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Abstract:

Keyword spotting (KWS) is a subtask of au-
tomatic speech recognition focusing on recog-
nizing a limited number of words in the au-
dio stream. KWS systems must meet the de-
mand of ever-decreasing complexity, increas-
ing accuracy, and robustness against acous-
tic noise. Many methods have been devel-
oped to increase the latter. The robustness
of a novel KWS model called Keyword Trans-
former (KWT) has not yet been studied. It
has been shown that self-supervised pretrain-
ing of KWT in a data2vec system can en-
hance the accuracy of keyword spotting. This
study aims to provide supervised and self-
supervised training methods to increase the
robustness of the KWT, namely multi-style
and adversarial learning. The models were
trained and tested on the reduced Google
Speech Commands Dataset and noise was
added from CHiME-3. Multi-style supervised
training increased the model accuracy signif-
icantly in noisy conditions, while adversarial
training showed only marginal enhancement.
Moreover, self-supervised pretraining on clean
speech has shown increased robustness with a
combination of both.
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Preface

This is the report of the Long Master Thesis project of Gergely Kiss in Signal Processing and
Computing at Aalborg University.

Reading Guide

The author of the report assumes that the reader has a basic understanding of machine learning and
neural network concepts such as artificial neurons, activation functions, loss functions, or common
types of neural networks.

The report follows the IEEE format. Fractional values are divided with decimal points. Figures
are made using the Draw.io graphical software and the Matplotlib Pyplot and Librosa Pythong
libraries.

The thesis project is the continuation of the project Self-Supervised Keyword Spotting Using
Data2vec by Holger Severin Bovbjerg [5]. Therefore, some of the information is not explained in
detail, only the relevant to this project.

The report is structured as follows: In the introduction, chapter 1, the main problem is ex-
plained briefly, and the research question is presented. In chapter 2, the keyword spotting and the
robustness of the keyword spotting are shown. In chapter 3, the neural networks that serve as the
basis of this work are expounded. Chapter 4 presents other studies about enhancing the robustness
of speech recognition systems that served as the inspiration for this project. In chapter 5, methods
to improve the Keyword Transformer are explained. Chapter 6 presents the methods and results
of the experiments. Chapter 7 concludes the work.
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Chapter 1

Introduction

In recent decades, deep neural networks (DNNs) have become the machine learning paradigm in
several signal-processing domains, replacing other probabilistic machine learning methods such as
Support Vector Machines or Gaussian mixture modes. Artificial neural networks are mathematical
models of the synaptic biological neural network of the human brain.

Different kinds of deep neural networks have been widely used in various modalities for var-
ious tasks with great success. These models have been specially designed for specific tasks; their
structures, sizes, or feature extraction methods are firmly task and modality-specific. For exam-
ple, convolutional neural networks excel at image classification or recurrent neural networks for
sequential data generation. In recent years there has been a breakout in research for modality-
agnostic models based on the theory that humans use the same part of the brain the learn different
tasks, such as vision or hearing.

At first, neural network models were trained in supervised training on labeled datasets. With
time the demand for larger labeled datasets increased, leading to another challenge: creating la-
beled datasets required human labor, which was time-consuming and expensive. Such datasets
had thousands or millions of elements, and each of them had to be labeled by humans putting a
solid limit on the size of the dataset and, thus, the training and final capability of the networks.

One solution to this problem was transfer learning. The idea behind this method is that a neural
network can perform better during training if its parameters are initiated in a way that it already
has some knowledge about the features of the training dataset, giving a good start to the learning.
For example, a convolutional neural network trained for recognizing animals can be finetuned to
identify plants. Although animals might differ from plants, some visual features, like edges or
other shapes, can be similar, leading to a domain shift on the feature level. In this example, transfer
learning is supervised learning both for animal and plant recognition. Although it might work
well for a reduced plant dataset, it still requires a reasonably large labeled dataset for the animal
classification task. Another problem with transfer learning is that it is heavily dependent on the
source task, and a cautious selection of it is crucial.

While supervised learning required labels to form the learning targets, unsupervised learning
did not. The purpose of unsupervised learning was not to connect specific data with a label but
to cluster the dataset. Although it shows great potential in many applications, its usage is limited.
Self-supervised learning, another learning method, forms a target from the data itself. A target can
be continuous for regression tasks like a masked prediction [1] or discrete for classification tasks
like image rotation prediction [51]. Self-supervised learning is usually used as a pretext task for

1



2 Chapter 1. Introduction

pretraining neural networks. The pretext task aims to learn a good representation of the dataset,
such as visual tokens for the image task or linguistic tokens for the natural language processing
(NLP) task. The main advantage of self-supervised learning is that it can be trained on a large
unlabeled dataset. While labeled datasets are sparse and small, unlabeled datasets are widely
available on the Internet, and their size is virtually infinite. Self-supervised pretraining has shown
great potential to increase the accuracy of neural nets.

Data2vec [1] is a recently published self-supervised modality-independent model that has set
state-of-the-art or competitive performance in natural language processing, speech processing, and
computer vision, showing the strength of self-supervised pretraining. Data2vec trains a trans-
former network in a student-teacher model, where the student gets a masked version, and the
teacher receives the unmasked version of the input data. The student predicts the continuous and
contextualized latent outputs of the transformer layers of the teacher. The teacher’s weights are
updated as the exponentially decaying average of the student’s weights. This pretraining method
was shown to be more effective than previous works’ task-specific approaches, while data2vec’s
pretraining is the same in all modalities.

One of the tasks in which self-supervised pretraining has shown a remarkable increase in per-
formance is automatic speech recognition (ASR). Historically ASR algorithms used hidden Markov
models (HMMs) [52] or dynamic time warping (DTW) [13]. Nowadays, DNNs are used as the main
method for speech recognition for their better accuracy and other capabilities, such as recognizing
dialects or moods. Unfortunately, running ASR algorithms is a computationally heavy task and
requires high computational power computers. On the other hand, one subtask of speech recog-
nition is specially designed to run on smaller devices with limited computational power: keyword
spotting. The goal of keyword spotting algorithms is to recognize certain words in the sentence
without understanding the whole speech. Such algorithms can be used for embedded devices such
as trigger words (e.g., "OK Google," "Hey Siri") for voice assistants or limited voice commands for
other systems [15].

Keyword spotting algorithms are usualy evaluated on the same domain they are trained on.
However, this evaluation does not necessarily show the network’s real practical performance when
the prediction domain changes by changing the speaker’s speech characteristics or some back-
ground noises are introduced. The robustness to acoustic variations of a DNN model refers to how
well a neural network performs in such an unideal environment.

Many studies have been conducted on improving the robustness of ASR and speech enhance-
ment (SE) algorithms. They bear significant practical importance, such as enhancing phone calls,
hearing aids, or voice assistant devices. In practice, such algorithms must handle previously un-
known noises in various signal-to-noise ratios (SNRs) while maintaining their core functionalities.
At first statistical methods, such as the Gaussian mixture model (GMM) or support vector machine
(SVM), were used; however, nowadays, DNN outperforms both approaches and has been the pri-
mary method for ASR or SE tasks. Improving the noise robustness of a neural network can be
done on many levels, e.g., applying particular data augmentation before feeding the network or
introducing new training approaches such as adversarial training [15].

1.1 Research Question

The robustness of different neural networks has been widely studied in speech recognition tasks,
including keyword spotting. These studies bear critical importance in practical applications since
the average use case of keyword spotting algorithms is in an environment where some level of noise
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is present. Another requirement of the keyword spotting algorithm is to be lightweight for use on
a mobile platform with low computational resources while producing low latency and consuming
as little battery power as possible.

Keyword Transformer [4] is a Transformer-based [53] keyword spotting model that achieved
state-of-the-art performance against larger models on Google Speech Commands V2 [55] dataset.
In the study of Bovbjerg [6], the testing performance of the Keyword Transformer was enhanced by
pretraining it in the data2vec system, which showed great opportunity in applications where the
training dataset is sparse.

Increasing the noise robustness of the Keyword Transformer can allow practical applications to
implement robust lightweight keyword spotting systems where only little labeled training data is
available. The research question thus becomes as follows:

What supervised and self-supervised training methods can be used to enhance the
noise-robustness of the Keyword Transformer?



Chapter 2

Keyword Spotting

In the last few years, automatic speech recognition algorithms have developed so far that they are
now omnipresent in many devices. Such devices can expand human-machine interaction, enhance
speech for hearing assistive devices, or be used for data mining. Automatic speech recognition
algorithms convert human speech to text, where further data handling can be executed. One
subproblem of ASR is keyword spotting. Keyword spotting is used to recognize the presence of
a word or phrase (e.g., "Hey Siri") in the speech giving out posterior probabilities of whether a
keyword is present and also a probability of which keyword was present.

First, keyword spotting algorithms used continuous speech recognition systems, which con-
verted the whole speech to text and then found the keyword in the text. This application, however,
required immense computation power and energy consumption. In an application like this, most
of the analyses were useless since the effective use was to spot a limited number of words amongst
a plethora of others. Later, keyword-spotting algorithms concentrated on recognizing only certain
words without analyzing the whole speech leading to more lightweight algorithms. Such algo-
rithms made spreading on embedded devices with limited computational resources possible, for
example, mobile phones.

2.1 Practical applications

The keyword spotting system’s most practical application is activating voice assistants. Being
lightweight, these KWS algorithms can run on devices with limited computational resources, such
as mobile phones or smart home devices. When the trigger word or phrase is said, the smart
device sends the voice command to a client-server, where it is further processed, and the command
is executed. These devices have to work on low false activation (FA) and false rejection (FR) rates.
In cases like this, KWS algorithms have to be lightweight to meet the computational constraints
and keep the power consumption as low as possible since, to catch the activation phrase, it must
continuously monitor the sound through the microphone [15].

Other applications of KWS systems can be when a particular device is expected to be controlled
by voice. These devices do not wake up more complex ASR systems but execute the command by
themselves. Such applications can be considered to reduce the complexity of handling the device
generally or make the device more accessible to disabled people. One example is that some devices
can be difficult to handle by hand. Such devices can be hearing aids where it might be easier to

4



2.2. Deep Keyword Spotting Approach 5

Posterior Handling

Speech Signal Feature Extractions

Acoustic Model

Figure 2.1: Main pipeline of a DNN-based keyword spotting system

raise the device’s volume by giving voice commands. Such an application must be activated by the
person who wears the device. Another application can be voice-controlled accessible pedestrian
signals (APS). A push-button APS device can be difficult to be operated by a vision-impaired
person. Other examples can be car applications such as controlling the air conditioning by voice.
Using such an application, the driver is freed from using the control panel, which could divert his
attention and increase the possibility of an accident. [15]

2.2 Deep Keyword Spotting Approach

Although, in time, many different techniques have been developed for keyword spotting, most of
the application share a very similar structure for handling spoken keywords. Modern DNN-based
keyword spotting systems usually have three main blocks:

1. Speech feature extractor

2. Acoustic model

3. Posterior handler

This model is the basis of modern algorithms. Different application designs these blocks differently,
but the main structure is usually kept. In this section, these blocks are explained. Figure 2.1 shows
the main pipeline of such as system [15].

