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Synopsis:

Throughout this thesis, the acoustic black
hole effect is investigated for cylindrical
shells, using a theoretical, analytical, and
academically motivated approach through the
framework of thin shell theory. Asymptotic
solutions to the dispersion equation for
the cylindrical shell are obtained, and the
acoustic black hole effect is investigated
through numerical evaluation of the reflection
coefficient and through the divergent nature
of the anti-derivative of the asymptotic
wavenumber expression. A hierarchy of
models is investigated, including simple
Bernoulli Euler beams, flat plates, curved
plates, beams on Winkler foundations, and
of course the full cylindrical shell. It is
shown, that there is an analytical basis for
the acoustic black hole effect in cylindrical
shells and that the effect can be obtained in
a similar manner as for beams and plates.
An interesting property of the cylindrical shell
is, however, that the effect should not be
expected in the low-frequency range, even
if a termination profile could be designed,
resulting in sufficiently low Normalized Wave
number Variation at lower frequencies.



Preface
Throughout my time at Aalborg University, I have been fascinated by the intricacies of structural vibrations
and the potential for innovation in this field. The phenomena we observe are just the right balance between
intuitive and absolute magic, and I am repeatedly amazed by the ways in which the behaviour of vibrating
structures can be understood and harnessed for practical applications. From designing acoustic metamaterials
to creating new musical instruments, the possibilities seem endless. I look forward to continuing to explore this
fascinating area of study and contributing to the ongoing advancement of structural vibration research.

This report is a result of a Master’s Thesis, written in the fourth and final semester of “Design of Mechanical
Systems” (DMS) at Aalborg University. All figures in the report are created by the Author. References are
indicated by square brackets [#] and are listed in the Bibliography at the back of the report in order of
appearance. Equations are indicated by parenthesis (#). Appendices are indicated by letters and appear at
the back of the report. An extensive nomenclature list can be found for each chapter on page vi.

Special thanks to Lasse Søgaard Ledet, Head of Electronics Design & Simulation at Grundfos, for his supervision
during the project.
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Summary
The project begins with an introductory examination of the acoustic black hole effect for a simple Bernoulli
Euler waveguide. It is explained how the effect is obtained from a gradual reduction of the flexural rigidity of
the waveguide, typically through a gradual reduction of thickness. It is explained how the mathematical model
is based on assumptions related to how slowly the reduction should occur, and how a too abrupt reduction
in thickness violates the model validity. It is explained how for the idealized case where the thickness of the
waveguide is reduced to zero, the acoustic black hole effect can be investigated through the divergent nature of
the anti-derivative of the wavenumber. For a more realistic case where a residual height is present at the tip of
the acoustic black hole, a numerically evaluated reflection coefficient can be used to assess the performance of
the acoustic black hole.

The cylindrical shell model is introduced and briefly explained. The dispersion equation for the shell is derived
and acts as the point of departure for the subsequent acoustic black hole analysis, which is split into three
separate analyses of the breathing mode (m = 0), the bending mode (m = 1) and finally the ovalling mode
(m = 2). The analysis of these modes is performed in three steps: First, a numerical solution is obtained for
the dispersion equation. Secondly, low-frequency asymptotic solutions are obtained for the purely real-valued
parts of the individual dispersion branches. Thirdly, the asymptotic wave number solutions are investigated
for the acoustic black hole effect. The acoustic black hole effect is not observed from this initial low-frequency
analysis for any m-spectrum.

To gain a better understanding of why the effect seemed to be absent in the low-frequency range of the
cylindrical shell, a more rigorous investigation is conducted, by investigating the underlying differential equations
of different models, where the effect is known to be present. The analysis starts from a simple flat plate carrying
flexural waves, and it is shown how the effect can be obtained for this geometry. A model of a curved plate
is investigated next, and it is found that the effect is absent in this case. It is attempted to identify which
differences in the differential equations may cause the effect to be present in one case, and absent in the other.
It is shown how the effect can be obtained in the low-frequency range for the curved plate (and cylindrical
shell) in the breathing mode if Poisson effects are neglected. It is also attempted to make the effect appear
in the bending- and ovalling mode of the cylindrical shell, by the introduction of material- and kinematic
assumptions, but this is not successful. To investigate why this was not successful, a modal-coefficient analysis
is performed. This shows how the flexural-dominated wave in the cylindrical shell also exhibits substantial
longitudinal motion in the low-frequency range. This longitudinal motion diminishes with increasing frequency,
which inspires the effort to obtain a high-frequency solution for the flexural wave numbers in the model with
imposed material- and kinematic assumptions. The high-frequency solution shows the acoustic black hole effect
to be obtainable. The analysis then returns to the original cylindrical shell, with no material- nor kinematic
assumptions. Again, modal-coefficient analysis is performed and it is found that here the flexural-dominated
wave also exhibits substantial longitudinal motion in the low-frequency range, which again diminishes with
increasing frequency. A high-frequency solution is found for the flexural wave numbers of the cylindrical shell,
and it is shown how the acoustic black hole effect is obtainable in this frequency range, for any m-spectrum,
when employing a power-law termination profile with power n ≥ 2. As a final investigation, the acoustic black
hole effect is investigated for waves propagating in the circumferential direction of the cylindrical shell. Here it
is found that the effect is also present when employing a power-law termination profile with power n ≥ 2.
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Nomenclature
Abbreviations

SRQ - Sub-Research Question
MRQ - Main-Research Question
WKB - Wentzel–Kramers–Brillouin
NWV - Normalized Wave number Variation

Chapter 3
h0 [m] - Height of beam outside termination profile
xE [m] - abscissa of the acoustic black hole
h(x) [m] - x-dependent height defining termination profile
E [Pa] - Young’s Modulus
I [m4] - Area moment of inertia
x [m] - Position along beam
w [m] - Lateral deflection of beam
ρ [kg/m3] - Material density of beam
A [m2] - Area of beam
t [s] - Time
kx [m−1] - Dimensional wave number
i [-] - Imaginary unit
ω [s−1] - Dimensional angular frequency
ϵ [-] - Constant driving length of power-law termination profile
n [-] - Exponent constant driving shape of power-law termination profile
hr [m] - Residual height at tip of termination profile
E0 [Pa] - Nominal real-valued Young’s Modulus
η [-] - Complex proportion of Young’s Modulus
R [-] - Reflection Coefficient
k [-] - Dimensionless wave number
Ω [-] - Dimensionless Frequency
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Chapter 4
m [-] - Circumferential wavenumber
x [m] - Position along shell
θ [-] - Angular position on shell
E [Pa] - Young’s Modulus
ν [-] - Poisson’s ratio
ρ [kg/m3] - Material density of shell
um [m] - Longitudinal motion of shell mid-plane
vm [m] - Circumferential motion of shell mid-plane
wm [m] - Radial motion of shell mid-plane
L [m] - Length of shell
R0,R [m] - Mid-plane radius outside acoustic black hole
h0,h [m] - Shell thickness outside acoustic black hole
i [-] - Imaginary unit
ω [s−1] - Dimensional angular frequency
Aj [-] - Modal amplitudes j = 1, 2, 3
Lij [-] - Matrix representation of equations
kx [m−1] - Dimensional wave number
k [-] - Dimensionless wave number
Ω [-] - Dimensionless Frequency
t [-] - Dimensionless thickness parameter
cL [m/s] - Longitudinal wave speed
λL [m] - Longitudinal wave length
f [s−1] - Frequency
k̄ [-] - Asymptotic approximation of dimensionless wave number
xi [-] - Expansion constant i = 0, 1...

pi [-] - Expansion exponent i = 0, 1...

ϵ [-] - Constant driving length of power-law termination profile
n [-] - Exponent constant driving shape of power-law termination profile
hr [m] - Residual height at tip of termination profile
cp [-] - Dimensionless phase speed
cg [-] - Dimensionless group speed
E0 [Pa] - Nominal real-valued Young’s Modulus
η [-] - Complex proportion of Young’s Modulus
ΩC [-] - Dimensionless cut-on frequency
RO [m] - Outer radius of hollow cylindrical beam
RI [m] - Inner radius of hollow cylindrical beam
R(x) [m] - Varying radius along termination profile
Rr [m] - Residual radius at end of termination profile
α [-] - Constant ratio between h and R
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Chapter 5
Ww [m] - Flexural motion of termination profile wedge
Dw [Nm2] - Flexural Rigidity of termination profile wedge
hw [m] - Height of termination profile wedge
ρ [-] - Density of termination profile wedge
x [m] - Lengthwise position along plate
y [m] - Transverse position along plate
ν [-] - Poisson’s ratio
B(x) [m] - Space dependent amplitude of solution ansatz
kp [m−1] - Plate wavenumber
S(x) [-] - X-dependent part of the eiconal function
ky [m−1] - Wave number in the y-direction
i [-] - Imaginary unit
E [Pa] - Young’s Modulus
ω [s−1] - Dimensional angular frequency
γ [-] - Constant introduced for simple notation
t [-] - Dimensionless thickness parameter
θ0 [-] - Angular span of curved plate geometry
R0,R [m] - Mid-plane radius outside acoustic black hole
θ [-] - Angular position on shell
u, v, w [m] - Displacement components
m′ [-] - Circumferential wavenumber of curved plate
m [-] - Circumferential wavenumber of cylindrical shell
k [-] - Dimensionless wave number
Ω [-] - Dimensionless Frequency
ϵ [-] - Constant driving length of power-law termination profile
n [-] - Exponent constant driving shape of power-law termination profile
L [J] - Lagrangian
TSH [J] - Kinetic energy expression
USH [J] - Potential energy expression
VSH [J] - External potential expression
ϵ1 [-] - Axial strain
ϵ2 [-] - Circumferential strain
ω̄ [-] - Shear strain
κ1 [m−1] - Bending curvature in axial direction
κ2 [m−1] - Bending curvature in circumferential direction
τ [m−1] - Twisting deformation
T1 [N/m] - Axial membrane force
T2 [N/m] - Circumferential membrane force
S [N/m] - Shear force
M1 [N] - Bending moment in axial direction
M2 [N] - Bending moment in circumferential direction
H [N] - Twisting moment
δ [-] - Mathematical operator for first variation
t1, t2 [s] - Arbitrary boundaries for time integral
α [m] - Constant ratio between h and R

ΩC [-] - Dimensionless cut-on frequency
xi [-] - Expansion constant i = 0, 1...

cp [-] - Dimensionless phase speed
cg [-] - Dimensionless group speed
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Chapter 5: Continued
ξ [-] - Modal coefficient
η [-] - Re-scaling coefficient for frequency scaling approach
Ωrs [-] - Re-scaled dimensionless frequency
krs [-] - Re-scaled dimensionless wave number
k̄rs [-] - Asymptotic approximation of re-scaled dimensionless wave number
s [-] - Index used to denote terms of different powers of dimensionless thickness parameter, t.

Appendix E
x [-] - Non-scaled coordinate
X [-] - Scaled coordinate
f(x) [-] - Non-scaled function value at x

F (X) [-] - Scaled function value at X

ϵ [-] - Small parameter
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Introduction 1
At some point during the design phase of any new machine or component, the engineer should asses the
vibrational properties of his or her design. The engineer is then often forced to invest considerable effort in
controlling the vibrations, often affecting the final product functionally and visually. Various methods have
been used to control such mechanical vibrations, based on e.g. viscoelastic damping material, decoupling by
using flexible mounts, periodicity effects, or by optimizing the design to move natural frequencies outside the
operational frequency range [1]. In the last few decades, a new method is beginning to mature, namely, the
acoustic black hole, promising to be a lightweight and efficient method for controlling structural vibrations
[2, 3, 4, 5].

The term “acoustic black hole” refers to an analog of a black hole from relativistic physics. In physics, the
term “black hole” refers to a singularity with such a great mass, that when anything, even light, comes too
close, crossing the so-called event horizon, it is unable to escape again. An acoustic black hole is similar, as
incoming vibrational energy is captured and (ideally) never re-released back into the structure. This allows the
engineer to trap vibrational energy, at a controlled location in the structure. The acoustic black hole effect is
commonly achieved, by gradually reducing the flexural rigidity of a waveguide, by a reduction of its thickness,
or less commonly, by a gradual change in material properties. This in turn reduces the phase a group velocities
of incoming flexural waves. For the limiting (albeit purely theoretical) case, where the flexural rigidity goes to
zero, the waves are stopped never to be reflected back into the waveguide. The trapping of incoming waves
in the acoustic black hole will cause the energy density to rise, which in turn results in a comparable increase
in vibration amplitude. This acoustic black hole effect allows for remarkably efficient vibration mitigation,
by placing a viscoelastic damping material on the acoustic black hole, to dissipate the trapped energy. The
acoustic black hole effect has been investigated both analytically, experimentally, and numerically for plates
and beams, see [2] and sources within. These models have provided the foundation, for exploiting the acoustic
black hole effect in different mechanical systems e.g. aircraft wings [6] and turbofan blades [7]. If models of
the acoustic black hole effect in cylindrical shells are developed, it would allow for the effect to be exploited in
a large number of additional mechanical systems, such as piping systems, pumping stations, wastewater wells,
bike frames, submarine pressure hulls, air-frames, drones, etc.

In the last couple of years, interest has begun to pick up, for the investigation of the acoustic black hole effect in
cylindrical shells. In [8], the Gaussian Expansion Method is used to develop a foundation for efficient parametric
analysis of annular acoustic black holes in cylindrical shells. Several configurations of acoustic black holes were
investigated, showing a significant decrease in flexural vibrations compared to the uniform shell. The authors,
Jie Deng Et Al., recognize that this study is only a first step, but shows the potential of the acoustic black
hole effect in the context of cylindrical shells. To the knowledge of the Author, very limited (if any) analytical
investigation of the acoustic black hole effect has been performed for cylindrical shells and the hope of this
thesis is, to do exactly this. The thesis will act as an academically motivated investigation, of the acoustic black
hole effect in a thin cylindrical shell model, through semi-analytical analysis of the dispersion equation using
asymptotic approximations.
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Problem statement 2
In this Chapter, the problem statement will be formulated. This will be done through the formulation of a Main
Research Question (MRQ) which will then be split into three Sub Research Questions (SRQ), each of which
will be answered in their respective chapters. In the introduction in Chapter 1, the concept of the acoustic
black hole was described, and previous investigations of its applications in cylindrical shells were then briefly
presented. From this, the Main Research Question can be formulated:

Main research question:
How can the acoustic black hole effect be modeled for elastic cylindrical shells, through the

framework of thin shell theory?

In order to answer this MRQ, three SRQs are formulated as follows:

Sub Research Question #1
Getting acquainted with the

acoustic black hole effect
How can the acoustic black hole
effect be explained mathematically
for simple waveguides like Bernoulli
Euler beams, and what are the
underlying assumptions? How can
the performance of an acoustic
black hole be quantified?

Sub Research Question #2:
Asymptotic acoustic black hole
analysis of cylindrical shells

How can the acoustic black hole
effect be modeled and investigated
using asymptotic approximations,
for a thin cylindrical shell model?

Sub Research Question #3:
Investigating the differential

equations of motion
For which geometries does the
acoustic black hole effect appear,
and what causes the effect to be
absent in some cases? Which
assumptions can be employed to
make the effect appear in the absent
cases?

2.1 Delimitations

Delimitations have been made throughout the project, which are listed below. The list is by no means exhaustive
but will be used as a natural point of departure for the discussion of potential future work after having answered
the Main Research Question.

• Delimitation 1: Industrial applicability
The thesis does not aim to develop acoustic black hole technology in cylindrical shells for industrial
application. The thesis will act as an academically motivated analysis, not limited by the practicality of
the model assumptions.

• Delimitation 2: Experimental validation
No experiments have been made throughout the project, to validate the results obtained from the analysis
of the acoustic black hole effect. On a few occasions, experimental work is referenced, but the Author
makes an effort to point out, that all novel conclusions drawn in this thesis have no experimental backing.

• Delimitation 3: Analysis through numerical models
Numerical investigation of the acoustic black hole effect is performed extensively using the Finite Element
Method in literature. This thesis does not use such numerical analysis to investigate the effect or as a
tool for supporting obtained results.

• Delimitation 4: Investigation of thick shells
The thesis does not include an analysis of thick shells, neither in a geometrical nor acoustic sense.

• Delimitation 5: Fluid loading
The thesis does not include the analysis of fluid-loaded shells, although many cylindrical shell structures
used in industry are either submerged in, or filled with, fluid. In spite of this, the analysis will still be
valid for cases where the fluid-structure interaction can be neglected.

2



SRQ 1: Getting acquainted with the

acoustic black hole effect 3
In this chapter, SRQ 1 will be answered. In [9], the principle of the acoustic black hole was first described by
M. A. Mironov, and in this chapter, the acoustic black hole effect will be investigated and described for a simple
Bernoulli Euler beam following his example. This will serve as an introduction to the concepts, assumptions,
and limitations of the model, and will act as a “plan of attack” for when the thin-walled elastic cylindrical shell
will be analyzed in the later chapters. In Figure 3.1, the BE beam geometry is visualized, having an acoustic
black hole termination at the right-hand side. The thickness of the beam outside the acoustic black hole is
denoted h0, and the shape of the acoustic black hole profile, henceforth called the termination profile, is defined
by its instantaneous height, h(x). It should be mentioned, that the figure is somewhat misleading compared
to the mathematical modeling in this chapter. If one must be completely consistent, the thickness should be
reduced symmetrically on both the top and bottom, so the neutral axis of the beam is in line with the tip of the
acoustic black hole. It is however very typical for experimental investigations of the acoustic black hole effect,
to use this type of asymmetric termination, as it simplifies the manufacturing substantially [2, 5, 10].

Figure 3.1: Acoustic black hole termination at the end of the beam waveguide. xE is the abscissa of the start of the acoustic
black hole, where it transitions into the homogeneous beam with height h0. hr is the residual height at the tip of the termination.

3.1 Acoustic black hole analysis: Mathematical model

The analysis will take point of departure in the differential equation of motion for a BE beam in bending (3.1).
One can see how the usual assumption of constant flexural rigidity gives rise to the simple form, (3.2).

∂2

∂x2

(
EI

∂2w

∂x2

)
− ρA

∂2w

∂t2 = 0 (3.1)

EI
∂4w

∂x4 − ρA
∂2w

∂t2 = 0 (3.2)

By the usual separation of variables and introduction of time and space harmonic solutions, one obtains the
dispersion relation given as (3.3). The roots of the dispersion relation are given as (3.4). These solutions have the
interesting property of dispersion, which is essential to obtain the acoustic black hole effect. Dispersion means
that the wavenumber is non-linearly dependent on the frequency, resulting in waves of different frequencies
traveling the waveguide at different speeds. This becomes more easily understood, when the concept of phase-
and group speeds are introduced. The phase speed of a wave refers to the speed at which a peak or trough of
a wave travels; i.e. the speed at which a given phase moves through space. The phase speed is given as cp = ω

k .
The group speed refers to the speed at which modulations or “grouped packages” of the wave travels and is
given as cg = dω

dk . Looking at the roots in (3.4) it is seen how the phase- and group speeds are dependent on
frequency, and so dispersion occurs. This means, that it is possible to have different wave speeds at different
points in the waveguide, if the flexural rigidity is varied, which is the foundation for the acoustic black hole
effect, c.f. Chapter 1.
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Group 8 - Master Thesis 3. SRQ 1: Getting acquainted with the acoustic black hole effect

EIk̂4 − ρAω2 = 0 (3.3)

k1,2 = ± 4

√
ρA

EI

√
ω, k3,4 = ±i

4

√
ρA

EI

√
ω (3.4)

cp = ω

k
=

√
ω

4

√
EI

ρA
(3.5)

cg = ∂ω

∂k
= 2

√
ω

4

√
EI

ρA
(3.6)

Next, the Young’s Modulus, E, is assumed to be constant while the moment of inertia, I, is expressed as
I(x) = h(x)3

12 , thereby assuming a rectangular cross-section with unit width. By doing this, the dispersion
relations can be expressed in terms of local wave numbers †. Local wave numbers mean, that the wave
numbers refer to the instantaneous cross-sectional properties. Allowing wave numbers to be a function of
position obviously contradicts the earlier assumption of constant flexural rigidity, and so a condition must be
formulated, to ensure the model’s validity. In cases where the change in flexural rigidity is sufficiently slow
along the length of the beam, the assumption of (3.2) will still result in a usable approximate solution. This
condition was formulated in [9] as (3.7), stating that the change in wave number over a single wave should
be much smaller than the wave number itself. In literature, the left-hand side of (3.7) is referred to as the
“normalized wavenumber variation” or NWV [3]. An acceptable value of NWV is somewhat debatable, but it is
mentioned in [11], that an NWV of less than 0.3 satisfies the condition of (3.7) to an acceptable degree, allowing
the model to give usable results. This method for modeling the system stems from WKB analysis, which is an
asymptotic method for obtaining approximate analytical solutions to linear differential equations with varying
coefficients [12, 13]. The underlying theory of the WKB method is however beyond the scope of this project.

dkx

dx

1
k2

x

≪ 1 (3.7)

Rewriting (3.4) using I(x), one obtains an expression for the localized wave number along the beam, (3.8).
From this equation, it is seen, that when the height reduces to zero the local wave number grows to infinity,
consequently reducing the phase speed of incoming flexural waves to zero. The group speed is then obtained as
(3.9). Here it is also seen, how the group speed goes to zero as the thickness decreases to zero. As the energy
transmission occurs at the group speed, the energy transmission halts, and the incoming vibrational energy is
accumulated in the cross-section where cg tends to zero [1]. In this idealized case, wave reflection will never
occur, and energy trapped by the acoustic black hole will never be re-released back into the structure. In [9],
Mironov presented how a power-law profile given as h(x) = ϵxn could be used to achieve this black hole effect
for a simple beam. Here ϵ is a constant† and n is a positive rational number.

kx = 4

√
ρ12h(x)
Eh(x)3

√
ω ⇔ 4

√
12ρ

Eh(x)2
√

ω (3.8)

∂ω

∂kx
= cg = 2

√
ωh(x) 4

√
E

12ρ
(3.9)

The power-law profile, results in a reflection coefficient of 0 for n ≥ 2 for a simple BE beam, but for all practical
cases, a residual thickness, hr, will be present at the tip of the profile, so the actual profile may be expressed
as h(x) = ϵxn + hr, giving a significant non-zero reflection coefficient for all powers of n. This means, that in
practical applications, the acoustic black hole effect is not sufficient to mitigate vibrations and sound from a
structure, as energy will still be able to propagate losslessly in the structure. Because of this, the acoustic black

†The area, A(x), will therefore naturally also be a function of x.
†ϵ is often given indirectly by a predetermined length of the termination profile.
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3.2. Acoustic black hole analysis: Choosing termination profile Aalborg University

hole effect is used in combination with a lossy material, to dissipate the energy accumulated in the acoustic
black hole. The acoustic black hole should therefore be seen as a method for slowing down the waves while
energy is being dissipated before they are again re-released back into the structure.

