
Résumé of SCTP: Scene Compliant Trajectory

Prediction Using Diffusion and Point Clouds

For this thesis, we set out to improve upon the drawbacks of using Denois-
ing Diffusion Probabilistic Models (DDPMs) to do scene-compliant, pedestrian
trajectory prediction. The primary drawback of DDPMs is the notoriously
slow inference time, as the model is repeatedly evaluated for every timestep;
a critical aspect in some areas of trajectory prediction. Previous work have
applied DDPMs in this domain, both using trajectory-on-scene and traditional
trajectory generation approaches, but with inference speed remaining a critical
drawback in either. Our goal was then to strike a balance between achieving a
speedup in a DDPM-based and maintaining or improving upon the performance
of the model.

We present four contributions on the subject, making substantial strides to-
wards our goal; (1) we propose a DDPM-based model, SCTP, to do stochastic,
scene-compliant trajectories, (2) we propose using a point cloud representation
of the environment, incorporating only relevant parts of the scene thus improv-
ing inference time by decreasing the model size and consequently the compu-
tational burden, (3) to further improve inference time we utilise a leapfrogging
stage during inference, skipping 50% of the diffusion timesteps and effectively
increasing inference performance by 100%, and (4) we evaluate the model on
the PFSD benchmark dataset, demonstrating the models ability to outperform
state-of-the-art (SOTA) models on the minimum Average Displacement Error
(minADE) and Environment Collision-Free Likelihood (ECFL) metrics, and
remain competitive on the minimum Final Displacement Error (minFDE) met-
ric. Our qualitative results show five different cases, each in a different envi-
ronment, further detailing the performance of SCTP. Our model predicted 50
possible future trajectories for each case, and the general consensus across all
is its ability to generate natural trajectories that align with the environment.
They showcase the model’s ability to generate multiple possible directions when
presented with an environment containing a fork while showing a clear under-
standing of navigating in an enclosed space containing only a single exit, short
of turning around and backtracking its steps.

In summary, we have successfully achieved a much faster inference time
compared to previous DDPM-based work focused on scene-compliance, while
improving upon the performance metrics minADE, minFDE, and ECFL to
achieve SOTA performance.
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Abstract—The unpredictable nature of human be-
haviour is a critical aspect in the domain of trajec-
tory prediction, especially when viewed in the context
of autonomous vehicles. Generational models such as
Conditional Variational Autoencoders (CVAEs) or Gen-
erative Adversarial Networks (GANs) have been shown
to produce state-of-the-art results, however, there is still
room for improvements in areas such as the ability
to generate natural, collision-free predictions. Denoising
Diffusion Probabilistic Models (DDPMs) are a recent type
of generative model that has seen substantial adaptation
across fields such as image generation, audio synthesis,
and time series forecasting, but has yet to infiltrate
trajectory prediction thoroughly. In this paper, we make
further advancements in this domain, demonstrating
DDPMs’ ability to generate natural, scene-compliant
trajectories, capable of competing with state-of-the-art
methods through our proposed model, SCTP. We address
the slow inference time of DDPMs - a critical aspect
of trajectory prediction when viewed in the context
of autonomous vehicles - by adopting the leapfrogging
technique and a point cloud representation of the map
to decrease the inference speed by a factor of more than
two when compared to traditional approaches. We also
demonstrate that closed-loop predictions can perform
as well as state-of-the-art approaches, which commonly
generate the trajectories in a one-shot approach, allowing
the model to evaluate the map repeatedly, contributing to
its superior performance when generating collision-free
trajectories.

Index Terms—Trajectory Prediction, Denoising Diffu-
sion Probabilistic Model, Environmental alignment, Point
cloud

1. Introduction

Trajectory prediction is a subset of timeseries

prediction in which the goal is to predict the next

sequence of timesteps for a given trajectory. This task

has broad applications in fields such as autonomous

driving [1, 2], Robotics [3, 4, 5], Video Surveillance [6,

7], Sports Analytics [8, 9], Air traffic control [10]. The

requirements of a trajectory prediction model vary

across the fields, however, autonomous driving sets

a particularly high bar for the predictions, both in

terms of precision and speed. In this field, trajectory

predictions are often used in critical scenarios, such

as navigating through an environment containing

pedestrians or other moving agents [1, 2, 11, 12, 13].

