model -
Index

It can be seen that the Ljung-Box test rejects the null hypothesis of no autocorrelation
for both lag 5, 10 and 15. Thus, it is reasonable to assume that ARMA-GARCH
models are more representative of the data than just ARMA models. The parameter
estimates and statistical tests for the ARMA-GARCH model can be seen below.
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Parameter estimates and statistic tests
Value P-value

µ 0.0009 0.000
ω 0.0000 0.056
α 0.2139 0.000
β 0.7848 0.000
ν 5.0548 0.000

Ljung-Box test on the standardized residuals
Q-stat. P-value

Lag 5 2.3705 0.7959
Lag 10 5.9715 0.8177
Lag 15 10.566 0.7827

Ljung-Box test on the squared standardized residuals
Q-stat. P-value

Lag 5 5.1628 0.3963
Lag 10 11.000 0.2897
Lag 15 14.600 0.4806

Table 5.14: Estimation results for the index

It can be seen that all parameters except ω are significant for the model. In regards
to the statistical tests, the Ljung-Box test fails to reject the null hypothesis for both
the standardized residuals and the squared standardized residuals for all three lags.
This indicates that the distribution seems to be nicely fitted.

Next, Value-at-Risk forecasting will be performed. The process is as follows:

1. Use the estimation sample with T observations to fit the respective ARMA-
GARCH models on the log-returns.

2. Forecast one-step ahead means, r̂T+1, and variances, σ̂T+1, at time T + 1.

3. Use the degree of freedom found in Step 1. to find the critical value z for the
95% VaR and the 99% VaR.

4. Use the values from steps 1.-3. to compute the forecasted Value-at-Risk by use
of (3.1). In the case of t-distributed innovations, the formula of the parametric
VaR is given as

V aRpar,t(α) = rt × (r̂T+1 + q̂α,t(ν̂)σ̂T+1),

where rt represents the log-returns at time t and q̂α,t(ν̂) is the α-quantile of the
t-distribution with tail index ν̂.

5. Convert VaR from log-returns to returns by

Rt = Pt−1(exp(rt)− 1),
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where Rt indicates the returns, Pt the prices and rt the log-returns, all at time
t.

6. Repeat steps 1.-5. M times by rolling over the daily returns, where M is the
number of days needed to be forecasted.

After the 95% VaR and 99% VaR have been computed for M = 759 the backtesting is
performed. However, the loss functions are not computed, as they act as a goodness-
of-fit measure and thus are not relevant to compute when having only one model.
The results of the ratio of VaR exceedances, Z/T , Kupiec’s unconditional coverage
test, LRUC , and Christoffersen’s independence test, LRCC , are given below for the
95% VaR and 99% VaR.

95% VaR 99% VaR

Z/T LRUC LRCC Z/T LRUC LRCC

Index 0.07510 8.78091 8.80370 0.01449 1.35890 1.68287
P-value 0.00304 0.01225 0.24373 0.43109

Table 5.15: Value-at-Risk forecast performance - Index

The table shows that the ratio of VaR exceedances is higher than the expected ratio of
exceedances for both the 95% VaR and the 99% VaR. This is in contrast to the results
found for the portfolio, where they were lower than the expected ratio of exceedances.
In regards to Kupiec’s unconditional coverage test and Christoffersen’s independence
tests, they reject the null hypothesis for the 95% VaR, whereas they fail to reject it
for the 99% VaR. This is in contrast to the results found for the portfolio, for which
the tests rejected the null hypothesis for all four copulas in the 95% VaR, and for all
copulas except the Frank copula in the 99% VaR. Thus, the performance of the index
is better than that of the portfolio in regard to the likelihood tests.

To illustrate the predictive performance of the index’s VaR, the index returns, as well
as the 95% VaR and 99% VaR, are plotted below in Figure 5.10.
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Figure 5.10: Visualization of the index’s P&L function with the calculated VaR
forecasts. The blue curve represents the 95% VaR and the red curve represents the
99% VaR.
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Discussion 6
When modelling the marginal distributions in the project, two different marginal
models have been proposed; The ARMA(0, 0)-GARCH(1, 1) and the ARMA(1, 1)-
GARCH(1, 1). These were chosen, since they are popular choices in regards to an-
alyzing time series data, as they are the simplest and most robust among volatility
models, fits many data series well, and are sufficient to capture the volatility clus-
tering in the data [Ghani and Rahim, 2018]. However, it can be argued whether
other models should have been tested as well. This could for example be by including
more lags in the models and thus testing other combinations of the ARMA-GARCH
models. Moreover, other types of volatility models could be proposed e.g. the GJR-
GARCH model, also known as the Threshold GARCH. This model is proposed to
capture an asymmetric behaviour by allowing the current conditional variance to have
a different response to the past positive and negative returns [Nugroho et al., 2019].

