
DIBBOlib
A Data-Intensive Black-Box Optimization Library for Apache Spark

Project Report

cs-23-dt-10-03

Aalborg University
Electronics and IT

Copyright © Aalborg University 2023

Department of Computer Science
Aalborg University

http://www.aau.dk

Title:
DIBBOlib: A Data-Intensive Black-Box
Optimization Library for Apache Spark

Theme:
Prescriptive Analytics on Big Data

Project Period:
Spring Semester 2023

Project Group:
cs-23-dt-10-03

Participant(s):
Martin Moesmann

Supervisor(s):
Torben Bach Pedersen

Copies: 1

Page Numbers: 214

Date of Completion:
June 16, 2023

Abstract:

Motivated by the advance of mathe-
matical optimization within contem-
porary analytics, this project devel-
ops a sample-efficient black-box optimiza-
tion library, extending the Apache Spark
platform for data-intensive analytics.
Named DIBBOlib (Data-Intensive Black-
Box Optimization library), this new
tool enables a data-driven, simulation-
based approach to problem solving,
which unlike other black-box method-
ologies copes with non-trivial data-
intensive workloads. DIBBOlib techni-
cally forms an extension of Spark ML-
lib, and is designed to feel as such
from a usability standpoint. It of-
fers an extensible standard suite of
optimization algorithms and generic
constraint handling methods, fully in-
tegrated with Spark SQL. Mainline
features include an algorithmic wiz-
ard, global support for vertical trans-
fer learning, a novel constraint handling
method, load-balanced trial parallelism,
as well as dynamic search space par-
titioning based on a hybrid dynam-
ic/greedy programming approach and
e.g. cooperative game theory. Com-
pared to alternatives, the library in-
habits a special niche as a general-
purpose solution for data-intensive analyt-
ics, while having unique features in its
own right. Experiments demonstrate
the usefulness of novel library features
on a set of example problems.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

Summary

Mathematical optimization, combined with predictive technologies such as Ma-
chine Learning, is increasingly popular within contemporary data analytics re-
search, falling under the moniker of Prescriptive Analytics. Researched application
domains so far span from education and healthcare to logistics and manufacturing.
Researchers have however observed how a general lack of dedicated tool support
and a predominance of expert-driven methodologies hinder the broader applica-
bility of Prescriptive Analytics outside of a research setting.

This project takes its onset in an idea of how to provide a more data-driven
approach to Prescriptive Analytics within data-intensive applications, which have
practically no dedicated tools for it. Inspired by the successful democratization of
Machine Learning, i.e. black-box prediction, the proposed methodology is based on
Black-Box Optimization, which arguably brings with it some similar user-centered
benefits. These methods are all simulation-based, in that their search strategies are
formed around simulating the outcome of particular solution choices, trial-and-
error style.

To accommodate a data-driven approach within a Big Data setting efficiently,
we focus on a particular subset of these methods, which can be deemed sample-
efficient when compared to e.g. population-based methods such as Genetic Algo-
rithms. So far, sample-efficient methods have mostly found use within scientific
simulation and various engineering design settings, in which running high-fidelity
simulations during optimization might take hours or even days in extreme cases.
The underlying optimization algorithms are therefore designed to form quite de-
liberate search strategies, with some of them even interpolating the entire search
space to decide on which solution to trial next.

With the aspiration of creating a scalable, usable, and sample-efficient black-
box optimization library for the Apache Spark platform, the solution developed in
this project is a named DIBBOlib (Data-Intensive Black-Box Optimization library).

Written in Scala, DIBBOlib extends Spark MLlib, and thus integrates with ex-
isting advanced analytics functionality on the platform. At its core, the library
simply extends the MLlib Transformer class with a subclass named BlackBoxOp-
timizer. This subclass implements a generalized way of translating a black-box

vii

optimization model to and from Spark SQL queries, solving the specified problem
with a particular optimization algorithm. For better usability and easier onboard-
ing, DIBBOlib Transformers support the same API as MLlib Transformers.

DIBBOlib offers an extensible suite of optimization algorithms as well as generic
constraint handling methods, covering all broadly useful approaches within sample-
efficient BBO. It furthermore offers an algorithmic wizard for automatic algorithm
selection and chaining for given input problems.

On top of this, it supports universal vertical transfer learning, meaning that it
offers a transparent way to checkpoint progress made on a particular problem, and
continue progressing across several optimization runs, using different optimization
algorithms or subproblem configurations in each.

To support generally constrained optimization throughout the library, efforts were
made on finding a generic way to integrate constraint definition and handling with
Spark SQL, and offering a consistent baseline level of support for all algorithms,
while accommodating constraint handling methods more or less limited to indi-
vidual algorithms or constraint types.

As a byproduct of the vertical transfer learning supported by the library, a
new approach to general constraint handling is proposed: The Historical Revisionist
Method. Unlike similar methods, it uses a data-driven approach to recalibrate its
strategy. It essentially defines a new objective function and SQL view of evalua-
tion history by fitting model parameters to evaluation datasets, enforcing a strict
preference for feasible solutions through equation-solving.

To improve the scalability of the library, DIBBOlib additionally supports run-
ning several trials in parallel. This trial parallelism is either enabled by a static user
setting or by a proposed dynamic load balancing algorithm, a black-box optimizer
continuously maximizing throughput on runtime.

DIBBOlib furthermore offers heuristic search space partitioning, with or without
parallel optimization. Splits can be specified either statically (”manually”) or dy-
namically. The dynamic option obtains optimal splits based on a hybrid dynamic/-
greedy programming approach, minimizing perimetric objectives based on search
space geometry or game theoretic estimates of decision variable importance.

An analysis of related work concludes that DIBBOlib inhabits a unique niche
among adjacent solutions, in that it is a general-purpose solution fit for data-intensive
analytics. As found in the survey, no other solution offers this combination of
features.

Experiments focused on assessing the usefulness of novel library features com-
pared to relevant baselines. Here, both the proposed dynamic load balancing al-
gorithm, constraint handling method, and search space partitioning approaches
demonstrated significant utility for solving the example problems, compared to
baseline approaches.

Contents

Summary vii

1 Introduction 1
1.1 Project motives . 2
1.2 Proposed solution . 3
1.3 Project (de)limitations . 6

2 Background 9
2.1 Apache Spark . 9
2.2 Optimization problems . 13

2.2.1 Problem types . 13
2.3 sBBO approaches . 15

2.3.1 Important caveats . 15
2.3.2 Overview and taxonomy . 16
2.3.3 Local/Direct methods . 17
2.3.4 Global/Direct methods . 20
2.3.5 Local/Model-based methods 21
2.3.6 Global/Model-based methods 24

2.4 Constraint handling in sBBO . 30
2.4.1 A taxonomy of constraints . 31
2.4.2 sBBO constraint handling methods 32

2.5 Cooperative game theory and prediction models 37
2.5.1 Shapley values . 38
2.5.2 SHAP values . 39
2.5.3 SHAP value estimation . 40

3 Technical contribution 43
3.1 Library requirements and priorities 43
3.2 Architectural outline . 46

3.2.1 Key decisions . 46
3.2.2 Main features . 49

ix

x Contents

3.3 At a first glance . 52
3.4 The basics . 54

3.4.1 Configuring BlackBoxOptimizers 54
3.4.2 The optimization flow . 56
3.4.3 TrialHistory and vertical transfer 61
3.4.4 The algorithmic suite . 63
3.4.5 The optimization wizard . 71

3.5 Generic general constraint handling 74
3.5.1 Constraint declaration and Spark Predicates 74
3.5.2 High-level overview . 76
3.5.3 From Columns to constraints with Catalyst Expressions . . . 76
3.5.4 Constraint function evaluation 79
3.5.5 Supporting constraint handling strategies 83
3.5.6 The Historical Revisionist Method 87

3.6 Multi-level parallelism . 93
3.6.1 Trial parallelism . 93
3.6.2 Solve parallelism . 100

3.7 Search space partitioning . 101
3.7.1 Static partitioning and local SearchSpaces 102
3.7.2 Dynamic partitioning and perimetric honeycombs 104
3.7.3 SHAPely search space partitioning 113

4 Related work 119
4.1 PA systems . 119
4.2 BBO solutions for Spark . 121
4.3 Alternative sBBO solutions . 122

5 Experiments 129
5.1 Cluster setup . 130
5.2 Experiment 1: Load balancing . 131

5.2.1 Example problem . 131
5.2.2 Experimental setup . 133
5.2.3 Results and discussion . 135

5.3 Experiment 2: Constraint handling . 140
5.3.1 Example problem . 141
5.3.2 Experimental setup . 143
5.3.3 Results and discussion . 144

5.4 Experiment 3: Search space partitioning 147
5.4.1 Example problem . 147
5.4.2 Experimental setup . 148
5.4.3 Results and discussion . 150

Contents xi

6 Conclusion and Future Work 155
6.1 Future Work . 157

Bibliography 159

A Appendix 173
A.1 Experiments . 173

A.1.1 Experiment 1 . 173
A.1.2 Experiment 2 . 193
A.1.3 Experiment 3 . 196

Chapter 1

Introduction

”The best way to predict the future is to create it” [53]. Yet decision making in a
complex world is rarely as straightforward as old sayings would suggest. Actions
have uncertain consequences and risks, which motivates the need for predictive
technologies. In our day and age, predictions might be extrapolated from historical
data by statistical learning, or elaborate explanatory models conceived by domain
experts. Still, even perfect knowledge about the future might be insufficient for
making the best choices as a human being, with the sheer number of options and
their complex interrelation forming difficult obstacles. This motivates the need for
prescriptive technologies, to support human decision making.

Within the domain of Business Analytics (BA), Prescriptive Analytics (PA) is a
relatively new area, originating in the 2010s [106]. At its technical core, it involves
solving mathematical optimization problems with respect to predictive models, usually
obtained from some combination of Machine Learning (ML), simulation, and domain
knowledge [58, 100].

Framing decision problems as optimization problems allows for efficient explo-
ration of large and/or complex search spaces of decision options, possibly under a
set of constraints [106]. PA, incorporating prediction into optimization, essentially
makes it possible to obtain the decision option that ”creates” the best possible
future, perhaps making old sayings ring a bit truer to modern ears.

Back to Earth, consider as an example the decision of how much water to bring
on a hike tomorrow. You want to carry the smallest load possible (objective) while
fulfilling your basic hydration needs (constraint). Your hydration needs however
largely depend on how sunny, humid, and windy the weather is tomorrow, which
is uncertain as of now. Consider then looking up a weather forecast online to make
the decision - that would be a down-to-earth example of PA.

1

2 Chapter 1. Introduction

1.1 Project motives

This project is about making a new tool for PA - why?
A considerable number of application domains have already been explored by

PA researchers, from healthcare [179, 59] and education [185, 143] to sales [192, 89]
and manufacturing [64, 85]. Still, being a relatively new field, PA has a limited
foothold in research and industry, and dedicated tool and system support remain
limited to this day [158]. Current PA applications may therefore have to rely on
improvised technical solutions.

Gluing together an improvised data-driven workflow, consisting of e.g. a data
management layer with separate ML and optimization tools, may introduce vari-
ous inefficiencies and difficulties, depending on application type. Performance bot-
tlenecks stemming from I/O between disparate tools, and the development chal-
lenges of having to wrestle these hundred-handed monstrosities, are examples of
problems that may arise [58].

One particular type of applications in which such issues are exacerbated by a
lack of scalability is Big Data or data-intensive applications. Such applications face
e.g. large quantities of complex data arriving at fast rates (i.e. data Volume, Variety,
and Velocity) as their main challenges, as opposed to CPU cycle limitations, i.e.
compute challenges [90]. Currently, no complete PA solution for data-intensive ap-
plications, integrating data management with prediction and optimization, exists
[58, 115]. This motivates the principal goal of this project, being the exploration of
new tools for data-intensive PA.

While Big Data analytics might need new tools for PA, the need is arguably mu-
tual, if we consider that PA as a practical field also currently faces serious usability
challenges.

Let’s first paint a rosy-coloured picture of predictive analytics, for comparison.
As found in our day and age, large quantities of data making up comprehensive,
up-to-date histories of complex problem domains, are of great utility for creating
predictive analytics solutions that are primarily data-driven, as opposed to expert-
driven [68]. Utilizing data mining techniques, such solutions rely on knowledge
learned from data as opposed to knowledge engineered by experts [71, 100]. Instead
of relying on meticulously handcrafted models of real-world dynamics, a bottom-
up approach is followed, essentially based on automated pattern recognition, in
which ”the world is its own best model” - always exactly up to date and complete
in every detail [32, p.5].

Of course, we don’t mean to say that data analysis requires no expertise or skill -
what we’re getting at is that one can possibly get by with these skills alone, without
needing a doctoral degree or similar for every new complex problem domain under
consideration. When we say ”expert”, the ”problem domain” is silent.

The data-driven approach inherent in e.g. ML, has played a significant role

1.2. Proposed solution 3

in democratizing predictive analytics in the previous decade, enabling many new
applications and business models for (especially) non-experts in education and
industry [38]. A multitude of high-quality, high-level tools available on the market,
along with the AutoML movement essentially automating the entire ML workflow,
allow users to treat predictive analytics tools as black boxes, reducing the barrier to
entry considerably [74, 135].

As for PA, the usability situation is comparatively dire, based on what is cur-
rently observed in PA research and in industry.

As observed in a recent review of the field, while data-driven prediction is
the norm in existing PA research, current prescriptive methodologies are predom-
inantly expert-driven, with optimization models and the like usually being metic-
ulously handcrafted by domain experts, using various heuristics and modelling
tricks to ensure computability and correctness [100].

Current PA methodologies being largely expert-driven seems to be echoed by
poor usability among existing tools supporting some form of PA. A recent inter-
view study in industry found that PA functionality already available in existing
BA software tends to be barely used, or not used at all by its intended audience [60].
While recognizing the potential utility of PA, business users attribute this phe-
nomenon to usability challenges with existing tools - they experience not having
the right mix of skills and incentive to keep up with these new advanced method-
ologies, and therefore dismiss them to ”save bandwidth” in the end [60, p.7].

Expert-driven methodologies and poor usability of existing tools form a hin-
drance for democratizing PA in the same way as predictive analytics was in the
previous decade - hindering its adoption in industry, education, and elsewhere. To
some authors, the solution to this issue is to make future PA more data-driven in
general, as they call for the development of new domain-agnostic methodologies
for this purpose, enabled by (specifically) Big Data analytics [100].

So to summarize, this project aims to develop a tool for data-intensive PA, being
motivated by challenges within scalability and usability both.

1.2 Proposed solution

The solution ultimately developed in this project is a sample-efficient Black-Box Op-
timization (sBBO) library for the Apache Spark platform. What are any of these things,
and why is this solution a good idea with respect to the presented motives?

To start, Apache Spark (henceforth just ”Spark”) is the most popular platform
for Big Data analytics by several metrics, such as GitHub stars and Stack Overflow
activity [26, 180]. It also remarks itself by being very extensible and having great
community support [88], and is therefore a natural foundation to build upon for a
student project like this.

4 Chapter 1. Introduction

While Spark currently comes with fully-featured libraries for predictive analyt-
ics out-of-the-box, e.g. ML with MLlib, it has no built-in user facilities dedicated to
mathematical optimization, or any other methods useful for PA specifically [115].
To support PA workflows better, while keeping the venture reasonably scoped,
it was therefore decided to create new third-party PA facilities for Spark in this
project, in the form of a new library.

We specifically opt for a Black-Box Optimization (BBO) library (no ”s” for now).
The reason for exploring this direction is simply that optimization is emblematic
to PA [106], and that black-box analytics methods, due to their inherent facilitation
of high-level abstraction, have elicited user-centered benefits within the field of ML
[38].

Currently, Linear Programming (LP) and variants are the most popular pre-
scriptive methods within PA, by a large margin [100, 115]. While very powerful
in its own right, LP requires an explicitly defined (i.e. ”white-box”), strictly linear,
problem model [11, 91], making it challenging to incorporate e.g. black-box ML
models or more ”interesting” domain logic into PA workflows [23]. Furthermore,
as a recurrent issue in PA research (e.g. [18, 34, 89]), many real-world problems
exactly solvable with LP also turn out to be NP-hard, possibly making LP compu-
tationally infeasible to use in practical applications.

BBO algorithms generally solve problems approximately, thereby dodging the
NP-hardness issue, and impose no strict modelling requirements on the user [91].
Their way of operation is also relatively simple to understand: They are all essen-
tially simulation-based search strategies, trying out different solution options trial-
and-error style [42] - all the user has to do is to give the algorithm a measure of
solution quality, i.e. the objective function. With no inherent modelling restric-
tion imposed, data-driven predictive analytics provides a lot of options for doing
exactly this in a PA setting: One might for instance call a web API for weather
forecasts, execute a what-if OLAP query in SQL [16], do online ML predictions...
”Anything goes” inside the black box. In other words: New data-driven, more
usable, methodologies for PA based on BBO might be worth looking into.

Existing third-party BBO solutions for Spark are practically all based on population-
based BBO methods such as Genetic Algorithms or Particle Swarm Optimization
(e.g. [199, 109, 36, 108]). Such algorithms iteratively improve a set of candidate so-
lutions by assessing their individual fitness and doing cruel collective experiments
based on that [91, 15]. Transferring these methods to the distributed computing
architecture of Spark makes it possible to scale out population sizes to unprece-
dented levels [105], which is great - if we are just dealing with CPU bottlenecks.

Population-based BBO however requires a very large number of objective eval-
uations to work by design [42, 98]. This is not an issue when the cost of evaluating
the objective can be assumed to be negligible. However, the assumption no longer
holds when each objective evaluation carries with it significant computational cost

1.2. Proposed solution 5

- say, for instance, an analytical query on a large distributed dataset on a Spark
cluster; or maybe just time series forecasting with a large Deep Learning model
[38]. In other words, population-based BBO is not conductive to the scalable, data-
driven approach to PA we seek in our data-intensive setting.

The developed library instead focuses on an entirely different family of BBO
methods, that we will put under the moniker of sample-efficient BBO (sBBO) [11,
42]. So far, these methods have found barely any use in PA applications [73], let
alone mainstream data analytics, aside from a niche use case in hyperparameter
optimization [3].

Their usual applications instead lie within scientific simulation and engineering
design, within aerospace engineering, for instance [57, 98]. Here, trialing one so-
lution candidate might in extreme cases require running a high-fidelity simulation
taking hours or days, which may even fail to return a valid result [11]. Unlike
population-based BBO, sBBO methods are designed to be very deliberate about
which points to sample in the search space, with some even forming elaborate
interpolation models to pick new trials [142].

While no sBBO tool for Spark exists to my knowledge, evaluating e.g. heavy
Spark queries during optimization is well within the purview of what sBBO meth-
ods are designed for. We have therefore picked them as the focus of our new
library - with the ”s” and ”BBO” in sBBO accommodating our scalability and us-
ability motives, respectively.

We name this library DIBBOlib (Data-Intensive Black-Box Optimization library).
The name is a nipioacronym, in that the abbreviated form kind of sounds like a
toddler doing their best to pronounce the unabbreviated one. If this seems absurd,
note that such nomenclature is not entirely without precedent within the Hadoop-
based ecosystem that Spark is a part of [8]. The motive behind the chosen name is
on one hand to make it sound benign and simple, and on the other, to pay homage
to DIBBOlib’s (eventually disclosed) strong kinship with the aforementioned ML-
lib, the go-to ML library for Spark [88].

With our motives and proposed solution described, we arrive at the following
problem statement:

Problem statement

How can a scalable and usable sBBO library for Spark be designed, implemented and tested?

What has been presented so far is basically conclusions from a previous semester
project [115], yet left to simmer for at bit longer. In the aforementioned venture, I
surveyed PA as a research field, including its conceptual foundations, applications,
solution methods, its current tool support, and its relationship to the topic of Big
Data. The survey served as necessary background for deciding on building a pro-

6 Chapter 1. Introduction

totype for the library suggested above, which elicited a proof of concept for further
work. This project can be regarded as a continuation of the previous one.

The report is structured as follows: First, necessary background for understand-
ing the technical contribution is presented, including preliminaries about Spark,
sBBO, and a bit of cooperative game theory (chapter 2). The main part of the report
then goes into the design and implementation of DIBBOlib (cf. chapter 3), forming
a proposed solution with respect to the problem statement, with a few new ideas
to help us get there. The proposed solution is then contrasted with related works
(chapter 4), followed by experiments (chapter 5) along with a conclusion and a few
considerations about future work (chapter 6).

1.3 Project (de)limitations

Before we jump into it, a few remarks about what this project aims (not) to do are
in order.

As encapsulated in the problem statement, the main focus is to develop a new
tool with a novel core premise. As we shall see, a recurring theme within this
report will be that there are a lot of purely technical challenges involved in making
this core premise work: To my knowledge, there has only been very few attempts
at creating general-purpose tools built around sBBO, let alone scalable and usable
ones, and none designed for data-intensive settings specifically [122, 127].

Cutting to the chase: To make space for the sheer amount of technical chal-
lenges in this project, use cases and demonstrations of various example applica-
tions will not be a focus. There will be experiments intimating possible PA use
cases within e.g. sales and marketing along with engineering design (cf. chapter 5)
- but the point of those is just to test library features.

Holding my own work at arm’s length, the result is admittedly what some
people at AAU call ”a solution waiting for a problem”. But then again, while
PA as a whole has shown promise within many different domains in applications
research, it is still arguably more of a promise of a practical field than anything else
outside of academia [99, 115]. This project is an early attempt at providing a more
solid practical foundation for PA by technology-push as opposed to demand-pull [81].
The latter mechanism has hitherto been the main driver of innovation within PA
applications research, which vastly dominates the field in terms of page count
[58]. Both mechanisms are complementary in technological progress, and I simply
picked one side of the see-saw to make this whole venture more manageable.

1.3. Project (de)limitations 7

Bibliographical remarks

It should be noted that section 2.1 re-uses section 7.2 of my pre-specialization
project [115, p. 41-44].

Chapter 2

Background

This chapter covers necessary background for understanding the solution devel-
oped in this project. It covers technical preliminaries about the two main loose
ends to be joined in this project: The Spark platform and sBBO. It also includes a
small detour into the area of cooperative game theory, as this was used for devel-
oping a special feature for the library.

2.1 Apache Spark

This solution developed in this project extends an existing platform, i.e. Apache
Spark. Necessary preliminaries are covered in this section. It should be emphati-
cally stated that all text within the next corresponding pair of quotation marks is
directly copied from section 7.2 of my pre-specialization project [115, pp. 41-44],
in concordance with the rules for re-use specified by AAU during Spring, 2022.
Back in my pre-specialization project, I made the following statement, cited here:

”Spark is a unified analytics engine for large-scale data processing on computer
clusters, providing high-level APIs in Scala, Java, Python, SQL, and R [169]. Every
Spark application (cf. fig. 2.1) consists of a driver process running the entry-point
function of a user-provided program. Through a session object, a SparkContext or
SparkSession depending on the chosen API [88], the driver program can specify
various parallel operations, or tasks, to be run on a cluster by a number of executor
processes. These may operate on large partitioned data sets stored in distributed
file systems like the Hadoop Distributed File System (HDFS). The driver requests
computing resources for running tasks from a cluster manager [166].

9

10 Chapter 2. Background

Figure 2.1: Structure of a Spark application, adapted from [166].

The key abstraction for specifying parallel computation is the Resilient Dis-
tributed Dataset (RDD), representing a typed collection of partitioned elements that
executors can operate upon in parallel [170].

Fundamental types of RDD operations include transformations and actions. Trans-
formations, e.g. the higher-order function map, can be construed as mere specifi-
cations of computations that are lazily evaluated and return another RDD to be
operated upon by further operations. Actions, like reduce, are on the other hand
eagerly evaluated, i.e. they elicit the actual operations specified on the RDD and
return or display some result [88].

This snippet of a driver program written in Scala illustrates the idea:

1 val lines = sc.textFile("data.txt")
2 val lineLengths = lines.map(s => s.length)
3 val totalLength = lineLengths.reduce ((a, b) => a + b)

It lazily reads an input .txt file into an RDD in the SparkContext sc on line 1,
and lazily specifies the computations of individual line lengths with map on line
2. Only the reduce action on the final line actually elicits any task execution on the
cluster, ultimately calculating the total length of the .txt file [170]

Spark SQL is an SQL API built on top of RDDs, which has effectively superseded
the RDD API over time. It offers high-level declarative SQL-like operations on
table-like Datasets, while providing logical and physical query plan optimizations
with the extensible Catalyst optimizer, whenever an action is called for [88].

While the elements of a Dataset can be strongly typed objects defined by users,
the most prevalent solution is to use the more generic Dataset[Row] variant, which
is also called a DataFrame [172].

2.1. Apache Spark 11

Example usage of Spark SQL, counting individual words in a DataFrame with
column named ”l”, containing lines of text, is found below [88, p. 9]:

1 val words = lines.select(explode(split(col("l"), " ")).as("w"))
2 val word_counts = words.groupBy("w").count()

What has been explained so far pertains to Spark Core and the Spark SQL
engine (cf. fig. 2.2). However, the officially supported Spark stack also notably
comes with various libraries, such as MLlib, which contains common facilities for
ML workflows, from preprocessing to model management [167].

Figure 2.2: Apache Spark components and API stack, adapted from [88, p. 7].

In its current iteration, MLlib operates on Datasets [167]. An example driver
program training a model and performing inference can be found below [88, p.
8]:

1 import org.apache.spark.ml.classification.LogisticRegression
2

3 // Instantiate SparkSession as "spark"
4

5 // Load and prepare training and test data from HDFS.
6 val training = spark.read.csv("hdfs ://...")
7 val test = spark.read.csv("hdfs ://...")
8

9 // ...
10

11 // Declare and fit the model
12 val lr = new LogisticRegression ()
13 val lrModel = lr.fit(training)
14

15 // Predict
16 lrModel.transform(test)

LogisticRegression is an Estimator, which upon calling its fit method will learn
model parameters from its input Dataset (line 13). The returned lrModel is a Trans-
former, not to be confused with the aforementioned transformation operation type.
Calling the Transformer’s transform method on the input DataFrame (line 16) will

12 Chapter 2. Background

compute the predictions given by the ML model, and return them as an additional
column of the DataFrame [88]. Another key usage of Estimators and Transform-
ers in MLlib is to perform various preprocessing tasks, such as data cleaning and
normalizing values in columns [167].

Several Estimators and Transformers can be arranged into Pipelines. Pipelines
are themselves Estimators encapsulating a sequence of Transformers and Estima-
tors. Typically, their fit method will be called on an input training data set, which
then in sequence applies all Transformers and Estimators on it [168]. In the case of
Estimators, they are fit to the input and then transform it with the derived model,
adding e.g. an extra column with an ML prediction. A PipelineModel is ultimately
returned from fitting a Pipeline, which is a Transformer that encapsulates the en-
tire flow for new input data, with Estimators being replaced by their corresponding
Transformer models created during the Pipeline fitting process [88].

Such a PipelineModel can be saved and loaded on demand, which allows for
easier model management in production settings. An annotated snippet illustrat-
ing the usage of the pipeline system can be found below [168]:

1 // Create pipeline with two preprocessing steps and a logistic
regressor (lr):

2 val pipeline = new Pipeline ()
3 .setStages(Seq(tokenizer , hashingTF , lr))
4

5 // Fit the pipeline to training data:
6 val model = pipeline.fit(training)
7

8 // Now we can optionally save the fitted pipeline to disk
9 model.write.overwrite ()

10 .save("/tmp/spark -logistic -regression -model")
11

12 // Later ...
13

14 // Load it back in production:
15 val sameModel = new PipelineModel
16 .load("/tmp/spark -logistic -regression -model")
17

18 // And make predictions on data.
19 sameModel.transform(productionData)

Note that a PipelineModel, being a Transformer, is itself a valid Pipeline stage.
Thus, there is potential for assembling complex workflows from simpler compo-
nents. Furthermore, the SQLTransformer (doing any Spark SQL query on its input)
[174], user-defined Transformers, etc. provide a lot of expressiveness. In general,
pipelines can express Directed Acyclic Graph (DAG) workflows, its sequential order-
ing being a topological sort of the dependencies between input and output columns
of its stages [168]” [115, pp. 41-44].

2.2. Optimization problems 13

This concludes the content re-used from section 7.2 of my previous project.

2.2 Optimization problems

Necessary preliminaries about optimization as such are covered here.

2.2.1 Problem types

At the onset, the library aims to support a broad class of optimization problems.
To introduce some key terms without too much clutter, we first define the basic
optimization problem, in the style of [91]:

minimize
x

f (x)

subject to x ∈ X
(2.1)

Let a design point x be a vector of n decision variables [x1, x2, ..., xn]. The solution
of the problem is a design point x∗ in the feasible set X such that f (x∗) ≤ f (x) for
all x ∈ X , i.e. the value of the objective function f : Rn → R ∪ {∞}, or ”objective”
for short, is minimized.

Note that the minimization problem with objective − f (·) has an equivalent
solution to the maximization problem with objective f (·) [91, p. 5]. Therefore,
to cut the length of this chapter in half, everything henceforth presented assumes
minimization problems, unless otherwise noted, without loss of generality. As an
additional remark, the objective being allowed to evaluate to ∞ is sometimes a
handy technique for denoting e.g. evaluation failures in practical applications [11].

Many practical challenges stem from the definition of the feasible set X , only
provided implicitly so far. X may simply be Rn, and we may deem the problem
unconstrained. Yet the feasible set can more generally be modelled as a subset of
Rn through a set of predicates {c1(·), ..., ck(·)} called constraints [91, p. 167]:

X = {x ∈ Rn | c1(x) ∧ ...∧ ck(x)} (2.2)

For instance, constraining some decision variables to be integers is often useful,
since this enables the representation of discrete choices in the formal problem model,
including the selection of elements from enumerable sets such as {”this”, ”one”} or
{true, f alse} [120]. Furthermore, to limit the sheer size of the search space and
ensure a meaningful solution (e.g. avoid negative-length geometry), it is often a
good idea to bound possible values in the domain under consideration [49]. This
elicits the mixed-integer bound-constrained problem [136, 30]. In all that follows, let
the notation [1..n] denote the set of integers {1, 2, ..., n}. Then the problem can be
defined by:

14 Chapter 2. Background

minimize
x∈Rn

f (x)

subject to xi ∈ Z ∀i ∈ I
l ≤ x ≤ u

(2.3)

Where n is (still) the number of decision variables, I ⊆ [1..n] is the set of vector
indices of all integer decision variables, and l, u ∈ Rn, l < u, are vectors of inclusive
lower and upper bounds for all decision variables. Compared to the problem in
eq. (2.1), the difference in eq. (2.3) is that a particular feasible set has now been
explicitly defined.

Note that variable bounds defined by strict inequalities (i.e. < and >) are usually
avoided within optimization, since many incremental algorithms can get ”stuck”
at the boundary of such open feasible sets, making infinitesimally small improve-
ments to suboptimal solution candidates [91, p. 7].

The constraints allowed so far only concern the domain of individual decision
variables. Ultimately, we wish to up the expressiveness of constraints supported
by the library significantly. As it turns out, any constraint can be rewritten to
an inequality or equality with respect to zero [91, p. 169]. For instance, consider
the constraint x2

1 ≥ x2
2, which can be rewritten to x2

2 − x2
1 ≤ 0, or that Boolean

expressions evaluated to zero or one are straightforwardly comparable to zero.
The generally constrained problem, to be supported by the library, can be formally
defined as follows [15, 42]:

minimize
x∈Rn

f (x)

subject to xi ∈ Z ∀i ∈ I
l ≤ x ≤ u

gj(x) ≤ 0 ∀j ∈ [1..p]

hk(x) = 0 ∀k ∈ [1..q]

(2.4)

Where we now have constraint functions gj, hk : Rn → R with p, q ∈N being the
number of inequality and equality constraints, respectively. Everything else is the
same as in eq. (2.3).

Constraint functions expressed like inequalities or equalities with respect to
zero can potentially quantify how far a given design point is from being feasible.
For instance, |hk(x)| is a quantitative measure of infeasibility for equality constraint
k with respect to point x. We formalize the notion of a violation value for a constraint
function c(·) with respect to a design point x as follows:

violation(c, x) =

{
max[0, c(x)] if c is an inequality constraint

|c(x)| if c is an equality constraint
(2.5)

2.3. sBBO approaches 15

Note that the point being feasible with respect to the constraint elicits a vio-
lation value of zero, while infeasibility elicits positive violation values. Violation
values are useful for implementing several constraint handling strategies [42].

The final complication to be handled by the library is that objective and con-
straint functions in eq. (2.4) may be black boxes. This notion is more practical than
formal in nature:

Definition 2.1 (Black Box) Within optimization, a process that can only be observed in
terms of its inputs and outputs, all inner workings being analytically unavailable.

Classical examples of real-world processes modelled as black boxes may be
computer simulations or laboratory experiments [11, p. 5].

Regarding the optimization problem in eq. (2.4), we now introduce a practical
constraint on possible solution methods, as opposed to formal constraints on the
solution as such. For instance, solution algorithms cannot directly exploit any
derivative information of the objective function, which precludes using algorithms
like gradient descent.

More precisely, the only information available about a black-box function B(·)
to a solution method is a set of pairs {(x1, B(x1)), ..., (xk, B(xk))} ⊆ B, i.e. some
corresponding domain and range values in the functional relation of B(·) [15].

2.3 sBBO approaches

We now turn to a brief overview of solution methods for sBBO developed within
optimization research, since the workings of these methods impact our design
space at the highest level of significance. For ease of exposition, we assume un-
constrained problems in this section, i.e. X = Rn, unless otherwise specified.

2.3.1 Important caveats

As a consequence of the No Free Lunch Theorem [197], a library designed around a
small proper subset of all optimization algorithms in existence will not be the right
tool for all problems in existence.

One specific point in terms of algorithmic efficiency and performance should
immediately be emphasized: The BBO methods presented below will generally never
outperform modern optimization methods leveraging additional analytical problem struc-
ture, if applicable [11, 42].

For instance, modern LP methods can possibly handle millions of decision
variables efficiently [91]. On the other hand, state-of-the art sBBO solvers can
at most be expected to handle hundreds of variables efficiently for mixed-integer
bound-constrained problems (cf. eq. (2.3)), judging from recent performance stud-
ies [136, 150]. Similarly, top-of-the-line constraint handling techniques, such as the

16 Chapter 2. Background

Lagrange multiplier method, tend to rely on analyzing the derivatives of constraint
and objective functions (cf. eq. (2.4)) [102, 91]. In the general case, this is simply
impossible to do in sBBO, which must consequently rely on less efficient plan B’s.

As for population-based BBO, higher-dimensional problems with more general
constraints are also generally speaking within reach than what is the case for sBBO
[125, 126].

Our reasons for going with sBBO were covered in chapter 1, being the pos-
sibility of providing a good combination of usability and scalability within our
data-intensive setting, as opposed to offering on-paper superior performance while
disregarding limitations of human beings or Spark clusters.

2.3.2 Overview and taxonomy

At the most general level of description, sBBO algorithms are all iterative, im-
proving incumbent solutions incrementally. However, this characterization is only
slightly more specific than how iterative algorithms work in general, and therefore
calls for refinement.

Confer algorithm 1, which is my own attempt at a synthesis: sBBO algorithms
generally start out with a (dummy) initial solution (line 2). They then try to im-
prove the incumbent solution in iterations by proposing possible replacements (line
4), assessed through the objective function (line 5-8). Finally, at the behest of some
termination condition, the best verified solution is returned (line 9).

Algorithm 1 Generic Black-Box Optimization

1: procedure GBBO
2: solution← initialize()
3: while not terminate() do
4: candidates← propose(solution)
5: for candidate in candidates do
6: evaluated← objective(candidate)
7: if better(evaluated, solution) then
8: solution← evaluated
9: return solution

For ease of understanding, we furthermore distinguish between four different
sBBO approaches along two dimensions, both denoting different kinds of search
strategies: Direct vs. Model-based and Global vs. Local. This taxonomy combines
similar distinctions from e.g. [25, 42, 11].

Direct methods rely solely on elements in the relation of the objective function
to guide the search for the solution [91]. Their defining feature and moniker is
perhaps easier to understand when considering their Model-based counterpart,
which in a sense operates indirectly: Model-based methods additionally leverage

2.3. sBBO approaches 17

properties of a surrogate model of the objective function to guide the search [25].
The surrogate is usually a function acting as a ”well-behaved” (i.e. differentiable,
noiseless, cheaply evaluated...) stand-in for the objective in auxiliary optimization
problems solved during optimization [145].

As for the other dimension, Global methods aspire to find a solution among
all elements in the feasible set, i.e. the global optimum, as required by all problems
defined in section 2.2.1. Local methods instead only aspire to find a solution x∗

such that f (x∗) ≤ f (x) and ∥x − x∗∥ < δ for some δ > 0 and x ∈ X , i.e. a
local optimum [91, p. 7]. The reason for including Local methods into the library,
despite calling for the global optimum in section 2.2.1 stems from the fact that their
combination with other techniques can elicit viable global optimization strategies
[42]. In general, these different sBBO approaches all have their own strengths and
weaknesses, and can be combined into hybrid approaches to great effect [11].

A high-level overview of how each method type works, along with a few algo-
rithmic examples, follow below.

2.3.3 Local/Direct methods

For Local/Direct methods, two prevalent approaches exist: directional and simplicial
[42]. As per algorithm 1, both rely on having an initial solution guess, which is
then improved in iterations by evaluating the objective value of a set of points
in a geometric pattern around the incumbent solution [150]. Iterations continue
until the rate of improvement drops below a threshold, the incumbent solution
is satisfactory, the objective evaluation budget has been expended, or some other
termination criterion holds [91].

At algorithmic iteration k, directional methods evaluate a set of points in a
pattern P(k), defined as projections of the incumbent solution x(k) with a set of
directions D(k) and step size α(k) [42, p. 119]:

P(k) = {x(k) + α(k)d | d ∈ D(k)} (2.6)

The incumbent solution for the next iteration x(k+1) is x(k) if no evaluated point
has a better objective value than the current incumbent, and is otherwise the point
with the best objective value among all evaluated points in P(k) [11, p. 116]. Some
algorithms accept any improvements opportunistically and end the iteration upon
finding a better incumbent solution, while others assess all pattern points before
proceeding [98].

The projection operation eliciting new evaluation points from the incumbent
solution is technically called a line search, and is not unique to directional sBBO. It
is also commonly used by gradient-based algorithms, such as gradient descent, to
project the incumbent solution with a direction and step size derived from first or
second order gradient information, e.g. the direction of steepest descent [91].

18 Chapter 2. Background

Without the luxury of derivatives, directional methods must determine the set
of directions, as well as the right step size, by different means. The general ap-
proach employed by existing algorithms is to define D(k) as a positive spanning set
of Rn. This means that any point in the Rn vector space can be constructed as a
non-negative linear combination of the directions in D(k) [150, 98]. Of note, evalu-
ating points in a positive spanning set of directions around x(k) guarantees that at
least one of them lies in a descent direction, if such a direction exists around x(k)

[91, p. 103]. In other words: directional methods employ a kind of ”zeroth-order
gradient descent” strategy, using objective evaluations only.

The exact set of directions constructed varies by algorithm. A simple baseline
approach is to always set D(k) to be the set of column vectors in [I -I], where I is the
n× n identity matrix [42, p. 115]. This set of directions is used in the Hooke-Jeeves
method, sometimes called the coordinate or compass search method due to how it can
be visualized in R2 (cf. fig. 2.3) [91].

Figure 2.3: Contour plot illustrating seven iterations of compass search, minimizing the objective
f (x) = x2

1 + x2
2 with x(1) as the initial incumbent. The color map approximates different objective

values in the search space. Arrowheads denote candidates proposed by line searches, while circled
crosses denote those additionally accepted as incumbent points. Starting from x(1), the algorithm
travels South, East, South, East, South, and East, before arriving at x(7), the global minimum.

State-of-the-art methods for defining positive spanning sets try to make them

2.3. sBBO approaches 19

smaller than e.g. the compass search method to elicit fewer objective evaluations
per iteration, make them more robust against pathological objective functions, or
generate them stochastically to provide asymptotic convergence guarantees [10,
91].

As for the step size, the typical approach is to set α(1) ∈ R>0 and then at the
end of each iteration potentially increase or decrease α(k) by a factor δ ∈ R>0,
depending on whether or not the incumbent solution was improved, respectively
[42]. Intuitively speaking, this provides a self-correcting mechanism against over-
shooting or undershooting the step size, i.e. missing promising descent directions
nearby or converging unnecessarily slowly towards far-away minima, respectively.
Heuristics trying out additional line searches in improvement directions on each
iteration with an extra large step size scale factor, thereby potentially accelerating
convergence, are also common [11].

The Nelder-Mead Simplex method and its subsequent improvements, is what sBBO
textbooks generally regard as the set of simplicial methods [98, 42]. This aforemen-
tioned simplex method is not to be confused with the Danzig Simplex method for
LP!

A simplex is a generalization of a three-dimensional tetrahedron (a triangular
pyramid shape) to n-dimensional spaces. It is the most simple geometric object
with flat sides possible in its corresponding space: a point in zero dimensions, a
line segment in one dimension, a triangle in two dimensions, and so on [91]. Note
that an n-dimensional space requires n + 1 points to represent the vertices of its
simplex type.

The basic idea of the Nelder-Mead method is to maintain an n-dimensional
simplex, consisting of n + 1 known solution points, which is twisted and contorted
by various heuristics to fit the local landscape of objective values, suggesting slopes
to follow towards the local minimum [42]. To complete the mental image, this
algorithm is also known as the amoeba method [139, p. 402].

A single algorithmic iteration updates the simplex by evaluating a combination
of four geometric transformations: reflection, expansion, contraction, and shrinkage
[91]. Let ”best” and ”worst” here refer to the relative value of the objective function
among the simplex vertices, and the centroid be the mean of all vertices except the
worst one.

Confer fig. 2.4. Reflection and expansion obtain possible replacements to the
worst vertex by reflecting it over the centroid of the simplex at different step sizes.
Contraction obtains a possible replacement to the worst vertex by moving it to-
wards the centroid [91]. Shrinkage projects all other vertices towards the best ver-
tex. The simplex tends to shrink down in size as it approaches the local minimum
- therefore, the algorithm is usually set to terminate whenever the simplex has
shrunk to a sufficiently small size, according to a threshold. The returned solution

20 Chapter 2. Background

Figure 2.4: R2 examples of the four elementary simplex transformations used in the Nelder-Mead
algorithm. A, B, and W are the three vertices of the simplex, with B and W being the best and worst
points, respectively. C is the centroid of A and B. Dashed blue lines indicate projection directions,
while solid lines indicate the shape of the (projected) simplex (example adapted from [91, p. 108]).

is the best vertex of the final simplex [42].
It should be noted that the original version of the Nelder-Mead method can

exhibit pathological behaviour in various scenarios, e.g. the hypervolume of the
simplex becoming zero far away from the local minimum [91]. It is also sometimes
regarded as a heuristic method, since it doesn’t guarantee local convergence in all
cases [11]. Nevertheless, many improvements to the simplex operations have been
suggested over time, and the algorithm remains a staple of popular libraries to this
day (e.g. [56, 129, 154]).

2.3.4 Global/Direct methods

Unlike Local/Direct methods, Global/Direct ones form a motley crew with no sim-
ilar taxonomic distinctions. One unifying theme that goes for all Global optimiza-
tion algorithms is the need to balance exploration and exploitation of information
in the entire search space to find a global minimum [93, 200]. Without surrogate
models, Global/Direct methods rely on e.g. stochastic convergence guarantees or
search space partitioning strategies for this [25].

Simulated Annealing, Genetic Algorithms, Particle Swarm Optimization, and
similar stochastic algorithms, form the major part of what would be considered
Global/Direct methods within BBO at large [126, 125], yet being designed around
cheap objective evaluations, these don’t fall within our scope.

As for alternative approaches, DIvided RECTangles (DIRECT) [87] is a wide-
spread method within sBBO research and tools, with strong convergence guaran-
tees under certain assumptions [93, 98, 42]. Note that bound-constrained search
spaces (like the one defined in eq. (2.3)) are hyperrectangular, i.e. ”box-shaped” in
n dimensions. DIRECT scales such search spaces to the unit hypercube, i.e. with all
variable intervals scaled to unit length, and then proceeds to evaluate midpoints of

2.3. sBBO approaches 21

evenly sized rectangular subregions, always dividing into thirds [86] (cf. fig. 2.5).

Figure 2.5: DIRECT in action in R2, sampling points before splitting the original search space into
thirds, prioritizing the largest subregions with the best potential objective values [91, p.116].

Evaluating these midpoints makes it possible to calculate lower bound estimates
of objective values in each subregion. This is done by assuming a constant upper
bound on the (unknown) regional rate of change, i.e. assuming Lipschitz continuity
[87]. The obtained information is used heuristically to prioritize promising regions
for further subdivisions, balancing exploration and exploitation by using the afore-
mentioned lower bound estimates [91, p. 113].

2.3.5 Local/Model-based methods

Local and Global Model-based methods are both neatly characterized by their own
overarching framework: the trust region framework [42] and surrogate-based optimiza-
tion framework [72], respectively, to be discussed in turn.

Methods within the first framework maintain a surrogate model approximating
the objective function in a particular trust region. At iteration k, the trust region T (k)

is simply a set of points sufficiently close to an incumbent center point x(k) by some
distance metric ∥·∥p and maximum radius ∆(k) [195, 42]:

T (k) = {x ∈ X | ∥x− x(k)∥p ≤ ∆(k)} (2.7)

The Lp norms, parameterized by p ≥ 1 include commonly used distance met-
rics, and are defined as follows [91, p. 439]:

∥x∥p = lim
q→p

(|x1|q + |x2|q + ... + |xn|q)
1
q (2.8)

The limit is needed for handling the case when p = ∞. As examples, the
Manhattan, Euclidean, and Chebyshev distance are the L1, L2, and L∞ norms,
respectively.

By some as of yet undisclosed means, suppose that we have obtained a sur-
rogate model, a function f̂ (k)(·) approximating the objective function in the trust

22 Chapter 2. Background

region of the current iteration. To find the next point for objective evaluation, trust
region methods solve the following auxiliary optimization problem [195]:

minimize
x∈T (k)

f̂ (k)(x) (2.9)

That is, we are looking for the best possible solution in the trust region, accord-
ing to the surrogate. This can usually be done efficiently, since the surrogate model
is deliberately chosen to be cheap to evaluate, differentiable or have other attractive
properties for solving the auxiliary problem [150]. Also, notice the difference from
the line searches of directional sBBO (cf. section 2.3.3), in that we effectively need
to pick a direction and (bounded) step size with respect to an incumbent point
simultaneously in this problem.

Given a solution x′ to the auxiliary problem, we then evaluate its actual objec-
tive value f (x′) and update the center and radius of the trust region for the next
iteration, obtaining x(k+1) and ∆(k+1), respectively [98]. This update is done based
on the improvement ratio, a measure of how accurate the surrogate model was in
finding a better solution [42, p. 178]:

η =
actual improvement

expected improvement
=

f (x(k))− f (x′)
f̂ (k)(x(k))− f̂ (k)(x′)

(2.10)

Details of the update rules differ among algorithms. Yet intuitively speaking,
a high improvement ratio encourages exploration, while the opposite encourages
local refinement.

If the improvement ratio is above some minimum threshold, the trust region
center x(k+1) is set to a new promising point, e.g. x′ or some known point y such
that f (y) ≤ f (x′). Otherwise, x(k+1) = x(k). Likewise, the new trust region radius
∆(k+1) is increased or decreased with a sufficiently high or low improvement ratio,
respectively, and is otherwise equal to ∆(k) [195, 11].

Common termination criteria for trust region methods include the trust region
radius getting sufficiently small, the gradient of the surrogate model getting reli-
ably close to zero at the center point (thus indicating a ”valley bottom”), or the
objective evaluation budget being expended [42].

Next, we turn to how the surrogate model is managed within the trust region
framework. A vector of model coefficients α is obtained for a surrogate model f̂α(·) by
either solving an interpolation or regression problem with respect to a set of m sample
points in the current trust region with known objective values S = {s1, ..., sm} ⊆
T (k) [93, 150]. This usually entails solving a system of equations.

Interpolation requires fitting the model perfectly to all sample points (using a
trivial objective function) [42]:

2.3. sBBO approaches 23

minimize
α

0

subject to f̂α(si) = f (si) ∀i ∈ [1..m]
(2.11)

Regression requires solving the least squared error optimization problem [11]:

minimize
α

m

∑
i=1

[f̂α(si)− f (si)]
2 (2.12)

While a strict advantage of perfect fits might seem evident, regression may be
preferred due to its ability to incorporate more sample points without jeopardizing
well-defined solutions to the approximation, thus possibly being more robust to
noisy objectives than perfect fits to less information [42].

Yet in practice, since the expensive objective use case typically implies few
available samples, a quadratic model interpolation of the following form is usually
preferred [11, p. 172]:

Q(x) = c + g⊺x +
1
2

x⊺Hx (2.13)

Where c ∈ R, g ∈ Rn, and symmetric matrix H ∈ Rn×n contain model coeffi-
cients. Unlike a purely linear model, a quadratic model can fit local curvature of
the objective function, while coincidentally also being one of the only non-linear
models in existence for which the exact global solution to the auxiliary problem in
eq. (2.9) can be computed by known efficient methods [195].

However, obtaining this model requires solving equation systems with 1
2 (n +

1)(n + 2) unknown coefficients (mind the symmetric matrix), and thus at least the
same number of objective evaluations in the current trust region to ensure a unique
solution, which may be costly [11].

Furthermore, sample points must collectively satisfy strict geometric conditions
for the interpolation problem to be solvable while convergence to a local optimum
is ensured [195]. As a consequence, updating the surrogate model to approximate
changing trust regions properly, requires incorporating one or more model improve-
ment steps in each algorithmic iteration, ensuring that the sample points in S can
be used for interpolation within the current trust region [11]. Model improvement
algorithms provably terminating in a finite number of steps have been proposed,
possibly requiring extra objective evaluations for sample set replacements, or de-
creasing the radius of the trust region for safer approximation [42].

Another issue with trust region methods is that they are not outright com-
patible with discrete decision variables, since their proofs of convergence rely on
properties of continuous variables [11, p. 223].

Due to such issues, emerging work within trust region optimization investi-
gates alternative surrogate models or quadratic approximation methods [195, 25].

24 Chapter 2. Background

2.3.6 Global/Model-based methods

The surrogate-based optimization framework (SBO) encompasses Global/Model-based
sBBO. As with Local/Model-based methods, it approximates the objective func-
tion, and solves auxiliary optimization problems to guide the search. Yet similarly
to Global/Direct methods, it seeks to balance global exploration and exploitation
of search space information, and not just seize local opportunities.

At a high level of description, SBO consists of two phases: Sampling followed
by optimization [145, 200]. The sampling phase evaluates the objective function at
a strategic set of points. This basically forms a sketch of the entire search space,
which is used by the surrogate model in the subsequent optimization phase to
propose additional evaluation points. Both phases are discussed here in turn.

Design of Experiments

The initial phase follows a particular sampling plan or Design of Experiments (DoE)
with a given objective evaluation budget, to decide which points to evaluate [92,
200]. Recommendations differ, yet the sampling budget should at least accommo-
date minimal conditions for proper interpolation or regression of the surrogate,
which varies by model [120, 94]. Beyond this amount, one proposed heuristic is to
use about 1

3 of the entire budget on the initial sampling phase for suitable coverage
of the search space [57].

Given a particular sampling budget, a reasonable initial idea to have for a DoE
is simply to evaluate a corresponding number of random samples within the bounds
of the search space (cf. eq. (2.3) a)). The problem with this approach is that it cannot
ensure any notion of coverage - e.g. all points might just as well end up in the same
local search space region (cf. fig. 2.6), lobotomizing the surrogate predictor [91].

Figure 2.6: 3 possible ways to sample 4 points in R2. Random sampling provides no coverage
guarantees. Full factorial does, but scales poorly with more than a few problem dimensions. LHS
forms a middle ground.

To ensure coverage, another reasonable initial idea is to instead evaluate a grid
of evenly spaced points in the search space, with a preset m samples per dimension

2.3. sBBO approaches 25

(cf. fig. 2.6 b)). The problem with this approach is that it is generally too cavalier
with the evaluation budget: Following this so-called full factorial DoE with n de-
cision variables requires mn evaluations [72, 200]. Somewhat perplexingly, ”facto-
rial” here refers to how each dimension factors into the aforementioned exponential
requirement. With an increasing number of dimensions, ensuring coverage by this
method quickly becomes too costly.

The most established DoE methodology is instead based on Latin Hypercube
Sampling (LHS). Like full factorial designs, LHS models the search space as a grid.
Yet instead of sampling all mn cells, LHS only samples a subset of size m that is
uniformly distributed along each dimension [142, 92]. In R2, this intuitively means
that no two sample points share a column or row in the grid, ensuring a notion
of coverage (cf. fig. 2.6 c)). A Latin square is an m × m grid in which each row
and column contains all integers in the interval [1..m] [193]. Sudokus and Latin
hypercubes are more specific and general cases of Latin squares, respectively. LHS
is generally implemented by randomly permuting integer intervals for each di-
mension, ultimately obtaining m sample indexes of the full factorial grid [91]. This
randomness implies that several sampling plans are possible for each problem for-
mulation, and edge cases with poor coverage do occur. Therefore, extensions to
LHS have been proposed for counteracting them [200, 119].

Global surrogate models

Moving on to the optimization phase, an adaptive sampling strategy is employed
with the surrogate model to suggest new evaluation points [200]. On each itera-
tion, one or more new sample points are suggested for evaluation by solving auxil-
iary problems with the surrogate model. The suggested points are then evaluated
with the true objective function and possibly incorporated into the surrogate ap-
proximation for future iterations. This process continues until the total evaluation
budget is spent, or some other termination criterion is met [70, 25, 65].

To a large extent, the chosen surrogate model decides all other elements of an
adaptive sampling strategy, and is therefore discussed first. Radial Basis Function
(RBF) and Gaussian Process (GP) interpolants, along with variations thereof, are the
most popular surrogate models used in computationally expensive optimization
by far [94, 72]. These will therefore be the focal points of this exposition. Tradi-
tional alternatives, such as quadratic models (e.g. eq. (2.13)) and Support Vector
Regressors have in a way been ”superseded” by RBFs and GP’s according to sev-
eral authors, due to a lack of ability to capture irregular objective function land-
scapes, prohibitive approximation costs, or brittle approximation conditions [57,
25]. Combining ensembles of several surrogates, producing weighted predictions,
has also been proposed [70, 157], but we will ignore this complication here.

Given a set of pairwise distinct sample points S = {s1, ..., sm}, an RBF inter-
polant takes the following general form [51, p. 5]:

26 Chapter 2. Background

RBF(x) =
m

∑
i=1

λiϕ(∥x− si∥2) + p(x) (2.14)

Where λ ∈ Rm contains model coefficients, ϕ : R≥0 → R is the radial basis or
kernel function, and p : Rn → R is a polynomial function containing additional
model coefficients.

Note that ϕ(·) is used as a function of the Euclidean distance between the input
point and a particular sample point. The ”radial” moniker refers to the fact that
this usage makes values of ϕ(·) constant for input points on the same hypersphere
around the sample point center [195]. Intuitively speaking, the interpolated objec-
tive value for an input point ends up being based on a sum of factors weighted by
(usually unit-scaled) distances to known points. This allows capturing complex,
multi-modal objective landscapes, in a way that has been compared to how music
synthesizers combine artificial signals to form organic timbres [57, p. 54].

Common radial bases, taking as their input the radius r, include the linear ker-
nel ϕ(r) = r, cubic kernel ϕ(r) = r3, and thin-plate spline ϕ(r) = r2 log(r) [67, 91].
While there is no formal consensus on which kernel is ”the best”, informal obser-
vations would suggest that the cubic kernel is a recurrent default recommendation
among researchers [25, 51, 27].

The role of the polynomial tail p(·) is to ensure that the interpolation problem
has a unique solution (avoiding matrix singularity), thereby making RBF interpo-
lation a robust model for otherwise problematic sample point sets [51, 147]. The
minimum required polynomial degree of p(·) is k− 1 where k is the kernel order
of ϕ(·) [67]. For the cubic and thin-plate spline kernels of order 2, a linear tail of
degree 1 is thus sufficient, leading to this more concrete interpolant [27, p. 375]:

RBF(x) =
m

∑
i=1

λiϕ(∥x− si∥2) + a⊺x + b (2.15)

Where a ∈ Rn and b ∈ R contain model coefficients. The model coefficients in
λ, a, and b in eq. (2.15) are obtained by solving the following system of equations
[25, p. 254]: [

Φ P
P⊺ 0

] [
λ

c

]
=

[
F
0

]
(2.16)

Where Φ ∈ Rm×m is a pairwise kernel distance matrix such that Φij = ϕ(∥si −
sj∥2) and:

P =

s⊺1 1
...