As waves are still being reflected from the acoustic black hole, the reflection coefficient is used as a practical
measure of acoustic black hole performance [11]. The reflection coefficient is a scalar between 0 and 1, describing
how much of a wave is reflected on incident of a non-homogeneity. The reflection coefficient, R, of the acoustic
black hole is determined by the decrease in amplitude, of a wave entering the acoustic black hole at x = xE

until it returns to x = xE after having reflected at the tip at x = 0 (see Figure 3.1 on page 3). Mathematically,
the reflection coefficient is formulated as (3.10). As the system until now has been assumed lossless, with a
purely real-valued Young’s Modulus, E, this integral would always equal 1, assuming hr ̸= 0. To introduce
some amount of material loss, the Young’s Modulus will be assumed in the form E = E0(1 − iη), where η will
be taken as some small value (η = 0.05). In a real-world scenario, the material loss is usually insufficient to
obtain desirable damping, and the damping is instead achieved by adding a layer of viscoelastic material to the
acoustic black hole. Additionally, the amount of material loss is typically dependent on frequency, but for the
sake of simplicity, the damping will be modeled as constant material loss in this example.

R = exp

(
−2
∫ xS

xE

ℑ(k)dx

)
(3.10)

In the idealized case, where hr = 0, the acoustic black hole effect can be investigated analytically quite easily.
The task is, to investigate which termination profiles cause the integral of kx to diverge. Looking at 3.10,
and acknowledging the commutative property of ℑ, one can see how a divergent integral of kx would result
in a reflection coefficient of zero for even the smallest amount of material dampening. One may also gain
some intuition of the acoustic black hole effect, simply by considering what a divergent integral of kx means
physically: an infinite number of oscillations along the termination profile. The analytical analysis is performed
for the BE beam by substituting the power law profile expression into (3.8), to obtain (3.11). Integration with
respect to x then gives (3.12), where it can be seen that setting n ≥ 2 causes the integral to diverge. Again,
this assumes the integral to include the singularity at x = 0 which is equivalent to having hr = 0.

kx = 4

√
12ρω2

Eϵ2x2n
⇔

4

√
12ρω2

Eϵ2 x−n/2 (3.11)

∫
kxdx = 4

√
12ρω2

Eϵ2
1

1 − n/2x1−n/2 (3.12)

3.2 Acoustic black hole analysis: Choosing termination profile

The mathematical framework for designing an acoustic black hole for a BE beam has now been explained. The
task is now to determine the termination profile, to minimize the reflection coefficient while keeping the model
limitations, assumptions, and physical dimensions of the geometry in mind. Several shape functions have been
investigated, to describe the termination profile e.g. power-law functions [9], trigonometric, Gaussian [12] and
optimal profiles derived based on variational principles [11, 14], of course resulting in different performances.
The earlier analytical investigations of the acoustic black hole effect in waveguides like plates and beams have
resorted to the power-law profile, following the example of M.A. Mironov in [9]. For this reason, the power-law
profile will be used throughout this thesis. The power-law profile has three parameters to be determined, all
affecting the performance of the acoustic black hole. The three parameters are ϵ defining the length of the
profile, the n-value defining the slope of the profile, and hr defining the residual height of the profile at the
tip. A decrease in the reflection coefficient can thus be achieved in three ways when considering (3.10). The
length of the profile can be increased, effectively increasing the bounds in the integral of (3.10), the n-value
can be increased, resulting in a more abrupt termination of the waveguide, or hr can be reduced, resulting
in a profile which better resembles the termination profile formulated by Mironov [9]. It is not reasonable to
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model the acoustic black hole profile with a large n-power, as it will increasingly violate the requirement of
small normalized wavenumber variation. An extreme example, with a large n-power, will cause the termination
profile to look like a simple 90° cut, which will reflect practically all the incoming energy; equation (3.10) would
erroneously still predict a very low reflection coefficient.

Increasing the length or decreasing hr may result in the design being difficult to install and manufacture, and
may decrease the structural rigidity of the geometry. In an attempt to obtain a compact acoustic black hole
design with a large effective length, studies have attempted to coil up the termination profile, in the shape of
an Archimedean spiral. This has proven possible for beam-like waveguides but comes at the cost of increased
complexity in manufacturing. A final consideration comes from the fact, that the reflection coefficient will be
dependent on frequency. The acoustic black hole should therefore be designed toward attenuating frequencies
in the desired frequency range.

The task of designing the profile is a balancing act between obtaining a low reflection coefficient for the desired
frequencies while keeping the NWV small and the geometry manufacturable and sufficiently rigid††.

As a simple example, the reflection coefficient and NWV are calculated for an acoustic black hole in a BE
beam using (3.10) and the left-hand side of (3.7). The beam has a termination profile given by: h0 = 50 mm,
hr = 5 µm, xE = 1 m with varying n-powers. A complex Young’s Modulus with η = 0.05 is used. Figure 3.2
shows the reflection coefficient and NWV for frequencies Ω ∈ [0, 5]. The NWV is calculated at x = xE , as this
is the location of the largest value. Here, it is immediately seen, that larger n-powers result in lower reflection
coefficients, but simultaneously result in a greater violation of the WKB assumption (3.7).

Figure 3.2: Reflection Coefficient and NWV of example acoustic black hole termination on BE beam.

Next, the reflection coefficients are calculated for profiles with n = 2, with different values for hr. In Figure
3.3 it is seen, how a smaller residual height will result in a lower reflection coefficient, with practically no effect
on the NWV. There is a slight difference in NWV between the 3 hr-values, but as the overall shape of the
termination profile is largely independent of hr when close to zero, the 3 graphs are seen to lie on top of each
other.

††In practice, the task of designing termination profiles is often tackled by numerical optimization around a finite element model,
or based on the matrix transfer method see e.g. [15].
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Figure 3.3: Reflection Coefficient and NWV for various residual heights, hr, at the tip of the termination profile.

Finally, the reflection coefficients are calculated for profiles with n = 2 and hr =5×10−6 m, with varying profile
lengths. In Figure 3.4 it is seen, how a longer termination profile results in a lower reflection coefficient, while
also lowering the NWV.

Figure 3.4: Reflection Coefficient and NWV for various termination profile lengths.

A quick note should be made on the validity of the results obtained in this section. It is well known, that
the elementary Bernoulli Euler beam theory gives poor predictions of wave-phenomenon at higher frequencies.
Comparing the elementary theory to a higher order theory, e.g. the Timoshenko–Ehrenfest beam theory, the
elementary theory is shown to diverge as early as Ω = 0.3, giving increasingly poorer results with higher
frequencies [14]. Despite this use and abuse of the Bernoulli-Euler model, the simple example shows how the
acoustic black hole performance, i.e. the reflection coefficient, is highly dependent on the power-law profile, as
well as the frequency range of interest. For n > 2 the calculated reflection coefficient is small, indicating great
performance, but the associated NWV is so large that the underlying assumptions of the model are violated.
It is seen in Figure 3.4, that for l = 2m, the NWV reaches reasonable values of ≈ 0.3 at around Ω = 3. The
observation, that the calculated acoustic black hole effect is only representative above a certain frequency, is
supported by observations made in all experimental investigations [2]. It is observed from experiments, that
no wave absorption is achieved below a given frequency, loosely dependent on the characteristic length of the
acoustic black hole.
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3.3 Answering SRQ 1

How can the acoustic black hole effect be explained mathematically for simple waveguides like
Bernoulli Euler beams, and what are the underlying assumptions?
How can the performance of an acoustic black hole be quantified?

In this chapter, the acoustic black hole effect was investigated, in the context of Bernoulli Euler beam theory.
Taking offset in the differential equations of motion, the dispersion equation was obtained. Due to the simple
nature of the dispersion equation, closed-form solutions were obtained directly for wave numbers as a function
of frequency. The wave numbers were then expressed as local wave numbers by expressing the flexural rigidity
of the beam as a function of position. This contradicted an earlier assumption, and the condition of low
normalized wavenumber variation was introduced, to ensure the validity of the model. The process of choosing
a termination profile for the acoustic black hole was discussed. Here it was found, that designing a termination
profile is a balancing act between obtaining a low reflection coefficient for the frequency range of interest while
keeping the NWV low, to not violate the underlying assumptions. Structural rigidity should also be kept in
mind when determining the termination profile if the industrial applicability is considered. The geometry by
nature becomes very thin at the tip of the acoustic black hole. In these cases yielding and buckling may become
of concern in the structure. Typically the termination profile is determined using numerical optimization,
but recent studies have tackled the problem more rigorously for beam waveguides by employing variational
approaches. The performance of an acoustic black hole can be determined by the reflection coefficient, which
is a scalar between 0 and 1, indicating how much of an incident wave is reflected. Alternatively, for idealized
cases, the performance can be assessed by the divergent nature of the anti-derivative of the wavenumber, for
a given termination profile. A simple calculation of reflection coefficients was made for the Bernoulli-Euler
beam using different power-law termination profiles. This was done assuming a material loss in the form of a
complex Young’s Modulus. It was found that the reflection coefficient is highly dependent on the termination
profile, as well as the frequency range of interest, which is supported by experimental investigations. It was
found, that the length of the acoustic black hole has a large effect on the obtained reflection coefficient, while
also reducing the NWV. Changing the power of the power-law profile can also greatly decrease the predicted
reflection coefficient but at the cost of violating the underlying model assumptions thereby invalidating the
results. Finally, reducing the residual height at the tip of the acoustic black hole can decrease the predicted
reflection coefficient, without affecting the NWV measurably.
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SRQ 2: Asymptotic acoustic black hole

analysis of cylindrical shells 4
In this chapter, SRQ 2 will be answered, by analyzing the acoustic black hole effect using naive asymptotic
approximations. The cylindrical shell model will now be presented, for the case of no internal fluid loading. First,
the geometry, as well as parameters and notation is presented. Next, the differential equations of motion are
presented, from where the dispersion equation is derived. From here, approximate solutions to the dispersion
equation are obtained for individual m-spectrum, based on asymptotic approximations. These asymptotic
approximations are then used to analyze the acoustic black hole effect, by the calculation of phase- and group
speed expressions, together with reflection coefficients and associated NWV for acoustic black hole terminations.
The investigation will be performed on individual m-spectrum, indicated in Figure 4.1. The analysis will consider
m = 0, 1, 2, to investigate the simplest cases of the breathing mode (m = 0), beam-like motion (m = 1), and
finally deformation of the cross-section profile by the ovalling mode (m = 2). These m-spectra represent the
circumferential wavenumber in the shell, and determine the deformation of the cross-section. Several m-spectra
are visualized in Figure 4.1.

Figure 4.1: Circumferential modes (m-spectrum) for the cylindrical shell.

Figure 4.2 shows the cylindrical shell model with dimensional parameters and notation illustrated. Though not
indicated in the figure, the project will base itself on the analysis of thin-walled cylindrical shells under small
deformation, thereby taking offset in Love’s first approximation. All displacements are expressed in terms of the
deformation of the middle surface (indicated by the dashed circle in the figure), and gradients thereof, resulting
in the position along the shell being given by only two coordinates: x and θ. As indicated in the Figure, the
model has 3 independent displacement components: um, vm, wm, representing the longitudinal, circumferential,
and radial displacements of the middle surface respectively. The material is assumed to be linearly elastic with
material constants E, ν, and ρ as the Young’s modulus, Poisson’s ratio, and material density respectively.

Figure 4.2: Cylindrical shell model with dimensional parameters and notation illustrated. Mid-surface displacement components
(um, vm, wm), mid-surface coordinates (x, θ), dimensional parameters (L, h0, R0). The geometry illustrated in the figure is not
representative of the model assumptions, and the ratio between shell thickness and radius will be much smaller in the analyzed
geometries.

The differential equations of motion for a thin-walled cylindrical shell from the Goldenveizer-Novozhilov theory
are readily available from literature, see e.g. [16, 17], and are presented here as (4.1, 4.2, 4.3). The equations are
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in the homogeneous form (assuming no forcing) and the length, L, is assumed infinite to disregard boundary
conditions. In the equations, a time-harmonic dependence has also been assumed for the 3 displacement
components, in the form of exp(−iωt) where i is the complex number, ω is the dimensional angular frequency
and t is time. This time dependency is omitted from the equations for simplicity, but all solutions are still
time-harmonic in nature. The displacement terms (um, vm, wm) are in all the following derivations in the form
of amplitudes as a function of the longitudinal coordinate, x.

(4.1)−d2um

dx2 + 1 − ν

2
m2

R2 um − 1 + ν

2
m

R

dvm

dx
− ν

R

dwm

dx
− ρω2(1 − ν2)

E
um = 0

(4.2)
1 + ν

2
m

R

dum

dx
− 1 − ν

2
d2vm

dx2 + m2

R2 vm − h2

12
2(1 − ν)

R2
d2vm

dx2 + h2

12
m2

R4 vm

+ m

R2 wm + h2

12
m3

R4 wm − h2

12
(2 − ν)m

R2
d2wm

dx2 − ρω2(1 − ν2)
E

vm = 0

(4.3)
ν

R

dum

dx
+ m

R2 vm + h2

12
m3

R4 vm − h2

12
(2 − ν)m

R2
d2vm

dx2 + 1
R2 wm

+ h2

12
d4wm

dx4 − h2

12
2m2

R2
d2wm

dx2 + h2

12
m4

R4 wm − ρω2(1 − ν2)
E

wm = 0

From these differential equations, the dispersion equation is readily obtained from assuming a space-harmonic
solution for the displacement amplitudes um(x), vm(x), wm(x), and solving for non-trivial solutions. The space-
harmonic solution will be in the form of Ajexp(ikxx) where kx is the dimensional wavenumber with units [m−1].
From this ansatz, the equations of motion condense to (4.4, 4.5 4.6).

(4.4)k2
xA1 + 1 − ν

2
m2

R2 A1 − 1 + ν

2
m

R
A2ikx − ν

R
A3ikx − ρω2(1 − ν2)

E
A1 = 0

(4.5)
1 + ν

2
m

R
A1ikx + 1 − ν

2 A2k2
x + m2

R2 A2 + h2

12
2(1 − ν)

R2 A2k2
x + h2

12
m2

R4 A2

+ m

R2 A3 + h2

12
m3

R4 A3 + h2

12
(2 − ν)m

R2 A3k2
x − ρω2(1 − ν2)

E
A2 = 0

(4.6)
ν

R
A1ikx + m

R2 A2 + h2

12
m3

R4 A2 + h2

12
(2 − ν)m

R2 A2k2
x + 1

R2 A3

+ h2

12A3k4
x + h2

12
2m2

R2 A3k2
x + h2

12
m4

R4 A3 − ρω2(1 − ν2)
E

A3 = 0

These equations are cast into matrix form, having introduced the non-dimensional parameters as presented in
(4.8). From here the non-trivial solutions are found by equating |L|= 0.

LjlAj = 0; j, l = 1, 2, 3 (4.7)

L11 = k2 + 1 − ν

2 m2 − Ω2

L22 = 1 − ν

2 k2 + m2 + t22(1 − ν)k2 + t2m2 − Ω2

L33 = 1 + t2(k2 + m2)2 − Ω2

L12 = −L21 = 1 + ν

2 mik

L13 = −L31 = νik

L23 = L32 = m + t2m3 + t2(2 − ν)mk2
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k = kxR t2 = h2

12R2 Ω2 = ω2R2

c2
L

= ρ(1 − ν2)ω2R2

E
(4.8)

4.1 Investigating the breathing mode: m = 0

First, the breathing mode of the cylindrical shell is investigated. For the special case of m = 0, (4.5) decouples
from the remaining two equations, resulting in a system where the torsional wave is independent of the
longitudinal and bending waves. As this torsional wave is dispersionless, it has little interest in the context
of acoustic black holes, and will be condensed from the set of equations. This means, that the characteristic
equation reduces to L11L33 − L13L31 = 0, which is given in non-dimensional parameters as (4.9).

(k2 − Ω2)(1 + t2k4 − Ω2) + ν2k2 = 0 (4.9)

As discussed in Chapter 3 the next step is to obtain a closed-form expression for the dispersion characteristics,
given by the roots of (4.9). Unfortunately, it is no trivial matter to do analytically, and numerical solutions, such
as the one presented in Figure 4.3, are therefore commonly sought. The numerical solution is found, including
the second decoupled equation, to get a fuller picture. This numerical solution gives little in terms of usable
information for the study of acoustic black holes, and therefore a semi-analytical solution is sought in the form
of a naive asymptotic expansion later.

Figure 4.3: Numerical solution for dispersion curves for a cylindrical shell. Circumferential mode m = 0. Torsional branch
included.

Before diving into the asymptotic expansions, however, the dispersion characteristics of the breathing mode
will be discussed briefly, to get a better understanding of the physical intuition that lies behind the numerical
solution in Figure 4.3. Looking at the figure, it seems as if 3 distinct branches are present indicated in black;
two of which originate from zero, and one of which cuts on at Ω = 1. This is however not the entire picture:
as the dispersion equation is an 8th order polynomial in k, there will be 8 roots for every frequency, and so 8
branches exist. It is however difficult to understand the nature of the dispersion branches from a simple 2D
representation, and so a 3D plot is made in Figure 4.4 (Several full-page figures can be found in Appendix C).
In the figure, the 8 branches are seen color coded for easy referencing. Solid lines represent purely real-valued
wave numbers, while dashed lines indicate the wavenumber to have a non-zero complex component.
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Figure 4.4: 3D visualization of dispersion branches for cylindrical shell (m = 0).

The green branch represents a purely torsional wave, and is completely dispersionless and uncoupled from
the other branches, as mentioned earlier.

The red branch also originates from zero and represents a wave which is dominated by longitudinal motion
(u-motion). As opposed to the green branch, it is not possible to call it a “pure longitudinal wave”, as the
first and third equations of (4.7) are coupled by Poisson-effects. Any motion in the u-direction will therefore
inevitably couple with motion in the w-direction. Just before Ω = 1, the red branch bends sharply upwards,
and the wave motion transitions from predominantly longitudinal, to being dominated by flexural motion. This
transition has been observed both experimentally and numerically [18]. The frequency Ω = 1 is called the “ring
frequency”, and its physical interpretation can be understood through some simple algebra in (4.10). Here it
is seen, that the ring frequency is the frequency where the longitudinal wavelength equals the circumference of
the shell resulting in a breathing resonance occurring.

Ω = 1 = ωR

cL
⇔ 2πfR = cL ⇔ 2πR = λLf

f
= λL (4.10)

The magenta and blue branches are very interesting in nature and must be explained together. Beginning
from Ω = 0, the magenta branches are complex-valued, up to around Ω = 0.95, representing an attenuating near-
field flexural wave. At around Ω = 0.95, both pairs of the magenta branches “collide”, as the real component of
the wavenumber goes to zero. It can be seen how the four complex waves transition to four purely imaginary
evanescent waves (dotted blue). Two of these waves become increasingly complex with higher frequencies, but
the remaining two branches meet at Ω = 1, to become two purely real-valued propagating waves. It is one of
these waves which are visualized to cut on at Ω = 1 in Figure 4.3.
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4.1.1 Asymptotic expansions for m = 0

Now, asymptotic expansions will be employed to obtain closed-form approximate solutions to the dispersion
equation. Asymptotic approximations are based on expressing the solution as a truncated series expansion
which may even be divergent in nature [19]. The method of asymptotic expansions is widely used in
applied mathematics and engineering, for solving complex algebraic equations, integrals, and partial differential
equations. Even in situations such as the one in this project, where numerical results are available, the
asymptotic approximations provide much more than just a simple curve fit, as the obtained solution is directly
tied to the nature of the problem. The obtained solution therefore often gives very useful insight into the nature
of the true solution to the problem [19]. The solution to (4.9) will be sought based on the theory presented
in [20], where the so-called expansion method will be applied. The idea behind this method is, to formulate
the expansion around some small parameter in the equation denoted ϵ. The series will then be made as a sum
of terms with ever increasing powers of ϵ. The approximate solution will then be a function of this expansion
parameter; k̄(ϵ), and will be in the form of (4.11).

k̄(ϵ) = x0ϵp0 + x1ϵp1 + ...; pi < pi+1 (4.11)

Depending on the required accuracy of the approximation, more or fewer terms can be included in the
expansion.† To apply the method, the expression in (4.11) is substituted into (4.9), and the equation is expanded
in order to identify the terms of greatest relative magnitude assuming, of course, ϵ ≪ 1. This means, that e.g.
a term at the ϵ1-power will be greater than a term at the ϵ2-power, and so the latter may be disregarded,
while still resulting in a good approximation around ϵ = 0. The higher order terms are disregarded in the
expanded solution, leaving only terms of large relative magnitude containing the unknown scalar, xi. xi is then
determined based on this truncated expression, and the process is repeated for terms of large relative magnitude
containing xi+1. For examples of application the reader is directed to [20].