The predictions thus have a safety-critical aspect
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Figure 1: Traffic scenario in which a) the border con-

strains are violated, putting the trajectory on collision

course with the vehicle and forcing a stop, and b)

border constraints are respected, allowing the vehicle

to pass the crossing.

and need to be computed in real-time to allow other

components of the autonomous vehicle to leverage

them. A prediction may either be of the vehicle

itself, or nearby pedestrians, the latter of which is

the subject of this research. To effectively leverage

predicted trajectories in the system of an autonomous

vehicle, the predictions need to be plausible and

adhere to environmental constraints, and thus

predictions which cross obstacles or collide with the

environment are unnatural and cannot be considered

viable. We illustrate the effects of disregarding scene

constraints in Fig. 1a, where an autonomous vehicle

is forced to come to a stop, as the prediction puts it

on a collision course with the pedestrian. In Fig. 1b

the constraints are respected, allowing the vehicle to

continue as normal. Furthermore, the intent of nearby

pedestrians, i.e. their destination, is an unknown

variable, which introduces a stochastic element into

trajectory predictions of this kind. This is illustrated

in Fig. 2a, where a single trajectory is predicted,

disregarding the possibility that a pedestrian might

use the crosswalk, whereas Fig. 2b addresses this issue

with multiple predictions, allowing the autonomous

vehicle to consider more than a single path.
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Figure 2: Traffic scenario in which a) the prediction

is deterministic and the crossing is not considered and

b) the prediction is stochastic, allowing the vehicle to

evaluate multiple options.

Some state-of-the-art (SOTA) models [11, 12, 13, 14]

also incorporate social interactions into their predic-

tions, leveraging how the movement and trajectories

of agents affect one another in a social context. Models

such as these appear to produce plausible trajectories

when viewed in this social context, but there is still

work to be done when considering environmental

constraints. [15] criticises previous work and the real-

world datasets they are tested on, making note of

the missing assessments of their ability to remain

scene compliant and the simple environments of these

datasets, which contain few to no scene constraints.

[16] compares the SOTA approaches of [12, 17, 18],

highlighting their inability to remain scene compliant

when the movement of an agent is constricted by a

more complex environment.

In much of recent work [12, 16, 17, 19, 20], the

stochastic element is captured through Variational

Autoencoders (VAEs) and Generational Adversarial

Networks (GANs), but recently, a new type of genera-

tive model have appeared, namely Denoising Diffusion

Probabilistic Models (DDPMs). Originally proposed by

Sohl-Dickstein et al. as Diffusion Probabilistic Models

to do image synthesis [21], the models were adapted

by Ho et al. to birth Denoising Diffusion Probalistic

Models[22]. In image synthesis, these models have

seen wide adoption [23, 24, 25, 26], and have also found

application in numerous other fields, including com-

puter vision [27, 28, 29, 30], audio synthesis [31, 32,

33], and lately, also time series forecasting, imputation,

and generation [34, 35, 36]. DDPMs do not suffer from

the mode collapse and unstable training prevalent in

GANs [26, 37, 38, 39], and have been demonstrated

as capable of predicting the natural, scene-compliant

trajectories for which VAEs have received critique[14,

40, 41]. However, DDPMs do have one prominent

drawback in the context of trajectory prediction -

inference time. The methodology of the model is to

gradually destroy a sample, e.g. by injecting pure

isotropic Gaussian noise, in a series of steps, and then

reverse the process by having the model reconstruct,

or denoise it, in a similar, but reverse, stepwise process.

This can be computationally expensive and signifi-

cantly slow down the inference process, as the number

of steps varies across applications, ranging from 100s

of steps as seen in [14] to 1000s in works such as [21,

22, 40]. [40] adopts a trajectory-on-scene approach,

leveraging the U-net architecture, but this approach

imposes a computational burden which makes the

model unfeasible for real-time predictions. Likewise,

using a CNN to encode a semantic map as seen in

[14] still result in inference times which are imprac-

tical, and while their trajectories look natural, their

experiments are conducted on the datasets critiqued

in [15].

Generally, the trajectory prediction problem

is approached as predicting the entire sequence

in one shot [12, 16, 17, 40, 42], as opposed to

predicting the points one at a time in a closed loop.

Closed-loop predictions have a few inherent issues

relating to the warranted stochastic, scene-compliant

predictions mentioned previously; error propagation

and expensive computation. The trajectory sequences

found in evaluation datasets like [16, 43, 44]

sample only short time frames (4.8-6 seconds)

with 8-12 prediction steps, and while inaccurate

initial predictions can lead to error accumulation

in subsequent predictions, if a stochastic model

adequately represents the data distribution, the

impact of error propagation within these time frames

is minimal. Even if an initial prediction deviates from

the ground truth, it should still be plausible with a

sufficiently capable stochastic model. Still, iterative

prediction requires more computational resources

and time compared to one-shot methods, as previous

predictions need to be calculated before subsequent

ones. This limitation hampers real-time inference but

offers an advantage in terms of scene compliance, as

the scene can be reevaluated from the perspective of

the agent’s next predicted position, and only the parts

of the scene which are relevant to the next step; an

interesting prospect in the context of DDPMs, as the

prominent approach to increase inference speed in

production-grade image generation DDPMs[24, 45], is

to reduce the dimensionality of the predicted samples,

and subsequently upsample them.

Preliminary works on DDPMs regarding our desired,

scene-compliant trajectories have shown promising
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results, but the scarce literature warrants further re-

search on both the subject of scene compliance and

inference speed, as the current approaches are im-

practical. We address these limitations through a series

of contributions, leveraging the capabilities of DDPM

models in a closed-loop approach to generate natural,

scene-compliant trajectories, and incorporate SOTA

methods to confront the issues of inference speed. Our

contributions can be summarised as follows:

• We propose a stochastic, scene-compliant model,

SCTP, based on DDPMs, to address the inability

of traditional approaches to generate natural-

looking, collision-free trajectories. This approach

is much easier to train compared to GANs as it

does not suffer from unstable training and mode

collapse, and compared to VAE-based approaches,

it is capable of generating natural-looking trajec-

tories.