2.2.1 Speech Feature Extractor

Selecting the proper feature extraction method is a crucial step in speech recognition. By doing so,
the most representative features of the speech can be emphasized while suppressing unimportant
or even undesired ones. Learning of speech is done by those extracted parameters. Thus, selecting
features that best represent human speech characteristics is desired. Feature extraction has to be
sufficiently fast if a real-time application is considered while minimizing the loss of useful infor-
mation. Choosing a feature extraction method or its parameters heavily depends on the acoustic
applications. Different settings can be used, for example, if the full word is considered the basis of
a classification in contrast to if the classification is done on the phonetic level.

One of the most prominent feature extraction methods used for decades is based on the two-
dimensional time-frequency spectrum of the audio input. These spectrograms are created by short-
time Fourier or short-time cosine transforms with a sliding window. The size of the window and the
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Figure 2.2: Mel-scale spectrogram and MFCC features of a person’s voice saying "bird."

resolution of the cosine (or Fourier) transform defines the parameter of the spectrogram given input
audio with a certain length. The most relevant feature extraction methods are the log-Mel spectral
coefficients or the Mel-frequency cepstral coefficients (MFCCs). The notion behind these methods
is the functionality of the human ear. The ear is inequally sensitive to the different frequency
ranges, mostly linear below and logarithmic above 1000 Hz. The Mel-scale is based on such pitch
perception, and Mel-scale filter banks created to extract the MFCCs are designed according to that
[16]. Figure 2.2 shows an example of a mel-scale spectrogram and MFCCs. Mel-frequency cepstrum
(MFCs) model the human auditory perception. Hence, mel-scale-based feature extractions are one
of the most frequently used methods for ASR algorithms.

Another widely used feature extraction method is done by recurrent neural networks (RNNs).
RNNs are effective in one-dimensional applications where the input is encoded as a vector. Thanks
to their recursive structure, RNNs are capable of handling various lengths of input. Short-term
memory recurrent neural networks are successfully used in several KWS applications with query-
by-example (QbyE) keyword detection methods. QbyE takes several examples of keywords as a
template and compares the test audio with it [8].

2.2.2 Acoustic Model

The acoustic model is the main element of deep KWS element. It is responsible for creating the
posterior probabilities for whether which keyword is said or it is another speech or noise. With time
acoustic models had to meet the demands of increasing accuracy and decreasing computational
cost. The latter requirement is due to the fact that most keyword algorithms run on battery-
powered devices with limited computational power. If generating the posteriors requires a large
amount of computation, it can be infeasible for mobile applications due to its large delay and
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overconsumption of battery capacity.
The first DNN-based acoustic model was introduced in 2014. This fully connected feed-forward

(FCFF) neural network has three hidden layers, each containing 128 neurons. This method per-
formed 45% better than a competitive hidden Markov model and 39 % better in the presence of
babble noise while having lower computational needs than the HMM baseline. [7].

Nowadays CNNs and RNNs have taken over fully connected DNNs in keyword-spotting ap-
plications due to their increased performance and decreased model size, hence computational
demand.

One of the main attractive traits of convolutional neural networks is that they can exploit lo-
cal time-frequency correlations. This makes them capable of outperforming simple FCFF neural
networks. By changing the hyperparameters, such as kernel size or filter strides, CNNs are easily
adjustable for various applications, thus increasing their accuracy without necessarily sacrificing
their performance. By employing residual connections, the number of parameters can be sub-
stantially decreased, thus further lowering the computation without compromising accuracy [15].
Convolutional neural networks apply one or two-dimensional convolutions to learn acoustic fea-
tures.

One-dimensional CNNs apply convolution on the time axis, also called temporal convolution
[15]. 1D CNN keyword spotting systems require much less computation than convolutions in
two dimensions, making them greatly more usable on mobile devices. Choi et al. [10] used a one-
dimensional convolutional neural network for keyword spotting speeding up the keyword spotting
process more than 385 times. Another reason why such models are so efficient is due to the fact that
they do not require the input data to be converted into spectrogram images, thus further reducing
the computations.

Based on image analysis, 2D CNNs are fed with spectrogram images of the input data exploiting
the previously mentioned local time-frequency correlations. Two-dimensional neural networks can
be fed with mel-scale spectrograms closely modeling human hearing.

Recurrent neural networks have also been used several times for KWS outperforming FCFF neu-
ral networks. LSTM neural networks overcame the problem of vanishing and exploding gradients
[26]. Recurrent neural networks can exploit short and long-term dependencies. CNNs and RNNs
can be combined into recurrent convolutional neural networks (RCNNs) [15]. Zeng and Xiao [59]
used RCNN for KWS tasks achieving state-of-the-art performance at the time with a lightweight
neural network model.

Another new method for acoustic models uses Transformer-based neural network models. A
keyword transformer (KWT) learns features from two-dimensional mel-spectrograms while learn-
ing temporal, temporal dependencies through self-attention [4]. Keyword transformers are dis-
cussed in detail in chapter 3.

Acoustic models for keyword spotting are still a subject of numerous research. More and more
models and training methods are presented every year that increase accuracy, decrease model size
and computation, or both.

2.2.3 Posterior Handling

After the acoustic model produces the output probabilities y{i}, they must be processed according
to certain criteria. Two major methods of posterior handing are distinguished: streaming mode
(static) and non-streaming mode (dynamic) [15].
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Non-Streaming Mode

Non-streaming mode or static posterior handling is simply a multi-class classification problem.
The keywords are loaded in separate audio files, usually 1s long, and their labels are predicted as
the highest value of the posterior probabilities. Static posterior handling is simpler than dynamic
because it does not have to deal with inter-class transitions [15].

One, on the other hand, can argue about the validity of the non-streaming test of KWS systems
since the practical application of KWS is, in fact, dynamic. The reason why there is so much work
testing keyword spotting systems in non-streaming mode is due to its simplicity. On the other
hand, López-Espejo et al. [15] found that there is a high correlation between the test results of
streaming mode and non-streaming mode [38], [37].

Streaming Mode

Streaming mode or dynamic mode of posterior handling is the practical application of keyword
spotting. The audio is continuously monitored in dynamic mode, wherein the keyword is not
necessarily present. The KWS system has to handle whether a keyword is present in the audio or
some other speech is spoken, or there is only noise or silence.

In streaming mode, the system continuously puts out a sequence of posterior probabilities
{... y{i−1}, y{i}, y{i+1} ...} in every given time segment. These posteriors are usually very noisy,
and a smoothing window is used to reduce the peaks [50]. Assuming that every posterior y{i}

represents the probabilities of N keyword, by smoothing those posteriors, it can be used to detect
whether a keyword is present at all in the audio stream. That can be done by comparing the
value of the probabilities with a sensitivity threshold [15]. If the probabilities are even, they are
under that threshold, but if the probability of a certain word peaks out, then it usually exceeds the
threshold, and the keyword is spotted.

Another problem that can arise in streaming mode is that one keyword can activate multiple
times. That can be alleviated by simply waiting for a short time after a KWS system is triggered
[15].

Although streaming mode posterior handling directly represents the practical applications,
most of the studies prefer non-streaming mode benchmark evaluation of models due to the lat-
ter’s simplicity.

2.3 Robustness of Keyword Spotting

Several studies of KWS evaluate their KWS model on commonly used benchmarks such as Lib-
rispeech [42], or Google Speech Commands Dataset (GSCD) v1 [56] and v2 [55]. Such datasets make
unequivocal non-streaming comparisons between models. Google Speech Commands Dataset is
discussed in detail in section 6.1.

Keyword spotting algorithms are trained on the training set and evaluated on the test set of the
dataset. In theory, the training set and the test set represent the same domain of data. In practice,
however, this domain can shift for various reasons. Domain shift can be caused, for example, by
gender (female or male voice), age (a child’s voice sounds different from a mature person’s), accent,
or other physical conditions such as reverberation or background noise. A good keyword spotting
system has to function the same in the above-mentioned conditions, i.e., it has to be robust for
those conditions. The rest of the section discusses the robustness against background noise.
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There are several methods to enhance the robustness of such KWS algorithms. López-Espejo et
al. distinguish two main groups of handling noise robustness: front-end and back-end methods
[15].

2.3.1 Front-End Methods

Front-end methods are applied to the input to reduce the noise before feeding it to the acoustic
model, thus increasing the robustness of the system. There are several methods to reduce noisy
features and enhance speech features. This section discusses two methods: DNN Feature Enhance-
ment and Adaptive Noise Cancellation.

DNN Feature Enhancement

Deep Neural Networks can be trained to separate speech features from noise ones, thus cleaning
the input data. The output of such a network becomes the input of the KWS acoustic model.

Gu et al. [21], for example, use a DNN-based speech enhancement (SE) algorithm that is fed
with the log-spectrogram of the input noisy audio, which tries to predict a denoising mask. The
mask is multiplied with the input (noisy) spectrogram, and the product is fed to a convolutional
neural network which makes the acoustic model of the KWS system [21].

In another approach, Jung et al. use two cascaded dilated CNNs with residual connections to
estimate the spectral distortion of the noisy input and then subtract the estimate from the input
[31].

Adaptive Noise Cancellation

Adaptive noise cancellation (ANC) is widely used in headphones and earphones for undisturbed
listening experiences or phone calls, and it can also be used for keyword spotting with great
success. The ANC algorithms, which are usually recursive least squares (RLS) [28], [29] or Wiener
filter-based [29], [40], are run before the acoustic model, and their weights are updated based on
either the input [29] or the results of the acoustic model [28].

2.3.2 Back-End Methods

Back-end methods are applied to the acoustic model to increase its prediction accuracy in various
noisy scenarios. This section discusses multi-style training and adversarial training.

Multi-Style Training

Multi-style training is one of the simplest ways to increase the robustness of the network against
background noise and reverberation. Noise contamination can be done by adding background
noise to the training data, which is expected to be found later in the test data or practical applica-
tion. Noise is added with different signal-to-noise ratios (SNR), usually in the range of -10 dB and
20 dB [37]. Adding noise to the training data is also referred to as data augmentation. Another
popular distortion method is done by SpecAugment, which applies certain time and frequency
masks on the input data on the log-mel spectrogram of the input audio [43]. Data augmentation is
used to increase robustness not only in noisy environments but ideal environments too.
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Adversarial Training

Many neural networks are prone to misclassify keywords (or images in other applications) when
small but deliberate perturbations are added to them. These are called adversarial examples [19].
To alleviate the misclassification rate, neural networks can be trained or retrained with adversarial
examples, thus smoothing the predictions and hence, the false alarms [54].

In another work, Larsen et al. use adversarial multi-task learning to improve the robustness of
a CNN-based voice activity detection (VAD) model [34]. The model consists of an encoder block,
a framing block, and a decoder block. During training, a discriminative network is added after the
framing block, parallel to the decoder block. The task of the discriminative network is to predict
the type of noise that was added to the input audio. During backpropagation, the gradients are
multiplied by a negative factor α in the adversarial path. The idea behind this method is that
framing block produces noise-invariant features [34]. This method is explained in section 4.3.



Chapter 3

Baseline Models

Many studies have been conducted about the robustness of various CNN and RNN-based keyword
spotting systems. In 2017 Vaswani et al. [53] published the Transformer network, which was
originally developed for text translation, but soon was adopted to different domains, such as image
[44], speech [2] and, in particular, keyword spotting [4].