Choosing the powers for the expansion series, pi is not a systematic process but more in the nature of trial
and error. In [20], a method is presented for determining the expansion series systematically, but the method
quickly becomes impractical for complex systems. Instead, the expansion series will be determined by trial and
error, supported by a visual comparison between the asymptotic solution and the numerical solution in Figure
4.3.

First order asymptotic approximation for m = 0.

Looking at (4.9), the last term contains ν2 which will serve as the expansion parameter, as for many common
engineering materials ν2 ≪ 1. An expansion is proposed in the form of k̄(ϵ) = x0 (with p0 = 0), and more
terms can be added subsequently if necessary.

Equation (4.9) becomes (4.12) with the assumed solution for k̄. Disregarding terms above order O(ν0) one
clearly sees, the roots being equivalent to the roots of either of the remaining parenthesis in (4.13). The roots
are then given as (4.14).

(k̄2 − Ω2)(1 + t2k̄4 − Ω2) + ν2k̄2 = 0 (4.12)
(x2

0 − Ω2)(1 + t2x4
0 − Ω2) = 0 (4.13)

x0 = ±Ω; ± (Ω2 − 1)1/4
√

t
; ±i

(Ω2 − 1)1/4
√

t
(4.14)

Firstly, the solution x0 = ±Ω is purely real-valued, meaning it refers to freely propagating waves in the positive
and negative x-direction. Secondly, the solution is dispersionless, which means it gives little in terms of usable
information when studying the acoustic black hole effect. Because of this second point, a second term is required
in the asymptotic approximation, in order to capture some dispersion phenomenon. The last 4 solutions in

†More terms can also be added to the expansion subsequently after an expansion has already been calculated for a given number
of terms. In fact, this is often how the expansion method is applied in practice.
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(4.14) represent 4 waves; two propagating and two evanescent one of each going in the positive and negative
x-direction. Secondly, the solution has dispersion, as there is a non-linear relation between wavenumber and
frequency. Thirdly, at the limit where Ω = 0, the solution is non-zero representing a solution branch that does
not originate from zero. Because of this, the asymptotic expansion will only be sought for the branch associated
with x0 = ±Ω.

Second order asymptotic expansion

Having determined the first term in the asymptotic expansion, the second term can now be added. This will
be done for the solution where x0 = Ω, to capture some dispersion phenomenon. The second order asymptotic
expansion will be assumed in the form k̄ = x0 + x1ν2††.

Setting x0 = Ω, and expanding (4.9) one obtains the terms in (4.15). x1 is determined by balancing terms at
order O(ν2).

{
ν2 ν4 ν6 ν8 ν10 ν12}



Ω2 + 2Ωx1 − 2Ω3x1 + 2Ω5t2x1
x2

1 + 2Ωx1 − Ω2x2
1 + 9Ω4t2x2

1
x2

1 + 16Ω3t2x3
1

14Ω2t2x4
1

6Ωt2x5
1

t2x6
1


= 0 (4.15)

Ω2 + 2Ωx1 − 2Ω3x1 + 2Ω5t2x1 = 0

x1 = Ω
2(1 − Ω2 + Ω4t2)

And so the second order asymptotic expansion is found in the form (4.16).

k̄(ν) = Ω + ν2Ω
2(1 − Ω2 + Ω4t2) (4.16)

The left side of Figure 4.5 shows the asymptotic approximation overlaid with the numerical solution, this time
without the torsional branch. The approximation is plotted for ν = 0.2 and will give increasingly good results
with decreasing ν. The figure shows how the approximation gives excellent results away from Ω = 1. The
branch originating from zero starts to diverge from the numerical solution as it approaches Ω = 1, and begins
to give very poor results at Ω > 1. This is more easily seen to the right in Figure 4.5, where the asymptotic
approximation grows to infinity. The branch cutting on at Ω = 1 is also captured well by the approximation
away from Ω = 1. The approximation continues to give good results for increasing Ω for the bending branch.
This would indicate, that the obtained approximation is valid for two different dispersion branches, in different
intervals. It is seen how the first term in the asymptotic expansion dominates away from Ω = 1, while the
second term becomes dominant around Ω = 1.

††It was also attempted to find the second term in the form of x1ν, but it yielded no correct expansion.
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Figure 4.5: Asymptotic approximation overlaid numerical solution of dispersion curves. Cylindrical shell, breathing mode (m = 0),
ν = 0.2.

4.1.2 Analyzing acoustic black hole effect for m = 0

Having validated the accuracy of the asymptotic expansion against the numerical solution, the acoustic black
hole effect can be investigated. The termination profile of the shell is visualized in Figure 4.6, showing how the
shell thickness, h(x) decreases towards zero, just as was done for the simple BE beam in Chapter 3. The shape
of the termination profile is assumed in the form h(x) = ϵxn +hr. Again, the figure is not entirely representative
of the mathematical model, as the thickness reduction should be performed symmetrically, to retain the same
mid-surface radius.

Figure 4.6: Acoustic black hole termination on the cylindrical shell. Termination is unsymmetrical despite the mathematical
model indicating symmetry.

First, expressions for phase- and group speeds can be derived as (4.17) and (4.18) respectively. As was mentioned
in Chapter 3, the acoustic black hole effect arises from the phenomenon, that the group velocity tends to zero
with decreasing flexural rigidity; in this case driven by the change in shell thickness. Looking at (4.18), it is
apparent that the equation does not reduce to zero when t → 0. This means, that the acoustic black hole
effect likely does not appear to a usable extent, for the breathing mode of an elastic cylindrical shell in the
low-frequency range, if a termination profile where h → 0 is used. In (4.19), the group speed is evaluated, for
the limiting case of t → 0 and it is here apparent that the group speed only reaches zero when Ω = 1.
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cp = Ω
k̄

= 1
v2

2 (t2 Ω4−Ω2+1) + 1
(4.17)

cg = ∂Ω
∂k̄

= 1
v2

2 (t2 Ω4−Ω2+1) + v2 Ω (2 Ω−4 t2 Ω3)
2 (t2 Ω4−Ω2+1)2 + 1

(4.18)

cg

∣∣∣∣
t=0

= 1
Ω2ν2

(Ω2−1)2 − ν2

2Ω2−2 + 1
(4.19)

The reflection coefficient and associated NWV are presented in Figure 4.7, for a termination profile with n = 2.
As in Chapter 3, the material loss is modeled as a complex Young’s Modulus, E = E0(1 − iη). The Figure
shows the reflection coefficients and associated NWV for a termination profile given by h(x) = ϵxn + hr with
the dimensions presented in Table 4.1. As a reminder, the reflection coefficient and NWV are calculated using
(3.10) on page 5 and the left-hand side of (3.7) on page 4 respectively.

h0 0.005 m Shell thickness outside acoustic black hole
hr 5 × 10−6 m Shell thickness at tip of acoustic black hole
R0 0.2 m Shell radius outside acoustic black hole
l 0.2 m Termination profile length
η 0.05 Complex material loss
n 2 Power-law termination profile power

Table 4.1: Dimensions for analyzed cylindrical shell with power-law termination profile, and complex Young’s modulus.

The decrease in group speed around Ω = 1 is also reflected in the obtained reflection coefficients, where a
distinct dip is seen around this frequency. The NWV is almost zero for all frequencies, due to the dispersionless
nature of the approximate solution away from Ω = 1. No change in h0, R0, l, or n-value gave results significantly
different from the ones presented in Figure 4.7.

Figure 4.7: Reflection Coefficient and NWV for power-law termination profile on the cylindrical shell (m = 0).

It is only possible to obtain the acoustic black hole effect, if one is able to affect the group speed of incoming
waves, by varying the dimensions of the waveguide. As was discussed at the beginning of Section 4.1, the
wave-motion of the branch starting at the origin is dominated by longitudinal motion up to Ω = 1, and so is
the branch cutting on at Ω = 1, above Ω = 1. If the cylindrical shell is viewed as a simple bar, transmitting
longitudinal waves, it is well known that the wave speed in independent of the cross-section, and so a typical
acoustic black hole termination profile, where the flexural rigidity is reduced, would not affect the group speed
of incoming waves. The obtained asymptotic approximation describes the dispersion characteristics in these
regions where longitudinal motion is dominant, and so it is to be expected, that no acoustic black hole effect is
observed from the employed termination profile.
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4.2 Investigating the bending mode: m = 1

To investigate the bending mode, we return to the dispersion equation, (4.7 on page 10). Setting m = 1, it is
seen how the second equation no longer decouples from the system, and thus the characteristic polynomial to
be investigated will come from the full 3-by-3 system. The full expressions quickly become impractical to both
write and read and are omitted from the report for this reason. Numerically obtained dispersion curves for the
bending mode, m = 1, for the cylindrical shell, are presented in Figure 4.8.

Figure 4.8: Numerical solution for dispersion curves for the cylindrical shell. Circumferential mode m = 1.

4.2.1 Asymptotic expansion for m = 1

When the breathing mode was analysed, a suitable expansion parameter was determined from inspection of the
individual terms in the dispersion equation. For the case of the bending mode, this is impractical due to the
complexity of the dispersion equation. Instead, the problem will be tackled in a different way, by using Ω as
the expansion parameter itself. A unique asymptotic approximation is then found for each of the 3 purely real
sections of the dispersion branches in Figure 4.8†.

To find the expansion for the first branch, originating at Ω = 0, Ω is chosen as the expansion parameter.
Similarly, to find the expansion for the second branch, (Ω − Ω1.CutOn) is chosen as the expansion parameter.
By using these “offset” Ω-values as perturbation parameters, the asymptotic expansions will still be developed
around a small parameter, even though the dispersion branch does not originate from Ω = 0.

The expansion series will be determined by trial and error, supported by a visual comparison between the
asymptotic solution and the numerical solution in Figure 4.8.

Asymptotic expansion for the first branch

The expansion series for the first branch will now be determined, based on the general form presented earlier
as (4.11) on page 13. Looking at the first branch in Figure 4.8, it is clear that the solution starts from the
origin. Because of this, and the fact that the expansion parameter is chosen as Ω, this immediately excludes
the possibility of a constant term; p0 = 0. All 3 of the dispersion branches have a group speed of zero at their
cut-on frequency, hinting towards the first terms being in the form of a root function; square root, cubic root,
etc. It is also seen, that around Ω = 0, the first branch has a tendency reminiscent of a square-root function.
Away from the origin, the dispersion branch bends upwards, reminiscent of a polynomial term of power greater
than unity. Because of these observations, an expansion is attempted in the form of (4.20) ††.

k̄(Ω) = x0Ω 1
2 + x1Ω 3

2 (4.20)
†An expansion around ν = 0 was proposed and attempted, but it yielded no usable results for the bending mode.

††This proposed expansion was a result of extensive trial and error.
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Substituting the first term of (4.20) into the dispersion equation, and evaluating terms at order O(Ω2), the x0
factor is determined as (4.21).

x0 =
(

−2
ν2t2 + ν2 − t2 − 1

)1/4
(4.21)

Substituting both terms of (4.20) into the dispersion equation, and evaluating terms at order O(Ω3), the x1
factor is determined as (4.22), which is so intricate it is unusable for any further analytical investigation. The
term is however usable for the specific task of numerically determining the reflection coefficient of an acoustic
black hole later.

x1 = −−2 ν2 t2 + 2 ν2 − 4 ν t4 x0
4 − 4 ν t2 x0

4 + 7 ν t2 + 3 ν + 4 t4 x0
4 + 4 t2 x0

4 − 9 t2 − 5
4 x0 (t2 + 1)2 (ν − 1)2 (ν + 1)

(4.22)

The asymptotic approximation is overlaid with the numerical solution for the first branch in Figure 4.9, using
both the first and the second terms. It can be seen how the first term closely follows the numerical solution
up to around Ω = 0.05. Adding the second term makes the approximation follow the upwards trend of the
numerical solution, giving a usable approximation up to around Ω = 0.5.

Figure 4.9: Asymptotic approximation for the first branch overlaid with the numerical solution (m = 1).

Asymptotic expansion for the second branch

Continuing the analysis for the second branch, one must determine a specific cut-on frequency for the second
branch. This is simply done, by solving the dispersion equation (4.7) for Ω, setting k = 0. The Dispersion
equation for the cylindrical shell is an 8th order polynomial in k, but only a 6th-order polynomial in Ω. Due
to the symmetry of the problem, this 6th-order polynomial in Ω can be expressed as a bi-cubic polynomial,
allowing for an analytical solution to easily be obtained. The 6th-order polynomial is given as (4.23), which can
be reduced to the 3rd-order polynomial as (4.24), where ΩSQR = Ω2.

Ω6 + Ω4
(

ν

2 − 2t2 − 5
2

)
+ Ω2(1 − ν + t2 − νt2) = 0 (4.23)

Ω3
SQR + Ω2

SQR

(
ν

2 − 2t2 − 5
2

)
+ ΩSQR(1 − ν + t2 − νt2) = 0 (4.24)

The roots of this 3rd-order polynomial are given by the expressions in (4.25). Referring to Figure 4.8 it is
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obvious which root corresponds to which cut-on frequency.†

ΩC1 = 0; ΩC2 =
√

1
2 − ν

2 ≈ 0.6325; ΩC3 =
√

2t2 + 2 ≈ 1.4142 (4.25)

Just as for the first branch, the second branch has zero group speed at its cut-on frequency, indicating the
first term should be a root function. The shape of the second branch resembles that of the first branch, and
so the first term in the expansion is proposed as a square-root function. As mentioned earlier, the expansion
parameter will be Ω, but offset with its cut-on frequency, Ω2C , given in (4.26).

k̄(Ω − ΩC2) = x0

(
Ω −

√
1
2 − ν

2

) 1
2

+ x1

(
Ω −

√
1
2 − ν

2

) 3
2

(4.26)

Performing the expansion with the proposed solution of (4.26), and balancing terms at order O(Ω2), the solution
for x0 is found as (4.27). The second term is determined by assuming the same expansion as for the first branch
and by balancing terms at order O(Ω3). Again, due to its size, the second term is so complex, it is impractical
for any further analytical manipulation. Due to its size, the term is only presented in Appendix A, where all
the asymptotic expansions from this chapter can be found listed. The asymptotic approximation is overlaid
with the numerical solution for the second branch in Figure 4.10, using both the first and the second term.

x0 = 23/4

√
(1 − ν)1/2(4t2 + ν + 3)

5ν2 + 2νt2 + 2ν − 10t2 − 7 (4.27)

It can be seen in the figure, how the first term gives an expansion that traces the numerical solution up to
around Ω = 0.7, and how adding the second term gives an approximation that traces the solution up to around
Ω = 1.1.

Figure 4.10: Asymptotic approximation for the second branch overlaid with the numerical solution (m = 1).

Asymptotic expansion for the third branch

Continuing the analysis for the third branch, the proposed expansion will be repeated from before but for the
cut-on frequency ΩC3. This proposed expansion is written out as (4.28).

K̄(Ω − ΩC3) = x0

(
Ω −

√
2t2 + 2

) 1
2 (4.28)

†The cut-on frequencies are evaluated using values from Table 4.1.
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Performing the expansion for the third branch, and disregarding terms above order O(Ω2) the solution for x0
is found as (4.29). The first term is deemed sufficient to describe the dispersion curve, and the second term is
therefore not determined. The asymptotic approximation is overlaid with the numerical solution for the third
branch in Figure 4.11.

x0 = 23/4

√
(t2 + 1)1/2(4t2 + ν + 3)

−2ν2t2 + 2ν2 − 8νt4 − 3νt2 + ν + 16t4 + 13t2 + 1 (4.29)

It can be seen how the asymptotic approximation traces the numerical solution up to around Ω = 1.45, from
where it starts over-predicting the wave numbers. The general trend beyond Ω = 1.45 is still very similar to
the numerical solution, and so the solution is deemed sufficient to obtain information on the acoustic black hole
performance.

Figure 4.11: Asymptotic approximation for the third branch overlaid with the numerical solution (m = 1).

4.2.2 Analyzing acoustic black hole effect for m = 1

Having obtained asymptotic approximations for the bending mode, m = 1, the acoustic black hole effect can
now be investigated. Before investigating the effect through asymptotic approximations, two simplified models
are investigated to get a better understanding of the bending mode. First, the vibrations of a simple Bernoulli
Euler beam are investigated much like what was done in Chapter 3, having a hollow circular cross-section.
Next, a reduced-order model of the beam-like vibrations of a cylindrical shell is investigated. Following these,
the asymptotic approximations will be used to analyze the acoustic black hole effect for m = 1.

4.2.2.1 The Bernoulli Euler beam model

The analysis will be performed, for a simple beam with a hollow circular cross-section. The dispersion relations
for the BE beam were derived as (3.3) on page 4, and are repeated here for convenience as (4.31).

EIk̂4 + ρAω2 = 0 (4.30)

k1,2 = ± 4

√
ρA

EI

√
ω, k3,4 = ±i

4

√
ρA

EI

√
ω (4.31)

The area, A, and moment of inertia, I, for the cross-section of a cylindrical shell are given as (4.32). Here RO

and RI are the outside and inside radius respectively, while h and R are the shell thickness and mid-surface
radius as usual.
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A = π4(R2
O − R2

I) = 2πRh (4.32)

I = π

4 (R4
O − R4

I) = πRh(4R2 + h2)
4 (4.33)

Substituting the expressions for A and I into the real positive root of (4.31), one obtains (4.34). From here,
phase and group speeds are determined as (4.35) and (4.36) respectively. It is seen how the phase and group
speeds do not go to zero, for vanishing small shell thicknesses h → 0. This indicates, that in the Bernoulli-Euler
framework, the shell is still predicted to attain some bending stiffness for infinitely thin shells. In order for the
model to predict a group speed of zero, both the radius, R, and the thickness, h, must go to zero.

k = 4

√
8ρω2

E(4R2 + h2) (4.34)

cp = ω

k
= ω1/2

4

√
8ρ

E(4R2 + h2)

(4.35)

cg = ∂ω

∂k
= 4

√
2E(4R2 + h2)

ρ

√
ω (4.36)

The acoustic black hole effect is now calculated using a termination profile similar to the one presented in
Figure 4.6 and Table 4.1 on page 16, where h → 0. This resulted in reflection coefficients very close to unity
for all frequencies, indicating no acoustic black hole effect appearing from this type of termination profile. To
investigate the acoustic black hole effect in the framework of this simple beam model, a new termination profile
is proposed, where the ratio between h and R is kept constant, while gradually reducing both following a power
law profile. This will essentially reduce the geometry to a hollow fiber at the tip of the acoustic black hole.
The termination profile is presented as (4.37), where it can be seen how a constant ratio between h and R is
maintained throughout the termination profile. The termination profile is defined by the parameters presented
in Table 4.2, and is visualized in Figure 4.12, though not to scale.

R(x) = ϵxn + Rr; h(x) = h0

R0
R(x) (4.37)

Figure 4.12: Termination profile of cylindrical shell where h, R → 0, while ratio h/R is kept constant.

l 2 m Termination profile length
h0 0.005 m Shell thickness outside acoustic black hole
R0 0.2 m Shell radius outside acoustic black hole
h0
R0

0.025 Constant ratio between shell thickness and radius
Rr 0.01 m Residual radius at tip of acoustic black hole
ρ 7800 kg

m3 Material density
E 210 MPa Young’s Modulus
η 0.05 Complex material loss
n 2 Power-law termination profile power

Table 4.2: Dimensions of analyzed cylindrical shell with power-law termination profile reducing shell to a hollow fiber.
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The acoustic black hole effect is investigated using dimensional parameters for this type of termination, as it
simplifies the calculations substantially compared to calculating the reflection coefficient using dimensionless
parameters. The investigated frequency span is between ω = 0 rad/s and ω = 5000 rad/s, which is equivalent to
a non-dimensional frequency span of Ω ∈ [0, 0.18] for the given geometry presented in Table 4.2. The reflection
coefficients and associated NWV are presented in Figure 4.13. Here it can be seen, how the reflection coefficient
decreases with increasing frequency, reaching 0.77 at ω = 5000 rad/s. With increasing termination profile
length, l, and power, n, the reflection coefficient decreased as expected. If the residual radius, Rr is set to zero,
a reflection coefficient of 0 was calculated for all frequencies away from Ω = 0.

Figure 4.13: Reflection coefficient and NWV of BE-beam model with hollow circular cross-section and termination profile where
h, R → 0. Frequency ω in rad/s.

In this section, it was found that the elementary BE beam model requires both the radius and shell thickness
to go to zero, for the group velocity to go to zero. This does not directly indicate the same to be required
in the thin shell model analyzed in this chapter but hints at a flaw that might reside in the simplest of wave
propagation models. To investigate this further, a reduced-order model of the beam-type motion of a cylindrical
shell is investigated.

Reduced order model: Beam-type motion of cylindrical shell

In [21], a reduced-order model is presented for the beam-like motion of a cylindrical shell. The model is obtained,
by assuming zero distortion of the cross-sectional shape, and by assuming a linear relationship between the slope
of the shell geometry under bending, and the associated longitudinal displacements; much like the elementary
Bernoulli-Euler beam theory. This reduces the 3 differential equations of motion of the original problem, to a
single equation, given as (4.38), describing the simplified beam-like deflection of the cylindrical shell.

Eh

1 − ν2

(
R2 + h2

12

)
wIV + ρhR2ω2wII − 2ρhω2w = 0 (4.38)

Assuming a space-harmonic solution of w = Aexp(ikx), the dispersion equation and its roots are readily
obtained as (4.39) and (4.40). Here, the unit-less quantities introduced in (4.8 on page 11) are employed again.
Also, the parameter, α = h

R , is introduced describing the ratio between shell thickness and radius. As (4.39) is a
4th-order polynomial in k, 4 roots are found, two of which represent traveling waves and two of which represent
evanescent waves.