• Leveraging the advantages of closed-loop pre-

dictions, we propose using a Euclidean distance,

point cloud representation, incorporating only

relevant parts of the scene to improve inference

time and alleviate the computational burden im-

posed by including the scene in its entirety; a

critical consideration when leveraging DDPMs.

• We make further improvements on the inference

time of DDPMs for trajectory prediction, skipping

large parts of the reverse diffusion process using

a leapfrog technique, increasing inference perfor-

mance by 100%. This has a negligible impact on

the performance metrics and brings DDPM-based

approaches much closer to real-time performance.

• We evaluate the performance of our proposed

model on the PFSD benchmark dataset and com-

pare it with existing SOTA trajectory prediction

methods. The experimental results demonstrate

that our model achieves competitive accuracy and

outperforms previous models in terms of scene

compliance.

2. Related Work

1. Trajectory Predictions
Trajectory prediction in the context of human mo-

tion presents a multitude of challenges that need to

be addressed, not least of which is alignment with

the environment to produce collision-free, realistic

trajectories. In this section, we highlight recent work

done in the field to address this issue.

Many works incorporate scene information as ras-

terised images or graphs [12, 16, 17, 18, 19, 20, 46], but

as noted by [15], much of prior work lacks an evalua-

tion of the performance benefits and ability to produce

trajectories that respect environmental constraints.

They also note that many real-world datasets are

simple in nature, with the majority of samples contain-

ing little to no agent-to-environment interaction for

pedestrian samples, as they usually navigate in open

spaces. To combat this, their contributions include the

Environment Collision-Free Likelihood (ECFL) metric

as a means to evaluate a model’s ability to generate

collision-free trajectories and the A2X dataset which

addresses the limitations of existing real datasets by

incorporating simulated crowd egress and complex

navigation scenarios, compensating for the absence

of agent to environment interactions found in other

datasets. The A2X dataset is based on the concept of

social force, which was later adopted by [16] to birth

the Path Finding Simulation Dataset (PFSD), a com-

plex binary navigation environment, with both open

spaces and multiple narrow corridors. [12] proposes

a stochastic model which accounts for the dynamic

movement of other agents (agent-to-agent interaction),

and which is able to incorporate information about the

scene specifically to avoid border violations (agent-to-

environment interaction), where they encode the map

using a CNN, the effect of which is an overall 1%

border violation on datasets such as [47, 48], down

from 4.6% without the map encoding according to

their ablation study. Their work is used as a base

of comparison in many recent SOTA models[16, 17,

42, 46]. However, their experiments are conducted on

the datasets which received critique in [15]. [17] also

uses a convolutional network to encode a map, but

provide no quantitative measurements regarding colli-

sions or border violations. [49] introduces the concept

of goals under a time constraint to represent the innate

desire of pedestrians to reach some predetermined

destination. Using particle filters to uniformly model

the probability distribution of goals as a discretised

grid, they incorporate the map as a prior distribution,

to reflect the likelihood that a pedestrian will enter

some grid cell if occupied by an obstacle. [18] uses a

more complex variant of the convolutional approach

above, leveraging the U-net architecture to encode the

information about the scene by adopting a trajectory-

on-scene approach, in which they process and predict

the trajectory in the same space as the map - a ras-

terised image. However, they too incorporate goals as

predicted long-term and intermediate goals to capture

the uncertainty of the future trajectories. They modify

the U-net architecture to include two decoders - one

which produces a goal and way-point heatmap, and

one which produces a trajectory conditioned on the

goal and waypoint heatmap. Their approach to incor-

porating goals was later used by [16], who proposed

a three-stage model, where each stage predicts first
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the long-term goal, then the intermediate goals, and

lastly the final trajectory. [16] also provide insight into

the quantitative performance of [17], [12], and [18]

on environmental alignment, showcasing that while

they do take the same approach to map encoding,

their performances vary across the datasets NuScenes,

SDD, and PFSD [16, 43, 44]. Incorporating goals in this

way inherently encodes information about the map,

as was demonstrated in the ablation studies of [40]

and [16]. [19] is another three-stage model, where the

first stage proposes an initial set of targets, the second

estimate a trajectory for each target, and the last ranks

trajectory predictions and outputs a final set of K-

predicted trajectories. They take two approaches to

incorporate the scene, depending on the dataset. If the

map is only available as a rasterised image, they use a

convolutional approach as the previous approaches. If

a High Definition semantic map is available, they make

use of VectorNet[50], encoding the map by extracting

features such as road lines, traffic signs, and other

relevant information.

