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driving vehicles, social robots, and delivery

drones, depends on predictive models that al-

low the systems to reason about the move-

ment of nearby agents. In many applica-

tions, such systems operate around humans,

which are notoriously unpredictable. Gen-

erative models allow such systems to make

multiple predictions to account for the many

future outcomes that can emerge from hu-

man unpredictability. Diffusion models are

promising, since they avoid the limitations

of previous generative models like GAN and

VAE. However, diffusion models have their

limitations, most notably their slow infer-

ence time. In this paper, we propose MAD-

Traj; a multi-modal attention-based diffusion

model that uses environmental cues from a

semantic map and leverages a transformer-

based architecture for powerful and efficient

spatiotemporal modelling. The model gen-

erates trajectories through a non-Markovian

diffusion process, accelerating the inference

with the DDIM sampler. In a benchmark

comparison with 13 state-of-the-art models,

MAD-Traj consistently achieves either best or

second-best scores for both ADE and FDE,

when trained and evaluated on the SDD and

ETH/UCY datasets. Using the DDIM sam-

pler, MAD-Traj can reduce its inference time

by 87% while only sacrificing 1% of its accu-

racy in terms of ADE.
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Summary

This master’s thesis was developed during the spring semester of 2023 by the three software stu-

dents Christian, Emil, and Nikolai at Aalborg University. The overarching field of research in this

thesis is machine intelligence, with a specific focus on the topic of pedestrian trajectory prediction.

Trajectory prediction is an important problem that is applicable in fields and disciplines, includ-

ing, but not limited to, robotics, logistics, security, and transportation. It is a vital component

in autonomous vehicle systems since planning a safe route in non-static traffic environments re-

quires such systems to account for future positions of nearby traffic agents. The unpredictable na-

ture of human behaviour complicates the problem and motivates research into generative models,

that are capable of probabilistically generating multiple predictions, which enables autonomous

vehicles to consider multiple future scenarios.

In this paper, we explore the use of a recently proposed class of generative models in the context of

trajectory prediction. This class of model, known as Diffusion Models, have quickly become pop-

ular in many fields and proven their ability to outperform previous types of generative models,

such as Generative Adversarial Networks and Variational Auto Encoders. The primary concern

about diffusion models is their computational requirements, which impose limitations on their

applicability in real-world systems, such as autonomous vehicles, where fast inference time is a

necessity. Accelerating diffusion models is a challenging problem because the underlying issue

stems from the mathematical formulation of a diffusion model as an iterative denoising process.

During our pre-specialisation, we explored the predictive capabilities of image-based diffusion

models in the context of trajectory prediction. While underpinning the potential of diffusion

models as generative trajectory predictors, we concluded an image-based approach was in fact

too resource intensive to reasonably consider for real-world applications. In this paper, we pro-

pose an alternative model, MAD-Traj, that replaces the image-based trajectory representation

with a more compact vector representation. Our model leverages a transformer-based archi-

tecture for its excellent ability to efficiently model complex relationships in sequential data and

applies this to both temporal and spatial modelling of trajectories and surrounding environments.

We compare our model to 13 state-of-the-art approaches in a benchmark comparison on the

Stanford Drone Dataset and the ETH/UCY datasets, which are some of the most widely adopted

benchmark datasets in the field. Our model is highly competitive and consistently achieves the

best or second-best rank in all of the aforementioned datasets. To speed up the model even

further, we experiment with different techniques for accelerating the sampling process of the

diffusion model. Utilising a non-Markovian sampling procedure allows us to skip individual

steps in the diffusion process. As a result, we can reduce the inference time of our model by 87%,

while only sacrificing 1% of its predictive accuracy.



MAD-Traj: Multi-modal Attention-based Di�usion Model for

Pedestrian Trajectory Prediction

Christian Blæsbjerg Emil August Hvid Christensen Nikolai Ajstrup Justesen

Aalborg University, Denmark

{cblasb18, echri16, naju18}@student.aau.dk

Abstract—The safety of many systems, such as self-
driving vehicles, social robots, and delivery drones, de-
pends on predictive models that allow the systems to
reason about the movement of nearby agents. In many ap-
plications, such systems operate around humans, which
are notoriously unpredictable. Generative models allow
such systems to make multiple predictions to account
for the many future outcomes that can emerge from
human unpredictability. Di�usion models are promising,
since they avoid the limitations of previous generative
models like GAN and VAE. However, di�usion models
have their limitations, most notably their slow inference
time. In this paper, we propose MAD-Traj; a multi-
modal attention-based di�usion model that uses envi-
ronmental cues from a semantic map and leverages
a transformer-based architecture for powerful and ef-
�cient spatiotemporal modelling. The model generates
trajectories through a non-Markovian di�usion process,
accelerating the inference with the DDIM sampler. In a
benchmark comparison with 13 state-of-the-art models,
MAD-Traj consistently achieves either best or second-
best scores for both ADE and FDE, when trained and
evaluated on the SDD and ETH/UCY datasets. Using the
DDIM sampler, MAD-Traj can reduce its inference time
by 87% while only sacri�cing 1% of its accuracy in terms
of ADE.

Index Terms—Trajectory Prediction, Di�usion Models,
Transformer, Knowledge Distillation

1. Introduction

Sequence modelling and time series forecasting are
core problems in computer science and play a sig-
ni�cant role in many areas, such as medicine [1],
�nance [2], meteorology [3], energy [4], robotics [5],
urban transportation [6], and computer vision [7]. In
recent years, the topic of trajectory prediction has re-
ceived a great deal of attention in academic literature—
undoubtedly motivated by the in�ux of smart devices
and the prospect of autonomous robots and vehicles.
Trajectory prediction is an essential part of auto-
mated logistic systems to control warehouse robots
and delivery drones, and it is a critical constituent
of enabling safe autonomous vehicles. At its core,
trajectory prediction is the problem of estimating a
sequence of future positions for one or more agents,
e.g., pedestrians, cyclists, and cars.

Figure 1: A real-world tra�c scenario that highlights
the importance of multi-future trajectory prediction. In
this scenario, the autonomous vehicle (yellow) needs
to navigate to its destination on the other side of
the roundabout. To do this safely and avoid potential
collisions, it must acknowledge the fact that the nearby
agent (orange) might not take the adjacent exit and
instead stay in the roundabout until the next exit.

Trajectory prediction is challenging due to the in-
herent uncertainty associated with human behaviour
and the many factors that in�uence it—factors such
as historical movement patterns, environmental cues,
social dynamics, goals, aggressiveness, etc. In the con-
text of autonomous vehicles, this poses a signi�cant
challenge, since the future behaviour of surrounding
agents in�uences the distribution of collision-avoiding
trajectories for an autonomous vehicle. A scenario that
highlights this is illustrated in Fig. 1. In this scenario,
the autonomous vehicle (highlighted in yellow) must
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decide whether to slow down and yield, or accelerate
and enter the roundabout. The outcome of this deci-
sion is greatly impacted by the behaviour of the nearby
agent (highlighted in orange). If the nearby agent
decides to exit the roundabout, then the autonomous
vehicle can safely enter the roundabout and proceed
to its intermediate destination. If, on the other hand,
the nearby agent continues on a trajectory within the
roundabout, the only way to avoid a collision is for
the autonomous vehicle to slow down and yield to
the nearby agent. Since human behaviour is inherently
uncertain and the nearby agent can change its mind at
any moment, there is no way to know, with absolute
certainty, which trajectory the nearby agent will take.
Consequently, the safest option for the autonomous
vehicle is to slow down and yield to avoid a potential
collision. To arrive at this conclusion, and make similar
well-informed decisions about navigating in tra�c, the
ability to consider multiple future outcomes is crucial.
Due to the safety-critical demands imposed by

autonomous vehicles, there has been a substantial
increase in academic interest and research [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18] into machine learning
models that are capable of predicting multiple future
trajectories1. Generative Adversarial Networks [32]
(GANs) and Variational Auto Encoders [33] (VAEs)
are common choices for multi-future models, due to
their generative nature, which allows them to produce
multiple di�erent outputs through a process involving
stochastic sampling. However, both of these training
frameworks have some inherent issues that impose
limitations on the capabilities of the resulting mod-
els [34, 35, 36, 37, 38]. Di�usion models are a recently
proposed alternative, that generates its output through
a discrete denoising process that avoids the commonly
cited issues of GANs and VAEs [39, 40].
During the �rst part of our thesis, we developed

MEAT-DDPM [41], an environmentally aware model
whose architecture comprised both a VAE and a di�u-
sion model. We showed that by encoding trajectories
in images, we could leverage the image processing
capabilities of a U-Net [42] based di�usion model to
generate trajectories and increase their diversity by
conditioning them on diversely sampled goals from
the VAE. The trajectories and goals in MEAT-DDPM

1We note that the term multi-modality is used interchange-
ably in literature to refer to models that output multiple
predictions [5, 14, 19, 20, 21, 22, 23, 24], and models that use
multiple sources and representations of data [24, 25, 26, 27, 28,
29, 30]. In light of the lack of academic consensus [31], we use
the term, in this paper, to explicitly refer to models that take
input with di�erent representations from multiple sources. We
shall conversely refer to models that output multiple predictions
as multi-future models.

are encoded as on-scene-heatmaps to preserve spatial
alignment in the latent embeddings. This allows the
model to spatially correlate trajectory positions and
environmental features to produce realistic trajectories
that are sensible in the context of the surrounding
environment. Despite this, the approach is limited
in accuracy due to the nature of the image-encoded
trajectories. The time and memory intensiveness of
di�usion models renders them infeasible for high-
resolution images, and consequently, the common
practice, which we also adopted for MEAT-DDPM, is
to train and execute the di�usion model in a smaller
pixel space and subsequently upscale the generated
images. This, however, introduces a large margin of
error in the predicted trajectories, as the pixels that
encode the coordinates are scaled up, e�ectively in-
creasing the size of positions, so that they are no
longer captured in points but rather in larger areas.
Despite generating the images in lower resolution,
MEAT-DDPM still su�ers long inference times, which
renders it infeasible for real-world applications such
as autonomous vehicles.