...
s⊺m 1

 λ =

λ1
...

λm

 c =

a1
...

an

b

 F =

 f (s1)
...

f (sm)

 (2.17)

2.3. sBBO approaches 27

The time complexity of solving this problem by LU decomposition is O(m3)

[51].

As for Gaussian Processes, these are special surrogates in that they not only pro-
vide predictions, but also allow one to measure the uncertainty of said predictions.
The core model assumption is that for a finite set of sample points S = {s1, .., sm},
their associated objective values are a random variable sampled from a multivariate
normal (Gaussian) distribution, parameterized with a mean vector and covariance
matrix of the following form [91, p. 277]: f (s1)

...
f (sm)

 ∼ N

µ(s1)

...
µ(sm)

 ,

κ(s1, s1) . . . κ(s1, sm)
...

. . .
...

κ(sm, s1) . . . κ(sm, sm)

 (2.18)

Where µ(·) and κ(·) are the chosen mean and covariance or kernel function, re-
spectively. These functions are essentially what sets GP’s apart from ”vanilla”
multivariate Gaussian distributions [1]. In practice, µ(·) is usually just chosen to
be a constant function returning e.g. zero [31, 2]. While the kernel function has
many options of significant consequence, the go-to choice is the squared exponential
kernel [51, 65]:

κ(s, s′) = exp
(
−∥s− s′∥2

2
2γ2

)
(2.19)

Where γ ∈ R>0, the characteristic length scale, is a smoothening hyperparameter
that should ideally fit the smoothness of the underlying data. Readers are right
to notice a resemblance between the pairwise kernel distance matrix of eq. (2.16)
and the covariance matrix derived from eq. (2.18) and eq. (2.19). In fact, some GP
variants are regarded as special cases of RBF models [72].

Suppose that we already have a non-empty set of sample points S along with a
vector of known objective values y, and now we wish to predict a vector of objective
values ŷ of a new set of points S∗ - i.e. we need an objective function surrogate.
We can solve this problem by modelling it as a ”ŷ given y scenario”, a conditional
multivariate Gaussian distribution [91, p. 276]:

ŷ | y ∼ N (µŷ|y, Σŷ|y) (2.20)

In Bayesian terms, this is alternatively called the posterior distribution, and SBO
with GP models is therefore oftentimes called Bayesian Optimization [14, 137].

Coincidentally, the mean vector and covariance matrix of the posterior distri-
bution can be calculated in closed form, and by using µ(·) and κ(·) we have all the
required information to do so [91, p. 281]:

µŷ|y = M(S∗) + K(S∗, S)K(S, S)−1(y−M(S)) (2.21)

28 Chapter 2. Background

Σŷ|y = K(S∗, S∗)− K(S∗, S)K(S, S)−1K(S, S∗) (2.22)

Where by M(·) and K(·) we mean:

M(Xp) =
[
µ(x1), ..., µ(xp)

]
(2.23)

K(Xp, X′q) =

κ(x1, x′1) . . . κ(x1, x′q)
...

. . .
...

κ(xp, x′1) . . . κ(xp, x′q)

 (2.24)

Alternatively, we can write eq. (2.23) and eq. (2.24) as functions of an individual
point s [91, p. 281]:

µ̂(s) = µ(s) + K(s, S)K(S, S)−1(y−M(S)) (2.25)

v̂(s) = K(s, s)− K(s, S)K(S, S)−1K(S, s) (2.26)

These give us an expected value of s, the mean µ̂(s), which is the desired ob-
jective interpolant, along with the variance of the predicted mean, v̂(s). Intuitively
speaking, the variance quantifies uncertainty about the expected objective value.
The standard deviation σ̂(s) =

√
v̂(s) is particularly useful for explaining this. For

instance, under a normal distribution, 95% of all samples are expected to fall within
the confidence interval of µ̂(s)± 1.96σ̂(s) [71]. Informally, we can say that we are 95%
certain that the objective value ”falls” within this region according to our model.
Uncertainty, i.e. the confidence region interval, tends towards zero as s gets closer
to known sample points [91].

As a practical note, observe how the formulas of eq. (2.25) and eq. (2.26) may
require doing matrix inversions of time complexity O(m3) as with the RBF model
fitting problem of eq. (2.16), yet on prediction time. Still, partial results may be
pre-computed between several prediction runs for higher efficiency.

Adaptive sampling strategies

Now we turn to the question of how adaptive sampling strategies are formed from
using surrogate models during the optimization phase [200, 70]. It may seem
tempting to simply fit the surrogate to known samples, and then proceed to solve
the original optimization problem as an auxiliary problem to find new samples
for evaluation, replacing the original objective with the surrogate, which is likely
cheaper to evaluate.

The problem with this prediction-based exploration approach is that it ignores the
inherent value of exploring unknown regions for potentially better solutions than

2.3. sBBO approaches 29

what the contours of the initial DoE sketch would suggest - possibly wasting objec-
tive evaluations on reaffirming the value of samples close to the initial frontrunners
[91].

Prevalent strategies instead take unknown regions into account during the op-
timization phase. RBF and GP models strategies pivot around distance and uncer-
tainty measures to achieve this, respectively [70].

The Stochastic RBF (SRBF) strategy [147], and refinements thereof (e.g. [148,
94]), is seemingly the most popular strategy for RBF surrogates currently, judging
from its prevalence in libraries and research both [25, 141, 184], being computa-
tionally cheaper than previous strategies which required solving problems similar
to the one in eq. (2.16) for each evaluation candidate point [67]. For surrogate man-
agement, SRBF borrows ideas from the trust region framework, discussed previ-
ously (cf. section 2.3.5). On each iteration, a set of candidate points for evaluation
C = {c1, ..., cm} is generated by perturbing the coordinates of the incumbent best
solution point with samples from the univariate normal distribution N (0, σ2) [51,
147]. Similarly to the trust region radius, σ is used as a radius around the incum-
bent point and is increased or decreased between iterations based on the predictive
accuracy of the surrogate (cf. eq. (2.10)). Within a Global sBBO setting, this intu-
itively helps the algorithm consider local opportunities properly before taking its
business elsewhere.

To pick the next points for evaluation, the following auxiliary problem, opti-
mizing the weighted distance merit, is solved [178, 149]:

minimize
c∈C

w · s(c) + (1− w)(1− d(c)) (2.27)

Where s : Rn → [0, 1] is the predicted surrogate function value of its input,
and d : Rn → [0, 1] is the minimum distance between the input point and any
previously evaluated sample point, with the values of both functions being nor-
malized among the candidate points to lie in the unit interval. w ∈ [0, 1] is simply
one of a set of weights that are cycled through between algorithmic iterations, e.g.
{0.3, 0.5, 0.8, 0.95}, to put different emphasis on exploration and exploitation [141].
The content of this set is a hyperparameter. Intuitively speaking, this auxiliary
problem prefers points with a good predicted objective value that are far away
from known points, by varying weightedness between iterations.

Strategies revolving around GP’s seek to reduce uncertainty as well as improve
the incumbent solution. A quite analogous idea to the weighted distance measure
above is to weigh uncertainty by a constant factor, and solve the following auxiliary
problem on each iteration, in which the objective is known as the Lower Confidence
Bound [91, p. 293]:

minimize
x∈X

µ̂(x)− ασ̂(x) (2.28)

Where α ∈ R≥0 is a user-specified hyperparameter. This way, even seemingly

30 Chapter 2. Background

suboptimal points according to µ̂(·) might be sampled if large local uncertainty
suggests that their objective values could possibly be far better than the mean.
Another popular strategy for picking the next point for evaluation is to choose the
one that maximizes the Expected Improvement (EI) of the current best objective value
[51, 91, 93]. The EI of a point can be evaluated analytically under the posterior
distribution of the GP, and thus optimized [72, p. 353]:

maximize
x∈X

{
[f (x+)− µ̂(x)] · CDF(z) + σ̂(x) · PDF(z) if σ̂(x) > 0

0 if σ̂(x) = 0
(2.29)

Where x+ is the current best solution, and

z =
f (x+)− µ̂(x)

σ̂(x)
(2.30)

That is, z is the z-score of f (x+) with respect to the posterior distribution of
objective values for design point x, quantifying deviation from the mean of the
standard normal distribution. Furthermore, CDF, PDF : R → [0, 1] are the cu-
mulative distribution function and probability density function of the standard normal
distribution, respectively.

One can use e.g. Genetic Algorithms or any other preferred optimization al-
gorithm to solve the auxiliary problems of eq. (2.28) and eq. (2.29) efficiently, and
pick the best points for subsequent evaluation [31, 141]. Once these points are
evaluated, they can be incorporated into the surrogate for further iterations, and
the cycle goes on, until some termination criterion is met [200].

2.4 Constraint handling in sBBO

We now return to the murky morass of constraint handling, specifically within
sBBO.

Several authors within sBBO research have noted that current constraint han-
dling techniques are very limited in terms of efficiency and applicability to differ-
ent algorithms [70, 57].

At the onset, generally constrained optimization is an NP-hard problem [161].
Within BBO specifically, we face additional practical issues if we want to support it:
Remember, the structure of predicates to be satisfied by a solution may not even be
known analytically, since constraint functions are black boxes in the general case
(cf. section 2.2).

Subsequent sections will introduce a comprehensive taxonomy of how sBBO
constraints are encountered in the wild, followed by a presentation of established
constraint handling strategies applicable to sBBO.

2.4. Constraint handling in sBBO 31

2.4.1 A taxonomy of constraints

The QRAK taxonomy by Le Digabel and Wild [49] provides a useful overview of
different constraint types encountered within practical settings. This model seems
to be widely acknowledged within the sBBO research community [11, 30, 98].

As opposed to the formal distinctions between e.g. equality and inequality
constraints provided in section 2.2, QRAK instead describes how information about
design point (in)feasibility is practically available during an in vivo optimization
run. The four letters represent four binary dimensions, classifying the different
cases. Each dimension is described below in turn.

Q is for Quantifiable vs. Nonquantifiable. This distinction denotes whether con-
straint function values (cf. eq. (2.4)) signify degrees of (in)feasibility or are simply
binary indicators of feasibility as such [49]. For example, an inequality constraint
function with ”1” as an output might mean that a decision variable was too large
by a value of one, or, due to 1 ̸= 0, the solution was infeasible, and that’s it. Note
that we generally don’t know what exactly (possibly black-box) quantifiable con-
straints quantify, but only care about relative comparisons: Quantifiable constraints
make it possible to form a preference between several infeasible design points, if
we need to, based on relative infeasibility levels [11].

R is for Relaxable vs. Unrelaxable. For a Relaxable constraint cr(·), outputs of
the objective function and all other constraint functions will still be meaningful,
even though a design point is infeasible with respect to cr(·) [49]. The definition
of ”meaningful” is problem-specific in nature. For instance, consider an objec-
tive function calculating the volume of a swimming pool with a negative side
length, which violates an Unrelaxable constraint. According to the negative objec-
tive value, denoting the total price of installation, such a swimming pool seems to
be a lucrative investment for you. After all, the total price is ”1,200 DKK per cubic
meter”, as advertised. But the pool guy having to pay you for building a negative-
volume swimming pool doesn’t make any sense. The negative objective value of
such a solution can’t be meaningfully interpreted. On the other hand, if you re-
quire that construction begins on a Tuesday, a price calculated from a Wednesday
launch, while violating a constraint, may still be meaningfully interpreted within
the domain of consideration, and the constraint is therefore Relaxable. Note that
while there might be a temptation to correlate Relaxable constraints with ”mild
preferences”, we still always need a feasible solution in the end. The practical
difference between the two cases is that Unrelaxable constraints must be satisfied
for all intermediate solutions found in algorithm 1 to properly guide optimization,
while Relaxable constraints only need to be satisfied for the final solution [11].

A is for A Priori vs. Simulation-based. The feasibility of an A Priori constraint
can be assessed without running simulations (e.g. black-box functions), while a
Simulation-based constraint can’t [49]. In my own terms, the practical difference
between the two is that the former type can be assessed analytically, while the

32 Chapter 2. Background

latter must be assessed empirically. For instance, bound constraints limiting the
domain of individual variables (cf. eq. (2.3)) might be possible to assess a priori,
without evaluating the objective function, as they depend only on the input to the
objective function and some user-specified thresholds that are typically analytically
available. On the other hand, any constraint regarding the output of e.g. a black-box
objective function can only be assessed by observing the outcome of an objective
evaluation. With black boxes being expensive to evaluate in the general case, the
practical implication is that we might be able to cancel expensive computations, if
a constraint is deemed violated a priori [11].

The final K is for Known vs. Hidden. Not all constraints are necessarily known
within sBBO. A known constraint is explicitly given in the problem definition, i.e. as
a distinct part of the definition of the feasible set, while a Hidden one isn’t. Char-
acteristically, the presence of a Hidden constraint is only known implicitly, upon its
violation [49]. In the most well-behaved case, the objective function might simply
evaluate to ∞, or some other extremely bad value, to indicate that one or more Hid-
den constraints are violated, and that any other solution is preferable [42]. In more
pathological cases, objective evaluation simply crashes or returns an inconspicuous
value well within the meaningful range of the problem. A real-world example of
the latter was an industrial project in which the objective function returned a hard-
coded value of 2.6 whenever a subroutine failed to complete evaluation, perplexing
a group of researchers for a while [11, p.VI]. Unrecoverable errors during black-
box evaluation, especially connected to running legacy code, are typical sources of
Hidden constraints [49].

2.4.2 sBBO constraint handling methods

This section outlines general constraint handling strategies that have achieved
foothold within sBBO research, judging from what is covered by textbooks and
surveys within this area (e.g. [91, 42, 98, 93]).

Note that such works, due to their summarizing nature, tend to highlight strate-
gies that work at some level of generality beyond the individual algorithm. Con-
straint handling strategies tailored to individual algorithms might arguably have
higher performance potentials, due to their ability to exploit fewer layers of indi-
rection. There is also an abundance of existing research within the development of
such tailored methods. E.g., for GP-based SBO, it has been proposed to fit surro-
gate models to each constraint function on the fly, and then proceed to minimize the
total ”expected constraint violation” in compound auxiliary problems (e.g. [157,
70, 138]).

However, providing a decent baseline level of constraint handling support for
many different algorithms was deemed a design priority for the intended library.
From an engineering standpoint, achieving a level of decoupling between specific

2.4. Constraint handling in sBBO 33

algorithms and constraint handling strategies in DIBBOlib was also deemed desir-
able, to simplify design issues and ease development. Therefore, while the above-
mentioned efficiency trade-off should be recognized, a more generic approach to
constraint handling was ultimately preferred, which reflects the material covered
here.

Note that the presented methods below only concern the handling of equality
and inequality constraint functions (cf. eq. (2.4)). That is, we consider the generally
constrained optimization problem of the form:

minimize
x∈Rn

f (x)

subject to gj(x) ≤ 0 ∀j ∈ [1..p]

hk(x) = 0 ∀k ∈ [1..q]

(2.31)

This stems from the fact that the types of constraints inherent to mixed-integer
bound-constrained problems (cf. eq. (2.3)) can easily be handled as Unrelaxable,
A Priori, Known constraints within practical applications [11]. That is, we can just
check and ensure (through e.g. rounding) user-specified variable bounds and inte-
ger mappings before each objective evaluation to ensure meaningful and feasible
solutions with respect to these constraints. This design has seen success in practical
settings [120, 51].

Penalty methods

Penalty methods convert constrained problems into unconstrained problems by
including a penalty term in the new objective function [91]. Problems of the form
in eq. (2.31) are rewritten like so [102, p. 421]:

minimize
x∈Rn

f (x) + ρ · P(x) (2.32)

Where P : Rn → R≥0 ∪ {∞} is called the penalty function, and ρ > 0 is the
penalty magnitude. Some variant formulations make the magnitude a vector in
R

p+q
>0 consisting of individual magnitudes applied to each constraint function [43],

which is a complication we ignore here.
A simple choice for the penalty function is the count penalty, counting the num-

ber of violated constraints with Boolean predicates evaluated to zero or one [91]:

Pcount(x) =
p

∑
j=1

(gj(x) > 0) +
q

∑
k=1

(hk(x) ̸= 0) (2.33)

Another common choice within sBBO is the death penalty [43]:

Pdeath(x) =

{
∞ if Pcount(x) > 0

0 otherwise
(2.34)

34 Chapter 2. Background

Yet another example is the quadratic penalty [11] unlike the others use violation
values for quantifying degrees of infeasibility (cf. eq. (2.5)):

Pquadratic(x) =
p

∑
j=1

max(0, gj(x))2 +
q

∑
k=1

hk(x)2 (2.35)

As the story tends to go, none of these penalties is ideal in all scenarios. While
the death penalty might seem like a universal sledgehammer solution, note that
infinite objective values generally lead to untenable numerical issues in Model-
based sBBO [57].

A key advantage of exact penalties like the death and count penalty is that they
both guarantee that there exists a finite value of ρ for which a solution to eq. (2.32)
is exactly a solution to the corresponding problem of the form in eq. (2.31) [93].
The problem with these methods is that they contribute to making the objective
function non-smooth, and thus harder to optimize for known algorithms, which
tend to assume a level of smoothness [98, 44]. Inexact penalties, like the quadratic
one, can only guarantee a solution equivalent to one in the original constrained
problem as ρ → ∞, but have the advantage of being smooth functions on the
border of the feasible region, which generally makes solving the unconstrained
problem in eq. (2.32) easier [93].
One proposed compromise is to instead combine several penalties into the mixed
penalty [91]:

Pmixed(x) = Pcount(x) + Pquadratic(x) (2.36)

This is an exact penalty ensuring a level of smoothness at the same time.
As for the magnitude ρ, its value can be set statically, i.e. before running op-

timization, if a sufficiently large magnitude for a feasible solution happens to be
known for the problem at hand [43]. More realistically, however, a dynamic ap-
proach to calibrating the right magnitude during optimization is needed. The
general idea is to solve a sequence of unconstrained problems of the form [102]:

minimize
x∈Rn

f (x) + ρi · P(x) (2.37)

Where [ρi] is an increasing sequence of magnitudes, with some initial value ρ1 ∈
R>0. With the solution found at iteration i being x∗i , this procedure terminates
when P(x∗i) = 0 (returning x∗i as the solution), or an upper limit on the number
of iterations has been reached (failing to find a feasible solution). For i > 1 and
some adjustment factor γ ∈ R>1, setting ρi = γ · ρi−1 or ρi = ρi−1 + γ · P(x∗i−1) are
example options for increasing the magnitude dynamically [91, 44].

While the advantage of penalty methods is that they in principle always work,
and unlike other methods do so orthogonally to the algorithm of choice, a significant
disadvantage for sBBO with expensive objectives is the sheer computational cost of

2.4. Constraint handling in sBBO 35

solving several problems from scratch with dynamic methods. If only something
could be done about that.

Barrier methods

Note that dynamic penalty methods with progressively increasing magnitudes
tend to approach solutions in the feasible region of the original problem from
the outside, and are therefore alternatively named exterior point methods. Barrier
methods, also known as interior point methods, instead approach solutions of the
original constrained problem from inside its feasible region [102].

Barrier methods operate very similarly to penalty methods, yet only work with
inequality constraints, among other key distinctions [91]. Constrained problems of
the form given in eq. (2.31), with q = 0, are rewritten to unconstrained subproblems
of this form (note the fraction this time):

minimize
x∈Rn

f (x) +
1
ρ
· B(x) (2.38)

B : Rn → R≥0 ∪ {∞} is a barrier function, having special properties. B(·) is chosen
such that it is continuous and non-negative in the feasible region of the original
problem. Note that the value of a barrier function is not necessarily zero for feasible
points, Furthermore, B(x) → ∞ as x ∈ X approaches the boundary of the feasible
region [93].

Intuitively speaking, the reason that barrier methods only support inequality
constraints stems from the fact that narrow feasible regions delineated by equalities
don’t have such ”approachable” boundaries. The reasonable suggestion of simply
rewriting equalities into several inequalities, since hi(x) = 0 ⇐⇒ hi(x) ≤ 0 ∧
−hi(x) ≤ 0, has proven unfruitful in practice, due to the prevailing search region
narrowness of such rewrites [91].
Common barrier functions include the rebranded extreme barrier [11]:

Bextreme(x) = Pdeath(x) (2.39)

Alternatively, the log barrier is a popular choice [91]:

Blog(x) = −
p

∑
j=1

log[−max(−1, gj(x))] (2.40)

Dynamic barrier methods also work analogously to dynamic penalty methods,
with an increasing sequence of magnitudes [ρi] [102]:

minimize
x∈Rn

f (x) +
1
ρi
· B(x) (2.41)

36 Chapter 2. Background

Assuming a barrier besides the extreme barrier, increasing the ρi eases the influ-
ence of the barrier, especially its rapidly increasing punishment as points approach
the feasible boundary. Therefore, the early termination condition for solving dy-
namic barrier subproblems is instead that x∗i is (approximately) equal to x∗i−1, im-
plying that loosening the thumbscrews of the barrier function no longer elicits
better feasible solutions [91].

The usual numerical problems associated with infinite objective values still hold
for Model-based sBBO. On the other hand, barrier methods are well-suited and
popular for directional sBBO: Starting with a known feasible point as the initial so-
lution (cf. algorithm 1), line searches into the infeasible region will simply face an
electric fence of much worse solutions without numerical issue [42]. It should be
noted that this usage of an initial solution as an anchor point for never leaving the
feasible region during search is what tends to disambiguate extreme barrier meth-
ods from death penalty methods in optimization literature (e.g. [11]) - yet this is
admittedly a subtle difference.

Advantages of interior methods compared to exterior methods include that
they are typically preferred above using e.g. the death penalty, when applicable,
as they provide an efficient way of handling (especially Unrelaxable) constraints
without wasting many evaluations on exploring the infeasible region [102, 91].

Main disadvantages include that barrier methods only handle inequality con-
straints, and that the underlying optimization algorithm must be able to cope with
extreme objective values, limiting its generality compared to exterior methods.

Filter methods

An inherent problem with both exterior and interior point methods is that the right
magnitude of ρ needs to be determined before or during optimization, likely at the
cost of extra objective evaluations.

Filter methods, and extensions thereof, use an entirely different approach, treat-
ing the original problem in eq. (2.31) like, but not exactly like, an unconstrained
bi-objective optimization problem, incorporating the original objective function and
some penalty function P(·) as separate components [55]:

minimize
x∈Rn

[f (x), P(x)] (2.42)

This approach opens the can of worms known as domination, a concept used within
generalized multi-objective optimization for excluding design points strictly worse
than others as potential solutions [91]. In our specially modified case, domination
concerns pairs (f (i), P(i)) ∈ R ∪ {∞,−∞} ×R ∪ {∞,−∞}. A pair (f (i), P(i)) domi-
nates another (f (j), P(j)) if and only if f (i) ≤ f (j) ∧ P(i) ≤ P(j), i.e. the former pair is
no worse than the latter in either value. Otherwise, the latter pair is non-dominated
by the former (either of the latter’s components being strictly better) [138].

2.5. Cooperative game theory and prediction models 37

A filter is a set of pairwise non-dominated pairs of the aforementioned type. In
the filter framework, a filter is maintained during optimization, essentially forming
a current ”benchmark” for new solution candidates [98]. The benchmark concerns
whether a new proposed design point is acceptable to the filter. In the basic ver-
sion, a point x is acceptable to the current filter F , if no element in F dominates
(f (x), P(x)) - that is, the new point is strictly better than current elements of the
filter in either measure [138]. If this new pair is acceptable to the filter, we update
the filter by removing all pairs dominated by the new pair.

Note that unlike classical multi-objective optimization, in which the goal is to
find the best possible trade-off between multiple objectives, a solution x∗ such that
P(x∗) = 0 is required in the filter approach, which is a significant departure [55]. It
means that we generally can’t just implement better(·) in algorithm 1 on the basis
of new candidate points being acceptable to the current filter, according to the basic
rule described before. In practice, more elaborate rule sets must be designed for
managing the state of the filter and the underlying optimization algorithm, ensuring
that optimization won’t just e.g. converge to infeasible solutions, or cycle through
the same set of states without converging [12, 93].

In other news, while the filter approach has been applied to several specific
sBBO algorithms [76, 157, 11], circumventing a key problem inherent to exterior
and interior methods, this comes at the cost of removing a layer of indirection,
making implementation of non-trivial filter extensions for individual algorithms a
potential cross-cutting concern for, say, an sBBO library for Apache Spark.

2.5 Cooperative game theory and prediction models

We finally embark on a final detour to the topic of cooperative game theory, since we
plan on incorporating some as of now undisclosed tricks from this domain into the
library.

Unlike other areas of game theory, which tend to focus on individual player
choices during the course of the game itself, cooperative game theory instead con-
cerns itself with the ultimate outcome of some game given the initial coalition of
players - that is, black-box problems in a familiar sense (cf. definition 2.1). More
formally, it concerns itself with coalitional games [196]:

Definition 2.2 (Coalitional game) A tuple (N, v), where N = [1..n] is the set of play-
ers, and v : P(N)→ R such that v(∅) = 0 is the characteristic function.

v(S) intuitively denotes the expected total worth or payoff obtained from the game
by a coalition of players S ⊆ N working as a team, with N also being known as the
grand coalition. Naturally, the payoff is zero when no one plays the game.

38 Chapter 2. Background

2.5.1 Shapley values

With one foot in the real world, we might expect that players in a coalition neither
contribute evenly nor linearly to the payoff of the game in the general case, due
to e.g. (anti-)synergistic effects derived from teamwork. Therefore, if we wish
to estimate the contribution of individual players in a coalition S to the ultimate
payoff, simply dividing v(S) by |S| may violate a notion of fairness.

Shapley values, named after mathematician and Nobel Prize-winning economist
Lloyd Shapley, is a way of estimating the contribution of individual players in the
grand coalition N, ensuring a notion of fairness that (provably) no other attribution
scheme does completely [196].

To make better sense of things for now, imagine that the grand coalition is
formed one player at a time, with each player collecting their rightful share of the
payoff in some order. More formally, let Π be the set of all permutations of N,
i.e. all possible ways to order players in the grand coalition. For π ∈ Π and some
player i ∈ N, then let pπ

i = {j | j ∈ N ∧ π(j) < π(i)} be the set of all players
preceding player i in permutation π. We then say that v(pπ

i ∪ {i})− v(pπ
i) is the

marginal contribution of player i in the order π [117].
The Shapley value ϕi(v), attributing the individual worth or influence of a player

i in a coalitional game (N, v), is then the average marginal contribution of player i
across all n! permutations of the grand coalition [196]:

ϕi(v) =
1
n! ∑

π∈Π
[v(pπ

i ∪ {i})− v(pπ
i)] (2.43)

If we account for the fact that the order of joining a coalition doesn’t matter
to the outcome of the game, then pπ

i represents the same set of players S joining
player i exactly |S|! · (n − |S| − 1)! times in eq. (2.43) [196]. Here, the first and
second factor represent the number of ways to permute preceding and subsequent
players in the relevant orders, respectively. We thus obtain the more commonly
known version of the Shapley value formula [104]:

ϕi(v) = ∑
S⊆N\{i}

[
|S|!(n− |S| − 1)!

n!
· [v(S ∪ {i})− v(S)]

]
(2.44)

More clearly now, there is weighting scheme at play, designed such that small
and large cardinalities of S are assigned the greatest weights, with the least weight
assigned to middle-sized coalitions.

As an example, for n = 5, the weights assigned to coalition sizes from 1 to 5,
always including player i, are correspondingly [24, 6, 4, 6, 24] · 1

5! . An intuition
behind this pattern is that we get more information about the contribution of indi-
vidual players in the grand coalition when fewer players are present or absent in
marginal estimates [117].

2.5. Cooperative game theory and prediction models 39

Shapley values uniquely satisfy several properties connected to a notion of fair-
ness - this is great, but we won’t dwell too much on that [196, 183]:

2.5.2 SHAP values

SHapley Additive exPlanations, or SHAP values, are simply put Shapley values of a
specific kind of game, i.e. characteristic function (cf. definition 2.2).

They are used for interpreting the outputs of predictive models, e.g. ML mod-
els, as part of the mission statement of Explainable AI (XAI). The game being played
is a singular prediction of the model, outputting some real value, and each player
in the grand coalition corresponds to a particular input feature value. The goal is
to explain how much each feature value contributed to the prediction [117].

For example, given that we among other features have provided a Boolean
input value of true to a model, and the output prediction reads 42, we wish to know
whether this Boolean feature value contributed 0, 3.50, -1000, 9001, or otherwise to
the output in additive terms, despite any predictive noise or non-linearity.

Models obtained from e.g. ML generally need all features present to do predic-
tions. Therefore, a practical challenge is that we need a way to calculate marginal
contributions of individual feature values when one or more other feature values
are ”missing” (cf. eq. (2.44)). SHAP values, basically defined as a proposed remedy
to this issue [104], are Shapley values derived from conditional expectations of model
outputs.

More concretely, we let the grand coalition N = [1..n] correspond to the indices
of the input feature vector x = [x1, x2, ..., xn], and then let v(S) = E[f (X) | XS = xS]

in eq. (2.44) [201]. Here, the predictive model is f (·), X = [X1, X2, ..., Xn] is a
random vector, and XS = xS denotes that we fix random variable components i ∈ S
to the corresponding components of x. This way, we deal with missing ”players” in
predictive models by fixing present feature values and integrating over the domain
of the rest [103].

How exactly conditional expectations are obtained, filling out leftover details of
the proposed scheme, largely depends on the type of model studied and practical
constraints. With an ML model we may just approximate by taking the mean of
a large number of samples, in which we replace missing features with uniformly
random values from a reference dataset. For computer vision models, we might
analogously grey out missing pixels and take the prediction mean [117].

In addition to general Shapley value properties, SHAP values also notably pos-
sess local accuracy [104]:

f (x) = ϕ0 + ∑
i∈N

ϕi (2.45)

Where ϕi is the SHAP value of feature value i, and ϕ0 = E[f (X)]. That is, each
SHAP value ϕi forms an offset from an expectation across the entire domain of

40 Chapter 2. Background

predictions ϕ0, which in sum accounts for the obtained prediction completely.
Note that SHAP values are local measures of feature importance, for individual

feature values and model predictions. If one instead needs a global measure of
feature importance for a particular feature and model, a natural way of extending
the above approach is to simply to calculate SHAP values for m instances and take
the mean of their absolute values [117]:

Φi =
1
m

m

∑
i=1
|ϕi| (2.46)

This is also the approach followed in the shap Python library, an implementation
of SHAP values by the people behind the idea [156].

2.5.3 SHAP value estimation

Computational complexity and performance are significant implementation factors
with SHAP values. In the general case, exact calculation takes exponential time,
due to the combinatorics of eq. (2.44) and the enumerative implications of how
conditional expectations over domains are to be obtained.

For some specific models, like decision tree based ones, SHAP values can actu-
ally be calculated in polynomial time [103]. Linear models are even more simple,
since the slope coefficients turn out to be SHAP values (cf. eq. (2.45)) [104]. As
a practical joke by the cosmic powers that be, such exemplars tend to already be
relatively explainable models.

More generally, however, the only practically feasible approach is to estimate
SHAP values, based on random sampling. Judging from the source code of shap,
efficient approximation strategies seem adamant about reducing information over-
lap between sequentially drawn random samples with careful enumerations over
feature domains [156]. To the casual observer, the sky seems to be the limit here,
when it comes to implementation complexity and optimization opportunities.

We will however try to stay horizontally inclined, to better leverage the parallel
architecture of Spark. For this project, a simple model-agnostic strategy based on
Monte Carlo sampling is used instead, with few dependencies between subtasks, at
the cost of some informational redundancy among random samples.

To be faithful to the original presentation by Štrumbelj et al. [183], suppose
that we have some reference dataset Z = {z1, z2, ..., zp} of points accompanying the
input feature vector x = [x1, x2, ..., xn] for which we wish to approximate the SHAP
value of feature i for a model f (·).

First, reminisce about the order-based weighting scheme of section 2.5.1 for a
moment. Then let Π be the set of all permutation of the set [1..n], i.e. all ways to
order the indices of x. For some uniformly randomly chosen permutation π ∈ Π

2.5. Cooperative game theory and prediction models 41

and reference point z ∈ Z, then let x̃+i and x̃−i be n-vectors defined as follows
[183]:

x̃+i
j =

{
xj if π(j) ≤ π(i)

zj otherwise
(2.47)

x̃−i
j =

{
xj if π(j) < π(i)

zj otherwise
(2.48)

That is, we end up with two randomly modified versions of x, switching in
components of z at indices after i in order π, with the only difference between
the result vectors being whether xi is retained or not. We can create i.i.d. random
samples by the same process, with replacement, and take the mean of M marginal
estimates, echoing marginal contributions, to approximate the Shapley value [117]:

ϕ̂i =
1
M

M

∑
m=1

[f (x̃+i
m)− f (x̃−i

m)] (2.49)

So, by substituting in random components from the background data set while
other components of x remain fixed, we can simulate missing players in the game
of prediction and estimate the desired conditional expectation.

For sufficiently large values of M (e.g. conventionally M ≥ 30), it follows
from the Central Limit Theorem that the estimation error with respect to the actual
SHAP value ϕi is approximately normally distributed, i.e. ϕ̂i − ϕi ∼ N (0, σ2

M),
where σ2 is the population variance of marginal estimates for feature i [182]. While
the true value of the population variance is generally shrouded in mystery, we can
instead just use the sample variance of our M marginal estimates in eq. (2.49) as an
unbiased estimate of σ2 [183]. All in all, this means that we can use properties of
the normal distribution to reason about the approximation error of a given number
of samples.

Chapter 3

Technical contribution

This chapter is an attempt to explain how DIBBOlib works, and why. The exposi-
tion follows a top-down structure, starting with some overarching design consid-
erations and ending with an outline of how core features work.

3.1 Library requirements and priorities

Functional requirements of the library are outlined and further materialized in the
problem definition and background sections (cf. chapters 1 and 2). That is, at the
highest level of generality, the mission statement of the library is to support solving
generally constrained sBBO problems defined with respect to Spark Datasets, using
the methods and definitions of chapter 2. The library achieving this in any way
thus technically fulfills its principal functional requirements.

That would however be too simple to achieve, and may not lead to a ”good’
solution. We of course also have to deal with the non-functional requirements of
scalability and usability in the problem statement. This section outlines how we plan
to go about this on a strategic level.

As popularly laid out by Kleppmann, scalability denotes a system’s ability to
cope with increasing workloads performance-wise, by e.g. adding more computa-
tional resources to it [90, p. 10]. Now that we know all about Spark and sBBO
(cf. chapter 2), we can better describe what ”increasing workloads” mean in our
setting, and what to do about them.

With objective evaluations involving Spark queries, as per the core premise,
the scalability of our library depends to some degree on the ability of Spark to
handle larger workloads in individual queries, in the shape of more complex SQL
operations, larger input datasets, and the like.

In experiments for my pre-specialization project, I in fact observed that about
99% of total runtime was spent doing Spark queries while running sBBO [115], a
pretty standard ratio for objective evaluations within sBBO, by the way [11]. On

43

44 Chapter 3. Technical contribution

the other hand, from what was covered in the previous chapter, we know that
core sBBO algorithms at their heftiest only involve doing some matrix inversions
(cf. section 2.3.6), with a presumably modest number of elements within the sBBO
use case. Implementations of these mainly CPU-bound tasks have been fanatically
micro-optimized for decades [97].

Beyond trying to integrate smoothly with Spark SQL, it may therefore seem
that we can’t do much about our main bottleneck in terms of workload, unless we
think that we can do data-intensive queries better than Spark SQL in the general
case. Given that our problem components containing these Spark queries are black
boxes (cf. definition 2.1), i.e. they might do ”anything”, our general case within
sBBO is indeed very general, with no overt opportunities for custom performance
optimizations coming to mind beyond the situational.

On the positive side, if one is good at performance-tuning Spark queries, one
is by extension probably also good at performance-tuning our library. But from
a didactic standpoint, you are probably not happy with me delegating all respon-
sibility for scalability to Spark SQL and calling it a day. We do luckily have a
few possible leverage points for improving scalability in sBBO beyond individual
query handling (which we do ultimately delegate to Spark SQL).

First, sBBO problems are typically parameterized with a trial budget in practical
settings - i.e. a maximum number of times we can assess the solution quality of
design points [141, 122]. This is indeed a workload parameter we might be able
to improve scalability for. All things being equal, a system doing trials entirely
in sequence will be slower and slower with increasing trial budgets. Supposing
that we have plenty of computational resources available on the cluster, this is a
wasteful design, performance-wise. We generally don’t expect to be able to run
thousands or even hundreds of Spark queries in parallel, as might be required for
running population-based BBO - In my previous project, I also observed that driver
memory usage quickly reaches limits of what current hardware can muster when
one tries to run this many queries in parallel [115]. We will however look into
possibilities for running ”several” trials in parallel to improve system performance
under increasing trial budgets - navigating the fact that we shouldn’t completely
overload the cluster in the process, of course.

Second, for some tasks within sBBO, problem dimensionality is a load parameter
with performance implications. For SBO specifically, solving auxiliary problems
will generally take up more resources as a function of this parameter, due to more
complex interpolation models, and higher cardinalities required by auxiliary op-
timization algorithms, such as required population sizes for Genetic Algorithms
[51]. We will therefore look into whether anything can be done to utilize available
computational resources better when solving auxiliary problems under increasing
dimensionalities. In some cases, solving them solely on the driver might be waste-
ful, for instance.

3.1. Library requirements and priorities 45

Moving on to the non-functional requirement of usability, my old HCI textbook
characterized usable systems as being effective (solving relevant tasks for the user),
efficient (doing so with appropriate user effort), easy to learn, and safe to operate [22,
p. 81].

While we already know about the core task to be supported (”sBBO on Spark”),
investigating what the other qualities mean within our scope would be likely be
worth an entire semester’s work in itself. There are however many other challenges
of the more technical sort in this project, and I know from experience that user
studies take a lot of time to do properly.

To make everything more manageable, we will therefore instead more simply
define and work with usability by proxy: That is, in our library we will try to adhere
closely to the design of a similar tool that we assume to be usable. The choice of
proxy fell on MLlib and, by extension, Spark SQL (cf. section 2.1): Similarly to
our project idea, MLlib provides advanced analytics functionality on top of Spark,
and is targeted towards users with a primary background within data analytics at
different experience levels [88]. Using MLlib as a proxy, we can therefore make
design decisions based on how things are handled there, and let the ”... who are
already familiar with MLlib” be silent when we talk about ”users”.

To spell it out for posterity: We define the library design as being usable to the
point at which it is analogously similar to MLlib, and when we henceforth say
”user” we are thinking of someone already comfortable with MLlib.

It is for instance relatively easy to verify by proxy, that we shouldn’t force users
to debug ”ill-conditioned interpolation sets” when running SBO or configure 50+
hyperparameters for each optimization query with our library, since all compo-
nents of MLlib run in a plug-and-play fashion, with sensible defaults [167]. By
analogy, that design is immediately transferable to our setting.

We will similarly try to provide a library API adhering closely to MLlib’s OOP-
based design, which at the very least is familiar to users of MLlib. Furthermore,
as we shall see, we will find a need to come up with new ideas on how to pro-
vide usable sBBO functionality in our library, for e.g. constraint handling, since
many existing ideas within sBBO are (in my estimation) designed to work well
for doing benchmarks in scientific papers, as opposed to working well in a more
”domesticated” tool for users at varying experience levels, like MLlib.

As for limitations, design by proxy can of course never replace doing real-life
user studies etc. fully. Yet it forms an initial proposal for a usable design, and
leaves some needed breathing room to investigate an idea whose sheer technical
ramifications have not been considered before in any other tool, to my knowledge.

46 Chapter 3. Technical contribution

3.2 Architectural outline

This section draws a sketch of the library as a whole, including key architectural
decisions along with its most prominent features. More implementation specifics
will be provided in subsequent sections.

3.2.1 Key decisions

First, while Python is actually the most popular language for interfacing with
Spark [88], it was ultimately decided to implement the library in Scala. The possi-
bility of interfacing with Spark internals in their native language was valued, e.g.
as leverage for higher efficiency, although how much one could actually benefit
from these facilities was ultimately unknown at the onset of the project. At the
end of the day, Scala was chosen over Python, since one could in principle always
create a Python API to the library, as was similarly done for Spark with PySpark.

Another key architectural decision was to integrate the library with existing ad-
vanced analytics functionality of the platform, specifically MLlib (cf. section 2.1),
to make PA application development and user onboarding easier. While this does
introduce external dependencies, note that MLlib already comes prepackaged as
an officially maintained component of the Spark platform, in concrete terms being
a folder in the very same repository [88]. The possibilities for code reuse and inte-
gration with existing functionality was ultimately deemed worth this dependency.

At its core, the library is basically just an implementation of a new subclass of
Transformer from MLlib, named BlackBoxOptimizer. Confer fig. 3.1. Behind the es-
tablished MLlib API, BlackBoxOptimizer implements optimization query handling
common to all algorithms: Partitioning into subproblems in trans f orm(·) and indi-
vidual subproblem management in solve(·). The responsibility of its subclasses is
solely to provide implementations of individual sBBO algorithms in minimize(·),
at the very least solving unconstrained minimization problems in Rn, possibly leaving
general constraint handling entirely to BlackBoxOptimizer. Apart from familiarity,
BlackBoxOptimizer being a Transformer also has the benefit of the library being
fully compatible with the Pipeline system of MLlib (cf. section 2.1), essentially
advancing its possible applications from predictive to prescriptive analytics (cf.
chapter 1). trans f ormSchema(·), as defined in BlackBoxOptimizer, specifies the
output schema of calling trans f orm(·), being (informally speaking) the projection
of solution and objective columns unto the input Dataset.

3.2. Architectural outline 47

Figure 3.1: The principal class hierarchy of the library, in UML. Method parameter types left out for
readability.

Yet another key architectural decision is the one that objective functions are all
overtly MLlib Transformers, or converted into such programmatic objects under
the hood. That is, as opposed to a higher order function representing objectives
with e.g. lambda expressions, BlackBoxOptimizer rather acts like a higher-order
Transformer. This was done with two possible benefits in mind. The first one
is connected to problem model management. Objectives being compatible with the
MLlib Pipeline system means that they can be (de)composed and (de)serialized
through existing MLlib functionality - from a user’s viewpoint, managing these

48 Chapter 3. Technical contribution

crucial components is thus no different from managing other models in MLlib (cf.
section 2.1).

The other benefit is connected to performance. The predicament of Python being
the most popular client language for Spark means that one should always think
twice before implementing features based on User-Defined Functions (UDFs), e.g.
objective functions as lambda expressions [35]. UDFs come up in several features
of the Spark platform, being used for defining e.g. custom scalar transformations
in Spark SQL [171]. As a recurrent headache with the PySpark API, when UDFs are
implemented with Python functions without further ado, executors have to spawn
a new Python interpreter process upon each evaluation. This introduces a signifi-
cant overhead, when the same Python UDF is called many times in sequence [88].
While recent contributions have sought to remedy this platform-wide problem to a
degree [9], ”evaluating the same function many times in sequence” unfortunately
fits the job description of sBBO algorithms all too well (cf. algorithm 1). Note
however, that Transformers like SQLTransformer have a direct translation between
a Python and a Scala object [35]. It was therefore decided to represent objectives
as Transformers in the library, with shorthands for simple use cases, such that
objective evaluations can run entirely in the JVM.

For similar reasons, constraint functions are ultimately obtained from Spark
Column expressions [40], which can also be translated between different language
APIs.

A final key architectural decision was connected to the problem of where all al-
gorithmic functionality is supposed to come from, i.e., if something existing could
be reused or not. High-quality, open-source, JVM implementations of sBBO meth-
ods mentioned in section 2.3 are, to the best of my knowledge, extremely scarce, and
the ones that do exist tend to introduce a large number of dependencies compared
to the functionality they would provide by being included into this library (e.g.
[162]).

Looking beyond the JVM, some high-quality solvers exist in external languages,
written in e.g. C++ or MATLAB [124, 113]. Still, it was ultimately decided not
to patch the library together with solvers written in an assortment of different
languages, due to the potential deployment complexity of such a design.

Instead, it was ultimately decided to implement an initial suite of optimization
algorithms from scratch, only using the Scala core language and standard library
along with the Breeze linear algebra library [152], with the latter already being an
MLlib dependency [173].

Moving the focus of this project towards implementing idiosyncratic sBBO al-
gorithms as opposed to core library functionality was however a grave concern of
mine. To have a chance of giving life to the basic algorithmic facilities of the library
without jeopardizing the project focus entirely, I ultimately owe a lot of thanks to

3.2. Architectural outline 49

Kochenderfer and Wheeler’s [91] lucid code snippets, written in the Julia program-
ming language. The aforementioned code is graciously freely available for re-use
as long as the original source is acknowledged - consider this an acknowledgement
that all of my Scala implementations of sBBO algorithms draw directly from their
example implementations.

3.2.2 Main features

The following is an overview of library core features, with some of them being
motivated by our non-functional requirements of scalability and usability, while
others were more or less inspired by alternative sBBO solutions or design issues
found during development.

Multi-level Parallelism

As previously mentioned, we are interesting in trying to introduce parallelism
when we can, to improve the scalability of our tool, including doing several objec-
tive evaluations or trials in parallel (cf. section 3.1). The library provides several
features for parallelism as per the needs of the application - both the aforemen-
tioned trial parallelism, as well as solve parallelism, i.e. executing several optimiza-
tion runs in parallel, using e.g. different random seeds for each subproblem. In
this sense, parallelism features of the library are marketed as being ”multi-level”.

Yet trying to introduce the right level of parallelism for sBBO workloads, on
top of the parallelism that a Spark cluster already inherently provides, may eas-
ily compound complexities and performance issues already connected to running
Spark queries: be it driver resource bottlenecks, multi-tenant contention for cluster
resources, fluctuating availability of cloud computing resources, task dependency
on specific data partitions making CPU cores non-interchangeable performance
units, bandwidth limits when data needs to be shuffled around on the cluster, or
otherwise [35]. In other words, getting parallelism right becomes a compound-
ing usability issue when the fundamental workload unit is a Spark query. To
ameliorate uncertainty about the ”right” settings, the library furthermore provides
some experimental facilities for dynamically load balanced trial parallelism, monitor-
ing throughput of the application on runtime.

Vertical Transfer Learning

An understandable user concern is the one of having to ”start over”, when e.g.
doing several runs on the same optimization problem with different algorithms,
which is of course even more aggravating when lost progress concerns expensive
computations. Within sBBO research and existing tools, efforts have therefore been
made to support different kinds of transfer learning [14, 101].

50 Chapter 3. Technical contribution

The purpose of transfer learning, as known within sBBO research, is to accel-
erate solving a problem at hand, by reusing previously obtained knowledge about
the same problem (vertical transfer), or a similar problem (horizontal transfer) [63].

Current horizontal transfer learning methods and benefits are highly depen-
dent on individual problems and solution algorithms, with the usual approach
being to incorporate adjacent problem knowledge into an enhanced conditional
distribution for Bayesian optimization methods (cf. section 2.3.6) [14].

A more generally applicable approach is preferred in our library setting, which
supports a generic kind of vertical transfer as one of its most prominent features.
The overall idea is much inspired by the file-based checkpointing feature of Deep
Learning frameworks like Keras, which have had to find a solution for similar user
frustrations with ”starting over”, when doing long-running computations [38].

We simply treat trials as data, logging everything there is to know about them
upon each objective evaluation, and persisting this information to storage in nor-
malized form: design points, objective values, constraint function values, time taken
to evaluate, etc. This TrialHistory in programmatic terms can be reloaded by e.g.
an SBO algorithm to continue where it, or some other algorithm, left off in a previ-
ous run, without any loss of information about the search space. Local algorithms can
similarly benefit by looking for a good initial incumbent point in past evaluation
data. Even relatively rigidly structured algorithms like DIRECT or Nelder-Mead
(cf. sections 2.3.3 and 2.3.4) may benefit from basically treating TrialHistory as a
lookup cache, omitting evaluations of already known points to quickly recapitulate
progress.

Note that this generic way of passing the baton between several solution meth-
ods and subproblem definitions, as opposed to simply restoring the state of indi-
vidual algorithms, is what makes vertical transfer more than a pretentious alias for
”checkpointing” - it operates more generically than what checkpointing in Deep
Learning libraries does, for example [38].

This kind of vertical transfer allows seamlessly chaining different algorithms
together to solve the same problem, using e.g. SBO to find the search space re-
gion with the global minimum, followed by an efficient local optimizer to refine
the solution - such flows are similar to what is called memetic algorithms within
population-based BBO research [125].

Generic General Constraint Handling

In alternative sBBO solutions, I found no ready-made answer on how to provide
efficient, extensible, yet consistent, general constraint handling (cf. eq. (2.4)) in a
library like ours, accommodating all methods and constraint types encountered
within sBBO (cf. sections 2.3 and 2.4.1). From what I’ve seen, the usual design in
alternative tools is either to lock constraint handling into e.g. one specific penalty

3.2. Architectural outline 51

method (e.g. [21]), or to only support general constraint handling on an algorithm-
by-algorithm basis (e.g. [101]). The reason behind this might simply be different
design priorities. This library however ultimately takes it onset in a broader analyt-
ics context (cf. chapter 1), where we cannot ignore the issue of general constraints.

Significant efforts were therefore made to develop a generic approach to general
constraint handling for the library, supporting everything from ”cookie-cutter”
approaches like penalty methods to algorithm-specific ones like filter methods (cf.
section 2.4), while not bothering users about how these methods interoperate with
Spark behind the scenes.

To provide an alternative to dynamic penalty methods less dependent on users
being good at guessing the right penalty magnitudes etc., the library additionally
offers a new constraint handling method, leveraging the aforementioned vertical
transfer mechanism and some SQL for a more data-driven approach: the Historical
Revisionist Method.

Search Space Partitioning

Regarding the issue of providing features for parallel processing, it was mentioned
that the library also supports doing several optimization runs in parallel. Given
that we are trying to solve the same original problem, and we can assume very little
about its internal structure, the question is then what constitutes a subproblem for
parallelization?

For stochastic algorithms, several optimization runs with different seeds is of
course an option, which is a feature that the library provides, due to how simple it
is to support it. This kind of partitioning might however only be ”worth it” for rela-
tively cheap optimization queries with small input datasets, where we don’t worry
about possibly arriving at similar solutions with multiple times the computational
effort.

An alternative avenue for problem decomposition used with BBO at large is
instead based on partitioning the search space: either by splitting up individual
variable intervals, or by optimizing mutually disjunct subsets of variables more or
less independently from one another [125, 107, 194, 191].

Existing techniques for search space decomposition mainly stem from population-
based BBO research, and arguably all have disadvantages with respect to our set-
ting: Current methods either require that the piloting user knows the number of
interacting problem subcomponents beforehand, or require an unbounded number
of extra objective evaluations through custom sampling plans, analyzing problem
structure by perturbing variables, or by building special throwaway surrogate mod-
els [107, 125]. Neither of these types of solutions are ideal with the respect to our
design priorities.

A new dynamic search space partitioning feature is therefore proposed with
the library, requiring no special add-on sampling plans or hyperparameter set-

52 Chapter 3. Technical contribution

tings, based on a combined dynamic/greedy programming approach and e.g. co-
operative game theory (cf section 2.5). Unlike previous attempts at providing such
features (e.g. [191]), ours is very simply based on splitting the search space, con-
ceived as a large rectangle, into a number of smaller rectangles, in the hope of
making the usefulness of partitioning a bit easier to reason about heuristically. We
additionally support doing user-specified search space partitioning, in the event
that users have heuristic reasons for splitting certain dimensions.

On top of this, the level of parallelism used for solving subproblems with these
partitioning features can be limited as per user needs, making search space parti-
tioning orthogonal to the issue of supporting various forms of parallelism with the
library (cf. section 3.1).

3.3 At a first glance

We now move on to an initial illustration of what using the library is like. Consider
the following polynomial toy problem:

minimize
x∈R

x2 + 2x

subject to − 1000 ≤ x ≤ 1000
(3.1)

The algorithmic wizard of the WizardOptimizer subclass of BlackBoxOptimizer,
doing automatic algorithm selection, provides the most high-level way of interact-
ing with the optimization facilities of the library and is therefore a natural place to
start.

It provides an extension method for performing how-to queries on Spark Datasets
in an ad-hoc fashion [112], analogous to a vanilla Spark SQL query, which is used
for solving the problem in eq. (3.1) below:

1 val df = (2 to 2).toDF("a")
2 df.howTo(
3 minimize (expr("x * x + a * x")),
4 subjectTo (-1000.0 <= hcol("x") <= 1000.0) ,
5 forTrials (100) ,
6 withOptions ("deadline" -> (2 minutes))
7).show()

As shown on line 1, each optimization problem assumes an input Dataset, pro-
viding context for the optimization problem at hand. In our toy example, we have
just placed a coefficient to be used in the objective function there in one column,
”a”.

Ultimately, variable assignments of any feasible solution found by the opti-
mizer, along with their associated objective value, will be projected unto the input
Dataset, thus returning a new DataFrame as the output of the optimization run:

3.3. At a first glance 53

1 +---+-------------------+---------+
2 | a| x|objective|
3 +---+-------------------+---------+
4 | 2| -0.9999999982970849| -1.0|
5 +---+-------------------+---------+

Had the algorithm not been able to find any solution, then columns would
simply have been assigned null (in the ”unknown” sense).

Otherwise, configurations on line 3-6 specify, in order: the objective function,
specified as a Column expression here; constraints, where we just declare one
bound-constrained variable with an hcol, i.e. a hypothetical column; the trial budget
for this run; and finally, miscellaneous options, only including an early termination
criterion in this case, based on total processing duration.

We immediately note from the expression on line 3, and the output DataFrame
shown before, that variable instantiation in the library is entirely column-based: I.e.,
the objective expression performs computation on the input DataFrame, expecting
the value of variable ”x” to be a columnar constant ”x”.

Individual variables are hence easy to access by column identifiers. Note that
this design choice in large part stems from the fact that the number of variables
to be handled in sBBO is expected to be no more than maybe a few dozens (cf.
section 2.3.1) - on the other hand, input datasets might contain millions of rows in
our data-intensive setting.

Returning to WizardOptimizer, this is a special subclass of BlackBoxOptimizer,
in that its optimization routine encapsulates calls to one or more other optimizers
in the library suite, selected based on various heuristics regarding the problem
type, cost of evaluating the objective, etc. In our special case, where we notably
just have one continuous variable, WizardOptimizer actually encapsulates a call to
an optimizer implementing the DIRECT algorithm (cf. section 2.3.4), equivalent to
what is shown below:

1 val df = (2 to 2).toDF("a")
2 new DIRECTOptimizer ()
3 .setWhatIfModel(expr("x * x + a * x"))
4 .setVariables (-1000.0 <= hcol("x") <= 1000.0)
5 .setNumTrials (100)
6 .setDeadline (2 minutes)
7 .optimize(df) // Alias of transform (*)
8 .show()

It is now clearer how the library is really just a set of new MLlib Transformer
classes at its core. Equivalent configurations to the previous how-to query syn-
tax are given in line 3-6 here, instead instantiating a Transformer subclass explic-
itly and using setter methods conventional to how other Transformers are config-
ured in MLlib. In BlackBoxOptimizer, optimize(·) is simply declared as an alias of
trans f orm(·), the quintessential abstract method of the Transformer class.

54 Chapter 3. Technical contribution

For reasons given previously (cf. section 3.2.1), all BlackBoxOptimizers are
more or less overtly higher-order Transformers. A more verbose way of achieving
the same thing as in the previous example would have been the following:

1 val df = (2 to 2).toDF("a")
2 val whatif = new SQLTransformer ()
3 .setStatement(""" SELECT x * x + a * x AS objective
4 FROM __THIS__ """)
5 new DIRECTOptimizer ()
6 .setWhatIfModel(whatif)
7 .setVariables (-1000.0 <= hcol("x") <= 1000.0)
8 .setNumTrials (100)
9 .setDeadline (2 minutes)

10 .optimize(df) // Alias of transform (*)
11 .show()

The what-if model, e.g. as configured on line 6 in the previous example, is
important to note as a key library abstraction. At the very minimum, this Trans-
former just calculates an objective value such that the library can find it in the
first row of the column named ”objective” in the output DataFrame (the expected
column name being an overridable default). More generally however, the output
DataFrame might contain all sorts of information in other columns of the first row,
specifying e.g. constraint function values for Simulation-based constraints (cf. sec-
tion 2.4), depending on what is most convenient for the user. The chosen moniker
thus reflects the general role of this Transformer of calculating outcomes based
on hypothetical column assignments, as opposed to just being e.g. ”an objective
function wrapper”.

3.4 The basics

Suppose that we have a mixed-integer bound-constrained sBBO problem (cf. eq. (2.3))
that we want to solve with the library, without any kind of parallelism beyond what
the Spark platform provides out-of-the-box for individual what-if model evalua-
tions. This section covers how the library handles this relatively basic case, only
adding more convoluted issues on top later.