2. Denoising Diffusion Probabilistic Models
Research on the use of DDPMs in the trajectory

prediction domain remains limited, but preliminary

results have been favourable [14, 40, 42], however,

the slow inference time of DDPMs poses a significant

challenge. In production image generation models such

as [24, 45], reduction of inference time is accomplished

by generating an image of a much smaller dimension-

ality and subsequently upsampling it using a different

technique. [51] and [52] explores a teacher-student

approach, progressively distilling a teacher DDPM into

a student DDPM, which requires fewer steps to sample

from. [53] takes another approach, proposing Denois-

ing Diffusion Implicit Models (DDIMs), which gen-

eralises the traditional Markovian process, on which

DDPMs are based, to a non-Markovian one. They

demonstrate that using non-Markovian diffusion pro-

cesses can lead to a shorter generative Markov chain,

resulting in increased sample efficiency with only

a minor impact on sample quality. [42] specifically

addresses the issue of inference time in trajectory

prediction DDPMs by introducing a neural network

which enables skipping a large amount of the initial

diffusion steps through a leapfrogging technique, dif-

fusing the first δ steps in one-shot, and thus drastically

lowering the inference speed, while maintaining SOTA

performance. [14] demonstrates a transformer-based

trajectory prediction DDPM able to capture the scene

and social context to produce paths comparable with

SOTA. Their approach leverages the social encoder

of [12] as a conditional framework. However, they

X

Forward Process
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X

Reverse Process

XX X
0 tt-1 T

q(xt | xt-1)

q(xt-1 | xt)

Diffusion Process

pθ(xt-1 | xt)

Figure 3: The Markov chains of forward and reverse

diffusion: Each transition in the forward diffusion

process adds noise to destroy structure in the data.

Conversely, each transition in the reverse diffusion

process removes noise to create structure in the data.

also note the slow inference time, with their model

being almost 40 times slower than the model on which

they base their work[12]. [40] demonstrates another

DDPM-based approach, in which they focus on di-

verse, collision-free trajectories. Their model takes a

multi-stage, trajectory-on-scene approach, in which

they layer predicted long-term goals, the observed

trajectory and noised future trajectory on top of the

scene to produce an image which is subsequently

denoised. Their results demonstrate trajectories which

are natural, diverse and close to collision-free, but they

too note the slow inference time.

3. Preliminaries

1. Denoising Diffusion Probabilistic Models

The intuition behind DDPMs can be described as

two separate, stochastic processes; the forward dif-

fusion process, which gradually destroys a sample

through a sequence of steps, and the reverse diffusion

process, which reconstructs or denoises in a similar,

but reversed, sequence of steps. This idea can be seen

illustrated in Fig. 3. The forward process produces

a sequence of stochastic variables, (x1, x2, . . . , xT )
through a Markov process. This sequence is obtained

by applying the transition kernel q(xt|xt−1) to a data

sample, x0, from the training data. For the forward

process we leverage the original work by [21], where

the transition kernel is a Gaussian perturbation of the

previous state.
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q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt is defined according to some fixed variance

schedule, {βt ∈ (0, 1)}Tt=1, such that β1 < β2 <
. . . < βT . Defining the transition kernel as Gaussian

perturbation allows us to marginalise the joint condi-

tional probability q(x1, x2, · · ·xT |x0), as the product

of Gaussian probability functions is also a Gaussian

probability function

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏t

s=1 αs and αt = 1 − βt. This allows

us to obtain xt directly without applying q(xt|xt−1)
repeatedly. Given a data sample x0 from the training

set, we can obtain the noised version of the sample

at that timestep xt, according to the fixed variance

schedule as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

where ϵ ∼ N (0, I).

The reverse process then involves iterating back-

wards through the sequence (xT , xT−1, . . . , x1), us-

ing the transition kernel q(xt−1|xt). The probability

distribution q(xt−1|xt) is an unknown, but can be

approximated using a neural network pθ as illustrated

in Fig. 3. As above, using Gaussian perturbation for

the transition kernel, we have

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)),
(4)

where µθ(xt, t) is the mean and Σθ(xt, t) the vari-

ance of the predicted Gaussian probability distribution.

For the reverse process, we leverage the work by [22],

predicting the added noise rather than the mean of

the conditional probability distribution as originally

shown by [21]. We thus use the reparameterisation

of the mean seen in [22]

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵ0(xt, t)) (5)

where ϵθ(xt, t) is an approximator intended to pre-

dict the added noise ϵ to a noised sample xt. We can

then model the approximator ϵθ(xt, t) using a neural

network with the training objective

Lt = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t))∥2

]
(6)

= Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
(7)

where x0 is an uncorrupted sample from the train-

ing data set and ϵ N (0, I). It is important to mention

that we, similar to [22], also maintain a constant

variance due to their empirical findings indicating that

it has minimal impact on the outcome.

2. Problem Definition
For the scene compliant trajectory prediction

problem described in Sec. 1, we define the past

positions of an agent at times t1, t2, . . . , tn as

Z = z1, z2, . . . , zn, where zt ∈ R2
represents

coordinates in a Cartesian plane. The future and

predicted position at times tn+1, tn+2, . . . , tn+j are

then defined as Y = yn+1, yn+2, . . . , yn+j for future

positions and Ŷ = ŷn+1, ŷn+2, . . . , ŷn+j for predicted

positions, where ŷt ∈ R2
and yt ∈ R2

are coordinates

in the same Cartesian plane as Z .