The goal of this paper is to reduce the gap between
di�usion and real-world feasible prediction models
that are capable of producing accurate predictions
in a timely manner. To that end, we propose a
model that leverages a transformer-based architecture
for powerful spatiotemporal modelling, and applies
di�usion to generate trajectory coordinates directly, as
opposed to the image-encoded coordinates generated
by MEAT-DDPM. We also experiment with ways
of accelerating the inference time through model
distillation and non-Markovian di�usion processes.

In summary, our contributions are:

• We expand the sparse body of academic literature
surrounding trajectory prediction with di�usion.

• We propose a novel transformer-based di�usion
model, MAD-Traj, that employs environmental
attention and achieves highly competitive results,
using as low as 4 sampling steps.

• We show the e�cacy of our model through ex-
periments and comparisons.

• We provide the results of our experiments on
inference acceleration.

2. Related Work

Trajectory prediction is broadly divided into three
sub-problems:

1) Sequence modelling, which focuses on ways
to model the temporal dynamics of trajectories,
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and is generally concerned with individual agent
trajectories.

2) Multi-modal modelling, which focuses on
ways of enriching a model’s perception of the
world by including additional information from
sensors, such as RGB camera, B/W camera, radar
LiDAR and sound, or by estimating latent vari-
ables that model real-world phenomena such as
social dynamics and the intentions of an agent.

3) Multi-future modelling, which focuses on
ways to produce multiple feasible predictions
and increase the diversity of the model output.

In the following sections, we explore recent works
related to each category and identify some of the
current limitations in the state-of-the-art.

1. Sequence Modelling

Trajectory data is inherently sequential in nature,
and therefore, it is unsurprising that a large body
of work has focused on the sequential modelling
capabilities of neural networks. Recurrent Neural Net-
works (RNNs), and their derivatives Long Short Term
Memory (LSTM) and Gated Recurrent Units (GRU)
are popular model foundations since their recurrent
connections allow them to remember previous states
and model temporal dependencies more e�ectively
than feed-forward networks [43]. Trajectron++ [14],
SoPhie [8], SocialGAN [19] Social LSTM [44], PCC-
SNET [21], CGNS [45], and Expert [46] all use re-
current networks in the form of LSTMs, GRUs or a
combination. While these types of RNN are superior
to feed-forward approaches when it comes to temporal
modelling, they still have some major limitations.
Because the hidden state has a �xed size and is updated
over time to encode information about previous input,
there is a practical limit on the sequence length,
beyond which the models will su�er from memory
loss. The sequential nature of such models also makes
them notoriously slow to train and the recurrent con-
nections can induce vanishing and exploding gradients
which lead to unstable training [43].

The Transformer [47] was introduced in 2017 to
solve the problems RNNs, and thanks to its liberal use
of attention mechanisms, its capabilities for complex
sequence modelling are outstanding in many �elds [48,
49, 50, 51]. It has also become widely adopted in the
�eld of trajectory prediction, and many works use it
as a foundation for their models [15, 52, 53, 54, 55, 56].
DTO [53] employs a spatiotemporal transformer that
encodes a trajectory by self-attending to the trajectory
to model its temporal dynamics and subsequently

attending to the temporal embeddings of neighbouring
agents at a �xed time step.

AgentFormer[15] also leverages a transformer-based
architecture, but rather than attending separately to
the temporal and social dimensions separately, it �at-
tens multiple trajectories in a scene across time and
agents, and uses the �attened sequence as input to
the transformer. This allows the model to capture not
only temporal dependencies between time locations of
the target agent, but also attend to the locations of
the other agents at di�erent points in time. MID [52]
adopts a transformer as the noise predictor in a De-
noising Di�usion Probabilistic Model [40] (DDPM) to
model the temporal dynamics of the noisy trajectory
and improve the predictions of noise to remove during
the sampling process.

In this paper, we also base the noise predictor of our
di�usion model on the transformer architecture. We
use two encoders to separately encode the observed
trajectory and semantic map of the environment, and
use cross-attention in the decoder to leverage infor-
mation from these embeddings for noise prediction
during sampling.

2. Multi-modal Modelling

Since human trajectories are in�uenced by multiple
factors, many prior works seek to improve the predic-
tive capabilities by either enriching the models with
additional sensory input or by modelling unobservable
factors as latent variables. Trajectron++ [14], Social-
GAN [19], Social LSTM [44], DTO [53], LB-EBM [22],
CGNS [45], and MID [52] all model social dynamics
through various techniques. Trajectron++ [14] em-
ploys an explicit representation in the form of a
graph where a directed edge between two agent nodes
indicates the in�uence of one agent on the other.
This is encoded using an LSTM and processed by
an attention mechanism to model the importance of
di�erent in�uences at each time step of the trajectory.
Social LSTM [44] uses a separate LSTM encoder-
decoder for each agent in the scene and applies social
pooling to the hidden states to model interactions of
nearby agents. Social ODE [57] uses a neural network
to estimate the directed pairwise intensity of agent
interactions, and model how the dynamics of one
agent a�ect another agent. They also estimate the
aggressiveness of individual agents, which controls the
degree to which an agent adheres to social etiquette
or ignores it. SCM [24] uses a combination of LiDAR
and RGB camera data to improve their estimation of a
latent distribution, from which variables are sampled
to condition the prediction of future trajectories.
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GoalGAN [9], SGNET [30], MUSE-VAE [16],
GTP [58], Y-Net [59], and our own previous work
MEAT-DDPM [41] all estimate one or more goals of
the agent to condition the prediction of the future tra-
jectory. These methods also incorporate environmental
information in the form of a semantic map, which is a
segmentation of the birds-eye-view image of the scene,
often generated using a Convolutional Neural Network
(CNN). As the name suggests, a semantic map assigns
a semantic label to each segment of image, indicating
what type of area the segment covers. The semantic
labels used by Y-Net [59] are road, pavement, structure,
tree and terrain. Y-Net [59], MUSE-VAE [16], and
MEAT-DDPM [41] all employ a trajectory-on-scene
heatmap representation to spatially align trajectories
with the environment in the latent space. While e�ec-
tive, this approach is computationally demanding due
to the large amounts of data contained in such image
representations—this is especially true in the case of
MEAT-DDPM, because of the repeated computations
during the sampling process of the di�usion model.

In this paper, we follow previous works [16, 30, 41,
58, 59] in the adoption of a semantic map. We encode
information from the map, using an approach inspired
by Vision Tranformer [51], where we split the map
into a sequence of patches that are �attened and used
as input tokens to a transformer encoder.

3. Multi-future Modelling

When multiple predictions are desired, it does not
su�ce to train a discriminative model to map ob-
servations to predicted outcomes, since such models
are deterministic and unable to produce more than a
single unique prediction for a given input. To circum-
vent this, generative models are commonly trained to
approximate the prior distribution of data, given an
estimation of a tractable posterior that is commonly
chosen to be Gaussian. Given such a model, one can
sample multiple times from the posterior distribution
and use the model to obtain a di�erent sample from
the approximated prior, given each of the posterior
samples. The most popular type of generative models
are Variational Auto-Encoders (VAE) [14, 15, 16, 17,
18, 33, 41, 60] and Generative Adversarial Networks
(GAN) [8, 9, 10, 11, 12, 13, 19, 32, 61]. [19], for instance,
uses an LSTM encoder-decoder network as a generator,
which takes noise as input and outputs a trajectory.
To condition the model on the observed trajectory,
the initial hidden LSTM state is initialised as a MLP
encoding of the previous coordinates. A second LSTM
decoder is used as a discriminator to classify real data
trajectories and generated trajectories, and its classi�-
cations are used in the training objective to increase

the quality of generated trajectories. Trajectron++ [14]
encodes the observed trajectory using an LSTM. Latent
variables produced by a conditional VAE are then
used to condition the decoder, allowing it to produce
multiple trajectories.