Transformer networks can achieve state-of-the-art or competitive performance without pretrain-
ing. However, self-supervised pretraining has been shown to increase their performance even
further. These pretraining methods were, nonetheless, modality-specific. By pursuing modality-
agnostic self-supervised pretraining, data2vec [1] was released in 2022. Data2vec trains a Trans-
former network in a teacher-student mode. In another study, Bovbjerg and Tan [6] showed that
pretraining a Keyword Transformer in a data2vec model could substantially increase the perfor-
mance of a KWT in label-deficient applications.

In this section, the Keyword Transformer and data2vec will be introduced, followed by the
above-mentioned study about pretraining Keyword Transformers with data2vec.

3.1 Transformer

The Transformer network was introduced by Vaswani et al. in 2017 [53]. The model was orig-
inally developed for translation tasks, particularly English-to-German and English-to-French in
their work, and improved over the best already existing model in both tasks. Self-attention had
been previously used in other models, mostly in recurrent neural networks. The Transformer net-
work was the first that relied entirely on a self-attention mechanism, omitting recurrence. That
let the model exploit parallelism, thus significantly improving performance. Self-attention is a
positional attention mechanism between tokens in the input.

3.1.1 Model Structure

The original Transformer, which was designed for text translation, had an encoder-decoder struc-
ture. The encoder takes an input sequence (x1, ... , xn) and generates a sequence of continuous
representations (z1, ... , zn). By receiving the encoder’s output, the decoder generates an output
sequence (y1, ... , yn).

11
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Figure 3.1: General encoder-decoder structure of the Transformer network [53]

The encoder builds from six identical blocks. The input is fed into an embedding block, so
the data can be processed by the neural network. A positional encoding is added to the input
data, which is needed for self-attention. The positional encoded data then goes into a multi-head
attention block. Self-attention is an attention mechanism that exploits the positional relationship
between the input tokens. The multi-head attention block is followed by a fully connected feed-
forward network block. Both sub-blocks are followed with a layers normalization, and residual
connections are applied around the sub-blocks [53].

The decoder block has a similar structure as the encoder, also containing six identical blocks. A
masked multi-head attention block is inserted before the first multi-head attention block, followed
by a layer normalization. Residual connection is also applied around the masked multi-head at-
tention block. The masking is used in a way that the for each position, the encoder is prevented
from attending to subsequent positions. By this, the prediction for a position i depends only on
the previous values at the position less than i. The last decoder block is followed by a linear block
with a softmax activation function to predict the next token of the output sequence [53].
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3.1.2 Multi-Head Attention

As mentioned before, the heart of the Transformer network is the self-attention block or, as the
authors of [53] call it: scaled dot-product attention. The scaled dot-product attention consists of
key and query vectors in the dimension of dk and dv. The dot-product of the vectors is computed
and then scaled back by

√
dk to keep the softmax function away from its boundaries. Then an

optional mask is applied to the product by setting the masked-out elements to − inf. After the
additional masking, a softmax function is applied. By the nature of softmax (Eq. 3.1), elements
with a value of − inf will have an output value of zero [53].

σ(z) =
ezi

∑K
j=1 ezj

(3.1)

Multiplying the result of the softmax function with the values, the weights of the values are
computed. In practice, the queries, keys, and values are packed together into Q, K, and V matrices
to exploit faster computation. Thus the attention head becomes

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (3.2)

Multi-head attention is done by linearly projecting the queries, keys, and values by learned
projection matric W, exploiting parallel computation. The dimensions of the projection matrices
are dk, dk, and dv for queries, keys, and values, respectively. Thus, multi-head attention becomes
[53]:

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (3.3)

where
headi = Attention(QWQ

i , KWK
i , VWV

i ) (3.4)

The dimensions of the projection matrices are WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , and WV
i ∈

Rdmodel×dv .
Another key element of Transformer networks that is used with self-attention is positional

encoding. Since the network does not contain recurrence or convolution, positional encoding is
needed for extracting information from the order of the sequence. Vaswani et al. used sine and
cosine functions with various frequencies as positional encoding functions, which according to
their experiments, produced similar results as a learned encoding (Eq 3.5) [53].

PE(pos,i2) = sin(pos/10002i/dmodel)

PE(pos,i2+1) = cos(pos/10002i/dmodel)
(3.5)

Self-attention is beneficial in making the model learn long-range dependencies, which has been
a challenge in several machine learning models. Moreover, self-attention can be calculated in
parallel in contrast to sequential computations of recurrent neural networks. Self-attention layers
require less computation than recurrent or convolutional layers when the sequence length is less
than the model dimension [53].

3.2 Keyword Transformer

Thanks to its novelty, the Transformer network was soon adopted in other domains, such as image
[44] or speech [2]. Inspired by the performance of the Vision Transformer, Berg et al. developed the
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Keyword Transformer (KWT) [4], a transformer model specialized for keyword spotting. In their
study, they only tested the model in non-streaming mode but acknowledged that the Transformer
network had been previously used in streaming settings. Their model set new benchmark records
for Google Speech Command Dataset [55] while achieving substantial latency and energy reduction
when on a mobile phone device.

3.2.1 Model Structure

The Keyword Transformer model follows the model structure mentioned in section 2.2. It consists
of a feature extractor block, an acoustic model, and a posterior handling block. Figure 3.2 shows
the full model structure of a Keyword Transformer.

Feature Encoder

Before feeding the acoustic model, the audio is converted into MFCC spectrograms. The spectro-
grams are computed from 30 ms long windows with a stride of 10 ms. The number of mel features
is set to 40. The authors of [53] also use data augmentation, which consists of shifts in the time
axis, resampling, adding background noise as well as applying SpecAugment [43] on the MFCC
spectrograms. After generating the Mel-Spectrograms, smaller patches are created by dividing the
spectrogram into N pieces.

Acoustic model

The base of the acoustic model is an encoder-only Transformer architecture. To feed the encoder
with the right data, the MFCC spectrogram X ∈ RT×F (where t = 1, ..., T refers to the time win-
dows and f = 1, ..., F refers to the frequency domain) is first mapped to a higher dimension d with
a projection matrix WO ∈ RF×d. After that, a learnable class embedding Xclass ∈ R1×d is attached
in the time domain. As mentioned before, in order for the Transformer to learn dependence in the
time domain, the data should be contextualized by adding positional embedding Xpos ∈ R(T+1)×d

for each spectrogram patch [4].
The Transformer block contains L multi-head self-attention (MSA) and multi-layer perception

(MLP) blocks. The queries, keys, and values for the lth attention head are calculated as Q = XlWQ,
K = XlWK, and V = XlWV where WQ, WK, and WV are d× dh matrices, where dh is the dimension
of the self-attention head. The attention and the multi-head attention are calculated the same way
as in [53], which are

SA(Xl) = Softmax
(

QKT
√

dh

)
V (3.6)

and

MSA(Xl) = [SA1(Xl); SA2(Xl); ...; SAk(Xl)]WP (3.7)

where WP ∈ Rkdh×d is another projection matrix.
After the MSA block layer norm (LN) is applied, followed by an MLP and another LN block.

Same as for the original Transformer, residual connections are applied around the MSA and the
MLP blocks.

Unlike in Visions Transformer [12], where the attention occurred across the image patches,
in KWT, the attention is only implemented in the time domain. Berg et al. implemented three
different transformer models based on the number of attention heads, which was set to k = 1, 2, 3.
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Model dim mlp-dim head layers # parameters
KWT-1 64 256 1 12 607K
KWT-2 128 512 2 12 2394K
KWT-3 192 768 3 12 5361K

Table 3.1: Model parameters of the KWT architectures [4]

Model V1-12 V2-12 V2-35
MHAtt-RNN 97.50 ±0.29 98.36 ±0.13 97.27 ±0.02
KWT-3 97.24 ±0.24 98.54 ±0.17 97.51 ±0.14
KWT-2 97.36 ±0.20 98.21 ±0.06 97.53 ±0.07
KWT-1 97.05 ±0.23 97.72 ±0.01 96.85 ±0.07

Table 3.2: Test results of Google Speech Command Dataset V1 [56], and V2 [55] in 12 and 35-word mode based on the
training and evaluation by Berg et al. [4]

They fixed the number of transformer blocks to 12 and the dimension-to-head ratio to d/k = 64.
Table 3.1 concludes implemented transformer models.

Posterior Handling

The model was evaluated in non-streaming mode on Google Speech Commands Dataset V1 [56]
and V2 [55]. The model was trained and tested as a simple keyword classifier of 30 and 35 different
words for V1 and V2, respectively.

3.2.2 Performance

The Keyword Transformer had a competitive performance against state-of-the-art models, such as
MHAtt-RNN [47], when trained and evaluated on the Google Speech Commands Dataset V1 and
V2 [4]. Since transformers tend to benefit from larger datasets, the KWT models could not surpass
the accuracy of MHAtt-RNN on smaller datasets, such as 12-word GSCD V1. On larger datasets,
such as GSCD V2 12 and 35-word configuration, KWT3 achieved better results than MHAtt-RNN,
and KWT-2 had higher accuracy than MHAtt-RNN on GSCD V2 35-word configuration. Table 3.2
shows the results of the accuracy of the Keyword Transformers developed by Berg et al. [4].

3.3 Data2vec

While supervised training requires human-labeled datasets, self-supervised training does not,
which leads to access to much larger and more affordable datasets. Transformer network generally
benefits from larger datasets [4], and several studies have shown that self-supervised pretraining
can lead to better performance on the downstream task. Self-supervised learning has shown great
results in computer vision [12], in natural language processing [11], or in speech processing [2].

Data2vec is a modality-independent self-supervised learning model trained either in a teacher
or student mode. It has shown excellent results in computer vision, NLP, and speech, by achieving
state-of-the-art or competitive performance over modality-specific models.
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3.3.1 Model Structure

Data2vec trains an off-the-shelf Transformer network either in student or teacher mode. In teacher
mode, the network builds representations of the full input data. In student mode, the network
receives a masked version of the input data and tries to predict the representation of the full data
by predicting the average of the top K layers of the teacher. The weights of the teacher are an
exponentially moving average (EMA) of the student weights. In contrast to other models, such as
wav2vec [2] or HUBERT [27], where discrete units are learned, data2vec learns continuous latent
representations of the input data, which is contextualized through self-attention [1].

Although the training targets are created the same way in all modalities, the encoding of the
data is modality specific. For computer vision, following the ViT strategy, linearly transformed 16×
16-pixel patches of the input image are fed into the network. For speech data, a 1D convolutional
network converts the 16 kHz waveform to 50 Hz representations into sub-word units and maps
them to vectors via learned embeddings [1].

In student mode, the masking is done after the embedding. For computer vision, block-wise
masking is done where arbitrary aspect ratios of adjacent patches are masked. For speech, embed-
ded speech representations are masked out, and for text, the masking is done on the embedded
tokens [1].

The targets are formed from the average of the outputs of the top K layers of the teacher network
for timesteps (or image patches) where the input is masked out. Due to the embedding, the targets
are contextualized and continuous. Before averaging, normalization is applied as

yt =
L

∑
l=L−K+1

âl
t (3.8)

for L blocks and where âl
t is the block l at time-step t. Normalization is done to prevent the model

from collapsing. Averaging of the outputs performs the same and costs less computation than
predicting the outputs for each layer [1].

The prediction of continuous values is a regression task, and for the objective, a Smooth L1 loss
function is used:

L(yt, ft(x)) =

{
1
2 (yt − ft(x))2/β |yt − ft(x)| ≤ β

(|yt − ft(x)| − 1
2 β) otherwise

(3.9)

where β is a tunable parameter that sets the transition between the squared loss and the L1 loss
depending on the difference between the predictions and the targets [1].