Given a semantic map M , the task is then to predict

Ŷ such that any point ŷt aligns with the environ-

mental constraints, i.e. ∀ŷ ∈ Ŷ E(ŷ) = 1, where E
is a binary representation of M with 1 representing

navigable, collision-free space and 0 representing non-

navigable space. In adhering to these environmental

constraints, we also want to maintain performance and

produce natural trajectories.

4. Methodology

1. Overview
For the trajectory prediction problem described in

Sec. 3.2, we leverage DDPMs described in Sec. 3.1 as

a stochastic generative framework, opting for a (i)

closed-loop prediction approach, using each predicted

timestep to predict the next in an autoregressive

manner, and (ii) use polar coordinates to represent the

trajectories as velocity changes relative to an agent’s

current heading. We use the same notation as Sec. 3.2

to describe these trajectories, denoting the past

trajectory as pt, future trajectory ft, and predicted

trajectories f̂ t. Given a semantic map representation

M and the past trajectory pt as relative polar velocity

changes, we predict f̂ tn+1 using a transformer-based

network modelling pθ(xt−1|xt) to diffuse a random

Gaussian into x0 and applying Eq. 5. The entire

predicted trajectory f̂ t can then be constructed by

continually adding the newly predicted f̂ tn+1, to

the past trajectory pt, and diffusing a new random

Gaussian to get f̂ tn+2 in the same manner. We then

obtain the future positions Ŷ by converting the polar

values of f̂ t into Cartesian values and integrating to

find the Cartesian coordinates.
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pc4 0

pc2

pc3

pc1

Figure 4: A depiction of the point cloud, used as input

to the model, on the map showing how far each point

reaches before it either hits max distance or a wall.

The point cloud is represented in pink and the past

trajectory is blue. The last point of the past trajectory,

i.e. the point in the centre of the image, is the centre

of the point cloud.

We alleviate the DDPM inference burden high-

lighted in Sec. 1 through the application of strategies

described in Sec. 2.2, by reducing the dimensionality

of M , and, by employing a leapfrogging layer to skip

large parts of the reverse diffusion process in Sec. 3.1.

Under the closed-loop approach mentioned previously,

we reduce the dimensionality of M by considering

only the parts of the map relevant at each step.

To accomplish this, we encode the relevant part as

uniform, euclidean distance point cloud pcu, capturing

a limited number of points u in an arc centred around

an agent’s last known position, to reflect collision-free

directions. This drastically reduces the dimensionality

compared to a rasterised image representation of size

w × h, as in our case w × h ≫ n. We illustrate this

point cloud representation on Fig. 4, where a rasterised

representation of size 160×160 from the PFSD dataset

is reduced to a point cloud of size 40. We then make

further inference speed improvements by employing

a teacher-student strategy, training a similar network

to model a transition kernel hθ(xτ |xT ) which skip δ
steps of the reverse diffusion process, leaving pθ to

only diffuse the remaining τ steps. We illustrate this

on Fig. 5.

2. Model Architecture
The model is based on the transformer-encoder

architecture, which have previously been used as the

foundations for DDPMs with SOTA performance. The

transformer architecture affords us a couple of advan-

Leapfrog

X X X X
T τ τ-1

X XX XX XT τT-2 τ-1T-1 0

0

Leap δ steps

pθ(xt-1 | xt)

pθ(xt-1 | xt)hθ(xτ | xT)

Figure 5: A regular diffusion reverse process at the

top, with the corresponding diffusion process using a

leap step to skip the first δ steps at the bottom.

tages. Firstly, Transformers are specifically designed

for sequence modelling tasks, making them well-suited

for trajectory prediction tasks where historical infor-

mation plays a crucial role; and as noted and demon-

strated by [14], they are well equipped to capture

the temporal dependencies of trajectories. Secondly, a

key component of the transformer architecture is the

attention module, which is particularly beneficial for

trajectory prediction as it allows the model to attend

to the relevant spatial and temporal context while

predicting future trajectories. In Fig. 6, we illustrate the

model architecture from a training perspective. The

model takes as input the point cloud representation

pc40, the past trajectory pt, and the next noised polar

coordinate f̂pn+1 at some diffusion timestep t. Follow-

ing [54], we embed t with a Sinusoidal Position Em-

bedding, followed by two linear layers sandwiching a

ReLU layer. This embedding is then concatenated with

the contextual information pt and pcn before passing

it through a ConcatSquashLinear (CSL) upsampling

layer to match the dimensions of the transformer-

encoder. Before passing it to the transformer, we add

a positional embedding to the input as is common in

transformer-based networks. Lastly, using three CSL

layers, we progressively downsample the output of the

transformer to the original dimensions of the noised

input. The loss between the estimated noise ϵ̂ and the

actual noise ϵ is then computed using the Huber loss

function seen in Eq. 8.