In regards to the fitting of the marginal distributions for the train and test set, it
was found from Table A.2 and Table A.6 that the Ljung-Box test fails to reject the
null hypothesis for GOOGL in the train set and META in the test set. Thus, in
these cases, GARCH effect was not found to be present. However, for the sake of the
project, it was chosen to model these assets by an ARMA-GARCH model either way.
It can be discussed whether this was the best decision, as this might have influenced
the obtained model fit and thereby the estimated Value-at-Risk values.

When evaluating the model fit of the marginal distributions, the decision was made
based on the BIC value instead of the log-likelihood and AIC value. Most times they
all agreed on the model fit, however sometimes the AIC and likelihood disagreed
with the BIC. In these cases, the BIC was chosen as it penalizes the complexity of
the models more than the AIC does [Lin, 2021]. The choice of model criteria has
influenced which marginal models were fitted. Thus, it might also have influenced
the estimated copula and therefore the obtained Value-at-Risk estimates.

In the Monte-Carlo Value-at-Risk forecasting procedure, it was chosen to simulate
the standardized residuals N = 10, 000 times for each out-of-sample forecast. This
was chosen as it is important to let N be large, but not too large for computational
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reasons. However, the size of N is a popular topic of discussion, as mentioned in [Lu
et al., 2011]. It is reasonable to assume that the fit of the copulas would be better in
regards to the chosen data if the size of N was chosen to be higher, e.g. N = 100, 000.
However, for computational reasons, this was not possible to attain within the time
frame of the project.

In Section 5.2 the Value-at-Risk is forecasted for the S&P500 index in order to com-
pare the results with those obtained from the portfolio in Chapter 4. However, it can
be argued whether this comparison is reasonable since the two forecasting methods
differ. It is reasonable to believe that the obtained results would have been more
similar if the Value-at-Risk had been based on the parametric estimation method
for both the portfolio and the index. However, since the point of the project has
been to fit copula-GARCH models on the portfolio, the parametric estimation of the
Value-at-Risk has not been performed for the portfolio.

Finally, it can be discussed whether the chosen data is the best possible data set to
evaluate the Value-at-Risk. It can be seen from Figure 4.1 that the prices behave
very differently throughout the period. In particular, the periods of the train and
test sets can be discussed, as they behave very differently. It can be argued that
the choice of periods may have influenced the model fits and thus the forecasted
Value-at-Risk estimations. Moreover, the length of the data set can be argued, as it
is difficult to obtain great model fits on too long periods of data, as the possibility
of different behaviour throughout the period is larger. This is supported by the fact
that the obtained VaR models in the test period, which is the shortest tested period,
behaved drastically better than in the full data set and train set. However, in order
to evaluate the forecasted Value-at-Risk values, the length of the data set should not
be too short either.

62



Conclusion 7
In this project, it has been examined how to estimate the Value-at-Risk of an equally
weighted portfolio consisting of the 10 largest assets of the S&P500 index. In order
to do so, theory regarding copula models has been presented. The theory included
definitions and theorems of copula models, with the main theorem being Sklar’s
Theorem presented in Theorem 2.1. This theorem states that any multivariate joint
distribution can be written in terms of univariate marginal distribution functions and
a copula that describes the dependence structure between the variables. This theorem
was used to construct the equally weighted portfolio. Moreover, multiple examples
of different copulas have been presented, which were all used to construct the best-
fitting models in Chapter 4 and 5. Additionally, tail dependency and calibration of
copulas were described.

Since the daily closing prices of the 10 assets of the equally weighted portfolio were
seen to be very volatile in Figure 4.1, the choice was made to model the marginal
distributions as ARMA-GARCH models. This was chosen as the GARCH model is
a popular way of modeling volatility clustering and heavy tails in time series.

The risk estimation has been based on the Value-at-Risk measure, which is one of
the most popular and widely used approaches to risk estimation. Three different
estimation methods were presented; Historical estimation, parametric estimation and
Monte-Carlo estimation. Both the historical estimation method and the Monte-Carlo
estimation method were used to evaluate the risk of the equally weighted portfolio.
The parametric estimation method was used to evaluate the risk of the S&P500
index in order to compare the risk of the portfolio to the risk of the index. Moreover,
multiple backtesting techniques were presented, which were used to evaluate the
performance of the forecasted Value-at-Risk estimates obtained by the Monte-Carlo
estimation method.