Eh

1 − ν2

(
R2 + h2

12

)
k4 − ρhR2ω2k2 − 2ρhω2 = 0 (4.39)

k1,2 = ±

√√√√√
−

6
(

Ω
√

Ω2 + 2 α2

3 + 8 − Ω2
)

α2 + 12 ; k3,4 = ±

√√√√√6
(

Ω
√

Ω2 + 2 α2

3 + 8 + Ω2
)

α2 + 12 (4.40)
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From (4.40), the phase and group speeds can be determined as (4.41) and (4.42) respectively.

cp =
√√√√ Ω α2 + 12 Ω

6 Ω + 6
√

Ω2 + 2 α2

3 + 8
(4.41)

cg =

√√√√√Ω (α2 + 12)
(

Ω +
√

3
√

3 Ω2+2 α2+24
3

)
(3 Ω2 + 2 α2 + 24)

2
(
3 Ω2 + α2 +

√
3 Ω

√
3 Ω2 + 2 α2 + 24 + 12

)2 (4.42)

The nature of the phase and group speed expressions can now be investigated, for vanishingly small physical
dimensions of the shell. As the parameter α = h

R was introduced, the phase and group speed expressions are not
given directly in terms of R and h, but setting α = 0 is equivalent to setting h = 0. It is seen, that for α → 0,
neither the group- nor phase speeds are predicted to go to zero for the reduced order model of the beam-like
motion of a cylindrical shell, indicating that this type of termination profile is insufficient for obtaining the
acoustic black hole effect. It was realized earlier, when investigating the group speed of bending waves for a BE
beam with a hollow circular cross-section, that both the radius and shell thickness must go to zero, for a group
speed of zero to be predicted. To investigate if this is also the case for the reduced order model, (4.41) and
(4.42) must be investigated somewhat cleverly. One can investigate the limiting case of (h, R) → 0, by assuming
α to be constant and letting R → 0, which will cause the shell thickness to also go to zero, h → 0. Now one
realizes, that the non-dimensional frequency Ω is equal to the dimensional frequency multiplied by the radius,
R†. This means, that the action of letting R → 0, is equivalent to letting Ω → 0, keeping α constant. For this
limiting case, both (4.41) and (4.42) go to zero. This means, that both the elementary BE beam model, and
the reduced order model for the cylindrical shell predict a group speed to become zero only if both the shell
radius, R, and shell thickness, h, go to zero.

The reflection coefficient and NWV are now calculated for the reduced order model. Again, a termination profile
is used where α is kept constant while reducing R and h following a power-law profile, see Figure 4.12. The
parameters are identical to the ones presented in Table 4.2 on page 21, however with the addition of ν = 0.33.
The reflection coefficient and associated NWV for the reduced order model are presented in Figure 4.14. Here
it is seen, that the results are practically identical to the ones obtained for the simple BE beam model in
Figure 4.13 on the preceding page. It should be mentioned, that the reflection coefficients were calculated for
a termination profile where only h → 0, as a form of validation, but this yielded no acoustic black hole effect.
In the figure it can be seen, how the reflection coefficient decreases with increasing frequency, reaching 0.77 at
ω = 5000 rad/s. With increasing termination profile length, l, and power, n, the reflection coefficient decreased
as expected. If the residual radius, Rr, is set to zero, a reflection coefficient of 0 was calculated for all frequencies
away from Ω = 0.

Figure 4.14: Reflection coefficient and NWV calculated for ROM of beam-like motion of cylindrical shell having termination
profile where h, R → 0. Frequency ω in rad/s.

†The non-dimensional frequency Ω is also normalized by the constant wave speed.
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4.2.2.2 Analyzing the acoustic black hole effect using asymptotic approximations, m = 1.

At this point, having gained a better understanding of the bending mode, the acoustic black hole effect can be
investigated through the asymptotic approximations for the shell model. As done previously, expressions for
phase- and group speeds are derived, and afterward, reflection coefficients are determined. The analysis of the
previous two simplified models of beam-like vibration showed, how both shell radius and -thickness should go
to zero for the effect to occur, but this does not directly dictate, that the same holds for the full shell model,
and this will be investigated in this section too.

As Ω was used as the expansion parameter for the dispersion curves of the bending mode, m = 1, it is very
straightforward to obtain expressions for the phase- and group speeds. These are given as (4.43) and (4.44)
respectively. These are, of course, general for the three branches, as the same expansion series was used for all
three. For the third branch, one can simply assume x1 = 0. The phase and group speeds for the 3 dispersion
branches can be seen in Figure 4.15. For visual purposes, the phase and group speeds are all plotted to start
from zero but should be seen as starting from their respective cut-on frequencies. As can be seen from the
figure, the speeds are correctly predicted to start from zero, at their cut-on frequencies. As the frequency
increases, the asymptotic approximation of the group speeds of the first two branches follow the same tendency.
The third branch, however, diverges from the remaining two, as the approximation only contains a square-root
term, while the first two branches also contain a Ω3/2-term. This means, that as the frequency increases, the
group speeds of the first two branches are predicted to go to zero, while the group speed for the third branch is
predicted to diverge to infinity. The nature of the predicted phase and group speeds with increasing Ω do not
reflect reality and are only a result of the divergent nature of the assumed expansion series. As the first two
branches contain a polynomial term with power greater than unity, the predicted group speed will inevitably
be predicted to converge to zero as Ω increases. Similarly, as the third branch only contains a square root term,
the group speed will inevitably be predicted to diverge to infinity as Ω increases.

cp = Ω
k̄

= Ω
x0Ω1/2 + x1Ω3/2 (4.43)

cg = ∂Ω
∂k̄

= 2Ω1/2

x0 + 3x1Ω (4.44)

Figure 4.15: Phase- and group speeds calculated from asymptotic approximations, where t = 0. Each branch is presented as
starting from zero but should be viewed as starting from their respective cut-on frequencies.

Figure 4.15 shows phase and group speeds for t = 0, equivalent to having a shell thickness of h = 0. Without
investigating the phase and group speed expressions analytically, it is obvious from the figure, that the group
speed does not go to zero for h → 0. As mentioned earlier, this hints towards no acoustic black hole effect being
obtained from a termination profile where only h → 0. In spite of this observation, the reflection coefficient
and associated NWV are calculated and presented in Figures 4.16, 4.17 and 4.18 for the first, second, and
third branch respectively. The termination profile used is identical to the one used for the breathing mode,
h(x) = ϵxn + hr with n = 2. The specific parameters are listed in Table 4.1 on page 16. In the Figures, it
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is seen how the reflection coefficients are close to unity, for all frequencies in the range where the asymptotic
approximations are representative. The associated NWV is also observed to be small for all frequencies above
Ω = 0. This indicates, that the employed termination profile does not give rise to the acoustic black hole effect
to any meaningful extent. This is also confirmed, by a numerical parameter investigation, showing that the
reflection coefficients calculated (for all of the three branches) are largely independent of n, hr, h0, and R0,
while being dependent on ν, l and η. No termination profile defined as h(x) = ϵxn + hr would therefore result
in a significant acoustic black hole effect. The only parameters which can improve the performance, and can
reasonably be adjusted, are the material losses and the length of the acoustic black hole termination. These
only affect the reflection coefficient, as an increase in l increases the distance the wave has to travel, and an
increase in η causes a greater energy loss as it travels; not because of a cleverly chosen termination profile.

Figure 4.16: Reflection Coefficients and NWV calculated for the first branch using termination profile where h → 0 (m = 1).

Figure 4.17: Reflection Coefficients and NWV calculated for the second branch using termination profile where h → 0 (m = 1).

Figure 4.18: Reflection Coefficients and NWV calculated for the third branch using termination profile where h → 0 (m = 1).
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Returning to the observations made for the simple Bernoulli-Euler model and the reduced order model for beam-
like vibration, it was found that the acoustic black hole effect only occurred when both the radius and thickness
went to zero. Using this type of termination profile (see Figure 4.12 on page 21) for the shell model, with the
properties listed in Table 4.2 on page 21 and ν = 0.33, the reflection coefficient and NWV is recalculated. The
reflection coefficients and NWV obtained for the first branch from this termination profile is presented in Figure
4.19. It is seen, that the results are very similar to the ones obtained for the two previous simplified models (see
Figure 4.13 on page 22 and 4.14 on page 23). The same calculations are performed for the second and third
branches, which also show the acoustic black hole effect. With higher frequency, the reflection coefficient and
NWV reduce to zero for all 3 branches, but it happens far beyond the representative frequency range of the
asymptotic approximations. The dimensional frequency range presented in the figures starts from the cut-on
frequency of each branch and spans ω = 5000 rad/s. For the given geometry ω = 5000 rad/s is approximately
equivalent to 0.18 dimensionless frequency, Ω. It is also observed, that the reflection coefficient could be reduced
by increasing the length of the acoustic black hole, the material loss or the n-power of the termination profile.
Similarly, the reflection coefficient could be reduced by reducing the residual shell radius (and thereby residual
thickness) at the tip of the acoustic black hole. This agrees with the tendencies observed for the simple BE beam
analyzed in Chapter 3. Being able to affect the resulting reflection coefficient, by changing the n-power, and
the residual shell radius, indicates that the termination profile in fact results in a acoustic black hole effect. For
cases where the residual height is set to zero, the reflection coefficient is calculated to be zero, for all frequencies
above the cut on frequency of each respective branch.

Figure 4.19: Reflection Coefficients and NWV calculated for the first branch using termination profile where h, R → 0 (m = 1).
Frequency ω in rad/s.

Figure 4.20: Reflection Coefficients and NWV calculated for the second branch using termination profile where h, R → 0 (m = 1).
Frequency ω in rad/s.
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Figure 4.21: Reflection Coefficients and NWV calculated for the third branch using termination profile where h, R → 0 (m = 1).
Frequency ω in rad/s.

4.3 Investigating the ovalling mode: m = 2

Now, the ovalling mode, m = 2, is investigated. The numerical solution for the dispersion curves is presented in
Figure 4.22, showing 3 purely real dispersion branches indicated by numbers from 1 to 3. The procedure for the
asymptotic analysis is the same for the analysis of m = 1, with one difference being that no branches originate
from zero for this mode. This means, that cut-on frequencies need to be determined for all 3 branches, which
is done in the same manner as for m = 1. The resulting cut on frequencies are presented as (4.45, 4.46, 4.47),
corresponding to the first, second, and third branches respectively.

Figure 4.22: Numerical solution of dispersion branches for breathing mode, m = 2.

ΩC1 =
√

2
√

20 t2 −
√

400 t4 + 56 t2 + 25 + 5
2 ≈ 0.019 (4.45)

ΩC2 =
√

2
√

1 − v ≈ 1.15 (4.46)

ΩC3 =
√

2
√√

400 t4 + 56 t2 + 25 + 20 t2 + 5
2 ≈ 2.23 (4.47)

4.3.1 Asymptotic expansion for m = 2

The asymptotic expansions are now sought for the 3 purely real branch sections of the ovalling mode. As the
asymptotic analysis will be practically identical to the one performed in the previous section, only the new
details of this analysis will be discussed and highlighted. The analysis is still performed using offset Ω-values as
expansion parameters, as was done for m = 1. First, an expansion is proposed starting from the Ω 1

2 power. The
first expansion constant, x0, is determined by evaluating the O(Ω2) order terms. This yielded useful expansions
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for the second and third branches but gave poor agreement with the first branch. This is visualized in Figure
4.23, showing how the Ω 1

2 -term traces the second and third branch closely, while giving poor agreement with
the first branch, where the expansion overshoots the numerical solution entirely.

Figure 4.23: Asymptotic approximation using one term overlaid with the numerical solution.

This indicates, that the proposed expansion series starts at too large a power, and a new expansion is proposed
starting at the Ω 1

4 power. Again, the first expansion constant, x0, is determined by evaluating the O(Ω2) order
terms, giving good agreement with the numerical solution. The second term of the expansion series is found at
the Ω1 power, by evaluating the O(Ω4) order terms, giving the second expansion constant, x1. The expansion
series for the first branch is then found as (4.48), where the expressions for x0 and x1 are omitted due to their
size. The asymptotic approximation can be found overlaid with the numerical solution for the first branch in
Figure 4.24.

k̄(Ω − ΩC1) = x0Ω 1
4 + x1Ω (4.48)

Figure 4.24: Asymptotic approximation for the first branch overlaid with numerical solution.

The expansion series of the second branch is set to start at the Ω 1
2 power, as it gives good agreement with

the numerical solution. The second term of the expansion series is found at the Ω 3
2 power, by evaluating the

O(Ω3) order terms, giving the second expansion constant, x1. The expansion series for the second branch is
then found as (4.49), where the expressions for x0 and x1 are also omitted. The asymptotic approximation can
be found overlaid with the numerical solution for the first branch in Figure 4.25.

k̄(Ω − ΩC2) = x0Ω 1
2 + x1Ω 3

2 (4.49)
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Figure 4.25: Asymptotic approximation for the second branch overlaid with numerical solution.

It is concluded, that the first term of the expansion series is sufficient to describe the dispersion phenomenon of
the third branch, and so a second term is not found. The expansion series is given by (4.50), and the asymptotic
approximation can be found overlaid with the numerical solution for the third branch in Figure 4.26.

k̄(Ω − ΩC3) = x0Ω 1
2 (4.50)

Figure 4.26: Asymptotic approximation for the third branch overlaid with numerical solution.

4.3.2 Analyzing the acoustic black hole effect for m = 2

Now, the reflection coefficient and NWV are calculated based on the obtained asymptotic approximations for the
ovalling mode, m = 2. First, the calculation is performed, for a termination profile where the shell thickness is
reduced to zero following a power-law termination profile, given by the parameters presented in Table 4.1. These
calculations showed the same tendencies as for the bending mode m = 1; also for the ovalling mode, the acoustic
black hole effect does not occur to any usable extent for termination profiles where h → 0. Figures showing the
calculated reflection coefficient and associated NWV are omitted as they are thoroughly uninteresting.

Next, the calculations are performed for a termination profile where both the shell radius and thickness are
reduced simultaneously, following a power-law profile, keeping their ratio constant. The results are presented in
Figures 4.27, 4.28 and 4.29. Again, at higher frequencies, the reflection coefficient and NWV reduce to zero for
all 3 branches, but it happens far beyond the representative frequency range of the asymptotic approximations.
The dimensional frequency range presented in the figures starts from the cut-on frequency of each branch and
spans ω = 5000 rad/s. For the given geometry ω = 5000 rad/s is approximately equivalent to 0.18 dimensionless
frequency, Ω. Changes in the parameters of the termination profile resulted in changes in the obtained reflection
coefficient similar to what was observed for m = 1, and agree with the tendencies observed for the simple BE
beam analyzed in Chapter 3. Being able to affect the resulting reflection coefficient, by changing the n-power,
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and the residual shell radius, indicates that the termination profile in fact results in a acoustic black hole effect.
For cases where the residual height is set to zero, the reflection coefficient is calculated to be zero, for all
frequencies above the cut on frequency of each respective branch.

Figure 4.27: Reflection Coefficients and NWV calculated for the first branch of the cylindrical shell having termination profile
where h, R → 0 (m = 2). Frequency ω in rad/s.

Figure 4.28: Reflection Coefficients and NWV calculated for the second branch of the cylindrical shell having termination profile
where h, R → 0 (m = 2). Frequency ω in rad/s.

Figure 4.29: Reflection Coefficients and NWV calculated for the third branch of the cylindrical shell having termination profile
where h, R → 0 (m = 2). Frequency ω in rad/s.
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4.4 Discussion of shell model validity

The chapter began with a presentation of the Goldenveizer-Novozhilov shell model which is widely employed
in literature [22, 23] for the analysis of wave phenomena in thin shells. Asymptotic dispersion relations were
obtained for this model, which indicated that with a vanishingly small shell thickness, the shell still retained
a non-zero stiffness making it able to transmit wave energy. This went against intuition and resulted in the
model not predicting the acoustic black hole effect, except if the pipe was reduced to a “hollow fiber”, by
reducing both the shell thickness and radius to vanishing dimensions. Assuming that the analysis performed
in this chapter is correct, it is difficult to conclude whether the acoustic black hole effect can be obtained for
the cylindrical shell in the low-frequency range, or whether the acoustic black hole effect cannot be modeled
through the Goldenveizer-Novozhilov shell model. Since the acoustic black hole effect has been modeled and
observed experimentally for plates, the author expects the effect to be obtainable for cylindrical shells also.
It may be possible to more accurately predict the wave propagation properties of the cylindrical shell at the
limiting cases where h → 0, if a more elaborate model is employed, e.g. if the problem is investigated directly
through linear elasticity. This would, however, complicate the analysis immensely, meaning that the analysis
would likely be performed numerically, through e.g. finite elements, transfer matrix methods, or the Gaussian
expansion method. Obtaining solutions through these methods would make it possible to determine, how the
acoustic black hole effect could be obtained for the cylindrical shell by parameter studies, instead of analyzing
expressions for wave numbers as was done in this chapter. As mentioned in the introduction in Chapter 1,
annular acoustic black holes in cylindrical shells have been analyzed numerically, but these have been in the
context of periodicity, where several acoustic black holes are placed sequentially, resulting in stop band effects,
i.e. destructive interference [24]. The authors of [24, 8, 25], Jie Deng Et Al., conclude that sequential acoustic
black holes can be used to reduce both mechanical vibrations, and resulting sound radiation, but comment
little on whether the effect is obtained primarily due to periodicity/stop-band effects or whether it is a result
of exploiting the acoustic black hole effect. In a very recent study [26], acoustic black holes in cylindrical shells
are investigated through power flow analysis. Here it is found, that the acoustic black hole effect does appear
for cylindrical shells having power-law termination profiles where only h is reduced. The effect is observed to
be most prevalent for frequencies where the local resonance of the acoustic black hole appears, but mention
how the effect is present for all frequencies. The analysis in [26] is performed based on Love’s shell theory,
indicating that the Goldenveizer-Novozhilov shell model is not the reason for the acoustic black hole effect not
being observed through the analysis in this chapter. Because of this, the analysis of the acoustic black hole
effect in cylindrical shells is continued, but a more rigorous approach is seen as necessary to identify in which
situations the effect can be expected to appear.

A note on symbolic manipulators for obtaining asymptotic expansions

To aid the process of obtaining the asymptotic approximations, the symbolic toolbox in Matlab was used
[27]. This toolbox allows for efficient symbolic manipulations of almost arbitrarily complex algebraic equations,
making it a strong tool for applications such as this. The use of such symbolic manipulators, however, introduces
a potential source of error, as the operator of the program has little insight into the assumptions that underlie
the program’s derivations. On several occasions, during the derivation of the asymptotic approximations for the
bending mode, Matlab failed to obtain the correct solutions for the expansion constants, x0 and x1, although
the program was given the correct equations and assumed expansions. Sometimes there would be several
solutions for an expansion constant, while Matlab only managed to find a single one; sometimes Matlab
simply found erroneous solutions when asked to identify terms of a given power automatically. If instead
the solutions were manually expanded, and dominant terms were identified by hand, the correct expansion
constants were often found. The process of solving problems using the symbolic manipulators offloads the task
of performing complex and tedious algebraic expansions by hand to the computer but leaves the operator with
the task of formulating the problem in a digestible way for the symbolic manipulator. Sometimes the problem
needs to be recast using different constants, sometimes the problem should be reconditioned by expressing it in
terms of Ω2 instead of Ω, sometimes the problem needs to be split into smaller sub-problems. All of this makes
the process of determining the correct expansion series a process governed even more by trial and error.
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4.5 Answering SRQ 2

How can the acoustic black hole effect be modeled and investigated using asymptotic
approximations, for a thin cylindrical shell model?

In this chapter, the acoustic black hole effect was investigated using asymptotic approximations of the wave
numbers in the low-frequency range. The analysis started with an introduction of the Goldenveizer-Novozhilov
shell model, and the derivation of the dispersion equation for this model. The analysis investigated the effect
for the breathing mode (m = 0), the bending mode (m = 1) and finally the ovalling mode (m = 2).

First, an asymptotic approximation was obtained for the dispersion characteristics of the breathing mode. A
termination profile was then imposed, as a power-law termination profile gradually reducing the shell thickness
to zero (or rather to a small non-zero residual thickness). The following calculation of reflection coefficients
indicated no acoustic black hole effect for vanishingly small shell thicknesses. This indicated that the model
predicted an erroneous residual stiffness, for infinitely thin shells. Next, asymptotic approximations were
obtained for the real-valued dispersion branches of the bending mode (m = 1). The approximations were
obtained by using Ω as the expansion parameter and obtaining unique expansions for each branch respectively.

Before investigating the acoustic black hole effect using asymptotic approximations, two simplified models of
beam-like vibration of a cylindrical shell were investigated. The first model was a Bernoulli-Euler beam model,
using a hollow circular cross-section, and the second model was a reduced-order model derived from the full
shell model. Both of these simplified models predicted the group speed to not converge to zero for vanishingly
small shell thicknesses, requiring instead both shell radius, R, and shell thickness, h, to go to zero. No acoustic
black hole effect was observed from the simplified models, by employing a termination profile where h → 0,
but the effect appeared for a termination profile where h, R → 0, keeping α = h

R constant. Finally, the ovalling
mode (m = 2) was investigated through asymptotic approximations, just as was done for the bending mode.
Here, the acoustic black hole effect was also observed to appear for profiles where h, R → 0, while not appearing
for profiles where only h → 0.

In a short discussion, it was mentioned, that the Goldenveizer-Novozhilov shell model still predicted the ability
to carry wave energy for vanishingly small shell thicknesses, which went against intuition and resulted in the
acoustic black hole effect not appearing when a termination profile of h → 0 was used. It was discussed how a
more thorough analysis through e.g. linear elasticity might be able to predict the acoustic black hole effect for
thin shells, but this may limit the analysis to numerical solutions.
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equations of motion 5
In this chapter, SRQ 3 will be answered by investigating the differential equations of motions driving the
acoustic black hole effect. In Chapter 4, it was presented how the acoustic black hole effect could be obtained
for cylindrical shells if both the shell thickness and radius go to zero. This went somewhat against intuition,
as the flexural rigidity of the shell should go to zero as the shell thickness alone goes to zero. To gain a better
understanding of why the acoustic black hole effect is not predicted when the shell thickness goes to zero, a
more rigorous investigation will be performed, by investigating the underlying differential equations of motion
directly.