LHuber =

{
1
2
(ϵ− ϵ̂)2, if |ϵ− ϵ̂| < 1

|ϵ− ϵ̂| − 1
2
, otherwise

(8)

In Fig. 5, we illustrate the leapfrogging technique,

skipping δ diffusion steps, where δ = (T − τ). The

approach is similar to the above, but rather than

modelling the transition kernel pθ(xt−1|xt) for all

timesteps, we introduce a transition kernel hθ(xτ |xT )
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Linear
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Transformer Encoder

CSL
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Training Loss (Huber)

Postional

Encoding
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Figure 6: Diagram of our model architecture, showing

how the different inputs are combined before being

passed through the model. ×N denotes the number

of transformer layers.

skipping δ steps in a single step, where xT is pure

Gaussian noise and xτ is the noised sample at δ
skipped steps. Unlike the leapfrog technique described

in [42] where they construct separate modules to

predict the mean and variance, we take inspiration

from the distilling approach described in Sec. 2, and

use the previously described model as a teacher to

train the leapfrog model as a student. The leapfrog

model is then tasked with diffusing xT to xτ in one

step. During training, the teacher model is sampled δ
steps, starting from the same pure Gaussian noise as

given to the student model, to get the noise at xτ , the

training target of the student model. Like the teacher,

the student also uses the Huber loss function (Eq. 8).

At inference, the process is twofold; the leapfrog

model is given the pure Gaussian noise at xT and

Figure 7: A sample from the PFSD dataset showing

a scene with the past trajectory shown in blue and

future trajectory shown in red.

outputs the intermediate noise at xτ . This is subse-

quently passed to the original model to further denoise

in the remaining τ steps, to arrive at x0. Utilising the

leapfrog model during inference, enables the whole

diffusion process to be reduced from T diffusion steps

to (τ + 1) steps.

5. Experiments

1. Experimental Setup
We conduct our experiments on the PFSD dataset

which is a synthetic dataset comprising a total of

50,000 scenes. Leveraging the Social Force Model,

this dataset simulates the navigation of agents

within scenes that are more complex to navigate

than that of traditional datasets like [43, 44, 47,

48]. The PFSD dataset provides a native binary

environment consisting only of navigable and non-

navigable space. This makes the dataset ideal for our

purposes, as it allows us to demonstrate the model’s

ability to navigate between obstacles, whereas the

aforementioned datasets have different classes of

navigable space, i.e. pavement, roads, terrains and

medians that divide them. This proves a significant

issue for the approach mentioned in Sec. 4.1, as

trajectories usually follow the navigable space they

are on, but may cross into other classes. The point

cloud representation mentioned in Sec. 4.1 is not

sufficient to capture this, as it only relies on the

distance to obstacles, leaving the model to consider

all navigable spaces as equal. The dataset provides

trajectories as sequences of 20 points, split into 8

observed points and 12 future points. These points

include the actual position, the velocity, and the

acceleration. The scene provided is a localised view

8



of the environment, centred around the agent’s last

observed position. In Fig. 7, we have included a

sample from the dataset, plotting out the observed

and future trajectories on the corresponding scene.

As mentioned in Sec. 4.1, we predict the velocities

as relative polar coordinates rather than Cartesian

coordinates. PFSD provides its values as Cartesian, so

we convert them to relative polar for training. The

point cloud pc is constructed by taking the agent’s

last observed position and determining the distance

to nearby obstacles in an arc around the position.

For illustration, we refer to the previously mentioned

Fig. 4, where we use a radius r of 70 pixels and a

number n of 40 points to represent the environment,

as is done in the experiment. The dataset is split

into training, validation, and testing sets, following

common conventions and best practices.

We train both the teacher and student for 5000

epochs, using the Adam optimiser [55] with a learning

rate of 0.001. We use a linear scheduler to obtain beta

values, with values starting at 0.0001 and progressing

to 0.02. Both models are then trained on a batch

size of 128. The transformer-encoder is of size 64,

with 4 attention heads, 3 layers, and a feedforward

layer of size 256. The first CSL layer upsamplse

to size 64, while the subsequent ones progressively

downsample the output of the transformer from 64
to 32, then further to 16 dimensions, and finally to

2 dimensions. These parameters were found through

empirical experiments, leaving tuning as future work.

2. Evaluation Metrics
For evaluating the performance of our approach, we

employed the standard evaluation metrics minimum

Average Displacement Error (minADE), minimum

Final Displacement Error (minFDE) as is common

in most SOTA approaches [12, 16, 17, 18, 40], and

crucially, Environment Collision-Free Likelihood

(ECFL) [15, 16, 40], to showcase the models

ability to generate natural, collision-free trajectories.

These metrics enable a quantitative assessment of

the accuracy and usability of our model. Prior to

evaluation, the predicted relative polar velocities are

converted back to Cartesian positions to reflect the

expected units of the formulas.