3.4.1 Configuring BlackBoxOptimizers

MLlib Transformers are configured through usage of the Param class, and this
convention extends to BlackBoxOptimizers [167]. The field governing the expected
location of the objective value is for instance declared like this:

1 final val objectiveCol = new Param[String](this , "objective", "
the expected objective column name of the what -if model")

3.4. The basics 55

The second and third constructor arguments are a lookup key, and a user-
directed explanation, respectively. Wrapping what would otherwise have been
”normal” fields into a parameterized Param provides some neat standardized han-
dling across MLlib. Params associated with a Transformer can be operated with
through a HashMap-like API [175]. They can be used for specifying default values,
like so:

1 setDefault(objectiveCol -> "objective")

A setter overriding the objectiveCol field can be specified through lookup, like
so:

1 def setObjectiveCol(value: String): this.type = set(
objectiveCol , value)

The lookup-based approach of using Params come in especially handy when
other optimizers are configured indirectly through WizardOptimizer, as demon-
strated in section 3.3, since Params from different Transformers can be merged with
properly overridden defaults in one fell swoop, with the copyValues(·) method. All
the wizard had to do to configure and run the DIRECT optimizer properly, includ-
ing the deadline etc., was the following:

1 copyValues(new DIRECTOptimizer ()).optimize(df)

In its current form, the BlackBoxOptimizer class contains about 30 Params,
covering common library functionality, with subclasses adding custom algorithmic
configurations, as needed. An effort was made to design this possibly overwhelm-
ing number of options with sensible defaults etc., such that they can generally be
ignored by users who are only interested in the very basics. Only a what-if model,
variable declarations, and the trial budget is mandatory information for running.
We will introduce several more Params as they become relevant to our discussion.

The declaration of variables and their handling is especially important. Out of
the box, the library supports three types of variables: Real, Integral and Categorical,
of which the first two are numeric and the third denotes a sets of String labels. This
array of options was chosen to reflect what other sBBO tools generally provide (e.g.
[21, 127]). A combination of Scala method overloading and extension methods on
numeric types provides the following syntax for declaring variables:

1 df.howTo(
2 minimize (foo),
3 subjectTo (-1000.0 <= hcol("x1") <= 1000.0 , // Real
4 -1000 <= hcol("x2") <= 1000, // Integral
5 hcol("x3") in Seq("a", "b", "c")), // Categorical
6 forTrials (bar)
7).show()

56 Chapter 3. Technical contribution

I tried to make this syntax fit in with the rest of Spark SQL, while making it vi-
sually distinct and avoiding needless verbosity. Normally one refers to columns in
Spark SQL with col(·), and as such, hcol(·)’s are just ”special” hypothetical columns,
instantiated right before what-if evaluation. Reusing standard SQL predicate syn-
tax, e.g. x1 BETWEEN -1000.0 AND 1000.0, was ultimately decided against, for
better writability.

Note that it is mandatory to declare variables together with complete bound
information. Not only is this a friendly nudge for users, to reconsider whether
their domain of interest is truly e.g. the entire range of the Double datatype.

It also enables uniform handling of mixed-integer bound-constrained problems
across the entire library (cf. eq. (2.3)). Ultimately, bound information etc. is aggre-
gated on subclasses of the interface named Variable. By always having bound infor-
mation available here, it is possible for algorithms to simply do optimization in Rn

within the corresponding numeric bounds of the different variable types, while the
library handles Integer and String conversions behind the scenes, whenever a trial
is called for. For a Categorical variable containing three categories, optimization
algorithms can simply send Double values within the [0, 2] interval for evaluation,
for instance. Methods for such conversions are provided on individual Variables,
which are furthermore aggregated on a SearchSpace class instance.

Furthermore, it allows a universal policy of handling mixed-integer bound con-
straints as Unrelaxable constraints (cf. section 2.4.1): If a point proposed by the
algorithm cannot be converted to a value within the domain of interest by library
code, e.g. it deals in negative swimming pool geometry, evaluation simply returns
an infinite objective value without evaluating the what-if model. Note that deal-
ing with these Unrelaxable constraints is generally easy, by e.g. scaling the search
space down to the unit box.

3.4.2 The optimization flow

Whenever optimize(·), or equivalently trans f orm(·), is called by the user or the
optimization wizard, the overall optimization flow runs through three principal
methods: trans f orm(·), solve(·), and minimize(·) to be discussed here in turn. The
first two, implemented in BlackBoxOptimizer provide universal query handling,
while the final one is implemented by algorithmic subclasses, being implementa-
tions of e.g. DIRECT or some other specific algorithm (cf. fig. 3.1).

transform

The responsibility of trans f orm(·) is to provide universal routing required for the
input optimization problem, with subproblem decomposition and multi-threaded
solving taking up the larger part of functionality. We will however ignore these fea-
tures for now. Without any parallelism involved in our limited case, trans f orm(·)

3.4. The basics 57

simply parses a few Params, obtaining e.g. the SearchSpace object from the pro-
vided variables, and delegates all other problem solving to solve(·). By default,
trans f orm(·) also notably caches and uncaches the input Dataset at the default stor-
age level, before and after calling solve(·), respectively. The reason for this is that
the input Dataset will possibly be accessed many times during optimization, mak-
ing caching a likely performance boost.

Finally, trans f orm(·) obtains a number of solution proposals from each sub-
problem handled by calls to solve(·), only one in our case. The optimization run is
thus concluded by trans f orm(·) projecting the best feasible solution and objective
columns among all subproblems unto the input Dataset, if applicable - otherwise
it assigns null values to solution and objective columns, as mentioned previously
(cf. section 3.3).

This way, regardless of whether a feasible solution was found or not, the output
schema of the returned DataFrame is always compliant with the one specified
by BlackBoxOptimizer in its transformSchema, the other mandatory method to be
implemented by Transformer subclasses, needed for compatibility with the MLlib
pipeline system (cf. section 2.1) [168].

solve

solve(·) is given a series of inputs specifying a singular optimization problem to
be solved, including the search space, input DataFrame, information about the
objective, total trial budget for this call, etc.

Its main task is to handle what is arguably the single most important abstraction
used by library internals: a functional closure encapsulating all necessary handling
associated with evaluating the what-if model, known only as the objective(·) func-
tion by optimization algorithms, and therefore known to us as the objective closure
for short.

From a library designer’s viewpoint, the objective closure basically inverts con-
trol back to us from library clients, allowing ”arbitrary code execution” upon each
trial, regardless of what any particular minimizer is doing. The objective closure
leverages the fact that putting a black box inside a black box is a closed operation,
i.e. it yields yet another black box: That is, we can augment the objective function
exactly as we like without interfering with the solution strategy of any algorithm,
providing consistent handling across algorithms in the process.

As an additional leverage point for sBBO in particular, we may reasonably
assume that the objective closure will be treated as an expensive function by library
algorithms, e.g. not to be called asynchronously in an infinite loop, given the core
premise of the library. Doing relatively slow I/O operations and the like within
the objective closure is therefore sometimes a worthwhile possibility.

In our case, solve(·) simply needs to declare the objective closure from prob-
lem information obtained on runtime, call minimize(·) with it, and relay the best

58 Chapter 3. Technical contribution

solution found by minimize(·) to trans f orm(·).
At its core, the objective closure does two things: It hides all details of inter-

facing with Spark from minimize(·), and has the final say about access to what-
if model evaluations according to user-provided termination conditions, e.g. the
maximum trial budget. It is also the final arbiter as to which solution is returned
from the optimization run, logging the best feasible solution found so far - this
way, algorithms don’t need to worry about feasibility at all when looking for new
incumbents.

The objective closure handed over to minimize(·) simply takes an Array of Dou-
bles as input and returns a instance of the Trial class, including information about
the objective value, among other things. When it is time to terminate, the objective
closure will always just return None when called, i.e. a null-like value.

Underneath this veneer, the objective closure utilizes the SearchSpace class to
convert the input Array to values within the domain of interest, e.g. Strings for
Categorical variables. If the caller hasn’t done this already, Categorical and In-
tegral variables are obtained from Double values by rounding - sometimes a con-
troversial approach, but nonetheless one that has proven useful in many practical
applications [51, 120]. As mentioned before, bound constraints are Unrelaxable
library-wide, and we therefore return infinite objective values in the event of any
violation, without accessing the what-if model. In the usual case however, we ob-
tain a Map from column names to literal values, ready for projection unto a Spark
Dataset. The heart of what-if model evaluations looks like this:

1 val row = whatIf.transform(df.withColumns(cols)).head

That is, we call the trans f orm(·) method of the what-if Transformer, with the
variable assignments of the cols Map projected unto the input Dataset df, and re-
trieve the first row. In our simple case, we just need to get the objective value from
the specified objCol column, like so:

1 val objValue = sign * row.getAs[java.lang.Number](objCol)
2 .doubleValue ()

The java.lang.Number roundabout is a way of ensuring that users can return all
sorts of numeric types as objective values without pedantic conversion errors, as
long as they ultimately make sense as Doubles on the JVM platform.

As for the meaning of sign, recall that inverting the sign of an objective function
converts maximization problems into solution-equivalent minimization problems
(cf. section 2.2). While the default of the library is to do minimization, and this
is the functionality offered by implementations of minimize(·), maximization is
supported with a Param toggle and handled by just using −1 as the value of sign
in the objective closure.

Termination conditions, including the trial budget being spent, is also accounted
for through the objective closure. The accountant of the objective closure is an in-

3.4. The basics 59

stance of the BlackBoxBudgeteer class, which at its core is just an interface to an
AtomicInteger, that is, a thread-safe counter [39]. This is used for keeping track of
the trial budget. Access to objective evaluations is controlled by the initial part of
the inline objective closure declaration:

1 def objective(sol: Array[Double]): Option[Trial] =
2 bbb.budgetEnsuredCount ().map{ trialNum =>
3 // what -if model evaluation here.
4 }

That is, before we enter the body of the objective closure, we first ask the Black-
BoxBudgeteer bbb for a valid Trial ID with budgetEnsuredCount(·). If it for what-
ever reason is time to terminate, the aforementioned method evaluates to None,
which in Scala entails that the entire map(·) call will also evaluate to None.

Apart from the trial budget, we also support a few other termination conditions
in the objective closure. We basically just check these upon each trial, inside the
objective closure. For instance, the deadline option seen previously (cf. section 3.3)
is supported by simply starting a timer at the onset of the query, and then doing
the following check inside the objective closure:

1 if (deadline.isOverdue ()) {
2 bbb.terminateEarly ()
3 }

That is, if the user-specified deadline is overdue, we instruct BlackBoxBudgeteer
to return None from now on, whenever access to trials is requested, which is ef-
fectively a signal for minimize(·) to terminate. Note that supporting user-specified
deadlines exactly is difficult, for a number of reasons - we want to terminate pro-
cessing in a well-defined state and not just kill threads in the middle of e.g. doing
I/O to backup progress. We therefore make clear in the user-directed info String
of the deadline Param that deadlines are just checked ”regularly”, and allow re-
maining trials to terminate before stopping the optimization run.

Custom termination conditions, including the shown deadline option along
with options specifying a desired (minimum/maximum) objective value for a run
are all supported through Param options on BlackBoxOptimizer, and are thus com-
mon to all algorithmic subclasses.

Having built the objective closure from all relevant runtime information, solve(·)
passes the baton to minimize(·).

minimize

BlackBoxOptimizer subclasses implement specific sBBO algorithms in minimize(·)
(cf. fig. 3.1), solving minimization problems with possibly any type of method
mentioned in section 2.3.

60 Chapter 3. Technical contribution

Allowing for this level of generality and flexibility imposed some constraints on
how to design the API for algorithmic implementations. Some existing solutions
for sBBO impose very opinionated structures in this regard, requiring implemen-
tation of specific methods representing e.g. propose(·) (cf. algorithm 1) or other
generic building blocks identified for sBBO algorithms [21, 63]. Such designs ar-
guably have the benefit at offering more fine-grained framework-side control of the
optimization process than what this library provides.

For the purpose of this library, which has a relatively broad scope compared to
others, a problem with such design patterns is however that they tend to map more
or less well to different sBBO approaches (cf. section 2.3). For instance, imposing
an API where each algorithm performs one iteration(·), called repeatedly to obtain
a new proposal for evaluation, would work fine for SBO, but is at best a clunky
design for directional and simplicial algorithms (cf. section 2.3.3), which need to
evaluate a set of points within one iteration to work properly - algorithms that are
quite stateful and rigidly structured, like DIRECT for instance (cf. section 2.3.4),
are even more hopeless to fit into any such mold.

At the end of the day, it was therefore decided to design the API for algorithmic
implementation to impose as few restrictions as possible, only imposing structure
indirectly when the objective closure is called from minimize(·).

Note that this design does require a level of cooperation from algorithmic im-
plementers: Once the objective closure begins to return None, signalling that it’s
time to terminate, implementations might read the room and exit the main loop for
termination - or not. For all we know, algorithms might not even do optimization
at all, or even worse, population-based BBO. However, it was ultimately decided
to work under the following assumption:

Design Assumption 3.1 Library clients and developers are consenting adults.

This is a pervasive way of thinking in e.g. the Python ecosystem (and an offi-
cially endorsed analogy not invented by me) [69]. That is, we don’t engage in defen-
sive design, imposing arbitrary restrictions on well-meaning developers, for fear of
getting ”hacked” by e.g. infinite while loops in implementations of minimize(·). In
fact, algorithmic implementers should feel free to ”hack” library facilities as much
as they like, with the invisible hand guiding the most useful solutions to prevail in
the end.

Back to the implementation, minimize(·) is declared as an abstract method in
BlackBoxOptimizer with the following signature:

1 protected def minimize(eval: Evaluator ,
2 ss: SearchSpace ,
3 initialSolution: Option[Array[Double]],
4 history: Option[TrialHistory],
5 seed: Long): Option[Trial]

3.4. The basics 61

The Evaluator encapsulates calls to the objective function, and ultimately paral-
lelizations thereof, to be discussed later. The SearchSpace encompasses all in-
formation about variables of the problem, including e.g. their number, bounds,
types, along with some commonly useful utilities for e.g. converting back and
forth between unit-scale and at-scale design points. To not waste any trials on
out-of-bounds proposals, a minimalistic, but useful approach for algorithms to fol-
low is to do bound-constrained minimization in Rn with this information, leaving
rounding for discrete variable types and other constraint handling to the objective
closure.

The initialSolution is generally speaking a user-specified ”point of interest”: a
possible initial incumbent for Local algorithms, a custom addition to the inter-
polation set for Model-based algorithms, etc. Its impact varies by algorithm. To
conserve resources, algorithms obtaining little to no value from evaluating this
point can therefore potentially choose to ignore it (but they generally don’t in the
standard suite). Initial solutions are enabled by BlackBoxOptimizer Params spec-
ifying either a Map of variable assignments or a Boolean making the library look
for it in the input Dataset inside trans f orm(·).

The role of TrialHistory pertains to the vertical transfer mechanism of the library,
to be discussed momentarily. The seed is the assigned seed for random number
generation for this call to minimize(·), enabling a feature for running the same
algorithm with different seeds in parallel, while enabling reproducible results for
individual runs. sBBO algorithms are commonly stochastic, with DIRECT being
the only exception among algorithms of the implemented suite.

At the generic level, implementations of minimize(·) may use this information
as they please to perform sBBO, using None values returned from trials as a signal
to terminate processing and return the best Trial found, if any, as the proposed
solution, which propagates back to trans f orm(·) for possible projection unto the
input Dataset.

3.4.3 TrialHistory and vertical transfer

The library mechanism for vertical transfer works as an additional layer on top of
the aforementioned flow, and its significance warrants separate discussion.

As described previously (cf. section 3.2.2), the basic idea is to retain information
about all objective evaluations executed so far, so that future optimization runs
can build on top of this instead of starting over. Similar to how checkpointing is
done in e.g. Deep Learning frameworks like Keras, vertical transfer is enabled by
configuring the wizard with a checkpoint directory Param:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),

62 Chapter 3. Technical contribution

5 withOptions ("checkpoint path" -> "my/favourite/path")
6).show()

Or equivalently by using setCheckpointPath(·) on any BlackBoxOptimizer. In doing
so, library code will now intermittently persist Trial records to this directory, and
algorithms may use any existing records to accelerate progress.

Upon each objective evaluation, the role of the objective closure declared in
solve(·) is to save new Trial information in an in-memory buffer, which is written
to the checkpoint path at configurable intervals, or when the minimize(·) run is
over. The idea looks something like this in the objective closure (omitting messy
synchronization handling):

1 historyPath.foreach{ path =>
2 trialBuffer += trial // Buffer new Trial.
3 if (trialBuffer.length >= $(checkpointInterval)) {
4 // Persist to storage , and flush:
5 trialBuffer.toSeq.toDS()
6 .write.mode(SaveMode.Append).save(path)
7 trialBuffer.clear()
8 }
9 }

As indicated by line 5-6, we reuse Spark’s API for handling I/O for conve-
nience, converting records to a Dataset before appending them to the checkpoint
file, which is a Parquet file by default.

From the point of view of minimize(·) implementations, the provided TrialHis-
tory instance is simply an interface, or ”view” in SQL terms, to a series of Trial
records, a case class declared with the following fields:

1 case class Trial(solution: Array[Double],
2 objective: Double ,
3 /* Constraint handling stuff */
4 duration: Option[Long],
5 evaluation: Int) {
6 /* Some instance methods */
7 }

The first two fields contain information about design points and their known
objective values, likely to be used by all algorithms interfacing with TrialHistory.
Note for solution, that we can always convert between Double Arrays and Variable
subtypes in both directions, using the SearchSpace interface. Furthermore, objec-
tive values always reflect the minimization direction, and are thus also in a sense
”normalized” with respect to the original problem representation. The final two
fields are mainly of interest to library internals, saving the total duration taken to
evaluate this Trial point in milliseconds, along with a unique evaluation ID among
all Trial records, as accounted for by the BlackBoxBudgeteer.

3.4. The basics 63

TrialHistory is implemented as another case class, taking a DataFrame loaded
from the checkpoint path as its input, exposed as a Spark Dataset of Trial records:

1 case class TrialHistory(hisDF: DataFrame ,
2 scope: Option[SearchSpace] = None) {
3

4 val trials: Dataset[Trial] = hisDF.select(trialFields:_*)
5 .as[Trial]
6 /* ... */
7 }

While the trials field supports more advanced use cases in minimize(·), basically
allowing ad-hoc Spark SQL queries on the Trial Dataset, the intent is rather that
algorithms should not have to worry about Spark at all, as is also the intent with
objective evaluations. Therefore, TrialHistory exposes a few methods meant to
handle what I would consider to be ”low-hanging fruit” to most sBBO algorithms:
Accessors to all (distinct) Trials, an accessor to the Trial with the best objective
value, and so on.

Duplicate Trials are a possible casuality of e.g. running the same optimizer
in parallel with different seeds, and are best avoided in e.g. interpolation sets
for Model-based sBBO (cf. section 2.3). To preclude such worries, TrialHistory
therefore exposes this method, removing all duplicate points from the returned
collection:

1 def distinctTrials: Array[Trial] = trials
2 .dropDuplicates("solution").collect ()

Model-based algorithms can thus possibly obtain an initial interpolation set. With
an increasing set of records across different calls to minimize(·), such shorthands
can be used in algorithm-specific ways to build further upon what was learned in
previous calls, regardless of which algorithm acted as the learner previously. We
will show a few examples of how this works in practice shortly.

3.4.4 The algorithmic suite

More information about the algorithmic library suite, providing implementations
of minimize(·) are in order, to illustrate how the design presented so far works
in practice, still in our limited case with only bound-constrained mixed-integer
problems (cf. eq. (2.3)) and no parallelism whatsoever.

The implemented algorithmic suite covers a total of 7 core algorithms, or 10
if one counts algorithmic variants separately. As per our emphasis on global op-
timization (cf. eq. (2.4)), 5 of 7 core algorithms are Global methods, while the
remaining two represent directional and simplicial Local methods, respectively.

64 Chapter 3. Technical contribution

Class name Algorithm Scope Strategy Variants
BayesianOptimizer GP-based SBO Global Model-based EI or LCB
CMAESOptimizer CMA-ES Global Direct N/A
DIRECTOptimizer DIRECT Global Direct N/A
LatinHypercubeOptimizer LHS Global Direct Standard or symmetric
MADSOptimizer MADS Local Direct N/A
NelderMeadOptimizer Nelder-Mead Local Direct N/A
RBFOptimizer RBF-based SBO Global Model-based SRBF or DYCORS

Table 3.1: Algorithms implemented in the standard library suite.

Confer table 3.1. Most algorithms are familiar to us from chapter 2. Co-
variance matrix adaptation evolution strategy (CMA-ES) is a popular Global/Direct
algorithm that is much more sample-efficient than its population-based cousins
[91]. Mesh-Adaptive Direct Search (MADS) may be regarded as a state-of-the art
method within directional sBBO [42, 10]. BayesianOptimizer supports GP-based
SBO with either Expected Improvement (cf. eq. (2.29) or Lower Confidence Bound
(cf. eq. (2.28)) auxiliary objectives. RBFOptimizer supports RBF-based SBO based
on the weighted distance merit function (cf. eq. (2.27), with the Dynamic CO-
ordinate Search (DYCORS) variant being an extension fit for higher-dimensional
problems [148]. We support various kinds of LHS as well, with LHS being re-
garded as a ”dummy” Global/Direct optimization algorithm in its own right, as
by other authors [11].

On top of this, we have the WizardOptimizer, basically routing to different
combinations of these algorithms depending on various heuristics.

Due to my apprehensions about jeopardizing the focus of the project by spend-
ing a lot of time on implementing sBBO algorithms from scratch, I ultimately de-
cided not to implement any trust region methods, representing the Local/Model-
based approach (cf. section 2.3.5): I found by vicarious observation that these
methods would be the most complex to implement by a large margin, and that
they were simply not that popular in other solutions, with MADS and Nelder-
Mead instead dominating the Local niche. Still, a trust region approach is ”kind
of” represented by the implemented stochastic RBF variants (cf. section 2.3.6).

We will now go over a few representative examples to show how these algo-
rithms were implemented with the minimize(·) API.

MADS and Local search

MADS is seemingly very influential within sBBO research, even within Global
sBBO benchmarking [13, 148]. Its name stems from the fact that its pattern points
for each iteration are generated stochastically from a grid-like structure, a mesh,
made more or less fine-grained across iterations with the step size parameter, as
per the generic directional framework (cf. section 2.3.3) [11]. In the library imple-

3.4. The basics 65

mentation, MADS handles most transactions with the library API in the first few
lines of code:

1 val rand = new Random(seed)
2 val n = ss.nVars
3 val objective = eval.objective(_: Array[Double])
4

5 // Get initial solution:
6 val init = initialSolution.flatMap { sol =>
7 val fromHis = history.flatMap(_.point(sol))
8 if (fromHis.isDefined) fromHis else objective(sol)
9 }

10 val his = history.flatMap(_.bestTrial)
11 var best: Trial = (init , his) match {
12 // Best from init , his , or a random one generated with ss.
13 }

That is, we obtain the random seed and basic problem information about di-
mensionality and the objective in lines 1-3, from the inputs given to minimize(·).
On line 6-13 we then look for the best possible initial incumbent point, as required
by Local algorithms. We first consider any user-specified point by looking up a
”cached” version in TrialHistory with point(·) (line 7), only evaluating the objec-
tive on cache misses (line 8). Then we look for the best candidate in the input
TrialHistory, if it exists, on line 10. Finally, we pick the best found candidate, or
default to a random bounds-feasible point if nothing better is available, generated
with the input SearchSpace (line 11-13).

Together with a custom termination condition regarding a minimum step size,
MADS keeps an eye on termination conditions by asking the Evaluator if it’s time
to stop before entering the main loop body again:

1 while (!eval.terminate && stepSize > tol) { /* ... */ }

Note that !eval.terminate, conferring with a BlackBoxBudgeteer under the hood, is
designed such that a return value of true guarantees that there is at least one more
evaluation left. By thus always ”looking before jumping”, objective evaluations
can take place with very little notational overhead, simply unpacking the returned
Trial object from the Option monad on line 2 below:

1 val newSol = project(best.solution , stepSize , d) // Line search
2 val Some(newTrial) = objective(newSol) // Objective evaluation

The newSol Double Array will be converted to whatever variable domains these
values correspond to by the objective closure - MADS only works with vectors in
Rn, leaving explicit constraint handling to other parts of the library.

By playing along the gentleman’s agreement of the API (cf. design Assump-
tion 3.1) and leaving explicit constraint handling to the objective closure, MADS

66 Chapter 3. Technical contribution

can thus do its work mostly undisturbed and return the best found Trial whenever
optimization is at an end.

SBO and Global search

In our presented taxonomy, SBO forms the polar opposite to Local/Direct meth-
ods like MADS, and is therefore a natural place to complete our tour of examples
(cf. section 2.3). Using these strategies requires an initial set of sample evalua-
tion, forming a DoE. For this, the library provides the LatinHypercubeOptimizer,
a subclass of BlackBoxOptimizer doing DoEs with different LHS variants.

Note that LHS (with ”S” now denoting ”Search”) can be regarded as an opti-
mization algorithm, in that it is natural to return the best design point in the sample
as a proposed optimum [11] - it is therefore technically a Global/Direct algorithm
in our taxonomy (cf. section 2.3). Of course, due to just being a simple sketch of
the search space, LHS only really shines when combined with other algorithms:
Providing initial incumbents for Local methods (like MADS), or interpolation sets
with good coverage for SBO. For these reasons, it was found best to decouple LHS
from other methods, making it a standalone optimizer in programmatic terms.

The prescribed way of passing the baton from LHS to some other optimizer is
by the library’s standard mechanism for vertical transfer, i.e. using a checkpoint
path:

1 // Configure LHS:
2 val lhs = new LatinHypercubeOptimizer ()
3 .setWhatIfModel(whatIf)
4 .setVariables(vars)
5 .setNumTrials(doeTrials)
6 .setCheckpointPath(path)
7

8 // Run LHS:
9 lhs.optimize(df).show()

10

11 // Pass on problem information to optimizer:
12 val opt = lhs.copyConfigs(new BayesianOptimizer ())
13 .setNumTrials(optTrials)
14

15 // Run SBO:
16 opt.optimize(df).show()

On lines 1-9, we run an initial DoE with a set of problem configurations, includ-
ing a certain Trial budget. On lines 12-13, we use the copyCon f igs(·) shorthand (cf.
fig. 3.1) to pass on all common BlackBoxOptimizer Params (the what-if model etc.)
to a GP-based SBO algorithm, overriding with a new trial budget for optimization
on line 13, before running SBO on line 16.

3.4. The basics 67

Due to BlackBoxOptimizers being MLlib Transformers, we can of course en-
capsulate the above flow in a PipelineModel (cf. section 2.1), if such a shorthand is
desired:

1 val sbo = new Pipeline ().setStages(Array(lhs , opt)).fit(df)
2 sbo.optimize(df).show()

In our case, the call to f it(·) just checks if input and output schemas are com-
patible among steps in the pipeline, which they are here, assuming I didn’t bungle
the definition of trans f ormSchema(·) in BlackBoxOptimizer. PipelineModels be-
ing Transformers, we can add on even more components later, e.g. a problem-
configured MADSOptimizer named mads, to refine the solution obtained from
SBO, forming a custom hybrid algorithm:

1 val hybrid = new Pipeline ().setStages(Array(sbo , mads)).fit(df)
2 hybrid.optimize(df).show()

There is nothing much new to say about how minimize(·) is implemented in
LatinHypercubeOptimizer: Based on its allotted trial budget, it simply generates
its sampling plan within the unit hyperbox, and then uses input SearchSpace utili-
ties to rescale the obtained unit Double Arrays, before passing them to the objective
closure, which handles the rest.

To make the obtained sample suitable for interpolation and avoid bad LHS edge
cases, we borrow a trick I found elsewhere, and generate a number of different
possible sampling plans randomly, until the proposed matrix of sample rows has
full column rank, thus ensuring non-degenerateness with respect to the equational
systems we expect to solve (cf. section 2.3.6) [141, 120].

By a Param option, LatinHypercubeOptimizer additionally supports doing ei-
ther a basic ”classic” LHS, or (by default) a more advanced ”symmetric” LHS,
which ensures better coverage by enforcing symmetry among sample points across
all search space axes [200].

Adaptive sampling strategies utilizing LHS results are implemented in their own
BlackBoxOptimizers. There are two classes for these, RBFOptimizer and BayesianOp-
timizer, corresponding to RBF and GP surrogate approaches, respectively - we use
the more popular term for GP-based SBO to name the class (cf. section 2.3.6).
Params are used to specify which adaptive sampling strategy, auxiliary problem
solver, etc., to use with respect to the chosen surrogate.

Due to their conceptual overlap, the aforementioned subclasses implement
minimize(·) in a similar way. They obtain their initial interpolation set from the
input TrialHistory (assumed present in SBO), which is used for constructing the
initial surrogate model:

1 // Get interpolation set from input history:
2 val Some(prevTrials) = history.map(_.distinctTrials)

68 Chapter 3. Technical contribution

3

4 /* ... */
5

6 // Construct initial surrogate:
7 val X = DenseMatrix(prevTrials.map(_.solution): _*)
8 val fX = DenseMatrix(prevTrials.map(_.objective): _*)
9 val surrogate = new RadialBasis(ss) // Or GaussianProcess

10 surrogate.addPoints(X, fX)

Note that the above snippet is slightly simplified, for current explanatory pur-
poses. We construct Breeze matrices for sample points and their corresponding
objective values (lines 7-8), and use these to construct the initial surrogate on lines
9-10.

After this, the implemented SBO algorithms simply progress within their main
loop, until the BlackBoxBudgeteer relays a gentlemanly termination signal through
the Evaluator. A simplified version of the main loop of BayesianOptimizer looks
like this:

1 while (!eval.terminate && convergenceCheck) {
2

3 // Get k candidate points from adaptive sampling strategy:
4 val proposals = bo.proposePoints(k)
5

6 // Evaluate all candidates:
7 val evals = eval.objective(proposals).flatten
8

9 // Possibly update best incumbent solution:
10 val bestTrial = evals.minBy(_.objective)
11 if (bestTrial.objective < best.objective) {
12 best = bestTrial
13 }
14

15 // Update GP surrogate with new Trials:
16 val (pts , objs) = /* Map evals to Breeze matrices */
17 gp.addPoints(pts , objs)
18 }

As in other algorithms, we ask Evaluator if there are any evaluations left before
iterating further (line 1). On line 7, we then evaluate a number of candidate points
obtained from adaptive sampling and auxiliary solving (cf. section 2.3.6), using an
Evaluator shorthand for evaluating several points in batches (just in sequence for
now). Otherwise, we just update our solution and surrogate information on lines
9-13 and lines 15-17, respectively.

As in the LHS class, adaptive sampling strategies ensure through unit scaling
that new proposals are all bounds-feasible, and we can therefore just feed rescaled
Double Arrays to the objective closure without doing any explicit constraint han-

3.4. The basics 69

dling on our own, of note, without having to worry about numerically unstable
objective values for violating bound constraints.

I am tempted to present a lot of developer notes about how the different classes
encapsulating adaptive sampling strategies and auxiliary solving are implemented
(bo in the previous snippet), as this turned out to be a quite involved programming
task for me. We will however try to stay focused on the big picture here, with
respect to what the library can do within its design space.

One general issue of import with respect to scalability (cf. section 3.1) was
how to handle auxiliary problem solving, an important part of Model-based meth-
ods with many degrees of freedom (cf. section 2.3.6). Namely: how do we best
leverage computational power for this in a Spark application, noting our aspiration
to support parallelism when it makes sense? I found that the answer to a degree
depends on the problem at hand, along with individual algorithmic niches.

RBF auxiliary problems are always solved entirely locally, i.e. on the driver
machine with no Spark queries involved. We just generate a local set of sample
candidates, perturbed around the incumbent solution, and pass them for ranking
by the distance-weighted merit function (cf. section 2.3.6). The reason for this
choice is in part that the ”’officially recommended” number of candidates for SRBF
is only a few hundred, depending on the number of decision variables, making a
full-fledged Spark query at this scale seem like ”overkill” [146, 141].

A relevant alternative to consider might have been to e.g. execute a Spark
query using e.g. UDFs to perturb a large number of candidates on the cluster,
and then retrieve the best ones at the end by aggregation, possibly getting better
auxiliary solutions. The question is however whether solving auxiliary problems
this way on each algorithmic iteration is actually ”worth it” in the general case, if
such a case even exists? That is, we might risk that solving auxiliary problems on
the cluster, doing a lot of I/O etc., takes similar or more computational resources
vs. evaluating the objective, or hogs resources from objective evaluations in other
threads - all for an approximate solution to an approximate problem, looking at
the bottom line.

Handing off non-trivial auxiliary subproblems to remote worker nodes to de-
load the driver node might also end up backfiring - the driver still needs to manage
task completion etc. over the entire course of the likely correspondingly non-trivial
Spark query [35]. On top of this, real-world applications of sBBO have been doing
just fine without solving auxiliaries with cluster computing [11].

At the end of the day, and acknowledging that there really is no universal answer,
I estimated that for many problems, doing Spark queries for auxiliary problem
solving is simply not worth it.

I still decided to tinker a bit with the concept in BayesianOptimizer, however.
GP-based SBO, being a very deliberate method (cf. section 2.3.6), shines in appli-
cations where the objective is massively expensive to evaluate, taking e.g. several

70 Chapter 3. Technical contribution

days to run high-fidelity simulations [57, 142]. In such cases, high-effort auxiliary
problem solving might be worth considering. To solidify this niche of BayesianOp-
timizer, I decided to try out an approach with distributed auxiliary solving with
it. The general idea is to capture the chosen auxiliary objective in a (you guessed
it) functional closure, then execute a large number of differently parameterized
optimization runs on the cluster in parallel, and finally return the best solution(s)
found for evaluation with the real objective function. The number of auxiliary opti-
mizers and the number of solutions desired for evaluation are Param-configurable
hyperparameters in this approach, as per the needs of the application, yet defaults
to 2 · n, based on a similar heuristic found elsewhere [141].

For an auxiliary optimizer, I decided to implement Adaptive Simulated Anneal-
ing from Kochenderfer and Wheeler’s book [91] - it is a variant of the Global/Direct
algorithm mentioned previously, able to adjust important hyperparameters with-
out user intervention (cf. section 2.3.4). To enforce search space coverage, we use
a symmetric LHS to provide an initial incumbent for each auxiliary subproblem,
and different random seeds for each run. In code, the auxiliary optimization query
ultimately looks like this:

1 val optimizer = udf(adaptiveSA(_: Array[Double], _: Double)
2 (auxObjective , searchSpace))
3 val sol = spark.sparkContext
4 .parallelize(initSols).toDF("initial_solution")
5 .withColumn("seed", rand(rng.nextLong ()))
6 .withColumn("res", optimizer($"initial_solution", $"seed"))
7 .select($"res._1".as("solution"), $"res._2".as("objective"))
8 .dropDuplicates("solution")
9 .orderBy(asc("objective"))

10 .limit(k)
11 .getSeq (0)

So, on line 1 we define the auxiliary optimizer with the necessary problem
information in an initial curried parameter list, the algorithm now only expecting
an initial solution array and a seed to run. On line 3-4 we create a DataFrame with
the LHS initial solution Arrays in initSols. Lines 5-6, we add a random Double
to each row as the seed, and parameterize each subproblem accordingly. Lines
7-9, we dissect the result tuple of the UDF, remove duplicate solutions, and rank
them by objective value, having of course inverted the sign when using Expected
Improvement in the closure. Lines 9-10 we return the up-to-k best solutions found,
retrieving the solution arrays from the first row field (zero).

Is it worth it or necessary to solve auxiliary problems this way in a given ap-
plication? It depends on a number of factors, including available cluster resources
over time, how expensive it is to evaluate the actual objective closure and the intri-
cacy of the underlying optimization problem.

3.4. The basics 71

3.4.5 The optimization wizard

We conclude our discussion of the basics with a few more details on how the op-
timization wizard, including the how-to syntax, works. Unlike other subclasses of
BlackBoxOptimizer, WizardOptimizer overrides BlackBoxOptimizer’s trans f orm(·)
method (cf. fig. 3.1), thus routing to optimize(· · ·) calls of different BlackBoxOpti-
mizers instead of solve(·) calls of different subproblems.

The sorcerous moniker is meant to convey that this algorithm, like an installation
wizard, essentially guides the user through a predetermined array of options. It helps
the user select among algorithms of the standard library suite with a fixed control
flow, and is not implemented with extensibility in mind.

In an alternate approach, one might have provided hooks for adding user-
defined solution strategies or selection criteria on the WizardOptimizer class. These
could then be used for assigning priorities or costs with respect to input problems
for trans f orm(·), and going with the best strategy in the end. However, I ultimately
decided to prioritize other development challenges than making an extensible meta-
optimizer, based on the YAGNI principle - that is, at a stage of development where
we verily only have the algorithms in this library suite available, ”You Ain’t Gonna
Need It” [84].

The resultant niche of WizardOptimizer is to provide a quick-and-dirty solu-
tion for people not interested in the small stuff. The list of factors considered in
trans f orm(·) includes:

1. What is the number of variables?

2. Are all variables real-valued?

3. Is the problem generally constrained?

4. What is the total evaluation budget?

5. Can we use a checkpoint path for vertical transfer?

6. Is an initial solution available?

7. Can we expect infinite objective values?

8. Is the objective very expensive to evaluate?

9. Can we chain several optimizers while complying with a deadline?

These are assessed directly from problem configurations, by examining any non-
empty TrialHistory (e.g. for item 8), or by making decisions based on on runtime
performance (item 10). The flowchart of fig. 3.2 provides an outline of how algo-
rithmic choices are made.

72 Chapter 3. Technical contribution

Figure 3.2: An outline of how the wizard picks one or more suite algorithms to handle an input
problem. Not depicted here, the wizard will stop chaining algorithms if an input deadline has
already passed.

For the secondary purpose of demoing the capabilities of the entire suite through
the wizard, using e.g. MADS and RBF-based SBO for everything would be a boring
magic trick. When the user specifies an initial solution, we will therefore (some-
what questionably) assume that they are interested in a local optimum and route

3.4. The basics 73

to either Nelder-Mead or MADS depending on item 2 and 7, with MADS being
preferred for handling discrete and infinite values.

If the answer to item 5 is no or the answer to item 7 is yes, then we ”cannot
possibly” rely on SBO. If the problem is solely a lack of checkpointing, and the
answer to item 2 is yes, then we use DIRECT (spuriously correlating ”real” with
”continuous” for demo purposes). We otherwise employ a hybrid strategy, where
we find an initial solution with an LHS, and let MADS improve it - this Global/Di-
rect flow is called the two-phase extreme barrier strategy in literature (cf. section 2.4)
[11].

Otherwise, we do SBO with an initial LHS, possibly with final solution refine-
ment by MADS, if SBO converges and a possible input deadline allows it (item
10). We only prefer Bayesian Optimization if the objective is ”very expensive”
(more than 2 seconds to evaluate on average) and there are less than 20 variables
involved (item 1) - otherwise we prefer the more light-weight RBFOptimizer, using
the DYCORS variant [148] to handle the high-dimensional case. As for the DoE
budget, we merge a few known heuristics and allocate max(2 · (n + 1), b

3) for it,
where n is the number of problem dimensions and b is the total evaluation budget.
That is, for safe interpolation, we allocate at least approximately twice the number
of dimensions [120], and possibly up to a third of the total budget, if available, for
better overall search space coverage [57].

The how-to syntax, designed to mimic what users might expect from Spark SQL
[35], is supported by an extension method on the DataFrame class, provided through
a Scala implicit class. The idea of supporting how-to queries this way was to make
their impact on one’s existing Spark configuration as small as possible, without re-
quiring e.g. special syntactic and/or semantic extensions. The method takes case
classes as input to disambiguate the different cases:

1 implicit class WizardImpl(df: Dataset[_]) {
2 def howTo(maximin: Maximin[_],
3 st: subjectTo ,
4 ft: forTrials ,
5 wo: Option[withOptions] = None): DataFrame = {
6

7 val wiz = new WizardOptimizer ()
8 confWhatIf(wiz , maximin)
9 confsubjectTo(wiz , st)

10 wo.foreach(confOptions(wiz , _))
11 wiz.setNumTrials(ft.num)
12

13 wiz.optimize(df)
14 }

That is, we use pattern matching on subtypes of the different input classes (line

74 Chapter 3. Technical contribution

2-5) to configure the wizard on lines 7-11 before running the previously described
algorithm selector in optimize(·) on line 13. forTrials as a case class exists solely to
not break the pattern in the resultant query syntax.

3.5 Generic general constraint handling

We now relax the assumption that we are only dealing with bound-constrained
mixed-integer problems (cf. eq. (2.3)). As demonstrated so far, such constraints
can be handled simply and efficiently by the library, by using some combination
of unit scaling, bounds checking and rounding, requiring little to no situational
awareness in implementations of minimize(·). While we strive for a similar level
of indirection, the implemented handling of general constraints, modelled with
equalities and inequalities with respect to zero (cf. eq. (2.4)), is more involved and
therefore discussed here separately.

3.5.1 Constraint declaration and Spark Predicates

In the library, general constraints are declared very similarly to how predicates
are declared in Spark SQL. In vanilla Spark SQL, one might for instance write a
WHERE clause like this in a spatial query [88, p. 88]:

1 df.select(col("distance"), col("origin"), col("destination"))
2 .where(col("distance") > 1000)
3 .orderBy(desc("distance"))

In programmatic terms, the WHERE clause on line 2 is specified by passing an
object of type Column to the where(·) method [40]. In fact, all method arguments in
the previous example are Columns: It is the fundamental type for all user-specified
building blocks in Spark SQL queries, from literals to column aggregations [88].

During compilation of Spark SQL queries, Column objects are parsed to Ex-
pressions, which is the type that the Catalyst optimizer works with internally [35].
The Column argument on line 2 in the previous example is parsed to a GreaterThan
Expression.

For people familiar with compilers and abstract syntax trees, Expressions are
predictably tree-structured: In our example GreaterThan tree, an Expression sub-
type corresponding to col(”distance”) forms a left sub-tree, while an Expression
subtype corresponding to literal 1000 forms a right sub-tree. All Column expres-
sions denoting Boolean conditions in Spark SQL are parsed to subtypes of Predicate,
a subtype of Expression.

The library reuses Spark’s Column and Expression class hierarchies, to make
general constraint declaration easier to learn and extend for users familiar with
standard Spark SQL, while leveraging Spark’s abilities as a compiler to provide
efficient handling without reinventing the wheel.

3.5. Generic general constraint handling 75

From a user’s point of view, Column is the expected type for specifying gen-
eral constraints. These constraints refer either to the input or the output of the
what-if model trans f orm(·) method - the input being the input DataFrame with
concrete variable assignments projected unto it, and the output being whatever
DataFrame the what-if Transformer returns. Query specification explicitly disam-
biguates whether e.g. a column named ”x1” refers to a column in the what-if input
or output:

1 df.howTo(
2 minimize (foo),
3 subjectTo (inputs(expr("x1 + x2 >= 0"),
4 $"x1" + sum($"a") <= 42),
5 outputs($"x1" + sum($"a") <= 42,
6 someUDFPredicate($"x1")),
7 -1000.0 <= hcol("x1") <= 1000.0 ,
8 -1000.0 <= hcol("x2") <= 1000.0) ,
9 forTrials (bar)

10).show()

For the MLlib Transformer API, one equivalently uses the setInputConstraints(·)
and setOutputConstraints(·) setters to declare these constraints. We specify a total
of four constraints here, two on the input, and two on the output of the what-if
transformation. Satisfying the constraints on line 4 and 5 may or may not coin-
cide for a given design point, since e.g. input column ”a” may have turned into
something else after what-if evaluation.

Referring to variable columns as shown (i.e. without aggregation) implicitly
uses the f irst(·) SQL aggregator on the DataFrames. Recalling that variable as-
signments elicit columnar constants (cf. section 3.3), this allows specifying simple
arithmetic constraints like the one on line 3 without tediously having to write e.g.
”first(x1) + first(x2) >= 0”. The constraints on line 4 and 5 illustrate how it is simi-
larly possible to refer to a mix of aggregations and variable references.

Note that since we reuse Column from Spark SQL, there is a lot of flexibility
for how to specify constraints: One can use any function built into Spark SQL (e.g.
trigonometric or datetime functions), UDFs (as shown on line 6 above), custom
subtypes of Column, or whatever is the most expressive tool.

Also, note that any lack of desired expressivity with the shown Column syntax
is likely covered by including a PipelineModel stage for calculating the trouble-
some constraint value in the what-if model, and include it in the final output to be
assessed with an output constraint.

The distinction between input and output constraints is included for the sake of
convenience, since it is deemed likely to vary how easy it is to specify a particular
constraint with either type. Simple constraints on arithmetic relationships between
variables are likely more naturally specified as input constraints, while constraints
requiring complex application logic or partial results from objective evaluations to

76 Chapter 3. Technical contribution

assess are likely more naturally specified as output constraints.

3.5.2 High-level overview

Before digging into specifics, a few high-level notes on what needs to be accom-
plished with the library to support common constraint handling methods (cf. sec-
tion 2.4) are in order.

First, we need to convert the user-provided Column instances, which are to be
regarded as Boolean predicates, into a form where we can ultimately assess the
violation value (cf. eq. (2.5)) for each constraint, to be used within e.g. penalty
functions (cf. section 2.4).

Second, we need to incorporate feasibility checks into the optimization process.
This is done through the objective closure, computing each constraint function
value based on design points, while making sure that all relevant feasibility infor-
mation is reflected in Trials used for return values to minimize(·) and for vertical
transfer.

For these two issues, we leverage the internal Expression format of Catalyst,
but also Catalyst’s status as an expression interpreter [52], to elide Spark queries
for simple arithmetic input constraints entirely.

As the third issue, we need to support constraint handling strategies in a way
that is extensible to both existing general approaches (cf. section 2.4, essentially
structured around doing several calls to minimize(·) during a call to solve(·), while
allowing for individual algorithms to override library defaults and provide any de-
sired custom handling in e.g. minimize(·). We accomplish this with (you guessed
it) a functional run closure encapsulating the objective closure, providing a sub-
problem handle for e.g. penalty and barrier methods.
These three issues are discussed in order next.

3.5.3 From Columns to constraints with Catalyst Expressions

When users more or less overtly set the BlackBoxOptimizer Params corresponding
to input and output constraints, the first thing that happens is a parsing step. For
output constraints, the setter looks like this:

1 def setOutputConstraints(value: Column *): this.type = {
2 val (eqs , ineqs) = getPenalties(value.toArray)
3 set(outEqConstraints , eqs)
4 set(outIneqConstraints , ineqs)
5 }

Method getPenalties(·) parses the input Columns, evaluating to Booleans, to
a set of alternate Columns instead evaluating to Doubles, denoting degrees of
(in)feasibility. As a part of this step, we make sure to separate equality (eqs)
from inequality (ineqs) constraints, since they require different handling by existing

3.5. Generic general constraint handling 77

methods (cf. section 2.4). While there are exceptions to the rule, input constraints
are parsed similarly.

Zooming in on how each individual constraint Column is handled, pattern
matching on the underlying Spark Expression, accessed by the expr field on Col-
umn, is used to identify and handle the different cases:

1 pred.expr match {
2 /* Rewrite to canonical form first: */
3 case Not(LessThanOrEqual(l, r)) => /* Recursion */
4 /* Etc... */
5

6 // Inequalities:
7 case LessThanOrEqual(l, r) => /* Handling */
8 case GreaterThanOrEqual(l, r) => /* Handling */
9 case LessThan(l, r) => /* Handling */

10 case GreaterThan(l, r) => /* Handling */
11

12 // Equalities:
13 case EqualTo(l, r) => /* Handling */
14 case EqualNullSafe(l, r) => /* Handling */
15

16 // Default fallback:
17 case _ => /* Handling */
18 }

So, as indicated on lines 2-4 there is an initial rewriting step in which we un-
wrap wholesale negation by rewriting the original pattern and recurring on the
new one. In the shown case on line 3, we rewrite ¬(l ≤ r) to l > r, for instance.

As for the remaining cases, recall that all constraint functions can be expressed
canonically with either equalities or inequalities with respect to zero (cf. eq. (2.4)).
We ultimately want to be able to calculate violation values based on this framework
(cf. eq. (2.5)).

A naive approach to accomplish this would be to implement the rule on line 7
as follows:

1 case LessThanOrEqual(l, r) => new Column(l) - new Column(r)

That is, if we wish to quantify how far l ≤ r is from being satisfied with
a zero-based inequality, we can construct a new compound Column expression
subtracting r from l, since l ≤ r ⇐⇒ l − r ≤ 0. We can implement similar
quantitative rewrites of the original Boolean expressions for the other cases.

The reason why the above handling is deemed ”naive” is that not all input
Columns can be safely rewritten to such quantifiable forms, i.e. they ultimately
denote Unquantifiable constraints (cf. section 2.4.1).

Not all (in)equalities are straightforwardly Quantifiable: Consider for instance
operator overloads for String comparisons, also available in Spark SQL - unless we

78 Chapter 3. Technical contribution

engage in ”creative” interpretations of e.g. the Levenshtein distance on behalf of
unsuspecting users, we cannot simply quantify a String inequality le f tString ≤
rightString with le f tString− rightString. At best such rewrites might raise a few
eyebrows, and at worst they elicit runtime errors. Any user-defined operator over-
loads might lead to similar issues. On top of this, there is of course the case where
the user doesn’t even use (in)equalities to express constraints. They might just e.g.
provide some UDF predicate, evaluated to true or false. To handle such cases, we
have a default fallback option:

1 val default = (!pred).cast(DoubleType)

That is, we negate the Boolean value of the original Column expression pred,
and regard is as a Double. Upon evaluation, we thus obtain 0.0 when the con-
straint is satisfied and 1.0 when it is violated. Note that this signifies rewriting
to a canonical equality constraint (cf. eq. (2.4)), since pred ⇐⇒ ¬pred = 0, for
Boolean values evaluated to 1 or 0. This approach of course comes at the cost of
quantifiability for guiding optimization, and we will therefore prefer something
quantifiable, if we can.

As implemented, we fall back on the above default when the user doesn’t use
(in)equalities. When the user does use these operators, we utilize a combination of
SQL coalesce(·), Spark UDFs, and Scala pattern matching to disambiguate quan-
tifiability. For instance, the LessThanOrEqual case is handled as follows:

1 case LessThanOrEqual(l, r) =>
2 coalesce(leqV(new Column(l), new Column(r)), default)
3

4 val leqV = udf((l: Any , r: Any) => (l, r) match {
5 case (l: java.lang.Number , r: java.lang.Number) =>
6 Some(l.doubleValue () - r.doubleValue ())
7 case _ => None
8 })

We thus only assume quantifiability when the operands are numeric JVM types,
and otherwise fall back on the default option. leqV (”V”’ is for ”Violation”) will ei-
ther evaluate to a feasibility quantifier on numeric types or null-coalesce to the de-
fault option of rewriting to an Unquantifiable equality constraint in canonical form.
In doing this rewrite with coalesce(·), re-using the original comparison operands
at different steps, we rely on Spark SQL not eagerly re-evaluating e.g. the same
expensive aggregation expression twice [35].

The reason for using such an arguably convoluted solution stems from the
fact the we are engaging with Spark internals on a purely syntactical level here,
and that Spark is (sometimes unfortunately) very extensible. We don’t know the
runtime type of any operands of the comparison operators, and type information
of identifiers, UDFs and built-in functions (e.g. pow(·)) alike, are unresolved at this
point. What we are making is essentially a ”macro” substitution, with all missing

3.5. Generic general constraint handling 79

type information to be resolved in the runtime SparkSession context.
Nonetheless, on the bottom line, we can convert any set of Boolean-valued Col-

umn expressions to a corresponding set of new Column expressions, representing
general constraint functions in canonical form.

3.5.4 Constraint function evaluation

Constraint function evaluation is handled by the objective closure, as defined by
relevant runtime information in solve(·) (cf. section 3.4.2). Upon each trial, the
objective closure will ensure that any relevant Column expressions signifying con-
straint functions are evaluated with respect to the what-if input and/or output
DataFrame, and that all constraint function values are provided as vectors on the
generated Trials.

A few overarching design choices for constraint function evaluation with re-
spect to the QRAK taxonomy (cf. section 2.4.1) should be noted before going into
implementation details, the issue of quantifiability already having been discussed
in the previous section.

It is important to note that the library assumes that all constraints besides
bound constraints are Relaxable (cf. section 2.4.1). That is, besides ensuring vari-
able domains, we generally don’t try to arbitrate meaningfulness on behalf of users:
We just evaluate the objective and constraint functions as provided and leave their
resultant values to the individual constraint handling strategy.

We take the same stance on Hidden constraints, only known through crashes or
anomalous behavior, since it is similarly impractical to make guesses on intended
behavior or arbitrate the meaningfulness of ”2.6” system-side.

As for a priori vs. simulation constraints, we don’t try to elide what-if model
evaluations on the basis of e.g. input or A Priori constraints being violated either
(cf. section 2.4.1). In our library setting, we are generally interested in retending
all Trial information across several runs, to support vertical transfer.

Back to how constraint functions are handled in the objective closure - in the gen-
eral case, we put our normalized constraint function Columns into Array Column
expressions, and evaluate them in Spark queries, obtaining one Double Array of
constraint function values for inequality and equality constraints, respectively. For
the output constraint Columns, we first construct a Map like this:

1 val outPenMap = Map(eqCol -> $(outEqConstraints),
2 ineqCol -> $(outIneqConstraints))

Where eqCol and ineqCol are just some unique column names, and the attached
values are Column expressions encapsulating all parsed constraint function Col-
umn expressions in a Spark Array. We can ultimately evaluate all output constraint
functions together with the objective value of the what-if model like this:

80 Chapter 3. Technical contribution

1 val row = whatIf.transform(df.withColumns(cols))
2 .withColumns(outPenMap)
3 .head

From this row, we can obtain e.g. the Array of inequality constraint values like
so:

1 val ineq = row.getAs[Seq[Double]](ineqCol).toArray

Such Arrays of constraint function values are ultimately aggregated on the Trial
class, and are thus available for various useful applications library-wide.

We can similarly handle input constraints by doing a separate query on the what-if
input DataFrame, and so on:

1 val inPens = df.withColumns(cols).withColumns(inPenMap).head

However, this approach for handling input constraints feels bad for several
reasons. First, note that DataFrames are immutable. This entails that we might
wastefully do non-trivial calculations with identical results as many times as we
do Trials in a run. For a non-variable column ”a”, we might therefore for instance
recalculate sum($”a”) in an input constraint over and over for a huge input Dataset.

Another reason why this feels bad is that, unlike the output constraint vector
retrieved in the same query as the objective, we are executing a separate Spark
query with its own overhead to evaluate input constraints - firing up powerful
computational artillery to evaluate expressions like e.g. x1 + x2 >= 0 seems espe-
cially wasteful.

To handle this problem, I was inspired by the Python optimization library
known as Mystic [121], which offers relatively elaborate constraint handling. One
such facility is the one of symbolic constraints, which are user-provided algebraic
String expressions like ”x1 + x2 >= 0”, evaluated by an interpreter to assess feasibil-
ity.

Luckily I didn’t have to write an interpreter from scratch, since Spark SQL
already has a quite capable one: Catalyst can evaluate simple Expressions without
involving any Spark sessions or queries, using the eval(·) API [52]. We might for
instance write:

1 expr("2 + -2 >= 0").expr.eval()

Which returns a value of true. Note however that we are quite limited in what
we can do here: Without any Spark session or end-to-end query processing in-
volved, there is namely no symbol table of user-specified identifiers available, pre-
cluding the usage of column names, UDFs, and the like. We can basically only use
literals along with the suite of Spark SQL built-in functions and operators (like e.g.
<= and pow(·)).

We can however in many cases precompute partial results, e.g. aggregations and
UDF calls, once and for all, in a single Spark query, and graft them unto the original

3.5. Generic general constraint handling 81

Expression tree as literals. This elicits new Column expressions from the parsing
phase, which are primed for constraint evaluation with Catalyst. Further substitut-
ing variable references with literals in the objective closure, we can evaluate input
constraints with eval(·), i.e. without executing any Spark queries. This general
idea outlines the approach followed in the implementation.

Before venturing any further, it should be acknowledged that our usage of
Catalyst as a symbolic constraint interpreter deviates from its originally intended
purpose, debugging during development [52], by a significant margin, and could
thus be regarded as a tad ”abusive”. Nonetheless, within the context of this being
a mere student project for learning purposes, I decided to go in this direction, to
have some fun with the concept without e.g. having to write a feature-complete
Spark SQL interpreter from scratch.