First, an investigation of the acoustic black hole effect for the flat plate is presented having a power-law
termination profile, and it is shown that the effect appears for this geometry using a termination profile where
h → 0. It is discussed why the effect appears for this geometry, and why it does not appear for the curved
plate (cylindrical shell). Next, based on this new-found understanding of the driving mechanisms behind the
acoustic black hole effect, geometric- and material assumptions are imposed for the cylindrical shell model in
an attempt to obtain the effect for this special case. Finally, the analysis returns to the original shell model,
and the acoustic black hole effect is re-investigated.

5.1 Investigating the flat plate

The analysis of the acoustic black hole effect for the flat plate starts from (5.1), and follows the derivation
presented in [28]. The differential equation, (5.1), describes the flexural motion, Ww(x, y, t), of a termination
profile “wedge” on a plate, thereby assuming a spatial dependency of the plates flexural rigidity, Dw(x). The
equation is also expressed through the instantaneous height of the wedge, hw(x), and the material density of
the wedge, ρw, which is assumed constant for simplicity. In the following derivation, the subscript, w, refers to
the wedge geometry. The geometry is presented in Figure 5.1.

Figure 5.1: Flat plate geometry with termination profile on the left-hand side. Termination profile height is given by expression
hw(x)

.

(5.1)
∂2

∂x2

[
Dw

(
∂2Ww(x, y, t)

∂x2 + ν
∂2Ww(x, y, t)

∂y2

)]
+ 2(1 − ν) ∂2

∂x∂y

[
Dw

∂2Ww(x, y, t)
∂x∂y

]
+ ∂2

∂y2

[
Dw

(
∂2Ww(x, y, t)

∂y2 + ν
∂2Ww(x, y, t)

∂x2

)]
+ ρwhw(x)∂2Ww(x, y, t)

∂t2 = 0

An ansatz for the solution of (5.1) is proposed as (5.2) having a space-dependent amplitude, B(x). The x-wave
number is expressed through the position-independent plate wavenumber, k2

p = ω2ρw(1−ν2
w)

Ew
, and the function

S(x). S(x) is the x-dependent part of the Eikonal function, S(x, y) = S(x) + kyy, and it can be seen how
this Eikonal function is used to express wave numbers through its gradients. Expressing the x-wave number in
this manner, means, that if it is possible to show that the function S(x) diverges for some termination profile,
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the wavenumber will grow unbounded, resulting in the acoustic black hole effect c.f. Chapter 3. The y-wave
number and time dependency are included in the ansatz in the typical manner.

Ww(x, y, t) = B(x)︸ ︷︷ ︸
Amp.

exp(ikpS(x))︸ ︷︷ ︸
x-wave

exp(ikyy)︸ ︷︷ ︸
y-wave

exp(−iωt)︸ ︷︷ ︸
Time

(5.2)

Substituting (5.2) into (5.1), a sizeable equation is obtained, which is only presented in Appendix B. A leading
order approximation of this equation is obtained, by neglecting all but the higher order terms; i.e. neglecting
higher order derivatives and products of derivatives. The higher order terms have been highlighted in red in
Appendix B, for convenience. The leading order approximation is obtained as (5.3), and is easily rewritten to
the bi-quadratic equation (5.4) in terms of the derivative of S(x).

−ρwB(x)hw(x)ω2 + Dw(x)B(x)k4
p

(
∂S(x)

∂x

)4
+ 2Dw(x)k2

yB(x)k2
p

(
∂S(x)

∂x

)2
+ DwB(x)k4

y = 0 (5.3)(
∂S(x)

∂x

)4
+
(

∂S(x)
∂x

)2
(

2k2
y

k2
p

)
+
(

k4
y

k4
p

)
−
(

ρwhw(x)ω2

Dw(x)k4
p

)
= 0 (5.4)

The four roots of this equation are given as (5.5) which is rewritten to (5.6), by expressing the instantaneous
flexural rigidity as Dw(x) = Ewhw(x)3

12(1−ν2) , and expressing the instantaneous wedge height as a power law profile,

hw(x) = ϵxn. Here, the constant γ =
√

12kp

ϵk2
y

is introduced to simplify the expression.

∂S(x)
∂x

= ±

(
−k2

y

k2
p

±

√
ω2hw(x)ρw

Dw(x)k4
p

)1/2

(5.5)

∂S(x)
∂x

= ±ky

kp

(
−1 ± γx−n

)1/2 (5.6)

Now, to obtain a solution for S(x), the expression in (5.6) must be integrated with respect to x, which is not
an easy task to do directly. In order to approximate a closed-form solution for S(x), (5.6) is expressed through
a binomial expansion truncated at the third term. This expansion is then integrated, to obtain (5.7,5.8). The
two remaining expressions for S3/4(x) are simply the negative of S1/2(x).

S1(x) =

√
121/2

(ϵkp)(1 − n/2)2 x(1−n/2) − 1
2

√
k4

yϵ

121/2k3
p(1 + n/2)2 x(1+n/2) − 1

8

√
k8

yϵ3

123/2k5
p(1 + 3n/2)x(1+3n/2)

(5.7)

S2(x) = i

√
121/2

(ϵkp)(1 − n/2)2 x(1−n/2) + i

2

√
k4

yϵ

121/2k3
p(1 + n/2)2 x(1+n/2) − i

8

√
k8

yϵ3

123/2k5
p(1 + 3n/2)x(1+3n/2)

(5.8)

Looking at the first term, in the above expressions, it can be seen how the integral diverges for n = 2. It is
also seen, how the integral diverges for n ≥ 2 provided that the integral is performed across the singularity
at x = 0, i.e. to the point of the truncation profile where the thickness goes to zero. Any truncation of the
termination profile by a residual height at the tip will cause the integral of ∂S

∂x to converge, causing the acoustic
black hole effect to be reduced. It has thereby been shown, starting from the differential equation of motion,
how the acoustic black hole effect can be obtained for the case of a flat plate, with a power-law termination
profile of power n ≥ 2. As the effect is present for this geometry, some effort is invested into studying the
nature of (5.3). Looking at the equation, it is apparent that all terms contain the factor h(x) either explicitly
or through the Dw(x)-term. Through the rewriting to 5.4, it is seen how the term containing ω is dependent on
h(x)−2, while all other terms are independent of h(x). This means, that as h → 0, the term containing ω will
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grow unbounded. For the equation to be balanced for a given ω as h(x) → 0, the terms independent of h(x),
namely terms containing ∂S(x)

∂x , must grow unbounded at a comparable rate. This in turn causes the phase- and
group speeds to reduce to zero, resulting in the acoustic black hole effect. Returning to the dispersion relation
(3.8) for the simple Bernoulli Euler beam analyzed in Chapter 3 on page 4, it can be investigated if the same
argumentation holds. The acoustic black hole effect was present for this geometry, and one can again see how
as h(x) goes to zero, kx must grow unbounded for any given value of ω to balance the equation. However, if one
investigates the asymptotic solutions obtained for the cylindrical shell in Chapter 4, it is seen how none of the
solutions for the wave numbers grow unbounded as t → 0, and how the acoustic black hole effect was absent in
all these cases.

As the effect has been shown to appear for the completely flat plate, the next natural step is to investigate
the curved plate, which is essentially a section of the cylindrical shell investigated in Chapter 4. The geometry
of this curved plate is presented in Figure 5.2 by the solid lines. The dashed lines serve to indicate how the
curved plate is a section of the previously analyzed cylindrical shell. The boundary conditions are such that
longitudinal and radial motion is free, while circumferential motion is constrained. Though the figure indicates
a plate of finite length, the analysis still concerns itself with infinite waveguides.

Figure 5.2: Curved plate geometry indicated by solid lines. Dashed lines indicate how the geometry is effectively a section of a
full cylindrical shell. Angular span is given by θ0, while mid plane radius is given by R.

Next, the differential equations of motion will be formulated for the curved plate. This could be done rigorously
by the Hamiltonian principle, but a shortcut is exploited instead, and the differential equations of motion for
the curved plate are instead “reconstructed” from the equations for the cylindrical shell in (4.1, 4.2, 4.3) on
page 10. The solution ansatz used to obtain the equations on page 10, were in the form (5.9). This means,
that in each term where the m-factor appears in the original cylindrical shell equations, a derivative has been
performed with respect to θ. By substituting the m-factors with differential operations, keeping close track of
the sign changes that occur when performing derivatives of the trigonometric functions, the expanded equations
are obtained as (5.10, 5.11, 5.12).

u(x, θ, t) =
∑
m

um(x, t)cos(mθ); v(x, θ, t) =
∑
m

vm(x, t)sin(mθ); w(x, θ, t) =
∑
m

wm(x, t)cos(mθ) (5.9)
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From here, it is possible to impose a new solution ansatz to the differential equations, consistent with
the boundary conditions of the curved plate geometry. This is done in the form (5.13), where m′ is the
circumferential wavenumber and θ0 is the angular span of the curved plate, see Figure 5.2. The ansatz still
makes use of the orthogonality of the trigonometric functions, allowing each of the m-spectrum to be analyzed
independently. This solution ansatz assumes the edges of the curved plate to be free in the u- and w-directions,
but assumes zero motion in the v-direction (circumferential motion) at the edges. As the flexural motion is
free at the edges, the model is reminiscent of the flat plate analyzed previously, however with the inclusion of
coupling terms between the displacement directions appearing due to the curvature of the geometry.

u =
∑
m

um(x, t)cos

(
πm′θ

θ0

)
; v =

∑
m

vm(x, t)sin

(
πm′θ

θ0

)
; w =

∑
m

wm(x, t)cos

(
πm′θ

θ0

)
(5.13)

When employing the ansatz of (5.13), an unfortunate observation is however made. As the new ansatz of (5.13)
is identical to the previous ansatz of (5.9), except for the arguments of the trigonometric functions, the equations
obtained from the new ansatz are also almost identical. The only difference is the circumferential wavenumber of
the cylindrical shell, m, being replaced by an expression containing the circumferential wavenumber of the curved
plate: πm′

θ0
. These newly obtained equations could be analyzed using the same naive asymptotic expansions

as was done in Chapter 4, but this would yield no new information. This is because analyzing the dispersion
characteristics of a given m′-spectrum of the curved plate is equivalent to analyzing a higher order m-spectrum
of the full cylindrical shell. The reason for this is explained visually in Figure 5.3, where the faint black line
shows the different m-orders for the full cylindrical shell, while the solid black line shows the m′-orders of the
curved plate, assuming θ0 = π/2. From the figure, it becomes obvious, that investigating the m-order of the
full cylindrical shell is equivalent to investigating the 2m′-order of the curved plate (specifically for the example
θ0 = π/2).

Figure 5.3: Visual representation of how m′-order is equivalent to a higher m-order.

As the analysis of the curved plate is functionally the same as the analysis of the full cylindrical shell, it can
be concluded that the acoustic black hole effect does not occur for the curved plate either. This means, that
there is a form of discontinuity when going from a perfectly flat plate where the effect is present, to a plate
with even the slightest curvature, where the effect is absent. As the effect is present in the first case and not
present in the second, it must be possible to determine some fundamental difference between the two models,
which could cause the discontinuity. It will be attempted to identify this difference, by an investigation of the
differential equations of motion.

The investigation will begin with the simplest case of m = 0. The differential equation governing the flexural
motion of the full cylindrical shell ((4.1) on page 10) reduces to (5.14) when setting m = 0. If one assumes a
non-zero curvature of the plate it is seen how the equation governing the flexural motion of the curved shell is
coupled with the axial motion um, through Poisson effects. This Poisson coupling to the longitudinal motion
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is not present in the model for the flat plate, and may thereby be the reason why the acoustic black hole effect
does not appear. This can be investigated quite simply, by setting ν = 0, and investigating the dispersion
characteristics of the breathing mode under this material assumption.

If one assumes a material with ν = 0, the equation reduces to (5.15), and it can be seen how this is equivalent
to a curved plate on a classical Winkler foundation. Assuming a spatial solution of wm = Wexp(ikxx), the
dispersion equation is obtained as (5.16), or using the unit-less parameters from page 11 as (5.17). Here an
interesting observation is made, as this unit-less dispersion equation was already obtained previously in the
report as (4.9) on page 11. The roots were also obtained as (4.14) on page 13 during the asymptotic analysis
of the breathing mode, but the expansion was never pursued for this branch as it did not originate from zero.

ν

R

dum

dx
+ 1

R2 wm + h2

12
d4wm

dx4 − ρω2(1 − ν2)
E

wm = 0 (5.14)

1
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E
wm = 0 (5.15)
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)
(5.16)

1 + t2k4 − Ω2 = 0 (5.17)

k = ± (Ω2 − 1)1/4
√

t
; ±i

(Ω2 − 1)1/4
√

t
(5.18)

It is seen how there exist 4 waves at all frequencies, and how for low frequencies these will be complex attenuating
waves two of which go in either ±x-direction. At the cut-on frequency of Ω = 1 (ω2 = E

ρR2 ) the 4 complex
attenuating waves become 2 evanescent waves and 2 propagating waves; one of each again going in either
direction. The group and phase speeds are determined from the real positive root and are presented as (5.19)
and (5.20). It can easily be verified that for t → 0, the phase and group speeds go to zero.

cp = Ω
k

= Ω
√

t

(Ω2 − 1)1/4 (5.19)

cg = ∂Ω
∂k

=
2

√
t
(
Ω2 − 1

)3/4

Ω (5.20)

Now, to see if the acoustic black hole effect is present, t is expressed through the termination profile h(x) = ϵxn

by t2 = h(x)2

12R2 in (5.17). From here, the wavenumber expression is integrated with respect to x, and the nature
of the integral is evaluated for different powers of n. Fortunately, this integral can be found analytically and is
presented as (5.23). In the expression it is seen, how the integral diverges for n ≥ 2, if the integral is extended
to x = 0 just as for the flat plate in (5.7) on page 34. Any truncation of the termination profile by a residual
height at the tip will cause the integral to converge, causing the acoustic black hole effect to be reduced. It
has thereby been shown, starting from the differential equation of motion, how the acoustic black hole can be
obtained for the breathing mode of a Poisson-less curved plate, with a power-law termination profile of power
n ≥ 2.

k = (Ω2 − 1)1/4
√

t
; t(x) =

√
h(x)2

12R2
0

; h(x) = ϵxn (5.21)
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ϵ2x2n

12R2
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2 (5.23)
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Having shown that the acoustic black hole effect can be obtained for m = 0 of a curved plate if one introduces
certain model assumptions, the same will be attempted for m > 0. The differential equation of motion for the
cylindrical shell governing the flexural motion is repeated as (5.24).

The equation contains the Poisson term, coupling the equation with the u-displacements as previously, as well
as a number of bending terms all containing the h2

12 -factor. Additionally, it is seen how two red terms are present
in the equation associated with the membrane forces in the shell, which do not contain the factor h(x). This
indicates, that the primary difference between the curved plate and the flat plate for m > 0, is the presence of
Poisson-coupling terms, and terms associated with membrane forces, which do not contain the h(x)-factor.

From this observation, an idea is formulated, where if it is possible to remove these membrane-force terms from
the equations, it would leave an equation only containing bending terms (still assuming a Poisson-less material).
If only bending terms are present in the equation, it is expected that for a termination profile where h → 0,
the acoustic black hole effect will appear, just as it was observed for the flat plate. The membrane-force terms
will be removed by the introduction of a kinematic constraint on the circumferential strain, ϵ2, setting it to
zero. The circumferential strain is expressed through equation (5.25), and it is seen how setting this to zero
will cause the two red membrane force terms to cancel out†.

(5.24)
ν

R

dum

dx
+ m

R2 vm + h2

12
m3

R4 vm − h2

12
(2 − ν)m

R2
d2vm

dx2 + 1
R2 wm

+ h2

12
d4wm

dx4 − h2

12
2m2

R2
d2wm

dx2 + h2

12
m4

R4 wm − ρω2(1 − ν2)
E

wm = 0

ϵ2 = 1
R

∂v

∂θ
+ w

R
= 0 (5.25)

To investigate if these material and kinematic constraints will result in the acoustic black hole effect, the
equations of motion will be derived and analyzed. The equations of motion for this system will be derived
through Hamilton’s principle. This will be done by setting ν to zero, and introducing the kinematic constraint
in the expressions for kinetic and potential energy before employing Hamilton’s principle. Expressions for the
kinetic energy, TSH , elastic potential energy, USH , and the external potential, WSH = −VSH are presented in
(5.27), (5.28) and (5.29) respectively. Here, dots represent a time derivative. The external potential is presented
for completeness, but as the subsequent analysis will be of free vibration of the shell, the external forcing terms
can be disregarded already at this stage. The Lagrangian is then formulated as LSH = TSH − USH , and
Hamilton’s principle tells us that the motion of a system is given as the path which minimizes the time integral
of LSH . This is conveniently stated through setting the variation of the integral to zero (5.26).

δ

∫ t2

t1

Ldt = 0 (5.26)

TSH = 1
2ρh

∫ L

0

∫ 2π

0

[
u̇2 + v̇2 + ẇ2]Rdθdx (5.27)

USH = 1
2

∫ L

0

∫ 2π

0
[ϵ1T1 + ϵ2T2 + ω̄S + κ1M1 + κ2M2 + τH] Rdθdx (5.28)

VSH = −
∫ L

0

∫ 2π

0
[q1u + q2v + q3w] Rdθdx (5.29)

The mid-plane deformations are given as (5.30).

†It will become more obvious why the derivative of v spawns the m-factor, when a solution ansatz is introduced later.
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ϵ1 = ∂u

∂x
, Axial strain (5.30a)

ϵ2 = 1
R

∂v

∂θ
+ w

R
, Circumferential strain (5.30b)

ω̄ = 1
R

∂u

∂θ
+ ∂v

∂x
, Shear strain (5.30c)

κ1 = −∂2w

∂x2 , Bending curvature in axial direction (5.30d)

κ2 = − 1
R2

∂2w

∂θ2 + 1
R2

∂v

∂θ
, Bending curvature in circumferential direction (5.30e)

τ = − 1
R

∂2w

∂x∂θ
+ 1

R

∂v

∂x
, Twisting deformation (5.30f)

Similarly, the force and moment resultant in the shell are given as (5.31), where ν = 0 has already been assumed
for simplicity.

T1 = Eh
∂u

∂x
, Axial membrane force (5.31a)

T2 = Eh

R

(
∂v

∂θ
+ w

)
, Circumferential membrane force (5.31b)

S = Eh

2

(
∂v

∂x
+ 1

R

∂u

∂θ

)
, Shear force (5.31c)

M1 = −Eh3

12
∂2w

∂x2 , Bending moment in axial direction (5.31d)

M2 = −Eh3

12

(
1

R2
∂2w

∂θ2 − v

R

)
, Bending moment in circumferential direction (5.31e)

H = −Eh3

12

(
1
R

∂2w

∂x∂θ
− 1

R

∂v

∂x

)
, Twisting moment (5.31f)

The next step is to perform variations on the kinetic energy expression, TSH , but before doing so, the kinematic
assumption of ϵ2 = 0 is introduced. Setting ϵ2 = 0 it is seen how ∂v

∂θ = −w. As separation of variables is possible
for (u(x, θ, t), v(x, θ, t), w(x, θ, t)), the same relation is seen to hold for the time derivatives: ∂2v

∂θ∂t = − ∂w
∂t .

Insertion into (5.27), one obtains (5.32) where subscripts are used to denote spacial derivatives for compact
notation.

TSH = 1
2ρh

∫ L

0

∫ 2π

0

[
u̇2 + v̇2 + v̇2

θ

]
Rdθdx (5.32)

The next step is then to take variations on the displacements and perform integration by parts to “offload” the
derivatives from the variational terms. The variations are performed in (5.33), where an arbitrary integral is
performed from t1 to t2 c.f. the Hamiltonian principle (5.26).

δ

∫ t2

t1

TSHdt = δ

∫ t2

t1

(
1
2ρh

∫ L

0

∫ 2π

0

[
u̇2 + v̇2 + v̇2

θ

]
Rdθdx

)
dt (5.33)

Based on the commutative properties of the δ-operator, variations are performed under the integral, to obtain
(5.34). For the first 2 terms in the integrand, integration by parts in time is performed. This will allow the time-
derivative operator to be “moved” from the variational term, leaving a pure variational term which vanishes at
the boundaries t1 and t2 c.f. the fundamental Lemma of Calculus of Variations [29].

δ

∫ t2

t1

TSHdt =
∫ t2

t1

(
ρh

∫ L

0

∫ 2π

0
[u̇δu̇ + v̇δv̇ + v̇θδv̇θ] Rdθdx

)
dt (5.34)
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δ

∫ t2

t1

TSHdt =

ρh

∫ L

0

∫ 2π

0


�
�
�
��>

0

u̇δu

∣∣∣∣t=t2

t=t1

−
∫ t2

t1

üδudt +
�

�
�
�>

0

v̇δv

∣∣∣∣t=t2

t=t1

−
∫ t2

t1

v̈δvdt +
∫ t2

t1

v̇θδv̇θdt

Rdθdx


(5.35)

For the third term in the integrand, integration by parts is first performed for θ, resulting in a term to be
evaluated at θ = 0 and θ = 2π. As these boundaries correspond to the same physical position on the shell, the
term implicitly cancels to zero. Finally, integration by parts is performed in time for the third term, and the
final expression is obtained as (5.36).

δ

∫ t2

t1

TSHdt =
∫ t2

t1

(
ρh

∫ L

0

∫ 2π

0
[−üδu − (v̈ − v̈θθ)δv] Rdθdx

)
dt (5.36)

Next, variations are performed on the potential energy expression, USH . First, the expressions for the mid-plane
deformations and force/moment resultants are substituted into (5.28). The equation is expanded, and a sizable
expression is obtained as (5.37), where subscripts are used to denote partial spatial derivatives. Each square
bracket holds a single term from the original expression for USH , in an attempt to make the derivation easier
to follow.