The average displacement error denotes the average

Euclidean distance between each pair of the predicted

positions and the actual future positions. The mini-

mum ADE is then the best of these values across k
predictions. The formula for minADE can be seen in

Eq. 9

minADE(Ỹ , Y ) =
k

min
i=1

ADE(Ŷi, Y ) (9)

where Ỹ = [Ŷ1, Ŷ2 . . . , Ŷk], the set of k predicted

future trajectories. The final displacement error de-

notes the Euclidean distance between the last predicted

point of the predicted position and the actual future

position. The minimum FDE is then the best of k
predictions. The formula for minFDE can be seen

in Eq. 10

minFDE(Ỹ , Y ) =
k

min
i=1

FDE(Ŷi, Y ), (10)

where Ỹ again is the set of predicted future trajec-

tories. ECFL reports the probability that the model

predicts a path that is free of collision with the

environment. For all k predictions, the percentage of

collision-free predicted trajectories are computed using

the formula seen in Eq. 11

ECFL(Ỹ , E) =
1

k

k∑
i=1

tn+j∏
t=n+1

E[Ỹi,t,0, Ỹi,t,1]. (11)

where E is the binary matrix representation of the

environment, with values of 1 representing navigable

space and values of 0 representing non-navigable

space. The metric classifies all predictions into either 1
or 0, depending on whether any point on the predicted

trajectory is positioned inside the environment. The

classifications are then averaged across all predictions

to find the percentage of colliding trajectories.

3. Quantitative Results

The evaluation of our model on the PFSD dataset

shows our diffusion-based model with leapfrog skip-

ping δ = 50 of the first Γ = 100, is able to outperform

existing SOTA methods in most metrics, both on k =
20 trajectories and k = 50 trajectories. The results can

be seen listed in Tab. 1. While a closer look reveals that

our model on k = 20 outperforms all other methods

on minADE and ECFL, the minFDE metrics still

remain competitive in its results, by only differing 0.02
from the best model AgentFormer. Our model with

k = 50 shows results that either surpass or match

current SOTA models. Compared to k = 20 it now

matches the results of AgentFormer on minFDE,

with a result of 0.09. More noticeable are the other

metrics minADE and ECFL, which outperform

SOTA; minADE improves compared to k = 20,

while the ECFL metric takes a small hit of 0.01%.
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Table 1: Results on the PFSD dataset for k = 20 and

k = 50 predictions, using the leapfrogging method to

skip 50% of the diffusion steps. The predictions use 3.2

seconds (8 frames) for observation and 4.8 seconds (12

frames) for the prediction. The errors are measured in

meters and the best results are shown in bold with

the second best represented by underline.

PFSD Results

k Model minADE ↓ minFDE ↓ ECFL ↑

20

Trajectron++ [12] 0.17 0.37 83.22

Y-Net [18] 0.13 0.20 91.52

AgentFormer [17] 0.08 0.11 94.54

MUSE-VAE [16] 0.09 0.19 97.40

MEAT-DDPM [40] 0.34 0.36 99.08

Ours 0.07 0.13 99.86

50

Trajectron++ [12] 0.14 0.25 83.39

Y-Net [18] 0.09 0.12 91.74

AgentFormer [17] 0.08 0.09 95.37

MUSE-VAE [16] 0.07 0.13 97.50

MEAT-DDPM [40] 0.31 0.28 99.11

Ours 0.06 0.09 99.85

4. Qualitative Results

We illustrate the performance of our model by

showcasing the model’s performance as it moves

through the environment, and a few cases demonstrat-

ing the predictions on various environments of the

PFSD dataset. In Fig. 8 we see the trajectories trend

towards the closest opening from its current heading,

demonstrating that our model does indeed interpret

the environment in a sufficient manner. As it moves

through the environment, the trajectories then fan out

as the included environmental details pose no further

restrictions on the possible trajectories - the space in

front of it is more or less open. In Fig. 9 we see 5

cases from the predictions on the PFSD dataset. Case

1 shows the model’s ability to capture the temporality

of the past trajectory in relation to the map, dis-

continuing the turn and proceeding straight ahead in

accordance with the environment. Cases 2 and 3 show

the model is capable of generating multiple different

trajectories based on the environment. Both cases con-

tain adjacent rooms which are accessible, showcasing

the model’s ability to capture the stochastic nature of

trajectory prediction. Cases 4 and 5 show scenarios

where there is only one possible direction, based on

the past trajectory, and highlight the model’s ability

to understand and follow the environment towards the

only opening ahead, while still fanning out in multiple

possible directions as it moves through the corridor

and into open space.

Table 2: Results of the ablation study on the PFSD

dataset using k = 20 predictions and k = 50, 3.2

seconds (8 frames) for observation and 4.8 seconds

(12 frames) for prediction. The errors are measured

in meters and the best results are shown in bold with

the second best represented by underline.