The first step of providing Catalyst interpretation of input constraints is to
figure out which input constraints can actually be handled this way. Note that we
can potentially precompute aggregation and UDF values during parsing in a single
”normal” Spark query, but only if we know the column arguments beforehand -
this is not the case for variable columns, which are only instantiated upon objective
evaluations. As the first step of input constraint parsing, we therefore separate the
wheat from the chaff, based on which strategy is appropriate:

1 val (resInCts , unresInCts) = inCts.partition(c =>
2 isSingleQueriable(c.expr , vars , builtins))

That is, we partition into resolvable and unresolvable input constraints based
on the isSingleQueriable predicate. Resolvable constraints can be handled by Cata-
lyst, while we fall back on the previously shown default handling strategy for the
other kind.

isSingleQueriable is called with the underlying Expression of the user-provided
Column constraint, the array of decision variables, along with a symbol table of
Catalyst-interpretable Spark built-in functions, obtained from the SparkSession.catalog
field [132]. In words, the aforementioned predicate simply checks whether there
are any variable column references in arguments of non-built-in functions or ag-
gregations. This is done by recurring down the Expression tree and disallowing
variable column references in e.g. UDF sub-trees:

1 case e: UnresolvedFunction if !(builtins contains e.prettyName)
=>

2 e.children.forall(isSingleQueriable(_, vars , builtins ,
varsAllowed = false))

In this case, we just check whether the function name, as used in e.g. expr
Strings, refers to a non-built-in, and if yes, then no sub-tree may contain variable
references, since we ultimately cannot evaluate such expressions outside of a Spark
session. A limitation in this approach is of course that we assume that users don’t

82 Chapter 3. Technical contribution

have a habit of defining new methods named e.g. ”pow” taking three strings, or
similar - Spark is indeed very extensible, which can also be a design challenge.

We do the same thing for AggregateExpressions, i.e. aggregations. Doing ag-
gregations over constant columns might seem a bit ”weird” in the first place, but
we nonetheless aim for consistency.

Constraint Columns compliant with the aforementioned rules are subsequently
converted into new Column expressions, in which we basically precompute sub-
trees not containing references to variables or built-ins and replace the original
subtrees with Literal Expressions. This pre-computation happens once during run-
time, within the context of the SparkSession attached to the input Dataset.

We first find the Expression subtrees in need of precomputation, including
aggregations, UDF calls, and references to non-variable columns:

1 val toResolve = constraints.map(c => unresolvedSubtrees(c.expr ,
vars , builtins))

These Expressions are then converted into valid Columns to be retrieved in one
fell-swoop Spark query on the input DataFrame:

1 val graftExprs = toResolve.map(graftArr)
2 val row = df.select(graftExprs:_*).head

A bit later, we have obtained mappings from the original Expression subtrees
to their pre-computed Literal equivalents, which are then used for simplifying all
relevant subtrees, and obtaining a new Column expression for all resolvable input
constraints:

1 val grafts = (constraints zip graftMaps)
2 .map{case (c, gMap) => new Column(graftedExprTree(c.expr ,

gMap , vars))

To summarize, when we are dealing with input constraints like $"x1" + sum($"a")
<= someUDF(42), we can simplify them to Column expressions like e.g. $"x1" +
9001 <= 84 during parsing as shown above, doing the usual penalty function con-
versions with coalesce etc. afterwards (cf. section 3.5.3).

Then we can evaluate these constraints separately upon each trial in the objec-
tive closure, by interpretation with Catalyst, after having substituted in concrete
variable assignments as literals. With the concrete variable assignments given in a
Map named graft, constraint evaluation with the Catalyst interpreter looks some-
thing like this:

1 instantiatedTree(constraint.expr , graft).eval()

This procedure notably doesn’t involve wastefully recalculating results or the
overhead of executing an end-to-end Spark query.

3.5. Generic general constraint handling 83

3.5.5 Supporting constraint handling strategies

So far, it has been described how we obtain separate vectors containing constraint
function values for canonical equality and inequality constraints, aggregated on
each completed Trial. They are not worth the hassle without a constraint handling
strategy to leverage them, however.

As mentioned in the relevant background section (cf. section 2.4), some con-
straint handling techniques are idiosyncratic to individual algorithms, while others
strive for a higher level of abstraction. My aim was to accommodate both ap-
proaches in the library, thus making it possible for implementations of minimize(·)
to do whatever is desired with Trial feasibility information retrieved from the ob-
jective closure, while also supporting implementations that basically only inspect
the objective field on the Trial class and delegate general constraint handling to a
generic strategy.

Note that both barrier and penalty methods require running the same optimiza-
tion algorithm several times in a sequence of subproblems with different settings
regarding some penalty function (cf. section 2.4). Implementation-wise, a consis-
tent, extensible way of incorporating such subroutines into solve(·) was needed,
while not imposing forced choices on implementers preferring to keep constraint
handling inside minimize(·).

To support methods structured around doing several optimization runs, we
therefore declare a run closure in solve(·), with the following signature:

1 def runClosure(initSol: Option[Array[Double]],
2 penalty: ObjectivePenalizer ,
3 runBudget: Int): Option[Trial]

This closure takes an initial solution, a penalty function, as well as a prescribed
trial budget for this run. The penalty function calculates a penalized objective value
from the raw objective value along with two feasibility vectors. The run closure is
actually the method that calls minimize(·), and will ultimately return the best Trial
found by one such call. The body of the run closure does a few important things
related to constraint handling.

It relays the current penalty measure (including its magnitude) to the objective
closure of the run, such that the objective closure will penalize all Trials returned to
minimize(·) accordingly, allowing the latter algorithms to interface with the prob-
lem as an unconstrained one. The objective closure calculates the objective field of
the returned Trial from the raw objective and feasibility vectors like so:

1 val penalizedObj = penalty(objValue , eqPen , ineqPen)

For the TrialHistory provided as input to minimize(·), the run closure also repro-
jects all Trials seen so far, such that the objective field, inspected by most algorithms,
reflects the current penalty measure. We accomplish this with a UDF:

84 Chapter 3. Technical contribution

1 val penUDF = udf(penalty)
2 val projObj = penUDF(col("rawObjective"),
3 col("eqPenalties"),
4 col("ineqPenalties"))
5

6 val runHistory = getHistory(spark , historyPath).map{ his =>
7 TrialHistory(his.trials.withColumn("objective", projObj))
8 }

As shown on line 2 and 7, Trials actually have fields for both a ”raw” (i.e.
unpenalized) objective value and a penalized value, ”objective”, making it possible
for algorithms to use both separately, if needed. When algorithms thus inspect the
objective field of a returned Trial from the objective closure, it reflects any current
measure of penalty.

Note also how we on line 6 actually reload the TrialHistory as a new DataFrame
from the checkpoint path - this is done such that e.g. Model-based algorithms can
interpolate all Trials seen across all runs with different penalty measures, and thus
make incremental progress without wastefully reevaluating the same points again.
If we didn’t do this, algorithms would only see Trials in the DataFrame loaded
initially in trans f orm(·), due to the immutability of Datasets.

In solve·) the run closure is finally passed on to a SolutionStrategy, which de-
cides what to do with it. Instances of this class implement penalty methods, barrier
methods and the like, utilizing the run closure and other relevant information. Pre-
ferred constraint handling strategies are specified through a Param, looking up in
an extensible catalog of SolutionStrategy’s aggregated on BlackBoxOptimizer, like
so:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),
5 withOptions ("constraint handling" -> "penalty method")
6).show()

Through overriding, each concrete subclass can add or remove strategies from
the catalog Map, based on their merits, e.g. the extreme barrier method might not
be the best choice for Model-based optimizers, but is a good choice for MADS [11].

solve(·) kicks of optimization by calling the run(·) method of the preferred So-
lutionStrategy. The simplest solution strategy does nothing to enforce feasibility -
we call this strategy LaissezFaire, and its run(·) method is declared like so:

1 override def run(initSol: Option[Array[Double]],
2 minimize: RunClosure ,
3 history: => Option[TrialHistory],
4 solveBudget: Int): Option[Trial] = {

3.5. Generic general constraint handling 85

5 minimize(initSol , noPenalty , solveBudget)
6 }

So, the method is relayed any initial user-specified solution, the run closure
(calling minimize(·), with some housekeeping on top), a TrialHistory handle (if
needed), along with the total evaluation budget connected to the calling instance of
solve(·). While budgetary matters are mostly relevant when running with paral-
lelism, note that different calls to solve(·) get their own piece of the total evaluation
budget specified by the user. It is the grown-up responsibility (cf. design Assump-
tion 3.1) of SolutionStrategy’s to decide what to do with the assigned solveBudget.
As seen on line 5, LaissezFaire just spends the entire thing on a single call to the
run closure, returning the result.

noPenalty(·) is sort of a dummy implementation of a penalty function, in that
it just relays the original objective value without modifying it:

1 def noPenalty(objective: Double ,
2 eq: Array[Double],
3 ineq: Array[Double]): Double = objective

The purpose of LaissezFaire is simply to provide a baseline for algorithms im-
plementing their own custom constraint handling in minimize(·), and to demon-
strate the basics in this document, of course.

More interestingly, a basic penalty method approach (cf. section 2.4) is im-
plemented in the PenaltyMethod class. It divides the total budget into a Param-
configurable number of bins, and proceeds to call minimize(·) in a loop, using a
configurable penalty function of varying magnitudes:

1 for (budget <- budgets; if !feasible || hasHistory) {
2 val currentPen = penalizer(magnitude)
3 res = minimize(x, currentPen , budget)
4 x = res.map(_.solution)
5 magnitude *= magAdjustment
6 feasible = res.exists(_.isFeasible)
7 }

As shown on line 1, it terminates this process once it has found a feasible solution
(!feasible), as per tradition for penalty methods (cf. section 2.4) - unless we are
running with vertical transfer on (hasHistory), in which case we have ”nothing to
lose” from trying to improve the solution further.

The initial magnitude and adjustment factor magAdjustment are configurable hy-
perparameters, with default values 1.0 and 2.0, respectively. PenaltyMethod has
its own catalog of penalty functions, all parameterized with a magnitude. The
quadratic penalty is for instance implemented like this:

1 def quadraticPenalty(objective: Double ,
2 eq: Array[Double],
3 ineq: Array[Double])

86 Chapter 3. Technical contribution

4 (magnitude: Double): Double = {
5 val eqPen = eq.map(vi => pow(abs(vi), 2)).sum
6 val ineqPen = ineq.map(vi => pow(max(0, vi), 2)).sum
7 objective + magnitude * (eqPen + ineqPen)
8 }

As seen on line 3 here, and line 2 in the PenaltyMethod snippet from before,
we use a separate parameter list to instantiate a penalty function with the desired
magnitude.

Another important SolutionStrategy is the ExtremeBarrier, which is exactly equiv-
alent to LaissezFaire, except that it uses this penalty function instead of noPenalty(·):

1 def deathPenalty(objective: Double ,
2 eq: Array[Double],
3 ineq: Array[Double]): Double = {
4 objective + (if (eq.exists(_ != 0) || ineq.exists(_ > 0))
5 Double.PositiveInfinity else 0)
6 }

The above examples outline how one can define a variety of different constraint
handling strategies utilizing penalty or barrier functions on top of core sBBO al-
gorithms, notably with a layer of indirection in-between: Algorithms can be com-
pletely oblivious to such methods being used on top of them, and vice versa.

Furthermore, BlackBoxOptimizer subclasses can override and expand on the
constraint handling catalog as they please - e.g. use LaisseFaire and implement
a filter method or some custom constraint handling method inside minimize(·),
using Trial feasibility information.

To the best of my knowledge, the library thus accommodates all kinds of con-
straint handling strategies commonly used within sBBO today (cf. section 2.4).

There is of however one joker here, ruining the illusion of harmony: that of
infinitely valued outputs of objective, penalty or constraint functions. The ability to
handle such values, as used within e.g. the extreme barrier approach, depends on
the individual algorithm, with the only real option within sBBO being directional
methods (cf. section 2.3.3).

The best solution I’ve seen for fixing possible numeric instability in Model-
based algorithms is to ”dampen” infinite objective values by replacing them with
the square of their interpolated value in the surrogate model [57]. Problems here
of course include the identity operation of squaring 0 or 1, and that squaring may
neither be sufficient to ensure numeric stability nor ensure a preference for feasible
solutions during optimization.

Ultimately, users therefore regrettably have to decide whether they really need
to use infinite values in their problem model, and in such cases, pick an algorithm
capable of handling them. In the library suite, obtaining a good initial solution
with a sizeable LHS, followed by running MADS with e.g. the extreme barrier

3.5. Generic general constraint handling 87

strategy, would be the way to go, and a simple user recommendation to provide
- this is also the approach used by the library wizard upon detecting possible
numeric instability (cf. section 3.4.4).

3.5.6 The Historical Revisionist Method

Out of the box, the library offers a suite of sBBO algorithms along with a suite
of SolutionStrategy’s, implementing various penalty and barrier approaches, thus
supporting generally constrained optimization (cf. eq. (2.4)). I ultimately decided
to not implement filter approaches for individual algorithms, since this time invest-
ment would only have localized benefits to the library. Instead the filter approach
inspired a new constraint handling method that is more generic.

As default library facilities, penalty and barrier methods each have their own
issues (cf. section 2.4). While the overhead of solving the same problem over and
over again has been somewhat ameliorated by reloading TrialHistory on each run,
thus snowballing progress in e.g. surrogate model building, the issue of finding
the right magnitude and adjustment factor for guiding optimization remains.

Reprojecting TrialHistory to reflect the current measure of penalty was origi-
nally just a bug fix. However, the level of control over what information is available
across different calls to minimize(·) afforded by this relational operation, essen-
tially providing an SQL view, got me wondering, whether an alternate approach
for constraint handling could be built around it: Enter, the Historical Revisionist
Method (HRM).

To explain the name, historical revisionism denotes the human activity of rein-
terpreting history to reflect current knowledge or motives [33]. For instance, the
”good guys” tend to win in the end, since history is always written by the victor. In
the HRM approach to constraint handling, feasible solutions are the ”good guys”,
and SQL is the victor.

Like penalty methods, HRM is an exterior method, progressing towards feasi-
bility and being orthogonal to the underlying sBBO algorithm by incorporating a
penalty term in the objective across several runs. Like barrier methods, HRM tries
to maintain an invariant preference for feasible solutions during optimization. Like
filter methods, HRM leverages previous evaluations as data for guiding optimiza-
tion and enforces something akin to a dominance hierarchy among points. None
of the aforementioned methods possess all of these traits by themselves. Used car
salesmanship aside, it should also be emphasized that HRM still has downsides,
as we shall see.

The overall framework is very similar to the one for penalty methods shown in
eq. (2.32), in that we solve a series of subproblems with an augmented objective
function:

88 Chapter 3. Technical contribution

minimize
x∈Rn

Πi(x) (3.2)

Where Πi : Rn → R≥0 is the historical penalty function used in subproblem i,
defined differently depended on the composition of data in TrialHistory. Note the
immediate absence of any adjustable magnitude. Instead of making the user guess
the right value a priori or increase it by a constant factor blindly, we formulate a
different historical penalty function on each iteration, incorporating a magnitude
fitted on the history of evaluations so far.

The library implementation of the main loop goes like this:

1 for (budget <- budgets) {
2 val penalty = historicalPenalty(history , corePenalty)
3 res = minimize(x, penalty , budget)
4 x = res.map(_.solution)
5 }

That is, we just split the overall budget over a number of runs, parameterized
with a different measure of penalty, based on the TrialHistory so far, along with
a core penalty function, e.g. the mixed or quadratic one (cf. section 2.4). Note that
unlike a traditional penalty method, we never stop upon finding a feasible solution.
This stems from the fact that running with a new historical penalty function solely
signifies recalibrating optimization as opposed to restarting it.

The recalibration frequency as well as the core penalty function are hyperpa-
rameters of the method. The library defaults to recalibrating the penalty measure
about every 10% of the total run, along with using the mixed penalty (cf. eq. (2.36)),
combining a smooth penalty function with an exact one. Note that due to the
vertical transfer mechanism, users making educated guesses on these parameters
up-front is not crucial, since no Trial information is lost across different calls to
optimize(·), and HRM statelessly progresses on what is already known about the
search space, without having to iterate through a different number of predeter-
mined magnitude settings first, unlike classic penalty methods.

The interesting part is of course how historicalPenalty(·) is implemented. algo-
rithm 2 is an attempt at outlining what happens in there. In what follows, note that
”penalty functions”, as a library construct and as depicted in algorithm 2, actually
calculate penalized objective values, and not just penalty terms to be added to raw
objective values.

In brief, we use the TrialHistory so far to build an augmented penalty function
around the core penalty, incorporating scaling functions and a calibrated magni-
tude - that is, algorithm 2 is a higher-order function, returning a (you guessed it)
functional closure. The augmented penalty function is created such that we main-
tain an objective value ranking, based on the ordering scheme known within the
constrained optimization world as the Superiority of Feasible Solutions (SFS) [95]:

3.5. Generic general constraint handling 89

Algorithm 2 Historical Penalty

1: procedure HP(history, corePenalty, baseMag = 1, δ = Double.delta)
2: if isFeasible(x), ∀x ∈ history then
3: return corePenalty(baseMag)
4: else
5: ineqMaxj ← max{max(0, gj(x)) : x ∈ history}, ∀j ∈ [1..p]
6: eqMaxk ← max{|hk(x)| : x ∈ history}, ∀k ∈ [1..q]
7: objMin← min{ f (x) : x ∈ history}
8: objMax ← max{ f (x) : x ∈ history}
9: ▷ scaler scales f (·), g(·) and h(·) values and passes them to corePenality:

10: scaled(mag) = scaler(corePenalty, ineqMax, eqMax, objMin, objMax, mag)
11: ▷ Reprojects history with base magnitude:
12: scaledHis← {scaled(baseMag)(x) : x ∈ history}
13: ▷ Find minimum magnitude for proper SFS ranking:

14: equationMag = max
{

fs(xi)+δ− fs(xj)

Ps(xj)−Ps(xi)
: xi, xj ∈ scaledHis ∧ Ps(xi) < Ps(xj)

}
15: return scaled(max(equationMag, baseMag))

• Prefer feasible solutions among feasible and infeasible solutions.

• Prefer lower objective values among feasible solutions.

• Prefer lower constraint violation values among infeasible solutions.

It basically means that constraint violation and objective values are respectively
used as the primary and secondary sort key of a lexicographic order. SFS is a com-
monly used ordering for comparing solution quality among different algorithms
in a benchmark setting [95].

In HRM, we essentially fit an augmented penalty function to the TrialHistory
dataset, our ”filter”, such that the SFS ranking scheme holds for objective values
among known points in the search space - our own notion of ”domination” (cf.
section 2.4). The reprojected TrialHistory dataset given to the algorithm on the
next run, along with the fitted objective function, will thus reflect this prioritization
scheme, and thereby our priorities within constrained optimization as such, while
accomplishing what penalty functions are supposed to.

While we can of course only do estimates based on existing Trial data, the
idea is that subsequent runs will tend to operate under more and more accurate
pretenses with an expanding TrialHistory database.

As shown in algorithm 2, there are two different cases for fitting the augmented
penalty function. When there are no infeasible Trials to reason about, or no Trials
at all, we default to using the core penalty function with the base magnitude of 1
on the next run (cf. line 2-3, algorithm 2):

90 Chapter 3. Technical contribution

Πi(x) = f (x) + P(x) (3.3)

When infeasible solutions are present, the augmented penalty function instead
looks like this:

Πi(x) = fs(x) + ρ · Ps(x) (3.4)

Where fs(·) and Ps(·) are unit-scaled objective and penalty functions, respec-
tively, and ρ ≥ 1 is a magnitude fitted to TrialHistory data. Note that HRM addi-
tionally modifies the original objective function, on top of adding a penalty term
to it, for numerical reasons.

Scaling constraint violation values is just a general recommended practice: It
is done to overcome the problem that e.g. Unquantifiable constraints, eliciting
violation values of 1 (cf. section 3.5.3), are insignificant blips on the radar versus
Quantifiable constraints operating on a scale of e.g. thousands, even though both
are in a sense equally important feasibility-wise.

Scaling constraint functions is however easier said than done, due to the fact
that the range of possible violation values for a given constraint function is un-
known in the general sBBO case, and we therefore don’t know the right scaling
parameters for each constraint a priori. We will however make a posteriori estimates
here, based on TrialHistory data so far. We use min-max scaling throughout:

scaled(x) =
x− xmin

xmax − xmin
(3.5)

Each constraint function gets its own scaling parameters (cf. line 5-6 in algo-
rithm 2). For each inequality constraint function gj(·), we set its x

gj
max parameter to

be the maximum positive value of gj(x) found in TrialHistory, or zero if no such
value exists. We similarly set xhk

max for each equality constraint function hk(·) to
be the maximum value of |hk(x)| found in TrialHistory. When we ultimately scale
violation values with the scaler(·) on line 9, we exploit the fact that no infeasible
violation value equals zero and set the corresponding values of xmin to zero for
both equality and inequality constraints. This way, parameters are fitted such that
all infeasible values of gj(x) and |hk(x)| in TrialHistory can be scaled into the range
of (0, 1].

We similarly estimate parameters for min-max scaling objective values to lie in
the range of [0, 1], based on the maximum and minimum values of f (x) found in
TrialHistory, for numerical reasons to be explained (lines 7-8, algorithm 2).

With the scaler(·) on line 9, all these parameters can be used for scaling the
objective and infeasible violation values in the augmented penalty function, before
passing them to the core penalty function:

1 corePenalty(scaledObj , scaledEqs , scaledIneqs)

3.5. Generic general constraint handling 91

Where with gj as gj(x) and gjMax as x
gj
max, each value of scaledIneqs is:

1 if (gj <= 0.0) gj else scaled(x, gjMax)

And with hk as hk(x) and hkMax as xhk
max, each value of scaledEqs is (retending the

original sign with signum(·)):
1 if (hk == 0.0) hk else signum(hk) * scaled(abs(hk), hkMax)

And scaling is done by:

1 def scale(v: Double , vMax: Double) =
2 if (vMax == 0.0) v else v / vMax

We thus leave feasible values unchanged (their violation values being zero in all
penalty functions, by definition), and don’t try to scale infeasible violation values
for which we don’t know anything about the infeasible range (yet).

The remaining handling in algorithm 2 is about finding a magnitude to be used
with the core penalty function, fitted to TrialHistory such that its objective values
reflect the SFS scheme. The reason for also scaling the objective value is ultimately
to ensure that SFS can be enforced through a magnitude, without making penalized
objective values obscenely large, and hence numerically unstable, when infeasible
solutions have really good objective values.

When infeasible values are present in the data, we find a sufficiently large
magnitude, such that smaller penalty values imply smaller objective values, as
per SFS. We first use the functional closure on line 9 to rescale all points in his-
tory with the found parameters and the base magnitude of 1 (cf. line 12, algo-
rithm 2). Then, let fs(·) and Ps(·) still respectively be the re-scaled objective and
core penalty functions. For each pair of points xi, xj in the rescaled TrialHistory
such that Ps(xi) < Ps(xj), we solve equations on line 14 for the magnitude ρ, trying
to ensure the following property:

fs(xi) + ρ · Ps(xi) < fs(xj) + ρ · Ps(xj) (3.6)

That is, we look for sufficiently large values of ρ, such that better feasibility
values always take precedence over better objective values among all known points,
ensuring SFS ranking among penalized objectives in TrialHistory. At the same time,
we don’t just want to set ρ to be e.g. Double.MAX_VALUE and call it a day, since
this might jeopardize numeric stability, exacerbate non-smoothness, and/or lead to
the penalty term vastly outweighing the influence of the objective function during
optimization. We instead leverage the fact that optimization algorithms tend to
only work with objective values through relative comparison (i.e. ”better is better”
regardless of scale), and aim for a minimum magnitude to obtain the proper SFS
ranking, so the optimization algorithm gets the story straight.

92 Chapter 3. Technical contribution

Using a small delta for the Double type, δ > 0, to minimally ensure strict
inequality, we can solve eq. (3.6) problems as equations in closed form, in O(h2)

total time for h points in TrialHistory, as shown on line 14 in 2:

fs(xi) + ρ · Ps(xi) + δ = fs(xj) + ρ · Ps(xj) ⇐⇒ ρ =
fs(xi) + δ− fs(xj)

Ps(xj)− Ps(xi)
(3.7)

The magnitude that will be used by the core penalty function for the next run is
the largest ρ among all solutions found in these equations, or the base magnitude
of 1, whichever is larger (cf. line 15, algorithm 2). Note that feasible solutions
are already trivially in proper SFS order among themselves, all having zero-valued
penalty terms. As a performance boost in the implementation, we can therefore get
by with only including the worst feasible point (SFS-wise) in the pool of equations
to be solved on line 14, ensuring the proper ranking by transitivity.

To summarize, HRM works by regularly fitting a new augmented penalty func-
tion to all evaluation data seen so far, ensuring that objective and constraint func-
tions operate on similar, numerically tame scales, and that an SFS ranking holds
among penalized objective values: TrialHistory, as understood by the underlying
algorithm on the next run, paints feasible solutions as strictly better than infeasible
ones, better objective values as strictly better for feasible solutions (trivially so),
and smaller constraint violation values as strictly better for infeasible solutions.
The new objective thus reflect our priorities in constrained optimization.

At its core, HRM is best described as a reformation of dynamic penalty methods,
as a minor modification of the usual penalty method framework (cf. section 2.4),
and not some revolutionary new approach to constraint handling.

The main novelty here is that the core penalty function is adjusted in an en-
tirely data-driven way, without requiring any user guesses on adjustment factors or
magnitudes - on top of core library mechanisms (e.g. the objective closure) ensur-
ing that no knowledge about design points is lost across runs when using vertical
transfer, removing a serious overhead using the vanilla penalty framework as-is.

Borrowing some useful ideas from barrier and filter methods to automate the
parameter fitting process, while remaining a mostly orthogonal method to the
algorithm-problem pair, HRM thus has some attractive properties from a systems
design and user-oriented perspective, as a ”plug-and-play option” for general use.

However, being essentially a weird penalty method, HRM carries with it some
of the same quirks: As an method-agnostic approach, its high level of indirection
implies that it generally cannot be expected to outperform a constraint handling
method exploiting properties of individual optimization algorithms or problems.

Also, HRM is built around the idea that analyzing h TrialHistory elements in
O(h2) time now and then, and reinitialize the underlying algorithm, won’t become

3.6. Multi-level parallelism 93

a serious performance issue when piloting the method. Given the core premise of
sBBO, we are certainly not too concerned about the TrialHistory dataset having a
troublesome size, and simply analyze it in-memory on the driver. Still, this should
be mentioned with respect to how the method generalizes to different settings.

As other method-specific issues, how HRM performs will depend highly on
the composition of the TrialHistory datasets analyzed to fit the augmented penalty
function, which depends on the underlying problem-algorithm pair. Still, the per-
formance of classic penalty methods similarly depends on the mental disposition
of the piloting user, for choosing the right hyperparameters.

As an additional issue, we of course assume that users don’t mind running
optimization with checkpointing enabled when using HRM - however, given that
we are dealing with sBBO, checkpointing progress may not be that hard of a sell.

Nonetheless, HRM can be regarded as a possible alternative to running with a
basic penalty method, with its merits to be assessed empirically, of course.

3.6 Multi-level parallelism

DIBBOlib offers two tiers of parallelism: Running several trials in parallel in minimize(·),
and running several solve(·) calls in parallel in BlackBoxOptimizer’s trans f orm(·)
method (cf. table 3.1), to be described here in turn.

3.6.1 Trial parallelism

As shown with minimize(·) in section 3.4.2, each run is afforded an instance of
the Evaluator class. From the point of view of the sBBO algorithm, Evaluator just
exposes a few utilities concerning objective evaluations: fields informing about
how many trials are left and whether it is time to terminate, along with methods
for trialling one or more design points.

Under the hood, Evaluator also plays the role of being the single entry point for
trial parallelism when enabled. For example, BayesianOptimizer will ask its Eval-
uator, eval, to trial a number of points, based on a suggestion from the parallelism
field on Evaluator:

1 // Propose points by adaptive sampling:
2 val proposals = bo.proposePoints(eval.parallelism)
3

4 // Do trials with Evaluator:
5 val arrs = // Map proposals to Arrays
6 val evals = eval.objective(arrs).flatten

By library default, eval.parallelism on line 2 will just evaluate to 1. Dedicated
BlackBoxOptimizer Params can however be used for specifying higher levels of

94 Chapter 3. Technical contribution

parallelism, which will thus lead to more proposals for evaluation in the previ-
ous example. The objective method on line 6 is declared like this in the abstract
Evaluator class:

1 def objective(pts: Array[Array[Double]]):
2 Array[Option[Trial]] = {
3 val futures = pts.map(p =>
4 Future[Option[Trial]](obj(p))(executionContext))
5 futures.map(threads.awaitResult(_, Duration.Inf))
6 }
7

8 protected val executionContext: ExecutionContext

Under the hood, the Scala Futures API is used for evaluating the objective
closure (named obj(·) on line 4) with various levels of concurrency, before relaying
the results back to the caller like nothing happened.

Depending on Param settings and Evaluator subtype, these tasks will either
be executed in the calling thread (no concurrency) or in an internally maintained
thread pool of static or dynamic size (to be explained). These different ”execution
contexts” is what the ExecutionContext on line 4 ultimately specifies, depending
on user settings.

Me having limited experience with concurrency on the JVM platform, I decided
not to ”roll my own” at the onset. It should be acknowledged that this implemen-
tation of thread pools, combining Futures with various ExecutionContexts, is not
created by me, but reuses open source code from Spark Core.

Note also that this implementation assumes throughout, as per a gentleman’s
agreement (cf. design Assumption 3.1), that minimize(·) implementations only en-
gage in trial parallelism through the assigned methods of their Evaluator instance -
hence the meaning of introducing it as the single entry point for trial parallelism. To
simplify implementation, there is for instance no ”ConcurrencyClerk” (mirroring
BlackBoxBudgeteer) in place to ensure that renegade algorithms won’t just disre-
gard user settings and fire up their own thread pool with e.g. 10 million evaluations
in parallel.

Assuming that the user wants to run with a more modest maximum of e.g. 3
trials in parallel, all they have to do is to set a Param:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),
5 withOptions ("trial parallelism" -> 3)
6).show()

Or equivalently use the setTrialParallelism(·) setter with the Transformer API.
Based on this information, solve(·) will then instantiate a StaticEvaluator, parame-
terized with the desired level of parallelism, par:

3.6. Multi-level parallelism 95

1 class StaticEvaluator(/* etc.*/) extends Evaluator(/* etc.*/) {
2 override def parallelism: Int = par
3 protected val executionContext =
4 threads.getExecutionContext(par)
5 }

When some algorithm asks for the designated level of parallelism, the Evalu-
ator will then say 3, and all points sent to the Evaluator will then be evaluated
in a thread pool of size 3. For instance, on each iteration in the main loop of
BayesianOptimizer, 3 trials will thus be executed in parallel, as per user specifica-
tion. Had the user instead specified a level of 1, then we would have used a special
”dummy” execution context to run evaluations in the same thread as the caller,
without introducing significant overhead.

Note however, that the ability to exploit parallelism depends highly on the de-
sign of the individual sBBO algorithm. SBO algorithms are arbitrarily flexible in
this regard, since we can in principle just ask them to propose several points in
sequence, using interpolated objective values for points we have already decided
to evaluate in subsequent adaptive sampling phases. More evaluations is how-
ever not necessarily better - directional algorithms working opportunistically (cf.
section 2.3.3) are designed to avoid doing needless evaluations when a descent di-
rection has already been found in an iteration: evaluating all pattern points, which
is expensive in the general case, is therefore not necessarily a desirable algorithm
design, even when a level of parallelism is possible.

It is therefore ultimately up to the individual implementation of minimize(·) to
make the best use of the assigned ”parallelism budget”, even if this means always
running sequentially, regardless of user input - perhaps with a friendly warning
message, when parallelism cannot be not fully leveraged for algorithmic reasons.

Dynamic trial parallelism

Moving on, the library also (experimentally) supports a dynamic kind of trial paral-
lelism, to be used with flexibly concurrent algorithms like SBO - that is, instead of
the thread pool size during a run being set in stone by an initial static user setting,
it can change dynamically on runtime, according to load characteristics tracked over
time. When the user does like this:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),
5 withOptions ("trial parallelism" -> 3,
6 "dynamic trial parallelism" -> true)
7).show()

96 Chapter 3. Technical contribution

3 will then be regarded as an ”initial guess” on the right thread pool size, with
the best setting to be discovered on runtime. We use an underlying new load
balancing algorithm for this.

To preface what is to come, I know nothing about established methods for dy-
namic load balancing. They were never a course topic during my stay at AAU. But
I knew something about sBBO, and when all you have is sBBO, everything looks
like an experiment. I mean no insult by disregarding existing solutions within any
proud and storied research field here, and the project was simply reaching a point
where more desktop research would be a problematic time investment.

Upon detecting user settings like in the previous example, solve(·) will instan-
tiate a DynamicEvaluator instead of a StaticEvaluator. The former class offers the
same interface for minimize(·) as any other Evaluator, yet the size of the thread
pool, and thus the value of eval.parallelism, varies during optimization. The infor-
mal intuition (and nothing more) behind the proposed load balancing algorithm is
to solve the following optimization problem:

maximize
p∈N\{0}

throughput(p) (3.8)

Where p (for parallelism) is the thread pool size, and throughput : N → N is
the number of evaluations per second when using a thread pool size of p during
the run.

There is however more to this problem than it seems: We are solving it with
sBBO, and in doing so additionally have a Hidden, Unrelaxable constraint when
trialing solution candidates (cf. section 2.4.1): To avoid cluster machines crashing
from e.g. running out of memory. That is, trying out p = 10, 000, 000 with an
expensive query may violate this constraint on a small cluster.

Another issue not captured in the problem model above is that the objective
function is time-dependent: The throughput achieved by running with some level
of parallelism is likely to change over time with a number of external factors.
The optimal value of p might therefore change over time. We can say that we
actually need to solve several optimization problems, each representing a point in
time, where we need to decide on the best value of p until the next point in time.
Formalizing dynamic load balancing as a bog-standard optimization problem is
maybe low value for effort.

The proposed approach ultimately instead takes its onset in directional sBBO,
specifically Compass Search that we are already familiar with (cf. section 2.3.3).
Among such algorithms, Compass Search tends to fall short whenever line searches
in cardinal directions fit the contours of the objective function poorly [42]. This is
however a non-issue when our search space is one-dimensional, since cardinal
search is the only option.

Leaving some practicalities for later, the core load balancing approach can be
summarized by algorithm 3.

3.6. Multi-level parallelism 97

Algorithm 3 Directional Dynamic Load Balancing

1: procedure DDLB(speedupthreshold = 1.1, parallelism = 1, decay = 0.99)
2: throughputcurrent, direction, stepsize← 0, 1, 0
3: while true do
4: linesearch← max(1, parallelism + direction · stepsize)
5: throughputnew ← throughput(linesearch) ▷ Estimate throughput
6: if speedup(throughputnew, throughputcurrent) ≥ speedupthreshold then
7: parallelism, throughputcurrent ← linesearch, throughputnew

8: stepsize← stepsize + 1 ▷ Increase momentum
9: else

10: direction← −1 · direction ▷ Switch poll direction
11: stepsize← 1 ▷ Reset momentum
12: throughputcurrent ← decay · throughputcurrent ▷ Devalue estimate

So, line 1 introduces three hyperparameters with example defaults: a threshold
speedupthreshold for accepting new incumbents based on speedup (to be explained),
an initial solution parallelism (thread pool size), along with a decay factor used for
ensuring that the algorithm won’t get stuck on outdated throughput estimates in-
definitely. The algorithm conceptually works in an infinite loop (line 3), estimating
the obtained speedup from increasing or decreasing the current level of parallelism
through line search. Line 4 betrays the algorithm’s directional heritage, as a new
candidate level of parallelism is decided by a line search from the current incum-
bent. On line 5, we devise a way to estimate the throughput of running with the
new level of parallelism (to be explained). Then we update the state of the search
strategy based on a measure of speedup. As mentioned, our notion of throughput
within our sBBO setting is:

throughput =
|trials completed|

time
(3.9)

That is, the number of objective evaluations completed per time unit, running
with some thread pool size. speedup(·) in algorithm 3 is then calculated by:

speedup(throughputnew, throughputcurrent) =

{
∞ if throughputcurrent = 0

throughputnew
throughputcurrent

otherwise
(3.10)

In practice, the first case is only used for getting a throughput estimate for
the initial value of parallelism. Otherwise the notion of speedup simply pertains
to whether we can expect to get more trials out the door per time unit with one
thread pool size or the other.

98 Chapter 3. Technical contribution

One line 6 of algorithm 3 we use a speedup threshold to decide whether any
neighboring parallelism level is deemed good enough to update incumbent infor-
mation. This is used to make the algorithm more consistent in the face of in-
significant performance fluctuations, and the suggested default threshold of 1.1x
speedup is chosen to be quite conservative. In the event that we achieve a sufficient
level of speedup, incumbent information is updated, and the step size is increased
(lines 7-8) - upon the next iteration, line search then continues opportunistically in
the ascent direction, with increased momentum. In the event that the increase in
speedup is insufficient, e.g. performance has plateaued, we then reset momentum
and switch poll direction to assess whether we went too far in the wrong direction
(lines 10-11). On line 12, we account for the fact that current throughput estimates
may no longer reflect reality, and therefore use a simple decay factor to naturally
devalue old throughput estimates over time - after e.g. ten unsuccessful polls,
the current estimate will be 0.9910 = 0.9044 times less valuable when assessing
speedup.

A fair criticism of algorithm 3 is that thread pool size is only decreased upon
speedup improvements, as might occur when the sheer number of concurrent tasks
becomes burdensome to the cluster. With increasing momentum, the algorithm
might hence converge to a pool size much larger than actually beneficial by over-
shooting the step size. One might consider dropping the momentum mechanism
from the algorithm altogether. Nonetheless, the algorithm was kept as is, since
the optimum parallelism value for running several Spark queries in parallel was ex-
pected to be pretty tame in practice, thus limiting the expected momentum build-
up. Also, I had already started running experiments upon realizing this, so there’s
that.

Implementation-wise, algorithm 3 is incorporated into DynamicEvaluator, by
unrolling its entire loop update and incorporating it into each objective evaluation:

1 override def objective(pts: Array[Array[Double]]):
2 Array[Option[Trial]] = {
3 startTimer ()
4 val res = super.objective(pts)
5 stopTimer ()
6 optimize(res.count(_.isDefined)) // Do unrolled update here.
7 res
8 }

The implementation thus evaluates and conveys Trials for minimize(·) as nor-
mal, but then also times them (with System.nanoTime) and does an internal algo-
rithmic update, based on the number of completed evaluations, ultimately used
for estimating throughput by the given definition (cf. eq. (3.9). The skeleton of
optimize(·) looks like this:

1 private def optimize(numCompleted: Int): Unit = {

3.6. Multi-level parallelism 99

2 numEvals += numCompleted
3

4 // Poll complete:
5 if (numEvals >= lineSearch) {
6 val newThroughput = numEvals / getAndResetDuration ()
7

8 // Update based on speedup etc.
9 }

10 }

To explain, we estimate the throughput of running with a particular thread pool
size by using a stopwatch (getAndResetDuration(·)), and waiting until at least one
evaluation per thread in the current thread pool size (lineSearch) has completed -
intuitively speaking, giving the polled thread pool size a chance of demonstrating
perfect linear speedup with respect to a sequential run. When its time for an
update, we reset the stopwatch (line 6), and update the direction, step size, and/or
incumbent information, including the thread pool size - rinse and repeat.

This approach of course has significant limitations: It is only meant to work
with algorithms in the library using eval.parallelism to decide on what level of
parallelism to run with at regular intervals, i.e. SBO algorithms as it stands. As
also mentioned with static trial parallelism, individual algorithmic design largely
decides how parallelism can be leveraged within sBBO.

Another issue is the peculiar fact that we don’t actually ever set the thread pool
size to be the optimal one, with convergence being characterized by a sequence
of polls of immediate neighbors, e.g. ”4, 6, 4, 6,...” for an optimum number of 5
threads. This stems from the fact that the algorithm always needs to assess whether
current settings can be improved through line searches, and that this only possible
in practice though direct experiment with different thread pool settings.

An entirely different matter is how this implementation handles the Unrelax-
able, Hidden constraint that we should not make cluster machines crash when
trying to maximize throughput. Current handling largely relies on algorithmic de-
sign and domain assumptions to enforce this implicitly. That is, we immediately
switch poll direction upon plateauing to adjust for overshooting the step size, and
assume that the optimum number of concurrent threads in our expensive query
setting is relatively low, thus limiting how much momentum leads to overshoot-
ing, and how pressured a driver machine with current hardware will likely be for
e.g. available memory.

More explicit handling might have involved keeping track of driver JVM mem-
ory peaks during execution to set limits, or asking the user to specify a maximum
number of threads allowed, as a safeguard. Such approaches however don’t take
executor machine loads into account, which is an equally relevant but much more
difficult factor to account for - the very motivation behind the proposed approach
to dynamic load balancing is that it is difficult to reason about the right number of

100 Chapter 3. Technical contribution

threads to run with in practice beyond doing black-box experiments.

3.6.2 Solve parallelism

Not much was initially said about BlackBoxOptimizer’s trans f orm(·) implemen-
tation in section 3.4.2, since its main job is to route to one or more solve(·) calls,
making up different subproblems in the optimization query, to be solved more or
less in parallel, as preferred. Apart from the default option of running with a single
solve(·) call, DIBBOlib supports running the same algorithm with different seeds,
as well as search space partitioned runs, depending on user preference.

Seed parallelism is discussed here to show how the basic idea is implemented,
while the latter option is discussed in its own section.

Seed parallelism

The user can configure seed parallelism by a Param specifying the number of dif-
ferent seeds to use when running:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),
5 withOptions ("seed parallelism" -> 5)
6).show()

Due to the common need for stochastic behavior as well as repeatability when
running sBBO, BlackBoxOptimizer aggregates a global random seed Param. Upon
spotting that this option is chosen, BlackBoxOptimizer’s trans f orm(·) will use this
progenitor seed to generate 5 new random seeds, split the total trial budget evenly
among them, and relay the seed-budget pair to different solve(·) calls in a thread
pool:

1 val seeds = // Generate from progenitor seed.
2

3 // Split total budget evenly:
4 val budgets = binnedSplit(totalBudget , seeds.length)
5

6 // Solve in thread pool:
7 val threadPool = threads.getExecutionContext(seeds.length)
8 /* etc. */
9

10 // Solve , and collect the best feasible solution:
11 futures.map(threads.awaitResult(_, Duration.Inf))
12 .flatten.minByOption(_.rawObjective)

For k seeds and a total trial budget of T, the binnedSplit(·) on line 4 will allocate
at least

⌊ T
k

⌋
for all subproblems, with one extra trial for T mod k subproblems,

3.7. Search space partitioning 101

thereby forming evenly sized bins. As shown on line 11-12, the library will, as
always, pick the best solution found among all solve(·) calls as the candidate for
projection unto the output DataFrame of the optimization query. Note here that
the objective closure makes sure that only the best feasible solution found is ever
returned from solve(·), if any.

solve(·) is designed to work indifferently to its sibling calls, with trans f orm(·)
relaying the necessary synchronization primitives, such as the global Trial ID counter.
One interesting subtlety pertains to the reload of TrialHistory from the checkpoint
path on each run closure call (cf. section 3.5.5): Algorithms in separate solve(·)
calls are free to leverage any information about the search space found in the opti-
mization process at large, consistent to their current measure of penalty, of course.
This is especially useful for building better surrogates with Model-based methods.
It should however be noted that one’s mileage might vary, especially if Local al-
gorithms pile unto the same best solution found across all subproblems, and thus
might produce very similar solutions in the end, depending on the impact of run-
ning with different seeds for individual algorithms.

Another negative side is that repeatability of results is not guaranteed when
running checkpointing with this kind of parallelism, since available TrialHistory
information on each call to minimize(·) depends on what happened to be reloaded
before the next run. Still, I preferred not artificially hiding any search space infor-
mation from optimization algorithms in the end.

As already mentioned (cf. section 3.2.2), I am a bit skeptical about the useful-
ness of seed parallelism under a limited evaluation budget, but it is nonetheless
offered as an option, due to the ease of supporting it, and the groundwork it pro-
vided for supporting more interesting kinds of subproblems.

3.7 Search space partitioning

Existing sBBO research has looked into the merits of partitioning the search space
of problems, with good results found with various problems and algorithms [191,
194]. The reasons given for such procedures that I’ve stumbled upon might be
appealing, but are also purely heuristic in nature. For instance, that doing local
search in several search space partitions leads to better exploration of the global
search space overall [191].

There is arguably a good reason behind the general-case motivation being
purely heuristic: Such partitioning strategies universally improving the perfor-
mance of any algorithm would contradict the No Free Lunch theorem with respect
to optimization: That if nothing can be assumed about problem structure, the aver-
age performance of each algorithm is the same across all possible problems [197].
Any increased performance on some problems with respect to the mean is paid for
in kind by a corresponding decrease on others [198].

102 Chapter 3. Technical contribution

Imagine for instance that we are using separate instances of a brute force strat-
egy blindly enumerating design points, in different search space partitions with a
limited evaluation budget for each. Performance would depend entirely on which
solutions each instance of the algorithm stumbles upon before running out of trials,
and is therefore ultimately a function of the problem-algorithm pair.

The practical consequence of this is that search space partitioning is only offered
with DIBBOlib as a heuristic strategy, to be used at the discretion of the user, when
it ”makes sense” for the problem-algorithm pair. Note that this doesn’t necessarily
require expert knowledge from users, but may instead be facilitated by simple
trial-and-error, as already exercised within e.g. ML, which operates under its own
No Free Lunch Theorem [78].

For instance, a user might find that MADS, our resident directional sBBO algo-
rithm, converges really fast to a feasible solution on a particular problem, which is
great. The search space is however quite large, so this seems a bit fishy. Given that
we have a decent number of trials to spare, starting several instances of MADS in
their own local subregion might therefore ”make sense” in this scenario, to improve
global exploration.

The library offers static (manual) as well as dynamic (automatic) search space
partitioning, to be explained in turn.

3.7.1 Static partitioning and local SearchSpaces

Consider the case when one dimension is much larger than the other. Splitting it in
half might form a reasonable search heuristic for a problem in question. The user
can specify such splits manually, with a Map denoting how much many pieces
each dimension is to be split into:

1 df.howTo(
2 minimize (foo),
3 subjectTo (-1000000.0 <= hcol("x") <= 1000000.0 ,
4 -100.0 <= hcol("y") <= 100.0) ,
5 forTrials (baz),
6 withOptions ("partitioning keys" -> Map("x" -> 2))
7).show()

In this example, we specify the desired split of variable ”x” line 6. We thereby
end up with two search space partitions, one where −1000000.0 <= hcol(”x”) <=

0.0, and one where 0.0 <= hcol(”x”) <= 1000000.0, with variable ”y” having its
original bounds in each. We have simply split the rectangle making up the bound-
constrained search space into two equally large pieces, only overlapping on x = 0
to ensure a continuous global range. Had the user instead specified ”y”− > 2, then
we would have ended up with as many pieces as the product of splits, i.e. 2 · 2 = 4
equally large pieces of the original search space.

3.7. Search space partitioning 103

Discrete variable ranges, i.e. Integral and Categorical variables, are instead split
by binning values in their range evenly, similarly to the procedure used for split-
ting the trial budget from earlier. Splitting hcol(”z”)inSeq(”a”, ”b”, ”c”) in half, we
obtain hcol(”z”)inSeq(”a”, ”b”) and hcol(”z”)inSeq(”c”) in separate search space
partitions.

Completely analogously to the seed parallelism case, BlackBoxOptimizer’s trans f orm(·)
will split the original SearchSpace and specified trial budget in half, and relay the
different local SearchSpaces to separate solve(·) calls running more or less in par-
allel. While the default is to run with one thread per partition, the user may
optionally specify a maximum size of the thread pool with an additional Param,
including 1, if partitioning is all they care about:

1 df.howTo(
2 minimize (foo),
3 subjectTo (-1000000.0 <= hcol("x") <= 1000000.0 ,
4 -100.0 <= hcol("y") <= 100.0) ,
5 forTrials (baz),
6 withOptions ("partitioning keys" -> Map("x" -> 2),
7 "partitioning parallelism" -> 1) // Sequential
8).show()

If the user specifies an initial solution, it will only be relayed to local SearchSpaces
containing it. Generating the local SearchSpace when having splits specified amounts
to calculating the Cartesian product among all dimensional splits, which is an
O(2n) operation. We don’t worry too much about having large values of n in our
setting, however,

Subproblem management in solve(·) gets a bit tricky with search space parti-
tioning in the mix. There are two main issues: One or more discrete variables may
have been split into bins containing only one value (happened to ”z” in the previ-
ous example), and thus effectively be constants in some subproblems, not to be sub-
jected to optimization. Furthermore, consider the usage of vertical transfer: How
can algorithms interface with only the Trials relevant to their local SearchSpace,
keeping in mind Model-based approaches like SBO where a reduced interpolation
set might make surrogate model building impossible?

To make a long story short, the solution was to introduce a layer of indirection
for SearchSpaces and TrialHistory both throughout the entire library, providing a
local view by default to algorithms, with the possibility of accessing a global one
on demand. Upon trial evaluation, our handy objective closure can make sure
to project constant dimensions in and out with respect to the calling algorithm
as needed, as if nothing happened. SBO algorithms can opt for interpolating the
entire SearchSpace, leveraging all available information, while only doing opti-
mization within their local region, as exemplified here:

1 // Surrogate interpolates the entire search space:

104 Chapter 3. Technical contribution

2 val gp = new GaussianProcess(ss.global)
3 gp.addPoints(X, fX)
4

5 // Adaptive sampling only concerns the (default) local one:
6 val bo = new BayesianOptimization(ss , gp, seed , /* etc. */)

3.7.2 Dynamic partitioning and perimetric honeycombs

The library also offers facilities for dynamic partitioning of the search space. Here,
the user simply specifies the number of desired partitions, and the library then
decides where to split on runtime, i.e. dynamically. So, they might say:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),
5 withOptions ("partitioning factor" -> 5,
6 "partitioning metric" -> "range")
7).show()

Or something to that effect with the alternative Transformer API. This query
specifies that the user would like to split the search space into 5 subregions, and
that splits should be decided based on the range of variable bounds, i.e. with a
preference for splitting the longest dimensions - there are of course other options,
to be described in time. Beyond the standard handling for partitioning already
described for the static case, the library now has to decide on which split is the
”best” given this specification, which is what we will cover in this section.

As the reader may have noticed, the library approach to partitioning the search
space is based on splitting a hyperrectangle into a number of evenly sized smaller
hyperrectangles filling out the entire space with minimal overlap - it is not the
only possible way to do this kind of partitioning, but unlike alternative approaches
found in research (e.g. [194, 191]), I find that it is relatively simple to reason about
for heuristic purposes. It also fits our design of always having bounds information
available for variables.

The technical name for our desired geometric result is variously called a tiling,
tessellation or honeycomb, with the latter term being the preferred one for higher-
dimensional spaces [79]. Yet the user requirement of a particular number of par-
titions in the results, and the need to accommodate an arbitrary number of di-
mensions, make our problem a bit more involved than the vanilla honeycombing
problem. The fact that discrete variables in our setting can only be split to a limited
degree is another complication that we need to handle. Such issues motivated the
homebrew to follow.

We ignore the complication of discrete variables and finite splittability for now.
I ultimately found that the most useful way to think about our special geometric

3.7. Search space partitioning 105

problem was in terms of integer factorization. Let’s say that the user’s desired num-
ber of splits is an integer k > 0, that we have n > 0 variables in the problem, and
that each of these dimensions has some positive measure of magnitude, e.g. their
bounded range, in an n-vector d = [d1, d2, ..., dn] ∈ Rn

>0.
Our initially stated goal is to formulate a product of n positive integers equal

to k. Consider for instance when n = 3 and k = 4. Possible ways to split this 3D
search space into four space-filling partitions include splitting two dimensions into
two (1 · 2 · 2 = 4) or splitting one dimension into four (1 · 1 · 4 = 4) (cf. fig. 3.3).

Figure 3.3: Two possible ways to split a 3D box, by splitting 2 dimensions into 2, or 1 dimension into
4. The order of factors is not significant in this example.

This factorization requirement is basically only a constraint of an optimization
problem that we are about to formulate: There is no reason to prefer one split over
another. As for our objective, if all we care about is minimizing the volume of each
result search space partition, a reasonable initial proposal, we need to minimize
the product of dimensional magnitudes in d with splits applied to them, leading to
the following non-linear integer optimization problem:

minimize
x∈Nn

>0

n

∏
i=1

di

xi

subject to
n

∏
i=1

xi = k
(3.11)

For instance, one way of splitting d = [1, 2, 4] with k = 4 to obtain a mini-
mum volume is simply to split the longest dimension into four, and thus obtain
the partition volume of 1 · 2 · 4

4 = 2. Notice however that it verily doesn’t matter
from a minimization standpoint whether we do a 1 · 2 · 2 or a 1 · 1 · 4 split, or which

106 Chapter 3. Technical contribution

dimensions we spend our ”budget” of k splits on, due to the associativity of mul-
tiplication! To demonstrate: 1 · 2 · 4

4 = 1
2 · 2 ·

4
2 = 1

2 ·
1
2 · (1 · 2 · 4) =

1
4 · (1 · 2 · 4) = 2.

Furthermore, even though the volume is technically minimal, a volumetric ap-
proach puts no preference on splitting the longest dimensions, which would ar-
guably make heuristic sense. A solution of e.g. x = [4, 1, 1] in our example
feels off despite being minimum-volume, since the relative size of dimensions is
now even more disproportionate, resulting in a very narrow rectangular slice of
the search space.

Instead, we base the proposed approach on minimizing the resulting partition
perimeter. Mathematicians might now exhale loudly and finally throw this report
in the bin, since perimeters as a geometric concept admittedly make less and less
sense with an increasing number of dimensions. There is no such thing as ”n-
perimeters”, strictly speaking. Yet on our own terms, if we try to generalize the
notion of calculating the sum of all sides of an n-dimensional rectangle with n-
vector of side lengths d, we get the following formula:

”Perimeter”(d) = 2n−1
n

∑
i=1

di (3.12)

Since each side repeats 2n−1 times in an n-rectangle. From an optimization stand-
point we however don’t care about this scale factor. For simplicity, and since ”n-
dimensional perimeters” is our own made-up concept to begin with, we will hence-
forth use our creative license to ignore it when talking about perimeters, since the
same conclusions apply regardless. In the following alternate problem we instead
just minimize the sum of sides with splits applied to them in a new perimetric
objective:

minimize
x∈Nn

>0

n

∑
i=1

di

xi

subject to
n

∏
i=1

xi = k
(3.13)

Unlike in eq. (3.11), some feasible solutions are now better than others. In
our running example, the minimum perimeter of 4 can be obtained from e.g.
x = [1, 2, 2]. This is better than e.g. x = [4, 1, 1] which would result in a
perimeter of 1

4 + 2 + 4 = 6.25. This objective on one hand prefers splitting longer
dimension, for larger perimetric reductions, while at the same time following a law
of diminishing returns when ”allocating” splits: E.g. setting x3 = 2 for d3 = 4 re-
duces its contribution to the total perimeter by 2 compared to setting x3 = 1, while
setting x3 = 4 only reduces d3’s contribution by 1 compared to setting x3 = 2.
Under the present constraint regarding k, the objective will thus generate search
space partitions of relatively even lengths, to spend its ”budget” of k splits more

3.7. Search space partitioning 107

efficiently. Note that we accomplish all of this on top of still getting minimum-
volume partitions, due to the previously mentioned associativity rule.

Solving the problem of eq. (3.13) is harder than it may seem, mainly due to its con-
straint requiring a special case of integer factorization, where we are only helped
by having a known number of factors to be found. The balancing act of handling
factorization constraints and diminishing returns makes it if not impossible, then
at the very least too hard for me at present to come up with a greedy algorithm
able to make the best global choices locally.

Still, disregarding the presence of discrete dimensions, the problem can be
solved in polynomial time with dynamic programming, using the following re-
currence:

p(i, j) =

{
d1 ÷ j if i = 1

min{di ÷ s + p(i− 1, j÷ s) : s | j} otherwise
(3.14)

Where s | j means that s (for ”split”) is a positive integer divisor of j. We
assert that p(i, j) is the minimum perimeter possible when splitting dimensions
[1..i] of dimensional magnitudes d = [d1, d2, ... di] ∈ Ri

>0 by corresponding factors
[x1, ..., xi] ∈Ni

>0 such that the product of factors x1 · ... · xi = j > 0. In other words,
we assert that p(i, j) is the objective value of a solution to the problem defined by
eq. (3.13) with i = n and j = k.