While di�erent in architecture and mathematical
foundation, the two classes of models are both e�ective
at producing multi-future predictions. The primary
drawbacks of GAN models are the fact that their
training procedure is de�ned as a game between the
generator and discriminator networks. This both leads
to unstable training and causes a problem known as
mode collapse, where the networks converge on a Nash
equilibrium, resulting in samples that lack diversity
and resemble an average of the training data [34,
35, 36, 37]. Because VAE models are not subject to
mode collapse, they are able to produce highly diverse
samples. However, their output generally tends to be
of lower quality and include undesirable and unre-
alistic samples [52, 62, 63], due to issues like over-
regularisation caused by the training objective and pos-
terior collapse where the learned latent representations
become uninformative [38].

Inspired by thermodynamics, the recently proposed
class of Di�usion Models [39] avoids the aforemen-
tioned issues by generating samples through a se-
quential denoising process, which results in stable
training and diverse samples of high quality. Di�usion
Models were originally proposed for image generation,
a �eld in which they are now deemed superior and
have received widespread adoption [64, 65, 66, 67,
68, 69], but they have also been applied for video
generation [70, 71], text generation [72, 73, 74], audio
generation [75, 76], computer vision [77, 78, 79, 80],
and time series forecasting [81]. While research on
the use of di�usion models for trajectory prediction is
sparse, the results of prior works have thus far been
promising[41, 52, 82].

In our previous work, we proposed MEAT-
DDPM [41], which is a multi-modal generative model
based on di�usion. It is based on the two-stage archi-
tecture of [16], and consists of a macro-stage with a
U-Net-based VAE to sample realistic long-goals. The
long-term goals are mapped to a sequence of short-
term goals using a second U-Net, after which the
macro-stage generates multiple trajectories for each
sequence of goals, using a DDPM. While this model
excels in generating realistic and diverse trajectories,
its predictive capability is highly limited to the error
margin induced by the image-encoded trajectories, and
its U-Net-based DDPM architecture is computationally
demanding and leads to excessive inference time.

MID [52] proposes a transformer-based DDPM that

4



performs di�usion directly in the trajectory coordi-
nates, instead of encoding the trajectory in an image.
For multi-modal learning, they adopt the encoder from
Trajectron++ [14], which allows them to model social
interactions among multiple agents, but we hypoth-
esise that the results could be further improved by
the addition of environmental information. Avoiding
image computation in the di�usion process eliminates
much of the computational footprint of the model,
but while the model is faster than Meat-DDPM, the
authors of MID still acknowledge its infeasibility in
real-world applications due to the inference time.
A recent proposal by Liu et al. [82] involves explic-

itly parameterising the distribution of future trajecto-
ries and generating the distribution parameters using a
deterministic di�usion process. This, in theory, allows
their model to sample multiple trajectories despite
only running a single di�usion process. However,
this approach requires careful selection of sampling
parameters due to their hybrid approach which poses
a direct trade-o� between precision and speed. This
is exempli�ed by their experiments which show that
this model is only able to achieve competitive results
when executing a di�usion process with 100 steps 10
times and then sampling 10 trajectories from the best
predicted distribution.
Inspired by Song, Meng, and Ermon [83], our

model uses a non-Markovian generalisation of the
traditional di�usion process, which allows us to con-
trol the stochasticity of the process. In the extreme
case, the sampling process is deterministic and can
be accelerated by skipping steps. The deterministic
sampling process also paves the way for accelerated
sampling through progressive distillation [84], where a
di�usion model is progressively taught to imitate itself
with fewer and fewer steps in the sampling process.

3. Preliminaries

1. Problem Formulation

Trajectory prediction is the task of estimating the
future positions of an agent, given an observation
of their previous positions. Positional information is
commonly obtained from video data, and like most
previous works, we assume that the input videos
are preprocessed with object detection and tracking
algorithms, such that spatiotemporal information is
available for each agent. Formally, given a sequence
of observed positions X = {x1, x2, . . . , xp} where
xt ∈ R

2 are the Euclidean coordinates of an agent at
the observed time step t and p denotes the number of
observed time steps, the goal is to estimate a sequence
of future positions Y = {yp+1, yp+2, . . . , yp+f} where
yt ∈ R

2 are the Euclidean coordinates of an agent at

Figure 2: Adding a droplet of dye into a glass water
initially results in a non-uniform distribution of water
particles and dye particles. The second law of ther-
modynamics asserts that such heterogeneous systems
undergo a natural, irreversible process of di�usion
that destroys order and results in a homogeneous
system [85].

the future time step t, and f denotes the number of
future time steps.

2. Di�usion Models

Motivated by the trade-o� between tractability and
�exibility in probabilistic models, Sohl-Dickstein et al.
[39] proposed the concept of di�usion models in
2015 as a way to de�ne a probabilistic model that
is highly �exible in model structure and distribution
coverage while simultaneously being computationally
tractable. This class of generative model is inspired by
thermodynamics and mimics the way a non-uniform
distribution of particles gradually di�uses over time
until it becomes a uniform distribution (see Fig. 2). The
intuition is to de�ne a di�usion process to gradually
destroy the structure in the training data, and then
train a neural network to reverse this process. De�ning
the di�usion process, such that its outcome resembles
a simple and tractable distribution, makes it straight-
forward to generate new data by sampling random
noise from the distribution and executing the reversed
di�usion process. The most widely employed di�usion
model is the Denoising Di�usion Probabilistic Model
(DDPM) proposed by Ho, Jain, and Abbeel [40], which
makes a few simpli�cations to the original proposal in
order to improve sample quality and simplify training.
The authors de�ned the di�usion process as a Markov
process with T transitions (see Fig. 3a) with a transi-
tion kernel corresponding to a Gaussian perturbation:

q(x1, . . . ,xT | x0) =
T∏

t=1

q(xt | xt−1). (1)

q(xt | xt−1) = N (xt;
√

1− ´txt−1, ´tI). (2)

Here, ´t ∈ [0, 1] is a hyperparameter that determines
the amount of noise added at each step. The value of
´t is controlled by a prede�ned variance schedule that
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assigns increasing values such that data retains more
�delity early in the process. This ensures the reverse
process is able to recover structure early, which it can
then re�ne in smaller increments.

Because the product of multiple Gaussians is itself
Gaussian, the use of Gaussian perturbation as the
transition kernel enables a clever exploitation that
simpli�es the training process substantially. The pres-
ence of the Markov property means that intermediate
di�usion steps can be factored using the chain rule,
which allows for closed form computation of samples
at arbitrary points in the di�usion process:

q(xt | x0) = N (xt;
√
³̄tx0, (1− ³̄t)I). (3)

Here, ³t = 1 − ´t is the inverse of ´t and ³̄t =
∏t

s=0 ³s is the cumulative product of ³. Reparame-
terising the expression with ϵ ∼ N (0, I), a neural
network, ϵ¹ , can be trained to predict the noise to
remove at each step in the reverse di�usion process
by sampling random time steps t, computing

xt =
√
³̄tx0 +

√
1− ³̄tϵ, (4)

and updating the network parameters based on a
simple mean squared error (MSE) loss:

Lt = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵ¹(xt, t))∥2

]
. (5)

Using the neural network, ϵ¹ , a new sample can
then be generated by sampling xT ∼ N (0, I) and
successively computing each step of the denoising
process:

xt−1 =
1√
³t

(xt −
1− ³t√
1− ³̄t

ϵ¹(xt, t)) + Ãtz, (6)

where z ∼ N (0, I) is randomly sampled Gaussian
noise and Ã2 = ´t is variable determined by the
variance schedule, which schedules how much noise
is added to the sample between each reverse di�usion
step.

Song et al. [83] recently proposed a generalisation of
the DDPM, rede�ning the di�usion process to a non-
Markovian process, where each state depends not only
on the previous state but also on the initial state:

q(x1, . . . ,xT | x0) =
T∏

t=1

q(xt | xt−1,x0). (7)

q(xt−1 | xt,x0) = N (µ¹(xt,x0), Ã
2
t I). (8)

µ¹(xt,x0) =
√
³̄t−1x0

+
√

1− ³̄t−1 − Ã2
t

· xt −
√
³̄tx0√

1− ³̄t
.

(9)

At each step t of the reversed di�usion process, one
can use the predicted noise ϵ¹(xt, t) to estimate the
initial state x0 given the current state xt, which in
turn can be used to obtain xt−1:

xt−1 =
√
³̄t−1 ·

(
xt −

√
1− ³̄t · ϵ¹(xt, t)√

³̄t

)

︸ ︷︷ ︸

estimated x0

+
√

1− ³̄t−1 − Ã2
t · ϵ¹(xt, t)

︸ ︷︷ ︸

direction pointing to xt

+ Ãtz
︸︷︷︸

random noise

(10)

If Ãt =
√

1−³̄t−1

1−³̄t

·
√

1−³̄t

³̄t−1

is chosen for all t, the

di�usion process becomes Markovian and identical
to that of DDPM. However, when Ãt = 0 for all
t, the di�usion process becomes deterministic and
the resulting model is a Denoising Di�usion Implicit
Model (DDIM). Due to the non-Markovian nature of
the forward process, the DDIM sampling procedure
can be accelerated by using only a subset of the
time steps used for training, resulting in a much
smaller trade-o� between speed and sample quality
compared to DDPMs. DDIMs are trained using the
same denoising loss as DDPMs (Eq. 5), which depends
only on the marginal probabilities of the di�usion
process and not the joint probability of each di�usion
step. Consequently, noise-predicting neural networks
trained under either framework are interchangeable,
which allows the use of the DDIM sampling proce-
dure to accelerate existing DDPMs models without re-
training.