The teacher tracks the student parameters by an exponential moving average of the student
parameters. Thus the weights of the teacher network are updated as

∆← τ∆ + (1− τ)θ (3.10)

where τ is scheduled from τe to τn and kept constant afterward [1].

3.4 Pretraining Keyword Transformer with Data2vec

Keyword Transformer showed great potential in keyword spotting. It was also found by Berg et
al. that transformer network benefits from large datasets [4]. Their results showed that Keyword
Transformer could not outperform MHAtt-RNN on the smaller Google Speech Command Dataset
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Figure 3.3: Data2vec model structure [1]

V1. However, when the models were trained on larger datasets, then the larger Keyword Trans-
former models could outperform MHAtt-RNN [4]. Berg et al. used knowledge distillation [22] to
improve the accuracy of the KWT models. This method still requires another model trained on a
possibly large dataset.

Many practical applications, however, can not get access to large human-labeled datasetsself-
supervised pretraining aims to solve this problem. Data2vec has shown that self-supervised pre-
training can improve the downstream tasks of the neural networks in several modalities. Bovbjerg
et al. [6] apply data2vec pretraining on a Keyword Transformer in a label-deficient scenario. They
train and evaluate their model on a label-deficient Google Speech Commands Datasets V2 in 35
keyword mode by randomly selecting 80% of the training data as a label-deficient pretraining set
[6]. Such as [4], the evaluation was done only in non-streaming mode. (They additionally pre-
trained the models with LibriSpeech [42]).

3.4.1 Model Structure

For feature extractions, MFCC spectrograms were used for feature extractions, with 40 MFCC
features, a window length of 480 samples, and a hop length of 160. This is identical to 30 ms
window length and 10 ms stride for a sampling rate of 16 kS/s. For the positional and class
embedding, they followed the method described in the KWT study [4].

To form a baseline, the Keyword Transformers listed in Table 3.1 were trained on the label-
deficient dataset in supervised mode. The models were trained for 140 epochs, with a batch size of
512. The parameters were optimized with Adam Optimizer [35], and the learning rate was warmed
up in a linear increment for the first 10 epochs as

η0 =
ηmax

batch size · nepochs
(3.11)

Which is followed by a cosine annealing schedule [36]. Following the hyperparameter settings
of the KWT study [4], weight decay of λ = 0.1 and label smoothing [41] of ε = 0.1 was used.

The transformer networks were pretrained on the label-deficient training dataset in the teacher-
student mode. The student received the masked input and predicted the latent representation
of the whole input encoded by the teacher. The masking was done in the time domain, where
the position of the mask was randomly selected in the time axis, and the 10 consecutive MFCC
vectors were masked out (replaced with a MASK token embedding). Roughly 65% of the input
spectrogram was masked out [6].
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Model Parameters Baseline Data2vec pretraining
KWT-1 600k 0.8572 0.9394
KWT-2 2.4M 0.8584 0.9507
KWT-3 5.4M 0.8411 0.9527

Table 3.3: Baseline and pretrained-finetuned KWT models [6]

Most of the hyperparameters were chosen according to the data2vec study [1]. However, some
of the parameters were changed. The batch size was set to 512, and the number of epochs was set
to 200. The EMA decay steps were set to 1000. MSE was used for the objective function, and the
weights were optimized with Adam optimizer with a learning rate of 5× 10−3, weight decay of
10−2, and 1-cycle learning rate schedule [48], [6].

3.4.2 Results

The baseline models were trained on 20% of the training data. Then the models were pretrained
on the unlabeled pretraining dataset (80% of the original training set) and finetuned on the labeled
training data. Their experiments found that pretraining substantially increased the accuracy of the
predictions, as Table 3.3 shows.

Based on their experiments, KWT-3 performed slightly worse than KWT-2 and KWT-1; however,
it performed the best when pretrained. Their experiments unequivocally showed that Keyword
Transformers benefit from self-supervised pretraining.
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Improving Robustness of Speech Recog-
nition Systems

As mentioned in section 2.3, there are several methods to improve the robustness of keyword spot-
ting. On the other hand, some of the methods were only applied to other ASR tasks. Since keyword
spotting is a subproblem of automatic speech recognition, it is worth assuming that practices that
improve over other ASR subproblems (e.g., voice activity detection [34]) can also enhance keyword
spotting.

This chapter focuses only on backend methods of improving KWS and other ASR algorithms.
In this chapter, other studies are introduced briefly about self-supervised and supervised methods.
Some methods are adopted to enhance Keyword Transformer, and others are mentioned for being
relevant.

4.1 Enhanced Wav2vec

Zhu et al. [60] observe that wav2vec2.0 [2] performs better on noisy test data when it is pretrained
on also on a noise set. This, however, came with the price of decreased performance in clean
applications. To strengthen the robustness and anneal the beforementioned negative effect, Zhu et
al. proposed the enhanced wav2vec2.0 model, which showed better performance than the original
wav2vec2.0 while only having a minimal decrease in performance in clean tests [60].

Their proposed model is depicted in figure 4.1 consists of a shared feature encoder that maps
the input audio into latent space via a 7-layer CNN network such that f : X → Z, where X is
the input and Z is the encoded data. The model is jointly trained on clean and noisy audio. The
Transformer receives the encoded noisy waveform and produces outputs of C such that g : Z → C.
The encoded clean waveform is fed into a clean vector quantization module to form the discrete
targets for the Transformer, such that VQ : Z → q. The goal is that the Transformer learns clean
speech representations from noisy speech [60].

The output of the Transformer becomes

Cnoisy = g( f (Xnoisy)) (4.1)

and the quantized targets become

qclean = VQ( f (Xclean)) (4.2)

20
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Figure 4.1: Structure of the enhanced wav2vec2.0 model [60]

The VQ module maps the clean features to l ∈ RG×V , where G is the number of codebooks
and V is the number of entries. A Gumbel-softmax function [30] is applied to select discrete
codebooks. For every time t, one entry et is selected, then the entries are concatenated, and a linear
transformation is applied to obtain qclean.

The overall loss function L consists of the contrastive loss Lm, the diversity loss Ld (which
increases quantized codebook features), and l2 penalty function L f , and the consistency loss Lc
between the clean features and the noisy features, which is also an l2 norm function. The loss
function L thus becomes [60]:

L = Lm + αLd + βL f + γLc (4.3)

where

Lm = − log
exp(sim(Cnoisyt

, qcleant)/κ)

∑ q̂ Qt exp(sim(Cnoisyt
, q̃)/κ)

(4.4)

Ld =
1

GV

G

∑
g=1

V

∑
v=1

p̄g,v log p̄g,v (4.5)

Lc = ||Znoisy − Zclean||2 (4.6)

and α, β, γ are parameters. In contrastive loss, q̃ is a quantized candidate feature, κ is a temper-
ature parameter, and sim() refers to the cosine similarity function. In the diversity loss, p̄g,v is the
probability of choosing the v-th codebook in the group g, and is calculated as

p̄g,v =
exp(l̄g,v + nv)/τ

∑V
k=1 exp(l̄g,k + nk)τ

(4.7)
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where τ is a temperature parameter, l̄g,v is the average logits across utterances in the batch [60].
In the pertaining, the feature encoder consists of 7 layers of convolutional modules with a

channel number of 512. The window covers 25 ms of audio with a hop length of 20 ms. the
Transformer encoder consists of 12 layers of Transformer blocks with 8 heads, and the dimension
of the MSA is 512. For the VQ module, the number of codebooks is set to G = 2, the number of
entries is V = 320, and the dimension of each entry is set to 128. The model contains approximately
45M parameters. For the loss functions, the temperature parameters κ and τ are annealed from 2
to 0.5. The learning rate is warmed up to 5× 10−4 in the first 8% of the epochs and then decayed
linearly [60].

During fine-tuning, the output linear head is removed, and the model is finetuned with labeled
data with 30 characters, wherein 26 are letters, and 4 are special characters. The objective function
is a connectionist temporal classification loss function [20] [60].

In their experiments, their model performed best in comparison to other models, such as DE-
MUCS [14], Avt [46], and the original wave2vec2.0, both for stationary and non-stationary noisy
tests when pretrained and finetuned with FreeSound-augmented speech data. The model per-
formed worse on non-stationary noise than on stationary. For clean speech, wave2vec 2.0 per-
formed worse when trained on noisy data compared to the clean trains; more precisely, the word
error rate (WER) was 11.0 when trained on clean speech and 25.0 when trained on noisy speech.
It had a WER of 14.0 when pretrained on clean speech and finetuned on noisy speech and 13.5
WER when pretrained and finetuned on noisy speech. In contrast, enhanced wav2vec2.0 had 12.3
WER when pretrained and finetuned on noisy speech, which is better than the original wav2vec2.0,
while performing substantially better on noisy tests [60].

Their experiments showed that enhanced wav2vec2.0 with modified pretraining can increase
the performance of the network in noisy conditions while minimally decreasing the performance in
clean speech. Their study also showed that pretraining with contrastive, consistency, and diversity
loss functions can lead to better performance than simple pretraining on noisy data.

4.2 Robust Data2vec

In that study, Zhu et al. proposed a noise-robust data2vec pretraining framework by jointly op-
timizing a regression task and contrastive learning [61] for an automatic speech recognition task.
Figure 4.2 depicts their proposed model, which consists of a student and a teacher transformer
network. The student network receives noisy xnoisy, and the teacher receives a clean xorigin wave-
form. The inputs are mapped to the latent space znoisy and zorigin of a feature encoder before the
transformer blocks. Following the method of data2vec study [1], the student tries to predict the
average of the output of the top M transformer layers of the teacher cl

origint
. The weights of the

teacher are updated as the EMA of the student, as in Eq. 3.10. The target as the average output of
the top M layer is calculated as

ctart =
1
M

L

∑
l=LM+1

cl
origint

(4.8)

The model is optimized over the regression and the contrastive losses. The regression loss is
described as

Lreg =

{
1
2 (cpret

− ctart)
2/β |cpret

− ctart | ≤ β(
|cpret

− ctart | − 1
2 β

)
otherwise

(4.9)
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Figure 4.2: The structure of robust data2vec [61]

where β is a controlling parameter of the transition from squared loss to L1 loss. The contrastive
loss is

Lc = − log
exp(sim(cpret

, ctart)/κ

∑c̄ {ctar,cn ,cns} exp(sim(cpret
, c̃)/κ)

(4.10)

The resulting loss becomes
Ltotal = Lreg + λLc (4.11)

where λ is a hyperparameter.
The authors aimed the model to learn high-level non-semantic noise robust representations of

the speech. To achieve this, they created noisy perturbed samples by slicing the output into patches
along the time and dimension axes. The non-semantic contrastive loss thus becomes

Lc = −log
exp(sim(ct, cpt)/κ)

∑c̄ {cp ,cn ,cns} exp(sim(ct, c̃)/κ)
(4.12)

where ct, cp, cn, and cns are the representations of the query samples, positive samples, negative
samples, and non-semantic negative samples, κ is a temperature coefficient, and sim() is the cosine
similarity function. ’

By analyzing the cosine similarities of the predicted positive and the predicted negative samples,
the authors removed the more distinguishable negative samples by removing k samples with the
smallest cosine similarity score out of N samples.