We prove this assertion by induction on i. Since j is only non-increasing in its
quotient-based recursion (think of j = 1), we will address this variable by arguing
that each proposition in the proof holds for all j > 0. Let a and b be integers, so
we don’t have to remind ourselves constantly. In the base case, we prove that the
proposition holds for p(1, b) for all b > 0. In the inductive step, we prove that for
all a > 1, if the proposition holds for p(a − 1, b) for all b > 0, then it holds for
p(a, b) and all b > 0. This way, propositional dominoes fall such that the original
assertion holds for all integers a, b > 0.

• Base case: When a = 1, we only need to consider the base case of eq. (3.14)
and prove that it gives the right result for all b > 0. For a = n = 1 and
b = k > 0 in eq. (3.13), the only feasible solution such that x1 = k is x = [k]
with objective value d1 ÷ k. Since correspondingly p(1, b) = d1 ÷ b for all
integers b > 0, the proposition holds for a = 1 and all b > 0.

• Inductive step: We can focus our efforts on the recursive case of eq. (3.14)
here. For some a > 1, suppose that p(a− 1, b) gives the correct result for all
b > 0. Is this then also the case for p(a, b) for all b > 0?

For p(a, b) when a > 1 and b > 0, there will be one or more elements in the
set over all divisors of j = b in the recursive case of eq. (3.14), corresponding

108 Chapter 3. Technical contribution

to every possible split of di by s such that s | j, with at least one element for
s = 1. As a shorthand, we will refer to this non-empty set as the split set,
noting that it by definition contains one element for every divisor of j.

For a = n > 1 b = k > 0 in eq. (3.13), the solution is an n-vector x such
that x1 · ... · xn = k and the split perimeter d1 ÷ x1 + ... + dn ÷ xn is minimal.
Here, we note that each component of x must necessarily be a divisor of k.

For a = i > 1, b = j > 0 in eq. (3.14), we can use our inductive hypothesis
for each element in the split set, corresponding to some divisor s of j, to
assume that its corresponding p(i− 1, j÷ s) term equals the minimum split
perimeter ps

i−1 = d1 ÷ x1 + ... + di−1 ÷ xi−1, such that x1 · ... · xi−1 = j÷ s.
Each element of the split set, of the form di ÷ s + ps

i−1, therefore equals the
minimum split perimeter of dimensions [1..i] such that x1 · ... · xi−1 · s = j.

Note from before that the split set by definition exhausts every divisor of
j, and that all solution components must be divisors of k in eq. (3.13). The
minimum of the split set in eq. (3.14) is therefore the minimum split perimeter
for dimensions [1..i] among all possible ways of splitting dimension i - in
other words being the minimum objective value of a solution to eq. (3.13)
where a = i = n, b = j = k. Under the assumption that p(a− 1, b) gives the
correct result for some a > 1 and all b > 0, we have thus proved that this is
also the case for p(a, b) for all b > 0.

Hence we have proved that the original assertion holds for all integers a, b > 0. □

We will however sometimes not find the intuitively best possible perimeter from
p(n, k) though. Consider the initial example given in this section, where the user
demands a dynamic split into 5 local SearchSpaces. Note that 5 is a prime number.
Then consider an example where d = [1, 1, 1]. The only feasible way to factorize
these magnitudes with respect to eq. (3.13) is to split one dimension into five pieces,
thus making 1 + 1 + 1

5 = 2.2 the minimum possible perimeter, Note that we could
have actually obtained a smaller perimeter with k = 4, using a solution where
1+ 1

2 +
1
2 = 2. This is due to the previously mentioned law of diminishing returns.

Prime number splits and the like are generally problematic for obtaining partitions
with evenly sized dimensions. If we want to commit to minimizing search space
perimeters, then we want to use an inequality constraint for optimization instead:

minimize
x∈Nn

>0

n

∑
i=1

di

xi

subject to
n

∏
i=1

xi ≤ k
(3.15)

Note that while the problem now looks a bit more like a Knapsack problem than
before, 1) our constraint still concerns a product of factors, which is a significant

3.7. Search space partitioning 109

departure, and 2) knowing that all components of x must be positive (i.e. ”all
items must go in the knapsack”) eliminates a key element of choice, making the
problem a bit easier.

We use this alternative problem formulation to first obtain an initial partitioning
of the global search space into a number of space-filling, non-overlapping, rectan-
gles with identical dimensions, i.e. a bog-standard rectangular honeycomb. We can
still use dynamic programming with the recurrence above, but just need to look
for the best possible value for j when i = n in our lookup tables, knowing from
our proof that p(n, j) is indeed the minimum split perimeter for any assignment
of j > 0.

The initial split by dynamic programming may or may not result in us hav-
ing leftover partitions available, which we provide by filling in a number of sub-
dimensional slices (to be explained). This approach implicates that we sometimes
won’t obtain minimum-volume partitions with the same split factors along all di-
mensions. However, we will generally come very close (as we shall see), and this
solution was ultimately deemed better than making users google what a ”highly
composite number” is.

We start out with how the initial honeycomb split is found. Confer algorithm 4.
Using two n× k matrices (lines 3-4) for memorizing p(i, j) and optimal s’s in all
subproblems respectively, the problem can be solved in O(n · k2) time by filling
these matrices in three embedded for loops, iterating over possible divisor s’s with
modulus checks in the innermost one (line 12). We need to iterate over all possible
divisors of all possible k’s to be able to find the best total split factor at i = n in
the end. The optimal splits for all dimensions are found in linear time by going in
reverse from the split matrix component corresponding to the minimum perimeter
when i = n in the perimeter matrix (lines 18-22). While asymptotic time and
space complexity might seem a bit hefty, note that we neither expect k or n to be
particularly large in our setting, for each their own reason.

We had the special predicament that discrete variable dimensions are only
finitely splittable in our application - e.g., a Categorical variable with tree cate-
gories in it can at most be split by a factor three. It is however simple to extend
algorithm 4 to handle this: On line 7 and 13, we just use extra checks to ensure
that we won’t recur to undefined splits or breach the upper limit for splittability
for any Variable type, with no upper limit for Real variables, and limits decided by
finite cardinality for others. Since it is always at least possible to fall back on using
ones in our solution vector, we won’t get into trouble from having None values in
the splits table, and there will always be a solution split ready at the end.

The result of running algorithm 4 is a vector of factors [x1 , ..., xn]. These
specify a perimetrically optimal and isometric split of all dimensions. In the event
that the product of these factors equals k, specifying a complete isometric split of
the search space according to user specification, we can just calculate and cross all

110 Chapter 3. Technical contribution

Algorithm 4 Min-Perimetric Up-to-k n-Honeycomb

1: procedure MPUknH(dims, k)
2: n← dims.length
3: perims[1..n, 1..k]← ∞ ▷ Tabulates p(i, j) of eq. (3.14)
4: splits[1..n, 1..k]← None ▷ Tabulates optimum s for p(i, j)
5:

6: for i = 1 to k do ▷ Handles base case
7: perims[1, i]← dims[1]÷ i
8: splits[1, i]← i

9:

10: for i = 2 to n do ▷ Handles recursive case progressively
11: for j = 1 to k do
12: for s = 1 to j if s | j then do ▷ Tries out possible divisors
13: p = dims[i]÷ s + perims[i− 1, j÷ s]
14: if p < perims[i, j] then
15: perims[i, j]← p
16: splits[i, j]← s

17:

18: j← arg min
i ∈ [1..k]

(perims[n, i]) ▷ Finds best isometric split ≤ k

19: sol[1..n]← None
20: for i = n down to 1 do ▷ Reconstructs solution by backtracking
21: sol[i]← splits[i, j]
22: j← j÷ sol[i]

23:

24: return sol

3.7. Search space partitioning 111

splits as usual, and we are done.
For the case when we still need to allocate κ > 0 splits, we can now follow a

greedy approach, since we only need to make a greedy choice once, i.e. with no
possible backtracking (to be explained). To explain the greedy choice first, consider
a vector of magnitudes d = [d1, d2, ..., dn] ∈ Rn

>0 and factors x = [x1, ..., xn] ∈
Nn

>0. Then, taking diminishing returns into account, the dimension eliciting the
maximum possible perimetric decrease by increasing its corresponding split factor
further by one is:

arg max
i ∈ [i..n]

(
di

xi
− di

xi + 1

)
(3.16)

That is, we just assess how much each magnitude is affected by a further split,
and pick the dimension with the most bang for the buck.

To complete partitioning, we can as mentioned make such a greedy choice just
once, finding the dimension with the maximum further perimetric decrease possi-
ble, if such a dimension exists, regarding the finite splittability of certain Variable
types. We add the remainder partitions of the search space by making further splits
along this dimension, yet only to one or more of its sub-dimensional slices. This idea
is probably best to visualize first, before further details are given. Confer fig. 3.4.
If we for instance already have a 2× 2 split in 2 dimensions at this point, but need
to fill in one more partition for a total of 5, we just cut one of the slices along one
dimension a bit more more finely, obtaining an additional partition.

Figure 3.4: Filling in leftover partitions after an isometric split. The user wants five partitions, so we
need to add one more after the initial split into four.

112 Chapter 3. Technical contribution

Note that if the originally assigned split budget were 6 in this particularly
proportioned example, then the solution of algorithm 4 would have been a 2× 3
split. More generally, for any factor xi in a solution x to the problem in eq. (3.15),
x1 · ... · (xi + 1) · ... · xn ≤ k is impossible, since this would imply that the perimetric
objective could be reduced by further factorization, and that the solution therefore
isn’t optimal.

Note that multiplication is in a way just repeated addition, i.e. (a + 1) · b =

a · b + b. The effect on the total product of x by increasing a factor in it by one,
is therefore to add the product of all other factors to it. Since such increases are
impossible for the reasons mentioned, we know that no matter which split dimen-
sion i we pick for further partitioning, there is an upper bound on the remaining
number of splits κ:

κ <
∏n

j=1 xj

xi
(3.17)

Turns out the right side of this inequality is also the number of slices of di-
mension i! Since we know from the above discussion that no dimension can be
”fully factorized” further at this point, i.e. with all of its slices split more finely,
we just need to pick one dimension greedily, and split it more finely in some, but
conclusively not all of its subdimensional slices.

This conclusion had the practical consequence of greatly simplifying the spatial
reasoning required for completing the implementation. After having made our
greedy choice of fill-in dimension, we just pick κ of its slices to be cut into xi + 1
pieces instead of xi:

1 crossDims(vars , splits)
2 .sortBy(slice => -slice.map(_.range).sum)
3 .zipWithIndex.flatMap{ case (slice , i) =>
4 val fills = if (i < kappa) fineSplit else normalSplit
5 for (f <- fills) yield { slice :+ f }
6 }

Line 1 crosses all splits of all dimensions except the one where we need to fill
in extra partitions. On line 2, we enforce a preference for slices which might have
ended up with slightly larger perimeters than others due to binning of discrete
variables (a very minor optimization, admittedly). On lines 3-5 we loop over all
slices of our chosen fill-in dimension, and complete the Cartesian product on line
5, with a more or less finely cut version of the greedily chosen dimension found
on line 4.

In case you are wondering if dimensions get jumbled around, variables in the
obtained SearchSpaces are subsequently ordered lexicographically by name, a uni-
versally enforced library core convention, assuming that I didn’t flub the job.

3.7. Search space partitioning 113

3.7.3 SHAPely search space partitioning

The reason for nebulously talking about generic ”dimensional magnitudes” instead
of just ”variable ranges” above is that the library offers dynamic partitioning based
on alternative metrics. By process of elimination, this must be the part where
cooperative game theory and Shapley values (cf. section 2.5) come into play. Users
can specify alternative metrics for heuristic search space partitioning:

1 df.howTo(
2 minimize (foo),
3 subjectTo (bar),
4 forTrials (baz),
5 withOptions ("partitioning factor" -> 5,
6 "partitioning metric" -> "shap",
7 "checkpoint path" -> "my/favourite/path")
8).show()

Or something to that effect with the Transformer API. As implied, partitioning
can take place based on SHAP values, leveraging what is known about the search
space by vertical transfer.

So far, SHAP values have generally only been used for explanatory purposes
within the field of ML, to measure contributions of different features to predictions
on a local or global level (cf. section 2.5). Within BBO, to the best of my knowledge,
only one framework and a couple of (student) projects have used SHAP values, yet
again, only to explain the contribution of decision variables to objective values, as
a pre- or postprocessing step (e.g. [101, 45]. (Not to say that SHAP values aren’t
extremely useful in this regard.)

Beyond merely understanding problems, we will propose a search heuristic for
solving them, based on SHAP values. First, there is the motivation as to why this
might be a good idea, and what the connection between SHAP values and BBO
might be. Consider this example from previously:

1 df.howTo(
2 minimize (foo),
3 subjectTo (-1000000.0 <= hcol("x") <= 1000000.0 ,
4 -100.0 <= hcol("y") <= 100.0) ,
5 forTrials (baz),
6 withOptions ("partitioning parallelism" -> 5,
7 "partitioning metric" -> "range")
8).show()

One dimension clearly has a larger range than the other, which invites the
heuristic notion that it would be beneficial to the final result if we emphasized
search here, depending on our intuitions about the problem-algorithm pair, as
always. But what if the objective function is actually something like this within the
black box:

114 Chapter 3. Technical contribution

f (x, y) = x−42 + y42 (3.18)

In other news, variable x’s influence on the objective value is actually quite
insignificant compared to the one of y, regardless of their respective range. Intu-
itively speaking, even if the chosen algorithm is much better at finding the ”right
value” in a dimension when it is smaller, emphasizing search in dimension x might
not be that rewarding in the end in terms of solution quality. Within an ML con-
text, we of course also have the extreme example of e.g. decision trees ignoring
some features, with said features having zero influence, and thus SHAP values of
zero [103].

Global SHAP values (cf. eq. (2.46)) are used as a measure of overall feature
importance in a predictive modelling context. Recall that each global coefficient
estimates how much particular feature values contribute to predictions beyond an
expectation over the domain. In our BBO context, we will use global SHAP values
to estimate the importance of choice, with decision variables as features, and the
penalized objective function as the model.

We will regard the domain of our model as all design points having meaningful
objective and constraint function values, i.e. all design points feasible with respect
to the subset of unrelaxable constraints (cf. section 2.4.1), with Relaxable constraints
instead being incorporated into a penalty term. As per our library design, this just
means that points need to be feasible with respect to bound and integer constraints.
It is a practically motivated choice, since unlike with other constraints, we can
easily generate feasible design points. As a shorthand, we will name our chosen
domain for integration the relaxable domain.

Translating ideas from the ML field directly, our interpretation of global SHAP
values within BBO is as follows: If a decision variable has a small global SHAP
value with respect to the objective, it means that choosing one assignment or an-
other for it in a design point generally makes little difference to the objective value
and/or feasibility of said design point.

While anything goes in the black-box objective, reasons for this might for in-
stance include that the average contribution of the variable is small, or that concrete
assignments are interchangeable, with their generic contribution level being rolled
into the domain expectation that SHAP values offset from (cf. section 2.5.2).

Note from the latter example that while a low global SHAP value doesn’t neces-
sarily imply that the decision variable is unimportant inside the black box, choosing
one assignment or the other might still matter little to the output (penalized) ob-
jective value, which is ultimately what we care about in optimization.

As for decision variables with large global SHAP values, the same conceptual
translation can be presented, yet of course with inverse conclusions.

Despite being able to capture nonlinear dynamics among coalitions of players,
i.e. nonlinear decision variable interactions, SHAP values are still fundamentally

3.7. Search space partitioning 115

additive (it’s literally in the name). This coincidentally fits our creative license over
the make-believe concept of n-perimeters well. Let Φ = [Φ1 , ..., Φn] ∈ Rn

≥0 be a
vector of global SHAP values (cf. eq. (2.46)) for n decision variables with respect to
a penalized objective function over its relaxable domain. Then the SHAP Perimeter
(SHAPe) of the search space is:

SHAPe(Φ) =
n

∑
i=1

Φi (3.19)

When meaningful comparisons are possible, we will say that some search spaces
are more or less SHAPely depending on their relative SHAPe. Note that compared
to the local SHAP formula (cf. eq. (2.45)), we have just averaged local SHAP values
per dimension (obtaining global estimates as per eq. (2.46)) and removed the ex-
pectation term, it being irrelevant for perimetric minimization. Using the SHAPe
as a measure of dimensional magnitude instead of range, we can k-partition the
original search space with the same strategy as described in the previous section
- but now with an allocation of splits heuristically weighted by the significance of
choice within each dimensional range. In our leading example of this section, vari-
able y would then be preferred for splits, even though it has a much smaller range,
since its estimated influence on the objective value is astronomical compared to
variable x.

Note that this partitioning scheme won’t necessarily make the obtained search
space partitions less SHAPely than the original one, or even ensure that partitions
are equally SHAPely. The idea is not (erroneously) to try to make choices within
each subproblem more or less significant. Instead, the idea is to limit the range of
options within subproblem dimensions, heuristically weighted by their significance
for solving the global problem, which is what we ultimately want to do.

The utility of this partitioning heuristic, as opposed to e.g. not using partition-
ing at all, of course depends on the problem-algorithm pair under consideration.
Yet my intuition would be to consider it for e.g. high-dimensional, complex prob-
lems, where the dimensions might be evenly sized, but global SHAP values (as
estimated by the library), indicate large discrepancies among variables in terms of
influence on the objective. In such cases, SBO algorithms will likely have to spend
a large chunk of the overall trial budget on the DoE for proper interpolation, and
might have to spend a lot of computational resources to provide remotely useful
solutions to auxiliary problems. Under a limited trial budget, my best bet would
then be to run a fast local optimizer like MADS in several search space partitions,
emphasizing importance of choice to get the most bang for the buck.

The final piece of the puzzle is how we can estimate global SHAP values with
the library, which is all we need to feed to algorithm 4 etc. Upon detecting that the
user has opted for ”shap” partitioning with a non-empty TrialHistory dataset, we

116 Chapter 3. Technical contribution

go through the following steps:

1. Reproject objective values in the TrialHistory dataset with a consistent mea-
sure of penalty.

2. Fit a surrogate model to the projected dataset, standing in for the true objec-
tive function.

3. Employ the Spark cluster to estimate global SHAP values, using the Monte
Carlo approach from eq. (2.49).

As for step 1, note that unlike existing partitioning schemes within BBO [125],
we don’t need an arbitrary number of extra objective evaluations to e.g. estimate
all possible variable interactions in our approach: We just use whatever knowledge
we already have about the search space. It thus extends algorithms already using
e.g. LHS for initial solutions or interpolation sets ”for free”, squeezing out some
extra value from the samples we already have on hand. The library default is to use
the augmented penalty function of HRM (cf. section 3.5.6), thus enforcing a strict,
yet numerically stable, SFS ranking in the interpolation dataset, when problems
are constrained.

As for the surrogate model in step 2, we use a cubic-kernel RBF of the form in
eq. (2.15) by default - the reason being that it is relatively cheap to do draw our
desired number of Monte Carlo samples with it, and that such high-dimensional
RBF models have been successful within other partitioning strategies based on
interpolation [155].

In step 3, we run a number Spark tasks on the cluster. For each task, an executor
allocates its cores to each estimate the Shapley value of variable i in design point
j, by drawing a number of Monte Carlo samples. More fine-grained alternatives
might of course have been possible, in which we just draw all of our Monte Carlo
samples as result rows of one big query and then aggregate everything in the end.
Yet I opted for the present level of granularity to keep tasks reasonably small, while
avoiding the overhead introduced by doing a potentially massive amount of UDF
calls for interpolation with the surrogate model on each row.

The Spark SQL query for estimating global SHAP values on the cluster goes as
follows:

1 his.trials.map(_.solution).toDF("x")
2 .crossJoin(spark.range(ss.nVars))
3 .withColumn("seed", rand(seed))
4 .withColumn("shap", shap($"x", $"id", $"seed"))
5 .groupBy("id")
6 .agg(expr("mean(abs(shap)) AS shap"))
7 .select("id", "shap").as[(Long , Double)]
8 .collect ()

3.7. Search space partitioning 117

So, on line 1 we project the solution vectors of TrialHistory to obtain our points
for Shapley value estimation. We then on line 2 cross join with a range of integers,
denoting variables [1..n], and thus which variable to estimate the Shapley value
for in each task. After adding a random seed to each task on line 3, we use a
UDF named shap(·) to do the Monte Carlo experiments with the RBF surrogate.
Lines 5-6 we aggregate local Shapley values by variable i’s to obtain the global
SHAP values (eq. (2.46)), before collecting them in an array of n tuples in lines 7-8,
containing each variable ID with its corresponding global SHAP value estimate.

As for what happens inside shap(·), this in summarized in algorithm 5. It
is actually a functional closure, encapsulating the RBF surrogate f and global
SearchSpace ss. Apart from these hidden parameters, various hyperparameters
regarding the calculation of batches, along with an early stopping criterion, can be
specified.

Algorithm 5 Monte Carlo Shapley Estimation

1: procedure MCSE(x, i, seed, f , ss, maxSamples = 50000, batchSize = 1000, z =

1.96, threshold = 0.01)
2: rng← Random(seed)
3: numBatches← maxSamples÷ batchSize
4: batchNum← 0
5: stats← BatchStatistics() ▷ Used for efficient descriptive statistics
6: Runs until maximum samples or convergence reached:
7: while batchNum < numBatches and not converged(stats, z, threshold) do
8: sample← genSample(batchSize, x, i, ss, rng) ▷ i.i.d. points, cf. eq. (2.48)
9: masked← f (sample) ▷ Objective value without xi participating

10: sample[:, i]← xi ▷ Assign xi to entire column i
11: unmasked← f (sample) ▷ Objective value with xi participating
12: marginals← unmasked−masked ▷ Marginal estimates, cf. eq. (2.49)
13: stats.update(marginals) ▷ Update running mean and variance
14: batchNum← batchNum + 1
15: return stats.mean

As shown in line 5 and 13, we use running means and averages to avoid need-
less recomputations of these statistics from scratch. The final running mean is
ultimately what is returned by the algorithm (line 15) as the estimated SHAP value
for value i in design point x. Otherwise we enter the main while loop, calculating
marginal estimates in batches (cf. eq. (2.49)). As for what our ”reference dataset”
is here (i.e. Z in section 2.5.3), the domain over which we calculate expectations is
as previously mentioned design points in the relaxable domain of f . We don’t ever
need to construct this dataset explicitly when generating samples on line 8, but can
just use SearchSpace helper methods to quickly generate random bounds-feasible

118 Chapter 3. Technical contribution

design points.
As described previously, we can use the normal distribution to reason about

the possibility of early stopping in this approach (cf. section 2.5.3). At M collected
samples, with the current mean and standard deviation being µ̂ and σ̂, respectively,
our confidence interval for the chosen z score z is [182]:

µ̂± z · σ̂√
M

(3.20)

The rightmost factor is merely our estimate of the population standard devia-
tion at M samples, as discussed in section 2.5.3. If for instance z = 1.96, as is the
default of algorithm 5, we are 95% statistically confident that the true mean lies in
this interval at M samples. The early convergence check in converged(·) on line 7,
inspired by a solution I found elsewhere [181], simply checks whether the range of
this interval, denoting possible error, becomes so small that it maybe isn’t ”worth
it” to draw more samples, and we should just stop pronto. Concretely, for M > 0
and µ̂ ̸= 0 it checks whether:

z · σ̂√
M

|µ̂| < threshold (3.21)

So, using library default values, if we are 95% statistically confident that the
true mean is off by at most 1% of the estimated mean. Note that this approach
isn’t statistically immaculate, since there is some additional estimation error in-
volved in using the sample mean in the formula above. We nonetheless accept this
predicament, since any small biases will need to be corrected anyway by taking a
global mean over all local Shapley values with the returned result of algorithm 5.

This concludes the story of what I’ve played around with this semester.

Chapter 4

Related work

This chapter goes over relevant existing technical solutions that DIBBOlib relates
to, of which several are more or less antagonistic sources of inspiration.

4.1 PA systems

As described in chapter 1, PA incorporates forecasting into optimization models.
The need for integrating predictive methods, such as ML, and optimization meth-
ods, such as LP, into efficient and user-friendly workflows motivates the develop-
ment of prescriptive frameworks and DBMSes - of which only few exist as of today.
The most full-fledged solutions, integrating both prediction and optimization fa-
cilities into DBMSes, are prescriptive DBMSes [58].

While the end result of this project is perhaps better described as a prescriptive
framework or tool, integrating directly with MLlib for forecasting, DIBBOlib took its
onset in a project about PA [115], and therefore relates to such solutions in several
ways.

SolveDB+ is an extensible prescriptive DBMS built on top of PostgreSQL, and
is arguably state-of-the art within its class [160]. It offers an entirely SQL-based
workflow for PA. The overall architecture is based on providing an extensible way
of integrating existing optimization solvers (such as CPLEX) and predictive tools
to run in-DBMS [159]. Users can specify advanced data-driven analytics queries,
including optimization queries, through an extension of SQL known as solve queries
Using an example drawn from [58, p. 589]:

1 SOLVESELECT r(stock) AS
2 (SELECT itemID , profit , null :: integer AS stock
3 FROM ItemFacts)
4 MAXIMIZE (SELECT sum(profit * stock) FROM r)
5 SUBJECTTO (SELECT sum(stock) <= 70 FROM r)
6 USING solverlp ();

119

120 Chapter 4. Related work

The new SOLVESELECT clause on line 1 introduces an SQL view r of an in-
put data table ItemFacts with an integer decision variable column stock, which is
queried on line 4 and 5 to specify the objective and constraints of the problem
model, respectively (cf. 2.1). The USING clause specifies a preferred optimization
solver to use, in this case one using LP. Yet SolveDB+ notably offers an automatic
algorithm selector making this clause optional in most cases [159]. On top of this,
SolveDB+ offers support for model management, i.e. a way to store and reuse pre-
dictive and prescriptive model components [160].

DIBBOlib draws inspiration from SolveDB+ in also offering data-driven analytics
facilities with support for complete prescriptive workflows, to be used alongside
an SQL-based system core (Spark SQL) (cf. section 2.1). DIBBOlib also similarly
emphasizes extensibility, allowing clients to implement their very own sBBO and
constraint handling methods at their desired level of involvement. In some ca-
pacity, DIBBOlib additionally offers (an albeit limited kind of) automatic algorithm
selection and model management, through the how-to wizard and by interoperating
with the MLlib pipeline system, respectively section 3.4.2.

A significant departure is however that SolveDB+, being built on top of Post-
greSQL [159] is designed as a single-node system, not outright made for the Big
Data use case, which is the role played by Spark in the presented library. To my
knowledge, current analytics solutions built around the data-intensive use case
generally only support forecasting or optimization out of the box, but not both [58,
115].

SolveDB+ also more ambitiously aims to support a broad range of different
optimization approaches, from LP to population-based BBO [164], while the pro-
posed library limits itself to a fairly niche group of methods.

Tiresias is another single-node PA system, offering a Datalog-based query syn-
tax [112]. Of note, DIBBOlib borrows a few ideas from Tiresias in terms of problem
modelling: Tiresias being the inspiration behind the key concepts of hypothetical
columns (hcol(·)), how-to queries, and what-if models.

A what-if query makes a hypothetical change to a database and assesses the
outcome, without the user having to manually make or unmake said changes [47,
p. 252]. The goal is usually to forecast some hypothetical performance metrics
under a set of assumptions related to past data [16]. In DIBBOlib, notice that what-
if model evaluations, in which we change a set of columns on an input dataset to
assess the effect on objective and constraint function values, fit this description (cf
section 3.3).

What-if queries were ”invented” some 20+ years ago in an OLAP setting [96].
The people behind Tiresias later on came up with the concept of how-to queries,
which are in a sense ”reverse” what-if-queries [111]. How-to queries instead spec-
ify a desired outcome of a database update, and obtain a hypothetical change to

4.2. BBO solutions for Spark 121

the database achieving this effect [110]. The Tiresias system offers the TiQL lan-
guage, used alongside SQL, essentially specifying mixed-integer LP problems to
be solved. A key concept in TiQL is the one of a hypothetical table, e.g. [112, p. 3]:

1 HLineItem(ok , pk, sk , q?)

HLineItem is a relational table, with some attributes merely containing prob-
lem input data in their column, and other attributes being unknown, marked by
a trailing ”?” for q in the example, denoting decision variables [112]. Unknown
attributes have nondeterministic semantics, there being several ”possible worlds” for
instantiating the relation in a logic programming sense, and a feasible set in an
optimization sense - governed by a set of rules (constraints) as specified in the TiQl
syntax. By optimization, Tiresias finds the best possible instantiation of hypotheti-
cal tables with respect to an objective function, and provides this as the output of
how-to queries [112].

DIBBOlib offers a similar nondeterministic way of thinking about decision vari-
ables to Tiresias, them being specified as hypothetical columns (hcol(·)) in an input
dataset, for which we need to find the best possible feasible assignments. Of course,
we only work with columnar constants in the library, due to our expected problem-
algorithm types (cf. section 3.3).

In DIBBOlib, optimization queries at large, be it through the how-to syntax or
Transformer API, similarly specify how-to queries, in the sense that users specify a
desired outcome with respect to an input table with hypothetical attributes in the
query, and get the best instantiation found in the output table.

4.2 BBO solutions for Spark

To my knowledge, DIBBOlib is the first ever attempt at building an sBBO tool for
Spark. There is however a lot of existing research within BBO related to Spark,
specifically implementations of various population-based BBO algorithms, such as
Genetic Algorithms [37, 134], Differential Evolution [75], Particle Swarm Optimiza-
tion [199, 5], and the like. The JMetalSP library offers a suite of such algorithms,
all running on Spark [17].

These solutions leverage Spark for BBO quite differently compared to the pre-
sented library. In DIBBOlib, Spark’s main role is to scale out objective evaluations,
assumed to be relatively expensive, with the core optimization algorithm, assumed
to be relatively cheap, generally running entirely on the driver machine - auxiliary
solving on the cluster being regarded as a niche option (cf. section 3.6.1).

The aforementioned population-based algorithms grapple with quite different
challenges in terms of scalability: Here, the objective function is generally assumed
to be cheap to evaluate [42], while the core algorithm updates can get arbitrarily ex-
pensive as a function of the utilized population sizes [6]. High-dimensional and/or

122 Chapter 4. Related work

highly constrained BBO problems, the ”target audience” for these algorithms, tend
to require very large populations, which can become a CPU-bound scalability issue
[83].

Within research on population-based BBO for Spark, the general approach be-
ing pursued is to scale out expensive algorithmic updates, with each executor man-
aging its own subpopulation (e.g [109, 7]). The most popular design pattern is to
make executors run algorithmic iterations independently, while at regular intervals
making them share their incumbent solutions with each other - the so-called island
topology [105]. This furthers global progress while keeping I/O requirements rela-
tively low. The role of the driver here is merely to track the number of algorithmic
iterations and manage task completion.

Where does the presented library stand compared to alternative BBO solutions
for Spark then? These solutions are arguably more complementary than anything
else. As the above discussion would imply, the associated methods of each solu-
tion type are designed to handle different challenges within BBO: computationally
expensive and high-dimensional problems models, roughly speaking. In conclu-
sion, one should pick what fits the application, and hope that the problem model
is either relatively cheap or simple, or that a hybrid solution [126] is on the table.

Their complementarity is even evident from a purely technical standpoint. Note
that population-based solutions for Spark generally push algorithmic updates to
executors, including objective evaluations. As per the master-worker structure of
Spark applications, the driver process is the single entry point for executing Spark
queries, through its session object (cf. section 2.1), with all references to the session
object being set to null when tasks are serialized and relayed to executors [165].
It is therefore generally technically impossible to perform objective evaluations in-
volving Spark queries with the aforementioned population-based solutions, due to
platform limitations.

On the other hand, DIBBOlib counts on objective evaluations requiring Spark
queries. This might of course cause some wasteful overhead if the objective func-
tion is a very cheap one-liner with no input dataset attached to it, and thus motivate
looking for alternative solutions, like Genetic Algorithms with JMetalSP [17]. But
for the converse scenario, DIBBOlib is otherwise the only ready-made solution to
my knowledge.

4.3 Alternative sBBO solutions

Other sBBO solutions already exist today: frameworks, libraries, and solvers. They
generally don’t show up in yearly Stack Overflow surveys or in any comprehensive
literature review, however.

As a small desktop research project, I therefore scoured Google (Scholar) and
GitHub Topics for existing solutions, using pertinent keywords like ”black-box”,

4.3. Alternative sBBO solutions 123

”derivative-free”, ”gradient-free”, ”zeroth-order”, and ”model-based”, combined
with ”optimization” and ”library”, ”solver”, ”framework”, ”platform”, ”system”
and ”tool”. To limit the search scope and prioritize more prolific solutions, I only
looked into repositories with 50+ stars on GitHub, or until Google search results
were predominantly unrelated to sBBO. As always, we treat population-based BBO
as a separate class of algorithms, and solutions dedicated to those were therefore
not included in this survey. table 4.1 provides a visual overview of the polemics to
come.

Type Name 3+sBBO |Ctx| Ctx* Parallel Multi Split Transfer Spark Wizard
Solver NOMAD [124] ✓ ✓ ✓ ✓ ✓

MISO [113] ✓
BFO [24] ✓ ✓
DAKOTA Solvers [46] ✓
DFL solvers [48] ✓ ✓
SNOBFIT [163] ✓ ✓
TOMLAB Solvers [187] ✓ ✓

Library scipy-optimize [129] ✓
PyBrain [140] ✓
scikit-optimize [153] ✓
GFO [61] ✓ ✓
RoBo [151] ✓
blackbox [29] ✓ ✓
Mystic [121] ✓ ✓ ✓ ✓
pySOT [141] ✓ ✓ ✓ ✓
RBFOpt [144] ✓ ✓
Benderopt [20] ✓
Blackboxopt [29] ✓
GloMPO [62] ✓ ✓ ✓
Optim.jl [131] ✓
Optimization.jl [130] ✓ ✓
Surrogates.jl [184] ✓
BlackBoxOptim.jl [29] ✓ ✓ ✓
BlaBoO [28] ✓ ✓
mlrMBO [114] ✓ ✓ ✓
bbotk [19] ✓
Blackbox package [29] ✓
Optim [128] ✓ ✓
HOPSPACK [80] ✓ ✓ ✓

Framework Nevergrad [122] ✓ ✓ ✓ ✓ ✓
Google Open-Source Vizier [4] ✓ ✓ ✓ ✓ ✓
OpenBox [127] ✓ ✓ ✓ ✓ ✓ ✓
DIBBOlib ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.1: Existing solutions summarized. 3+sBBO, denotes access to three or more sBBO method
types within our taxonomy in a standard algorithm suite (cf. section 2.3.2). |ctx| denotes support
for bound constraints for all algorithms. ctx* denotes support for general constraints for all algo-
rithms. Parallel denotes support for trial parallelism. Multi denotes support for bi- or multi-objective
optimization. Split denotes support for search space partitioning. Transfer denotes support for any
transfer learning, including checkpointing with ”hot restarts”. Spark denotes direct integration with
the Spark platform and ecosystem. Wizard denotes access to an automatic algorithm selector. While
we talk about DIBBOlib as a library in our assumed Spark setting, it may alternatively be regarded
as a framework when including the Spark platform as part of the ”whole package”.

124 Chapter 4. Related work

I categorize solutions found into 3 groups: Solvers, libraries, and frameworks.
Of course, no one seems to agree on what anything is nowadays, but my own
definitions are as follows: Solvers offer high-quality implementations of individual
algorithms, usually in performant languages like C/C++. As a litmus test, mathe-
maticians have a habit of calling these solutions ”codes” [150]. Libraries are more
focused on breadth and user convenience, and offer a suite of algorithms in popular
data science or math languages like Python, R, MATLAB and Julia (e.g. [51, 184]).
Frameworks are similar to libraries, yet additionally offer deployment architectures
and/or general workflow features, such as benchmarking or visualization utilities
(e.g. [21, 101]) - making up more opinionated proposals on how users should
structure their applications than libraries.

As for solvers, there is one definite top dog within sBBO, in terms of GitHub
stars, benchmark performance, and prominence within research, and that is NO-
MAD (Nonlinear Optimization with the MADS Algorithm), implemented in C/C++
[13, 148]. As implied, this solver offers the MADS algorithm and variants thereof,
with various extensions tailored to them, e.g. for general constraint handling,
hybridization with surrogate models, and bi-objective optimization [124]. To il-
lustrate, even though MADS is a Local algorithm at its core, NOMAD is still a
contender in benchmark comparisons within Global sBBO [150].

Other solvers I found were much more obscure and limited in scope, with
most of them seemingly no longer being actively maintained, or e.g. only offering
support for bound constraints. Notables however include MISO, built around a
hybrid of several SBO methods, which has previously outperformed MADS on
higher-dimensional problems [120], and solvers in the relatively prolific TOMLAB
toolbox, which offer algorithms like DIRECT and support for general constraints
[188]. Both of these alternatives are ”however” implemented in MATLAB.

As for where DIBBOlib stands with respect to these solutions, suppose that my
late-afternoon student project implementation of e.g. MADS doesn’t consistently
outperform high-quality codes like NOMAD in most cases.

In principle, one could of course compile and run NOMAD on a remote driver
or on a dedicated cluster machine, and make it run a series of Spark jobs through
e.g. a Bash script, printing the obtained objective and constraint function values to
stdout, as per the NOMAD API, which is indeed very generic, as per the black-box
premise [124].

However, one might argue that integrating DIBBOlib into an existing Spark
application or cluster is much more convenient than the alternative, or what would
similarly be required for deploying the highlighted MATLAB solvers. The library
already has handling in place for translating optimization problem models to Spark
queries and back again - that is an important part of library core functionality.
Without the library, users will have to figure out how to do all of these translations
on their own and e.g. print all relevant information to stdout in the right format.

4.3. Alternative sBBO solutions 125

In conclusion: while high-quality codes might outperform the library suite, the
value provided by the library core might outweigh this con in a practical develop-
ment setting, where developer productivity is a priority.

As one might expect, Python is by far the most popular language among sBBO
libraries, with Julia being the runner-op.

Among Python’s data science ecosystem giants, scipy.optimize offers implemen-
tations of Nelder-Mead as well as DIRECT in its standard suite. Its support for
constraint handling however varies by algorithm, with only bound constraints be-
ing supported for Nelder-Mead, for instance [129].

The Mystic library [121] also deserves a mention - while it by its design phi-
losophy only aims to sport a handful of algorithms, with Nelder-Mead being the
only one of interest to us, it offers the most elaborate support for generalized gen-
eral constraint handling among any alternative solution I’ve found, full stop. It
combines a symbolic constraint parser with various penalty and barrier methods
to provide generic handling across its algorithm suite. As the reader was previ-
ously made aware (cf. section 3.5.5), DIBBOlib’s approach to constraint handling,
including its (ab)use of Catalyst as a constraint function interpreter, actually drew
a bit of inspiration from Mystic.

Various other libraries in Python and Julia offer dedicated support for particular
branches of sBBO methods, e.g. pySOT [141] and Surrogates.jl [184] in Python and
Julia, respectively, for SBO, with pySOT being developed by the creators of SRBF
(cf. section 2.3.6).

As for where DIBBOlib stands versus other libraries also offering sBBO, there
is of course always the possibility of a potential customer seeing exactly what they
need in an alternative tool to ours, and just going with that instead.

However, users regularly using sBBO may not appreciate having to learn how
to use a new library for every problem. As a more general-purpose sBBO library,
DIBBOlib arguably has the upper hand, by sheer feature disparity, regardless of its
gimmick of leveraging the Spark platform.

As illustrated in table 4.1, none of these alternative libraries combines an exten-
sive standard suite of sBBO algorithms with support for general constraint han-
dling - what might be considered bare-bones features of any sBBO solution to be
deemed general-purpose. In fact, I selected algorithms for the standard suite, so I
could say just that, as I aspired to cover all commonly offered algorithms among
alternative solutions. Having a number of useful options on hand is essential un-
der the No Free Lunch theorem, since one algorithm won’t perform better than
average across all problems [197].

Furthermore, as also depicted in table 4.1, DIBBOlib offers some meat on top
of bare-bones essentials for a general-purpose solution, apart from offering several
unique features not found in any other tool (e.g. section 3.5.6), along with its

126 Chapter 4. Related work

complete integration with the Spark analytics ecosystem.
To conclude, DIBBOlib forms a unique niche among others as being general-

purpose, combining ideas from disparate solutions to create a sum larger than its
parts, while at the same time offering features not found elsewhere.

As for frameworks, there are three main contenders to be aware of: Nevergrad
by Meta [21], Open Source Vizier by Google [63], and OpenBox by the AutoML team
from the DAIR Lab at Peking University [101].

These all offer deployment options for running optimization in a distributed
master-worker architecture. Here, workers do several trials in parallel under a
central coordinator requesting each evaluation client-server style [127, 4, 122].

If we consider the whole package of DIBBOlib running on the Spark platform
as a framework, then there is clearly some conceptual overlap with the other so-
lutions. Note however, that a crucial difference in focus is also evident from how
work is parallelized in other frameworks versus ours.

The parallelism of Spark, and our library by extension, is designed for the
data-intensive case, in which subtasks of processing a huge distributed dataset are
(ideally) allocated to workers for completely data-local processing [35].

While we indeed support trial parallelism (cf. section 3.6.1), we are actually
mainly interested in splitting one data-intensive trial into several data-local sub-
tasks processed in parallel on the Spark cluster, so it can complete much faster
than otherwise possible. The way I see it, this is how we want to distribute units
of work in the data-intensive case.

The alternative frameworks are seemingly more designed with the compute-
intensive case in mind, in that they hand off entire objective evaluations as subtasks
to workers without regard for data-local processing - likely not due to neglect, but
due to different workload assumptions [127, 4, 122].

To achieve parallel optimization functionality similar to our framework, one
could of course run e.g. OpenBox by installing its distributed architecture alongside
an already running Spark cluster, and make OpenBox workers act as drivers in
separate Spark applications for each objective evaluation (noting again local session
objects being the single entry points for Spark queries, cf. section 2.1). Yet all we
have achieved is just a higher number of driver processes bothering the cluster
manager - and such a deployment option, running two distributed frameworks
alongside each other to achieve what could be accomplished with one, just seems
needlessly convoluted compared to deploying e.g. DIBBOlib, which comes with
batteries included for that use case.

We are thus again at a point, where our solution is more complementary to
others than anything else, with our distributed architecture being more suited for
the data-intensive case, and others possibly being better suited for the compute-
intensive case, depending on the needs of the application.

4.3. Alternative sBBO solutions 127

Not to say that there aren’t any clear pros and cons. While all alternative
frameworks offer a suite of algorithms, only Nevergrad and DIBBOlib offer both
Local and Global sBBO out of the box, with the others only offering Global methods
[122].

Alternative frameworks all also offer some level of support for general con-
straint handling, yet with widely varying levels of elaborateness. As also pointed
out by the OpenBox developers [127], Vizier only offers very limited support for gen-
eral constraint handling: a single method operating similarly to the death penalty
[82] (cf. eq. (2.34)). After all, they are mostly focused on the hyperparameter tuning
use case for sBBO, which generally only requires simple bounds handling [63].

As for Nevergrad, it uses the same penalty formula to handle all Relaxable
constraints, with a default of just factoring 105 into infeasible objective values,
regardless of scale [123]. Again, this is likely just a product of having a different
focus than ours, which is more general-purpose than e.g. hyperparameter tuning.

As for OpenBox’ own constraint handling facilities, they follow a different
design philosophy than ours, using more advanced methods per-algorithm with
varying levels of support across the board [127], as opposed to DIBBOlib’s aim for
a generic solution accommodating more algorithms, including client implementa-
tions of sBBO.

The three alternative frameworks do offer some nice features, that DIBBOlib
doesn’t have: Support for multi-objective optimization [127], log-scale variables
(e.g. the range of 0.1, 1, 10...) [4], algorithm benchmarking [21], horizontal transfer
learning (for algorithms that support it) [101], and more.

But at the same time, our framework offers features that the others don’t, in-
cluding e.g. (dynamic) search space partitioning (cf. section 3.6.2), and a new
alternative to the staple penalty method (cf. section 3.5.6).

In sum, DIBBOlib, regarded as a framework when combined with its assumed
platform, can be regarded as being complementary to other prominent sBBO frame-
works, having a unique focus on data-intensive processing. While mutual feature
disparity entails that no solution is strictly better for every conceivable application,
this nonetheless fits recurrent themes within optimization well [197].

Chapter 5

Experiments

There were many possible directions to pursue for experiments, and ultimately not
enough time to cover all bases. Among these possibilities, trying to demonstrate
situational superiority of the library compared to alternative solutions, was indeed
on the table. One could for instance investigate whether NOMAD [124] indeed
outperforms my student project implementation of MADS on all problems.

The ”burning questions” with respect to scalability and usability within the
chosen setting (cf. chapter 1) were however found elsewhere. Of note, DIBBOlib
offers some new ”tricks” related to three fundamental issues within BBO research,
and the qualities sought after in the problem statement: Trial parallelism, constraint
handling, and problem partitioning - corresponding to the dynamic load balancing
algorithm based on directional sBBO (cf. section 3.6.1), HRM as a data-driven
method for constraint handling (cf. section 3.5.6), and heuristic search space parti-
tioning schemes combining dynamic/greedy programming with e.g. SHAP values
(cf. section 3.6.2), respectively.

The first feature relates to scalability and usability both, in that it is meant to
provide a way for library performance to scale better with increasing trial bud-
gets, without users having to guess the right level of parallelism a priori (cf. sec-
tion 3.6.1). HRM was largely motivated by usability concerns, in that it eliminates
otherwise difficult hyperparameter choices, as seen with e.g. penalty methods (cf.
section 3.5.6). The idea behind the proposed search space partitioning strategies
were similarly to offer an alternative to existing approaches that was relatively
simple to reason about heuristically, i.e. in terms of boxes (cf. section 3.7).

All of this is fine and well... but are these features any good, performance-
wise? The actual merit of these new ideas compared to baseline solutions were
certainly entirely unknown to me, thereby warranting experiments that weren’t just
for show. Three experiments, to be described below, will therefore investigate this.
Other areas of the library, like our part-time employment of Catalyst as a constraint
interpreter to boost performance (cf. section 3.5.4), as well as the potential usage

129

130 Chapter 5. Experiments

of the Spark cluster as an auxiliary problem solver for Model-based methods (cf.
section 3.4.4) might of course also have been relevant to look into. But if I had
to pick three library core features for experiments, it would be the others just
described.

In the following sections, we will first go over the cluster setup before moving
on to describe each experiment in turn.

5.1 Cluster setup

A Spark cluster was set up, using three virtual machines. Each were equipped
with 32 logical CPU cores and 268 GB of RAM, with AMD EPYCTM 7302P 3.3
GHz CPU’s, and a sum total of 295.57 GB disk space among all machines. These
machines were provided by the university, of which two were shared with other
users - while this provided a nicely naturalistic setting for testing our dynamic
load balancing, do note that it was practically infeasible for me to supervise that
no run among more than 1000 was impacted by the activities of other users.

Since this cluster was relatively small and single-tenant, and for deployment
simplicity, it was decided to use the Spark Standalone cluster manager [177], and
not e.g. YARN, but only the HDFS component of Apache Hadoop. Relevant num-
bers of all main cluster elements are summarized below, reflecting when the cluster
came to be last December:

Component Version
Ubuntu Linux (Guest OS) 22.04.4
Java JDK (Oracle) 17.0.5
Apache Hadoop 3.3.4
Scala 2.13.10
Apache Spark 3.3.1
Spark MLLib 3.3.1
Breeze NLP 1.2

We highlight MLlib and Breeze NLP (for linear algebra) due to their status as
key dependencies of our library, but note that they come prepackaged with Spark
distributions by default [173].

One machine was employed as the Spark cluster manager and HDFS name
node, while all three were employed as HDFS data nodes, to make the best use of
limited disk space. This was deemed a reasonable solution in our relatively small
setup.

Following generic recommendations [50], the number of CPU cores per ex-
ecutor was limited to 5, to optimize HDFS throughput, and the default memory
allotment of 1 GB was upped to 30 GB, using the available space with some leftover

5.2. Experiment 1: Load balancing 131

headroom. In terms of available cores on each machine, experiments thus ran with
a maximum of ⌊32÷ 5⌋ = 6 executors active per machine, or 18 in total, each with
5 CPU cores and 30 GB’s of RAM.

All runs were completed by running Spark applications in client mode on the
cluster master node, which launches a driver JVM through spark-submit [177, 166],
separate from the up to 18 executors. While the driver could similarly be configured
for a 30 GB RAM allotment, Spark Standalone offers no standard option for con-
figuring the number of driver cores in client mode. The driver process is simply
spawned as a standard JVM, which can use all cores by default. The overt disad-
vantage of this setup is that the driver process shares CPU cores with its up to 6
local executors, possibly impacting their performance. The alternative would be to
run in cluster mode, spawning the driver process in one of the executor processes
on any machine.

Still, practical concerns took priority: The driver process running on the same
machine on each execution meant that it was easier to frequently log e.g. driver
memory usage through local file system writes to the same directory, avoiding
alternatives with direct impact on HDFS throughput. It was therefore decided to
go with the client mode option - noting also that this condition is the same across
all executions and is naturalistic to how Spark applications are usually run in this
mode.

5.2 Experiment 1: Load balancing

The purpose of this experiment is to see how the dynamic load balancing algorithm
of the library used for trial parallelism with SBO algorithms (cf. section 3.6.1)
performs compared to a static baseline and a fully sequential run.

As a secondary purpose, it is also demonstrates the library in its element, with
the example problem involving a dataset of non-trivial size.

5.2.1 Example problem

To assess performance under different loads, we use a modified version of a prob-
lem from the TPC-DS benchmarking suite (version 3.2.0) for this experiment [190],
it being simple to scale the size of the input dataset at will.

We specifically use query 48, due to it having a decent number of substitution
parameters [189, p. 117] easily re-framed to decision variables, and due to it
querying one of the largest fact tables in the star schema used by the suite. I used
a similar problem in my previous semester project [115], but we now add some
non-trivial changes and extensions to the original story.

In the spirit of sBBO, we additionally enrich our what-if model with an ML-
lib decision tree in an extra pipeline stage, doing predictions on output rows [41],

132 Chapter 5. Experiments

as well as a black-box input constraint with a Spark SQL UDF taking decision
variables as input arguments, thus requiring a separate small Spark query for eval-
uation upon each trial (cf. section 3.5.5).

The pipeline used for the what-if model is as follows:

1 val pipeline = new Pipeline ()
2 .setStages(Array(tpcds48Modified , mlModel , finalAggregation))

tpcds48Modi f ied is simply an SQLTrans f ormer with the original TPC-DS 48
query in it, but with the big store_sales table instead assumed present in the
pipeline input table __THIS__ - confer appendix A.1.1 to see the modified query
in full. We try to be prudent here, and use it as the input Dataset to the opti-
mization query, such that it is cached to default memory levels during the run
when possible (cf. section 3.4.2). TPC-DS 48 simply selects a number of sales rows
from the store_sales table, from a number of different states in the USA, based on
demographic information such as marriage and educational status of customers.
We use these substitution parameters as decision variables, for workload variety
depending on predicate selectivity.

The mlModel step is a pre-trained MLlib DecisionTreeClassi f ier doing predic-
tions on all rows of the previous pipeline steps [41]. It uses information from these,
along with a made-up decision variable named (customer) treatment, to predict for
each sales row whether the sale will generate buzz online or not (1 or 0).

The final aggregation step calculates the objective for maximization:

1 val finalAggregation = new SQLTransformer ().setStatement(
2 """ SELECT count (*) as objective
3 FROM __THIS__
4 WHERE predicted_buzz = 1;"""
5)

So, it just measures how much buzz we expect to get out of engaging with
a particular set of customer segments, using a particular treatment in a targeted
campaign. We want to maximize this quantity as our objective.

While I have limited experience with workplace politics, I suppose that any
nation-wide campaign will likely require approval from upper management. Man-
agement is however subject to capricious whims, so we use an additional decision
variable to decide when we should present the plan to upper management for
approval: No approval renders any proposal infeasible, no matter how good the
predicted outcome. I just implemented this constraint function as a Spark UDF
assessing the popularity of ice cream and the hotness of weather in different states,
aggregated with a business acumen score based on a variable hash, in constant
time.

Using RBFOptimizer with 1000 trials and a preset random seed, the complete
optimization model for our example problem looks like this:

5.2. Experiment 1: Load balancing 133

1 val optimizer = new RBFOptimizer ()
2 .setWhatIfModel(whatIf)
3 .setVariables(hcol("treatment") in treatments ,
4 hcol("MS1") in marriageStats ,
5 hcol("ES1") in educationLvls ,
6 hcol("MS2") in marriageStats ,
7 hcol("ES2") in educationLvls ,
8 hcol("MS3") in marriageStats ,
9 hcol("ES3") in educationLvls ,

10 hcol("STATE1") in westAndPacificStates ,
11 hcol("STATE2") in midwestAndNortheastStates ,
12 hcol("STATE3") in southStates ,
13 0.0 <= hcol("approval_time") <= 28800.0)
14 .setInputConstraints(approval($"STATE1",
15 $"STATE2",
16 $"STATE3",
17 $"approval_time") >= 8)
18 .setMaximize(true)
19 .setNumTrials (1000)
20 .setCheckpointPath(path)
21 .setSeed (42)

We thus have a non-trivial optimization problem on our hands, forming a basis
for benchmarking.

5.2.2 Experimental setup

We run experiments under two different workload characteristics and a set of dif-
ferent strategies for handling them, for a total of three experimental variables.

First, we vary the TPC-DS scale factor between different powers of two: 1, 2, 4,
8, 16, 32, 64, and 128, using an exponential scale to possibly get more information
out of fewer runs. This factor denotes the size of the entire TPC-DS dataset in
GB’s, as created by the official data generator, and is not the actual size of our
the five tables used in our example query, which actually make up about 50%
of the total dataset size. I used a home-made fork of Databrick’s own TPC-DS
benchmarking framework [176] to generate the required tables for TPC-DS Q48 at
the required scale factors, ultimately stored as compressed Parquet files in HDFS,
Spark’s default file format [88]. The original plan was to also cover scale factor 256
and 512, but I found out at a later point that experiments would then likely not
complete before deadline for hand-in.

As the second experimental variable, we change the number of executors per
cluster machine from 1 to 6, the total number of executors thus varying from 3 to
18 among these conditions. This is used to assess how different load balancing
strategies perform under different levels of parallelism and available computing

134 Chapter 5. Experiments

resources, regarding e.g. speedup. To achieve this effect, we use the –total-executor-
cores option with spark-submit [50]. Since the Standalone cluster manager always
allocates executors to different machines evenly based on the total number of cores
available [177], we can just set this option to e.g. 30 to get two executors on each
machine with 5 cores each, for a total of 6 executors (I checked executor IP’s to
make sure).

Finally, we have three load balancing strategies. The first one is a fully sequen-
tial run, with no driver multi-threading, used as a baseline for the others. The
second one is the dynamic strategy, using sBBO for load balancing on runtime (cf.
section 3.6.1). The final one is a static strategy, in which we try to determine the
right number of threads analytically before running. As previously mentioned, I
know nothing about established approaches for load balancing, but this nonethe-
less makes the proposed strategy truly naive. After some manual testing with
1 executor per machine and the most extreme scale factors at the time, 1 and
512, I observed that a static thread pool size of about 20 and 2 was best for scale
factor 1 and 512, respectively. By interpolating the rest of the scale factors be-
tween these numbers, and scaling the expected level of parallelism linearly with
the number of executors per machine, I then arrived on the following formula:
p = e · (20− 2 · log2(s)), where p is the assigned thread pool size, e is the number
of executors per machine, and s is the TPC-DS scale factor. So by increasing scale
factor size, we run with 20, 18, 16... threads as a baseline, scaled up linearly by
the number of executors per machine. E.g., at scale factor 32 with 3 executors per
machine (9 in total) we run with 3 · (20− 2 · log2(32)) = 3 · (20− 2 · 5) = 3 · 10 = 30
threads in the pool.

You might have noticed that there is a substantial number of cases, so I tried to keep
metrics simple. To assess relative throughput and the like, we just measure the total
response time per run, using System.nanoTime() before and after calling optimize(·)
in the driver. We additionally measure the mean driver memory usage over each run,
as we are interested in whether all of these parallel workloads are pressuring it in
this regard. We use Spark’s internal instrumentation for this, which can log the
total memory usage of the driver JVM per second to a chosen sink, with us opting
for *.driver.jvm.total.used.csv [118] - accepting that all runs have a few seconds of
measurements irrelevant to sBBO in common at startup.

For all runs, we use RBFOptimizer (supporting the dynamic strategy) with
the same trial budget of 1000, and with the same (reset-between-runs!) LHS in
TrialHistory every time. With 8 different scale factors, 6 different executor amounts,
and 3 load balancing strategies, we have a total of 8 · 6 · 3 = 144 cases to cover.

Since multi-tenant virtual machines with wonky network settings are not al-
ways reliable performance-wise, I ran each of these cases five times, as separate
Spark applications, using a Python script for managing runs automatically. This

5.2. Experiment 1: Load balancing 135

process took about two weeks, give or take. Result metrics for each case are re-
ported below as the average of all runs, with the minimum and maximum mea-
surement discarded.