3. Progressive Distillation

To combat the challenge regarding the slow in-
ference speed of di�usion models, Salimans and Ho
[84] suggest applying Progressive Distillation. The goal
is to reduce the number of di�usion steps required
during inference to produce a sample of su�cient
quality. To reduce the number of di�usion steps, the
progressive distillation algorithm iteratively trains a
series of di�usion models and halves the number of
required sampling steps with each model. Progressive
distillation employs a student-teacher paradigm, and
starts o� with a trained model referred to as the
teacher, and a copy of said teacher referred to as the
student. The di�erentiating factor is that the student is
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(a) Di�usion process for image generation.
Forward Diffusion

Reverse Diffusion

q(xt | xt-1)
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pθ(xt-1 | xt)

x0xt-1xtxT

(b) Di�usion process for trajectory prediction.

Figure 3: Illustration of the forward and reverse
di�usion process of (a) a model for image generation
and (b) a model for trajectory prediction.

only allowed half the number of di�usion steps com-
pared to the teacher. The training proceeds by having
the teacher predict two successive reverse di�usion
steps, which the student then aims the predict in a
single step, as shown in Fig. 4. The training objective
aims to guide the prediction of the student towards
the prediction of the teacher using mean squared error
as loss, ideally training the student to produce the
same prediction in half the steps. Once the loss of
the student has converged, the student becomes the
teacher for the next iteration of the distillation process,
and the cycle repeats until the student is no longer able
to approximate the results of the teacher accurately.
At this point, through the guidance of its preceding
teachers, the distilled model has been reduced to
the smallest number of di�usion steps with which
the results of the original model can be su�ciently
approximated.

4. Transformers

To combat the limitations of RNNs, Vaswani et al.
[47] proposed the Transformer architecture, which is a
variant of the common encoder-decoder architecture.
The encoder encodes a full sequence, e.g., a sentence
in a source language. Given an intermediate translated
target sentence and the encoded source sentence, the

x4

x3

x2

x1

x0

x4

x2

x0

x4

x0

Distillation Distillation

Figure 4: Illustration of progressive distillation, where
the initial model (teacher) starts at x4 and takes one
denoising step at a time until it arrives at the clean
sample x0. The teacher is distilled into a new model
(student), which skips the steps x3 and x2, requiring
only two steps to produce the clean sample x0. The
student is then distilled into a new student that skips
steps x3, x2, and x4, requiring only a single step to
produce x0.

decoder predicts the next token in the target sequence.
Each token in a sequence is shaped into vectors of size
dmodel, and the standard size, proposed by Vaswani
et al. [47] is dmodel = 512. Both the encoder and
decoder consist of N stacked identical layers. Each
encoder layer has two sub-layers; a multi-headed self-
attention layer and a feed-forward layer, both with
residual connections around them. The decoder con-
tains a multi-head attention layer, followed by a multi-
head cross-attention layer, allowing it to apply atten-
tion to important relationships between the encoded
source sequence, and the target sequence that is being
translated. The last layers of the decoder are a feed-
forward layer and a linear layer, which maps the
output of the decoder into the desired dimensions, e.g.,
the shape of the available token list where each cell de-
scribes the likelihood of said token being the next. For
both the input to the encoder and decoder, an added
sinusoidal embedding allows the model to understand
the sequential nature of the input sequence.
Attention is the foundation of the Transformer ar-

chitecture and is a mechanism inspired by retrieval
systems, where a mapping is made from key-value
pairs and a query to the output. The general idea
is to learn the dependencies and importance between
tokens internally in a single sequence or externally
between sequences. They call their speci�c version
Scaled Dot-Product Attention, which is formulated as
shown in Eq. 11. Here the query Q, key K , and value
V are learned matrix representations of sequences
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with each column being the representation of a token.

Attention(Q,K, V ) = softmax(
QKT

√
dk

) (11)

As an example, to perform self-attention, one would
parse the matrix representation of the sequence itself
as both Q, K , and V , whereas to perform cross
attention between two sequences e.g., for translation,
the target sequence would be the query Q, and the
key-value pairs K and V would be the source se-
quences. [47] extend the Scaled Dot-Product Attention
into Multi-Head Attention, where instead of conducting
attention on the dmodel sized keys, values, and queries,
they split the original matrix into h multiple smaller
matrices, which are then concatenated, as shown in
Eq. 13, where projection matrices W

Q
i , WK

i , W V
i , and

WO are parameter matrices.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O,

(12)
where

headi = Attention(QW
Q
i ,KWK

i , V W V
i ) (13)

This allows for each attention head to learn a di�erent
relation between various tokens, giving the model
the ability to understand complex relations between
tokens in a sequence.

4. Methodology

This section introduces our proposed model, MAD-
Traj; a generative multi-modal trajectory predictor that
leverages a transformer-based architecture and reverse
di�usion process for spatiotemporal and generative
modelling. Fig. 5 shows an overview of our proposal.
Our model consists of a history encoder, an environ-
ment encoder, and a denoising decoder that is used in
the reverse di�usion process. Given an observed trajec-
tory and a semantic map, describing the environment,
our model generates a trajectory over a number of
di�usion steps. To accelerate the sampling process, we
experiment with DDIM sampling [83] and progressive
distillation [84], both of which are techniques for
decreasing the number of di�usion steps required to
generate a sample.
Fig. 6 shows a detailed overview of our model

architecture and its components. The history encoder
(Sec. 4.1) leverages the power of self-attention [47] to
encode temporal dependencies between individual tra-
jectory time steps. The environment encoder operates
on a sequence of image patches and uses self-attention
to encode spatial relationships between di�erent areas
of the map. Both of these encodings are used to
condition by the denoising decoder (Sec. 4.3), which

utilises cross-attention to model the temporal and
spatial relationships between the observed trajectory,
the environment, and the noisy future trajectory. This
allows the decoder to leverage the knowledge of these
relationships and learn which historical time steps and
areas of the environment require the most attention
during the reverse di�usion process.

1. History Encoder

The history encoder (see Fig. 6) takes the coor-
dinates of the observed trajectory as input, from
which the �rst and second derivatives are computed,
yielding the velocities and accelerations in both the x
and y dimensions, respectively. This results in a six-
dimensional vector for each point, each of which is
upscaled to the desired dimensions of the transformer
model with a 2-layer feed-forward MLP. To preserve
the notion of sequential order in the trajectory when
it is processed by the transformer encoder, each point
is encoded using a learned sinusoidal embedding. The
upscaled and positionally embedded vector is fed into
a multilayer transformer encoder, where each layer
consists of a self-attention mechanism, and a feed-
forward MLP, both of which have residual connections
around them, feeding into addition and normalisation
layers. The output of the history encoder of this is
used as memory input to the Denoising Decoder.

2. Environment Encoder

The map encoder (see Fig. 6) encodes a semantic
map, which describes the navigability of the various
areas surrounding the agent. The semantics maps are
generated from RGB images of the scenes in the
dataset, by segmenting the images and assigning a
class label to each pixel, denoting the type of segment
that pixel belongs to. Given a semantic map of the
entire scene, we cut a local map around the last known
position of the agent, with the size of the local map
determined by statistics of the dataset, to ensure map
is able to su�ciently contain the entire trajectory. For
each trajectory, we compute the distance from the
last known position to all other positions in the same
trajectory and set the width and height of all local
maps to 3Ã, where Ã is the standard deviation of the
computed distances over the entire dataset.

The Environment Encoder is inspired by Vision
Transformers [51] (ViT) which utilises a transformer
architecture for image classi�cation by constructing a
sequence of patches from the input image and �atten-
ing each patch into a vector. By using the transformer
architecture, the ViT model learns to attend to the
most important parts of an image through the power
of self-attention, and we argue that this is a desirable

8
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Figure 5: High-level overview of our proposal. Our model consists of three main components: A history encoder
and an environment encoder to encode the observed trajectory and environment information, respectively, and
a di�usion process to generate the predicted future trajectory. The di�usion process is a bottleneck in terms
of inference time and to combat this, we apply acceleration techniques in the form of DDIM sampling and
progressive distillation to decrease the inference time of our model.
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Figure 6: Our proposed framework consists of three modules. The History Encoder takes the past points,
and makes an encoding which can be fed into the Denoising Decoder using an attention mechanism. The
Environment Encoder encodes the semantic map into a sequential format, which also is parsed into the
Denoising Deocder using an attention mechanism. Lastly, the Denoising Decoder runs the reverse di�usion
process, where the �rst step is initialised with Gaussian Noise (red dashed line), and for each following reverse
di�usion step, is parsed the output of the previous iteration (purple dashed line).
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property for environment modelling in the context
of trajectory prediction. We adapt this approach by
dividing the local map surrounding the agent into 64
patches, �attening each patch, and adding a learned si-
nusoidal embedding to allow the model to understand
the positional relation between the various patches.
We use a single-dimensional embedding as described
by Dosovitskiy et al. [51], which found that there
is no performance di�erence between one or two-
dimensional embeddings. These patches are fed into
a Transformer Encoded similar to the one described
in Sec. 4.1. The output of the environment encoder
is used for environmental attention in the Denoising
Decoder.