The model was trained on the CHiME-4 [39]. The noise dataset was used from the MUSAN
dataset [49], and it was applied during the pretraining. In order to create noisy speech, the speech
data was mixed with noisy data at an SNR level from 0 to 25 dB [61].



24 Chapter 4. Improving Robustness of Speech Recognition Systems

Model LM
WER

dt05_real et05_real

Wav2vec2.0 Base [2]
None 10.6 17.6
LSTM 3.7 7.2

HuBERT Base [27]
None 10.4 17.0
LSTM 3.8 7.1

Enhanced Wav2vec2.0 [60]
None 9.4 15,7
LSTM 3.5 6.4

Data2vec Base [1]
None 9.5 15.7

Transformer 3.5 6.5

Robust Data2vec [61]
None 8.3 12.8

Transformer 3.1 5.8

Table 4.1: WER comparison between robust data2vec and other models in CHiME-4 dataset

The model consists of 12 layers of transformer network with a dimension of 768 and a final
feed-forward network with a dimension of 3072. The feature encoder has 7 layers of convolutional
network with kernels of (10, 3, 3, 3, 3, 2, 2) and strides of (5, 2, 2, 2, 2, 2, 2). In joint training,
τ0 = 0.999, τe = 0.9999 and the number of increments to τn = 30000 (Eq. 3.10. The masking
probability is set to p = 0.065, and the following 10-time steps are masked out. 50 negative samples
are adopted, with additional 50 non-semantic negative samples. During training, the student learns
the average of the outputs of the top 8 Transformer layers of the teacher. In Eq. 4.11 λ is set to 1.0
[61].

After pertaining, the Transformer model is finetuned on the labeled set of CHiME-4 5k vocab-
ulary. It was tested on the development and evaluation subdirectories, dt05_real and et05_real,
respectively. The authors compared their results with other models, including HuBERT [27],
wav2vec2.0 [2], enhanced wav2vec2.0 [60], data2vec base [1], both with language models and with-
out. They also compared their results with other supervised and self-supervised methods. Table
4.1 shows their results for the beforementioned modes.

Their experiments showed that data2vec performed better than wav2vec2.0 and HuBERT. En-
hanced data2vec performed marginally better than data2vec, and robust data2vec had the lowest
WER both for dt05_real and et05_real. Enhanced Wav2vec2.0 and robust data2vec both show that
contrastive self-supervised learning has great potential to enhance the robustness of ASR tasks.

4.3 Adversarial Training for Voice Activity Detection

Voice Activity Detection (VAD) is a binary classification problem that predicts whether a human
voice is present in the audio stream or not. It is usually used in front of other ASR tasks, such as
speech enhancement [25] or speaker verification [9].

In the VAD study, Larsen et al. [34] studied adversarial training to enhance the robustness
of a proposed voice activity detection system [58], which performed state-of-the-art results on
AURORA2 [24] dataset.

The pipeline of the adversarial VAD is shown in Figure 4.3. The model is a fully CNN-based
network, which performs 1D, i.e., temporal convolution, in contrast to 2D or time-frequency-based
convolution methods to reduce the computational cost. The model consists of an encoder block
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Figure 4.3: Adversarial VAD model [34]

(EB), a framing block (FB), and a decoder block (DB). The encoder block has 4 CNN layers with
kernel sizes of (55, 160, 160, 160) and strides of 1 in every layer. The framing block with a kernel
size of fs/100 · 2 and stride of fs/100 generates features every 10 ms. The decoder block has 3
CNN layers with kernel sizes of (55, 15, 5) and strides of 1 in every layer. It purifies the feature
and outputs a probability of whether the voice is present in the audio or not. The EB and FB have
Leaky ReLU [57] activation functions, while the DB has sigmoid activation functions in its layers.

The authors, inspired by [17] added a new discriminative network (DN) parallel to the DB,
whose hyperparameters are identical to the DB, except for the last layer, so the network can pro-
duce probability distribution over more (than two) discrete values. The task of the discriminative
network is to predict the background noise, which was artificially added to the background audio.
The output has N + 1 channels, where N is the number of noise types the input is mixed with [34].

Two loss functions are calculated during training. The adversarial loss is calculated from the
predicted and the target noise labels and cross-entropy loss functions were used, such as

Lz = −∑
i

ti log(pi) (4.13)

The framing block does a binary classification over the existence of voice in the audio stream, for
loss binary-cross-entropy was used, such as

Ly = −[t log(p) + (1− t) log(1− p)] (4.14)
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where t is the true label, and p is the prediction.
The DN is optimized over Lz, and the DB is optimized over Ly. The EB and FB are optimized

on both loss functions, but the gradients calculated from Lz are flipped over (multiplied by -1),
so the encoder blocks and framing block are trained adversarially. The idea behind that is the
model learns noise-invariant speech features in that way. The rate of adversarial gradient updated
is controlled with the parameter alpha by multiplying the partial derivative with it, such that:

− α
∂Lz

∂θx
(4.15)

The value of α = 0.1 was chosen empirically from the validation accuracy.
The model was trained and tested on the AURORA2 and TIMIT [18] datasets. To add back-

ground noise to the test set, babble, bus, cafe, and pedestrian noises were used from CHiME-3 [3] and
babble generated by the authors of [33]. The noises were added in SNRs of (-5, 0, 5, 10, 15, 20) dB.
With the exception of Clean and 20 dB on the AURORA2 dataset, models with adversarial training
outperformed the baseline model with a maximum of 3.85% on ARURORA2-B [34].
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Enhancing Robustness of Keyword Trans-
former

This section discusses two main back-end methods of improving the robustness of Keyword Trans-
formers, namely multi-syle training and adversarial training. Although there are many front-end
methods to enhance the features of speech before feeding a neural network with them, this study
focuses on the supervised and self-supervised pretraining and finetuning methods that are believed
to enhance the robustness of KWTs. In this section, first, the proposed baseline model is introduced,
and then two main methods will be explained that can be applied either during self-supervised
pretraining or supervised finetuning.

5.1 Keyword Transformer

The baseline models Keyword Transformer and pretraining models of data2vec are adopted from
the study of Bovbjerg [6]. During the study, experiments are conducted on KWT-1, KWT-2, and
KWT-3 with the main parameters shown in Table 3.1. The main hyperparameters are identical to
the models from [6] both for pretraining and finetuning.

5.1.1 Feature Extractor

The feature extraction is based on MFCC spectrograms, with the first 40 MFCC features used. The
audio with a sampling rate of 16 kS/s is converted into mel-scale spectrograms with 30ms window
length and 10ms stride. The size of the audio spectrograms thus becomes 40× T, where T denotes
the number of time steps during the formation of the spectrograms.

5.1.2 Acoustic Model

The Keyword Transformer provides the acoustic model with the parameters of 3.1. The MFCC
spectrograms are first divided into patches of size f × t = 1× 40, where f is the patch size in the
frequency domain, and t is the patch size in the time domain. The patches are then embedded with
a projection matrix W0 ∈ R( f ·t)×d, where d is the embedding dimension and is equal to 64 · k, where
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k is the number of attention heads. A class token XCLS is then concatenated before the embedded
spectrograms, and a positional encoding Xpos is concatenated after. The embedding thus becomes

X0 = [XCLS; XW0] + Xpos (5.1)

The multi-head self-attention is described in Eq. 3.7.
In pertaining, the input of the student model is masked with a learnable MASK token em-

bedding with a probability of pmask, and next Nmask timesteps are masked-out. This method was
adopted from wave2vec [2] [6].

5.1.3 Posterior handling

The model is trained and tested only in non-streaming mode. However, a strong correlation of
performances between streaming mode and non-streaming modes was found by [15].

5.2 Multi-Style Learning

Multi-style learning has been successfully applied to several speech processing tasks, such as [32]
or [45]. In multi-style training, the training data is mixed with background noise.

In this project, the models are only studied in non-streaming mode, which means that the
keyword spotting is handled as a multi-class classification problem with keywords loaded from
individual files. The noise is then added to each keyword in various SNR levels using either one
noise type or a mixture of noise types. The authors of [32] found that training a network on
a particular noise type, speaker (gender), or SNR gives better results than a mixture of noises,
speakers, or SNRs, respectively.

In Keyword Transformer, multi-style training can be applied in self-supervised pretraining and
supervised finetuning. Since, with clean data, the task of self-supervised pretraining is to learn
speech features, the expected benefit of using noisy data in pretraining is questionable because
the model probably learns noise features as well. In studies of enhanced wav2vec2.0 and robust
data2vec, noisy data is applied during self-supervised pertaining, but the pretraining methods are
modified by including a contrastive loss in the optimization phase.

During finetuning, however, including noise can be beneficial, so the model learns to find dis-
criminative features, which are, in theory, noise-independent keyword-specific speech features. It
is also believed that introducing self-supervised pretraining on clean datasets can further reinforce
the model to learn discriminative speech features during the noisy finetuning process.

In keyword spotting, the model can be studied in speaker-specific, noise-specific, SNR-specific,
or their opposite: speaker-agnostic, noise-agnostic, or SNR-agnostic conditions. Speaker-specific
training means the model is trained on keywords spoken by humans belonging to one particular
gender. Some datasets divide male and female voices into separate classes, which allows for study-
ing the difference between the characteristics and their impact on noise-robustness. Other datasets,
on the other hand, do not separate genders, and the distribution between genders is not necessarily
1:1. In this project, the models are trained on Google Speech Commands Dataset V2, which does
not distinguish genders, and for that reason studying the impact of genders on noise robustness
will be omitted.
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5.3 Adversarial Training

Adversarial training has been used to enhance the robustness of speech recognition algorithms
such as [34]. In this study, the base idea of [34] is applied to a Keyword Transformer both during
pretraining and finetuning. Since the adversarial task of [34] is supervised, the self-supervised
pretraining becomes semi-supervised.

5.3.1 Model Structure

The model has a Y-shaped structure. In the VAD study, the encoder block and framing block
were shared, while the decoder block and the discriminative network stem from the framing block
parallelly. Following this concept, the model consists of two keyword transformer encoders that
share the feature encoder and the first K Transformer blocks. The original or friendly network is
optimized over the initial keyword-spotting task, while the adversarial network is optimized over
the noise-classification task. The shared layers are optimized over both tasks.

During training, the friendly task receives either clean or noisy data, while the adversarial
task receives noisy data. The noise is added so that the ratio of the noisy and clean keywords is
Nnoise : 1, and the distribution of the noise types is uniform.

5.3.2 Adversarial Pretraining

During pertaining, the friendly part of the model consists of the student-teacher model of data2vec
and is trained self-supervised on the label-deficient dataset. The student and teacher receive the
masked and full versions of the input, respectively. The student predicts the averaged output of the
top L layers of the teacher. The teacher’s weights are updated as the EMA of the student’s weights.
After the last transformer block, the student network ends with a regression head.

The adversarial network has the same structure as the student encoder, with the exception of
the regression head switched to a classification head. The adversarial network shares the feature
encoder and the first K layers with the student network. During training, the network tries to
predict the type of noise added to the pretraining data. This is a supervised task, which makes the
self-supervised pretraining semi-supervised. The adversarial KWT produces a probability distri-
bution over Nnoise + 1 classes, where Nnoise stands for the number of noise types and the +1 is for
the clean data.