(5.37)USH = 1
2

∫ L

0

∫ 2π

0

[
Ehu2

x

]
+ [ϵ2T2] +

[
Eh

2

(
uθ

R2 + v2
x + 2uθvx

R

)]
+
[

Eh3

12 w2
xx

]
+
[

Eh3

12R3

(
1
R

w2
θθ − wθθv − 1

R
vθwθθ + vθv

)]
+
[

Eh3

12R2

(
w2

xθ + v2
x − 2wxθvx

)]
Rdθdx

Introducing the kinematic assumption of ϵ2 = 0 to (5.37), a new expression is obtained only in terms of u and
v as (5.38).

(5.38)USH = 1
2

∫ L

0

∫ 2π

0

[
Ehu2

x

]
+
[

Eh

2

(
uθ

R2 + v2
x + 2uθvx

R

)]
+
[

Eh3

12 v2
θxx

]
+
[

Eh3

12R3

(
1
R

v2
θθθ + vθθθv + 1

R
vθvθθθ + vθv

)]
+
[

Eh3

12R2

(
v2

xθθ + v2
x + 2vxθθvx

)]
Rdθdx

Sparing many of the details of the derivation, variations are performed on u and v in (5.38). Next, each term is
tediously integrated by parts, to offload derivatives from the variational terms. Again, several boundary terms
are generated, some of which are to be evaluated at θ = 0 & 2π and some to be evaluated at x = 0 & L.
Again, the boundary terms evaluated at θ implicitly cancel to zero. The terms evaluated at L are disregarded,
as the subsequent analysis will consider infinite waveguides. The final expression is presented in (5.39), where
all terms are conveniently grouped based on their variation terms.

(5.39)δ

∫ t2

t1

USHdt =
∫ t2

t1

∫ L

0

∫ 2π

0

([
−Ehuxx − Eh

2R2 uθθ − Eh

2R
vxθ

]
δu +

[
−Eh

2 vxx − Eh

2R
uxθ − Eh3

12 vθ2x4

− Eh3

12R4 vθ6 − Eh3

12R4 vθ4 − Eh3

12R2 vθ4x2 − Eh3

12R2 vxx − Eh3

12R2 2v2θ2x

]
δv

)
Rdθdxdt

Collecting the terms with the δu and δv factors from (5.36) and (5.39) two differential equations can be
established. These are written out as (5.40) and (5.41).

∂2u

∂x2 + 1
2R2

∂2u

∂θ2 + 1
2R

∂2v

∂x∂θ
− ρ

E

∂2u

∂t2 = 0 (5.40)
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(5.41)
1
2

∂2v

∂x2 + 1
2R

∂2u

∂x∂θ
+ h2

12

[
∂6v

∂x4∂θ2 + 1
R4

∂6v

∂θ6 + 1
R4

∂4v

∂θ4 + 1
R2

∂6v

∂x2∂θ4 + 1
R2

∂2v

∂x2 + 2
R2

∂4v

∂x2∂θ2

]
− ρ

E

(
∂2v

∂t2 − ∂4v

∂t2∂θ2

)
= 0

At this point, the differential equations of motion for a cylindrical shell have been derived under the assumption
of no circumferential extensibility, and no Poisson effects. Unsurprisingly, two equations are derived instead of
three, as w-displacements were condensed from the system early in the derivation. The w-displacements can
however be recovered trivially from the relation w = −vθm. Additionally, the equations are still coupled as
both equations contain the yet unknown u- an v-displacements. The next step in the analysis is to impose
ansatz for u- and v-displacements which will be done in the form (5.42) and (5.43).

u(x, θ, t) =
∑
m

um(x) cos(mθ) exp(−iωt) (5.42)

v(x, θ, t) =
∑
m

vm(x)︸ ︷︷ ︸
x−dependency

sin(mθ)︸ ︷︷ ︸
θ−wave

exp(−iωt)︸ ︷︷ ︸
T ime

(5.43)

It is observed, how after inserting these Ansatz and differentiating w.r.t. θ, each term in (5.40) contains the
cosine-factor while each term in (5.41) contains the sine-factor, and so these trigonometric terms are condensed
from the equations. From these operations (5.44) and (5.45) are obtained.

∂2um

∂x2 − m2

2R2 um + m

2R

∂vm

∂x
+ ρω2

E
um = 0 (5.44)

(5.45)
1
2

∂2vm

∂x2 − m

2R

∂um

∂x
+ h2

12

[
−m2 ∂4vm

∂x4 − m6

R4 vm + m4

R4 vm + m4

R2
∂2vm

∂x2 + 1
R2

∂2vm

∂x2 − 2m2

R2
∂2vm

∂x2

]
+ ρω2

E

(
1 + m2) vm = 0

Next, Ansatz are employed for the x-dependencies um(x) and vm(x). This will be done in the same manner as
in the beginning of Chapter 4 using Ajexp(ikxx) where kx is the dimensional wavenumber with units [m−1].
Inserting this into the equations yields (5.46) and (5.47). The original differential equations of motion for a
cylindrical shell with ν ̸= 0 and ϵ2 ̸= 0 are also presented in red below the equations so that a direct comparison
can be made.

k2
xA1 + m2

2R2 A1 − ikx
m

2R
A2 − ρω2

E
A1 = 0 (5.46)

k2
xA1 + 1 − ν

2
m2

R2 A1 − 1 + ν

2
m

R
A2ikx − ν

R
A3ikx − ρω2(1 − ν2)

E
A1 = 0

For (5.46), it is seen how the only difference between the black and red equation stems from assuming ν = 0.
This gives some confidence in the validity of the obtained solution.

(5.47)
k2

x

2 A2 + ikx
m

2R
A1 + h2

12

[
m2k4

x + m6

R4 − m4

R4 + k2
x

m4

R2 + k2
x

1
R2 − k2

x

2m2

R2

]
A2

− ρω2

E

(
1 + m2)A2 = 0
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1 + ν

2
m

R
A1ikx + 1 − ν

2 A2k2
x + m2

R2 A2 + h2

12
2(1 − ν)

R2 A2k2
x + h2

12
m2

R4 A2

+ m

R2 A3 + h2

12
m3

R4 A3 + h2

12
(2 − ν)m

R2 A3k2
x − ρω2(1 − ν2)

E
A2 = 0

ν

R
A1ikx + m

R2 A2 + h2

12
m3

R4 A2 + h2

12
(2 − ν)m

R2 A2k2
x + 1

R2 A3 + h2

12A3k4
x

+h2

12
2m2

R2 A3k2
x + h2

12
m4

R4 A3 − ρω2(1 − ν2)
E

A3 = 0

Comparing (5.47) with the two red equations below it, it is not immediately obvious how the equations relate.
It is however seen, that (5.47) could not have been obtained simply by introducing the kinematic constraint to
the red equations. It is seen how the kinematic constraint successfully removed the terms related to membrane
forces, leaving only two terms that are not multiplied by the factor h2

12 . The first of these terms
(

k2
x

2 A2

)
originate

from the first of the red equations, governing the circumferential motion of the cylindrical shell. The second
“non-bending” term,

(
ikxm

2R A1
)
, is a coupling term with the u-displacements, which also appears in (5.46).

The equations are recast in matrix form using the unit-less parameters from (5.49). It is seen how the system
is a 2-by-2 system, as the radial displacements have been described through the circumferential displacements.
Finally, the dispersion equation is presented in vector form as (5.50). It is seen how the dispersion equation for
the case of ν, ϵ2 = 0 is a 6th-order polynomial in k. This means, that for any frequency, 6 waves are present
as opposed to the 8 waves present in the original cylindrical shell model. This is a result of the flexural and
circumferential motions no longer being independent of each other due to the kinematic constraint of ϵ2 = 0.

LjlAj = 0; j, l = 1, 2 (5.48)

L11 = k2 + 1
2m2 − Ω2

L22 = 1
2k2 + t2 [m6 − m4 + m4k2 + m2k4 − 2m2k2 + k2]− Ω2(1 + m2)

L12 = −L21 = −1
2mik

Using the unit-less conversion of:

k = kxR t2 = h2

12R2 Ω2 = ω2R2

c2
L

= ρω2R2

E
(5.49)

{
k6 k4 k2 k

}


m2t2

3m4t2

2 − Ω2m2t2 − 2m2t2 + t2 + 1
2

2Ω2m2t2 − Ω2m4t2 − Ω2m2 − Ω2t2 − 3Ω2

2 + 3m6t2

2 − 2m4t2 + m2t2

2
Ω4m2 + Ω4 − Ω2m6t2 + Ω2m4t2 − Ω2m4

2 − Ω2m2

2 + m8t2

2 − m6t2

2

 = 0 (5.50)

Numerical solutions are found for m = 0, 1, 2, which are presented in Figures 5.4, 5.5 and 5.6 respectively. The
numerical solutions assume α = h

R = 1
40 .
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Figure 5.4: Numerical solution for the dispersion curves of cylindrical shell model with ϵ2, ν = 0 (m = 0).

For the case of m = 0, the system reduces to a 4th-order polynomial in k, see (5.50), and so only 4 waves
exist; two of which going in either x-direction. This follows intuition, as the system has ϵ2 = 0, meaning no
circumferential strain may exist in the shell. For the case of m = 0, the shell must deform axis-symmetrically,
inevitably causing membrane- forces and strains. Such an axis-symmetric flexural wave therefore can not exist
in the shell when ϵ2 = 0, and the only waves present will be two torsion waves and two longitudinal waves. This
is also seen in the figure, where 2 purely real dispersion branches are present, both of which originating from
zero with no dispersion properties.

Figure 5.5: Numerical solution for the dispersion curves of cylindrical shell model with ϵ2, ν = 0 (m = 1).

For the case of m = 1, the dispersion equation is a 6th-order polynomial in k, and so 6 waves exist. Looking
at Figure 5.5 however, only 2 branches seem to be present, this is because a third purely imaginary branch
(evanescent near-field wave) is located at ≈ 100i and it would be impractical to include all 3 branches in the
same figure. The third branch never cuts on and remains strongly evanescent for all frequencies. This is also
confirmed, by solving for cut-on frequencies by setting k = 0 and solving the dispersion equation for roots of
Ω. Here it is found, that the cut-on frequencies are defined by (5.51) and (5.52).

ΩC1 =
√

2m

2 (5.51)

ΩC2 = m2 t
√

m4 − 1
m2 + 1 (5.52)

The dispersion branches seen in the figure, are very reminiscent of the dispersion branches of the original shell
model with m = 1, (see Figure 4.8 on page 17), if one disregards the third missing branch.
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Figure 5.6: Numerical solution for the dispersion curves of cylindrical shell model with ϵ2, ν = 0 (m = 2).

For the case of m = 2, six waves still exist, but the third branch is again not visible in the figure, as it is
imaginary for all frequencies c.f. (5.51) and (5.52). For m = 2 no branches originate from zero, which was also
the case for the original cylindrical shell model.

5.2 Investigating the acoustic black hole effect for ϵ2, ν = 0

Now, asymptotic analysis can be performed for the dispersion branches of the newly obtained shell model. The
analysis will be performed similarly to what was done in Chapter 4, using the naive asymptotic expansion
around Ω = 0. First, the bending mode, m = 1, is investigated, and afterward, the ovalling mode, m = 2, is
investigated.

5.2.1 Investigating the bending mode, m = 1

An expansion series is assumed in the form (5.53), based on the previous experience from Chapter 4. For
the first branch, the cut-on frequency Ωc is set to zero, while for the second branch, the cut-on frequency is
set to

√
2

2 c.f. (5.51,5.52) on page 43. Substituting (5.53) into the dispersion equation (5.50), and balancing
terms at the O(Ω2) order gives the first constants, x0, for the first and second branch respectively. Similarly,
balancing terms at the O(Ω3) order gives the second constants, x1. The constants for the first branch are found
in (5.54) and (5.55), and the constants for the second branch are found in (5.56) and (5.57). The asymptotic
approximation can be found overlaid with the numerical solution in Figure 5.7. Here it can be seen how the
asymptotic approximation for the first branch gives good results up to around Ω = 0.3, while for the second
branch, the approximation gives good results up to around Ω = 0.9.

k̄(Ω) = x0(Ω − ΩC)1/2 + x1(Ω − ΩC)3/2 (5.53)

Constants x0 and x1 for first branch:

x0 =
(

2
t2 + 1

)1/4
(5.54)

x1 = −
4 t2

t2+1 − 5

4
(

2
t2+1

)1/4
+ 4 t2

(
2

t2+1

)1/4 (5.55)

Constants x0 and x1 for second branch:

x0 = 2
√

5
√

2 ΩC − 1
√

2 ΩC + 1
5

√
ΩC

= 1.0637 (5.56)

x1 = 24 ΩC
2 − 10 ΩC x0

2 + x0
4 − 2

10 ΩC
2 x0

= 0.6167 (5.57)
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Figure 5.7: Asymptotic approximations overlaid with the numerical solution for cylindrical shell model where ϵ2, ν = 0 (m = 1).

As can be seen from the constants for the first branch, the wave numbers are dependent on the thickness
parameter, t. As the assumed expansion series is identical to the one used for the bending mode in Chapter 4,
the phase and group speed expressions are also identical. The phase and group speed is given by (4.43) and
(4.44) on page 24, but are repeated here for convenience as (5.58) and (5.59). It is immediately obvious, that
the phase and group speeds for the first branch do not go to zero for the limiting case of t → 0. Numerical
calculations of the reflection coefficient and NWV showed no acoustic black hole effect, and the results are not
presented for this reason. For the second branch, it is seen how x0 and x1 are constant. The phase and group
speeds are therefore unaffected by a change in shell thickness, and the acoustic black hole effect is therefore not
obtainable from the asymptotic approximation.

cp = Ω
k̄

= Ω
x0(Ω − ΩC)1/2 + x1(Ω − ΩC)3/2 (5.58)

cg = ∂Ω
∂k̄

= 2(Ω − ΩC)1/2

x0 + 3x1(Ω − ΩC) (5.59)

High-frequency solution: ϵ2, ν = 0, m = 1:
The observation, that the first two terms in the asymptotic approximation for the second branch are independent
of t hints towards the low-frequency range being dominated by longitudinal motion. This can be investigated
further, by introducing the modal coefficient, ξ = A1

A2
in (5.48) on page 42. Doing so makes it possible to

determine the ratio between the longitudinal and circumferential motion of the given wave, by evaluating (5.60)
for given values of k and Ω on a given dispersion curve. In Figure 5.8, the modal coefficients have been plotted
together with the two dispersion branches in a log plot. Values of ξ above unity indicate a wave dominated by
longitudinal u-motion, while values below unity indicate a wave dominated by circumferential v-motion (and
thereby flexural w-motion due to the kinematic constraint of ϵ2 = 0). For the first branch, it is seen how in
the low-frequency range the wave is a mixture between u- and v-motion, but with increasing frequency, the
v-motion becomes dominant. Right at the cut-on of the second branch, the wave is strongly dominated by
u-motion, and remains this way with increasing frequency.

L11A1 + L12A2 = 0 ↔ ξ = −L12

L11
(5.60)
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Figure 5.8: Modal coefficients, ξ, overlaid with wave numbers in log-plot to show which motion type is dominant at various
frequencies for the two dispersion branches (m = 1).

As the acoustic black hole effect is expected to be obtainable for waves dominated by flexural motion, it seems
unlikely to obtain the effect from the second branch. The first branch, however, seems to have some potential in
the high-frequency range which has not been investigated as asymptotic expansion has always been carried out
around Ω = 0. In order to investigate the high-frequency range, a frequency scaling approach is used together
with the dominant balance method, inspired by [30]. Based on the square root proportionality of k ∝

√
Ω,

re-scaled frequency and wave numbers are introduced as (5.61), and substituted into the dispersion equation to
obtain (5.62). Here η ≪ 1 acts as the re-scaling parameter. A short note on the scaling approach is presented
in Appendix E, where the method is exemplified.

krs = k
√

η; Ωrs = Ωη (5.61)

(5.62)2 Ωrs
4

η4 − Ωrs
2

η2 + krs
4

2 η2 − 5 Ωrs
2 krs

2

2 η3 + krs
4 t2

2 η2 + krs
6 t2

η3 − Ωrs
2 krs

4 t2

η4 = 0

From here, the re-scaled wavenumber, krs, is expressed through an expansion series, very similar to what was
done for the naive asymptotic approximations for the low-frequency analysis. The expansion for krs will be
attempted in the form (5.63), where x0 and x1 are constants to be determined, while p0 and p1 are the yet
undetermined powers of η.

k̄rs = x0ηp0 + x1ηp1 ... (5.63)

The task is now, to substitute (5.63) into (5.62), and attempt to balance the higher order terms of the obtained
expression, by varying the powers p0 and p1. If appropriate powers of p0 and p1 are chosen, the higher order
terms in the expression can be equated and solved for an expression for x0 or x1.

If one equates p0 = 0, two terms dominate the solution as they contain the η−4 power. As η ≪ 1, high negative
powers of eta will make a term dominate the expression. The two terms are balanced in (5.64), and solved for
the final expression of x0 in (5.65). If one now returns to the non-scaled frequencies and wave numbers, the
solution for x0 can be plotted against the numerical solution to see if a valid solution has been obtained. This
is done in Figure 5.9, where it is seen how the solution gives poor results in the low-frequency range, and only
begins to give a good approximation in the very high-frequency range. For increasing frequencies Ω >> 100,
the approximation fits the numerical solution perfectly. The first term is not seen as sufficient, as the solution
is only valid at these excessively high frequencies, and so two more terms are found.
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2Ω4
rs

η4 − Ω2
rst2x4

0
η4 = 0 (5.64)

x0 =
(√

2Ωrs

t

)1/2

(5.65)

Figure 5.9: High-frequency asymptotic solution including one term for cylindrical shell model having ϵ2, ν = 0 (m = 1).

The second term is found by setting p0 = 0 and p1 = 1, which caused three terms to dominate the expression
as they contained the η−3 power†. These terms are balanced in (5.66), and solved for the final expression of x1
in (5.67).

t2x6
0

η3 − 5Ω2
rsx2

0
2η3 − 4Ω2

rst2x3
0x1

η3 = 0 (5.66)

x1 = 2t2x4
0 − 5Ω2

rs

8Ω2
rst2x0

(5.67)

Finally, the third term is found by setting p0 = 0, p1 = 1, and p2 = 2. which caused seven terms to dominate
the expression as they contained the η−2 power†. These terms are balanced in (5.68), and solved for the final
expression of x2 in (5.69). The obtained asymptotic solution for the high-frequency range is plotted against the
numerical solution in Figure 5.10. From the figure it is seen how the addition of the second and third terms
improves the solution significantly. The obtained solution is still only valid for the high-frequency range of
Ω ≫≈ 50, which is still far beyond the applicable range of the Goldenveizer-Novozhilov shell theory, and much
higher frequency than most typical excitation frequencies of mechanical systems. For the geometry listed in
Table 4.2 on page 21, Ω = 50 is equivalent to ω ≈ 41000 rad/s or 6.5 kHz. In spite of this, the obtained solution
will still be analyzed for the acoustic black hole effect.

x0
4

2 η2 − Ωkr
2

η2 + t2 x0
4

2 η2 + 6 t2 x0
5 x1

η2 − 5 Ωkr
2 x0 x1

η2 − 6 Ωkr
2 t2 x0

2 x1
2

η2 − 4 Ωkr
2 t2 x0

3 x2

η2 = 0 (5.68)

x2 = −12 Ωrs
2 t2 x0

2 x1
2 − 10 Ωrs

2 x0 x1 − 2 Ωrs
2 + 12 t2 x0

5 x1 + t2 x0
4 + x0

4

8 Ωrs
2 t2 x03

(5.69)

†Disregarding the η−4-power terms.
†Disregarding the η−4-power and η−3-power terms.
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Figure 5.10: High-frequency asymptotic solution for cylindrical shell model having ϵ2, ν = 0 (m = 1).

After some algebraic simplification, the full solution of k̄ = x0 + x1η + x2η2 is written out as (5.70), using the
non-scaled frequencies and wave numbers, Ω and k. The phase- and group speeds are presented as (5.71) and
(5.72) respectively, where it can be seen how for t → 0, both expressions tend to zero.

k̄ =
21/4 (28 Ω2 t2 − 24 √

2 Ω t + 1
)

28 t4
(Ω

t

)3/2 (5.70)

cp = Ω
k

=
2723/4t4Ω

(Ω
t

)3/2

28t2Ω2 − 24
√

2tΩ + 1
(5.71)

cg = ∂Ω
∂k

=
29t5 (Ω

t

)5/2

21/428t2Ω2 + 23/424tΩ21/43 (5.72)

The acoustic black hole effect will now be investigated for a termination profile of h → 0, using the power-law
termination profile h(x) = ϵxn. Substituting the expression for h(x) into (5.70), the expression for the high-
frequency wavenumber becomes (5.73). This expression is somewhat unwieldy and is split into 3 separate terms
as (5.74), in an attempt to make the task of integrating the expression easier.

k̄ =
23/4 31/4 R2

(
3 R2 + 64 Ω2 ϵ2 x2 n − 8

√
6 Ω R2

√
ϵ2 x2 n

R2

)
64 ϵ4 x4 n

(
Ω√

ϵ2 x2 n

R2

)3/2 (5.73)

k̄ = 21/4 9
16

R4

ϵ4 x4 n
(√

12 Ω
ϵxn

R

)3/2 + 12 21/4 Ω2 R2

ϵ2 x2 n
(√

12 Ω
ϵxn

R

)3/2 − 3
4

√
12 23/4 Ω R4 ϵxn

R

ϵ4 x4 n
(√

12 Ω
ϵxn

R

)3/2 (5.74)

Now (5.74) is integrated with respect to x to obtain (5.75). It is seen how the first term diverges if n = 2/5, as
the denominator will equal zero. The first term is also seen to diverge for n ≥ 2

5 as the numerator will tend to
negative infinity if the integral is evaluated at x = 0, which is equivalent to a termination profile with no residual
thickness at the tip. The same argumentation can be used to conclude that the second term will diverge at
n ≥ 2

3 and that the third term will diverge at n ≥ 2. This might indicate, that the acoustic black hole effect is
obtainable from termination profiles having n-powers lower than unity, but this is not the case. A termination
profile with n < 1, would severely violate the requirement of low NWV, as around x = 0 the rate of change of
the shell thickness would grow unbounded, resulting in unbounded NWV. It also becomes obvious, that such
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a termination profile would violate the requirement of low NWV, when the profile is plotted, see Figure 5.11.
The termination is reminiscent of a simple 90°cut, which would reflect all incoming wave energy. This means,
that though the integral diverges for n-powers less than 2, the acoustic black hole effect is not obtainable unless
a termination profile with n ≥ 2 is used.