3. Denoising Decoder

During the sampling process (reverse di�usion), the
denoising decoder acts as the noise predictor that is
responsible for determining the noise to remove at
each step of the process. We model each point of the
future trajectory as a 2-dimensional vector, containing
only the x and y velocities, unlike the 6-dimensional
vector in the History Encoder. Given the predicted
velocities, we determine the trajectory by integrating
the velocities with respect to the trajectory time steps.
We found this to result in more realistic accurate
trajectories, compared to predicting the coordinates
directly. For each iteration in the di�usion process,
a 2-layer Feed-Forward MLP to upscale the vectors
to the internal dimensions of the transformer. To
model both the sequential nature of the trajectory
and the di�usion process, despite the non-sequential
processing of the transformer, each trajectory encodes
both its own sequence position as well as the current
di�usion step using learned sinusoidal embeddings.

The decoder consists of two main modules, the
�rst of which is a temporal transformer that follows
the standard transformer decoder architecture. First, it
applies self-attention to the noisy input trajectory and
then proceeds to use the output of the history encoder
for cross-attention with the noisy input trajectory. The
second module is a spatial transformer that cross-
attends to the output of the temporal transformer and
the environment encoder. The output of the denoising
decoder is a noise tensor with equal dimensions to the
trajectory, which can subsequently be subtracted from
the trajectory to produce a less noisy trajectory for
the next iteration of the sampling process.

4. Training and Inference

Our model is trained end-to-end as shown in
Alg. 1, by retrieving a historical and future trajectory
X,Y0 ∼ T together with its corresponding semantic

map M ∼ M. We then sample a random time step
t ∼ Uniform({1, . . . , T} and add noise ϵ ∼ N (0, I)
to the future trajectory Y0, according to the variance
schedule, which yields the noisy trajectory Yt. We
then predict the noise added to Yt using the De-
noising Decoder D¹ , which takes a Yt, t, the history
encoding zhist = Ehistϕ (X) and environment encoding
zenv = EenvÈ (M) as input. Finally, the gradient descent
step is taken using MSE loss between the noise ϵ and
the predicted noise ϵ̂. We repeat this process until the
model is converged.

Algorithm 1 Training

Require: Trajectory dataset T
Require: Map datasetM
Require: History encoder Ehistϕ

Require: Environment encoder EenvÈ

Require: Denoising decoder D¹
1: repeat
2: X,Y0 ∼ T
3: M ∼M
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N (0, I)
6: Yt ←

√
³t · Y0 +

√
1− ³ · ϵ ▷ Noisy future

7: zhist ← Ehistϕ (X)
8: zenv ← EenvÈ (M)
9: ϵ̂← D¹(Yt, zhist, zenv, t) ▷ Predicted noise
10: Take gradient descent step on

∇¹,ϕ,È ||ϵ - ϵ̂||22
11: until converged

During inference, we use the DDIM update rule
described by Song, Meng, and Ermon [83], as shown in
Alg. 2. This algorithm describes the generation of K
trajectory predictions, while only encoding the histor-
ical trajectory zhist = Ehistϕ (X) and zenv = EenvÈ (M)
once since the observed trajectory and semantic map
remain constant for the entire sampling process. We
accumulate the predicted trajectories in the set Ỹ until
it reaches a size of K . For each desired prediction in
[1, . . . ,K], we sample random noise from a standard
normal distribution and run the reverse di�usion pro-
cess for each t in T . We predict the noise ϵt to remove
at each reverse di�usion step, and using the DDIM[83]

update rule, we compute the denoised trajectory Ŷt−1

given Ŷt and ϵ̂. When t = 0, the reverse di�usion

process terminates and Ŷt becomes the �nal prediction

of Y0. We then add Ŷt to the collection of predictions
Ỹ and run the same process for the next sample in K .

5. Experiments

To assess the e�cacy of our di�usion model, we
conduct extensive experiments and present the results
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Algorithm 2 Multi-sampling (inference)

Require: Trajectory dataset T
Require: Map datasetM
Require: Trained history encoder Ehistϕ

Require: Trained environment encoder EenvÈ

Require: Trained denoising decoder D¹
1: X ∼ T
2: M ∼M
3: zhist ← Ehistϕ (X)
4: zenv ← EenvÈ (M)

5: Ỹ ← ∅ ▷ Initialise list of trajectories
6: for 1, . . . ,K do

7: Ŷt ∼ N (0, I) ▷ Initialise noisy trajectory
8: for t← T, . . . , 1 do
9: ϵ̂t ← D¹(Yt, zhist, zenv, t)
10: Ŷt−1 ← √³t−1(

Ŷt−
√
1−³t·ϵ̂t√
³

)+
√
1− ³t−1 ·ϵ̂t

11: Ŷt ← Ŷt−1

12: end for
13: Ỹ ← Ỹ ∪ Ŷt ▷ Include clean trajectory
14: end for

in the following section. Sec. 5.1 and Sec. 5.4 respec-
tively outline the dataset and de�ne the evaluation
metrics used in our experiments. Sec. 5.5 provides
an overview of the baselines we use for benchmark
comparison, and Sec. 5.6 presents the quantitative
experiment results. Sec. 5.7 showcases examples of
trajectories generated by our model, and Sec. 5.8
provides an ablation study to assess the impact of
the environment encoder on the performance of the
model. Finally, to accelerate the inference time of
our model, we conduct an experiment with multiple
variants of our model using progressive distillation and
DDIM sampling, and present the results in Sec. 5.9 and
Sec. 5.10.

1. Datasets

The Stanford Drone Dataset (SDD) [86] is a real-
world dataset, which aims to provide a base for the
modelling of human etiquette and interactions, i.e.,
yielding, social etiquette, personal distance, and how
agents interact with the environment. The dataset
is used extensively in literature to benchmark and
compare models for trajectory prediction. The anno-
tated data of SDD consist of timestamped positions of
agents, obtained by tracking birds-eye drone footage
from the Stanford University campus. It is comprised
of more than 100 di�erent static scenes and contains
a total of almost 20,000 targets including ∼11,200
pedestrians, ∼6,400 cyclists, and ∼1,300 cars.
The ETH/UCY [87, 88] datasets consist of man-

ually annotated real-world trajectory data obtained

from birds-eye video of various locations around the
campuses of The University of Cyprus and ETH
Zürich. They collectively contain 5 sets of data from
4 unique scenes with ∼1500 unique pedestrians. Like
SDD, ETH/UCY is one of the most commonly used
benchmarks in the �eld.

2. Implementation Details

For SDD, we utilise the preprocessed data and se-
mantic maps made available by Mangalam et al. [59],
where 30 scenes are used for training, and 17 are used
for testing. Coordinates are sampled at 2.5Hz and we
use 8 time steps for observation and 12 time steps for
prediction. We �lter outliers in the training data by
removing samples with a higher velocity than 5 times
the standard deviation, due to unrealistic movement or
camera issues. The remaining samples are augmented
by rotating each sample trajectory 90 degrees three
times to produce four times the data. The testing data
is un�ltered and unmodi�ed. The SDD semantic maps
contain 5 di�erent classes: pavement, road, structure,
terrain, and tree. We pad the map with a sixth value,
due to some samples being close to the edges, and we
want to be able to create local maps for these samples.
The maps are then scaled to �t in the range [-1, 1].

We also adopt the preprocessed ETH/UCY data,
semantic maps and related homography matrices from
Mangalam et al. [59]. Similar to SDD, the data samples
of the preprocessed ETH/UCY datasets have a sample
frequency 2.5Hz and contain 8 historical trajectory
positions and 12 future trajectory positions. Follow-
ing prior works [52, 59], we adopt a leave-one-out
approach, where an entire scene is used exclusively for
testing, while the remaining scenes are used for train-
ing. We also augment the training data for ETH/UCY,
but do not �lter outliers in the training data. The
semantic maps for ETH/UCY are binary, with the
only class labels being road and non-road due to the
simplicity of the scenes.

3. Hyperparameters

The transformers modules of our model use three
layers with four attention heads and an internal di-
mension of 256. Of the four con�gurations we tested
(Tab. 1, we found this combination produced the best
performance. The model is trained with 64 di�usion
steps, as we found no noticeable increase in accuracy
when increasing the number of steps above this.
Despite the common practice of using 1,000 steps
for image generation, our observation in this regard
is in line with MID [52], who are also able to use
a relatively short di�usion process of 100 steps. We
hypothesise that this is possible due to the smaller size
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Table 1: Results on SDD of four unique combinations of Transformer hyperparameters, labeled L, M, S and
XS. The error metrics are measured in pixels. Time (s) is measured using a Nvidia 3080 on a single batch of
size 512 samples. * The L model could likely have been optimised further, but due to inference time, we did
not �nd this model to viable for further work.

