
Summary of MAKER 

This paper presents a sophisticated data compression and transmission system, aimed at 

enhancing data transmission from remote locations, such as ships or extraterrestrial vehicles. 

Building upon the foundation of an earlier system developed by the group called MOBY, this 

research introduces a new system that addresses the challenge of balancing between 

complying with a user-defined error bound and a user-defined budget while maximizing the 

accuracy of the decompressed values. 

The newly developed system applies an innovative method to adjust the bitrate of the 

compressed data by dynamically adjusting the error bounds of the time series for model 

creation. This intelligent adjustment is based on an online outlier analysis of the data stream, 

ensuring that crucial data points retain high accuracy during decompression, thereby 

facilitating subsequent accurate data analysis.  

One of the major components of the system is an efficient algorithm for compressing 

timestamps in irregular time series. Recognizing that irregularity – for example, missing or 

delayed sensor readings – can indicate importance in a data set, the algorithm utilises a two-

pronged approach. First, it constructs run-length compressed lists of irregular timestamps, 

creating a compressed representation of periods of irregular readings. Second, it further 

compresses these lists using Huffman coding, which is an established method for lossless 

data compression. 

The second major component is the importance determiner, a method for deciding when to 

adjust the error bounds. This algorithm is constructed around Welford's Online algorithm 

combined with Z-scores, enabling the system to dynamically assess the statistical significance 

of incoming data points. This approach ensures that important data points are identified and 

preserved with higher accuracy during compression and decompression. Moreover, the 

system is flexible enough to allow users to replace the current importance-determining 

algorithm with others as needed, maintaining full compatibility with the rest of the system. 

The third major component is the chunk-based scheduler, responsible for dividing data 

streams into chunks based on a user-defined time period and adjusting the error bounds 

within each chunk according to a user-defined data budget. This strategy allows the system to 

manage large volumes of data effectively while maintaining the necessary level of precision 

within the bounds of a specified data budget. 

Together, these components form a versatile and effective system that delivers high-quality 

results and manages data efficiently. Evaluations show that the system complies well with 

data budgets, offering lossless compression when the budget permits and managing 

transmission of excess models efficiently when the data budget is too tight. The system also 

demonstrates strong performance in terms of processing and memory use, making it a 

particularly good solution for devices with limited hardware resources. The system’s 

versatility is evident from its ability to perform well on both regular and irregular datasets. 

The paper concludes with a discussion of the system’s major aspects and presents some 

suggestions for future improvements. 
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Abstract – The need for compression and transmis-
sion of data from remote locations occurs in many dif-
ferent domains, but transmitting it can be a costly chal-
lenge. This paper introduces a novel system, MAKER,
that builds upon the model-based compression ap-
proach of MOBY[12], adapting it to intelligently man-
age data compression and transmission under user-
defined budgetary constraints. Unlike MOBY, which
imposes strict error bounds across the entire data
stream, MAKER adjusts error bounds continuously,
prioritising important data points while increasing er-
ror bounds in time series where substantial data sav-
ings are likely and necessary. MAKER combines three
main components: a measure of importance, which
identifies outliers using Welford’s online algorithm and
Z-scores; a method of chunking, which segments the
data stream into smaller time periods to monitor and
adjust error bounds; and a method for compressing
irregular timestamps in the data, which compresses
the timestamps using a combination of a custom run-
length encoding and Huffman coding to account for
the potential significance of the irregular data points.
Our evaluation demonstrates that MAKER is capable
of adhering to the data budget in most cases by intel-
ligently adjusting error bounds. Moreover, MAKER
showcases substantial improvements in both perfor-
mance and memory usage, with up to 26 times faster
processing for less irregular data and up to 20 times
less memory usage compared to MOBY. These ad-
vancements translate into a system that is faster, more
efficient, and adaptable, effectively handling the dy-
namic demands and limitations of real-world scenar-
ios.

Index Terms – Data Compression, Optimisation
Methods, Data Processing

I. INTRODUCTION

Data compression and transmission from remote locations
is a necessity across various industrial sectors. One such
example is the shipping industry, where time series data
from, e.g., sensors need to be transmitted from individ-
ual ships to the mainland. This transmission can happen
through an expensive satellite communication network if
cellular communication is not possible. Another example
is the transmission of data from extraterrestrial vehicles,
for instance, the REMS weather system on Mars.