The 95% and 99% Value-at-Risk of the equally weighted portfolio was estimated on
three different periods; the full period containing daily closing prices in the period
from the 1st of June 2012 until the 27th of February 2023, the training period con-
sisting of daily closing prices in the period from the 1st of June 2012 until the 31st
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of March 2020 and lastly the test period containing daily closing prices from the 1st
of April 2020 until the 27th of February 2023. Both the performance of the observed
ratio of VaR exceedances, Z/T , Lopez’s loss function, ĈL, and Bianco and Ihle’s
loss function, ĈBI , were evaluated. Moreover, Kupiec’s unconditional coverage test
and Christoffersen’s independence test were performed. The evaluation based on the
different proposed copula-GARCH models resulted in the following conclusions for
each of the three periods:

• Full period: The Normal copula resulted in the lowest ĈL and ĈBI values for the
95% VaR, whereas the Gumbel and Frank copulas provided the best results of
Z/T for the 95% VaR and 99% VaR, respectively. Both Kupiec’s unconditional
test and Christoffersen’s independence test rejected the null hypothesis for all
copulas except for the Frank copula for the 99% VaR.

• Train period: The t-copula resulted in the lowest value of ĈL and ĈBI for
both the 95% VaR and 99% VaR. In regards to the expected ratio of VaR
exceedances, the Frank copula performed best for both the 95% VaR and 99%

VaR. Kupiec’s unconditional test rejected the null hypothesis for the Normal
copula and t-copula for the 95% VaR and 99% VaR, whereas Christoffersen’s
independence test only rejected the null hypothesis for the Normal copula and
t-copula for the 95% VaR.

• Test period: The Normal copula resulted in the lowest ĈL and ĈBI for both the
95% VaR and 99% VaR. The Gumbel copula and Frank copula both resulted in
the best Z/T value for the 95% VaR, whereas the Frank copula resulted in the
best Z/T value for the 99% VaR. Kupiec’s unconditional coverage test rejected
the null hypothesis for the Normal copula and t-copula for the 95% VaR and
for the t-copula for the 99% VaR. Christoffersen’s independence test did not
reject the null hypothesis in any situation.

For all three time periods, the observed VaR exceedances were found to be lower than
the expected ratio of exceedances for both the 95% VaR and 99% VaR. Thus, the
risk of the portfolio is overestimated.

In regards to the parametric Value-at-Risk estimation of the S&P500 index, it was
found that the observed ratio of VaR exceedances was higher than the expected ratio
of exceedances for both the 95% VaR and 99% VaR. This means that the risk of
the index is underestimated. Moreover, Kupiec’s unconditional coverage test and
Christoffersen’s independence test rejected the null hypothesis for the 95% VaR,
whereas they failed to reject the null hypothesis for the 99% VaR. Thus, both tests
accept the null hypothesis more often for the index than for the portfolio.
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The main focus of the project has been Value-at-Risk estimation based on constructed
copula-GARCH models. However, it could be of interest to investigate whether other
marginal distributions would provide a better fit for the data. A popular choice
of distribution is the Normal Inverse Gaussian (NIG) distribution, which is defined
in Appendix A.2. This distribution is found to fit daily stuck returns nicely, as it
incorporates fat tails and skewness by including a spread parameter [Kucharska and
Pielaszkiewicz, 2009]. It could be interesting to see whether this distribution would
fit the daily log-returns of the assets nicely, as it was found in Table 4.2 and Figure
4.3 that all 10 assets contain skewness and heavy tails in the full sample.

Another approach could have been to investigate other copula functions. It was
seen in Figure 4.4 that neither of the proposed copulas was found to fit the data
particularly nicely. It could be a possibility that other copula models, e.g. time-
varying copula models, could have resulted in a better fit. This is for example seen in
[Lu et al., 2011], where the time-varying copulas perform better than the stationary
copula models in regards to the goodness-of-fit. Thus, this could also be thought to
be the case with the portfolio which is analyzed in this project. If a better fit was
found in regard to the copula modelling, it is possible that a better VaR forecasting
performance would have been obtained. However, given the time frame of the project,
it was not possible to investigate and compare more copulas than those proposed in
Section 2.1.