(5.75)

∫
k̄dx = 21/4 9

16

−

√
2 31/4 R2 x1−2 n

√
Ω R
ϵ xn

6 Ω2 ϵ2 (5 n − 2)


+ 12 21/4

−
31/4 x

√
2 Ω R
ϵ xn

6 n − 12

− 3
4

√
12 23/4

−

√
2 31/4 R2 x1−n

√
Ω R
ϵ xn

6 Ω ϵ (3 n − 2)



Figure 5.11: Power-law termination profile with 0 < n < 1.

5.2.2 Investigating the ovalling mode, m = 2

Now, the ovalling mode (m = 2) is investigated for the model where ν, ϵ2 = 0. Two separate expansion series
are assumed in the form (5.76) and (5.77), based on the previous experience from Chapter 4, and will be used
for the first and second branch respectively. For the first branch, the cut-on frequency ΩC1 is set to (4

√
15t)/5,

while for the second branch, the cut-on frequency is set to
√

2 c.f. (5.51,5.52) on page 43.

The asymptotics of the first branch are now performed. Substituting (5.76) into the dispersion equation (5.50),
and balancing terms at the O(Ω2) order gives x0. Similarly, equating terms at the O(Ω3) order gives the second
constant x1. The constants for the first branch are found in (5.79) and (5.80). The asymptotic approximation
can be found overlaid with the numerical solution in Figure 5.12.

k̄(Ω − ΩC1) = x0(Ω − ΩC1)1/4 + x1(Ω − ΩC1) (5.76)
k̄(Ω − ΩC2) = x0(Ω − ΩC2)1/2 + x1(Ω − ΩC2)3/2 (5.77)

Constants x0 and x1 for first branch:

ΩC1 = 4t

5 151/2 (5.78)

x0 =
(

−40 ΩC1
3 + 192 ΩC1 t2 + 40 ΩC

−8 ΩC1
2 t2 + 34 t2 + 1

)1/4

(5.79)

x1 =

√
2
√

(18 t2 + 11)
(
−8 ΩC1

2 t2 + 34 t2 + 1
)

−16 ΩC1
2 t2 + 68 t2 + 2

(5.80)

Following the same procedure, the asymptotics are performed for the second branch. Substituting (5.77) into
the dispersion equation (5.50), and equating terms at the O(Ω2) order gives the first constant x0 for the second
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branch. Similarly, equating terms at the O(Ω3) order gives the second constant x1. The constants for the
second branch are found in (5.82) and (5.83). The asymptotic approximation can be found overlaid with the
numerical solution in Figure 5.12.

Constants x0 and x1 for second branch:

ΩC2 =
√

2 (5.81)

x0 =
2

√
2
√

−ΩC2
(
18 ΩC2

2 t2 + 11 ΩC2
2 − 132 t2

) (
−5 ΩC

2 + 24 t2 + 5
)

t2
(
18 ΩC2

2 − 132
)

+ 11 ΩC2
2 (5.82)

x1 = −8 ΩC2
2 t2 x0

4 − 60 ΩC2
2 + 36 ΩC2 t2 x0

2 + 22 ΩC2 x0
2 − 34 t2 x0

4 + 96 t2 − x0
4 + 20

2 x0
(
18 ΩC2

2 t2 + 11 ΩC2
2 − 132 t2

) (5.83)

Figure 5.12: Asymptotic approximations overlaid with the numerical solution for cylindrical shell model where ϵ2, ν = 0 (m = 2).

Having determined the low-frequency asymptotic approximations for the two branches, the acoustic black
hole effect can now be investigated. Beginning the analysis with the first branch, phase- and group speed
expressions are obtained as (5.84) and (5.85) based on the assumed asymptotic expansion (5.76). It is seen how
the expressions only equal zero in cases where both x0 and x1 equal zero, disregarding the cut-on frequency
Ω = ΩC1. As neither x0 nor x1 will tend to zero for t → 0, this hints towards the acoustic black hole effect not
being present for the first branch in the low-frequency range. This is also confirmed by numerical calculations
of the reflection coefficient and NWV. Next, the second branch is investigated in the same manner. The phase-
and group speed expressions for this branch are identical to the ones for m = 1, and are given as (5.58) and
(5.59) on page 45. Again, it is seen how the phase- and group speeds do not tend to zero for t → 0, and
numerical calculations confirmed the absence of the acoustic black hole effect in the low-frequency range.

cp = Ω
k

= Ω
x0(Ω − ΩC1)1/4 + x1(Ω − ΩC1) (5.84)

cg = ∂Ω
∂k

= 1
x1 + x0

4(Ω−ΩC1)3/4

(5.85)

High-frequency solution: ϵ2, ν = 0, m = 2:
As the effect was observed to be obtainable in the high-frequency range for m = 1, this will also be investigated
for m = 2. The modal coefficient ξ is again introduced, to investigate the motion of the waves at various
frequencies. In Figure 5.13, the modal coefficients have been plotted together with the two dispersion branches
in a log-plot. For the first branch, it is seen how in the low-frequency range the wave is a mixture between
u- and v-motion, but with increasing frequency, the v-motion becomes dominant. Right at the cut-on of the
second branch, the wave is strongly dominated by u-motion, and remains this way with increasing frequency.
Based on this observation, a high-frequency solution will be sought for the first branch using the same frequency
scaling approach as previously.
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Figure 5.13: Modal coefficients, ξ, overlaid with wave numbers in log-plot to show which motion type is dominant at various
frequencies for the two dispersion branches (m = 2).

The procedure is the same as described during the high-frequency analysis of the bending mode on page 46,
but as a generalization, the asymptotic solution is now found for arbitrary m-values. The expansion series is
assumed in the form k̄rs = x0 + x1η + x2η2.

The x0 constant is found by balancing terms at the η−4 order, and the constant is expressed through non-scaled
frequencies and wave numbers in (5.86). It is seen how setting m = 1 in the expression yields the previously
obtained expression for x0 for the bending mode (5.65) on page 47.

x0 =
√

Ω
(
m2 + 1

)1/4

√
m

√
t

(5.86)

The x1 constant is found by balancing terms at the η−3 order, and the constant is expressed through non-scaled
frequencies and wave numbers in (5.87).

x1 = −2 m4 t2 − 4 m2 t2 + 2 t2 + 1
8

√
Ω m3/2 t3/2 (m2 + 1)1/4 (5.87)

Finally, the x2 constant is found by balancing terms at the η−2 order, and the constant is expressed through
non-scaled frequencies and wave numbers in (5.88).

x2 = −28 m8 t4 + 16 m6 t4 + 24 m4 t4 + 4 m4 t2 − 16 m2 t4 − 8 m2 t2 + 4 t4 + 4 t2 + 1
128 Ω3/2 m5/2 t5/2 (m2 + 1)3/4 (5.88)

After some algebraic manipulation, the high-frequency solution k̄ = x0 + x1 + x2 is obtained as (5.89)†. The
high-frequency solution can be found plotted against the numerical solution in Figure 5.14 for m = 2. The
obtained solution is still only valid for the high-frequency range of Ω ≫≈ 10, which is still far beyond the
applicable range of the Goldenveizer-Novozhilov shell theory, and much higher frequency than most typical
excitation frequencies of mechanical systems. In spite of this, the obtained solution will be analyzed for the
acoustic black hole effect.

†As a form of validation, the solution was also evaluated for m = 1, which correctly yielded (5.70) on page 48.
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Figure 5.14: High-frequency asymptotic solution for cylindrical shell model having ϵ2, ν = 0 (m = 2).

For simplicity, the high-frequency solution is expressed as a sum of tscs in (5.90), where s ∈ [ 3
2 , 1

2 , − 1
2 , − 3

2 , − 5
2 ].

k̄ =
{

t3/2 t1/2 t−1/2 t−3/2 t−5/2}


4 − 16m2 + 24m4 + 16m6 − 28m8

32
√

m2 + 1Ω(2m3 − m5 − m)
4 − 8m2 + 4m4 + 128Ω2m2 + 128Ω2m4

−16mΩ
√

m2 + 1
1


1

128Ω3/2m5/2(m2 + 1)3/4

(5.89)

k̄ = t3/2c 3
2

+ t1/2c 1
2

+ t−1/2c− 1
2

+ t−3/2c− 3
2

+ t−5/2 =
∑

tscs (5.90)

Expressing t in (5.90) through a power-law termination profile and integrating it with respect to x yields (5.91).
The nature of the integral can now be evaluated for different powers of n.

∫
k̄dx =

∫ ∑
tscsdx =

∑(
ϵ2

12 R2

)s/2

n s + 1 xns+1cs (5.91)

It can be seen how if s > 0, the summand converges, which is the case for s = 3
2 and s = 1

2 . The remaining
3 terms however have s < 0, and the summand diverges, indicating the acoustic black hole effect. Setting
s = −1/2, it is seen how the summand diverges for n ≥ 2, and setting s = −3/2 & −5/2 the summand is
seen to diverge for n ≥ 2/3 & 2/5 respectively. Again, the n-powers lower than unity result in a termination
profile as presented in Figure 5.11 on page 49, which would violate the underlying assumption of low NWV.
It can however be concluded, that the acoustic black hole effect can be obtained for a power-law termination
profile of n ≥ 2.

5.3 High-Frequency solution of ordinary shell model

It has now been shown, that the acoustic black hole effect is obtainable in the high-frequency range of the
shell model with ϵ2, ν = 0. When performing the asymptotics for the low-frequency range of this model, it was
seen that the obtained solution was independent of t. This indicated that the obtained solution described a
wave dominated by longitudinal motion, and it was determined from modal-coefficient analysis, that the wave
only became flexural dominated at higher frequencies. From this observation, it was decided to investigate the
high-frequency regime for the acoustic black hole effect. There is however no reason for assuming, that the
acoustic black hole effect appeared in the high-frequency range due to the assumptions of ϵ2, ν = 0. Because of
this, a high-frequency solution will also be sought for the flexural wave numbers in the original cylindrical shell
model.
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The procedure is the same as described during the high-frequency analysis of the bending mode on page 46.
The expansion series is assumed in the form k̄rs = x0 +x1η +x2η2, and the solution will be sought for arbitrary
m-values.

The x0 constant is found by balancing terms at the η−6 order, while the x1 and x2 constants are found by
balancing terms at the η−5 and η−4 order respectively. The obtained constants are found as (5.92), (5.93) and
(5.94). As the typical form of validation, the obtained solutions are plotted overlaid the numerical solutions for
m = 1 in Figure 5.15, and for m = 2 in Figure 5.16†. If only x0 is used the solution gives a good approximation
in the very high-frequency range, far beyond the applicable range of the shell model. If x1 and x2 is included
however, it is seen how the solution gives a good approximation after Ω > 1.5, equivalent to ω ≈ 1230 rad/s for
the geometry presented in Table 4.2 on page 21.

x0 =
√

Ω√
t

(5.92)

x1 = −m2 √
t

2
√

Ω
(5.93)

x2 = −m4 t2 + 2 m2 ν2 t2 − 8 m2 ν t2 + 8 m2 t2 + 2
8 Ω3/2

√
t

(5.94)

Figure 5.15: High-frequency asymptotic solution for original cylindrical shell model with no material- nor kinematic assumptions
(m = 1).

Figure 5.16: High frequency asymptotic solution for original cylindrical shell model with no material- nor kinematic assumptions
(m = 2).

Next, the high-frequency wave number solution is integrated with respect to x, and the nature of the integral is
assessed for different powers of n. The integral is performed in (5.95), where the first square bracket contains

†The solution was tested up to m = 8, and continued to give good approximations.
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the integral of x0. It is seen how the first term diverges for n ≥ 2, indicating the acoustic black hole effect to
be present in the very high-frequency range. The second square bracket contains the integral of x1, and it is
seen how this term never diverges, assuming n > 0 which would be necessary for a proper termination profile.
The remaining two square brackets contain the integral of x2, and it is seen how the former of the two never
diverges, while the latter diverges for n ≥ 2.

(5.95)
∫

k̄ = −

2 121/4 √
Ω R2

(
ϵ2

R2

)3/4

ϵ2 (n − 2)

x1−n/2

−

123/4 m2
(

ϵ2

R2

)1/4

12
√

Ω (n + 2)

x1+n/2−

m2 (m2 + 2 ν2 − 8 ν + 8
) (

ϵ2

12 R2

)3/4

4 Ω3/2 (3 n + 2)

x1+3n/2+

121/4 R2
(

ϵ2

R2

)3/4

2 Ω3/2 ϵ2 (n − 2)

x1−n/2

From these observations, it is seen how the acoustic black hole effect is obtainable in the slightly higher frequency
range, than what was investigated previously in Chapter 4. The reason why the effect was not obtained in
Chapter 4, was due to the asymptotic approximations only being representative in the low-frequency range,
where the effect did not appear. The observation, that a power-law termination profile with n ≥ 2 is sufficient
to obtain the effect corresponds well with the observations made by M. A. Mironov in [9], and the observations
made in [28] analyzing the flat plate.

5.4 Acoustic black hole effect for waves in circumferential direction

As a final investigation, the acoustic black hole effect will be analyzed for waves traveling in the circumferential
direction of the cylindrical shell. The analysis is performed on the original cylindrical shell model, with no
additional material- or kinematic assumptions. As the waves will travel in the circumferential direction the
analysis will not be conducted on the full cylindrical shell, but instead on the partial cylindrical shell (curved
plate) which was introduced previously in Figure 5.2 on page 35. As was shown previously, during the analysis
of the curved plate, the dispersion equation for the curved plate can be obtained from the dispersion equation
for the full cylindrical shell, by substituting m with πm′

θ0
. Here m′ is the circumferential wavenumber of the

curved plate, and θ0 is the angular span of the plate. The dispersion equation for the curved plate then becomes
(5.96).

LjlAj = 0; j, l = 1, 2, 3 (5.96)

L11 = k2 + 1 − ν

2

(
πm′

θ0

)2
− Ω2

L22 = 1 − ν

2 k2 +
(

πm′

θ0

)2
+ t22(1 − ν)k2 + t2

(
πm′

θ0

)2
− Ω2

L33 = 1 + t2(k2 +
(

πm′

θ0

)2
)2 − Ω2

L12 = −L21 = 1 + ν

2

(
πm′

θ0

)
ik

L13 = −L31 = νik

L23 = L32 =
(

πm′

θ0

)
+ t2

(
πm′

θ0

)3
+ t2(2 − ν)

(
πm′

θ0

)
k2

k = kxR t2 = h2

12R2 Ω2 = ω2R2

c2
L

= ρ(1 − ν2)ω2R2

E
(5.97)
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For the analysis of waves in the circumferential direction, dispersion characteristics are investigated for the m′

wave number as a function of dimensionless frequency, Ω. This will be done keeping the longitudinal wave
number, k, constant, and for simplicity, the analysis will consider k = 0. For this case, it can be seen how
the L12 and L13 terms equal zero, meaning the longitudinal motion is decoupled from the circumferential and
radial motion. Condensing this equation from the system, the dispersion equation can be written compactly as
(5.98).

t2 m′6 +
(
−Ω2 t2 − 2 t2) m′4 +

(
−Ω2 t2 − Ω2 + t2) m′2 + Ω4 − Ω2 = 0 (5.98)

A numerical solution for (5.98) is obtained excluding the dispersionless longitudinal branch. Figure 5.17 shows
the solution in the very low-frequency range, and 5.18 shows the solution spanning Ω ∈ [0, 2]. It can be seen
how for any frequency 6 waves must be present, as (5.98) is a 6th order polynomial in m′. The figure shows
3 branches for any frequency, but this is as always just due to the waves in the positive half-space of the
waveguide being plotted. It can be seen how 2 purely real branches are present in the plotted frequency range.
One appears to start from (Ω, m′) = (0, 0.5) and another cuts on at Ω = 1.

Figure 5.17: Numerical solution of dispersion curves for circumferential wavenumber m′. k = 0. Very low-frequency range.

Figure 5.18: Numerical solution of dispersion curves for circumferential wavenumber m′. k = 0.

Now asymptotic approximations can be found for the dispersion equation. This is done in Appendix D, as the
process is identical to what has already been presented several times. The asymptotic approximations are found
in the low-frequency range by expanding around small values of Ω, and a low-frequency solution is obtained
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for both the first and second branches. The asymptotic approximation for the first branch, m̄′
B1, is found as

(5.99), while the approximation for the second branch, m̄′
B2, is found as (5.100). In the following derivations,

the circumferential wavenumber could reasonably be normalized by θ0, but this has not been done and instead,
all figures are generated with an assumed angle of θ0 = π/2.

m̄′
B1 = θ0

π
− Ω2 θ0

2 t2 π
+

√
2 Ω θ0

√
t2 + 1

2 t π
(5.99)

m̄′
B2 = Ω1/2

√
2 θ0

π
− Ω3/2

√
2 θ0

(
16 t2 − 1

)
4 π

(5.100)

To investigate the acoustic black hole effect, a new termination profile must be introduced. The termination
profile still follows the power-law profile but is now expressed as a function of θ, as h(θ) = ϵθn. This termination
profile is substituted into the expression for t to obtain t =

√
h(θ)2

12R2 , which is then substituted into (5.99) and
(5.100).

Now (5.99) will be integrated with respect to θ, and the nature of the integral will be evaluated for various
powers of n. It can be seen how the first two terms in (5.99) can be integrated quite straightforwardly, but
the third term poses some issues. The

√
t2 + 1 in the numerator makes it difficult to evaluate the integral

analytically, even with the help of symbolic manipulation. It is however observed, that both the numerator and
the denominator of the third term are of order t1, and the term is therefore not expected to diverge for t → 0.
Because of this, the third term is not expected to contribute to the acoustic black hole effect. Based on this
observation, the integral of the third term will not be pursued. The remaining terms are integrated, to obtain
(5.101). Here it is immediately seen how the second term of (5.101) will diverge for n ≥ 1

2 if the integral is
evaluated at θ = 0. As discussed earlier on page 52, a power-law termination profile with n ≤ 1 would violate
the underlying assumption of low NWV, and so a value of n ≥ 2 is argued to be a sufficient termination profile
power for the acoustic black hole effect to appear for waves propagating in the circumferential direction.

∫
m̄′

B1dθ = θ θ0

π
+ 6 Ω2 R2 θ1−2 n θ0

ε2 π (2 n − 1) +
∫ √

2 Ω θ0
√

t2 + 1
2 t π

dθ (5.101)

Now, the same analysis is performed for the second branch, using the low-frequency solution (5.100). The
expression is integrated with respect to θ to obtain (5.102). Here it can be seen, that the acoustic black hole
effect does not appear for the second branch, as no value of n causes (5.102) to diverge when evaluated at θ = 0.

∫
m̄′

B2dθ =
√

2 θ θ0
√

Ω − 1 (Ω + 3)
4 π

−
√

2 ε2θ2 n+1 θ0 (Ω − 1)3/2

3 R2 π (2 n + 1) (5.102)

One might now reasonably argue, based on the previous observations, that the acoustic black hole effect may
be observed if a high-frequency solution is obtained for the second branch. In fact, a high-frequency solution
was obtained, but as the second branch becomes completely dispersionless (linear) shortly after its cut-on at
Ω = 1, the high-frequency solution was simply a linear function of Ω, independent of t. Because of this, the
acoustic black hole effect can be confirmed not to appear for the second branch.
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5.5 Answering SRQ 3

For which geometries does the acoustic black hole effect appear, and what causes the effect to be
absent in some cases? Which assumptions can be employed to make the effect appear in the absent

cases?

In this chapter, the acoustic black hole effect was investigated, starting from a simple case of a flat plate carrying
flexural waves. The analysis showed how the effect appeared for this simple case, and how the terms in the
differential equations of motion gave rise to the effect. The analysis was then extended to a curved shell, and it
was observed how the analysis of this geometry was functionally identical to the analysis of the full cylindrical
shell.

As the acoustic black hole effect had been observed for the plate, and not in the cylindrical shell, it was
attempted to pinpoint which terms (or couplings) in the equations caused the effect to be absent. Starting from
the simplest case of m = 0, it was observed how a material assumption of ν = 0 could uncouple the flexural
motion from the longitudinal, making the equation for the cylindrical shell equivalent to that of a simple beam
on a Winkler foundation. It was then shown how the acoustic black hole effect was present under this material
assumption with m = 0 in the low-frequency range. Next, the equations of motion for the cylindrical shell
were investigated for m > 0. It was discussed, that the equation governing the flexural motion contained terms
related to the membrane forces in the shell, which were not present in the case of the flat plate (together with
the Poisson-coupling terms which were also present for m = 0).

It was postulated that the removal of these terms may lead to the acoustic black hole effect. To remove these
terms, the equations of motion were derived rigorously through Hamilton’s principle assuming ϵ2, ν = 0. From
this derivation, it was shown how the membrane terms could be condensed from the equation by setting strain in
the circumferential direction to zero. However, the following asymptotic analysis showed how the acoustic black
hole effect was not present in the low-frequency range for m > 0 in spite of these newly introduced material-
and kinematic assumptions.