Hyperparameters

Model Dimension Layers
Attention
Heads

ADE
(p)

FDE
(p)

ADE
(%)

FDE
(%)

Time
(s)

Time
(%)

*L 512 6 8 7.08 12.45 101.2 98.65 91.5 502.7
M 256 3 4 6.96 12.62 100.0 100.0 18.2 100.0
S 128 2 4 7.43 12.30 106.8 95.5 6.6 36.3
XS 64 1 2 9.61 14.66 138.1 116.2 3.6 19.9

and lower complexity of trajectory data compared to
image data. The local semantic maps are downscaled
to 128 × 128, and split into 64 patches of shape
16 × 16, which, when �attened, results in vectors of
size 256. We use a linear schedule, having found that
other schedules such as cosine and quadratic result in
inferior performance. We also tried training our model
using the SNR loss and truncated SNR loss proposed by
Salimans and Ho [84] but ultimately found the MSE
loss proposed by Ho, Jain, and Abbeel [40] to yield
models capable of producing more realistic trajectories.
Lastly, we also tried predicting x0 and v = ³tϵ− Ãtx
as proposed by Salimans and Ho [84], but found that
predicting ϵ, as proposed by Ho, Jain, and Abbeel [40],
yielded more accurate models. We acknowledge the
modesty of this experiment and defer a more extensive
hyperparameter optimisation for future work.

4. Evaluation Metrics

We evaluate the predictive capabilities of our model
by comparing the generated predictions with ground-
truth trajectories from the dataset. This is done using
the Average Displacement Error (ADE) and Final
Displacement Error (FDE) as error metrics. These
metrics are widely used in the �eld [14, 15, 16, 19,
44, 52, 59, 89, 90, 91], and allow for easy benchmark
comparisons with other previous and future works.
As our model is generative and capable of producing
multiple predictions for the same observation, we
follow the widely adopted approach of sampling
k predictions per observation and reporting the
best-of-K error metrics averaged over the entire test
set. [8, 14, 16, 19, 41, 46, 52, 54, 59, 91] We denote
this as minADE and minFDE, respectively and follow
the de�nitions given in [41].

Minimum Average Displacement Error (mi-
nADE) is the smallest ADE over k predictions. For-
mally, it is de�ned as

minADE(Ỹ , Y ) =
K

min
i=1

ADE(Ŷi, Y ) (14)

where Ỹ = [Ŷ1, Ŷ2 . . . , ŶK ] is a set of predicted future
trajectories and Y is the ground truth future trajectory.
The ADE of a predicted future trajectory (see Fig. 7)
is the average Euclidean (L2) distance between its
coordinates and the coordinates of the ground truth
future trajectory. Formally, this is de�ned as

ADE(Ŷ , Y ) =
1

f

tp+f∑

t=tp+1

√
(ŷt,0 − yt,0)2 + (ŷt,1 − yt,1)2,

(15)
where Ŷ is the predicted future trajectory, Y is the
ground truth future trajectory, and the number of
past and future trajectory time steps are denoted by
p and f , respectively. The x and y coordinates of
trajectory y at time step t are denoted yt,0 and yt,1,
respectively.

Minimum Final Displacement Error (minFDE) is
the smallest FDE over K predictions. Formally,

minFDE(Ỹ , Y ) =
K

min
i=1

FDE(Ŷi, Y ), (16)

where Ỹ = [Ŷ1, Ŷ2 . . . , ŶK ] is a set of predicted future
trajectories, Y is the ground truth future trajectory.
The FDE of a predicted future trajectory (see Fig. 7) is
the Euclidean (L2) distance between its coordinates at
the �nal time step and the coordinates of the ground
truth future trajectory at the �nal time step. This is
de�ned formally as

FDE(Ŷ , Y ) =
√
(ŷT,0 − yT,0)2 + (ŷT,1 − yT,1)2,

(17)
where Ŷ is the predicted future trajectory and Y
is the ground truth future trajectory. The x and y
coordinates of trajectory y at the �nal time step T
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Figure 7: Illustrative example of ADE and FDE met-
rics. FDE measures the distance between the �nal
pair of points in the two trajectories, which, in this
example, is 2. ADE measures the average distance
between each pair of points in the two trajectories,
which, in this example, amounts to 6×1+6×2

12
= 1.5.

are respectively denoted yT,0 and yT,1.

5. Baseline Models

We compare our method to the current state-of-the-
art, using MID [52], Social-GAN [19], PECNet [20],
Trajectron++ [14], LB-EBM [22], PCCSNET [21], Ex-
pert [46], Y-NET [59], CGNS [45], SimAug [92],
STAR [54], Social-BiGAT [93], and MG-GAN [94] as
baselines. This section provides a brief overview of
the di�erent approaches.
MID [52] uses the encoder from Trajectron++ [14]

to represent past agent trajectories and social dy-
namics. Similar to our model, MID also employs a
transformer decoder in a denoising di�usion process
to generate trajectories directly from Gaussian noise.
However, their approach di�ers from ours in that it is
based on the older DDPM model and does not utilise
environmental information.
Social-GAN [19] is a multi-agent prediction model,

using the GAN framework. The generator consists
of stacked LSTM encoder-decoders with a pooling
module to summarise, for each person, the social
dynamics across the encoder stack, which is then used
as contextual information for the decoder stack. The
discriminator is a stack of separate LSTM encoders,
followed by an MLP to map the hidden state to
probability score.
PECNet [20] is a generative multi-agent model

based on the VAE framework. The �rst module in the

two-step approach encodes multiple past trajectories,
which, together with a sampled Gaussian vector, are
used by the VAE decoder to produce end goals for each
agent. Conditioned on the encoded end goals, a Social
Pooling module is then applied to each of the past
trajectories, and the pooled latent vectors are �nally
decoded into future trajectories.

Trajectron++ [14] is a graph-structured recurrent
model where scenes are represented as spatiotemporal
graphs that model the past trajectories and social
dynamics of agents. It uses LSTMs to encode the
historical graph states in a hidden state, which is then
decoded using a gated recurrent unit (GRU) to produce
the predicted agent trajectory.

LB-EBM [22] learns an Energy Based Model (EBM),
from which it samples latent variables conditioned on
a social pooled encoding of the observed trajectory.
The sampled latent is used to condition a planning
module that predicts a sequence of intermediate steps,
which in turn condition the prediction module to
produce the predicted trajectory. The model has no
recurrent parts, and aside from the attention-based
pooling mechanism, all modules consist of MLPs.

PCCSNET [21] encourages diversity in its predic-
tions by explicitly modelling the modality of its output.
It does this by clustering trajectories in the training
data that are similar in terms of positions and direc-
tions. The clusters are used as pseudo-labels to train a
modality classi�er that takes an LSTM encoding of the
observed trajectory as input. During evaluation, the k

modalities with the highest probability assignment are
used to condition an LSTM decoder that synthesises a
future trajectory for each modality.

Expert [46] leverages a repository of previously
seen samples, from which the trajectory most similar
to the one observed is retrieved. This is used to pro-
duce a goal candidate based on the coordinates at the
time step matching the �nal time step of the trajectory
to be predicted. The goal and observed trajectory are
encoded together using an LSTM, after which attention
is applied between this hidden state and the hidden
state of nearby agents. Another LSTM then decodes
this to produce a bi-variate Gaussian distribution for
each future time step, and the future coordinates are
sampled from these distributions.

Y-NET [59] uses a semantic map of the scene, simi-
lar to our approach, and encodes the past trajectory as
a heatmap on top of the semantic map to retain spatial
alignment between the signals in the trajectory and the
environment. It uses a U-Net [42] encoder to produce
a latent representation, which is then decoded through
two separate U-Net decoders. Similar to PECNet, the
�rst decoder produces a goal distribution, from which
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long-term and intermediate goals are sampled and
used as contextual information in the second decoder.

CGNS [45] uses a deep feature extractor, that en-
codes environmental features with CNNs and social
dynamics through a CNN with pooling and attention
mechanisms. Together with the observed trajectories,
these features are encoded through a GRU, and used as
input to a VAE encoder, to produce a latent distribution
that approximates the posterior. CGNS employs ad-
versarial learning, similar to the GAN framework, but
instead of noise from a standard normal distribution,
however, the GRU based generator network takes a
latent variable, sampled from the learned distribution.

SimAug [92] uses a 3D simulator to generate train-
ing data with multiple camera angles (views) for each
sample. During training, the hardest view is selected
for each sample based on classi�cation loss, and its
features are mixed with those of the original view.
Predictions are made with the Multiverse [95] model,
which consists of a ConvRNN encoder followed by two
ConvRNN decoders for coarse and �ne predictions.