5.2.3 Results and discussion

Due to the large number of cases, we will focus on the big picture in terms of
what was gained from the static vs. the dynamic load balancing strategy. Plots for
total runtimes and mean driver memory usage across runs are provided in figs. 5.1
and 5.2, while raw results can be found in appendix A.1.1.

Figure 5.1: Total runtimes for the different strategies at different configurations.

Since all runs were completed with the same workload (query, seed and trial
budget), we can talk about speedup by comparing total runtimes. Confer tables 5.1
to 5.4. Row and column indices correspond to number of Spark executors and
TPC-DS scale factors, respectively.

136 Chapter 5. Experiments

Figure 5.2: Driver memory usage for the different strategies at different configurations.

Num. executors/Scale factor 1 2 4 8 16 32 64 128
3 7.24 6.51 4.94 3.64 2.56 1.8 1.37 1.26
6 8.74 8.68 7.27 5.42 3.96 2.56 1.9 1.45
9 11.14 10.42 8.71 5.58 4.87 3.23 2.19 1.63
12 11.7 11.13 10.23 7.8 5.25 2.98 2.31 1.72
15 14.97 12.03 7.61 7.98 7.07 3.55 2.71 1.9
18 15.32 11.31 10.56 9.16 6.19 4.27 2.53 1.89

Table 5.1: Speedup achieved with the static load balancing strategy, compared to the corresponding
sequential runs.

Num. executors/Scale factor 1 2 4 8 16 32 64 128
3 5.54 5.12 3.9 2.49 2.46 1.63 1.47 1.25
6 7.28 5.62 4.86 4.39 3.23 2.5 1.89 1.45
9 6.83 6.39 5.79 5.47 3.67 2.76 2.22 1.67
12 9.49 7.75 7.51 5.53 4.3 2.75 2.28 1.72
15 11.58 9.46 6.68 6.11 6.26 3.38 2.66 1.79
18 12.05 8.94 9.29 6.78 5.37 3.56 2.29 1.84

Table 5.2: Speedup achieved with the dynamic load balancing strategy, compared to the correspond-
ing sequential runs.

5.2. Experiment 1: Load balancing 137

Num. executors/Scale factor 1 2 4 8 16 32 64 128
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
6 1.24 1.42 1.54 1.66 1.77 1.81 1.87 1.85
9 1.56 1.69 1.89 1.63 2.31 2.44 2.49 2.57
12 1.68 1.84 2.04 2.26 2.51 2.32 2.83 2.82
15 1.63 1.81 1.7 2.31 2.6 2.8 3.07 3.13
18 1.62 1.7 1.92 2.29 2.6 2.9 3.21 3.06

Table 5.3: Speedup achieved with the static load balancing strategy, compared to the corresponding
static runs with only 3 executors.

Num. executors/Scale factor 1 2 4 8 16 32 64 128
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
6 1.35 1.17 1.3 1.97 1.51 1.94 1.72 1.87
9 1.25 1.32 1.59 2.34 1.81 2.31 2.35 2.66
12 1.78 1.63 1.9 2.35 2.14 2.36 2.59 2.85
15 1.65 1.81 1.89 2.59 2.4 2.94 2.8 2.99
18 1.66 1.71 2.14 2.48 2.35 2.67 2.7 3.03

Table 5.4: Speedup achieved with the dynamic load balancing strategy, compared to the correspond-
ing dynamic runs with only 3 executors.

The first set tabulates speedup for the static and dynamic strategies, compared
to the sequential strategy. So, e.g. cell e, s in the dynamic table denotes the total
runtime at e · 3 executors and scale factor 2s−1 for the sequential strategy, divided
by the corresponding runtime for the dynamic strategy, as a measure of speedup.
In other words, it tells us how much faster it was to pick the static/dynamic multi-
threaded strategy for each case, as compared to evaluating all trials in sequence.

The second set tabulates speedup when the number of executors is increased
with each multi-threaded strategy. So cell e, s in these table is the total runtime at
settings 3, 2s−1 (lowest number of executors with same strategy), divided by the
runtime at settings e · 3, 2s−1. We see then how each multi-threaded strategy copes
with having more computing resources available on the cluster.

From tables 5.3 and 5.4, it is immediately apparent that adding more executors,
i.e. total number of cores, with either multi-threaded strategy did not lead to
perfect linear speedup. This would however have been surprising to find, since
our I/O bound workload and distributed computing environment don’t facilitate
a ”true vacuum” amenable to such effects.

Increasing dataset sizes however generally led to better speedup from adding
more executors, maxing out at about x3 at 18 executors for both multi-threaded
strategies. This might be attributed to the fact that the total number of paralleliz-
able tasks for processing the partitioned Parquet files, having e.g. 2,879,992 and
368,647,941 rows in the store_sales tables at scale factor 1 and 128 respectively, is

138 Chapter 5. Experiments

likely larger with increasing scale factors and there thus is a larger possible benefit
from parallel processing. We note that the executors were likely not starving for
RAM during processing, even when their total memory pool was ”only” 90 GB at
3 executors - at scale factor 128, the size of the uncompressed store_sales table was
only about half of that, with the rest of the (dimensional) tables only taking up a
few megabytes in total.

When we compare sequential runs to the multi-threaded runs (cf. tables 5.1
and 5.2), we see a different pattern of speedup being larger when the scale factor
is smaller, maxing out at scale factor 1 and the maximum number of executors for
both load balancing strategies. This result ”makes sense”, in that we can expect to
be able to run more queries in parallel when processing is cheaper and we have
more cores available.

Now for the question of whether static or dynamic was the ”best” strategy. As
an aggregate measure for gross comparison only, we take the means of the speedup
values in our speedup tables to see how each strategy performs overall, across all
problem configurations. For tables 5.1 and 5.2, the mean speedup of the static
strategy versus a sequential run is 6.03, with σ = 3.87. For the dynamic strategy,
mean speedup is 4.78 with σ = 2.81. The same metrics for tables 5.3 and 5.4 are
µ = 1.97, σ = 0.66 for the static strategy, and µ = 1.91, σ = 0.63 for the dynamic
one.

It may seem like the static strategy is plainly better from the mean values
alone. However, an independent t test [54] comparing the set of total runtimes
of both strategies (using the raw data from table A.1) shows that the difference be-
tween them is actually not statistically significant by any commonly used threshold
(t(94) = −0.2721, p = 0.7862) - i.e. no statistical tendency implies that these two
samples were even drawn from different populations. fig. 5.1 seems to corroborate
this conclusion visually.

While the static and dynamic strategy performed similarly in terms of total
runtime, the same thing cannot be said in terms of mean driver memory usage. If
we do another t test comparing this memory usage metric across all cases for the
two strategies, we see that the dynamic strategy uses significantly less driver RAM
than the static one (t(94) = 7.9170, p < 0.0001, Cohen′s d = 1.6161). On top of
there being a strong tendency of the dynamic strategy using less memory, we see
from Cohen’s d that the absolute impact of picking either is (beyond) strong (d >
0.8) [54].

Runtimes being about the same, yet not memory usage, might imply that the
static strategy allocates many more threads than needed, with practically no ben-
efit. We can use a concrete example to investigate this hypothesis. For instance,
at scale factor 64, the static strategy will allocate 8 and 48 threads with 3 and 18
executors, respectively. Confer figure, illustrating the polled thread pool size used
for each trial at the same cases, over all five runs.

5.2. Experiment 1: Load balancing 139

Figure 5.3: A serialized representation of what the thread pool size was for each trial over the course
of five runs, with only 3 executors.

Figure 5.4: A serialized representation of what the thread pool size was for each trial over the course
of five runs, with 18 executors.

First, we note that the thread pool size is steadily increasing, which is likely due
to the design flaw of algorithm 3 that it is not too fond of decreasing the pool size,
unless there is a possible speedup benefit attached to this change (cf. section 3.6.1).

More importantly, however, we see how the dynamic strategy hovers around
6-10 threads for most of the run at 3 executors (cf. fig. 5.3), and 10-14 threads at 18
executors (cf. fig. 5.4). If we look at tables 5.1 and 5.2, speedup compared to the

140 Chapter 5. Experiments

sequential strategy is consistently lower, yet very similar to the dynamic strategy.
However, the story is quite different in terms of memory usage. Confer tables 5.5
and 5.6: At 18 executors and scale factor 64, the dynamic strategy uses 3.68 GB
RAM on average while the static one uses 10.39 GB RAM on average - with no
significant speedup benefits, as described. While the static strategy is indeed very
naive, this exemplifies how difficult it can be to reason about the optimal number
of threads outside of a vacuum, based on available computing resources alone, and
that it is very easy to overshoot with no significant benefit in terms of speedup.

Num. executors/Scale factor 1 2 4 8 16 32 64 128
3 4.86 5.18 3.97 3.44 5.49 2.79 2.29 2.01
6 7.4 6.95 6.38 6.3 5.99 5.05 4.24 3.79
9 8.34 8.58 8.12 8.01 7.35 6.99 6.18 5.36
12 9.7 9.38 8.63 9.54 8.51 8.58 8.17 6.82
15 10.26 9.51 10.28 10.81 10.68 10.12 9.51 8.42
18 11.4 10.21 10.16 9.7 11.07 9.91 10.39 9.18

Table 5.5: Average driver memory usage at each different problem configuration, for the static load
balancing strategy.

Num. executors/Scale factor 1 2 4 8 16 32 64 128
3 4.07 4.4 3.57 3.37 4.47 2.7 2.6 2.41
6 5.46 3.86 4.38 4.81 3.88 3.71 3.51 3.22
9 4.68 4.18 4.27 5.46 4.11 3.41 3.46 3.63
12 7.01 5.53 5.49 5.16 4.48 3.29 3.25 3.1
15 5.7 6.33 4.89 5.07 4.51 4.3 3.53 3.02
18 7.7 6.97 6.84 4.75 5.82 4.36 3.68 2.98

Table 5.6: Average driver memory usage at each different problem configuration, for the dynamic
load balancing strategy.

So, to summarize, trial parallelism actually brought some decent speedup im-
provements with in this experiment. While no significant difference in runtimes
was found between the static and dynamic strategies, the dynamic strategy overall
achieved similar speedup benefits with significant less memory usage involved.

5.3 Experiment 2: Constraint handling

HRM was proposed as an alternative to scenarios in which one would otherwise
have used e.g. penalty methods: For when users are not sure about hyperparam-
eter settings for the algorithm-problem pair at hand, or when there is simply no
other option available section 3.5.6. I reiterate this point to highlight that HRM is
not supposed to compete with more tailored methods for particular problems or

5.3. Experiment 2: Constraint handling 141

algorithms: Comparisons will therefore instead be based on its closest competitor,
a traditional penalty method equivalent.

The purpose of this exercise is not to investigate whether HRM is always better
than penalty methods or vice versa: averaged over all problems without prior, we
already know the answer [197]. Also, figuring out whether HRM is ”often mildly
usefull”, where ”often” means studying a lot more than just e.g. 2-3 example prob-
lems in my estimation, simply requires an amount of experimental work beyond
what this one-man show can accomplish before the deadline.

Instead, our more modest ambition with this experiment is to learn whether or
not HRM can sometimes be useful, and most importantly why, such that possible
improvements can be considered and more informed choices of method can be
made.

5.3.1 Example problem

From my own readings, I notice that example problems within sBBO research
are often ”easy” in terms of constrainedness, usually only involving a couple of
constraints beyond bound constraints, if any [191, 150]. Furthermore, there are to
my knowledge no standard benchmark suites for constrained problems within this
field.

To make things more interesting, I instead looked for possible example prob-
lems within the field of population-based BBO research, in which there are basi-
cally two important lineages of benchmark suites: The test environments of IEEE’s
Congress on Evolutionary Computation (CEC) and the COmparing Continuous
Optimizers (COCO) project [77]. As implied in the names, CEC is more generally
scoped, and I therefore looked further in this direction.

I ultimately settled on a problem from the CEC2020 suite, which notably had a
focus on real-world problems [95]. I didn’t want to ”game” the choice of problem
too much, ruining the integrity of the study. Picking a problem that was way too
easy or hard for any method in the presented library would however only allow
for trivial analysis. As a rule of thumb, I therefore steered away from problems
with e.g. hundreds of variables and constraints, and looked for something in the
ballpark of a total of 20 variables and general constraints instead, which is what
the creators of NOMAD estimate the solver can ”efficiently” handle [124].

I picked RC28, the Rolling element bearing problem [95], which had a decently
complex problem model in my estimation. It is a real-world mechanical engineer-
ing problem, in which we need to maximize the dynamic load-carrying capacity of
rolling element bearings, as found in e.g. household appliances along with aero-
nautical and nano-machine applications [66]. Beyond paraphrasing others, I can
however not say anything remotely insightful about this problem domain, and will
therefore stick to the raw guts of what we are dealing with. The problem definition

142 Chapter 5. Experiments

can be found in eq. (5.1).

maximize
x∈R10

{
fcZ

2
3 D1.8

b if Db ≤ 25.4 mm

3.647 fcZ
2
3 D1.4

b otherwise

subject to 0.5(D + d) ≤ Dm ≤ 0.6(D + d)

0.15(D− d) ≤ Db ≤ 0.45(D− d)

Z ∈ [4..50]

0.515 ≤ fi ≤ 0.6

0.515 ≤ f0 ≤ 0.6

0.4 ≤ KDmin ≤ 0.5

0.6 ≤ KDmax ≤ 0.7

0.3 ≤ ϵ ≤ 0.4

0.02 ≤ e ≤ 0.1

0.6 ≤ ζ ≤ 0.85

g1(x) = Z− ϕ0

2 sin−1(Db ÷ Dm)
− 1 ≤ 0

g2(x) = KDmin(D− d)− 2Db ≤ 0

g3(x) = 2Db − KDmax(D− d) ≤ 0

g4(x) = Db − ζBw ≤ 0

g5(x) = 0.5(D + d)− Dm ≤ 0

g6(x) = Dm − (0.5 + e)(D + d) ≤ 0

g7(x) = ϵDb − 0.5(D− Dm − Db) ≤ 0

g8(x) = 0.515− fi ≤ 0

g9(x) = 0.515− f0 ≤ 0

where x = [Dm, Db, Z, fi, f0, KDmin , KDmax , ϵ, e, ζ]

fc = 37.91

1 +

[
1.04

(
1− γ

1 + γ

)1.72 (fi(2 f0 − 1)
f0(2 fi − 1)

)0.41
] 10

3
−0.3 [

γ0.3(1− γ)1.39

(1 + γ)
1
3

] [
2 fi

2 fi − 1

]0.41

γ =
Db cos(α)

Dm
, fi = ri ÷ Db, f0 = r0 ÷ Db, α = 0

ϕ0 = 2π − 2 cos−1
[
[(D− d)÷ 2− 3(T ÷ 4)]2 + [D÷ 2− T ÷ 4− Db]

2 − [d÷ 2 + T ÷ 4]2

2[(D− d)÷ 2− 3(T ÷ 4)][D÷ 2− T ÷ 4− Db]

]
T = D− d− 2Db, D = 160, d = 90, Bw = 30

(5.1)
Mind the ”maximize”’ in results to come. As shown, this is a mixed-integer,

non-linear, generally constrained problem, sporting 10 variables and 9 general con-
straints. Variables consist of 5 ”normal” decision variables and 5 design parame-
ters, the latter of which are modelled as decision variables only present within
constraint functions, and therefore have no inherent effect on objective values. A
trial budget of 100,000 is allotted for solving this problem within the benchmark
suite [95].

While 19 variables and general constraints in total might sound pitiful to some,
note that solving these kinds of problems is an entirely different ballgame than e.g.

5.3. Experiment 2: Constraint handling 143

LP. Even if we were to use gradient information etc., our best option would likely
be a multi-start strategy with local optimizers starting from random positions in
the search space [91]. Solutions are tentatively reported in terms of being ”the best
known solution as of yet”, without guarantee of them being the global optimum
[95].

Following along the provided MATLAB code [133], I implemented the opti-
mization model with the library, using mostly standard Spark SQL, while resorting
to UDF’s for more complicated expressions. The objective function went like this,
for instance, using a UDF for fc in eq. (5.1):

1 val objective = expr(""" CASE WHEN Db <= 25.4
2 THEN fc(Db , Dm , fi, f0) *
3 pow(Z, 2.0 / 3.0) *
4 pow(Db , 1.8)
5 ELSE 3.647 * fc(Db, Dm, fi , f0) *
6 pow(Z, 2.0 / 3.0) *
7 pow(Db , 1.4) END""")

5.3.2 Experimental setup

As our two experimental variables, we use different optimization algorithms com-
bined with different constraint handling methods to give RC28 a go.

First, to represent all axes within sBBO (section 2.3.2), I opted for directional
method MADS (Local/Direct) as well as the basic SRBF SBO strategy (Global/Model-
based), with the latter being chosen as a lightweight alternative to Bayesian Opti-
mization since I was tired of running hour-long experiments at this point.

Second, we use one among two constraint handling strategies in our runs, both
using library defaults: HRM (mixed penalty, ten iterations), as well as a traditional
penalty method (also mixed penalty, ten iterations, base magnitude 1, and adjust-
ment factor 2).

As for metrics, this is simple: We look at solution quality after a preset number
of trials, with solutions being ranked with the SFS scheme (cf. section 3.5.6), as
is also the standard within the CEC’s competitions. Furthermore, we look at the
total response time, by the same procedure as in the previous experiment, since we
are interested in how much slower HRM runs than the alternative, given the time
complexity of its more involved recalibration step. On the other hand, memory
usage for e.g. storing Arrays with a few hundred Doubles in them wasn’t as much
of a concern, so I didn’t bother with measuring it for this experiment.

We also follow CEC’s standards in doing 25 runs for each condition with dif-
ferent seeds given to algorithms, since LHS, MADS and SRBF are all stochastic
methods [95]. In a way, we thereby actually test 25 variants of each strategy in
total. We report statistics over all 25 runs below.

144 Chapter 5. Experiments

For the trial budget, we assign a total of 1,000 evaluations, i.e. 1% of the allotted
budget in the suite - this amount was just an initial cautious guess, since I didn’t
want to overshoot.

Following generic recommendations for constrained problems [57], we use a
sizeable third of this budget on symmetric LHS’s, providing interpolation sets and
initial solutions for SRBF and MADS, respectively.

MADS and SRBF then have a total of 667 trials for optimization, split evenly
into ten for different penalty setting with the two constraint handling methods

For analysis, I logged every trial evaluated for each run on an assigned check-
point path.

5.3.3 Results and discussion

The found results are much more simple to analyze than in Experiment 1. Details
for all runs are available in appendix A.1.2. Look to table 5.7, which summarizes
the best solutions found among all 25 runs, as per an SFS ranking, for each paring
of optimization algorithm and constraint handling method. While there are un-
derstandably no official CEC guidelines on what to do about LHS’s, I ultimately
chose to discard the initial 333 LHS trials when aggregating these metrics from
each run. Results therefore reflect what was accomplished while constraint han-
dling was ”active”. What was accomplished with LHS on its own across all runs is
summarized separately in the table.

Optimizer Strategy Best Median Mean Worst Std FR MV
LHS N/A 54295.9689 35979.3059 35513.8563 12853.1212 9236.1075 100 0
MADS Historical 81091.3997 69551.6104 70589.0316 52199.8693 8168.2231 100 0
SRBF Historical 70471.8534 50676.7498 49477.3814 21170.9085 12523.9587 100 0
MADS Penalty 139225.6286 110887.4738 108285.5663 56477.8487 23874.3805 0 7.8014
SRBF Penalty 111529.1367 8668.8394 40718.4443 5698.9814 45531.352 0 7.3236

Table 5.7: Statistics over the objective values of the best SFS-ranked solutions returned across dif-
ferent algorithms and constraint handling methods. FR = Feasibility rate, the proportion of runs
eliciting feasible solutions. MV = Mean Violation, the mean summed constraint violation of solu-
tions across runs.

We immediately note from the feasibility rate (FR) that the penalty method
didn’t elicit a single feasible solution during any MADS or SRBF run, while HRM
always did for both. The higher average objective values for MADS are not con-
nected to any feasible solutions. In fact, running LHS with no regard for constraints
was a much better strategy than running MADS or SRBF with the penalty method!

The low mean constraint violation values of about 7− 8, obtained by summing
all violation values (cf. eq. (2.5)), seem to suggest that the underlying reason for
this poor performance is connected to the fact that violation values are on a much

5.3. Experiment 2: Constraint handling 145

smaller order of magnitude than objective values in this problem. A penalty mag-
nitude of 210 on the final penalty iteration therefore won’t make infeasible solutions
anyway near unappealing enough to the underlying optimization algorithm.

On the other hand, HRM scales constraint and objective functions to be on
about the same scale, circumventing this problem. One might otherwise have to
learn about these scaling issues by trial and error and fix them manually when
using standard penalty methods. And even if one managed to find a sufficiently
large penalty magnitude, it might have to be so large that it hijacks the signifi-
cance of the objective value during optimization [55], and we thereby create a new
problem by solving the original one.

One caveat here is that our mileage with HRM might have varied, depending
on the size of the available LHS, and the distribution of violation values across the
search space. In our case, this seemed to be no issue. Another caveat is that running
HRM took about 10 seconds longer on average, i.e. 1 seconds per recalibration (µ =

10.4477, σ = 1.0816, n = 50). Apart from the more expensive update calculations,
this can of course also be attributed to the convenient, but likely inefficient, library
design of using DataFrames etc. for generally very small datasets in TrialHistory.

To illustrate what difference the choice of constraint handling method makes
during optimization, look to MADS’s go at the problem on run 25 with the two
different methods on figs. 5.5 and 5.6. The choice of 67 as the tick mark interval on
the x axes might seem a bit quaint, but it simply reflects roughly when the pertinent
constraint handling methods do their respective updates. With the penalty method
(cf. fig. 5.5), violation values are a blip on the radar, so MADS seemingly dives deep
into the infeasible region for better objective values. When using HRM (cf. fig. 5.6),
MADS instead converges towards the best known feasible solution [66].

When running with HRM, MADS and SRBF overall performed quite differ-
ently, with MADS clearly being superior in terms of obtained solution quality (cf.
table 5.7). Part of this might be explained by the fact that MADS, being a Lo-
cal algorithm, can work more efficiently when the trial budget is as small it is,
since SRBF spends additional effort on exploring the search space for more accu-
rate interpolation in the future. With HRM transforming contours in the search
space substantially across iterations, MADS will likely use different incumbents
and paths across different iterations, effectively operating as a multi-start algo-
rithm [91], which proved quite effective in the end.

The best known solution to this problem has the objective value of 81843.3
[95]. In 1% of the allotted trials for the problem, MADS finds feasible solutions
with objective values over 80,000 in 20% of all runs, which is not too shabby in
my estimation, and otherwise finds good-quality solutions across the board, with
the mean and median objective value (cf. table 5.7) being very close to the best
solution to the problem known by mechanical engineers, before people started to
throw Genetic Algorithms with population sizes of 4500 at it [66].

146 Chapter 5. Experiments

Figure 5.5: ”Convergence plot” for run 25 with MADS and the penalty method.

Figure 5.6: Convergence plot for run 25 with MADS and HRM.

5.4. Experiment 3: Search space partitioning 147

5.4 Experiment 3: Search space partitioning

DIBBOlib offers a number of different search space partitioning strategies, includ-
ing the option of minimizing the SHAPe of the global search space with a combined
dynamic/greedy programming approach (cf. section 3.7). Similarly to the previ-
ous experiment, we will now look into the question of whether and how using
such a strategy or the range-based one is any good compared to running with no
partitioning at all.

5.4.1 Example problem

I looked to CEC’s competitions again for an example problem. For us to have
a reason to consider SHAP-based partitioning specifically, it was decided to pick
a problem, in which some variables clearly have more influence on the objective
value than others. Digging deep, I found just the right problem, F19 in the CEC2008
suite [186]:

minimize
x

n

∑
i=1

[
i

∑
j=1

(xi − zi)

]2

subject to x ∈ [−100, 100]n
(5.2)

The number of dimensions n can vary freely in the benchmark suite. For our
purposes, we set n = 20, i.e. ”the highest number a high quality implementation
expects to efficiently handle” [124].

z ∈ [−80, 80]n is a uniformly random chosen shift vector. The shift vector makes
the problem fully non-separable, in rough terms meaning that we cannot optimize
any variable independently from the others [186]. The solution is z with the min-
imum objective value of 0. Turns out the problem even has an auspicious name
for the SHAP value estimation that we are about to embark on: Shifted Schwefel 1.2
[116]. To give an idea about the shape of this function, eq. (5.2) provides a surface
plot for a 2-dimensional case.

Note that the number of times xi repeats in the inner sum in eq. (5.2) is inversely
proportional to i, with x1 repeating n times, x2 repeating n− 1 times, and so on.
Analytically speaking, variables thus seem to have a very different impact on the
sum total, in a non-trivial way, due to the shift vector.

We can however provide actual numbers for how much this skew matters, using
the Monte Carlo approach in the library. With a random shift vector and 1,000-
sample LHS, we get global SHAP values for a 20-dimensional problem as shown
in table 5.8.

148 Chapter 5. Experiments

Figure 5.7: Surface plot for Shifted Schwefel 1.2, where n = 2 and z = [42, −42], with z also being
the location of the global minimum.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

186238 185520 180357 173749 172334 164028 158650 151160 143458 139414
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

130831 121151 105511 90470 72532 59624 49961 35687 25152 15466

Table 5.8: Shifted Schwefel 1.2 global SHAP values from a 1000-sized LHS and a random shift vector.

Here it is evident that the choice of assignment for x1 matters more than ten
times as much for the objective value as the choice of assignment for x20.

The question is then whether this seemingly good use case for SHAP value
based partitioning actually walks the walk.

5.4.2 Experimental setup

In this setup, we combine different optimization algorithms with different par-
titioning strategies. This time, we pick algorithms with some idea about them
benefitting from partitioning the search space of the example problem.

We ultimately run with MADS and DIRECT (cf. sections 2.3.3 and 2.3.4). While
the objective function is unimodal, we are dealing with a non-trivial number of
dimensions, so algorithms might take a while to converge. Local algorithm MADS
giving different subregions a shot to improve global exploration overall under a
limited trial budget is a simple heuristic borrowed from research literature [191].

5.4. Experiment 3: Search space partitioning 149

As for DIRECT, recall that this algorithm does a lot of search space partitioning
on its own (cf. section 2.3.4). It essentially uses a divide and conquer strategy to
get as much information as possible out of few evaluations. Splitting dimensions
for it beforehand is therefore a possible heuristic for expediting search in select
dimensions. The example problem having a smooth objective function is also a
good fit for DIRECT, which operates on assumptions of Lipschitz continuity.

As for partitioning strategies, we use one of four. We of course try running
with none, as a baseline, using the full trial budget on one optimization run in one
search space partition. Furthermore, we try out a best case, average case, and worst
case split in terms of SHAP values: Splits into 2, 4, 8, or 16 partitions, to see if e.g.
a high number of splits stretches the subproblem budget too thin.

For the best case split, we just specify the desired number of splits, and let the
library do its Monte Carlo estimation, dynamic programming etc. This way we can
also see, if we are actually practically able to get the optimal splits from smaller
samples. Based on the large sample drawn, we estimate that the best obtainable
partitions based on SHAPe will split dimensions x1 up to x4 into two, depending
on which power of two we are working with.

We set the average and worst case splits statically, since if we told the library
to e.g. dynamically split on range to obtain an average case, an artifact of how dy-
namic programming is implemented (cf. algorithm 4) would then actually assign
optimal SHAPe splits to the evenly sized dimensions of the problem. The static
split Maps were instead defined as follows:

1 val averageSplitMaps = Map(
2 2 -> Map("x10" -> 2),
3 4 -> Map("x10" -> 2, "x11" -> 2),
4 8 -> Map("x9" -> 2, "x10" -> 2, "x11" -> 2),
5 16 -> Map("x9" -> 2, "x10" -> 2, "x11" -> 2, "x12" -> 2)
6)
7 val worstSplitMaps = Map(
8 2 -> Map("x20" -> 2),
9 4 -> Map("x20" -> 2, "x19" -> 2),

10 8 -> Map("x20" -> 2, "x19" -> 2, "x18" -> 2),
11 16 -> Map("x20" -> 2, "x19" -> 2, "x18" -> 2, "x17" -> 2)
12)

So, for the average split, we just fill in dimensions around the mid-range in
terms of SHAP values, and for the worst one, we prefer splitting dimensions with
the lowest SHAP values before all others.

As the example problem is not generally constrained, our main metric for this
experiment is simply the obtained objective value after a preset number of trials -
2000 this time, due to the higher number of problem dimensions. We use part of
this trial budget on a small LHS sample to estimate global SHAP values, 2 · (n +

1) = 2 · (20 + 1) = 42 samples in total, even when using static partitioning, to

150 Chapter 5. Experiments

make comparisons fair. This LHS is also provided as input to both optimization
algorithms, for e.g. initial incumbents for MADS, which will otherwise default to
a random point within the bounds of its subregion.

As in Experiment 2, we execute the same runs with different seeds 25 times and
report statistics based on that, noting that DIRECT is not a stochastic algorithm,
but the initial Monte Carlo estimation of SHAP values is, thus possibly impacting
results.

We also measure the total runtime, to see how long dynamic splits with initial
SHAP value estimation take compared to runs without it.

5.4.3 Results and discussion

Results aggregated over all 25 runs can be found in table 5.9. More details can be
found in appendix A.1.3.

Optimizer Strategy Split Best Median Mean Worst Std
LHS None 1 52035.7585 82846.8922 88325.3542 128827.0857 23192.4497
DIRECT None 1 14768.9843 14768.9843 14768.9843 14768.9843 0.0
DIRECT Worst 2 10123.2826 10123.2826 10123.2826 10123.2826 0.0
DIRECT Worst 4 13892.6043 13892.6043 13892.6043 13892.6043 0.0
DIRECT Worst 8 13965.2474 13965.2474 13965.2474 13965.2474 0.0
DIRECT Worst 16 14768.9843 14768.9843 14768.9843 14768.9843 0.0
DIRECT Average 2 10817.2496 10817.2496 10817.2496 10817.2496 0.0
DIRECT Average 4 9061.4397 9061.4397 9061.4397 9061.4397 0.0
DIRECT Average 8 11797.9532 11797.9532 11797.9532 11797.9532 0.0
DIRECT Average 16 20899.982 20899.982 20899.982 20899.982 0.0
DIRECT Best 2 9735.7598 9735.7598 9735.7598 9735.7598 0.0
DIRECT Best 4 10749.1504 10749.1504 10749.1504 10749.1504 0.0
DIRECT Best 8 15072.2732 15529.879 15511.5748 15529.879 91.5212
DIRECT Best 16 11853.7632 14408.4017 13636.7862 20664.3989 1931.2616
MADS None 1 12846.6039 40070.7244 40467.0784 72468.8334 14376.1973
MADS Worst 2 1955.4537 6501.1593 6986.996 14234.5443 3586.6184
MADS Worst 4 5372.4197 17278.8681 16548.6229 25467.0845 5545.1577
MADS Worst 8 9912.9516 25795.3438 27652.7121 43365.432 9809.0424
MADS Worst 16 12846.6039 40070.7244 40467.0784 72468.8334 14376.1973
MADS Average 2 1322.7695 5835.8203 6836.3401 14385.2613 3603.0957
MADS Average 4 4320.1206 12359.3161 12896.9993 32690.3856 6717.4893
MADS Average 8 9079.2299 28733.0937 27947.8295 53565.9208 11492.8005
MADS Average 16 12846.6039 42056.4008 42209.1506 64202.4352 12302.4779
MADS Best 2 2027.6514 5704.5172 6817.5759 14221.5542 3927.697
MADS Best 4 5607.293 16821.7138 18588.9696 32690.3856 7245.8841
MADS Best 8 8709.6542 30091.2277 29047.4038 53565.9208 10748.1271
MADS Best 16 12847.1789 41486.3927 42358.5673 69629.6459 14091.5518

Table 5.9: Statistics over the objective values of the best SFS-ranked solutions returned across dif-
ferent algorithms and splits. The standard deviation of DIRECT is generally zero due to it being
fully deterministic, but note that it sometimes operates with splits that are slightly off when doing
dynamic splits based on SHAP value estimation.

5.4. Experiment 3: Search space partitioning 151

Starting out with the good news, partitioning often elicited better solutions than
running without it, up to a certain point. table 5.10 shows how if we aggregate all
runs by splits (from none = 1 up to 16), then partitioning is better for solution
quality on average, up to 16 splits, at which point we might consider whether
we have stretched the optimization budget for each subproblem too thin. Standard
deviations are however generally high among runs, so there is a lot of inconsistency
involved.

Split Mean Std
1 36445.2971 23384.0398
2 16903.5394 6026.4475
4 23218.0181 11401.2366
8 30943.4504 17524.4772
16 38684.8801 22795.162

Table 5.10: Benefits of partitioning, aggregated across all strategies, algorithms and runs.

As visualized on fig. 5.8, there are also quite dramatic discrepancies between
algorithms, in terms of benefits from partitioning, with DIRECT in all but one
case seeing inconsistent, minor benefits on solution quality, while MADS exhibits
consistent, dramatic improvements on lower partitioning factors, with diminishing
returns from higher split factors.

Figure 5.8: Mean objective values by optimizer, strategy and total split factor.

Based on what has been seen so far, the sweet spot seems to have been splitting
into 2 partitions, which is also the option with the lowest standard deviation overall

152 Chapter 5. Experiments

(cf. table 5.10), and thus highest degree of consistency across conditions.
If we aggregate by each partitioning strategy and use t tests to compare ob-

jective values to running without any partitioning, then each strategy brings with
it significant improvement when compared to running without any partitioning,
with medium-size effects on solution quality (cf. table 5.11).

Strategy t(248) p value Cohen’s d
Worst -4.2725 < 0.0001 0.63
Average -4.5184 < 0.0001 0.66
Best -4.6384 < 0.0001 0.66

Table 5.11: Effect on solution quality of each partitioning strategy, compared to running with None,
comparing groups of samples with independent t tests. Cohen’s d > 0.5 denotes a medium-size
benefit across the board [54].

Now for the bad news for what might be considered our ulterior motives: It
doesn’t seem to matter what kind of partitioning strategy we use with our chosen
problem-algorithm pairs. In fact, if we group solely by partitioning strategy, then
the mean objective value of the worst-case split is actually a bit better than the
”Best” one SHAPe-wise (cf. table 5.12).

Strategy Mean Std
None 27618.0313 16422.4223
Worst 18050.691 12069.6966
Average 17808.368 12982.7009
Best 18305.7235 13054.1222

Table 5.12: Benefits of splitting, aggregated across all algorithms, split factors and runs.

We can make this comparison more rigorous, using a one-way independent
Analysis of Variance (ANOVA) test. This is basically like a t test, but it accounts
for within and between-group variance, when we need to consider whether more
than two samples are from the same population [54]. The ANOVA shows that there
is no statistically significant difference between the aggregated results from either
partitioning strategy by any commonly used significance threshold (F(2, 597) =

0.0766, p = 0.9263). So, they might just as well be a result of the same partitioning
strategy - which they in a sense are: they all minimize the range perimeter of the
search space.

If we aggregate total runtime by algorithm and whether they used SHAP value
estimation or not, then we get the result that estimating the n · |LHS| = 20 · 42 =

840 Shapley values took about 20 seconds on average (µ = 19.2373, σ = 6.2861).
So, not a massive amount of extra time, but not really worth it either, as discussed.

5.4. Experiment 3: Search space partitioning 153

If we look to the dynamic SHAP value estimation used in the best-case condi-
tion, then we see that it is actually quite accurate about selecting the right splits.
Out of the 25 · 4 runs it needed to estimate SHAP values, all values were accurate
enough for fully correct splits 84% of the time. Otherwise, estimates of the least
important dimension was off by one or two places in the ranking. So e.g. at 16
splits, it would assign the final split to variable x5 instead of x4. The mean ranking
error across these 16 runs was 1.125, with two runs displacing the lowest rank by
two. Looking at the estimated SHAP values from a large sample, we see that the
top values are all quite close to one another anyway (cf. table 5.8), so (at least in my
estimation) a misplaced rank by one or two here and there doesn’t account fully
for, why the best-case splits did so ”normally”.

In conclusion, we see from this experiment that there may be consistent benefits
to using search space partitioning with some problem-algorithm pairs, as long
as the trial budget allows it, but did not demonstrate any particular benefit of
using partitioning based on SHAP value estimation. Inferential statistics quickly
dispelled these superstitions.

While we have not shown any benefits of SHAPe minimization splits, we have
not shown any universal detriment either. It is possible that we just didn’t find
the right problem-algorithm pair to work with. But results nonetheless spawn the
backpedaling notion that SHAP value estimation is perhaps best offered as a pre-
and postprocessing facility in the library, to be used for its usual explanatory value,
or possibly for variable elimination when the problem allows it.

Chapter 6

Conclusion and Future Work

This project took its onset in an observed lack of scalable, usable tools for data-
intensive PA. The proposed solution, nipioacronymously named DIBBOlib, was
defined under the problem statement: How can a scalable and usable sBBO library for
Spark be designed, implemented and tested? (cf. chapter 1).

Since the developed library utilizes a cadre of methods that don’t usually get
the limelight, and certainly weren’t known to me before this project, considerable
effort was spent on understanding how they work, such that the design space of the
library to be built around them was well understood (cf. 2). We observed how there
are distinct types of sBBO methods within each quadrant of a proposed taxonomy,
forming key design requirements for developing the library. General constraint
handling, as well as how constraints are usually encountered within practical sBBO
settings, furthermore formed some of the most difficult design challenges in the
end.

In section 3.2 we moved on to provide an outline of how a library with the
desired properties could be designed, including key architectural decisions and
features. As for scalability, the main challenge beyond facilitating the efficient
integration of sBBO with the Spark query engine, was to leverage any possible
avenue for parallelism, to cope with load parameters specific to sBBO. Usability
was worked with by using MLlib, and by extension Spark SQL, as a design analogy
by proxy.

We then went ahead and outlined the implementation of DIBBOlib as is, de-
scribing how it basically just extends the MLlib Transformer class, being compati-
ble with the pipeline system of MLlib. The pivotal BlackBoxOptimizer class offers a
way of translating between a BBO problem model and a set of Spark SQL queries
for solving said problem. For usability, the library offers an API matching exactly
the one used in MLlib. Furthermore, it offers the additional option of using an
algorithmic wizard API, mimicking vanilla Spark SQL queries, doing automatic al-
gorithmic selection among options in the standard library suite, which implements

155

156 Chapter 6. Conclusion and Future Work

all the most commonly used sBBO algorithms.
An important core library feature is the one of vertical transfer learning, ensuring

that no trial is left behind in our setting, where this would mean executing the
same expensive Spark query yet another time (cf. section 3.4.3). TrialHistory’s
offer a flexible way of sharing information between optimization runs, and play a
key role in supporting other library features.

Considerable effort was needed for implementing a library design for support-
ing generally constrained optimization (cf. section 3.5.5), interfacing with the Spark
platform properly while ensuring extensibility with respect to existing approaches
to constraint handling more or less specific to particular algorithms or constraint
types. The implementation leveraged the internal Expression format of the Spark
Column class, to rewrite user-specified constraints to quantifiable constraint func-
tion values and elide unnecessary Spark queries when possible.

To offer a better generic alternative to using classic penalty methods for users
who would just like a plug-and-play option, the Historical Revisionist Method for
general constraint handling was proposed (cf. section 3.5.6), forming a novel, data-
driven approach to running with penalty functions - it essentially replaces the
original objective function with a model fit to evaluation history so far, ensuring a
ranking among points seen reflecting our priorities within constrained optimiza-
tion.

The library also explored how various features built around parallelism could
be supported, allowing for better scalability in settings in which there are available
resources for it. First, the library offers the option of running several trials in
parallel, when algorithms support it (cf. section 3.6.1). In this area, a novel dynamic
load balancing strategy for SBO algorithms was proposed, based on directional
sBBO. The library also offers the option of splitting the overall trial budget into
several pieces, and do several optimization runs in parallel, using different random
seeds or different search space partitions in separate subproblems (cf. section 3.6.2).

The proposed heuristic search space partitioning strategies run with a desired level
of parallelism, as set by the user, possibly entirely in sequence (cf. section 3.7).
The library core offers dynamic partitioning through a hybrid greedy/dynamic pro-
gramming approach, minimizing perimetric objectives, based on overt search space
geometry or estimated feature importance of problem dimensions, using Monte
Carlo estimated Shapley values from game theory for the latter option.

The subsequent chapter then analyzed the merits of the library compared to ad-
jacent solutions (cf. chapter 4). The library draws a lot of inspiration from existing
solutions within PA systems, since the project took its onset in this setting. As for
other BBO solutions for Spark, which are predominantly population-based, DIB-
BOlib can be said to form a separate niche, since sBBO and population-based BBO
tend to be good for different problems. As for other solutions within sBBO, the
library can be said to hold a unique spot, being the only general-purpose solution,

6.1. Future Work 157

offering an extensive suite of algorithms and generic support for general constraint
handling, that is furthermore designed for data-intensive sBBO workloads, unlike
other frameworks, which seemingly assume compute-intensive ones.

The main focus of experiments (cf. chapter 5) was to assess the possible useful-
ness of 3 novel library features, which were variously designed with better scala-
bility or usability in mind. Benefits of using the dynamic load balancing strategy,
the new constraint handling method, and search space partitioning as opposed to
none were found on example problems.

To conclude, DIBBOlib forms a novel proposal of how to support scalable, us-
able, and data-driven PA workflows in data-intensive settings, by using sBBO com-
bined with the advanced analytics of the Spark ecosystem.

6.1 Future Work

There is no SW11 project, but I will still present a few thoughts about loose ends
and hypothetical extensions to what was already accomplished.

An elephant in the room is of course to see if DIBBOlib is any good in one or
more real-world applications, as opposed to the more or less artificial problems we
have worked with so far to provide some breathing room for technical challenges
(cf. section 1.3).

Implementing a Python API for the library would also be an obvious priority,
since this is after all the client language of choice for Spark [88].

Providing support for multi-objective optimization is another possibly relevant
extension for the library, since this was a notably absent feature from DIBBOlib,
when comparing it to alternative solutions (cf. table 4.1). Supporting this would
likely challenge some of the design assumption taken for given in the library so far
- e.g., we might now need to work with vectors of objectives, the definition of opti-
mality now becomes more complicated to handle from a user-centered standpoint
[91], and individual algorithmic support for multi-objective optimization likely be-
comes a challenge.

A perhaps more surprising proposal from my end is actually to ditch sBBO and
Spark, and transfer lessons learned from this project to a single-node solution for
data-driven PA, using e.g. population-based BBO. We might for instance consider
offering a similar kind of vertical transfer learning, HRM for data-driven constraint
handling, search space partitioning with our dynamic/greedy approach, or the
like. Such a library might want to leverage an efficient backend, like some Deep
Learning libraries do with TensorFlow, scaling out computations as needed [38].
As observed by BBO researchers, there is currently a large focus within the field
on making minuscule improvements to various benchmarks, as opposed to consol-
idating knowledge and developing domesticated solutions you would dare leave
in the room with an unsuspecting user [126]. There is in other words a general

158 Chapter 6. Conclusion and Future Work

dearth of usable, scalable solutions for BBO, including single-node settings. Per-
haps BBO research has reached a level of maturity, where it is time to focus on
democratization as opposed to micro-optimization?

Bibliography

[1] 10 Gaussian Processes. https://mc-stan.org/docs/stan-users-guide/
gaussian-processes.html. Accessed: 2023-05-07.

[2] 1.7. Gaussian Processes. https : / / scikit - learn . org / stable / modules /
gaussian_process.html#gaussian-process-regression-gpr. Accessed:
2023-05-07.

[3] A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine
Learning. https://towardsdatascience.com/a-conceptual-explanation-
of-bayesian-model-based-hyperparameter-optimization-for-machine-
learning-b8172278050f. Accessed: 2023-01-11.

[4] AI Platform Vizier documentation. https://cloud.google.com/ai-platform/
optimizer/docs. Accessed: 2023-06-10.

[5] Jamil Al-Sawwa and Simone A Ludwig. “Parallel particle swarm optimiza-
tion classification algorithm variant implemented with Apache Spark”. In:
Concurrency and Computation: Practice and Experience 32.2 (2020), e5451.

[6] Enrique Alba, José M Troya, et al. “A survey of parallel distributed genetic
algorithms”. In: Complexity 4.4 (1999), pp. 31–52.

[7] Mohammad Gh Alfailakawi, Maryam Aljame, and Imtiaz Ahmad. “Parallel
and distributed implementation of sine cosine algorithm on apache spark
platform”. In: IEEE Access 9 (2021), pp. 77188–77202.

[8] An introduction to Apache Hadoop for big data. https://opensource.com/
life/14/8/intro-apache-hadoop-big-data. Accessed: 2023-06-12.

[9] Apache Arrow in PySpark. https://spark.apache.org/docs/3.3.1/api/
python/user_guide/sql/arrow_pandas.html. Accessed: 2023-01-06.

[10] Charles Audet and John E Dennis Jr. “Mesh adaptive direct search algo-
rithms for constrained optimization”. In: SIAM Journal on optimization 17.1
(2006), pp. 188–217.

[11] Charles Audet and Warren Hare. Derivative-free and blackbox optimization.
Vol. 2. Springer, 2017.

159

https://mc-stan.org/docs/stan-users-guide/gaussian-processes.html
https://mc-stan.org/docs/stan-users-guide/gaussian-processes.html
https://scikit-learn.org/stable/modules/gaussian_process.html#gaussian-process-regression-gpr
https://scikit-learn.org/stable/modules/gaussian_process.html#gaussian-process-regression-gpr
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://cloud.google.com/ai-platform/optimizer/docs
https://cloud.google.com/ai-platform/optimizer/docs
https://opensource.com/life/14/8/intro-apache-hadoop-big-data
https://opensource.com/life/14/8/intro-apache-hadoop-big-data
https://spark.apache.org/docs/3.3.1/api/python/user_guide/sql/arrow_pandas.html
https://spark.apache.org/docs/3.3.1/api/python/user_guide/sql/arrow_pandas.html

160 Bibliography

[12] Charles Audet et al. “A surrogate-model-based method for constrained op-
timization”. In: 8th symposium on multidisciplinary analysis and optimization.
2000, p. 4891.

[13] Charles Audet et al. “NOMAD version 4: Nonlinear optimization with the
MADS algorithm”. In: arXiv preprint arXiv:2104.11627 (2021).

[14] Tianyi Bai et al. “Transfer Learning for Bayesian Optimization: A Survey”.
In: arXiv preprint arXiv:2302.05927 (2023).

[15] Ishan Bajaj, Akhil Arora, and MM Hasan. “Black-Box Optimization: Meth-
ods and Applications”. In: Black Box Optimization, Machine Learning, and No-
Free Lunch Theorems. Springer, 2021, pp. 35–65.

[16] Andrey Balmin, Thanos Papadimitriou, and Yannis Papakonstantinou. “Hy-
pothetical queries in an olap environment”. In: VLDB. Vol. 220. 2000, p. 231.

[17] Cristóbal Barba-Gonzaléz et al. “Multi-objective big data optimization with
jmetal and spark”. In: International conference on evolutionary multi-criterion
optimization. Springer. 2017, pp. 16–30.

[18] Alexander Baur, Robert Klein, and Claudius Steinhardt. “Model-based de-
cision support for optimal brochure pricing: applying advanced analytics in
the tour operating industry”. In: OR spectrum 36.3 (2014), pp. 557–584.

[19] bbotk GitHub. https://github.com/mlr-org/bbotk. Accessed: 2023-06-12.

[20] Benderopt GitHub. https://github.com/vthorey/benderopt. Accessed:
2023-06-12.

[21] Pauline Bennet et al. “Nevergrad: black-box optimization platform”. In:
ACM SIGEVOlution 14.1 (2021), pp. 8–15.

[22] David Benyon, Phil Turner, and Susan Turner. Designing interactive systems:
People, activities, contexts, technologies. Pearson Education, 2005.

[23] Dimitris Bertsimas and Nathan Kallus. “From predictive to prescriptive an-
alytics”. In: Management Science 66.3 (2020), pp. 1025–1044.

[24] BFO docs. https://sites.google.com/site/bfocode/home?pli=1. Ac-
cessed: 2023-06-12.

[25] Atharv Bhosekar and Marianthi Ierapetritou. “Advances in surrogate based
modeling, feasibility analysis, and optimization: A review”. In: Computers
& Chemical Engineering 108 (2018), pp. 250–267.

[26] Big Data - GitHub Topic. https://github.com/topics/big-data. Accessed:
2023-01-06.

[27] Mattias Björkman and Kenneth Holmström. “Global optimization of costly
nonconvex functions using radial basis functions”. In: Optimization and En-
gineering 1 (2000), pp. 373–397.

https://github.com/mlr-org/bbotk
https://github.com/vthorey/benderopt
https://sites.google.com/site/bfocode/home?pli=1
https://github.com/topics/big-data

Bibliography 161

[28] BlaBoO GitHub. https://github.com/kppeterkiss/BlackBoxOptimizer.
Accessed: 2023-06-12.

[29] blackbox GitHub. https : / / github . com / paulknysh / blackbox. Accessed:
2023-06-12.

[30] Andrea Brilli, Giampaolo Liuzzi, and Stefano Lucidi. “An interior point
method for nonlinear constrained derivative-free optimization”. In: arXiv
preprint arXiv:2108.05157 (2021).

[31] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on Bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning”. In: arXiv preprint arXiv:1012.2599
(2010).

[32] Rodney A Brooks. “Elephants don’t play chess”. In: Robotics and autonomous
systems 6.1-2 (1990), pp. 3–15.

[33] Giovanni C Cattini. “Historical revisionism”. In: Transfer Journal of Contem-
porary Culture 6 (2011), pp. 28–38.

[34] Alberto Ceselli et al. “Prescriptive analytics for MEC orchestration”. In:
2018 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE. 2018,
pp. 1–9.

[35] Bill Chambers and Matei Zaharia. Spark: The definitive guide: Big data process-
ing made simple. " O’Reilly Media, Inc.", 2018.

[36] Hongwei Chen et al. “A spark-based distributed whale optimization algo-
rithm for feature selection”. In: 2019 10th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS). Vol. 1. IEEE. 2019, pp. 70–74.

[37] Fatemeh Cheraghchi, Arash Iranzad, and Bijan Raahemi. “Subspace selec-
tion in high-dimensional big data using genetic algorithm in apache spark”.
In: Proceedings of the Second International Conference on Internet of things, Data
and Cloud Computing. 2017, pp. 1–7.

[38] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[39] Class AtomicInteger. https://docs.oracle.com/javase/8/docs/api/java/
util/concurrent/atomic/AtomicInteger.html. Accessed: 2023-05-07.

[40] Class Column. https://spark.apache.org/docs/1.6.1/api/java/org/
apache/spark/sql/Column.html. Accessed: 2023-05-07.

[41] Classification and regression. https://spark.apache.org/docs/latest/ml-
classification-regression.html#decision-tree-classifier. Accessed:
2023-01-06.

[42] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to
derivative-free optimization. SIAM, 2009.

https://github.com/kppeterkiss/BlackBoxOptimizer
https://github.com/paulknysh/blackbox
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/sql/Column.html
https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier

162 Bibliography

[43] Aldina Correia et al. “Classification of some penalty methods”. In: Integral
Methods in Science and Engineering, Volume 2: Computational Aspects (2010),
pp. 131–140.

[44] Aldina Correia et al. “Direct-search penalty/barrier methods”. In: Proceed-
ings of the World Congress on Engineering 2010. Vol. 3. International Associa-
tion of Engineers. 2010, pp. 1729–1734.

[45] Federico Croppi. “Explaining Sequential Model-Based Optimization”. PhD
thesis. 2021.

[46] DAKOTA docs. https://dakota.sandia.gov/. Accessed: 2023-06-12.

[47] Chris J Date. SQL and relational theory: how to write accurate SQL code. "
O’Reilly Media, Inc.", 2011.

[48] DFL docs. http://www.iasi.cnr.it/~liuzzi/DFL/. Accessed: 2023-06-12.

[49] Sébastien Le Digabel and Stefan M Wild. “A taxonomy of constraints in
simulation-based optimization”. In: arXiv preprint arXiv:1505.07881 (2015).

[50] Distribution of Executors, Cores and Memory for a Spark Application running in
Yarn. https://spoddutur.github.io/spark-notes/distribution_of_
executors_cores_and_memory_for_spark_application.html. Accessed:
2023-01-06.

[51] David Eriksson, David Bindel, and Christine A Shoemaker. “pySOT and
POAP: An event-driven asynchronous framework for surrogate optimiza-
tion”. In: arXiv preprint arXiv:1908.00420 (2019).

[52] Executing Spark code with expr and eval. https://mungingdata.com/apache-
spark/expr-eval/. Accessed: 2023-05-07.

[53] FACT CHECK: DID ABRAHAM LINCOLN SAY, ‘THE BEST WAY TO PRE-
DICT THE FUTURE IS TO CREATE IT’? https://checkyourfact.com/
2019/07/24/fact-check-abraham-lincoln-best-way-predict-future-
create/. Accessed: 2023-06-10.

[54] Andy Field. Discovering statistics using IBM SPSS statistics. sage, 2013.

[55] Roger Fletcher and Sven Leyffer. “Nonlinear programming without a penalty
function”. In: Mathematical programming 91 (2002), pp. 239–269.

[56] fminsearch Algorithm. https : / / www . mathworks . com / help / optim / ug /
fminsearch-algorithm.html. Accessed: 2023-05-07.

[57] Alexander IJ Forrester and Andy J Keane. “Recent advances in surrogate-
based optimization”. In: Progress in aerospace sciences 45.1-3 (2009), pp. 50–
79.

[58] Davide Frazzetto et al. “Prescriptive analytics: a survey of emerging trends
and technologies”. In: The VLDB Journal 28.4 (2019), pp. 575–595.

https://dakota.sandia.gov/
http://www.iasi.cnr.it/~liuzzi/DFL/
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application.html
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application.html
https://mungingdata.com/apache-spark/expr-eval/
https://mungingdata.com/apache-spark/expr-eval/
https://checkyourfact.com/2019/07/24/fact-check-abraham-lincoln-best-way-predict-future-create/
https://checkyourfact.com/2019/07/24/fact-check-abraham-lincoln-best-way-predict-future-create/
https://checkyourfact.com/2019/07/24/fact-check-abraham-lincoln-best-way-predict-future-create/
https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html
https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html

Bibliography 163

[59] Daniel Gartner, Elizabeth M Williams, and Paul R Harper. “Prescriptive
healthcare analytics: a tutorial on discrete optimization and simulation”. In:
2022 IEEE 10th International Conference on Healthcare Informatics (ICHI). IEEE.
2022, pp. 01–03.

[60] Sneha Gathani et al. “Predictive and Prescriptive Analytics in Business De-
cision Making: Needs and Concerns”. In: arXiv preprint arXiv:2212.13643
(2022).

[61] GFO docs. https://github.com/SimonBlanke/Gradient-Free-Optimizers.
Accessed: 2023-06-12.

[62] GloMPO GitHub. https://github.com/mfgustavo/glompo. Accessed: 2023-
06-12.

[63] Daniel Golovin et al. “Google vizier: A service for black-box optimization”.
In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017, pp. 1487–1495.

[64] Aanchal Goyal et al. “Asset health management using predictive and pre-
scriptive analytics for the electric power grid”. In: IBM Journal of Research
and Development 60.1 (2016), pp. 4–1.

[65] Stewart Greenhill et al. “Bayesian optimization for adaptive experimental
design: A review”. In: IEEE access 8 (2020), pp. 13937–13948.

[66] Shantanu Gupta, Rajiv Tiwari, and Shivashankar B Nair. “Multi-objective
design optimisation of rolling bearings using genetic algorithms”. In: Mech-
anism and Machine Theory 42.10 (2007), pp. 1418–1443.

[67] H-M Gutmann. “A radial basis function method for global optimization”.
In: Journal of global optimization 19.3 (2001), pp. 201–227.

[68] Peter J Haas et al. “Data is dead... without what-if models”. In: Proceedings
of the VLDB Endowment 4.12 (2011), pp. 1486–1489.

[69] Hacker New - We’re all consenting adults. https://news.ycombinator.com/
item?id=13292682. Accessed: 2023-05-07.

[70] Raphael T Haftka, Diane Villanueva, and Anirban Chaudhuri. “Parallel
surrogate-assisted global optimization with expensive functions–a survey”.
In: Structural and Multidisciplinary Optimization 54 (2016), pp. 3–13.

[71] Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and tech-
niques. Morgan kaufmann, 2022.

[72] Zhong-Hua Han, Ke-Shi Zhang, et al. “Surrogate-based optimization”. In:
Real-world applications of genetic algorithms 343 (2012).