To overcome this problem, we investigated in our pre-
vious work [12] how a lightweight system that is able
to run on small processing units can be constructed for
such scenarios. Here, we presented MOBY; a system able
to compress time series using models in an online man-
ner. A model is a mathematical representation of a pas-
sage of a time series. MOBY compresses each time series
with all model types and selects the model that provides
the best compression ratio when none of the models can
accommodate the current data point and repeats the pro-
cess. The model types utilised by MOBY are the constant
model type PMC-Mean, the linear model type Swing, the
polynomial model type Polyswing and the lossless model
type Gorilla. Additionally, MOBY is designed so that all
created models comply with a user-defined error bound.
However, one drawback of this approach is that no guar-
antees are made regarding the bitrate; a small error bound
can potentially result in an exploding bitrate, as the system
has no way to limit the bitrate. This paper proposes a new
system, MAKER, which deals with this problem through a
novel approach to attempting to limit the bitrate while still
complying with the user-defined error bound.

To better understand the problem domain, we re-
view the landscape of state-of-the-art compression ap-
proaches. Different compression techniques are explored,
namely sequential, dictionary-based, and model-based
techniques. We also consider Arithmetic coding and
Delta-delta encoding. We then direct our focus toward
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systems that are able to adapt to the input data dynami-
cally. Our technical review lays the foundation for how
we construct our intelligent adjustment system, MAKER.

MAKER builds upon and is supposed to run along-
side the model-based compression of MOBY[12], how-
ever, the bounded bitrate aspect serves as the main con-
tribution of this paper. We adjust the bitrate of the com-
pressed data by adjusting the error bounds of the created
models up to a maximum tolerated error bound, which is
defined by the user. This error bound parameter differs
from the user-defined error bound of MOBY in that it in
MAKER denotes the tolerable error bound when the data
is not deemed important, where MOBY’s error bound is
a hard limit for all data. This is because MAKER adjusts
the error bounds of the time series intelligently based on
online outlier analysis of the data stream. When incom-
ing data points are deemed important, we decrease the er-
ror bound to achieve as accurate data as possible for these
points when they are decompressed. This will benefit the
process of analysing the data at a later stage. For the same
reason, MAKER is able to compress timestamps of irreg-
ular time series losslessly. In this paper, we assume that
outlier data points and irregularity indicate important pas-
sages in the time series, however, MAKER is implemented
so that it can easily be extended with new algorithms for
deciding importance of the data. Furthermore, MAKER
constantly monitors the size of the compressed models and
if our compression is not efficient enough with the current
error bound, we increase the error bounds on the time se-
ries where we assume it will have the greatest effect on the
compression ratio.

The main contributions of this paper are thus sum-
marised in the following:

• We develop an efficient Timestamp Compressor al-
gorithm for compressing timestamps for irregular
time series, as irregularity (missing or delayed sensor
readings) can be a sign of importance. This is done
by constructing run-length compressed lists and fur-
ther compressing those with Huffman coding. This is
detailed in Section VII.

• We develop an Importance Determiner for determin-
ing the importance of the data, and we use this to
decide when to adjust the error bounds. In this pa-
per, we employ Welford’s online algorithm combined
with Z-scores, however, a system user can easily
replace this with other approaches for determining
whether data points are important, and the rest of the
system will be fully compatible. This is detailed in
Section VIII.

• We develop a Chunk-based Scheduler which is re-
sponsible for dividing the data points into chunks
based on a user-defined time period and adjusting the

error bounds within each chunk according to a user-
defined data budget. This is detailed in Section IX.

Collectively, these components form the holistic
MAKER, which synergistically leverages the strengths of
each component to offer optimal performance and data
quality. The system as a whole is versatile and suitable
for a wide range of applications, even with the inherent
limitations of small processing units.

Our evaluation shows that MAKER in most cases is ca-
pable of complying with the data budget to a satisfactory
extent. MAKER only exceeds the budget in the critical
cases where the data budget is too low compared to the
compression ratio that the model-based compression is ca-
pable of achieving with the given maximum allowed error
bound. When this happens, the excess models are delayed
until the next transmission, where they are prioritised for
transmission over the new models. On the other hand, if
the budget allows it, MAKER offers lossless compression
of all time series. Furthermore, we show that our Times-
tamp Compressor works especially well on data sets con-
taining data with a high extent of regularity, while it does
not explode on highly irregular data sets. Lastly, we show
that MAKER is very efficient processing- and memory-
wise, which is desirable as MAKER is supposed to run
on devices with limited hardware where other services are
running simultaneously.