In regards to the Value-at-Risk calculations, only a time horizon of one day has been
considered. However, it could have been interesting to analyze other periods than
just one day ahead, e.g. one week, one month, or even one year ahead. As the data is
very volatile and both increases and decreases significantly throughout the period, it
is reasonable to assume that the choice of time horizon would influence the forecasted
Value-at-Risk values and performance of the tested models.

In regards to the analyzed portfolio, it could also be of interest to observe other
portfolios to compare the model fits and Value-at-Risk forecasts. An approach is
that the portfolio could have been built such that it was not equally weighted but
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instead more representative of the proportion of the S&P500 index. This could have
been done by letting the weight of the individual assets of the portfolio be given as
the ratio of the index as given by Table 4.1. Hence, AAPL should have taken up
the most weight and UNH the least weight. This would most likely result in other
estimated VaR values since the weight of the individual assets is far from equally
weighted in the S&P500 index. Moreover, it could also lead to different results in
regard to the copula modelling. These forecast results could also be imagined to be
more alike to those found from analyzing the index in Section 5.2.

Another approach in regard to the construction of the portfolio is to look at assets
from the different GICS sectors. It can be seen from Table 4.1 that six of the 10

assets are in the sectors "Information Technology" and "Communication Services",
which are closely related. Thus, the similarity of the assets can be thought to have
affected the fitted models. A portfolio including assets from all 11 sectors would reflect
the diversity of the S&P500 index better than the constructed portfolio. Moreover,
the Value-at-Risk forecasts are imagined to provide better results for a diversified
portfolio than for a portfolio that is not diversified.

In regards to the risk estimation, other risk measures could have been observed. A
possibility is to evaluate the risk based on the conditional Value-at-Risk (CVaR)
instead of the Value-at-Risk. The CVaR is a risk measure that quantifies the amount
of tail risk in an investment portfolio and it is derived by taking a weighted average
of the extreme losses in the tail of the distribution of possible returns beyond the
VaR cutoff point. Thus,

CV aR(α) =

∫ α
0 V aR(u)du

α
,

which is the average of V aR(u) over all u that are less than or equal to α [Ruppert
and Matteson, 2015, pp. 554]. The advantage of CVaR compared to VaR is the fact
that it is a coherent risk measure, as defined in Appendix A.3, which VaR is not. The
CVaR is defined to be the mean loss of portfolio value given that a loss is occurring
at or below the given q-quantile. The use of CVaR could be imagined to result in
different estimated risk values and performance of the models.
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Appendix A
A.1 Jarque-Bera Test

This section is based on [Ruppert and Matteson, 2015, pp. 91-92].

The Jarque-Bera test is used to test for the normality of the data. This is done by
comparing the sample skewness and kurtosis to 0 and 3, which are the respective
values under normality. The test statistic is given as

JB = n

 Ŝk2
6

+
(K̂ur − 3)2

24

 ,

where Ŝk is the sample skewness and K̂ur is the sample kurtosis. The test statistic
is 0 when Ŝk and K̂ur are 0 and 3 respectively and increases in value as Ŝk and K̂ur

deviate from these values.

The test statistic, JB, is distributed as χ2(2) under the null hypothesis of normality.

A.2 Normal Inverse Gaussian Distribution

This section is based on [Pedersen, 2009, pp. 37-38].

Consider a Brownian motion with drift β, which is subordinated by the Lévy process
(St)t≥0, where St ∼ IG(δt, ρ); (WSt + βSt)t≥0. The process (St)t≥0 is called an IG
Lévy process. Now add a drift to the new Lévy process (WSt + βSt)t≥0, and denote
it by

Xt = WSt + βSt + µt, t ≥ 0. (A.1)

The distribution of (A.1) can be shown to be a normal inverse Gaussian (NIG)
distribution.
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Definition A.1.
Let Zt be a random variable. Then Z is said to follow a normal inverse Gaussian
distribution if it has the density function

f(x;α, β, µ, δ) =
αδ

π
exp

(
δ
√

α2 − β2 + β(x− µ)
) K1(α

√
δ2 + (x− µ2))√

δ2 + (x− µ2)
,

where α, δ > 0, β ∈ (−α, α), µ ∈ R and K1 is the modified Bessel function of
third order and with index 1. The notation Z ∼ NIG(α, β, µ, δ) is used for such
a random variable.

A.3 Coherent Risk Measure

This section is based on [Elliott and Kopp, 2005, pp. 303-315].