STAR [54] encodes observed trajectories of multiple
agents using two stacked encoder blocks in succession.
The �rst block consists of two parallel transformers to
model the temporal and spatial features independently.
The second block pipes the transformers, to model the
relationship between the temporal and spatial features.
To capture information about surrounding agents, the
stacked encoders use a novel attention-based graph
convolution for message passing between the spatial
transformers. To make multiple predictions, STAR adds
Gaussian noise to the embedding before decoding
them with an MLP and repeats this for each desired
prediction.

Social-BiGAT [93] is based on BicycleGAN [96],
which is a framework for training a generative model
using a combination of GAN, VAE, and a latent
regression. It follows an encoder-decoder structure,
where environment information is encoded with a
CNN and trajectories are encoded with a stack of
LSTMs, the hidden states of which a combined using
Graph Attention [97]. LSTM decoders are conditioned
on a latent variable sampled from a Gaussian, whose
parameters are estimated by a VAE encoder.

MG-GAN [94] encodes an image of the environ-
ment with a CNN and future processed with an
attention block. The observed trajectories are encoded
with LSTMs and jointly processed by an attention
block to model social dynamics. A series of GAN
generators are trained to model di�erent trajectory
distributions given the observed trajectory. During
inference, the output of the encoders is mapped to a
probability distribution over generator indices, which

Table 2: Quantitative evaluation results for the Stan-
ford Drone Dataset (SDD), where sampling is per-
formed K = 20 times. H means that a model only
utilises information from the historic trajectory, while
H+I indicates that a model is utilising both the histori-
cal trajectory and image data from the surrounding en-
vironment. The errors are measured in pixels, and we
report the best-of-k metrics (minADE and minFDE).
The best results are bold and the second-best results
are underlined.

Results: Stanford Drone Dataset

Model Input K ADE FDE

MID [52]

H 20

7.61 14.30

Social-GAN [19] 27.23 41.44

PECNet [20] 9.96 15.88

Trajectron++ [14] 8.98 19.02

LB-EBM [22] 8.87 15.61

PCCSNET [21] 8.62 16.16

Expert [46] 10.67 14.38

Expert + GMM [46] H 20×20 7.65 14.38

Y-Net + TTST [59] H+I 10,000 7.85 11.85

Y-Net [59]
H+I 20

8.97 14.61

CGNS [45] 15.6 28.20

SimAug [92] 10.27 19.71

Ours H+I 20 6.96 12.62

is used to choose the appropriate generator to produce
the trajectory.

6. Quantitative Results

We present a comparison between the baselines and
our model on the Stanford Drone Dataset in Tab. 2. We
categorise the models based on the type of input they
utilise, with H denoting that a model only observes the
historic trajectory, and H+I denoting that a model also
utilises image data from the environment. The baseline
results are the ones presented in the original papers,
with the exception of Trajectron++ [14], Y-Net [59],
and Expert [46], the results of which are provided
by MID [52]. who retrained the models, because the
Trajactron++ [14] paper does not include experiments
on SDD, and the Y-Net [59] and Expert [46] papers ob-
tain improved results using test-time sampling tricks.
Speci�cally, Y-Net [59] uses a test time sampling trick,
where 10,000 points are sampled, which is then clus-
tered using k-means clustering algorithm, making their
model generate diverse samples. The results of this
approach are presented as Y-Net + TTST. Expert [46]
uses a test procedure where 20 goals are sampled, and
the one closest to the ground truth is used to condition
its LSTM decoder. The output of the decoder is used as
the parameters of a bivariate Gaussian for each time
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Table 3: Quantitative evaluation results for the ETH/UCY Datasets, where sampling is performed K = 20
times. H means that a model only utilises information from the observed trajectory, while H means that a
model only utilises information from the historic trajectory, while H+I indicates that a model is utilising both
the historical trajectory and image data from the surrounding environment. The errors are measured in meters,
and we report the best-of-k metrics (minADE and minFDE). The best results are bold and the second-best
results are underlined.

Results: ETH/UCY Datasets

ETH HOTEL UNIV ZARA1 ZARA2 AVG
Model Input K

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

MID [52] 0.39 0.66 0.13 0.22 0.22 0.45 0.17 0.30 0.13 0.27 0.21 0.38

Social-GAN [19] 0.81 1.52 0.72 1.61 0.60 1.26 0.34 0.69 0.42 0.84 0.58 1.18

PECNet [20] 0.54 0.87 0.18 0.24 0.35 0.60 0.22 0.39 0.17 0.30 0.29 0.48

STAR [54] 0.36 0.65 0.17 0.36 0.31 0.62 0.26 0.55 0.22 0.46 0.26 0.53

Trajectron++ [14] 0.39 0.83 0.12 0.21 0.20 0.44 0.15 0.33 0.11 0.25 0.19 0.41

LB-EBM [22] 0.30 0.52 0.13 0.20 0.27 0.52 0.20 0.37 0.15 0.29 0.21 0.38

PCCSNET [21] 0.28 0.54 0.11 0.19 0.29 0.60 0.21 0.44 0.15 0.34 0.21 0.42

Expert [46]

H 20

0.37 0.65 0.11 0.15 0.20 0.44 0.15 0.31 0.12 0.26 0.19 0.36

Expert + GMM [46] H 20×20 0.29 0.65 0.08 0.15 0.15 0.44 0.11 0.31 0.09 0.26 0.14 0.36

Y-Net + TTST [59] H+I 10,000 0.28 0.33 0.10 0.14 0.24 0.41 0.17 0.27 0.13 0.22 0.18 0.27

SoPhie [8] 0.70 1.43 0.76 1.67 0.54 1.24 0.30 0.63 0.38 0.78 0.54 1.15

CGNS [45] 0.62 1.40 0.70 0.93 0.48 1.22 0.32 0.59 0.35 0.71 0.49 0.97

Social-BiGAT [93] 0.69 1.29 0.49 1.01 0.55 1.32 0.30 0.62 0.36 0.75 0.48 1.00

MG-GAN [94]

H+I 20

0.47 0.91 0.14 0.24 0.54 1.07 0.36 0.73 0.29 0.60 0.36 0.71

Ours H+I 20 0.21 0.36 0.09 0.14 0.21 0.44 0.15 0.28 0.11 0.21 0.15 0.29

step, and the 20 trajectories, used to compute the error
metrics, are then obtained by sampling 20 coordinates
from each Gaussian. The results of this approach are
presented as Expert + GMM.
As evidenced by the results in Tab. 2 and Tab. 3,

our method is highly competitive in the current state
of the art. When evaluated on SDD, our model achieves
the best ADE of the 13 compared models and achieves
the second-best FDE—only surpassed by the version of
Y-Net [59] that includes its test time sampling trick,
which earns it a 19% decrease in FDE by constructing
its �nal predictions from a pool of 10,000 predictions.
A similar pattern emerges when our model is evalu-
ated on the ETH/UCY datasets. In the ETH scene, our
model achieves the best ADE and second-best FDE. In
the HOTEL scene, our model has the second-best ADE,
and shares the best FDE with Y-Net + TTST [59]. In
all other scenes, our model achieves the second-best
results for both ADE and FDE, with the only exception
being ADE in the UNIV scene, where our model takes
third place.

7. Qualitative Results

The numbers we present in Tab. 2 and Tab. 3 are
supported by our observations when visualising and
examining the predictions made by our model. Fig. 8
and Fig. 9 provide visualisation of randomly selected
predictions made by our model for SDD and ETH/UCY,

respectively. The visualisations and error metrics are
indicative of the general ability of our model to gen-
erate trajectories that are close to the ground truth.
We also observe that generated predictions, in some
instances, exhibit a low degree of diversity, and based
on our previous work [41], we attribute this to the
absence of diversely sampled long-term goals to guide
the predictions.

8. Ablation Study

To assess the e�ect of our environment encoder, we
conduct an experiment, in which we train and evalu-
ate a variation of our model where the environment
encoder and spatial transformer have been removed,
and compare it to the full model. The models we com-
pare are trained and evaluated on SDD, as we argue
that this dataset features a richer and more complex
environment than the ETH/UCY datasets. Tab. 4 shows
the error metrics resulting from the evaluation of the
two models. We observe a 6.5% decrease in ADE and a
slight decrease of 0.3% in FDE as a result including the
environment encoder and spatial transformer, which
is also in line with observations made in our previous
work [41], and observations made by Salzmann et al.
[14].
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Figure 8: Compilation of trajectories produced by our model in various scenes of SDD using K = 20. The
observed trajectory is shown as large orange points, and the ground truth future trajectory is shown as large
blue points. The small points denote the predicted trajectories, and the colours of their denote which trajectory
they belong to.

ETH HOTEL UNIV ZARA1 ZARA2

ETH HOTEL UNIV ZARA1 ZARA2

Figure 9: Compilation of trajectories produced by our model in each scene in the ETH/UCY datasets using
K = 20. The observed trajectory is shown as large orange points, and the ground truth future trajectory is
shown as large blue points. The remaining points are the predicted trajectories, and di�erent colours indicate
di�erent predictions.
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Table 4: The results of the ablation study two varia-
tions of the model is trained and evaluated on SDD.
The �rst model is unable to leverage information
about the environment, since the environment encoder
and spatial transformer module have been removed.
The second model is our full model, including the
environment encoder and spatial transformer module.
The error metrics are measured in pixels.