The rest of the paper is structured as follows: Section II
introduces definitions of core concepts used throughout
the paper; Section III presents the relevant compression
techniques and projects that lay the foundation for this
paper; Section IV formalises the problem of this paper;
Section V presents an overview of the components of
MAKER; Section VI presents a small exemplary data
set, which is used in Section VII, Section VIII, and Sec-
tion IX, which details our three main components; Sec-
tion X presents our evaluation of MAKER; Section XI dis-
cusses major aspects of the system; and lastly, Section XII
concludes the paper.

II. DEFINITIONS

This section provides an overview of the technical terms
used in this paper along with definitions for these. Defi-
nitions 1 to 4 and 6 are adapted from our previous work
[12].

DEFINITION 1. A time series ts is a sequence of pairs
(v, t), where v is a numerical value, e.g. a sensor read-
ing, and t is a timestamp. For a ts consisting of pairs
⟨(v1, t1), (v2, t2)..., (vn, tn)⟩, where n is the number of
pairs, ti+1 > ti holds for all 1 ≤ i ≤ n.

DEFINITION 2. A regular time series tsr is a ts where
the condition ti+1 − ti = tj+1 − tj holds for all 1 ≤
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i < n, 1 ≤ j < n, i.e. the interval between consecutive
timestamps in tsr is the same for all timestamps.

DEFINITION 3. An irregular time series tsi is a ts
where the condition ti+1 − ti ̸= tj+1 − tj holds for some
1 ≤ i < n, 1 ≤ j < n, i.e. there is at least one inter-
val between two consecutive timestamps that is not equal
to the interval between two other consecutive timestamps.
Note that tsr becomes irregular if one of its data points
is issued too early, too late or if it is missing. We use the
notation ts when the regularity has no importance.

DEFINITION 4. An error bound ϵ describes how much
the decompressed data is allowed to deviate from the orig-
inal data, i.e. the condition |vi − v̂i| ≤ vi · ϵ holds for all
1 ≤ i ≤ n (see Definition 6 for an explanation of v̂). As
ϵ is relative to the size of v, we tolerate a larger absolute
difference between v and v̂ for large values of v than for
small values of v.

DEFINITION 5. A model type describes how a subse-
quence of a ts is compressed. Different model types use
different approaches for compression, and the decompres-
sion process depends entirely on the model type used for
compression. A lossless model type is a model type that
guarantees that decompression results in the exact values
that were compressed, i.e., vi = v̂i for all 1 ≤ i ≤ n. In
this paper, we use the term lossy model type to denote a
model type that allows an error, however, a lossy model
type guarantees that the decompressed values do not ex-
ceed a set error bound.

DEFINITION 6. A model m is a representation of a sub-
sequence of ts. A model has a model type along with the
specific parameters relevant to the model type, which are
used for decompression. For a data point (vk, tk), we let
v̂k denote m(tk), i.e. the decompressed value using the
model parameters.

DEFINITION 7. Model-based compression denotes a
compression method where data is represented as models.
The approach is to fit (vc, tc), where c denotes the current
data point, using a number of model types simultaneously.
When none of the models are able to fit (vc, tc), the model
mbest that results in the smallest bitrate (see Definition 9).
We let (vl, tl) denote the last (v, t) in mbest. The process
then repeats from (vl+1, tl+1).

DEFINITION 8. A chunk γ is a sequence of (v, t) pairs,
where for ∀(v, t) ∈ γi, ρ · (i− 1) ≤ t < ρ · i, where i > 0
and ρ is a number of seconds. A chunk thus denotes a time
period with a fixed length of ρ time units. The sequence of
chunks, Γ, consists of chunks that can be linearly ordered,
such that γ1, γ2, γ3 ... γm ∈ Γ, where m = ⌈ tnρ ⌉ and
∀(vi, ti) ∈ γi,∀(vj , tj) ∈ γj , ti < tj where i < j.

DEFINITION 9. The bitrate of a model m denotes how
many bits on average that m uses to represent a value. It
is defined as s(m)

|m| , where s(m) denotes a function return-
ing the total size of model parameters of m expressed in
number of bits, and |m| denotes the number of data points
m represents.