The friendly data2vec model is optimized over the data2vec regression loss L f (Eq. 3.9). The
loss for the adversarial task La is calculated with the cross-entropy loss (Eq. 4.13) since it solves a
multi-class classification problem. The shared layers are optimized over both L f and La, where the
gradients calculated from La are flipped and multiplied with α, which is a controlling parameter.

5.3.3 Adversarial Finetuning

During the finetuning process, both the friendly and the adversarial networks solve multi-class
classification problems.

The friendly part consists of a Keyword Transformer encoder, which classifies the data based
on the keyword. During training, the friendly network produces a probability distribution over
Nkeywords classes. The adversarial network is identical to the friendly network with the exception
of the last MLP head, which adopts the number of noise types Nnoise the network classifies. The
friendly and adversarial networks share the feature encoder and the first K Transformer layers.
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Figure 5.1: Structure of the adversarial pertaining model. The shared layers are depicted with green, the friendly student
layers with blue, the teacher model with purple, and the adversarial model with yellow.
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Figure 5.2: Structure of the adversarial finetuning model. The shared layers are depicted in green, the friendly model is
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The friendly and adversarial KWTs are optimized over the cross-entropy loss functions L f and
L f , respectively, while the shared layers are optimized over both L f and La. The signs of the
gradients calculated from La are flipped and multiplied with α when updating the weights in the
shared layers.
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Methods and Results

6.1 Dataset

6.1.1 Keyword Dataset

The models were trained on the Google Speech Commands Dataset V2 [55] in label-deficient mode.
The dataset contains 105,829 utterances of 35 keywords recorded with mobile phone or laptop
microphones. The words were spoken both by female and male participants. However, their ratio
is unknown. The recordings were done ideally in a closed room, but some keywords are inherently
noisy. The recordings are stored in 16 kHz WAV files, and the length of the keywords is restricted
to 1 s. The distribution of the keywords is not uniform. Some of the keywords have more than
twice as many utterances then others. The number of utterances per keyword is between 1557 and
4052 [55].

The dataset contains a validation and test list. The rest of the keywords belong to the training
list. This ensures that the evaluations of KWS systems in other studies were also done on the same
training set. To make the label-deficient pretraining dataset, 80% of the training set was removed
and added to the pretraining dataset. The labels are not used in the pretraining set. Words were
randomly selected to be removed from the training set and to be added to the pretraining set in a
way that the distribution of the keywords over the training set and the pretraining set is roughly
identical and resembles the original distribution of the keywords over the whole dataset. Table 6.1
shows the number of utterances in the pretraining, training, validation, and test sets.

Dataset Number of Utterances
Pretraining 67874

Training 16969
Validation 9981

Testing 11005

Table 6.1: Number of utterances in each set
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Figure 6.1: Consistent BBL background noise for the keyword "No"

6.1.2 Noise Dataset

Six types of noise are used in the experiments. The noise types of bus (BUS), cafe (CAF), pedestrian
(PED) and street (STR) were used from CHiME-3 [3]. The noise types of babble (BBL) and speech-
shaped noise (SSN) were generated by the authors of [33]. Each noise contains 40 minutes of noise
audio for training data (except SSN, which contains 50 minutes) and 5 minutes for validation and
testing. Some noise types are rather stationary, for example, BUS, PED, STR, and SSN, while others
are non-stationary, such as CAF or BBL. Non-stationary noise is known to be more difficult to deal
with. All noises are stored in 16 kHz WAV files.

For adding noise to the training, validation, and test data, Filter and Noise Adding Tool (FaNT)
[23] was used. FaNT makes it possible to filter speech audio or add noise with different signal-to-
noise ratio levels. In this application, the latter was used. The noise was added to the utterances
with different SNR levels, but all were between -10 dB and 20 dB.

To add noise to the training test and validation data, a random position in the appropriate noise
audio was chosen, and the subsequent 1 second was mixed with the keyword audio. Each position
was chosen randomly, but all positions of the noise are identical in different signal-to-noise ratio
levels by setting up a seed parameter for every keyword. That was done in order to keep the noise
generation consistent because some parts of the noise file could put the network against greater
challenge than others. With this technique, it is ensured that the difference is only in the SNR
levels.
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6.2 Computation Resources

The models were implemented in Python 3.8. The MFCC spectrograms were extracted using the
Librosa package. PyTorch 1.13.1 was used for the development of the neural network models.
PyTorch is a popular deep-learning library that supports NVIDIA’s CUDA toolkit, which enables
the running of neural networks on a Graphical Processing Unit (GPU).

With 5.4M parameters of the largest KWT model, the trained models are relatively small com-
pared to the models of other studies, which makes the model able to train and run on a personal
computer. In fact, Berg et al. ran the KWTs on a OnePlus 6 mobile phone device using TensorFlow
light [4].

Nevertheless, the models were trained and tested on Aalborg University’s CLAAUDIA Strato
server. The instance gpu.t4-large was used, which has 10 virtual cores of Central Processing Units
(CPUs), 40.04 GB Random Access Memory (RAM), and an NVIDIA Tesla T4 GPU with 16 GB of
Graphics Double Data Rate 6 (GDDR6) video RAM (VRAM). The instance is based on an Ubuntu
18.04 image.

CLAAUDIA has another server for deep learning called AI Cloud which is based on two
NVIDIA GDX-2 with Tesla V100 GPUs. AI Cloud has more computational performance than
Strato. However, it is a very busy server with a waiting list to write machine learning jobs. For that
reason, it is more flexible and faster to run smaller deep-learning models on Strato.

The deep learning processes were tracked with Weights and Biases (WandB). WandB allows the
user to track the learning procedures without directly accessing the server, as well as graphically
analyze the model during training. This makes recognizing early anomalies possible.

For the experiments, more than 200 models were trained, and more than 1000 tests were con-
ducted. The simplest KWT-1 model takes around 20 minutes to train. The pretraining of the KWT-3
takes roughly 10 hours to train. The adversarial models in section 6.6 took twice as long as normal
models, and to achieve figures like figure 6.12, several days of training were required.

The files for the project are publicly available at https://github.com/GregTheHunInDk/Robust_
KWT.git

6.3 Baseline

In the first step, the baseline model is acquired by pretraining and finetuning the KWT models
on the clean dataset. The KWT models are adopted from Bovbjerg’s project. All the models are
randomly initialized with a seed value, which ensures that the model’s initial parameters of the
model are the same at the beginning of every training. However, the pretraining-training dataset
split is done randomly and differs every time it is run. That means that slight alteration is noticeable
in the baseline results. For this reason, the baseline results are redefined for precise comparisons.

The models were studied in two modes: with and without pretraining. This allows us to observe
how self-supervised pretraining affects the overall performance of the model.

The model is trained on the MFCC spectrograms of the input audio where the Fast Fourier
Transform (FFT) resolution was set to 480, and the length of the sliding window was 480 sam-
ples with a hop length of 160. The first 40 MFCC features were used. For data augmentation,
SpecAugment was employed during training for data augmentation, which allowed the model to
learn richer features.

https://github.com/GregTheHunInDk/Robust_KWT.git
https://github.com/GregTheHunInDk/Robust_KWT.git


6.3. Baseline 35

Model Accuracy
KWT-1 0.8488
KWT-2 0.8602
KWT-3 0.8343

Table 6.2: KWT accuracies after being trained on the reduced training dataset

6.3.1 Baseline Without Pretraining

First, the models were trained on the reduced training dataset in supervised mode. The models
were trained for 140 epochs with a batch size of 512. The target labels were smoothed with ε = 0.1.
The weights were optimized with AdamW optimizer with a maximum learning rate of 0.001,
which was warmed up linearly over the first 10 epochs and then annealed with a cosine annealing
schedule. The weight decay of λ = 0.1 was used to prevent the model from overfitting.

The model consists of 12 blocks of Transformers with attentions heads of 1, 2, and 3 for KWT-1,
KWT-2, and KWT-3, respectively. In this order, the input dimensions hence become 64, 128, 198 so
that the d/k = 64 is kept, where d is the input dimension and k is the number of attention heads.

The baseline accuracies are shown in table 6.2. In this experiment, KWT-2 had the best accuracy
with 0.8602, followed by KWT-1 with 0.8488, and the largest model, KWT-3, with 0.8343. The
results are slightly different compared to the ones published by Bovbjerg et al. [6], which again is
due to the slight change in the pretraining and training dataset.

6.3.2 Baseline with Pretraining

The models are pretrained in the data2vec system on the label-deficient pretraining dataset. The
models are trained for 200 epochs and with a batch size of 512. The weights are optimized over
an MSE loss function with AdamW optimizers. The top learning rate was 5× 10−4, and it was
scheduled using a 1-Cycle learning rate scheduler. To prevent overfitting, a weight decay of ε = 0.1
was used. The hyperparameters of the student and teacher Transformer networks are the same
as the appropriate KWT model, with the exception that the prediction heads are replaced with
regression heads.

The student receives a masked input with a masking probability of 0.65, and then the following
ten time steps are masked. During pretraining, the student predicts the average of the top 8 layers
of the teacher. The layers of the teacher are normalized with the instance norm, so the model does
not have to predict extreme values. The teacher’s weights are updated as the EMA of the student
weights based on Eq. 3.10, where τ is scheduled from τl = 0.999 to τn = 0.9999 in 1000 steps, and
then kept constant.

After pretraining, the pretrained KWT models are finetuned on the reduced training set with
the same hyperparameters as for training the baseline models. Table 6.3 shows the accuracy of
the KWT models over the test set after finetuning. It can be seen that data2vec pretraining has a
hugely positive effect on the performance of the models. Self-supervised pretraining has the most
significant effect on KWT-3 and the smallest on KWT-1 but still increases the accuracy substantially.
After finetuning, KWT-2 had the best accuracy of 0.9292, followed by KWT-3 with 0.9194, and at
last, KWT-1 with 0.9017. After finetuning, all KWT models perform over 90% on the clean test set.
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Model Accuracy Improvement over baseline
KWT-1 0.9017 0.0529
KWT-2 0.9292 0.0609
KWT-3 0.9194 0.0852

Table 6.3: KWT accuracies after being pretrained on the label-deficient pretraining dataset and finetuned on the reduced
training dataset

6.4 Noise Robustness of Baseline Models

To test the robustness, the Keyword Transformer models were tested with a noise-contaminated
test dataset. The background noise BBL, BUS, CAF, PED, SSN, and STR were added to the noise
dataset independently with SNR ∈ {−10,−5, 0, 5, 10, 15, 20} dB. That means that 42 test datasets
were created, where one dataset contained one type of noise with one signal-to-noise ratio.

Figure 6.2 shows the results of KWT-1 on noisy tests for baseline (i.e., no pertaining) and fine-
tune models. It can be seen that BBL and SSN have the greatest impact on the model on higher
noise levels when the SNR ≤ 0 dB. STR and BUS, on the other hand, have the least contribution
to the decrease in performance. It can be also seen that pretraining has a positive effect on the
robustness, with the biggest performance boost on SSN at SNR = 5 dB. At KWT-2 (figure 6.3) and
KWT-3 (figure 6.4), the same pattern can be recognized with the subtle difference that the biggest
performance gain was found in STR noise at 0 dB SNR.