Ablation Study

k Leapfrog steps minADE ↓ minFDE ↓ ECFL ↑

20

0% (baseline) 0.06 0.12 99.83

25% 0.07 0.15 99.89
50% 0.07 0.13 99.86

75% 0.12 0.29 95.02

90% 1.41 2.91 78.82

50

0% (baseline) 0.05 0.08 99.83

25% 0.06 0.10 99.86
50% 0.06 0.09 99.85

75% 0.08 0.15 94.90

90% 1.19 2.45 78.99

5. Ablation Study

In Tab. 2, we present an ablation study that aims

to investigate the influence of skipping different pro-

portions of diffusion steps using the leapfrog method

discussed in Sec. 4.2. The purpose of this study is to

understand the impact of reducing the computational

cost of the diffusion process on the overall perfor-

mance of our proposed model. We establish a baseline

by considering the results obtained when none of

the diffusion steps are skipped. The baseline model

is competitive with AgentFormer, closing the gap on

minFDEk=20 by 0.01, and outperforms remaining

models on all metrics, similar to the proposed solution

as seen in Sec. 5.3. Next, we explore the effects of

skipping 25% and 50% of the diffusion steps. These

reductions have a minimal impact on the performance,

and the model remains competitive with other SOTA

models, as described in Sec. 5.3. This suggests that

certain portions of the diffusion process can be safely

omitted using the leapfrogging technique, leading to

a significant reduction in computational requirements

while maintaining comparable performance. However,

as we proceed to skip 75% and 90% of the diffused

steps, the negative impact on the model becomes

evident. Across all evaluation metrics - minFDE,

minADE, and ECFL - the performance degrades

significantly with the increasing number of skipped

steps. These results highlight the importance of a

sufficient number of diffusion steps for capturing in-

tricate details and predicting accurate future trajecto-

ries. Nonetheless, it is worth noting that the ablation

study reveals a noteworthy improvement: by reducing

the inference time of the diffusion process by 50%
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(a) Y = yn+1 · · · yn+12 (b) Y = yn+3 · · · yn+15 (c) Y = yn+6 · · · yn+18

Figure 8: The figure shows k = 50 prediction at three different points in time, to illustrate the models ability to

evaluate the environment as the agent progresses through it. They are spaced 1.2 seconds apart (3 frames). The

blue points represents past trajectory, red points are ground truth future trajectory and green is the predicted

future trajectories.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5

Figure 9: The figure shows k = 50 prediction at 5 differing environments from the dataset PFSD, demonstrating

its ability to interpret the map and capture the stochastic element of trajectory predictions.

with negligible performance impact, we achieve a

drastic increment in computational efficiency. Overall,

the ablation study provides insights into the trade-

off between computational efficiency and prediction

performance in our proposed model, shedding light on

the significance of the diffusion steps and offering a

balance between accuracy and efficiency in trajectory

prediction tasks.

6. Conclusion

In this paper, we make further advancements in the

field of trajectory prediction, demonstrating DDPMs

as a viable option for generating scene-compliant

trajectories. The proposed model, SCTP, predicts tra-

jectories in a closed-loop, using previous predictions to

predict subsequent ones and a point cloud to represent

the environment. The point cloud is a collection of

Euclidean distance values uniformly distributed in

an arc around the agent’s last position, reflecting

collision-free directions as perceived by the agent.

This proves an effective way of representing the map,

as the model scores best in class on the intended

PFSD dataset, outperforming other SOTA models on

the collision evaluation metric ECFL and average dis-

placement metric minADE, and remains competitive

on the final displacement metric minFDE, as can be

seen in Sec. 5.3. We make further demonstrations in

Sec. 5.4, showcasing the model’s ability to generate

natural, scene-compliant trajectories which align with

the environment. Following recent advancements in

the field, we built our model on the transformer ar-

chitecture, and address the notoriously slow inference

time of DDPMs through the reduced semantic map

representation of the point cloud, and by employing

a leapfrogging stage during inference, skipping 50%
of the diffusion steps with a negligible performance

impact. The leapfrogging stage alone thus nets us

a 100% increase in inference performance, bringing

DDPM-based trajectory prediction models much closer

to viable, real-time predictions.
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1. Future Work and Limitations
The PFSD dataset, on which we conduct our experi-

ments, does not contain interactions with other agents,

as has been done in some prior work (see Sec. 1).

Research into this aspect of trajectory prediction is

thus warranted to further the advancement of DDPMs

as viable candidates for trajectory prediction. Further-

more, the model operates under continuous movement

in a binary environment, which leaves several points

for future work. Firstly, the model is incapable of

handling datasets such as those provided by [43, 44]

in a sufficient manner, due to the n-ary environment

detailed in Sec. 5.1. Secondly, while the model is able

to aptly interpret the environmental constraints, the

point cloud representation is not adequate to represent

neither the complex intents of pedestrians or points

of interest, as it is composed of Euclidean collision

distances. Lastly, further experiments are required to

cement our approach as a general solution. Evaluating

the model under different circumstances than contin-

uous movements, such as an agent coming to a stop,

slowing down significantly, or when making more

erratic movements would strengthen that position.

On the subject of inference time, and despite our

efforts in reducing the computational burden of the

forward diffusion process, there is still room for im-

provement, and augmenting our approach with an-

other technique, or replacing it with a better alter-

native is also a possible point for future work.
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