[73] Haripriya Harikumar et al. “Prescriptive analytics through constrained Bayesian
optimization”. In: Pacific-Asia conference on knowledge discovery and data min-
ing. Springer. 2018, pp. 335–347.

https://github.com/SimonBlanke/Gradient-Free-Optimizers
https://github.com/mfgustavo/glompo
https://news.ycombinator.com/item?id=13292682
https://news.ycombinator.com/item?id=13292682

164 Bibliography

[74] Xin He, Kaiyong Zhao, and Xiaowen Chu. “AutoML: A survey of the state-
of-the-art”. In: Knowledge-Based Systems 212 (2021), p. 106622.

[75] Zhihui He et al. “A Spark-based differential evolution with grouping topol-
ogy model for large-scale global optimization”. In: Cluster Computing 24.1
(2021), pp. 515–535.

[76] Abdel-Rahman Hedar, Masao Fukushima, et al. “Derivative-free filter sim-
ulated annealing method for constrained continuous global optimization”.
In: Journal of Global optimization 35.4 (2006), pp. 521–550.

[77] Michael Hellwig and Hans-Georg Beyer. “Benchmarking evolutionary al-
gorithms for single objective real-valued constrained optimization–a critical
review”. In: Swarm and evolutionary computation 44 (2019), pp. 927–944.

[78] Yu-Chi Ho and David L Pepyne. “Simple explanation of the no-free-lunch
theorem and its implications”. In: Journal of optimization theory and applica-
tions 115 (2002), pp. 549–570.

[79] Honeycomb (geometry). https : / / en . wikipedia . org / wiki / Honeycomb _
(geometry). Accessed: 2023-05-07.

[80] HOPSPACK GitHub. https://www.osti.gov/servlets/purl/1130394/.
Accessed: 2023-06-12.

[81] Kerstin Hötte. “Demand-pull, technology-push, and the direction of tech-
nological change”. In: Research Policy 52.5 (2023), p. 104740. issn: 0048-7333.
doi: https://doi.org/10.1016/j.respol.2023.104740. url: https:
//www.sciencedirect.com/science/article/pii/S0048733323000240.

[82] Infeasibility. https://oss-vizier.readthedocs.io/en/latest/guides/
user/search_spaces.html#infeasibility. Accessed: 2023-06-10.

[83] Piotr Jedrzejowicz and Izabela Wierzbowska. “Apache spark as a tool for
parallel population-based optimization”. In: Intelligent Decision Technologies
2019. Springer, 2020, pp. 181–190.

[84] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme programming
installed. Addison-Wesley Professional, 2001.

[85] Yuan Jin, S Joe Qin, and Qiang Huang. “Prescriptive analytics for under-
standing of out-of-plane deformation in additive manufacturing”. In: 2016
IEEE International Conference on Automation Science and Engineering (CASE).
IEEE. 2016, pp. 786–791.

[86] Donald R. Jones. “Direct global optimization algorithm: Direct Global Opti-
mization Algorithm”. In: Encyclopedia of Optimization. Ed. by Christodoulos
A. Floudas and Panos M. Pardalos. Boston, MA: Springer US, 2001, pp. 431–
440. isbn: 978-0-306-48332-5. doi: 10.1007/0-306-48332-7_93. url: https:
//doi.org/10.1007/0-306-48332-7_93.

https://en.wikipedia.org/wiki/Honeycomb_(geometry)
https://en.wikipedia.org/wiki/Honeycomb_(geometry)
https://www.osti.gov/servlets/purl/1130394/
https://doi.org/https://doi.org/10.1016/j.respol.2023.104740
https://www.sciencedirect.com/science/article/pii/S0048733323000240
https://www.sciencedirect.com/science/article/pii/S0048733323000240
https://oss-vizier.readthedocs.io/en/latest/guides/user/search_spaces.html#infeasibility
https://oss-vizier.readthedocs.io/en/latest/guides/user/search_spaces.html#infeasibility
https://doi.org/10.1007/0-306-48332-7_93
https://doi.org/10.1007/0-306-48332-7_93
https://doi.org/10.1007/0-306-48332-7_93

Bibliography 165

[87] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. “Lipschitzian
optimization without the Lipschitz constant”. In: Journal of optimization The-
ory and Applications 79 (1993), pp. 157–181.

[88] Holden Karau et al. Learning spark: lightning-fast big data analysis. " O’Reilly
Media, Inc.", 2015.

[89] Ban Kawas et al. “Prescriptive analytics for allocating sales teams to oppor-
tunities”. In: 2013 IEEE 13th International Conference on Data Mining Work-
shops. IEEE. 2013, pp. 211–218.

[90] Martin Kleppmann. Designing data-intensive applications: The big ideas behind
reliable, scalable, and maintainable systems. " O’Reilly Media, Inc.", 2017.

[91] Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization. Mit
Press, 2019.

[92] Slawomir Koziel, David Echeverría Ciaurri, and Leifur Leifsson. “Surrogate-
based methods”. In: Computational optimization, methods and algorithms (2011),
pp. 33–59.

[93] Slawomir Koziel and Xin-She Yang. Computational optimization, methods and
algorithms. Vol. 356. Springer, 2011.

[94] Tipaluck Krityakierne, Taimoor Akhtar, and Christine A Shoemaker. “SOP:
parallel surrogate global optimization with Pareto center selection for com-
putationally expensive single objective problems”. In: Journal of Global Opti-
mization 66 (2016), pp. 417–437.

[95] Abhishek Kumar et al. “A test-suite of non-convex constrained optimization
problems from the real-world and some baseline results”. In: Swarm and
Evolutionary Computation 56 (2020), p. 100693.

[96] Laks VS Lakshmanan, Alex Russakovsky, and Vaishnavi Sashikanth. “What-
if OLAP queries with changing dimensions”. In: 2008 IEEE 24th International
Conference on Data Engineering. IEEE. 2008, pp. 1334–1336.

[97] LAPACK - Linear Algebra PACKage. https://www.netlib.org/lapack/.
Accessed: 2023-06-10.

[98] Jeffrey Larson, Matt Menickelly, and Stefan M Wild. “Derivative-free opti-
mization methods”. In: Acta Numerica 28 (2019), pp. 287–404.

[99] Katerina Lepenioti et al. “Machine learning for predictive and prescriptive
analytics of operational data in smart manufacturing”. In: International Con-
ference on Advanced Information Systems Engineering. Springer. 2020, pp. 5–
16.

[100] Katerina Lepenioti et al. “Prescriptive analytics: Literature review and re-
search challenges”. In: International Journal of Information Management 50
(2020), pp. 57–70.

https://www.netlib.org/lapack/

166 Bibliography

[101] Yang Li et al. “Openbox: A generalized black-box optimization service”. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 2021, pp. 3209–3219.

[102] David G Luenberger et al. “Penalty and barrier methods”. In: Linear and
Nonlinear Programming (2016), pp. 397–428.

[103] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. “Consistent individual-
ized feature attribution for tree ensembles”. In: arXiv preprint arXiv:1802.03888
(2018).

[104] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems 30 (2017).

[105] Gabriel Luque and Enrique Alba. Parallel genetic algorithms: Theory and real
world applications. Vol. 367. Springer, 2011.

[106] Irv Lustig et al. “The analytics journey”. In: Analytics Magazine 3.6 (2010),
pp. 11–13.

[107] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan.
“Cooperative co-evolution with a new decomposition method for large-
scale optimization”. In: 2014 IEEE Congress on Evolutionary Computation (CEC).
IEEE. 2014, pp. 1285–1292.

[108] Fahad Maqbool et al. “Large Scale Distributed Optimization using Apache
Spark: Distributed Scalable Shade-Bat (DistSSB)”. In: 2021 IEEE Congress on
Evolutionary Computation (CEC). IEEE. 2021, pp. 2559–2566.

[109] Fahad Maqbool et al. “Scalable distributed genetic algorithm using apache
spark (s-ga)”. In: International conference on intelligent computing. Springer.
2019, pp. 424–435.

[110] Alexandra Meliou. “The Power of How-To Queries”. In: ().

[111] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. “Reverse data
management”. In: Proceedings of the VLDB Endowment 4.12 (2011), pp. 1490–
1493.

[112] Alexandra Meliou and Dan Suciu. “Tiresias: the database oracle for how-to
queries”. In: Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. 2012, pp. 337–348.

[113] MISO docs. https://optimization.lbl.gov/downloads#h.p_BjSaeAORU9gm.
Accessed: 2023-06-12.

[114] mlrMBO GitHub. https://github.com/mlr-org/mlrMBO. Accessed: 2023-
06-12.

[115] Martin Moesmann. Data-Driven Prescriptive Analytics by Data-Intensive Black-
Box Optimization with Apache Spark. Aalborg University, 2023.

https://optimization.lbl.gov/downloads#h.p_BjSaeAORU9gm
https://github.com/mlr-org/mlrMBO

Bibliography 167

[116] Marcin Molga and Czesław Smutnicki. “Test functions for optimization
needs”. In: Test functions for optimization needs 101 (2005), p. 48.

[117] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[118] Monitoring and Instrumentation. https://spark.apache.org/docs/3.3.1/
monitoring.html#metrics. Accessed: 2023-01-06.

[119] Maliki Moustapha and Bruno Sudret. “Surrogate-assisted reliability-based
design optimization: a survey and a unified modular framework”. In: Struc-
tural and Multidisciplinary Optimization 60 (2019), pp. 2157–2176.

[120] Juliane Müller. “MISO: mixed-integer surrogate optimization framework”.
In: Optimization and Engineering 17 (2016), pp. 177–203.

[121] mystic: constrained nonlinear optimization for scientific machine learning, UQ,
and AI. https://mystic.readthedocs.io/en/latest/. Accessed: 2023-05-
06.

[122] Nevergrad - A gradient-free optimization platform. https://facebookresearch.
github.io/nevergrad/. Accessed: 2023-06-10.

[123] Nevergrad - A gradient-free optimization platform. https://facebookresearch.
github.io/nevergrad/optimizers_ref.html#nevergrad.optimizers.
base.Optimizer.tell. Accessed: 2023-06-10.

[124] NOMAD. https://github.com/bbopt/nomad. Accessed: 2023-01-06.

[125] M Omidvar, Xiaodong Li, and Xin Yao. “A review of population-based
metaheuristics for large-scale black-box global optimization: Part A”. In:
IEEE Transactions on Evolutionary Computation (2021).

[126] M Omidvar, Xiaodong Li, and Xin Yao. “A review of population-based
metaheuristics for large-scale black-box global optimization: Part B”. In:
IEEE Transactions on Evolutionary Computation (2021).

[127] OpenBox: Generalized and Efficient Blackbox Optimization System. https://
open-box.readthedocs.io/en/latest/. Accessed: 2023-06-10.

[128] optim GitHub. https://github.com/kthohr/optim. Accessed: 2023-06-12.

[129] Optimization and root finding (scipy.optimize). https://docs.scipy.org/doc/
scipy/reference/optimize.html. Accessed: 2023-05-06.

[130] Optimization.jl GitHub. https://github.com/SciML/Optimization.jl. Ac-
cessed: 2023-06-12.

[131] Optim.jl GitHub. https://github.com/JuliaNLSolvers/Optim.jl. Ac-
cessed: 2023-06-12.

[132] org.apache.spark.sql.catalog.Catalog. https://spark.apache.org/docs/latest/
api/scala/org/apache/spark/sql/catalog/Catalog.html. Accessed:
2023-05-07.

https://spark.apache.org/docs/3.3.1/monitoring.html#metrics
https://spark.apache.org/docs/3.3.1/monitoring.html#metrics
https://mystic.readthedocs.io/en/latest/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/optimizers_ref.html#nevergrad.optimizers.base.Optimizer.tell
https://facebookresearch.github.io/nevergrad/optimizers_ref.html#nevergrad.optimizers.base.Optimizer.tell
https://facebookresearch.github.io/nevergrad/optimizers_ref.html#nevergrad.optimizers.base.Optimizer.tell
https://github.com/bbopt/nomad
https://open-box.readthedocs.io/en/latest/
https://open-box.readthedocs.io/en/latest/
https://github.com/kthohr/optim
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://github.com/SciML/Optimization.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/catalog/Catalog.html
https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/catalog/Catalog.html

168 Bibliography

[133] P-N-Suganthan/2020-RW-Constrained-Optimisation. https://github.com/P-
N-Suganthan/2020-RW-Constrained-Optimisation. Accessed: 2023-06-10.

[134] Ciprian Paduraru, Marius-Constantin Melemciuc, and Alin Stefanescu. “A
distributed implementation using apache spark of a genetic algorithm ap-
plied to test data generation”. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. 2017, pp. 1857–1863.

[135] Jayesh Patel. “The democratization of machine learning features”. In: 2020
IEEE 21st International Conference on Information Reuse and Integration for Data
Science (IRI). IEEE. 2020, pp. 136–141.

[136] Nikolaos Ploskas and Nikolaos V Sahinidis. “Review and comparison of
algorithms and software for mixed-integer derivative-free optimization”. In:
Journal of Global Optimization (2021), pp. 1–30.

[137] Tony Pourmohamad and Herbert KH Lee. “Bayesian optimization via bar-
rier functions”. In: Journal of Computational and Graphical Statistics 31.1 (2022),
pp. 74–83.

[138] Tony Pourmohamad and Herbert KH Lee. “The statistical filter approach to
constrained optimization”. In: Technometrics 62.3 (2020), pp. 303–312.

[139] William H Press et al. Numerical recipes 3rd edition: The art of scientific com-
puting. Cambridge university press, 2007.

[140] PyBrain docs. http://pybrain.org/docs/tutorial/optimization.html.
Accessed: 2023-06-12.

[141] pySOT: Surrogate Optimization Toolbox for Python. https : / / github . com /
dme65/pySOT. Accessed: 2023-05-06.

[142] Nestor V Queipo et al. “Surrogate-based analysis and optimization”. In:
Progress in aerospace sciences 41.1 (2005), pp. 1–28.

[143] Gomathy Ramaswami, Teo Susnjak, and Anuradha Mathrani. “Support-
ing Students’ Academic Performance Using Explainable Machine Learning
with Automated Prescriptive Analytics”. In: Big Data and Cognitive Comput-
ing 6.4 (2022), p. 105.

[144] RBFOpt GitHub. https://github.com/coin-or/rbfopt. Accessed: 2023-06-
12.

[145] Rommel G Regis. “A survey of surrogate approaches for expensive con-
strained black-box optimization”. In: Optimization of Complex Systems: The-
ory, Models, Algorithms and Applications. Springer. 2020, pp. 37–47.

[146] Rommel G Regis. “Stochastic radial basis function algorithms for large-scale
optimization involving expensive black-box objective and constraint func-
tions”. In: Computers & Operations Research 38.5 (2011), pp. 837–853.

https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation
https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation
http://pybrain.org/docs/tutorial/optimization.html
https://github.com/dme65/pySOT
https://github.com/dme65/pySOT
https://github.com/coin-or/rbfopt

Bibliography 169

[147] Rommel G Regis and Christine A Shoemaker. “A stochastic radial basis
function method for the global optimization of expensive functions”. In:
INFORMS Journal on Computing 19.4 (2007), pp. 497–509.

[148] Rommel G Regis and Christine A Shoemaker. “Combining radial basis func-
tion surrogates and dynamic coordinate search in high-dimensional ex-
pensive black-box optimization”. In: Engineering Optimization 45.5 (2013),
pp. 529–555.

[149] Rommel G Regis and Christine A Shoemaker. “Parallel stochastic global op-
timization using radial basis functions”. In: INFORMS Journal on Computing
21.3 (2009), pp. 411–426.

[150] Luis Miguel Rios and Nikolaos V Sahinidis. “Derivative-free optimization:
a review of algorithms and comparison of software implementations”. In:
Journal of Global Optimization 56 (2013), pp. 1247–1293.

[151] RoBo docs. https://github.com/automl/RoBO. Accessed: 2023-06-12.

[152] scalanlp/breeze. https://github.com/scalanlp/breeze. Accessed: 2023-05-
07.

[153] scikit-optimize docs. https://scikit- optimize.github.io/stable/. Ac-
cessed: 2023-06-12.

[154] scikit-optimize: Sequential model-based optimization in Python. https://scikit-
optimize.github.io/stable/. Accessed: 2023-05-06.

[155] Songqing Shan and G Gary Wang. “Metamodeling for high dimensional
simulation-based design problems”. In: (2010).

[156] SHAP: A game theoretic approach to explain the output of any machine learning
model. https://github.com/slundberg/shap. Accessed: 2023-05-06.

[157] Renhe Shi et al. “Filter-based adaptive Kriging method for black-box opti-
mization problems with expensive objective and constraints”. In: Computer
Methods in Applied Mechanics and Engineering 347 (2019), pp. 782–805.

[158] Laurynas Siksnys and Torben Bach Pedersen. “Prescriptive analytics”. In:
Encyclopedia of database systems. Springer, 2018.

[159] Laurynas Šikšnys and Torben Bach Pedersen. “Solvedb: Integrating opti-
mization problem solvers into sql databases”. In: Proceedings of the 28th In-
ternational Conference on Scientific and Statistical Database Management. 2016,
pp. 1–12.

[160] Laurynas Siksnys et al. “SolveDB+: SQL-Based Prescriptive Analytics.” In:
EDBT. 2021, pp. 133–144.

[161] Michael Sipser. “Introduction to the Theory of Computation”. In: ACM
Sigact News 27.1 (1996), pp. 27–29.

https://github.com/automl/RoBO
https://github.com/scalanlp/breeze
https://scikit-optimize.github.io/stable/
https://scikit-optimize.github.io/stable/
https://scikit-optimize.github.io/stable/
https://github.com/slundberg/shap

170 Bibliography

[162] smile.regression.gpr. https : / / haifengl . github . io / api / scala / smile /
regression/package\protect\T1\textdollar\protect\T1\textdollargpr\
protect\T1\textdollar.html. Accessed: 2023-05-07.

[163] SNOBFIT docs. https://arnold-neumaier.at/software/snobfit/index.
html. Accessed: 2023-06-12.

[164] SolveDB: Integrating Optimization Problem Solvers and Prescriptive Analytics
Into SQL Databases. https : / / www . daisy . aau . dk / projects / solvedb -
integrating-optimization-problem-solvers-into-sql-databases//.
Accessed: 2022-18-10.

[165] [SPARK-28702] Display useful error message (instead of NPE) for invalid Dataset
operations (e.g. calling actions inside of transformations). https : / / issues .
apache.org/jira/browse/SPARK-28702. Accessed: 2023-01-06.

[166] Spark Docs - Cluster Mode Overview. https://spark.apache.org/docs/3.3.
1/cluster-overview.html. Accessed: 2023-01-06.

[167] Spark Docs - Machine Learning Library (MLlib) Guide. https://spark.apache.
org/docs/3.3.1/ml-guide.html. Accessed: 2023-01-06.

[168] Spark Docs - ML Pipelines. https://spark.apache.org/docs/3.3.1/ml-
pipeline.html. Accessed: 2023-01-06.

[169] Spark Docs - Overview. https://spark.apache.org/docs/3.3.1/. Accessed:
2023-01-06.

[170] Spark Docs - RDD Programming Guide. https://spark.apache.org/docs/3.
3.1/rdd-programming-guide.html. Accessed: 2023-01-06.

[171] Spark Docs - Scalar User Defined Functions (UDFs). https://spark.apache.
org/docs/3.3.1/sql-ref-functions-udf-scalar.html. Accessed: 2023-
01-06.

[172] Spark Docs - Spark SQL, DataFrames and Datasets Guide. https://spark.
apache.org/docs/3.3.1/sql-programming-guide.html. Accessed: 2023-
01-06.

[173] Spark Project ML Library. https://mvnrepository.com/artifact/org.
apache.spark/spark-mllib. Accessed: 2023-05-07.

[174] Spark Scala API - SQLTransformer. https://spark.apache.org/docs/3.
3.1/api/scala/org/apache/spark/ml/feature/SQLTransformer.html.
Accessed: 2023-01-06.

[175] Spark Scala API - Transformer. https://spark.apache.org/docs/3.3.1/api/
scala/org/apache/spark/ml/Transformer.html. Accessed: 2023-01-06.

[176] spark-sql-perf. https://github.com/databricks/spark- sql- perf. Ac-
cessed: 2023-01-06.

https://haifengl.github.io/api/scala/smile/regression/package\protect \T1\textdollar \protect \T1\textdollar gpr\protect \T1\textdollar .html
https://haifengl.github.io/api/scala/smile/regression/package\protect \T1\textdollar \protect \T1\textdollar gpr\protect \T1\textdollar .html
https://haifengl.github.io/api/scala/smile/regression/package\protect \T1\textdollar \protect \T1\textdollar gpr\protect \T1\textdollar .html
https://arnold-neumaier.at/software/snobfit/index.html
https://arnold-neumaier.at/software/snobfit/index.html
https://www.daisy.aau.dk/projects/solvedb-integrating-optimization-problem-solvers-into-sql-databases//
https://www.daisy.aau.dk/projects/solvedb-integrating-optimization-problem-solvers-into-sql-databases//
https://issues.apache.org/jira/browse/SPARK-28702
https://issues.apache.org/jira/browse/SPARK-28702
https://spark.apache.org/docs/3.3.1/cluster-overview.html
https://spark.apache.org/docs/3.3.1/cluster-overview.html
https://spark.apache.org/docs/3.3.1/ml-guide.html
https://spark.apache.org/docs/3.3.1/ml-guide.html
https://spark.apache.org/docs/3.3.1/ml-pipeline.html
https://spark.apache.org/docs/3.3.1/ml-pipeline.html
https://spark.apache.org/docs/3.3.1/
https://spark.apache.org/docs/3.3.1/rdd-programming-guide.html
https://spark.apache.org/docs/3.3.1/rdd-programming-guide.html
https://spark.apache.org/docs/3.3.1/sql-ref-functions-udf-scalar.html
https://spark.apache.org/docs/3.3.1/sql-ref-functions-udf-scalar.html
https://spark.apache.org/docs/3.3.1/sql-programming-guide.html
https://spark.apache.org/docs/3.3.1/sql-programming-guide.html
https://mvnrepository.com/artifact/org.apache.spark/spark-mllib
https://mvnrepository.com/artifact/org.apache.spark/spark-mllib
https://spark.apache.org/docs/3.3.1/api/scala/org/apache/spark/ml/feature/SQLTransformer.html
https://spark.apache.org/docs/3.3.1/api/scala/org/apache/spark/ml/feature/SQLTransformer.html
https://spark.apache.org/docs/3.3.1/api/scala/org/apache/spark/ml/Transformer.html
https://spark.apache.org/docs/3.3.1/api/scala/org/apache/spark/ml/Transformer.html
https://github.com/databricks/spark-sql-perf

Bibliography 171

[177] Spark Standalone Mode. https://spark.apache.org/docs/3.3.1/spark-
standalone.html. Accessed: 2023-01-06.

[178] SRBFStrategy. https://pysot.readthedocs.io/en/latest/options.html#
srbfstrategy. Accessed: 2023-05-07.

[179] Sharan Srinivas and A Ravi Ravindran. “Optimizing outpatient appoint-
ment system using machine learning algorithms and scheduling rules: a
prescriptive analytics framework”. In: Expert Systems with Applications 102
(2018), pp. 245–261.

[180] Stack Overflow Developer Survey 2022. https://survey.stackoverflow.co/
2022/. Accessed: 2023-01-06.

[181] Stopping Monte Carlo simulation once certain convergence level is reached. https:
//quant.stackexchange.com/questions/21764/stopping-monte-carlo-
simulation - once - certain - convergence - level - is - reached / 21769 #
21769. Accessed: 2023-05-07.

[182] Erik Strumbelj and Igor Kononenko. “An efficient explanation of individ-
ual classifications using game theory”. In: The Journal of Machine Learning
Research 11 (2010), pp. 1–18.

[183] Erik Štrumbelj and Igor Kononenko. “Explaining prediction models and
individual predictions with feature contributions”. In: Knowledge and infor-
mation systems 41 (2014), pp. 647–665.

[184] Surrogates.jl: Surrogate models and optimization for scientific machine learning.
https://docs.sciml.ai/Surrogates/stable/. Accessed: 2023-05-07.

[185] Teo Susnjak. “A Prescriptive Learning Analytics Framework: Beyond Pre-
dictive Modelling and onto Explainable AI with Prescriptive Analytics”. In:
arXiv preprint arXiv:2208.14582 (2022).

[186] Ke Tang et al. “Benchmark functions for the CEC’2008 special session and
competition on large scale global optimization”. In: Nature inspired computa-
tion and applications laboratory, USTC, China 24 (2007), pp. 1–18.

[187] TOMLAB docs. https://tomopt.com/tomlab/optimization/costly.php.
Accessed: 2023-06-12.

[188] TOMLAB: For fast and robust large-scale optimization in MATLAB. https://
tomopt.com/. Accessed: 2023-06-10.

[189] TPC BENCHMARK™ DS Standard Specification. https://www.tpc.org/
tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf. Accessed:
2023-01-06.

[190] TPC-DS Version 2 and Version 3. https://www.tpc.org/tpcds/default5.
asp. Accessed: 2023-01-06.

https://spark.apache.org/docs/3.3.1/spark-standalone.html
https://spark.apache.org/docs/3.3.1/spark-standalone.html
https://pysot.readthedocs.io/en/latest/options.html#srbfstrategy
https://pysot.readthedocs.io/en/latest/options.html#srbfstrategy
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://quant.stackexchange.com/questions/21764/stopping-monte-carlo-simulation-once-certain-convergence-level-is-reached/21769#21769
https://quant.stackexchange.com/questions/21764/stopping-monte-carlo-simulation-once-certain-convergence-level-is-reached/21769#21769
https://quant.stackexchange.com/questions/21764/stopping-monte-carlo-simulation-once-certain-convergence-level-is-reached/21769#21769
https://quant.stackexchange.com/questions/21764/stopping-monte-carlo-simulation-once-certain-convergence-level-is-reached/21769#21769
https://docs.sciml.ai/Surrogates/stable/
https://tomopt.com/tomlab/optimization/costly.php
https://tomopt.com/
https://tomopt.com/
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
https://www.tpc.org/tpcds/default5.asp
https://www.tpc.org/tpcds/default5.asp

172 Bibliography

[191] Diane Villanueva et al. “Locating multiple candidate designs with surrogate-
based optimization”. In: 10th World Congress on Structural and Multidisci-
plinary Optimization, Orlando, FL, USA. 2013.

[192] Johannes Kunze Von Bischhoffshausen et al. “An information system for
sales team assignments utilizing predictive and prescriptive analytics”. In:
2015 IEEE 17th Conference on Business Informatics. Vol. 1. IEEE. 2015, pp. 68–
76.

[193] Walter D Wallis and John C George. Introduction to combinatorics. CRC press,
2016.

[194] G Gary Wang, Zuomin Dong, Peter Aitchison, et al. “Adaptive response
surface method-a global optimization scheme for approximation-based de-
sign problems”. In: Engineering Optimization 33.6 (2001), pp. 707–734.

[195] Stefan M Wild, Rommel G Regis, and Christine A Shoemaker. “ORBIT: Op-
timization by radial basis function interpolation in trust-regions”. In: SIAM
Journal on Scientific Computing 30.6 (2008), pp. 3197–3219.

[196] Eyal Winter. “The shapley value”. In: Handbook of game theory with economic
applications 3 (2002), pp. 2025–2054.

[197] David H Wolpert and William G Macready. “No free lunch theorems for
optimization”. In: IEEE transactions on evolutionary computation 1.1 (1997),
pp. 67–82.

[198] David H Wolpert, William G Macready, et al. No free lunch theorems for search.
Tech. rep. Citeseer, 1995.

[199] Congmin Yang et al. “Parallel Particle Swarm Optimization Based on Spark
for Academic Paper Co-Authorship Prediction”. In: Information 12.12 (2021),
p. 530.

[200] Pengcheng Ye. “A review on surrogate-based global optimization methods
for computationally expensive functions”. In: Softw. Eng 7 (2019), pp. 68–84.

[201] Wei Zhao et al. “Shap values for explaining cnn-based text classification
models”. In: arXiv preprint arXiv:2008.11825 (2020).

Appendix A

Appendix

A.1 Experiments

This section contains all raw experimental data, insofar that this can be sensibly
presented.

A.1.1 Experiment 1

Modified TPC-DS Q48

The mildly modified version of Q48 from the TPC-DS benchmark suite [189].
__THIS__ (alias sol) on line 2 denotes the input table, being the large store_sales
fact table with the instantiated decision variables projected unto it. Decision vari-
ables (capitalized here) are named like their substitution parameters in the original
query. Only one original parameter, the d_year on line 5 was was provided a fixed
value (originally done for story purposes [115]).

1 select *
2 from store , customer_demographics , customer_address , date_dim ,

__THIS__ sol
3 where s_store_sk = ss_store_sk
4 and ss_sold_date_sk = d_date_sk
5 and d_year = 2000
6 and ((cd_demo_sk = ss_cdemo_sk
7 and cd_marital_status = sol.MS1
8 and cd_education_status = sol.ES1
9 and ss_sales_price between 100.00 and 150.00)

10 or
11 (cd_demo_sk = ss_cdemo_sk
12 and cd_marital_status = sol.MS2
13 and cd_education_status = sol.ES2
14 and ss_sales_price between 50.00 and 100.00)

173

174 Appendix A. Appendix

15 or
16 (cd_demo_sk = ss_cdemo_sk
17 and cd_marital_status = sol.MS3
18 and cd_education_status = sol.ES3
19 and ss_sales_price between 150.00 and 200.00))
20 and ((ss_addr_sk = ca_address_sk
21 and ca_country = ’United States ’
22 and ca_state = sol.STATE1
23 and ss_net_profit between 0 and 2000)
24 or
25 (ss_addr_sk = ca_address_sk
26 and ca_country = ’United States ’
27 and ca_state = sol.STATE2
28 and ss_net_profit between 150 and 3000)
29 or
30 (ss_addr_sk = ca_address_sk
31 and ca_country = ’United States ’
32 and ca_state = sol.STATE3
33 and ss_net_profit between 50 and 25000));

Run data

Results from all runs. To save space here, so to speak, only the mean and standard
deviation of all timesteps are provided for driver memory usage.

Strategy Scale Executors Run Runtime Memory Mean Memory Std
Sequential 1 3 1 1247 1.015 0.2653
Sequential 1 3 2 1253 1.0272 0.2704
Sequential 1 3 3 1215 0.8406 0.2479
Sequential 1 3 4 1284 0.9736 0.2633
Sequential 1 3 5 1256 1.1085 0.3018
Sequential 1 6 1 1246 0.8438 0.2432
Sequential 1 6 2 1232 1.236 0.5616
Sequential 1 6 3 1183 0.9111 0.2559
Sequential 1 6 4 1194 0.915 0.2823
Sequential 1 6 5 1244 0.8921 0.2485
Sequential 1 9 1 1156 0.99 0.2743
Sequential 1 9 2 1272 0.8951 0.2479
Sequential 1 9 3 1233 0.9014 0.245
Sequential 1 9 4 1320 0.9031 0.2454
Sequential 1 9 5 1202 0.9241 0.2636
Sequential 1 12 1 1217 0.931 0.2798
Sequential 1 12 2 1215 0.936 0.2881

A.1. Experiments 175

Sequential 1 12 3 1184 0.9997 0.2585
Sequential 1 12 4 1222 0.9085 0.2617
Sequential 1 12 5 1132 0.976 0.2691
Sequential 1 15 1 1101 0.9052 0.2674
Sequential 1 15 2 1530 0.8849 0.2235
Sequential 1 15 3 1642 0.833 0.2431
Sequential 1 15 4 1589 0.8897 0.2262
Sequential 1 15 5 1649 0.9991 0.2261
Sequential 1 18 1 1643 0.9924 0.229
Sequential 1 18 2 1643 1.1053 0.3922
Sequential 1 18 3 1632 0.9032 0.2306
Sequential 1 18 4 1667 0.8982 0.2246
Sequential 1 18 5 1618 0.7528 0.1712
Sequential 2 3 1 1430 0.8015 0.1919
Sequential 2 3 2 1420 0.8254 0.2277
Sequential 2 3 3 1296 0.9291 0.2649
Sequential 2 3 4 1307 0.9569 0.2457
Sequential 2 3 5 1298 0.9995 0.3219
Sequential 2 6 1 1188 0.9076 0.2637
Sequential 2 6 2 1296 0.8967 0.2475
Sequential 2 6 3 1678 0.8956 0.2241
Sequential 2 6 4 1207 1.0455 0.3043
Sequential 2 6 5 1270 0.8947 0.2487
Sequential 2 9 1 1259 0.9693 0.2757
Sequential 2 9 2 1677 0.9591 0.2404
Sequential 2 9 3 1264 0.8419 0.2533
Sequential 2 9 4 1290 0.8945 0.2919
Sequential 2 9 5 1148 0.9096 0.2635
Sequential 2 12 1 1262 0.9386 0.2633
Sequential 2 12 2 1228 0.9611 0.2851
Sequential 2 12 3 1163 0.9445 0.3082
Sequential 2 12 4 1264 1.1915 0.5193
Sequential 2 12 5 1251 0.8973 0.2588
Sequential 2 15 1 1175 1.3991 0.458
Sequential 2 15 2 1254 0.9288 0.29
Sequential 2 15 3 1214 1.0237 0.3039
Sequential 2 15 4 1685 0.8912 0.2255
Sequential 2 15 5 1645 0.8978 0.2254
Sequential 2 18 1 1668 0.9733 0.2333

176 Appendix A. Appendix

Sequential 2 18 2 1679 0.9981 0.2249
Sequential 2 18 3 1141 0.958 0.3271
Sequential 2 18 4 1212 0.9082 0.2664
Sequential 2 18 5 1224 0.9024 0.2614
Sequential 4 3 1 1409 0.9347 0.2726
Sequential 4 3 2 1380 1.0308 0.2733
Sequential 4 3 3 1370 1.0482 0.4726
Sequential 4 3 4 1393 1.0048 0.2773
Sequential 4 3 5 1417 0.9894 0.2729
Sequential 4 6 1 1304 1.0592 0.2825
Sequential 4 6 2 1246 0.9797 0.2956
Sequential 4 6 3 1372 0.9164 0.2534
Sequential 4 6 4 1317 1.0003 0.2776
Sequential 4 6 5 1724 0.9706 0.2369
Sequential 4 9 1 1251 0.9501 0.2895
Sequential 4 9 2 1243 1.0253 0.2801
Sequential 4 9 3 1325 0.8963 0.2492
Sequential 4 9 4 1317 0.9134 0.2546
Sequential 4 9 5 1384 1.2488 0.363
Sequential 4 12 1 1680 0.8932 0.226
Sequential 4 12 2 1277 1.0615 0.3422
Sequential 4 12 3 1262 0.8161 0.2663
Sequential 4 12 4 1674 1.1845 0.4284
Sequential 4 12 5 1285 0.9927 0.2743
Sequential 4 15 1 1315 1.0453 0.2707
Sequential 4 15 2 1233 0.9355 0.2926
Sequential 4 15 3 1690 1.3127 0.4074
Sequential 4 15 4 1242 1.2939 0.5092
Sequential 4 15 5 1230 0.9392 0.2785
Sequential 4 18 1 1784 0.9016 0.2232
Sequential 4 18 2 1708 0.9018 0.2283
Sequential 4 18 3 1280 1.0182 0.2788
Sequential 4 18 4 1300 0.924 0.2627
Sequential 4 18 5 1649 1.0733 0.2999
Sequential 8 3 1 1582 0.9797 0.2574
Sequential 8 3 2 1560 1.101 0.2976
Sequential 8 3 3 1552 1.034 0.284
Sequential 8 3 4 1533 0.9888 0.2895
Sequential 8 3 5 1607 0.7832 0.2438

A.1. Experiments 177

Sequential 8 6 1 1828 1.114 0.2961
Sequential 8 6 2 1413 1.1313 0.4541
Sequential 8 6 3 1398 1.0407 0.3094
Sequential 8 6 4 1403 0.9097 0.2552
Sequential 8 6 5 1361 1.0282 0.4154
Sequential 8 9 1 1768 0.8161 0.1843
Sequential 8 9 2 1304 1.0212 0.3022
Sequential 8 9 3 1382 0.9709 0.2729
Sequential 8 9 4 1703 0.9278 0.2615
Sequential 8 9 5 1332 0.9142 0.2634
Sequential 8 12 1 1755 0.8836 0.2267
Sequential 8 12 2 1347 0.9536 0.2734
Sequential 8 12 3 1343 1.0295 0.2811
Sequential 8 12 4 1799 0.8876 0.23
Sequential 8 12 5 1306 1.0665 0.3181
Sequential 8 15 1 1746 0.9886 0.2277
Sequential 8 15 2 1381 0.9259 0.3366
Sequential 8 15 3 1738 0.9048 0.2269
Sequential 8 15 4 1329 1.0421 0.3039
Sequential 8 15 5 1333 0.9683 0.2981
Sequential 8 18 1 1705 0.89 0.2252
Sequential 8 18 2 1334 0.8877 0.2661
Sequential 8 18 3 1717 0.9678 0.2198
Sequential 8 18 4 1749 1.0419 0.2154
Sequential 8 18 5 1762 0.9016 0.2255
Sequential 16 3 1 2040 0.9809 0.3813
Sequential 16 3 2 1797 1.0053 0.2816
Sequential 16 3 3 1695 1.0251 0.2605
Sequential 16 3 4 1761 1.0871 0.3051
Sequential 16 3 5 1844 0.908 0.2492
Sequential 16 6 1 1514 0.9211 0.2634
Sequential 16 6 2 1618 1.1031 0.2929
Sequential 16 6 3 1561 0.9623 0.3022
Sequential 16 6 4 1522 1.2777 0.468
Sequential 16 6 5 1662 0.8902 0.2239
Sequential 16 9 1 1496 0.9521 0.2811
Sequential 16 9 2 1499 1.0377 0.3077
Sequential 16 9 3 1428 1.0155 0.3553
Sequential 16 9 4 1450 1.0058 0.2983

178 Appendix A. Appendix

Sequential 16 9 5 1505 1.4256 0.3571
Sequential 16 12 1 1511 0.9021 0.2285
Sequential 16 12 2 1437 1.0335 0.2674
Sequential 16 12 3 1455 1.2088 0.4251
Sequential 16 12 4 1488 0.9218 0.2608
Sequential 16 12 5 1468 0.9264 0.2651
Sequential 16 15 1 1926 0.7276 0.1628
Sequential 16 15 2 1845 0.9629 0.2402
Sequential 16 15 3 1927 0.874 0.2251
Sequential 16 15 4 1870 0.9381 0.2299
Sequential 16 15 5 1956 0.9188 0.2286
Sequential 16 18 1 1373 1.4102 0.3661
Sequential 16 18 2 1846 0.8993 0.2246
Sequential 16 18 3 1835 0.9485 0.2275
Sequential 16 18 4 1381 0.9379 0.2824
Sequential 16 18 5 1798 0.984 0.2188
Sequential 32 3 1 2202 1.0034 0.287
Sequential 32 3 2 2324 1.0171 0.2707
Sequential 32 3 3 2276 1.0518 0.3089
Sequential 32 3 4 2340 1.0859 0.4622
Sequential 32 3 5 2258 0.9852 0.2671
Sequential 32 6 1 1822 0.9305 0.2607
Sequential 32 6 2 1868 0.9667 0.249
Sequential 32 6 3 1779 0.9971 0.2807
Sequential 32 6 4 1805 0.9495 0.3192
Sequential 32 6 5 1698 0.9207 0.2563
Sequential 32 9 1 1555 1.0718 0.3097
Sequential 32 9 2 1689 0.93 0.2611
Sequential 32 9 3 1663 1.0359 0.3208
Sequential 32 9 4 1680 0.9398 0.267
Sequential 32 9 5 2073 0.86 0.2294
Sequential 32 12 1 1621 0.9242 0.2604
Sequential 32 12 2 1677 0.9721 0.2527
Sequential 32 12 3 1570 1.1364 0.4562
Sequential 32 12 4 2013 0.8621 0.2313
Sequential 32 12 5 1605 0.9742 0.2648
Sequential 32 15 1 2006 0.8709 0.2335
Sequential 32 15 2 1579 0.9164 0.263
Sequential 32 15 3 1546 0.9286 0.2623

A.1. Experiments 179

Sequential 32 15 4 1616 0.925 0.26
Sequential 32 15 5 1625 0.9655 0.2751
Sequential 32 18 1 1625 1.0196 0.2641
Sequential 32 18 2 2015 0.9156 0.2532
Sequential 32 18 3 2003 1.3103 0.3036
Sequential 32 18 4 1641 1.0615 0.2676
Sequential 32 18 5 1969 0.9609 0.2465
Sequential 64 3 1 3203 1.4675 0.658
Sequential 64 3 2 3251 1.1758 0.4774
Sequential 64 3 3 3559 1.318 0.6194
Sequential 64 3 4 3316 0.9539 0.2527
Sequential 64 3 5 3374 1.071 0.3281
Sequential 64 6 1 2715 0.9615 0.3837
Sequential 64 6 2 2338 0.9234 0.2568
Sequential 64 6 3 2394 0.9756 0.2807
Sequential 64 6 4 2685 1.1033 0.6291
Sequential 64 6 5 2278 1.2387 0.5607
Sequential 64 9 1 1950 1.173 0.3706
Sequential 64 9 2 1986 1.015 0.2918
Sequential 64 9 3 2455 0.9156 0.2203
Sequential 64 9 4 1946 1.2186 0.3604
Sequential 64 9 5 2514 0.9752 0.232
Sequential 64 12 1 2037 1.749 0.4596
Sequential 64 12 2 1946 0.9739 0.2606
Sequential 64 12 3 1973 1.0234 0.3093
Sequential 64 12 4 2018 0.9633 0.2557
Sequential 64 12 5 1933 0.9603 0.2867
Sequential 64 15 1 2157 1.055 0.2853
Sequential 64 15 2 2017 1.4069 0.6212
Sequential 64 15 3 2353 0.9248 0.2249
Sequential 64 15 4 1853 0.972 0.2951
Sequential 64 15 5 2244 0.8649 0.2168
Sequential 64 18 1 1851 1.0251 0.3165
Sequential 64 18 2 1862 1.0216 0.3159
Sequential 64 18 3 1942 0.9818 0.2645
Sequential 64 18 4 2291 0.9138 0.2127
Sequential 64 18 5 1918 1.986 0.456
Sequential 128 3 1 5779 1.0039 0.4062
Sequential 128 3 2 5617 0.8925 0.36

180 Appendix A. Appendix

Sequential 128 3 3 5579 0.8315 0.3168
Sequential 128 3 4 5749 0.9594 0.4543
Sequential 128 3 5 5756 1.0393 0.4545
Sequential 128 6 1 3961 1.2152 0.5202
Sequential 128 6 2 3369 0.9715 0.2669
Sequential 128 6 3 3633 1.0821 0.2813
Sequential 128 6 4 3483 0.9946 0.28
Sequential 128 6 5 3551 1.1047 0.4324
Sequential 128 9 1 2877 0.9999 0.2993
Sequential 128 9 2 2865 1.2533 0.4206
Sequential 128 9 3 2801 1.2279 0.552
Sequential 128 9 4 2853 1.3153 0.5244
Sequential 128 9 5 2896 1.0691 0.4775
Sequential 128 12 1 2858 0.9184 0.2206
Sequential 128 12 2 2596 1.0851 0.2924
Sequential 128 12 3 2736 1.2419 0.4891
Sequential 128 12 4 2690 1.2591 0.4795
Sequential 128 12 5 3190 0.9611 0.2428
Sequential 128 15 1 3066 0.7594 0.2301
Sequential 128 15 2 2636 1.2729 0.3386
Sequential 128 15 3 2605 1.0768 0.2698
Sequential 128 15 4 2969 0.7946 0.2838
Sequential 128 15 5 2606 0.9309 0.2494
Sequential 128 18 1 2925 0.8514 0.2401
Sequential 128 18 2 2417 0.9958 0.2826
Sequential 128 18 3 2513 1.1157 0.3114
Sequential 128 18 4 2954 0.8326 0.2215
Sequential 128 18 5 2923 0.8773 0.236
Static 1 3 1 176 4.277 2.2522
Static 1 3 2 178 3.8016 1.908
Static 1 3 3 166 7.26 3.6346
Static 1 3 4 162 5.7373 3.1688
Static 1 3 5 178 4.5526 2.7025
Static 1 6 1 119 7.3357 4.4162
Static 1 6 2 139 7.2797 4.2785
Static 1 6 3 141 7.5949 4.1791
Static 1 6 4 141 8.2275 4.8849
Static 1 6 5 141 6.8821 3.7604
Static 1 9 1 122 10.1796 5.4713

A.1. Experiments 181

Static 1 9 2 124 7.0203 3.9628
Static 1 9 3 105 8.8234 5.8375
Static 1 9 4 104 7.3499 4.6024
Static 1 9 5 105 8.8579 5.5441
Static 1 12 1 105 9.5006 6.0909
Static 1 12 2 106 8.8646 5.4528
Static 1 12 3 99 9.7406 6.2896
Static 1 12 4 100 10.8186 7.4078
Static 1 12 5 102 9.8543 6.4217
Static 1 15 1 110 10.9109 7.0031
Static 1 15 2 101 10.0585 6.671
Static 1 15 3 109 10.4318 6.5653
Static 1 15 4 105 10.2897 6.3068
Static 1 15 5 105 9.8412 6.2439
Static 1 18 1 107 11.7506 8.1022
Static 1 18 2 107 11.6673 7.78
Static 1 18 3 106 11.1489 7.5273
Static 1 18 4 107 11.3898 7.6119
Static 1 18 5 110 11.0326 6.7164
Static 2 3 1 217 4.1859 2.295
Static 2 3 2 205 8.6138 4.7556
Static 2 3 3 207 4.1903 2.1441
Static 2 3 4 204 6.7372 3.0479
Static 2 3 5 205 4.6036 2.6795
Static 2 6 1 145 6.7019 3.999
Static 2 6 2 145 6.9718 4.181
Static 2 6 3 145 7.4541 4.6292
Static 2 6 4 139 6.7176 3.6928
Static 2 6 5 158 7.1688 4.1182
Static 2 9 1 123 8.8749 5.267
Static 2 9 2 117 7.8834 4.6705
Static 2 9 3 122 8.6534 5.0515
Static 2 9 4 121 8.2086 5.1495
Static 2 9 5 123 9.6633 5.6071
Static 2 12 1 112 9.2284 5.6087
Static 2 12 2 113 9.9938 6.3938
Static 2 12 3 112 9.2989 5.8487
Static 2 12 4 113 9.2204 5.7385
Static 2 12 5 114 9.6131 5.5465

182 Appendix A. Appendix

Static 2 15 1 115 9.8011 6.0647
Static 2 15 2 116 10.2068 6.7071
Static 2 15 3 114 9.0854 5.5395
Static 2 15 4 112 8.7677 5.3739
Static 2 15 5 112 9.6401 5.7888
Static 2 18 1 122 9.692 5.886
Static 2 18 2 124 10.3984 6.4449
Static 2 18 3 120 10.2474 6.3423
Static 2 18 4 115 10.0705 6.1565
Static 2 18 5 121 10.298 6.4279
Static 4 3 1 280 4.7559 2.3157
Static 4 3 2 299 3.4238 1.6561
Static 4 3 3 285 3.5402 1.8116
Static 4 3 4 277 6.9598 3.956
Static 4 3 5 282 3.6271 1.7183
Static 4 6 1 183 6.6045 3.8651
Static 4 6 2 182 6.4624 3.2478
Static 4 6 3 184 6.0846 3.3867
Static 4 6 4 186 5.5796 3.0165
Static 4 6 5 183 7.0902 4.2632
Static 4 9 1 149 7.9735 4.7305
Static 4 9 2 160 7.7341 4.2878
Static 4 9 3 148 8.5509 4.825
Static 4 9 4 149 7.8268 4.5022
Static 4 9 5 149 8.801 4.9618
Static 4 12 1 138 9.4463 5.2563
Static 4 12 2 137 9.6229 6.2116
Static 4 12 3 137 8.0526 4.6526
Static 4 12 4 138 8.1768 5.0249
Static 4 12 5 169 8.2576 4.3609
Static 4 15 1 167 11.3059 6.1202
Static 4 15 2 165 8.7384 5.1027
Static 4 15 3 167 11.3054 6.5305
Static 4 15 4 175 10.1117 5.8204
Static 4 15 5 156 9.4279 5.3709
Static 4 18 1 147 9.8065 5.5307
Static 4 18 2 149 10.1493 5.7017
Static 4 18 3 137 10.5898 6.4733
Static 4 18 4 145 9.8266 5.4684

A.1. Experiments 183

Static 4 18 5 149 10.492 6.0131
Static 8 3 1 430 3.3253 1.4335
Static 8 3 2 423 3.3019 1.5931
Static 8 3 3 460 3.8133 1.9018
Static 8 3 4 431 3.4794 1.6202
Static 8 3 5 429 3.5101 1.671
Static 8 6 1 257 6.3629 3.5117
Static 8 6 2 258 6.2436 3.4013
Static 8 6 3 269 6.2888 3.4064
Static 8 6 4 247 6.0042 2.9214
Static 8 6 5 262 6.8539 3.5027
Static 8 9 1 203 8.1311 4.5972
Static 8 9 2 262 7.6486 4.3576
Static 8 9 3 259 7.6394 4.0148
Static 8 9 4 272 8.2463 4.3316
Static 8 9 5 276 9.0021 4.6318
Static 8 12 1 190 9.8185 5.872
Static 8 12 2 188 8.7259 4.6221
Static 8 12 3 190 10.0539 5.5571
Static 8 12 4 198 9.3873 4.9491
Static 8 12 5 189 9.4017 5.5411
Static 8 15 1 185 10.647 5.9641
Static 8 15 2 190 9.7736 5.4864
Static 8 15 3 182 10.1546 5.8067
Static 8 15 4 191 11.6276 6.1673
Static 8 15 5 185 11.6463 6.7053
Static 8 18 1 184 11.0377 5.6421
Static 8 18 2 193 9.3957 5.1455
Static 8 18 3 187 9.2678 4.7837
Static 8 18 4 189 10.4224 5.7656
Static 8 18 5 188 9.1355 5.0267
Static 16 3 1 695 7.4621 3.7781
Static 16 3 2 695 7.8658 3.3183
Static 16 3 3 715 5.7984 2.8305
Static 16 3 4 693 2.9365 1.2506
Static 16 3 5 806 3.2014 1.3338
Static 16 6 1 398 5.7493 2.9226
Static 16 6 2 402 6.7006 3.2858
Static 16 6 3 393 4.8869 2.2023

184 Appendix A. Appendix

Static 16 6 4 391 5.9346 3.3037
Static 16 6 5 396 6.2897 3.103
Static 16 9 1 301 6.9923 3.733
Static 16 9 2 309 7.3458 3.7865
Static 16 9 3 301 6.6409 3.3432
Static 16 9 4 312 7.797 3.8217
Static 16 9 5 298 7.7138 4.138
Static 16 12 1 278 7.8898 4.0085
Static 16 12 2 280 8.443 4.6226
Static 16 12 3 280 8.3394 4.2426
Static 16 12 4 293 8.756 4.5225
Static 16 12 5 279 9.1101 4.8271
Static 16 15 1 277 10.5746 5.3703
Static 16 15 2 269 11.2022 5.6832
Static 16 15 3 266 9.5645 4.9201
Static 16 15 4 269 10.2846 5.8248
Static 16 15 5 270 11.1802 6.1268
Static 16 18 1 270 7.8787 3.5307
Static 16 18 2 271 11.6107 6.2913
Static 16 18 3 270 11.0519 6.0468
Static 16 18 4 269 12.2556 6.9014
Static 16 18 5 272 10.5428 5.63
Static 32 3 1 1296 2.7631 1.1538
Static 32 3 2 1289 2.4794 0.9908
Static 32 3 3 1239 2.8153 1.1396
Static 32 3 4 1259 2.7923 1.1393
Static 32 3 5 1262 3.1289 1.3621
Static 32 6 1 679 4.9155 2.2907
Static 32 6 2 701 8.9236 3.5004
Static 32 6 3 690 5.0561 2.4803
Static 32 6 4 717 4.8358 2.2402
Static 32 6 5 982 5.1892 2.2829
Static 32 9 1 537 7.4663 3.6506
Static 32 9 2 516 6.7806 2.931
Static 32 9 3 523 6.9916 3.2933
Static 32 9 4 521 6.4617 2.8184
Static 32 9 5 513 7.2101 3.9538
Static 32 12 1 470 8.7465 4.3998
Static 32 12 2 678 8.6834 4.2325

A.1. Experiments 185

Static 32 12 3 684 8.8157 3.9572
Static 32 12 4 492 7.8727 3.5789
Static 32 12 5 472 8.3066 4.2268
Static 32 15 1 467 10.5208 4.8502
Static 32 15 2 451 10.103 4.8803
Static 32 15 3 456 8.8159 4.2956
Static 32 15 4 452 10.7994 5.0182
Static 32 15 5 450 9.7491 4.5693
Static 32 18 1 436 11.2003 5.8205
Static 32 18 2 442 11.5302 5.9987
Static 32 18 3 448 8.8834 4.3978
Static 32 18 4 432 9.6567 3.9026
Static 32 18 5 436 8.2011 3.8422
Static 64 3 1 2310 4.2285 2.3677
Static 64 3 2 2408 2.2024 0.8495
Static 64 3 3 2368 2.2259 0.676
Static 64 3 4 2494 2.2816 0.7894
Static 64 3 5 2585 2.3531 0.7217
Static 64 6 1 1294 4.2226 1.8299
Static 64 6 2 1291 4.1206 1.4673
Static 64 6 3 1302 4.0352 1.518
Static 64 6 4 1305 4.4899 1.9334
Static 64 6 5 1301 4.3641 1.7917
Static 64 9 1 997 6.7233 2.7304
Static 64 9 2 947 5.8836 2.6274
Static 64 9 3 1038 5.7935 2.2244
Static 64 9 4 960 6.2288 2.6452
Static 64 9 5 961 6.4176 2.7217
Static 64 12 1 848 8.3535 3.3934
Static 64 12 2 926 8.2148 2.9684
Static 64 12 3 847 7.9106 3.3688
Static 64 12 4 872 8.3259 3.7157
Static 64 12 5 815 7.9831 3.355
Static 64 15 1 807 8.6271 3.6375
Static 64 15 2 787 9.4069 4.4332
Static 64 15 3 790 9.7021 3.8907
Static 64 15 4 786 9.408 4.5302
Static 64 15 5 777 9.7065 4.7939
Static 64 18 1 761 9.0951 4.0811

186 Appendix A. Appendix

Static 64 18 2 748 10.5217 4.6078
Static 64 18 3 768 11.6307 4.5005
Static 64 18 4 755 9.8579 4.6548
Static 64 18 5 741 10.7863 4.5788
Static 128 3 1 4456 1.9903 0.606
Static 128 3 2 4535 2.0365 0.6038
Static 128 3 3 4529 1.921 0.569
Static 128 3 4 4492 2.0162 0.5676
Static 128 3 5 4661 2.0145 0.6009
Static 128 6 1 2601 3.8955 1.8863
Static 128 6 2 2365 3.7366 1.2548
Static 128 6 3 2488 3.7365 1.3249
Static 128 6 4 2390 4.4707 2.2855
Static 128 6 5 2457 3.6093 1.252
Static 128 9 1 1784 5.3289 1.9871
Static 128 9 2 1712 5.3748 1.9642
Static 128 9 3 1825 5.3827 2.0859
Static 128 9 4 1773 5.2409 1.8934
Static 128 9 5 1687 5.6552 2.1031
Static 128 12 1 1596 6.9074 2.6507
Static 128 12 2 1551 6.762 2.6304
Static 128 12 3 1666 6.9093 2.4824
Static 128 12 4 2201 6.7847 2.8127
Static 128 12 5 1528 6.7639 2.3831
Static 128 15 1 1426 8.5697 3.4328
Static 128 15 2 1491 8.324 2.8775
Static 128 15 3 1456 8.9322 3.1099
Static 128 15 4 1409 8.3806 2.7965
Static 128 15 5 1450 7.9076 3.2804
Static 128 18 1 1556 9.1739 3.6686
Static 128 18 2 1395 9.311 3.3709
Static 128 18 3 1426 9.0616 3.5086
Static 128 18 4 1525 9.785 4.0257
Static 128 18 5 1474 8.7316 3.2454
Dynamic 1 3 1 240 3.0357 1.6693
Dynamic 1 3 2 212 5.6878 3.3379
Dynamic 1 3 3 228 5.0442 2.9838
Dynamic 1 3 4 214 3.9521 2.3365
Dynamic 1 3 5 236 3.1991 1.8123