In order to visualize the difference between models, an element-wise subtraction was applied
between the results of the KWT models, which can be seen in Figure 6.5 In the baseline models,
KWT-2 has a slightly better performance in some areas than KWT-1 4% maximum increase, how-
ever in some areas for high noise level the performance slightly decreases with a maximum of 2%.
KWT-3 performs worse than KWT-1 and KWT-2, which compares to its baseline accuracy in clean
tests. At 5 dB SSN noise, it has 6% less accuracy than KWT-2 and 3% less than KWT-1 on STR
noise at -5dB SNR level.

When finetuned, KWT-2 has consistently and noticeably better performance with a maximum
of 8% performance increase than KWT-1 at 0dB SNR STR noise and 4% performance increase over
KWT-3 at SSN 5 dB SNR. KWT-3 has an overall better performance than KWT-1, with a maximum
rise of 7% with STR noise at -5 dB SNR. The finetuned differences are shown in figure 6.6.

The experiment shows that pretraining KWT models on clean data are beneficial to increase
noise robustness. In fact, in some cases, when the models are finetuned, the performance gain can
exceed 20%, which is more than twice the performance gain on clean data.

6.5 Multi-Style Training

Several studies have shown that multi-style training, i.e., training with noisy data, can have a
positive effect on the robustness of the ASR tasks, including keyword posting [15]. This section
will study how adding noise can affect the robustness of a Keyword Transformer. In supervised
training, the core idea is to make the model learn noise-robust discriminative features that it can
classify over. Simple self-supervised pretraining on noisy data can be even more harmful because
the model learns fewer speech and more noise features. For that reason, the noise will only be
added to the finetuning dataset, and it will be studied whether pretraining on clean data can help
the model learn noise-independent features.
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Figure 6.2: Noisy test results for KWT-1.
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Figure 6.3: Noisy test results for KWT-2.
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Figure 6.4: Noisy test results for KWT-3.
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Figure 6.5: Difference between the accuracies of the KWT baseline models
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Figure 6.6: Difference between the accuracies of the finetuned KWT baseline models.

In this experiment, stationary and non-stationary noises were added to the reduced training
data. Since in [37], it was found that adding only one type of noise to the training dataset
could lead to better results than adding a mixture of noises, this experiment also follows that
strategy. For noisy training, two noise types are chosen, one stationary and one non-stationary,
which are SSN and BBL. Both noises are added to the training, validation, and test sets with SNR
∈ {−10,−5, 0, 5, 10, 20}.

The six models per noise type, one for each SNR level, are trained with the same hyperpa-
rameters as the baseline. After that, all models were tested with all the SNR values. The models
were tested with the type of noise they were trained on. For example, one model was trained on
SSN-noisy data with an SNR of 0 dB. Then the model was tested with test data contaminated with
SSN of SNR ∈ {−10,−5, 0, 5, 10, 15, 20}.

In this section, the results for KWT-3 are presented and compared to KWT-2. Noisy training
behaves similarly to KWT-1, but during the training, some of the data became corrupt, and for that
reason, KWT-1 cannot bring a perfect picture of finetuning. Moreover, in this section, only results
with SSN data are presented, but the models behave very similarly on BBL noise. Results with BBL
noise are presented in the appendix A.1.

Effect of Pretraining

First, KWT-3 is trained on SSN data without any pretraining. Then, clean pretraining and SSN-
noisy finetuning are applied. Figure 6.7 shows the results. The performance of the model decreases
drastically with the increase of test SNR. The smaller the training SNR is, the more intense differ-
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Figure 6.7: Noisy test results for KWT-3. On the first heatmap, the results without pertaining are depicted. On the second
heatmap, the KWT-3 models are pretrained on clean data and finetuned on noisy. On the third heatmap, the improvement
by pretraining can be seen.

ence can be seen in the different test cases. For training SNR=20dB, the model performed almost
on the baseline level with 83%, but when the SNR became -10 dB, the accuracy was only 5 dB.
On the other hand, the model trained on SNR=-10 dB had the best performance at test SNR=0 dB
with 54% accuracy and the worst prediction rate at -10 dB with 27%. The finetuned models have a
smoother transition in test accuracies and an overall higher prediction performance as well.

With some exceptions, the noisy trained models have the best performance when the models
are trained with slightly less SNR than they are tested on. For the SNR=15 dB test, SNR=10 dB
training produces the best results, or for the SNR=10 dB, SNR=5 dB training data gives the best
performance. When finetuned, the test accuracy peaks when the test SNR and training SNR are
roughly identical.

The last heatmap of figure 6.7 shows that clean pretraining mostly increases the model accu-
racy when finetuned on a noisy set, compared to training on noisy data without any pretraining.
The larger performance gain is experienced at SNR=0 dB, at 10 dB training SNR with a huge 40%
increase. On the other hand, when the training SNR is low, especially at -10 dB, then clean pre-
training has a negative effect on the performance. The greatest performance decrease is -11% at
0dB test and -10 dB training SNR.

Effect of Model Size

To observe how model size affects affect the performance of the Keyword Transformer after noisy
training, KWT-3 and KWT-2 are compared both for noisy training and clean pretraining - noisy
finetuning modes. Figures 6.8 show the difference between KWT-3 and KWT-2 test performances.
The values are received by an elementwise subtraction of the KWT-3 and KWT-2 test results.

In a noisy training-only system, KWT-3 performs better on low-SNR training and high-SNR
test cases. At -10 dB training SNR and 0 dB testing SNR, KWT-3 performs 22% better than KWt-
2. On the contrary, KWT-2 performs better on high-SNR training and low SNR-test cases with a
maximum increase of 20% over KWT-3 at 10 dB training and 0 dB testing SNR.

When finetuned, KWT-3 performs marginally better than KWT-2 with a maximum increase of
4% at 5 dB training and -5 dB testing SNR and for -5 dB training and 20 db testing SNR cases.
On the other hand, KWT-2 performs better at low-SNR training and low-SNR test case with a
maximum 3% increase at -5 dB training and -5 dB SNR testing cases.

The experiments show that KWT-2 and KWT-3 learn noise-robust speech representations equally
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Figure 6.8: Difference between KWT-3 and KWT-2 performance for noisy training (left) and clean pertaining - noisy fine-
tuning (right) modes.
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Figure 6.9: Difference between noisy training and clean training for KWT-3

well when finetuned. KWT-2, on the other hand, has the advantage of having fewer parameters
while giving a competitive or even better performance than KWT-3.

Comparing to Clean Training

To see in what cases noisy training helps increase noise robustness, the noisy-trained KWT-3 model
is compared to a clean-trained KWT-3 model. Figure 6.9 shows results. The left heatmap shows the
test accuracy after noisy training. The middle heatmap shows the test accuracy for a clean-trained
KWT-3. The right heatmap shows the difference in the accuracies. KWT-3 mostly increases the ro-
bustness in a purely noisy environment. The biggest boost can be experienced at low-SNR training
and test conditions, but noisy training generally increases the performance when the training and
testing SNRs are roughly equal. The only part where noisy training has a negative effect is in low-
SNR training and high-SNR testing cases. The biggest performance gain is 40% at -5 dB training
and 0 dB testing SNR, and a large accuracy loss is -32% at -10 dB training and 20 dB testing SNR.

When finetuning the KWT-3 models on noisy and clean data, the same results with more con-
trast can be observed. Noisy-finetuned KWT-3 has much higher accuracy than the clean-finetuned
one, with a maximum gain of 49% at 0dB training and -5 dB testing SNR. On the other hand,
the performance loss is also more severe in low-SNR training and high-SNR testing cases, with a
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Figure 6.10: Difference between noisy finetuning and clean finetuning for KWT-3

maximum of -53% performance loss. In noisy cases, however, the overall performance increases
when the model is finetuned to noisy data.

In conclusion, in noise-specific cases, training on noisy data overall helps increase the robustness
of keyword spotting. If the signal-to-noise ratio is known in practical applications, it is advised to
train the noise with similar SNR levels. On the other hand, finetuning the model on clean data
can further increase the noise robustness of the Keyword Transformers. The model size, on the
other hand, does not necessarily increase the noise performance, and for that reason using smaller
models can be beneficial in practical applications.

6.6 Adversarial Training

Adversarial training can be applied both on pretraining and finetuning. In the experiments, two
main methods were used in adversarial training. In the first method, following the VAD study [34],
both the adversarial and friendly networks receive noisy data. In this project, this method is called
noisy adversarial training. In the second method, the friendly network receives clean audio, and
the adversarial task receives the noisy equivalent of the keywords. This method was inspired by
robust data2vec and enhanced wav2vec2.0, although they used clean and noisy audio on different
learning tasks. With an adversarial task included, in pretraining, the network is expected to learn
noise-robust speech features, while in finetuning, it is expected to learn to classify over noise-robust
speech features.

The experiments were conducted over two parameters, namely α and k. The parameter α con-
trols the rate of adversarial learning, and k denotes the bottom K Transformer layers that are shared
between the friendly and adversarial models. The parameters α and k were chosen from the sets
α ∈ {0.1, 0.01} and k ∈ {1, 2, 3, 4, 5, 6}.

All other model hyperparameters are identical to the baseline models to keep the comparisons
consistent. That means that these models are pretrained and finetuned for 200 and 140 epochs with
a batch size of 512. All the other hyperparameters are also the same, including the learning rate,
the scheduling, the label smoothing, etc.

During the training, at least the adversarial network need noise-contaminated data. Following
the VAD study, the training data was mixed with four types of noise: BBL, BUS, CAF, STR, and
CLN, where CLN means, that the data was kept clean. 80% of the training data was contaminated
with noise, where the distribution of the noise types was kept uniform. During testing, clean
data was omitted, so the 100% test data was mixed with BBL, BUS, CAF, and STR with a uniform
distribution. The signal-to-noise ratio was chosen between 0 dB and 10 dB.
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Figure 6.11: Test results of adversarial models for SNR=0 and SNR=5. The legend shown on the left side applies to both
plots.

6.6.1 Supervised Adversarial Training

Varying α and k

The first experiment studies how varying α and k can affect the prediction performance. Consid-
ering its shortest training time, KWT-1 is chosen for adversarial training. The training is done in
three modes: noisy adversarial training (when both the friendly and adversarial network receives
noisy data), clean adversarial training (when only the adversarial network receives noisy data),
clean adversarial finetuning, and noisy adversarial finetuning. The value of α is first set to 0.1, and
the k is iterated from 1 to 6. After that, the parameter α is then set to 0.01, and the models are
trained and tested for all k from 1 to 6. The adversarial models are then compared with baseline
values, both with and without pretraining. In total, 4 training configurations with 6 values of k and
2 values of α were trained and tested, with an additional clean data2vec pertaining, which makes
it a total of 48 adversarial training, 1 clean pertaining, and 2 finetuning per SNR.