Ablation Study: Environment Encoder

ADE FDE

w/o Encoder 7.44 12.66

w/ Encoder 6.99 12.62

9. DDIM Acceleration

Due to our high inference times, we conducted
experiments to gauge the e�ects of using the DDIM
sampler to skip sampling steps, as described by Song,
Meng, and Ermon [83]. We train our model on SDD,
using a di�usion process of 64 steps. We then evaluate
this model using the DDIM sampler with 7 distinct
subsets of linearly spaced samplings steps. The results
are presented in Tab. 5, sorted in descending order
with respect to the number of sampling steps used for
the evaluation. The table shows both absolute values
for the error metrics and inference time, as well as
the relative values with respect to the base results, (64
steps). The experiments are performed on an Nvidia
RTX 3080, and sampling times exclude data loader
batch collation.

It is apparent that DDIM sampling with step skip-
ping has a profound e�ect on the inference time. We
also observe that the ensuing reduction in predictive
accuracy is negligible, when the sampling process has
no fewer than 4 steps. Comparing the results of the 8-
step sampling process to the original 64-step process,
we attain an 87.3% reduction in inference, while only
su�ering a 1.4% increase in ADE and 7.1% increase
in FDE, resulting in a model that is 8 times faster
and almost as accurate. Interestingly, an examination
of Tab. 2, reveals that our model might be capable
of keeping its position in the lead, using only 8
sample steps. To con�rm this, however, requires a re-
evaluation of this model con�guration using the same
test split as the SDD benchmark (Sec. 5.7), which we
defer to future work.

Fig. 12 provides a qualitative comparison between
trajectories produced with 64, 8, and 4 DDIM sampling
steps. As the sampling steps are reduced, we observe
a reduction in predictive diversity. This results in a
better alignment of the predictions and the ground
truth, but restricts the ability of the model to account

Table 5: ADE, FDE and inference time of the same
model on a single batch of size 512 using an Nvidia
3080, evaluated on SDD using DDIM sampling with
di�erent sized subsets of linearly spaced di�usion
steps. The columns marked with (p) and (s) show
absolute values in pixels and seconds, respectively,
while columns marked with (%) show percentages
that represent the relative di�erences in values, as
compared to the base results (64 steps).

DDIM Acceleration

Steps
ADE
(p)

FDE
(p)

ADE
(%)

FDE
(%)

Time
(s)

Time
(%)

64 6.96 12.62 100.0 100.0 18.19 100.0
32 6.97 12.73 100.0 100.8 9.14 50.2
16 7.00 13.01 100.1 103.1 4.63 25.6
8 7.06 13.52 100.05 101.4 2.30 12.64
4 7.61 15.01 109.3 118.9 1.18 6.49
2 10.49 20.35 150.7 161.25 0.61 3.5
1 99.38 133.0 1423 1053 0.31 1.8

for multiple distinct future outcomes. This could be
alleviated by adopting a goal-directed approach, as
we illustrated in our previous work [41], but such an
approach is outside the scope of this paper. App. 1
provides additional samples of trajectories generated
using 4 DDIM sampling steps.

10. Progressive Distillation Acceleration

Inspired by Salimans and Ho [84], we also experi-
ment with progressive distillation, to assess its e�ec-
tiveness in accelerating our di�usion model. We train
a model on SDD, using a di�usion process with 64
steps. Following the iterative student-teacher transfer
learning setup of [84], we use the 64-step model as
the initial teacher and copy its model parameters to
initialise the �rst student. [84] propose various param-
eterisations, and in our experimentation, we have tried
predicting ϵ, x0, xt, and v = ³tϵ−Ãtx, and found no
notable di�erence in training stability or model accu-
racy. We have also tried the proposed SNR loss and
truncated SNR loss, and ultimately found MSE loss to
result in more stable training with better convergence.
Fig. 11 shows an example of the predicted target of the
student during training and Fig. 10 shows a handful
of randomly selected trajectories produced by the �rst
student, i.e. a model that was distilled from a 64-
step di�usion process to a 32-step di�usion process.
Despite accurately predicting the denoising target and
converging on a low MSE loss of 0.00371, the distilled
student model is unable to generalise across individual
training steps and produce meaningful trajectories
through the entire denoising process. As a result, the
predicted trajectories end up resembling random noise,
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Figure 10: Predictions from the student from our
experiment of distilling a 64 step model to 32 steps
on the SDD. The large orange and blue points are
respectively the history and future points, and various
other points of similar colour coding are predictions
made by the student model.

which results in unreasonably high values of ADE and
FDE. For comparison, Fig. 13 plots the ADE values of
the distilled students together with the ADE values
obtained by retraining and evaluating di�erent sizes
of DDPM, and evaluating the teacher model with the
DDIM sampler. As evidenced by the error metrics
and visualised trajectories, the predictions made by
progressively distilled models are vastly inferior to
those made using the DDIM sampler or even a DDPM,
trained with a short di�usion process. This is in
con�ict with the observation made by Salimans and
Ho [84], and we hypothesise that the issue lies in
the hyperparameters or in our implementation. Hence,
we are unable to rule out progressive distillation
as a viable acceleration technique in the context of
trajectory prediction. Further research into this matter
is left for future work.

6. Conclusion

In this paper, we set out to reduce the gap between
the strong generative capabilities of di�usion models
and models that exhibit more desirable characteristics
in terms of accuracy and inference time. Our proposed
model, MAD-Traj, abandons the popular U-Net-based
architecture of classic di�usion models in favour of the
attention-based transformer architecture for powerful

Figure 11: Predictions from the student from our
experiment of distilling a 64 step model to 32 steps
on the SDD. The left frame is the prediction time step
24 of 32, while the right is di�usion step 23 of 32.
The orange points are the ground truth, and the blue
points are the predictions made by the student.

and e�cient sequence modelling. By encoding both
the observed trajectory and a semantic map of the
environment, our model is able to make use of multi-
modal information to increase its predictive accuracy.
This is supported by our extensive experiments that
underpin the performance of our model and its ability
to compete with state-of-the-art methods.

Using a best-of-20 evaluation approach on the Stan-
ford Drone Dataset (SDD), our model achieves the best
result in terms of average displacement error (ADE),
with a 9% improvement, compared to the second-best
result. In terms of �nal displacement error (FDE), our
model takes the second place with a 6% reduction in
accuracy, compared to the best results. When trained
and evaluated on the ETH/UCY datasets, our model is
a top-contender, and consistently achieves either best
or second-best results in terms of both ADE and FDE.

A qualitative evaluation of random trajectories, gen-
erated by our model, supports the quantitative results
and shows the ability of the model to predict tra-
jectories with similarity to the ground truth. It also
reveals that the model has a tendency to produce
predictions with fair amount of diversity, despite this
not being the goal of this paper. In some instances,
however, the predictions are extremely similar, despite
the environment being suitable for a more diverse
range of predictions. In our previous work [41], we
have shown that a goal-directed approach can lead to a
high degree of predictive diversity, and we hypothesise
that our model could bene�t from a similar approach.

Our model leverages a more compact vector rep-
resentation of trajectories compared to our previous
work [41], where trajectories are encoded in images.
The reduction in complexity of the data representation,
combined with the e�ciency of transformers, results
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(a) 64 sampling steps (b) 8 sampling steps (c) 4 sampling steps

Figure 12: The output of our original model at various DDIM step sizes given the same initial noise for each
sample. The main takeaway from these samples is the reduced diversity of predictions when using DDIM step
skipping.
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Figure 13: Comparison of minADE performance on
the Stanford Drone Dataset using di�erent sampling
methods. The DDPM models are re-trained for each
speci�c number of di�usion steps, the DDIM is using
DDIM step skipping using a base model trained for 64
steps, and the distillation is the same model used for
DDIM progressively distilled down to 2 steps.

in a signi�cant reduction in the number of di�usion
steps required to generate samples, allowing us to train
our model that achieves highly competitive results
using just 64 di�usion steps. As our experiments show,
this can be ampli�ed by using the non-Markovian
DDIM sampler, which allows the model to skip sam-
pling steps during inference. The accuracy of our
model remains competitive with as few as 4 sampling

steps, and with 8 sampling steps, our model retains
99% of its accuracy and requires just 13% of the time
to generate trajectories.
We have also explored the use of progressive distil-

lation as an alternative means of model acceleration.
We have tried multiple model parameterisations and
loss functions, but despite converging, our experiments
show that the distilled models are unable to produce
realistic trajectories and are vastly outperformed by
models that are accelerated by the DDPM sampler. We
suspect the cause to be related to hyperparameters and
model implementation and defer further research into
this matter to future work.
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1. Additional DDIM Trajectory Samples

Figure 14: Compilation of randomly selected trajectories, generated using 8 DDIM sampling steps.
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