A.1. Experiments 187

Dynamic 1 6 1 145 6.899 4.7548
Dynamic 1 6 2 185 5.6546 3.5581
Dynamic 1 6 3 146 6.5646 4.4221
Dynamic 1 6 4 173 4.1573 2.4653
Dynamic 1 6 5 196 3.2582 2.0972
Dynamic 1 9 1 180 3.6073 2.1657
Dynamic 1 9 2 159 5.3386 3.363
Dynamic 1 9 3 186 3.3943 2.0813
Dynamic 1 9 4 196 5.9958 3.7789
Dynamic 1 9 5 176 5.1034 3.4945
Dynamic 1 12 1 124 7.3121 5.5985
Dynamic 1 12 2 117 7.1267 5.3421
Dynamic 1 12 3 116 8.1988 6.0996
Dynamic 1 12 4 140 6.5916 4.3902
Dynamic 1 12 5 200 3.8249 2.3766
Dynamic 1 15 1 123 6.6863 4.7753
Dynamic 1 15 2 178 4.8602 3.2272
Dynamic 1 15 3 123 7.1968 5.1905
Dynamic 1 15 4 146 5.5586 3.8643
Dynamic 1 15 5 140 4.704 3.4878
Dynamic 1 18 1 134 7.8564 5.8796
Dynamic 1 18 2 132 8.2489 5.9809
Dynamic 1 18 3 125 8.0501 5.8829
Dynamic 1 18 4 165 4.3901 2.9284
Dynamic 1 18 5 142 7.1916 5.1544
Dynamic 2 3 1 245 4.0906 2.3383
Dynamic 2 3 2 278 4.0466 2.5525
Dynamic 2 3 3 263 3.8611 2.2548
Dynamic 2 3 4 269 5.0552 2.701
Dynamic 2 3 5 254 6.8656 4.0783
Dynamic 2 6 1 220 3.8229 2.3029
Dynamic 2 6 2 240 3.3234 1.7797
Dynamic 2 6 3 216 3.7196 2.4253
Dynamic 2 6 4 236 4.0302 2.4148
Dynamic 2 6 5 202 6.4818 4.2341
Dynamic 2 9 1 187 8.7021 5.1886
Dynamic 2 9 2 218 3.6543 2.648
Dynamic 2 9 3 219 3.0856 1.9384
Dynamic 2 9 4 192 4.0967 2.7156

188 Appendix A. Appendix

Dynamic 2 9 5 182 4.8014 3.192
Dynamic 2 12 1 147 5.7167 3.9949
Dynamic 2 12 2 217 3.5055 2.088
Dynamic 2 12 3 190 4.3192 2.9212
Dynamic 2 12 4 141 6.5541 4.8809
Dynamic 2 12 5 145 7.4768 5.6406
Dynamic 2 15 1 162 6.9888 4.9795
Dynamic 2 15 2 131 7.7566 5.9133
Dynamic 2 15 3 141 6.5402 4.6183
Dynamic 2 15 4 140 5.4643 3.84
Dynamic 2 15 5 154 5.0757 3.3959
Dynamic 2 18 1 131 7.7609 5.7209
Dynamic 2 18 2 138 8.787 6.7274
Dynamic 2 18 3 166 6.2561 4.3573
Dynamic 2 18 4 158 6.6089 4.6829
Dynamic 2 18 5 162 6.5299 4.9828
Dynamic 4 3 1 353 3.1648 1.7492
Dynamic 4 3 2 353 3.461 1.8287
Dynamic 4 3 3 346 7.6009 4.0658
Dynamic 4 3 4 397 2.8386 1.5211
Dynamic 4 3 5 366 4.0947 2.5139
Dynamic 4 6 1 223 6.5006 3.9708
Dynamic 4 6 2 290 4.9301 2.7486
Dynamic 4 6 3 234 4.5627 2.639
Dynamic 4 6 4 307 3.3665 1.791
Dynamic 4 6 5 297 3.6597 1.9645
Dynamic 4 9 1 235 3.8032 2.3313
Dynamic 4 9 2 218 4.4488 2.7828
Dynamic 4 9 3 234 3.8031 2.5283
Dynamic 4 9 4 207 8.3933 5.5131
Dynamic 4 9 5 221 4.5517 2.741
Dynamic 4 12 1 168 7.2517 5.2125
Dynamic 4 12 2 169 6.0371 4.1327
Dynamic 4 12 3 206 4.8142 3.2701
Dynamic 4 12 4 197 5.6157 3.9471
Dynamic 4 12 5 198 4.2389 2.4252
Dynamic 4 15 1 161 7.2662 5.0893
Dynamic 4 15 2 214 4.2052 2.7379
Dynamic 4 15 3 158 6.4625 4.6703

A.1. Experiments 189

Dynamic 4 15 4 204 3.0548 1.9246
Dynamic 4 15 5 203 3.9913 2.7617
Dynamic 4 18 1 190 5.6361 3.9203
Dynamic 4 18 2 159 8.1929 5.6241
Dynamic 4 18 3 174 6.6709 4.8577
Dynamic 4 18 4 168 5.6486 3.8329
Dynamic 4 18 5 160 8.23 5.6198
Dynamic 8 3 1 543 3.3194 1.5955
Dynamic 8 3 2 650 2.8556 1.355
Dynamic 8 3 3 651 3.2479 1.4106
Dynamic 8 3 4 654 3.539 1.8392
Dynamic 8 3 5 587 3.6039 1.5619
Dynamic 8 6 1 329 6.0095 3.338
Dynamic 8 6 2 300 4.8254 2.6228
Dynamic 8 6 3 325 3.922 2.1412
Dynamic 8 6 4 305 5.5439 3.19
Dynamic 8 6 5 349 4.0689 2.1097
Dynamic 8 9 1 270 4.6685 2.8098
Dynamic 8 9 2 265 5.7623 3.5185
Dynamic 8 9 3 272 5.5823 3.1356
Dynamic 8 9 4 290 7.1664 4.3461
Dynamic 8 9 5 259 5.0481 3.1073
Dynamic 8 12 1 262 6.0432 3.662
Dynamic 8 12 2 256 4.4271 2.6151
Dynamic 8 12 3 260 4.8277 2.7761
Dynamic 8 12 4 333 5.0865 3.7378
Dynamic 8 12 5 281 5.5592 3.6246
Dynamic 8 15 1 212 7.0426 4.7266
Dynamic 8 15 2 207 5.4313 3.5507
Dynamic 8 15 3 218 5.1944 3.3979
Dynamic 8 15 4 298 4.5792 2.8771
Dynamic 8 15 5 322 4.1204 2.3509
Dynamic 8 18 1 339 3.6715 2.0889
Dynamic 8 18 2 268 4.3129 3.0193
Dynamic 8 18 3 202 6.2562 4.0151
Dynamic 8 18 4 294 3.6875 2.3454
Dynamic 8 18 5 199 7.7452 5.3775
Dynamic 16 3 1 716 5.3526 2.5045
Dynamic 16 3 2 713 3.7008 1.7237

190 Appendix A. Appendix

Dynamic 16 3 3 762 3.3718 1.5817
Dynamic 16 3 4 767 7.9657 3.9991
Dynamic 16 3 5 698 4.3661 2.2198
Dynamic 16 6 1 480 3.7289 1.8509
Dynamic 16 6 2 492 3.6333 2.0474
Dynamic 16 6 3 471 4.359 2.0679
Dynamic 16 6 4 497 4.2715 1.9901
Dynamic 16 6 5 482 2.4973 1.0905
Dynamic 16 9 1 378 5.1791 2.7059
Dynamic 16 9 2 384 4.1032 2.2125
Dynamic 16 9 3 412 3.0125 1.4937
Dynamic 16 9 4 411 5.2032 2.915
Dynamic 16 9 5 470 3.0376 1.6194
Dynamic 16 12 1 357 3.697 1.8876
Dynamic 16 12 2 330 4.8192 2.7307
Dynamic 16 12 3 338 4.7137 2.5201
Dynamic 16 12 4 318 6.7475 3.7536
Dynamic 16 12 5 371 3.8989 2.2069
Dynamic 16 15 1 307 5.2742 3.2521
Dynamic 16 15 2 294 4.1432 2.4718
Dynamic 16 15 3 285 5.2103 3.1315
Dynamic 16 15 4 375 3.4584 2.0399
Dynamic 16 15 5 312 4.1722 2.537
Dynamic 16 18 1 316 6.5399 4.1752
Dynamic 16 18 2 303 5.6251 3.6299
Dynamic 16 18 3 314 5.2818 3.0774
Dynamic 16 18 4 344 3.716 1.9829
Dynamic 16 18 5 282 6.6714 3.9839
Dynamic 32 3 1 1317 3.7743 1.7392
Dynamic 32 3 2 1217 2.6378 1.2637
Dynamic 32 3 3 1668 2.5961 1.0389
Dynamic 32 3 4 1580 2.8668 1.0756
Dynamic 32 3 5 1305 2.5423 0.9634
Dynamic 32 6 1 695 4.2583 2.1384
Dynamic 32 6 2 673 3.7155 1.9117
Dynamic 32 6 3 720 4.4338 2.2206
Dynamic 32 6 4 747 3.154 1.4399
Dynamic 32 6 5 758 3.148 1.4753
Dynamic 32 9 1 551 4.171 2.0818

A.1. Experiments 191

Dynamic 32 9 2 535 3.6446 2.0685
Dynamic 32 9 3 554 3.2735 1.6075
Dynamic 32 9 4 715 3.3176 1.5115
Dynamic 32 9 5 1330 3.1817 1.2362
Dynamic 32 12 1 516 5.4717 3.0493
Dynamic 32 12 2 595 2.9006 1.4265
Dynamic 32 12 3 587 3.2492 1.8979
Dynamic 32 12 4 599 3.4515 1.8803
Dynamic 32 12 5 698 3.1669 1.5065
Dynamic 32 15 1 703 4.4271 2.2447
Dynamic 32 15 2 466 3.9672 2.2635
Dynamic 32 15 3 456 6.2828 3.0236
Dynamic 32 15 4 466 4.1221 2.2356
Dynamic 32 15 5 495 4.3589 2.2123
Dynamic 32 18 1 461 4.5096 2.6849
Dynamic 32 18 2 470 4.6003 2.3945
Dynamic 32 18 3 646 3.9727 2.1761
Dynamic 32 18 4 698 3.7924 1.9711
Dynamic 32 18 5 458 5.6844 3.5126
Dynamic 64 3 1 2193 2.6271 1.2388
Dynamic 64 3 2 2281 2.5051 0.9255
Dynamic 64 3 3 2137 2.521 0.8819
Dynamic 64 3 4 2277 2.6624 1.1105
Dynamic 64 3 5 2309 4.8693 2.961
Dynamic 64 6 1 1308 2.917 1.2432
Dynamic 64 6 2 1287 4.7068 2.3597
Dynamic 64 6 3 1359 2.7858 1.158
Dynamic 64 6 4 1339 2.9118 1.1467
Dynamic 64 6 5 1226 5.7061 2.447
Dynamic 64 9 1 971 3.6544 1.6967
Dynamic 64 9 2 874 3.6467 1.5703
Dynamic 64 9 3 933 3.8798 1.6338
Dynamic 64 9 4 974 3.0806 1.41
Dynamic 64 9 5 1412 2.8549 1.1485
Dynamic 64 12 1 864 3.889 1.7374
Dynamic 64 12 2 817 3.0241 1.3304
Dynamic 64 12 3 828 3.076 1.4101
Dynamic 64 12 4 927 3.1562 1.9237
Dynamic 64 12 5 911 3.5089 1.4835

192 Appendix A. Appendix

Dynamic 64 15 1 764 3.7229 1.8406
Dynamic 64 15 2 765 3.9189 1.9534
Dynamic 64 15 3 890 3.1664 1.5445
Dynamic 64 15 4 866 3.683 1.6753
Dynamic 64 15 5 782 3.1885 1.4075
Dynamic 64 18 1 820 3.5145 1.6504
Dynamic 64 18 2 755 4.2954 2.1722
Dynamic 64 18 3 1139 3.1404 1.3262
Dynamic 64 18 4 852 3.4751 1.4729
Dynamic 64 18 5 823 4.0588 2.0601
Dynamic 128 3 1 4518 2.4054 1.0055
Dynamic 128 3 2 5273 2.2125 0.8482
Dynamic 128 3 3 4414 3.0125 1.3061
Dynamic 128 3 4 4522 2.5708 0.946
Dynamic 128 3 5 4688 2.2662 0.7686
Dynamic 128 6 1 2548 2.4461 0.8968
Dynamic 128 6 2 2476 3.7591 1.5915
Dynamic 128 6 3 2368 3.2665 1.2241
Dynamic 128 6 4 2413 3.0497 1.261
Dynamic 128 6 5 2448 3.3333 1.3128
Dynamic 128 9 1 1695 3.8697 1.5437
Dynamic 128 9 2 1756 3.5007 1.2812
Dynamic 128 9 3 1705 3.6135 1.3317
Dynamic 128 9 4 1903 2.8351 1.0668
Dynamic 128 9 5 1667 3.7691 1.3978
Dynamic 128 12 1 1554 3.4445 1.2444
Dynamic 128 12 2 1584 3.0211 1.1198
Dynamic 128 12 3 1686 2.7101 0.9627
Dynamic 128 12 4 1735 2.825 1.1093
Dynamic 128 12 5 1493 3.6365 1.3311
Dynamic 128 15 1 1543 2.5713 0.9092
Dynamic 128 15 2 1658 3.7464 1.3969
Dynamic 128 15 3 1522 2.7512 0.9978
Dynamic 128 15 4 1523 3.274 1.3418
Dynamic 128 15 5 1461 3.0235 1.1913
Dynamic 128 18 1 1398 3.033 1.2104
Dynamic 128 18 2 1621 2.8473 1.056
Dynamic 128 18 3 1542 3.0466 1.3075
Dynamic 128 18 4 1572 2.8697 0.9749

A.1. Experiments 193

Dynamic 128 18 5 1419 3.6545 1.3801

Table A.1: This took a while to run.

A.1.2 Experiment 2

Evaluation is the trial number at which the returned solution was found.
I chose to leave out runtimes, since they were only good for measuring HRM

update times, when applicable. The total time taken to do HRM updates was
µ = 10.45 seconds (σ = 1.08, n = 50) across all applicable runs.

Run Optimizer Strategy Best Violation Evaluation
1 LHS None 34301.8547 0.0 140
1 MADS Historical 80805.2973 0.0 925
1 MADS Penalty 132253.2771 9.7082 936
1 SRBF Historical 44966.4879 0.0 874
1 SRBF Penalty 7005.6023 7.3993 935
2 LHS None 34563.6731 0.0 87
2 MADS Historical 57958.4793 0.0 924
2 MADS Penalty 105898.8038 4.392 945
2 SRBF Historical 46446.167 0.0 939
2 SRBF Penalty 6547.7654 8.4304 803
3 LHS None 46560.3052 0.0 158
3 MADS Historical 75842.7342 0.0 786
3 MADS Penalty 112668.0277 5.6555 952
3 SRBF Historical 64663.1835 0.0 873
3 SRBF Penalty 73757.1302 1.8947 988
4 LHS None 12853.1212 0.0 83
4 MADS Historical 68919.2857 0.0 570
4 MADS Penalty 69847.1394 10.1338 988
4 SRBF Historical 21170.9085 0.0 873
4 SRBF Penalty 106770.2268 6.1178 984
5 LHS None 32949.0307 0.0 133
5 MADS Historical 80795.7111 0.0 928
5 MADS Penalty 117729.6765 6.6049 953
5 SRBF Historical 36062.8096 0.0 879
5 SRBF Penalty 96437.1755 5.5442 993
6 LHS None 36385.1083 0.0 70
6 MADS Historical 52199.8693 0.0 793
6 MADS Penalty 136827.8404 9.0325 985

194 Appendix A. Appendix

6 SRBF Historical 47570.7726 0.0 938
6 SRBF Penalty 11533.9982 7.3904 401
7 LHS None 49245.9613 0.0 123
7 MADS Historical 69577.5874 0.0 985
7 MADS Penalty 120340.5955 6.7449 936
7 SRBF Historical 55554.8337 0.0 872
7 SRBF Penalty 7846.5133 6.4888 803
8 LHS None 36947.5992 0.0 147
8 MADS Historical 69184.8043 0.0 451
8 MADS Penalty 125828.6315 7.3619 983
8 SRBF Historical 66019.6245 0.0 985
8 SRBF Penalty 111529.1367 6.0758 993
9 LHS None 38540.1428 0.0 109
9 MADS Historical 68946.5551 0.0 992
9 MADS Penalty 86499.9037 15.3869 997
9 SRBF Historical 51200.8841 0.0 937
9 SRBF Penalty 99413.8581 5.8198 995
10 LHS None 29634.5761 0.0 117
10 MADS Historical 74379.6416 0.0 722
10 MADS Penalty 103675.6701 4.7309 891
10 SRBF Historical 50676.7498 0.0 541
10 SRBF Penalty 108515.5233 5.7326 981
11 LHS None 21488.1797 0.0 81
11 MADS Historical 68855.0237 0.0 568
11 MADS Penalty 110887.4738 5.4338 946
11 SRBF Historical 30526.991 0.0 940
11 SRBF Penalty 9786.238 9.5745 468
12 LHS None 36896.5486 0.0 80
12 MADS Historical 52365.029 0.0 791
12 MADS Penalty 119855.5191 7.4233 943
12 SRBF Historical 51189.8678 0.0 944
12 SRBF Penalty 8668.8394 6.8279 869
13 LHS None 35873.31 0.0 129
13 MADS Historical 70162.6388 0.0 513
13 MADS Penalty 136680.3863 8.9862 951
13 SRBF Historical 54051.6961 0.0 943
13 SRBF Penalty 6945.1937 7.8286 869
14 LHS None 32387.8566 0.0 102
14 MADS Historical 68869.789 0.0 853

A.1. Experiments 195

14 MADS Penalty 97541.4108 8.6461 869
14 SRBF Historical 38285.6849 0.0 967
14 SRBF Penalty 91870.2868 6.2955 988
15 LHS None 28883.9287 0.0 115
15 MADS Historical 69194.3829 0.0 992
15 MADS Penalty 56477.8487 3.2242 982
15 SRBF Historical 32160.3087 0.0 942
15 SRBF Penalty 100591.9858 5.1904 996
16 LHS None 33913.6169 0.0 149
16 MADS Historical 80804.8841 0.0 921
16 MADS Penalty 136945.8335 9.0695 967
16 SRBF Historical 61935.1659 0.0 873
16 SRBF Penalty 7322.4935 10.6574 869
17 LHS None 40085.0558 0.0 115
17 MADS Historical 62260.5604 0.0 454
17 MADS Penalty 110147.7006 4.9412 953
17 SRBF Historical 59793.5689 0.0 942
17 SRBF Penalty 5698.9814 7.8336 334
18 LHS None 16601.0594 0.0 98
18 MADS Historical 68943.3086 0.0 786
18 MADS Penalty 139225.6286 9.1215 996
18 SRBF Historical 31749.3688 0.0 938
18 SRBF Penalty 7667.0751 8.2171 935
19 LHS None 38997.2375 0.0 159
19 MADS Historical 80955.7665 0.0 929
19 MADS Penalty 107042.7133 4.5413 956
19 SRBF Historical 70471.8534 0.0 937
19 SRBF Penalty 8009.6676 8.652 401
20 LHS None 42264.272 0.0 124
20 MADS Historical 69551.6104 0.0 783
20 MADS Penalty 103043.0219 4.6911 954
20 SRBF Historical 56674.4179 0.0 807
20 SRBF Penalty 5747.2821 6.4524 869
21 LHS None 32186.5934 0.0 102
21 MADS Historical 71284.2872 0.0 658
21 MADS Penalty 73740.824 12.9169 985
21 SRBF Historical 45058.3244 0.0 939
21 SRBF Penalty 6262.26 10.2482 869
22 LHS None 54295.9689 0.0 141

196 Appendix A. Appendix

22 MADS Historical 72072.2424 0.0 771
22 MADS Penalty 135134.1865 9.3592 1000
22 SRBF Historical 64320.0823 0.0 809
22 SRBF Penalty 9450.5968 8.4324 869
23 LHS None 35979.3059 0.0 113
23 MADS Historical 68933.6504 0.0 772
23 MADS Penalty 85900.5562 6.1981 871
23 SRBF Historical 48998.8261 0.0 936
23 SRBF Penalty 106951.049 5.2297 976
24 LHS None 42804.2102 0.0 118
24 MADS Historical 80771.2513 0.0 799
24 MADS Penalty 66857.7876 8.6555 992
24 SRBF Historical 48582.7416 0.0 939
24 SRBF Penalty 6947.9086 11.9715 401
25 LHS None 43207.8914 0.0 140
25 MADS Historical 81091.3997 0.0 907
25 MADS Penalty 116088.7006 12.0755 963
25 SRBF Historical 58803.216 0.0 871
25 SRBF Penalty 6684.3203 8.7863 869

Table A.2: No Penalty hits as hard as a History lesson.

A.1.3 Experiment 3

Evaluation is the trial number at which the returned solution was found.
The shift vector utilized for eq. (5.2) was z = [36.41, 29.32, -30.60, -35.67, 26.49,
64.54, -20.10, -35.89, -5.82, 45.26, 67.09, -10.16, 39.98, -18.15, -51.62, 15.10, -46.44,
52.15, -52.45, 13.99]
I chose to leave out runtimes, since there were only good for measuring the time
taken to estimate Shapley values, when applicable. The total time to estimate Shap-
ley values was µ = 19.2373 seconds (σ = 6.2861, n = 200) across all applicable runs.
Runs in which some SHAP values were overestimated are denoted by one or two
asterisks (*/**) under the Strategy column, denoting that dimension log(Split) + 1
or log(Split) + 2 was suboptimally split instead of dimension log(Split), respec-
tively.

Run Optimizer Strategy Split Best Evaluation
1 LHS None 1 104938.5174 37
1 MADS Best 2 8358.1619 1994
1 MADS Best 4 5607.293 1997

A.1. Experiments 197

1 MADS Best 8 8709.6542 1998
1 MADS Best 16 41486.3927 1390
1 MADS Average 2 8358.1619 1994
1 MADS Average 4 9062.6739 1998
1 MADS Average 8 24931.7641 2000
1 MADS Average 16 50850.0475 1754
1 MADS Worst 2 6505.6585 1998
1 MADS Worst 4 13350.6445 1999
1 MADS Worst 8 24864.4677 1267
1 MADS Worst 16 50535.1256 657
1 DIRECT Best 2 9735.7598 1929
1 DIRECT Best 4 10749.1504 1974
1 DIRECT Best 8 15529.879 1686
1 DIRECT Best 16 11853.7632 1607
1 DIRECT Average 2 10817.2496 989
1 DIRECT Average 4 9061.4397 1996
1 DIRECT Average 8 11797.9532 1753
1 DIRECT Average 16 20899.982 1558
1 DIRECT Worst 2 10123.2826 1955
1 DIRECT Worst 4 13892.6043 502
1 DIRECT Worst 8 13965.2474 1442
1 DIRECT Worst 16 14768.9843 636
1 MADS None 1 50535.1256 657
1 DIRECT None 1 14768.9843 636
2 LHS None 1 72146.4728 27
2 MADS Best 2 9285.7043 1998
2 MADS Best 4 21383.6984 1999
2 MADS Best 8 38020.3518 777
2 MADS Best 16 50342.772 1756
2 MADS Average 2 5398.1747 1994
2 MADS Average 4 4320.1206 2000
2 MADS Average 8 33582.6285 2000
2 MADS Average 16 29489.2217 1389
2 MADS Worst 2 9285.7043 1998
2 MADS Worst 4 21365.6464 1022
2 MADS Worst 8 38212.1022 1756
2 MADS Worst 16 53419.8123 1756
2 DIRECT Best 2 9735.7598 1929
2 DIRECT Best 4 10749.1504 1974

198 Appendix A. Appendix

2 DIRECT Best 8 15529.879 1686
2 DIRECT Best 16 11853.7632 1607
2 DIRECT Average 2 10817.2496 989
2 DIRECT Average 4 9061.4397 1996
2 DIRECT Average 8 11797.9532 1753
2 DIRECT Average 16 20899.982 1558
2 DIRECT Worst 2 10123.2826 1955
2 DIRECT Worst 4 13892.6043 502
2 DIRECT Worst 8 13965.2474 1442
2 DIRECT Worst 16 14768.9843 636
2 MADS None 1 53419.8123 1756
2 DIRECT None 1 14768.9843 636
3 LHS None 1 58730.4268 37
3 MADS Best 2 3451.6678 2000
3 MADS Best 4 10599.5119 1999
3 MADS Best 8 20582.3992 1756
3 MADS Best 16 31958.9542 1755
3 MADS Average 2 1322.7695 1999
3 MADS Average 4 7363.9228 2000
3 MADS Average 8 9079.2299 2000
3 MADS Average 16 23501.2033 2000
3 MADS Worst 2 3451.6678 1021
3 MADS Worst 4 10599.5119 1510
3 MADS Worst 8 20582.3992 1756
3 MADS Worst 16 31958.9542 901
3 DIRECT Best 2 9735.7598 1929
3 DIRECT Best 4 10749.1504 1974
3 DIRECT Best 8 15529.879 1686
3 DIRECT Best 16 11853.7632 1607
3 DIRECT Average 2 10817.2496 989
3 DIRECT Average 4 9061.4397 1996
3 DIRECT Average 8 11797.9532 1753
3 DIRECT Average 16 20899.982 1558
3 DIRECT Worst 2 10123.2826 1955
3 DIRECT Worst 4 13892.6043 502
3 DIRECT Worst 8 13965.2474 1442
3 DIRECT Worst 16 14768.9843 636
3 MADS None 1 31958.9542 901
3 DIRECT None 1 14768.9843 636

A.1. Experiments 199

4 LHS None 1 65800.0464 29
4 MADS Best 2 6973.5733 1998
4 MADS Best 4 25467.0845 1999
4 MADS Best 8 39219.6136 1512
4 MADS Best 16 48566.3145 1512
4 MADS Average 2 2628.0379 1997
4 MADS Average 4 4849.398 1995
4 MADS Average 8 29515.1324 1997
4 MADS Average 16 47399.8484 2000
4 MADS Worst 2 14234.5443 1021
4 MADS Worst 4 25467.0845 1999
4 MADS Worst 8 39219.6136 777
4 MADS Worst 16 48566.3145 410
4 DIRECT Best 2 9735.7598 1929
4 DIRECT Best 4 10749.1504 1974
4 DIRECT Best 8 15529.879 1686
4 DIRECT Best 16 11853.7632 1607
4 DIRECT Average 2 10817.2496 989
4 DIRECT Average 4 9061.4397 1996
4 DIRECT Average 8 11797.9532 1753
4 DIRECT Average 16 20899.982 1558
4 DIRECT Worst 2 10123.2826 1955
4 DIRECT Worst 4 13892.6043 502
4 DIRECT Worst 8 13965.2474 1442
4 DIRECT Worst 16 14768.9843 636
4 MADS None 1 48566.3145 410
4 DIRECT None 1 14768.9843 636
5 LHS None 1 86890.3059 25
5 MADS Best 2 3812.6576 1998
5 MADS Best 4 12583.2944 2000
5 MADS Best 8 20310.1461 1999
5 MADS Best 16 30073.7201 1878
5 MADS Average 2 5817.5924 1997
5 MADS Average 4 5079.6804 1999
5 MADS Average 8 13256.1193 1753
5 MADS Average 16 30073.7201 1390
5 MADS Worst 2 5817.5924 1018
5 MADS Worst 4 12502.6967 532
5 MADS Worst 8 20255.0181 1267

200 Appendix A. Appendix

5 MADS Worst 16 29837.1225 657
5 DIRECT Best 2 9735.7598 1929
5 DIRECT Best 4 10749.1504 1974
5 DIRECT Best 8 15529.879 1686
5 DIRECT Best 16 11853.7632 1607
5 DIRECT Average 2 10817.2496 989
5 DIRECT Average 4 9061.4397 1996
5 DIRECT Average 8 11797.9532 1753
5 DIRECT Average 16 20899.982 1558
5 DIRECT Worst 2 10123.2826 1955
5 DIRECT Worst 4 13892.6043 502
5 DIRECT Worst 8 13965.2474 1442
5 DIRECT Worst 16 14768.9843 636
5 MADS None 1 29837.1225 657
5 DIRECT None 1 14768.9843 636
6 LHS None 1 84983.1772 40
6 MADS Best 2 6119.6717 1998
6 MADS Best 4 14531.5866 2000
6 MADS Best 8 23975.181 1756
6 MADS Best 16 38699.2749 1634
6 MADS Average 2 7795.1452 1020
6 MADS Average 4 7946.4777 1022
6 MADS Average 8 15136.9733 1999
6 MADS Average 16 38699.2749 1878
6 MADS Worst 2 7859.0932 1021
6 MADS Worst 4 14393.0325 532
6 MADS Worst 8 23920.2705 1267
6 MADS Worst 16 38699.2749 1634
6 DIRECT Best 2 9735.7598 1929
6 DIRECT Best 4 10749.1504 1974
6 DIRECT Best 8 15529.879 1686
6 DIRECT Best 16 11853.7632 1607
6 DIRECT Average 2 10817.2496 989
6 DIRECT Average 4 9061.4397 1996
6 DIRECT Average 8 11797.9532 1753
6 DIRECT Average 16 20899.982 1558
6 DIRECT Worst 2 10123.2826 1955
6 DIRECT Worst 4 13892.6043 502
6 DIRECT Worst 8 13965.2474 1442

A.1. Experiments 201

6 DIRECT Worst 16 14768.9843 636
6 MADS None 1 38699.2749 1634
6 DIRECT None 1 14768.9843 636
7 LHS None 1 128113.1448 28
7 MADS Best 2 12880.8902 1998
7 MADS Best 4 31068.2096 1510
7 MADS Best 8 53565.9208 776
7 MADS Best* 16 69629.6459 1877
7 MADS Average 2 4586.4388 1994
7 MADS Average 4 14771.2898 2000
7 MADS Average 8 53565.9208 1266
7 MADS Average 16 47168.8829 656
7 MADS Worst 2 10962.8374 1993
7 MADS Worst 4 13454.1648 1019
7 MADS Worst 8 35917.7108 287
7 MADS Worst 16 14698.5798 656
7 DIRECT Best 2 9735.7598 1929
7 DIRECT Best 4 10749.1504 1974
7 DIRECT Best 8 15529.879 1686
7 DIRECT Best 16 14408.4017 1607
7 DIRECT Average 2 10817.2496 989
7 DIRECT Average 4 9061.4397 1996
7 DIRECT Average 8 11797.9532 1753
7 DIRECT Average 16 20899.982 1558
7 DIRECT Worst 2 10123.2826 1955
7 DIRECT Worst 4 13892.6043 502
7 DIRECT Worst 8 13965.2474 1442
7 DIRECT Worst 16 14768.9843 636
7 MADS None 1 14698.5798 656
7 DIRECT None 1 14768.9843 636
8 LHS None 1 114019.0481 7
8 MADS Best 2 11226.5238 1021
8 MADS Best 4 16790.9924 1022
8 MADS Best** 8 35710.1382 1511
8 MADS Best* 16 22803.9641 1267
8 MADS Average 2 5048.8643 2000
8 MADS Average 4 20627.8337 1998
8 MADS Average 8 40420.98 1756
8 MADS Average 16 58416.4031 1878

202 Appendix A. Appendix

8 MADS Worst 2 11226.5238 1021
8 MADS Worst 4 22003.091 1511
8 MADS Worst 8 41498.8584 1756
8 MADS Worst 16 59599.4774 902
8 DIRECT Best 2 9735.7598 1929
8 DIRECT Best 4 10749.1504 1974
8 DIRECT Best 8 15072.2732 1510
8 DIRECT Best 16 14408.4017 1607
8 DIRECT Average 2 10817.2496 989
8 DIRECT Average 4 9061.4397 1996
8 DIRECT Average 8 11797.9532 1753
8 DIRECT Average 16 20899.982 1558
8 DIRECT Worst 2 10123.2826 1955
8 DIRECT Worst 4 13892.6043 502
8 DIRECT Worst 8 13965.2474 1442
8 DIRECT Worst 16 14768.9843 636
8 MADS None 1 59599.4774 902
8 DIRECT None 1 14768.9843 636
9 LHS None 1 128827.0857 28
9 MADS Best 2 12367.9602 1020
9 MADS Best 4 16077.5224 1997
9 MADS Best 8 38018.0494 1754
9 MADS Best* 16 51199.0009 1024
9 MADS Average 2 8804.1045 1999
9 MADS Average 4 17078.766 1021
9 MADS Average 8 28625.5359 1019
9 MADS Average 16 51199.0009 902
9 MADS Worst 2 13963.3686 2000
9 MADS Worst 4 18361.1552 1511
9 MADS Worst 8 43365.432 1511
9 MADS Worst 16 51199.0009 1268
9 DIRECT Best 2 9735.7598 1929
9 DIRECT Best 4 10749.1504 1974
9 DIRECT Best 8 15529.879 1686
9 DIRECT Best 16 14408.4017 1607
9 DIRECT Average 2 10817.2496 989
9 DIRECT Average 4 9061.4397 1996
9 DIRECT Average 8 11797.9532 1753
9 DIRECT Average 16 20899.982 1558

A.1. Experiments 203

9 DIRECT Worst 2 10123.2826 1955
9 DIRECT Worst 4 13892.6043 502
9 DIRECT Worst 8 13965.2474 1442
9 DIRECT Worst 16 14768.9843 636
9 MADS None 1 51199.0009 1268
9 DIRECT None 1 14768.9843 636
10 LHS None 1 98451.6178 37
10 MADS Best 2 2027.6514 1999
10 MADS Best 4 18822.1714 2000
10 MADS Best 8 50258.2507 1266
10 MADS Best 16 66483.7929 1389
10 MADS Average 2 6111.4945 1999
10 MADS Average 4 13104.1444 1999
10 MADS Average 8 21958.1719 1753
10 MADS Average 16 32384.7059 1633
10 MADS Worst 2 5026.9945 1996
10 MADS Worst 4 13821.7428 1021
10 MADS Worst 8 12453.3345 1512
10 MADS Worst 16 21570.6742 779
10 DIRECT Best 2 9735.7598 1929
10 DIRECT Best 4 10749.1504 1974
10 DIRECT Best 8 15529.879 1686
10 DIRECT Best 16 11853.7632 1607
10 DIRECT Average 2 10817.2496 989
10 DIRECT Average 4 9061.4397 1996
10 DIRECT Average 8 11797.9532 1753
10 DIRECT Average 16 20899.982 1558
10 DIRECT Worst 2 10123.2826 1955
10 DIRECT Worst 4 13892.6043 502
10 DIRECT Worst 8 13965.2474 1442
10 DIRECT Worst 16 14768.9843 636
10 MADS None 1 21570.6742 779
10 DIRECT None 1 14768.9843 636
11 LHS None 1 77020.0895 19
11 MADS Best 2 4049.6688 2000
11 MADS Best 4 27037.931 1999
11 MADS Best 8 22182.9182 1265
11 MADS Best 16 35820.8084 1268
11 MADS Average 2 14385.2613 1998

204 Appendix A. Appendix

11 MADS Average 4 13752.6031 2000
11 MADS Average 8 28733.0937 1998
11 MADS Average 16 35820.8084 1024
11 MADS Worst 2 3091.5434 2000
11 MADS Worst 4 12487.4675 1021
11 MADS Worst 8 22415.8226 1754
11 MADS Worst 16 35820.8084 902
11 DIRECT Best 2 9735.7598 1929
11 DIRECT Best 4 10749.1504 1974
11 DIRECT Best 8 15529.879 1686
11 DIRECT Best 16 11853.7632 1607
11 DIRECT Average 2 10817.2496 989
11 DIRECT Average 4 9061.4397 1996
11 DIRECT Average 8 11797.9532 1753
11 DIRECT Average 16 20899.982 1558
11 DIRECT Worst 2 10123.2826 1955
11 DIRECT Worst 4 13892.6043 502
11 DIRECT Worst 8 13965.2474 1442
11 DIRECT Worst 16 14768.9843 636
11 MADS None 1 35820.8084 902
11 DIRECT None 1 14768.9843 636
12 LHS None 1 98735.4481 8
12 MADS Best 2 12560.4999 1020
12 MADS Best 4 30925.1091 2000
12 MADS Best 8 30276.4304 1755
12 MADS Best* 16 59206.85 780
12 MADS Average 2 12560.4999 1999
12 MADS Average 4 18357.3289 1997
12 MADS Average 8 35096.1112 2000
12 MADS Average 16 64202.4352 780
12 MADS Worst 2 3135.497 2000
12 MADS Worst 4 17278.8681 2000
12 MADS Worst 8 20259.2705 777
12 MADS Worst 16 39841.5436 534
12 DIRECT Best 2 9735.7598 1929
12 DIRECT Best 4 10749.1504 1974
12 DIRECT Best 8 15529.879 1686
12 DIRECT Best 16 14408.4017 1607
12 DIRECT Average 2 10817.2496 989

A.1. Experiments 205

12 DIRECT Average 4 9061.4397 1996
12 DIRECT Average 8 11797.9532 1753
12 DIRECT Average 16 20899.982 1558
12 DIRECT Worst 2 10123.2826 1955
12 DIRECT Worst 4 13892.6043 502
12 DIRECT Worst 8 13965.2474 1442
12 DIRECT Worst 16 14768.9843 636
12 MADS None 1 39841.5436 534
12 DIRECT None 1 14768.9843 636
13 LHS None 1 82846.8922 25
13 MADS Best 2 3897.5187 2000
13 MADS Best 4 8882.9256 1999
13 MADS Best 8 22881.6055 1755
13 MADS Best 16 34937.1119 1756
13 MADS Average 2 10435.8045 2000
13 MADS Average 4 22892.3467 2000
13 MADS Average 8 35831.7571 2000
13 MADS Average 16 44837.9881 1999
13 MADS Worst 2 10435.8045 1021
13 MADS Worst 4 23966.9375 1511
13 MADS Worst 8 35831.7571 1756
13 MADS Worst 16 29908.4202 1268
13 DIRECT Best 2 9735.7598 1929
13 DIRECT Best 4 10749.1504 1974
13 DIRECT Best 8 15529.879 1686
13 DIRECT Best 16 11853.7632 1607
13 DIRECT Average 2 10817.2496 989
13 DIRECT Average 4 9061.4397 1996
13 DIRECT Average 8 11797.9532 1753
13 DIRECT Average 16 20899.982 1558
13 DIRECT Worst 2 10123.2826 1955
13 DIRECT Worst 4 13892.6043 502
13 DIRECT Worst 8 13965.2474 1442
13 DIRECT Worst 16 14768.9843 636
13 MADS None 1 29908.4202 1268
13 DIRECT None 1 14768.9843 636
14 LHS None 1 52035.7585 39
14 MADS Best 2 3423.1298 1998
14 MADS Best 4 16719.1401 1508

206 Appendix A. Appendix

14 MADS Best 8 19270.6778 1511
14 MADS Best* 16 12847.1789 1268
14 MADS Average 2 5835.8203 1999
14 MADS Average 4 12736.8877 1999
14 MADS Average 8 9912.9516 2000
14 MADS Average 16 12846.6039 1756
14 MADS Worst 2 4159.4841 1995
14 MADS Worst 4 6810.7923 1022
14 MADS Worst 8 9912.9516 1511
14 MADS Worst 16 12846.6039 779
14 DIRECT Best 2 9735.7598 1929
14 DIRECT Best 4 10749.1504 1974
14 DIRECT Best 8 15529.879 1686
14 DIRECT Best 16 14408.4017 1607
14 DIRECT Average 2 10817.2496 989
14 DIRECT Average 4 9061.4397 1996
14 DIRECT Average 8 11797.9532 1753
14 DIRECT Average 16 20899.982 1558
14 DIRECT Worst 2 10123.2826 1955
14 DIRECT Worst 4 13892.6043 502
14 DIRECT Worst 8 13965.2474 1442
14 DIRECT Worst 16 14768.9843 636
14 MADS None 1 12846.6039 779
14 DIRECT None 1 14768.9843 636
15 LHS None 1 96241.8448 25
15 MADS Best 2 14221.5542 1020
15 MADS Best 4 32690.3856 531
15 MADS Best 8 12406.8857 1754
15 MADS Best 16 35127.3139 1756
15 MADS Average 2 5615.08 2000
15 MADS Average 4 32690.3856 2000
15 MADS Average 8 43318.7781 1756
15 MADS Average 16 58143.2423 778
15 MADS Worst 2 8411.4292 2000
15 MADS Worst 4 23572.4047 1996
15 MADS Worst 8 24564.8465 1997
15 MADS Worst 16 58143.2423 1389
15 DIRECT Best 2 9735.7598 1929
15 DIRECT Best 4 10749.1504 1974

A.1. Experiments 207

15 DIRECT Best 8 15529.879 1686
15 DIRECT Best 16 11853.7632 1607
15 DIRECT Average 2 10817.2496 989
15 DIRECT Average 4 9061.4397 1996
15 DIRECT Average 8 11797.9532 1753
15 DIRECT Average 16 20899.982 1558
15 DIRECT Worst 2 10123.2826 1955
15 DIRECT Worst 4 13892.6043 502
15 DIRECT Worst 8 13965.2474 1442
15 DIRECT Worst 16 14768.9843 636
15 MADS None 1 58143.2423 1389
15 DIRECT None 1 14768.9843 636
16 LHS None 1 76142.4611 14
16 MADS Best 2 3778.9461 2000
16 MADS Best 4 16821.7138 1999
16 MADS Best 8 30590.112 1509
16 MADS Best* 16 40070.7244 1755
16 MADS Average 2 2692.4158 1998
16 MADS Average 4 4994.0721 1999
16 MADS Average 8 17202.1027 1756
16 MADS Average 16 40070.7244 1023
16 MADS Worst 2 2979.2549 1996
16 MADS Worst 4 18947.1022 531
16 MADS Worst 8 30590.112 1264
16 MADS Worst 16 40070.7244 1267
16 DIRECT Best 2 9735.7598 1929
16 DIRECT Best 4 10749.1504 1974
16 DIRECT Best 8 15529.879 1686
16 DIRECT Best 16 14408.4017 1607
16 DIRECT Average 2 10817.2496 989
16 DIRECT Average 4 9061.4397 1996
16 DIRECT Average 8 11797.9532 1753
16 DIRECT Average 16 20899.982 1558
16 DIRECT Worst 2 10123.2826 1955
16 DIRECT Worst 4 13892.6043 502
16 DIRECT Worst 8 13965.2474 1442
16 DIRECT Worst 16 14768.9843 636
16 MADS None 1 40070.7244 1267
16 DIRECT None 1 14768.9843 636

208 Appendix A. Appendix

17 LHS None 1 68990.1922 21
17 MADS Best 2 2462.111 1999
17 MADS Best 4 12359.3161 1021
17 MADS Best 8 18763.9307 1018
17 MADS Best* 16 31441.7229 901
17 MADS Average 2 5943.3015 2000
17 MADS Average 4 12359.3161 2000
17 MADS Average 8 18763.9307 1753
17 MADS Average 16 31441.7229 1877
17 MADS Worst 2 5943.3015 2000
17 MADS Worst 4 12359.3161 1021
17 MADS Worst 8 18763.9307 1508
17 MADS Worst 16 31072.0056 780
17 DIRECT Best 2 9735.7598 1929
17 DIRECT Best 4 10749.1504 1974
17 DIRECT Best 8 15529.879 1686
17 DIRECT Best 16 14408.4017 1607
17 DIRECT Average 2 10817.2496 989
17 DIRECT Average 4 9061.4397 1996
17 DIRECT Average 8 11797.9532 1753
17 DIRECT Average 16 20899.982 1558
17 DIRECT Worst 2 10123.2826 1955
17 DIRECT Worst 4 13892.6043 502
17 DIRECT Worst 8 13965.2474 1442
17 DIRECT Worst 16 14768.9843 636
17 MADS None 1 31072.0056 780
17 DIRECT None 1 14768.9843 636
18 LHS None 1 125081.2018 20
18 MADS Best 2 3901.9693 1999
18 MADS Best 4 9873.3994 1506
18 MADS Best 8 23255.7223 1022
18 MADS Best** 16 63598.4628 2000
18 MADS Average 2 4912.4692 1997
18 MADS Average 4 12776.7253 1999
18 MADS Average 8 48705.0571 1756
18 MADS Average 16 63598.4628 1878
18 MADS Worst 2 9296.5736 1999
18 MADS Worst 4 20653.2876 1507
18 MADS Worst 8 37387.5861 1756

A.1. Experiments 209

18 MADS Worst 16 72468.8334 779
18 DIRECT Best 2 9735.7598 1929
18 DIRECT Best 4 10749.1504 1974
18 DIRECT Best 8 15529.879 1686
18 DIRECT Best 16 20664.3989 1756
18 DIRECT Average 2 10817.2496 989
18 DIRECT Average 4 9061.4397 1996
18 DIRECT Average 8 11797.9532 1753
18 DIRECT Average 16 20899.982 1558
18 DIRECT Worst 2 10123.2826 1955
18 DIRECT Worst 4 13892.6043 502
18 DIRECT Worst 8 13965.2474 1442
18 DIRECT Worst 16 14768.9843 636
18 MADS None 1 72468.8334 779
18 DIRECT None 1 14768.9843 636
19 LHS None 1 66149.0056 15
19 MADS Best 2 6501.52 1998
19 MADS Best 4 13876.1777 1511
19 MADS Best 8 33647.8449 1267
19 MADS Best* 16 45348.0696 780
19 MADS Average 2 2137.663 1991
19 MADS Average 4 7693.0882 2000
19 MADS Average 8 33036.5408 1020
19 MADS Average 16 44124.7653 780
19 MADS Worst 2 3819.6181 1999
19 MADS Worst 4 13500.2916 1018
19 MADS Worst 8 25795.3438 532
19 MADS Worst 16 44124.7653 534
19 DIRECT Best 2 9735.7598 1929
19 DIRECT Best 4 10749.1504 1974
19 DIRECT Best 8 15529.879 1686
19 DIRECT Best 16 14408.4017 1607
19 DIRECT Average 2 10817.2496 989
19 DIRECT Average 4 9061.4397 1996
19 DIRECT Average 8 11797.9532 1753
19 DIRECT Average 16 20899.982 1558
19 DIRECT Worst 2 10123.2826 1955
19 DIRECT Worst 4 13892.6043 502
19 DIRECT Worst 8 13965.2474 1442

210 Appendix A. Appendix

19 DIRECT Worst 16 14768.9843 636
19 MADS None 1 44124.7653 534
19 DIRECT None 1 14768.9843 636
20 LHS None 1 75793.7674 14
20 MADS Best 2 5704.5172 1997
20 MADS Best 4 23448.8777 1510
20 MADS Best 8 38606.2656 777
20 MADS Best* 16 50342.4926 656
20 MADS Average 2 4182.6282 1993
20 MADS Average 4 12300.7596 1998
20 MADS Average 8 31383.1818 1022
20 MADS Average 16 34419.5881 1994
20 MADS Worst 2 4165.0149 1996
20 MADS Worst 4 21505.4105 1511
20 MADS Worst 8 38606.2656 1512
20 MADS Worst 16 50342.4926 1756
20 DIRECT Best 2 9735.7598 1929
20 DIRECT Best 4 10749.1504 1974
20 DIRECT Best 8 15529.879 1686
20 DIRECT Best 16 14408.4017 1607
20 DIRECT Average 2 10817.2496 989
20 DIRECT Average 4 9061.4397 1996
20 DIRECT Average 8 11797.9532 1753
20 DIRECT Average 16 20899.982 1558
20 DIRECT Worst 2 10123.2826 1955
20 DIRECT Worst 4 13892.6043 502
20 DIRECT Worst 8 13965.2474 1442
20 DIRECT Worst 16 14768.9843 636
20 MADS None 1 50342.4926 1756
20 DIRECT None 1 14768.9843 636
21 LHS None 1 112143.6876 34
21 MADS Best 2 4891.9085 1997
21 MADS Best 4 22000.7344 1511
21 MADS Best 8 34341.1172 1512
21 MADS Best* 16 53920.5863 1998
21 MADS Average 2 11393.683 1999
21 MADS Average 4 12133.5762 1999
21 MADS Average 8 24925.1365 1754
21 MADS Average 16 51367.89 1876

A.1. Experiments 211

21 MADS Worst 2 2954.1201 1996
21 MADS Worst 4 20794.4235 1022
21 MADS Worst 8 34633.9393 1512
21 MADS Worst 16 51367.89 1876
21 DIRECT Best 2 9735.7598 1929
21 DIRECT Best 4 10749.1504 1974
21 DIRECT Best 8 15529.879 1686
21 DIRECT Best 16 14408.4017 1607
21 DIRECT Average 2 10817.2496 989
21 DIRECT Average 4 9061.4397 1996
21 DIRECT Average 8 11797.9532 1753
21 DIRECT Average 16 20899.982 1558
21 DIRECT Worst 2 10123.2826 1955
21 DIRECT Worst 4 13892.6043 502
21 DIRECT Worst 8 13965.2474 1442
21 DIRECT Worst 16 14768.9843 636
21 MADS None 1 51367.89 1876
21 DIRECT None 1 14768.9843 636
22 LHS None 1 67745.2463 38
22 MADS Best 2 10680.4214 2000
22 MADS Best 4 21208.6959 2000
22 MADS Best 8 32580.5738 1267
22 MADS Best* 16 44382.8266 1755
22 MADS Average 2 10680.4214 1021
22 MADS Average 4 11067.4429 1998
22 MADS Average 8 33312.1644 1756
22 MADS Average 16 44262.5686 780
22 MADS Worst 2 6501.1593 1999
22 MADS Worst 4 20664.8945 1021
22 MADS Worst 8 33957.7666 1511
22 MADS Worst 16 44262.5686 780
22 DIRECT Best 2 9735.7598 1929
22 DIRECT Best 4 10749.1504 1974
22 DIRECT Best 8 15529.879 1686
22 DIRECT Best 16 14408.4017 1607
22 DIRECT Average 2 10817.2496 989
22 DIRECT Average 4 9061.4397 1996
22 DIRECT Average 8 11797.9532 1753
22 DIRECT Average 16 20899.982 1558

212 Appendix A. Appendix

22 DIRECT Worst 2 10123.2826 1955
22 DIRECT Worst 4 13892.6043 502
22 DIRECT Worst 8 13965.2474 1442
22 DIRECT Worst 16 14768.9843 636
22 MADS None 1 44262.5686 780
22 DIRECT None 1 14768.9843 636
23 LHS None 1 64318.9423 36
23 MADS Best 2 3686.3102 2000
23 MADS Best 4 17569.5357 1507
23 MADS Best 8 30091.2277 1509
23 MADS Best* 16 38594.7822 1509
23 MADS Average 2 9648.74 1021
23 MADS Average 4 13246.219 1509
23 MADS Average 8 17716.9043 1022
23 MADS Average 16 38594.7822 1875
23 MADS Worst 2 10145.05 1999
23 MADS Worst 4 9539.8268 1022
23 MADS Worst 8 21470.3378 1022
23 MADS Worst 16 38594.7822 1509
23 DIRECT Best 2 9735.7598 1929
23 DIRECT Best 4 10749.1504 1974
23 DIRECT Best 8 15529.879 1686
23 DIRECT Best 16 14408.4017 1607
23 DIRECT Average 2 10817.2496 989
23 DIRECT Average 4 9061.4397 1996
23 DIRECT Average 8 11797.9532 1753
23 DIRECT Average 16 20899.982 1558
23 DIRECT Worst 2 10123.2826 1955
23 DIRECT Worst 4 13892.6043 502
23 DIRECT Worst 8 13965.2474 1442
23 DIRECT Worst 16 14768.9843 636
23 MADS None 1 38594.7822 1509
23 DIRECT None 1 14768.9843 636
24 LHS None 1 79397.5792 31
24 MADS Best 2 12028.1625 1999
24 MADS Best 4 24221.0147 1997
24 MADS Best 8 28217.9016 1756
24 MADS Best* 16 42056.4008 1756
24 MADS Average 2 12028.1625 1999

A.1. Experiments 213

24 MADS Average 4 22740.6981 1021
24 MADS Average 8 29958.4449 1020
24 MADS Average 16 42056.4008 1634
24 MADS Worst 2 9347.61 1999
24 MADS Worst 4 20943.3593 1022
24 MADS Worst 8 26270.6149 1511
24 MADS Worst 16 41362.2181 780
24 DIRECT Best 2 9735.7598 1929
24 DIRECT Best 4 10749.1504 1974
24 DIRECT Best 8 15529.879 1686
24 DIRECT Best 16 14408.4017 1607
24 DIRECT Average 2 10817.2496 989
24 DIRECT Average 4 9061.4397 1996
24 DIRECT Average 8 11797.9532 1753
24 DIRECT Average 16 20899.982 1558
24 DIRECT Worst 2 10123.2826 1955
24 DIRECT Worst 4 13892.6043 502
24 DIRECT Worst 8 13965.2474 1442
24 DIRECT Worst 16 14768.9843 636
24 MADS None 1 41362.2181 780
24 DIRECT None 1 14768.9843 636
25 LHS None 1 122591.8946 19
25 MADS Best 2 2146.6965 1998
25 MADS Best 4 14157.918 1022
25 MADS Best 8 20702.1772 1022
25 MADS Best* 16 20025.018 1755
25 MADS Average 2 2585.7674 1993
25 MADS Average 4 8479.2254 1995
25 MADS Average 8 20727.1273 1754
25 MADS Average 16 40258.4746 1877
25 MADS Worst 2 1955.4537 1984
25 MADS Worst 4 5372.4197 1020
25 MADS Worst 8 10568.0493 1510
25 MADS Worst 16 21365.7257 779
25 DIRECT Best 2 9735.7598 1929
25 DIRECT Best 4 10749.1504 1974
25 DIRECT Best 8 15529.879 1686
25 DIRECT Best 16 14408.4017 1607
25 DIRECT Average 2 10817.2496 989

214 Appendix A. Appendix

25 DIRECT Average 4 9061.4397 1996
25 DIRECT Average 8 11797.9532 1753
25 DIRECT Average 16 20899.982 1558
25 DIRECT Worst 2 10123.2826 1955
25 DIRECT Worst 4 13892.6043 502
25 DIRECT Worst 8 13965.2474 1442
25 DIRECT Worst 16 14768.9843 636
25 MADS None 1 21365.7257 779
25 DIRECT None 1 14768.9843 636

Table A.3: Sometimes, knowing whether an idea is good is kind of like a game.

	Front page
	English title page
	Summary
	Contents
	1 Introduction
	1.1 Project motives
	1.2 Proposed solution
	1.3 Project (de)limitations

	2 Background
	2.1 Apache Spark
	2.2 Optimization problems
	2.2.1 Problem types

	2.3 sBBO approaches
	2.3.1 Important caveats
	2.3.2 Overview and taxonomy
	2.3.3 Local/Direct methods
	2.3.4 Global/Direct methods
	2.3.5 Local/Model-based methods
	2.3.6 Global/Model-based methods

	2.4 Constraint handling in sBBO
	2.4.1 A taxonomy of constraints
	2.4.2 sBBO constraint handling methods

	2.5 Cooperative game theory and prediction models
	2.5.1 Shapley values
	2.5.2 SHAP values
	2.5.3 SHAP value estimation

	3 Technical contribution
	3.1 Library requirements and priorities
	3.2 Architectural outline
	3.2.1 Key decisions
	3.2.2 Main features

	3.3 At a first glance
	3.4 The basics
	3.4.1 Configuring BlackBoxOptimizers
	3.4.2 The optimization flow
	3.4.3 TrialHistory and vertical transfer
	3.4.4 The algorithmic suite
	3.4.5 The optimization wizard

	3.5 Generic general constraint handling
	3.5.1 Constraint declaration and Spark Predicates
	3.5.2 High-level overview
	3.5.3 From Columns to constraints with Catalyst Expressions
	3.5.4 Constraint function evaluation
	3.5.5 Supporting constraint handling strategies
	3.5.6 The Historical Revisionist Method

	3.6 Multi-level parallelism
	3.6.1 Trial parallelism
	3.6.2 Solve parallelism

	3.7 Search space partitioning
	3.7.1 Static partitioning and local SearchSpaces
	3.7.2 Dynamic partitioning and perimetric honeycombs
	3.7.3 SHAPely search space partitioning

	4 Related work
	4.1 PA systems
	4.2 BBO solutions for Spark
	4.3 Alternative sBBO solutions

	5 Experiments
	5.1 Cluster setup
	5.2 Experiment 1: Load balancing
	5.2.1 Example problem
	5.2.2 Experimental setup
	5.2.3 Results and discussion

	5.3 Experiment 2: Constraint handling
	5.3.1 Example problem
	5.3.2 Experimental setup
	5.3.3 Results and discussion

	5.4 Experiment 3: Search space partitioning
	5.4.1 Example problem
	5.4.2 Experimental setup
	5.4.3 Results and discussion

	6 Conclusion and Future Work
	6.1 Future Work

	Bibliography
	A Appendix
	A.1 Experiments
	A.1.1 Experiment 1
	A.1.2 Experiment 2
	A.1.3 Experiment 3