Modal coefficient analysis was performed next, which showed how the low-frequency wave motion was governed
by a substantial amount of longitudinal motion, and how for increasing frequency, the wave motion started
becoming almost purely flexural. As the acoustic black hole effect is expected to be most pronounced for
flexural motion, a high-frequency solution was sought for the dispersion equation. This was obtained using a
frequency scaling approach together with the dominant balance method. The analysis showed how the acoustic
black hole effect was present in the high-frequency range for m > 0, using power-law termination profiles where
h → 0. A termination profile with n > 2/5 was predicted to be sufficient for the effect to appear, but this would
violate the underlying assumption of low NWV, and so a power-law termination profile with n > 2 is concluded
to be sufficient for the effect to appear.

A high-frequency solution was then obtained for the original shell model, with no material- or kinematic
assumptions. Here it was found that the acoustic black hole effect was present when using power-law termination
profiles where h → 0 for n ≥ 2. Finally, the cylindrical shell was investigated for waves traveling in the
circumferential direction by investigating the dispersion characteristics of the circumferential wavenumber. This
was done for the curved plate geometry, setting k = 0. It was found that the effect does appear when employing
a power-law termination profile where h(θ) → 0.
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Answering the Main Research Question 6
The three Sub Research Questions have now been answered in chapters 3, 4, and 5 respectively. Now the
Main Research Question will now be answered, based on the conclusions of the previous three Sub Research
Questions. The Main Research Question is repeated as:

How can the acoustic black hole effect be modeled for elastic cylindrical shells, through the
framework of thin shell theory?

It was discussed how the acoustic black hole effect can be obtained through a gradual reduction in the flexural
rigidity of the waveguide, typically obtained from a gradual reduction in thickness. It was discussed how the
model validity relied on an assumption of low Normalized Wave number Variation, and how this assumption
was violated if the termination profile was too abrupt. It was shown how the acoustic black hole effect could
be analyzed by the divergent nature of the anti-derivative of the wavenumber, in the idealized case of h → 0. If
instead, a residual height is present at the tip of the termination profile, numerical evaluations of the reflection
coefficient provide insight into the performance of the given termination profile.

The Goldenveizer-Novozhilov cylindrical shell model was analyzed using asymptotic approximations in the
low-frequency range. The asymptotic approximation for the breathing mode was obtained by using ν2 as the
expansion parameter, while the approximations for the bending and ovalling mode were obtained by using Ω as
the expansion parameter, offset with the cut-on frequency of each respective branch. The subsequent analysis
showed that the acoustic black hole effect was not present in the low-frequency range for any m-spectrum if
termination profiles where the shell thickness was reduced to zero (h → 0) were used. However, if a termination
profile was used, where both shell- thickness, and radius went to zero (h, R → 0), the effect was observed
through numerical evaluation of the reflection coefficient in the low-frequency range.

It was observed how the acoustic black hole effect may be obtained in the low-frequency range with m = 0, if
Poisson effects are neglected. From a high-frequency solution, the acoustic black hole effect was observed for
the full cylindrical shell for power-law termination profiles having n ≥ 2 where h → 0. Finally, it was observed
how the effect may be obtained for waves traveling in the circumferential direction also.

This thesis has successfully demonstrated the feasibility of modeling the acoustic black hole effect for cylindrical
shells, a significant advancement beyond previous studies limited to beams and flat plates. The observation,
that a power-law termination profile with n ≥ 2 is sufficient to obtain the acoustic black hole effect in the
cylindrical shell corresponds well with the observations originally made by M. A. Mironov in [9] investigating a
beam model, and the observations made in [28] analyzing the flat plate, where in both cases it was concluded
how n ≥ 2 would cause the effect to appear.

In contrast to the previously analyzed models that showed the effect to be present across the entire frequency
range, the current findings suggest the acoustic black hole effect in cylindrical shells to be present predominantly
at higher frequencies. This is a result of the flexural wave motion of the cylindrical shell being strongly coupled
with the longitudinal motion in the low-frequency range. With higher frequency, the wave motion becomes
more purely flexural, allowing the acoustic black hole effect to appear, which serendipitously coincides well with
the requirement of low Normalized Wave number Variation.
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Conclusion 7
Like a modern-day California Gold Rush, the academic community has sprung into action, analyzing the
acoustic black hole effect through numerical models. They have developed models, which allow us to analyze
phenomena of acoustic black holes with remarkable speed and which would have taken countless hours to
analyze analytically. There is no doubt, that numerical solutions are the way of the modern engineer, and with
the tools available today, a thesis like the current text may seem more like a mathematical exercise, than an
attempt to further the field of acoustic black holes. The analytical approach does however provide something
one can never hope to obtain from a sparse matrix or a color-plot.

If you asked a monkey to go to the moon, he would undoubtedly find the tallest tree he could, and climb it.
From up there he would look disappointed to the sky. He might also be able to spot a slightly taller tree in
the distance and decide to climb that next; “surely I’ll get to the moon eventually” he thinks to himself. But
if we ever want to get that monkey to the moon, we have to stick him in a rocket, and before then, we have to
invent a rocket. Sometimes the only way forward is to think in completely new directions, and we are able to
do that through a rigorous understanding of the underlying problem.

Analyzing a problem solely based on numerical models is like building a rocket without a blueprint. You may
be able to get the job done quicker without a pesky inspector breathing down your neck; especially if you have
built a similar rocket previously. But without a sound understanding of why the rocket you have built doesn’t
just fall out of the sky, you can never hope to build a bigger and better rocket in the future. Designing the
blueprint - developing the analytical understanding - is why we as engineers are able to build a better rocket
tomorrow.

Throughout this thesis, the acoustic black hole effect has been investigated for cylindrical shells, using a
theoretical, analytical, and academically motivated approach. It has been shown, that there is an analytical
basis for the acoustic black hole effect in cylindrical shells, and that the effect can be obtained in a similar
manner as for beams and plates. An interesting property of the cylindrical shell is, however, that the effect
should not be expected in the low-frequency range, even if a termination profile could be designed, resulting in
sufficiently low Normalized Wave number Variation at lower frequencies.

This means, that if an engineer wishes to exploit the acoustic black hole effect at lower frequencies, he can not
simply employ a termination profile that gives low Normalized Wave number Variation in the desired frequency
range. He would instead have to conceive of some way, of making the wave motion almost purely flexural in this
low-frequency range, for the effect to be obtainable. One might imagine a series of longitudinal cuts into the
end of the acoustic black hole termination, turning it into a number of beam-like acoustic black holes. Maybe
these beam-like acoustic black holes should be placed standing radially from the pipe, so that they may also be
excited by torsional vibrations. Who knows? Maybe the monkey is about to invent a rocket.
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Future Work 8
Throughout this thesis, very little effort has been spent discussing the industrial applicability of acoustic black
holes in cylindrical shells. One of the biggest points of critique for the current state of acoustic black hole
technology, is the limited range of industrial applicability, due to the physical dimensions and the effective
frequency ranges. Also, the use of unit-less parameters for the analysis in this thesis, makes it difficult to relate
the analyzed geometries to real-world components. All of the conclusions in Chapter 5, stating that the acoustic
black hole effect is present, do so based on analytical calculations on a termination profile geometry which is
impossible to manufacture. In future work, a greater focus may be directed toward designing acoustic black
holes for real-world mechanical systems, keeping in mind physical dimensions, manufacturability, and structural
rigidity. Additionally, maybe acoustic black holes should not be restricted to be an integral part of a waveguide,
but instead be manufactured as a separate component, intended to be mounted to a waveguide or mechanical
system as a retrofit part.

At the end of Chapter 5, it was shown how the acoustic black hole effect may be obtained in cylindrical
shells, in the idealized case where the shell thickness goes to zero. As a next step, it would be interesting to
investigate the non-ideal case where the termination profile has a non-zero hr-value. This could potentially
be done through numerical evaluation of the reflection coefficient or using some elaborate numerical model.
Additionally, performing sensitivity studies to investigate how sensitive the obtained vibration mitigation is
to changes in termination profile geometry and residual height at the tip of the termination, may give a
future design engineer the perspective to design acoustic black holes where performance is balanced against the
presumably high manufacturing costs.

Many cylindrical shell structures used in industry are either submerged in or filled with fluid and the shell
thickness is often too large to adhere to Love’s first approximation. For the technology to be applied in industry,
the effect should be investigated and proven for thicker shells as well as shells with heavy fluid loading. The
inclusion of fluid loading in the analysis may even open new doors for applying acoustic black holes for mitigation
of e.g. pressure pulsations in the fluid.

Acoustic black hole technology has, maybe due to its name, been viewed as a means for sound- and vibration
mitigation, but it may have much more far-reaching applicability outside of this area. It has already been
investigated for energy harvesting, but one could imagine the technology to be employed in anything from
ultrasonic welding, to hearing aids, Hi-Fi tweeter design, and ultrasonic transducers. We have just begun to
scratch the surface, and it all starts with a rigorous understanding of the underlying physics and vibration
theory.
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Appendix A: Terms from the

low-frequency asymptotic

approximations A
A.1 Terms of the m = 0 analysis

x0 = Ω (A.1)

x1 = Ω
2(1 − Ω2 + Ω4t2) (A.2)

A.2 Terms of the m = 1 analysis

First branch

x0 =
(

−2
ν2t2 + ν2 − t2 − 1

)1/4
(A.3)

x1 = −−2 ν2 t2 + 2 ν2 − 4 ν t4 x0
4 − 4 ν t2 x0

4 + 7 ν t2 + 3 ν + 4 t4 x0
4 + 4 t2 x0

4 − 9 t2 − 5
4 x0 (t2 + 1)2 (ν − 1)2 (ν + 1)

(A.4)

Second branch

x0 = 23/4

√
(1 − ν)1/2(4t2 + ν + 3)

5ν2 + 2νt2 + 2ν − 10t2 − 7 (A.5)

x1 = −(21/4(1 − ν)1/2(48ν5t2 − 121ν5 + 96ν4t4 − 320ν4t2 − 159ν4 − 384ν3t6 − 1444ν3t4 (A.6)
−720ν3t2 + 134ν3 + 240ν2t6 + 1276ν2t4 + 1424ν2t2 + 418ν2 + 544νt6 + 1204νt4 + 608νt2 (A.7)
+3ν − 656t6 − 1388t4 − 1040t2 − 275))/(2(−(1 − ν)3/2(5ν3 + 22ν2t2 + 17ν2 + 8νt4 + 4νt2 (A.8)
−ν − 40t4 − 58t2 − 21))(1/2)(5ν2 + 2νt2 + 2ν − 10t2 − 7)2) (A.9)

Third branch

x0 = 23/4
√√

t + 1 (ν + 14 t + 2 ν t − ν t2 + 5 t2 − 8 t3 + 3)√
t + 1 (−2 ν2 t2 + 2 ν2 − 8 ν t3 − ν t2 − 2 ν t + ν + 16 t3 + 7 t2 + 6 t + 1)

(A.10)
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A.3 Terms of the m = 2 analysis

First branch

x0 = [−(4ΩC1(10ν − 4Ω2
C1ν + 40νt2 + 14Ω2

C1 − 3Ω4
C1 − 76t2 + 40Ω2

C1t2 − 10))
/(2Ω4

C1t2 + 8Ω2
C1ν2t4 + 16Ω2

C1νt2 + Ω2
C1ν − 8Ω2

C1t4 − 40Ω2
C1t2 − Ω2

C1 + 16ν3t4

−4ν3t2 + ν3 − 16ν2t4 + 4ν2t2 − ν2 − 16νt4 − 68νt2 − ν + 16t4 + 68t2 + 1)]1/4
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C2 − 2Ω2

C2ν2)

x1 = (2Ω4
C2t2x4

0 − 30Ω4
C2 − 16Ω3

C2νt2x2
0 − 4Ω3

C2νx2
0 + 80Ω3

C2t2x2
0 + 12Ω3

C2x2
0 + 8Ω2

C2ν2t4x4
0

+16Ω2
C2νt2x4

0 + Ω2
C2

4
0 − 24Ω2

C2ν − 8Ω2
C2t4x4

0 − 40Ω2
C2t2x4

0 + 240Ω2
C2t2 − Ω2

C2x4
0 + 84Ω2

C2

−16ΩC2ν2t2x2
0 + 4ΩC2ν2x2

0 + 104ΩC2νt2x2
0 + 18ΩC2νx2

0 − 264ΩC2t2x2
0 − 22ΩC2x2

0

+16ν3t4x4
0 − 4ν3t2x4

0 + ν3x4
0 − 16ν2t4x4

0 + 4ν2t2x4
0 − ν2x4

0 − 16νt4x4
0 − 68νt2x4

0 + 80νt2

−νx4
0 + 20ν + 16t4x4

0 + 68t2x4
0 − 152t2 + x4

0 − 20)/(8x0Ω4
C2νt2 + 2x0Ω4

C2ν − 40x0Ω4
C2t2

−6x0Ω4
C2 + 16x0Ω2

C2ν2t2 − 4x0Ω2
C2ν2 − 104x0Ω2

C2νt2 − 18x0Ω2
C2ν + 264x0Ω2

C2t2 + 22x0Ω2
C2 + 288x0νt2 − 288x0t2)

Third branch

x0 = (2(−ΩC2(10ν − 4Ω2
C2ν + 40νt2 + 14Ω2

C2 − 3Ω4
C2 − 76t2 + 40Ω2

C2t2 − 10)
(−4Ω4

C2νt2 − Ω4
C2ν + 20Ω4

C2t2 + 3Ω4
C2 − 8Ω2

C2ν2t2 + 2Ω2
C2ν2 + 52Ω2

C2νt2

+9Ω2
C2ν − 132Ω2

C2t2 − 11Ω2
C2 − 144νt2 + 144t2))(1/2))/(t2(4Ω4

C2ν − 20Ω4
C2

+8Ω2
C2ν2 − 52Ω2

C2ν + 132Ω2
C2 + 144ν − 144) − 9Ω2

C2ν + Ω4
C2ν + 11Ω2

C2 − 3Ω4
C2 − 2Ω2

C2ν2)
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Appendix B: Expanded equation for

flat plate B
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Appendix C: 3D plots of dispersion

branches m = 0 C
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Appendix D: Low frequency solution

for circumferential waves D
The low-frequency solution for the circumferential traveling waves is first obtained for the first purely real
branch starting from (Ω, m′) = (0, 0.5). The expansion will be performed around Ω as (D.1), and as the branch
starts from a non-zero wave number value, p0 will be set to zero.

m̄′ =
p∑

i=0
xiΩpi (D.1)

Setting p0 = 0 lets one determine the first constant x0, by balancing terms at the O(Ω0) order. The first term
is written out as (D.2) but is not plotted against the numerical solution as it is simply a constant.

x0 = θ0

π
(D.2)

The second constant, x1, is found by setting p1 = 1, and balancing terms at the O(Ω2) order. x1 is written out
as (D.3), and is plotted against the numerical solution in Figure D.1

x1 =
√

2 θ0
√

t2 + 1
2 t π

(D.3)

Figure D.1: Low-frequency asymptotic solution for circumferential wave numbers m′, first branch, 2 terms.

The third constant, x2, is found by setting p2 = 2, and balancing terms at the O(Ω4) order. x2 is written out
as (D.4), and is plotted against the numerical solution in Figure D.2.

x2 = − θ0

2 π t2 (D.4)
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Figure D.2: Low-frequency asymptotic solution for circumferential wave numbers m′, first branch, 3 terms.

The asymptotic approximation for the first branch in the low-frequency range is then given as (D.5).

m̄′ = θ0

π
− Ω2 θ0

2 t2 π
+

√
2 Ω θ0

√
t2 + 1

2 t π
(D.5)

The low-frequency solution for the second branch is obtained from an expansion around an offset Ω-value as
(D.6), where ΩC is the cut-on frequency of the given branch. The cut-on frequency is determined by solving the
dispersion equation for values of Ω, when m′ = 0. Only one real positive root exists, which is constant ΩC = 1.

m̄′ =
p∑

i=0
xi(Ω − ΩC)pi (D.6)

The first term, x0, is found by setting p0 = 1/2, and balancing terms at the O(Ω1) order. x0 is written out as
(D.7), and is plotted against the numerical solution in Figure D.3.

x0 =
√

2 θ0

π
(D.7)

Figure D.3: Low-frequency asymptotic solution for circumferential wave numbers m′, second branch, 1 term.

The second term, x1, is found by setting p1 = 3/2, and balancing terms at the O(Ω2) order. x1 is written out
as (D.8), and is plotted against the numerical solution in Figure D.4.
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x1 = −
√

2 θ0
(
16 π4 t2 − π4)
4 π5 (D.8)

Figure D.4: Low-frequency asymptotic solution for circumferential wave numbers m′, second branch, 2 terms.

The asymptotic approximation for the second branch in the low-frequency range is then given as (D.9).

m̄′ = Ω1/2
√

2 θ0

π
− Ω3/2

√
2 θ0

(
16 t2 − 1

)
4 π

(D.9)
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Appendix E: A short note on the

scaling approach E
In Chapter 5, a frequency scaling approach was employed to obtain an asymptotic solution for the high-frequency
regime of the dispersion branches. Little effort was put into explaining the method, and this appendix will
(hopefully) serve as an explanation of the method, and provide some intuition on the underlying ideas.

When we want to study bacteria we grab our microscope, and when we want to study the moon we grab a
telescope. In much the same way, when we wish to study a part of an equation which is very small or very
large, we need to “grab the correct scope”. This is done thru appropriate re-scaling of the problem. In general,
the idea is to recast the equation in terms of cleverly scaled coordinates, so that the parts of the equation that
are of most interest to us, are presented in the greatest detail.

The explanation will take point of departure in a simple equation, to simplify the calculations. The equation
in question will be (E.1), which can be seen plotted in the range x ∈ [0, 5] in Figure E.1 for ϵ = 0.1.

f(x) = −x−3 + 2x−2 − ϵx (E.1)

Figure E.1: Equation (E.1) plotted for ϵ = 0.1.

From a simple investigation of the figure and equation, it becomes apparent how different regions of the graph
are dominated by different terms in the equation. Around x = 0, the first term dominates, as this term will
be numerically large compared with the other terms. It is also apparent how the graph has a large positive
slope, which matches with the term −x−3. At x = 0.5, the second term starts to become the largest term in
the equation, and as a result, the graph starts to attain a negative slope at around x = 0.7. Then at x = 2

ϵ

1/3,
the third term starts to dominate the equation. It can be seen how the graph seems to have a linear tendency
with increasing x, which matches the linearity of the third term.

Let us attempt to use asymptotic analysis to find the roots of the equation. As usual, an expansion parameter
is identified which is comparably small to the other parameters in the equation. Using ϵ as the expansion
parameter, an expansion is proposed starting from ϵ = 0. Employing this expansion gives (E.2), which shows
us that an approximation of a root can be found by balancing the two first terms, which were seen to dominate
the equation in the lower range of x. In this range, the third term of the equation is quite small, and can
reasonably be neglected without a huge loss of accuracy. In fact, the approximation has a root at x = 0.5, and
Looking at the graph it can be seen how this solution is fairly accurate. For ϵ = 0.1, the solution is off by less
than 0.7%. If more terms are included in the series, the accuracy of the solution should be expected to go up,
and an increasingly good approximation of the root around x = 0.5 is found. However, at no point will the
approximation yield information on the second root around x = 2.5 (See Figure E.1). Another approach must
therefore be employed to obtain an approximation for this second root.

f(x) = −x−3 + 2x−2 (E.2)
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From (E.2) an approximate root was obtained by balancing two terms which dominated the equation in the
lower range of x. Unsurprisingly this yielded an expression for the root located around the same range. In
the low range of x, the first two terms were large compared with the third term, and so one could reasonably
neglect the third term from the equation. However, as x increases, the first two terms decrease, and so for
larger values of x, one cannot neglect the contribution of the third term anymore. If one wishes to obtain an
approximation for the root around x = 2.5, one must balance terms which dominate the equation in that range
of x. Returning to (E.1), it can be seen how the second and third terms may be good candidates for such a
balance. At around x = 2.5, the first term will be an order of magnitude smaller than the remaining two terms,
and so it will contribute very little to the location of the root. To see in a more rigorous sense, why the second
and third terms should be balanced, we exploit a scaling approach. The idea is to express the equation in terms
of new and re-scaled coordinated X and F (X)

For the second and third terms to balance each other, it can be seen how x must be around the order of ϵ−1/3.
This would similarly result in f(x) being of order ϵ2. Based on this information, a scaling is proposed as (E.3).

x = ϵ−1/3X; f(x) = ϵ2F (X) (E.3)

Substituting this scaling into (E.1), the re-scaled equation is obtained as (E.4).

F (X) = ϵ−1X−3 + 2X−2ϵ−4/3 − Xϵ−4/3 (E.4)

Now it can be seen, how for small values of ϵ, the second and third terms in the re-scaled equation are much
larger than the first term, and so it is obvious that the balance should occur between those two. This gives (E.5)
when one returns to the original coordinates, x and f(x). This approximation has a root at x = 201/3 ≈ 2.71
for ϵ = 0.1, which is seen to be a fair approximation to the exact root at x = 2.52.

F (x) ≈ 2X−2ϵ−4/3 − Xϵ−4/3 → f(x) ≈ 2x−2 − ϵx (E.5)

The presented example was simple enough to see that the balance should be made between the second and third
terms to obtain the approximation for the second root. One can however easily imagine a scenario, where the
equation is too elaborate for this sort of direct and manual identification of appropriate terms for the balance.
Imagine e.g. the dispersion equation for the cylindrical shell investigated in Chapter 5. We knew nothing
about which terms dominated in which frequency-ranges, or even how many terms should be included in the
balancing. We did however know something about the nature of the solution, as we knew the flexural wave
numbers to be approximately proportional to the frequency thru k ≃

√
Ω. This allowed an appropriate scaling

of the equation to be employed, which yielded an asymptotic approximation of the flexural wave numbers with
very little effort.
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