Figure 6.11 shows the testing results on the adversarial networks for SNR=0 dB and SNR=5 dB.
On the horizontal axis, the changing of the number of the first K Transformer layers is depicted.
The accuracy is shown on the horizontal axis. The line styles and colors belong to the same training
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Training type α Mean accuracy Maximum accuracy
Noisy adversarial training 0.1 0.2763 0.2978
Noisy adversarial training 0.01 0.2729 0.3021
Clean adversarial training 0.1 0.3800 0.3896
Clean adversarial training 0.01 0.3874 0.3988
Noisy adversarial finetuning 0.1 0.3259 0.3388
Noisy adversarial finetuning 0.01 0.3349 0.3560
Clean adversarial finetuning 0.1 0.4638 0.4838
Clean adversarial finetuning 0.01 0.4579 0.4792
Clean training - 0.3960 0.3960
Noisy training - 0.1736 0.1736
Clean finetune - 0.4650 0.4650

Table 6.4: Adversarial training results for SNR=0

Training type α Mean accuracy Maximum accuracy
Noisy adversarial training 0.1 0.3604 0.4047
Noisy adversarial training 0.01 0.3656 0.4056
Clean adversarial training 0.1 0.5036 0.5185
Clean adversarial training 0.01 0.5159 0.5366
Noisy adversarial finetuning 0.1 0.4261 0.4641
Noisy adversarial finetuning 0.01 0.4321 0.4528
Clean adversarial finetuning 0.1 0.6366 0.6543
Clean adversarial finetuning 0.01 0.6196 0.6358
Clean training - 0.5082 0.5082
Noisy training - 0.2010 0.2010
Clean finetune - 0.6300 0.6300

Table 6.5: Adversarial training results for SNR=5
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type, for example, the blue line means noisy adversarial training with α = 0.1 for both SNR=0 and
SNR=5.

Comparing clean and noisy adversarial training, clean adversarial training produces better ac-
curacy than noisy ones for all α and k. At SNR=0, adversarial clean training produces slightly
worse results than the baseline with 38% and 38.74% for α = 0.1 and α = 0.01 compared to the
baseline accuracy of 3960%. At SNR=5 dB, adversarial training manages to improve over the base-
line results for α = 0.01 with a maximum increase of 2.84%. Noisy adversarial training, on the other
hand, produces significantly worse results than the baseline with 36.04% and 36.56% for α = 0.1
and α = 0.01, respectively. Nevertheless, all adversarial training performs better than training the
model on a noisy dataset. In the previous section, it was mentioned that training Keyword Trans-
formers on noisy data can increase the accuracy of the model in noise-specific cases. However, this
particular mix of noise makes the model fail to learn to generalize keywords adequately.

Next, the models are pretrained on clean data and finetuned in the adversarial setup. Pre-
training visibly increases the accuracy of clean and noisy adversarial training. However, noisy
adversarial finetuning still produces worse results than the baseline. Clean adversarial fine-tuning
with α = 0.01 at SNR=5 dB, on the other hand, produces better mean accuracy than a KWT-1
model pretrained and finetuned on clean data. the maximum performance gain is 2.43% at k = 5.
All other models manage to get better performance for certain k values. For SNR=5 and α = 0.1,
the peak performance is 63.58% at k = 1. At SNR=0 dB, the peak accuracy increase for α = 0.1 is
01.88% at k = 4, and for α = 0.01, the maximum increase is 1.42%.

The results show that robustness can be increased with adversarial training when the friendly
model receives clean data, especially when the signal-to-noise ratio is higher. There is, on the other
hand, no clear correlation found between the accuracies and the value of α and k.

Varying the model size

To see how model size can affect the adversarial training outcomes, the SNR is fixed to 0 dB, as well
as α to 0.1, while k is iterated from 1 to 6, and the experiments are repeated for KWT-1, KWT-2,
and KWT-3. The models are trained in four modes: adversarial noisy training, adversarial noisy
finetuning, adversarial clean training, and adversarial clean finetuning. The models are trained
with the baseline models trained on clean data and tested on noisy data. The training, validation,
and test datasets are mixed with noises in the same way as in the section 6.6.1. Figure 6.12 shows
the results for KWT-1, KWT-2, and KWT-3.

The performance of the network on adversarial training decrease with larger model sizes, which
means, that KWT-2 and KWT-3 react more on data augmentation than KWT-1, unfortunately, for
the worse. Since it is known from the previous experiments of section 6.6.1 that training the KWT-1
on data contaminated with this particular mix of noise has a negative effect on the test performance,
these results are not surprising.

Comparing KWT-2 to KWT-3, KWT-2 performs better in every aspect but, nevertheless, below
the baseline models. Similarly to section 6.6.1, no clear dependence can be seen between the
accuracy and the value of k. For certain k values, KWT-3 can reach higher values, but the best
performance and mean performance of KWT-2 are always higher.

6.6.2 Semi-Supervised Adversarial Pretraining

In self-supervised pertaining, the model is expected to learn noise-robust speech representations by
learning clean speech representations in the friendly task while unlearning noise representations.
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Figure 6.12: Adversarial training results for KWT-1, KWT-2 and KWT-3 for α = 0.1 and SNR=5 dB

Training type Mean accuracy Maximum accuracy
KWT-1
Noisy adversarial training 0.3604 0.4047
Noisy adversarial finetuning 0.4261 0.4641
Clean adversarial training 0.5036 0.5185
Clean adversarial finetuning 0.6366 0.6543
KWT-2
Noisy adversarial training 0.2797 0.3015
Noisy adversarial finetuning 0.3814 0.3975
Clean adversarial training 0.4513 0.4822
Clean adversarial finetuning 0.6171 0.6292
KWT-3
Noisy adversarial training 0.2708 0.2917
Noisy adversarial finetuning 0.3632 0.3926
Clean adversarial training 0.4295 0.4514
Clean adversarial finetuning 0.5668 0.5931

Table 6.6: KWT-1, KWT-2 and KWT-3 results with adversarial training for SNR=5 dB and α = 0.1
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Training method
Accuracy

Clean Noisy
Clean training 0.8488 0.3960
Clean pretraining, clean finetuning 0.9017 0.4750
Adversarial pretaining, clean finetuning 0.8617 0.4006

Table 6.7: Adversarial pretrained and clean finetuned in comparison with clean training and clean pertaining and finetuning

Self-supervised pretraining is the longest process in the experiments for being trained on the
four times larger pretraining dataset and having two networks, a student and a teacher. Adding
the parallel adversarial task makes the pretraining procedure even longer. For that reason, the
pretraining experiment is simplified by relying on the following facts learned from sections 6.6.1
and 6.6.1: there is no strong correlation between the number of shared layers K, the learning
parameter α and the model accuracy; moreover, the model behaves similarly at larger signal-to-
noise ratios and at lower ones. Section 6.6.1 showed that adversarial pretraining works better for
KWT-1 than for KWT-2 and KWT-3.

Considering all the above-mentioned facts, to conduct the experiments, KWT-1 was chosen,
with k = 1 and α = 1. The training data is mixed with BBL, BUS, CAF, and PED, and the ratio
of the noisy data to the clean one is 4:1. The test data is mixed with BBL, BUS, CAF, and PED as
well, but no data was kept clean, to see, how the model behaves in a purely noisy environment.
The signal-to-noise ratio is kept at 0 dB both for training and testing. In order to observe the effect
purely of the adversarial pretraining, the model is finetuned on the clean dataset.

Table 6.7 shows the results after adversarial pretraining and clean finetuning. Adversarial pre-
training with clean finetuning performs better than the baseline model simply trained on the re-
duced dataset. However, a fair comparison is between the model pretrained on clean data versus
the model pretrained in an adversarial manner. The clean pretrained KWT-1 model performs much
better in clean and noisy scenarios, 6.17% better on the clean test and 7.44% on the noisy test.

This experiment shows that with adversarial pertaining, the KWT-1 model learns weaker repre-
sentations of human speech. It still performs better than the baseline without pertaining, but clean
pretraining gives the model a much better gain in noise robustness.



Chapter 7

Conclusion

In this master thesis, the acoustical noise robustness of Keyword Transformers was studied with the
aim of enhancing the robustness using supervised and self-supervised learning. This study focused
on back-end methods to increase noise robustness while keeping the original feature extractor.
While other keyword-spotting studies mostly focus on the clean performance of KWS systems, this
study focused on increasing the noise robustness and keeping the prediction accuracies as close to
the baseline as possible.

In the thesis, first, the background of the project was explained, and the research question was
formed. After that, the keyword spotting systems were introduced, as well as common methods to
increase their noise-robustness were explained. Following that, the baseline models were presented
that the project was based on. Then other works were shortly presented that served as inspiration
for the methods applied to Keyword Transformers. Later the adopted Keyword Transformer mod-
els were explained, as well as the applications of multi-style and adversarial learning applied on
them. Lastly, the experimental methods and results were presented in detail.

By studying the robustness of the Keyword Transformer models, it was clearly shown that
pretraining the Transformers in the data2vec architecture not only increases the performance of the
models on clean data but also in the presence of noise. In multi-style learning, it was shown that
the model performed better in noisy test cases when the training data was mixed with noise. It
also shows that model size does not play a key role in the robustness. However, pretraining the
model on clean speech does. Finally, it was also shown that introducing noise in the training phase
has an overall positive effect when the model is expected to be used in a noisy environment.

In the adversarial training study, it was shown that the models have marginal performance
gain at best as well as introducing mixed noise in the friendly task has a negative effect on the test
accuracy. It was also demonstrated that varying the value of the learning rate as well as the number
of shared Transformer layers does not have a direct effect on the accuracy. It was also manifested
that adversarial training affects larger Transformer models stronger. Finally, adversarial pretraining
was shown that introducing adversarial tasks in the pretraining had a negative effect on learning
speech representations.

Based on the results, the research question can be answered, which was formed as follows:

What supervised and self-supervised training methods can be used to enhance the
noise-robustness of the Keyword Transformer?

47
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The experiments showed that among the tried methods, clean self-supervised training is the best
to increase the noise robustness of the Keyword Transformer. It was also shown that pretraining on
clean data has almost always a positive effect on robustness, no matter what finetuning technique
is combined with it.

In supervised training, introducing one type of noise during the training has an overall positive
effect on the robustness, while adding a mixture of different noises to the training set can decrease
the robustness severely. It was also shown that adversarial training works better with smaller KWT
models, and although the mixture of noise decreased the noise robustness, supervised adversarial
clean training could increase the performance of the model.

In this study, the adversarial training was done with a mixture of noise, although it was shown
that simply training the KWT models with mixed-noisy data reduces the performance. On the
other hand, adding only one type of noise to the data and training the models with it showed great
performance gain in the noisy test. In the future adversarial training could be executed using only
one type of noise in the hope of increasing noise robustness in a particular noisy case.

To conclude, the robustness of the Keyword Transformers can be increased by introducing
noisy data to the supervised training set, adding adversarial learning to the supervised task, or
pretraining the network on clean data in a self-supervised mode.
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A.1 Babble Noise Results
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Figure A.1: KWT-3 results for BBL-noisy training and test. The left heatmap shows the results after noisy training, the
middle heatmap shows the results after clean pertaining and noisy finetuning, and the right one shows the increment that
clean pertaining offers.
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Figure A.2: The difference between KWT-3 and KWT-2 performance on BBL noisy data. The left heatmap shows the
difference between KWT-3 and KWT-2 trained on BBL noisy data, and the right heatmap shows the difference between
KWT-3 and KWT-2 pretrained on noisy data and finetuned on BBL-noisy data.
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Figure A.3: KWT-3 results for BBL noisy and test. The left heatmap shows the accuracy of KWT-3 trained on noisy data.
The middle heatmap shows the accuracy of KWT-3 trained on clean data, and the right one shows their difference.
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Figure A.4: KWT-3 results for BBL-noisy and test. The left heatmap shows the accuracy of KWT-3 pretrained on clean data
and finetuned on noisy data. The middle heatmap shows the accuracy of KWT-3 pretrained and finetuned on clean data,
and the right one shows their difference.
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