Definition A.2 (Coherent Risk Measure).
A coherent risk measure is a function ρ : L1 → R such that

1. If X ≥ 0, then ρ(X) ≤ 0,

2. If k ∈ R, then ρ(X + k) = ρ(X)− k,

3. If λ ≥ 0 in R, then ρ(λX) = λρ(X),

4. ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

When the third property is fulfilled, the fourth property is equivalent to convexity in
the following sense; Let X,Y and 0 ≤ λ ≤ 1 be given and assume that ρ fulfils both
the third and fourth property such that

ρ(λX + (1− λ)Y ) ≤ ρ(λX) + ρ((1− λ)Y ) = λρ(X) + (1− λ)ρ(Y ),

thus ρ is convex.
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Figure A.1: Log-returns from 2st of June 2012 until 31st of March 2020. The red
lines indicate the division between the train and test set.
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Figure A.2: Q-Q plots based on the original train set

Ljung-Box test on the squared residuals of the ARMA models - Original train set
AMZN BRK.B GOOG GOOGL META

Lag ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value

5 12.1 0.0335 508.9 < 2e−16 11.9 0.0367 7.6 0.1821 15.7 0.0078
10 22.7 0.0119 536.9 < 2e−16 17.0 0.0747 12.414 0.2583 19.12 0.0388
15 25.2 0.0470 553.6 < 2e−16 18.0 0.2643 13.5 0.5642 26.1 0.0374

MSFT NVDA TSLA UNH AAPL
Lag ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)

Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 17.5 0.0037 14.3 0.0136 115 < 2e−16 50.3 1.23e−9 13.4 0.0196
10 20.8 0.0223 14.6 0.1458 125.3 < 2e−16 57.3 1.17e−8 27.506 0.0022
15 22.8 0.0885 15.8 0.3978 163.3 < 2e−16 67.2 1.4e−8 51.3 7.4e−6

Table A.2: Test for heteroskedasticity in the residuals of the ARMA models - Original
train set
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Parameter estimates of the marginal distributions and statistic tests - the first 5 assets
AMZN BRK.B GOOG GOOGL META

ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.001 0.000 0.001 0.005 0.001 0.004 0.001 0.002 0.001 0.001
ω 0.000 0.011 0.000 0.000 0.000 0.249 0.000 0.250 0.000 0.574
α 0.106 0.005 0.153 0.000 0.009 0.000 0.009 0.000 0.036 0.000
β 0.724 0.000 0.679 0.000 0.985 0.000 0.986 0.000 0.961 0.000
ν 3.534 0.000 6.511 0.000 3.725 0.000 3.957 0.000 3.845 0.000

Ljung-Box test on the standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 6.747 0.240 10.272 0.068 3.914 0.562 4.372 0.497 3.162 0.675
10 11.756 0.302 15.359 0.120 15.053 0.130 13.961 0.175 6.410 0.780
15 17.686 0.280 17.832 0.272 16.648 0.340 15.849 0.392 9.233 0.865

Ljung-Box test on the squared standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 0.916 0.969 2.806 0.730 2.068 0.840 1.118 0.953 0.120 1
10 1.673 0.998 5.874 0.826 2.680 0.988 1.651 0.998 0.422 1
15 2.095 1 8.067 0.921 3.111 1 2.055 1 0.624 1

Table A.3: Estimation results for the first 5 assets of the chosen models - Original
train set

Parameter estimates of the marginal distributions and statistic tests - the last 5 assets
MSFT NVDA TSLA UNH AAPL

ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.001 0.012 0.001 0.003 0.001 0.013 0.001 0.001 0.001 0.003
ω 0.000 0.416 0.000 0.042 0.000 0.000 0.000 0.474 0.000 0.359
α 0.047 0.001 0.012 0.000 0.032 0.000 0.028 0.000 0.030 0.000
β 0.936 0.000 0.981 0.000 0.955 0.000 0.966 0.000 0.968 0.000
ν 3.426 0.000 3.425 0.000 3.640 0.000 4.501 0.000 3.597 0.000

Ljung-Box test on the standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 5.119 0.402 3.316 0.651 1.748 0.883 5.030 0.412 4.745 0.448
10 12.559 0.249 9.743 0.463 5.812 0.831 8.915 0.540 6.808 0.744
15 19.357 0.198 15.775 0.397 8.423 0.906 13.247 0.583 17.885 0.269