III. RELATED WORK

A. Compression techniques

In recent years, the need for effective time series compres-
sion techniques has grown significantly due to the massive
amount of data generated by various sources, including
IoT devices, industrial applications, and critical infrastruc-
ture systems. These devices generate an enormous amount
of time series data, necessitating a diverse range of com-
pression techniques to increase the efficiency of data col-
lection, storage, and analysis. The main contribution of
this related work section is to provide a comprehensive
summary of current time series compression algorithms,
which have been fragmented across sub-domains ranging
from databases to IoT sensor management, as explained in
the survey[7] that this subsection is inspired by. By pre-
senting a taxonomy of these techniques based on their ap-
proach and properties, the author of [7] aims to guide the
reader in making informed decisions when selecting the
most suitable compression method. Reading into the dif-
ferent properties of the chosen techniques, it is possible to
broadly categorise them into sequential and model-based
compression approaches.

a. Sequential compression

Sequential compression algorithms combine simple com-
pression techniques into a single compression chain to
maximise the effect of each type of compression. Here
we present two exemplary sequential algorithms:

• Delta Encoding, Run-length, and Huffman
(DRH)[20] combines delta encoding, which
represents the difference between consecutive data
points; run-length encoding, which replaces consec-
utive occurrences of the same value with a single
occurrence and a count; and Huffman coding, which
assigns variable-length codes to data values based on
their frequencies.

• Run-Length Binary Encoding (RLBE)[27] is a loss-
less method specifically designed for low-resource
devices like the ones found in IoT infrastructures. It
combines delta encoding, run-length, and Fibonacci
coding, the latter of which represents integers using
a unique combination of Fibonacci numbers.
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B Dynamic adaptable compression systems

b. Model-based compression

Model-based compression techniques aim to represent
time series as functions of time by dividing them into sub-
sequences and finding approximating mathematical func-
tions for each subsequence. These techniques work much
better when lossy compression is allowed but can func-
tion surprisingly well with a lossless approach. Addi-
tional positives of them are that they do not depend on the
specific data domain. The following examples are model
types that can be used as functions to compress the data
and they also include a fully implemented technique that
selects the correct model based on the best approximation:

• PMC-Mean (Poor Man’s Compression-Mean)[19] is
a basic data compression technique that replaces a
number of data points with a single mean value.
When a new data point causes any of the modelled
data points to deviate too much from the mean, a new
model is created to represent the next data points.

• The Swing[11] filter utilises a set of linear functions
called the upper and lower boundaries. Any line situ-
ated between these boundaries can represent the data
points collected so far while adhering to the current
error bound. To preserve this characteristic, the lower
boundary needs to be swung upward, while the up-
per boundary must be swung downward as new data
points are recorded. The new boundaries are defined
by the initial and the most recent data points col-
lected. If a new data point falls too far below the
lower boundary or too far above the upper bound-
ary, it will be disregarded since no line can represent
the latest data point and a new segment must be con-
structed.

• The Gorilla[23] technique is a lossless compression
algorithm developed at Facebook for floating-point
time series data. It consists of two main steps: times-
tamp compression and value compression. Times-
tamp compression uses Delta-delta encoding to store
differences between consecutive timestamps, while
value compression uses an XOR encoding between
the binary representation of consecutive values.

• Piecewise Polynomial Approximation (PPA)[10] di-
vides a time series into several segments of fixed or
variable lengths and finds the best polynomial ap-
proximations for each segment. A maximum devi-
ation from the original data can be enforced to main-
tain a certain reconstruction accuracy. PPA employs
a greedy approach and three online regression algo-
rithms to approximate time series with constant func-
tions[19], straight lines[8], and polynomials[26].

By categorising these techniques into sequential and
model-based techniques, we gain a comprehensive under-

standing of the current landscape of time series compres-
sion algorithms that fit within our scope. Both categories
have their own advantages, limitations, and unique char-
acteristics, making them suitable for different scenarios
and requirements. When selecting the most suitable com-
pression technique for a specific application, it is crucial
to consider factors such as the nature of the data, desired
compression ratio, the acceptable level of loss, computa-
tional resources, and the specific needs of the application.
While specialised tools and techniques have their own ad-
vantages in some applications of compression, the state of
the art in time series compression research is comprised of
various general-purpose data compression techniques de-
veloped to handle a wide variety of time series data. Addi-
tionally, the constant evolution of time series compression
research suggests that new, more efficient algorithms are
likely to be developed in the future, further expanding the
options available for practitioners in this field.

c. Other compression techniques

In addition to the techniques described in [7], we present
in this section two commonly used encoding techniques;
Arithmetic coding and Delta-delta encoding.