Ljung-Box test on the squared standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 0.683 0.984 0.914 0.969 6.500 0.261 4.692 0.455 1.763 0.881
10 2.228 0.994 1.448 0.999 12.181 0.273 7.729 0.655 3.585 0.964
15 3.588 0.999 2.082 1 18.648 0.230 8.198 0.916 6.139 0.977

Table A.4: Estimation results for the last 5 assets of the chosen models - Original
train set
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Figure A.3: Log-returns from 1st of April 2020 until 27th of February 2023. The red
lines indicate the division between the train and test set.
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Figure A.4: Q-Q plots based on the original test set

Ljung-Box test on the squared residuals of the ARMA models
AMZN BRK.B GOOG GOOGL META

Lag ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value

5 18.742 0.002 26.980 5.8e−5 19.146 0.002 22.367 0.000 1.239 0.941
10 41.645 8.7e−6 53.128 7.0e−8 35.766 9.2e−5 38.391 3.2e−5 2.465 0.991
15 52.994 3.9e−6 73.183 1.2e−9 51.087 8e−6 53.568 3.1e−6 2.718 1

MSFT NVDA TSLA UNH AAPL
Lag ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)

Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 34.380 2e−6 46.874 6.0e−9 16.386 0.006 57.808 3.4e−11 40.978 9.5e−8

10 61.259 2.1e−9 105.78 < 2.2e−16 51.470 1.4e−7 82.584 1.6e−13 67.111 1.6e−10

15 80.918 4.7e−11 152.94 < 2.2e−16 75.255 5.1e−10 94.750 1.3e−13 79.736 7.8e−11

Table A.6: Test for heteroskedasticity in the residuals of the ARMA models - Original
test set
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Parameter estimates for marginal distributions and statistic tests - the first 5 assets
AMZN BRK.B GOOG GOOGL META

ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.001 0.221 0.001 0.047 0.002 0.001 0.002 0.002 0.001 0.130
ω 0.000 0.131 0.000 0.000 0.000 0.281 0.000 0.309 0.000 0.381
α 0.018 0.000 0.115 0.000 0.083 0.124 0.066 0.184 0.013 0.000
β 0.976 0.000 0.819 0.000 0.869 0.000 0.849 0.000 0.909 0.000
ν 5.109 0.000 7.076 0.000 3.296 0.000 3.502 0.000 5.020 0.000

Ljung-Box test on the standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 3.455 0.630 6.551 0.256 11.034 0.051 9.957 0.076 6.691 0.245
10 5.355 0.866 8.676 0.563 17.243 0.069 17.134 0.071 13.946 0.176
15 7.215 0.951 10.836 0.764 27.796 0.023 26.73 0.031 20.13 0.167

Ljung-Box test on the squared standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 4.131 0.531 0.613 0.987 4.598 0.467 6.386 0.270 3.828 0.574
10 6.138 0.804 4.498 0.922 9.051 0.527 10.327 0.412 8.929 0.539
15 12.451 0.645 6.230 0.976 16.268 0.364 16.748 0.334 14.307 0.502

Table A.7: Estimation results for the first 5 assets of the chosen models - Original
test set

Parameter estimates for marginal distributions and statistic tests - the last 5 assets
MSFT NVDA TSLA UNH AAPL

ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0)
Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.002 0.005 0.003 0.004 0.003 0.012 0.001 0.101 0.002 0.004
ω 0.000 0.000 0.000 0.101 0.000 0.344 0.000 0.000 0.000 0.348
α 0.088 0.000 0.114 0.022 0.133 0.044 0.054 0.000 0.056 0.000
β 0.877 0.000 0.787 0.000 0.860 0.000 0.899 0.000 0.924 0.000
ν 5.315 0.000 7.354 0.002 4.477 0.000 4.087 0.000 5.895 0.000

Ljung-Box test on the standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 5.485 0.360 7.289 0.200 5.247 0.387 5.234 0.388 3.543 0.617
10 12.555 0.250 13.161 0.215 6.757 0.748 8.263 0.603 4.757 0.907
15 26.791 0.030 19.811 0.179 8.609 0.897 13.305 0.579 8.388 0.907

Ljung-Box test on the squared standardized residuals
Lag Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value Q-stat. P-value
5 3.509 0.610 3.663 0.599 0.674 0.984 5.044 0.411 1.578 0.904
10 6.024 0.813 14.167 0.166 3.958 0.949 5.800 0.832 11.783 0.300
15 9.650 0.841 16.346 0.360 11.101 0.745 6.855 0.962 12.903 0.610

Table A.8: Estimation results for the last 5 assets of the chosen models - Original
test set
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