• Arithmetic coding[30] is a compression technique
that maps a sequence of elements to a subinterval in-
side a larger interval. It utilises information about el-
ement frequency to construct the subintervals so that
the subintervals of frequently occurring elements are
larger than subintervals of rarely occurring elements.
Compression then happens by "zooming" into the
subinterval corresponding to the element to be com-
pressed. The process then repeats using the subin-
terval instead of the larger interval. As the subinter-
val becomes small, it becomes problematic to keep
precision, so a series of re-scaling operations are em-
ployed by both the compressor and decompressor.

• Delta-delta encoding[23] is a technique that is sim-
ilar to the aforementioned Delta encoding, however,
Delta-delta encoding builds a bitstring based on how
much the difference between the latest two times-
tamps differs from the previous difference. The
smaller this difference becomes, the fewer bits are
used to express the new timestamp.

B. Dynamic adaptable compression systems

To garner a better understanding of dynamically adapting
time series compression systems, we review the literature
on systems that can adapt the compression ratio and the
selected algorithm based on both the importance of the
data and the available bandwidth. A variety of approaches
have been proposed to address these challenges and im-
prove the performance of time series compression under
such circumstances.
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B Dynamic adaptable compression systems

[5] proposes a novel approach to rate control in multi-
media systems. The authors introduce an elastic schedul-
ing framework that dynamically adjusts the rate at which
multimedia data is transmitted based on network and sys-
tem conditions. The elastic scheduling framework is based
on three key components: a rate estimator; a rate alloca-
tor; and a congestion controller. The rate estimator mea-
sures the available network bandwidth and estimates the
maximum transmission rate that can be sustained with-
out causing congestion. The rate allocator then assigns
transmission rates to multimedia data based on their pri-
ority, size, and available bandwidth. Finally, the conges-
tion controller monitors network traffic and adjusts the rate
to avoid congestion and maintain overall system perfor-
mance. The results of their evaluation show that the ap-
proach is effective in maintaining high-quality multime-
dia streaming while avoiding congestion and other perfor-
mance issues. Additionally, the approach is also shown
to be robust and able to adapt to different network condi-
tions, making it suitable for a wide range of multimedia
applications.

Optimising time series compression ratios require a
method tailored to data characteristics, but the time used
for tuning is an overhead that slows down compression,
making it unsuitable for real-time monitoring systems.
Therefore, in the context of leveraging the computational
power of GPUs for time series data compression, [24]
introduces a dynamic compression strategy planner that
effectively selects compression techniques based on the
data’s characteristics, such as data distribution and fre-
quency of updates. The authors demonstrate that their
method outperforms the non-dynamic approach in terms
of compression ratio, query performance, and energy con-
sumption, making it suitable for real-time data processing.

[13] introduces an intelligent and adaptive data com-
pression algorithm selection strategy to handle big data
processing tasks within local file systems. By incorpo-
rating a dynamic algorithm selection module consisting of
three components: a profiler; a selector; and a compressor,
the module chooses a high compression ratio algorithm for
easily compressible data, a quick compression algorithm
for data with low compressibility, and omits compression
for incompressible data. The evaluation demonstrates that
this dynamic selection module can boost response time
and decrease storage requirements for large data sets.

Energy and transmission constraints in sensor networks
necessitate minimising data volume while retaining high
data quality. The Rate Adaptive Compression with Er-
ror bound (RACE) algorithm introduced in [6], which is
a wavelet-based, error-aware compression technique, ad-
dresses these needs by adapting to limited bandwidth and
adjusting errors based on network capacity. Their ap-
proach facilitates easy error estimation during data recon-
struction and takes advantage of excess bitrate availability
to refine error ranges using a feedback mechanism when

possible. Consequently, the algorithm enhances perfor-
mance and preserves the statistical interpretation. Evalu-
ations confirm the RACE algorithm’s effectiveness in rate
adaptivity, error range reduction, and preservation of data
quality.

As sensor data collection on boats, like cargo ships, be-
comes more frequent, managing vast amounts of data with
limited storage space and costly, slow satellite networks
becomes a challenge. In [12], we introduce MOBY, a
compression system that efficiently compresses time se-
ries data within specified error bounds and sends it to a re-
mote server. Developed with a focus on minimal memory
usage and binary size, MOBY is tailored for compatibility
with older, resource-limited systems prevalent in the mar-
itime industry. MOBY offers effective compression rates
and compact binary size, making it a feasible solution for
the sensor collection systems currently in use in the indus-
try.

[28] presents FRaZ, a novel fixed-ratio lossy compres-
sion framework tailored for scientific floating-point data,
which adheres to user-defined error bounds. The study
makes two key contributions:

1. Devising an effective iterative method for accurately
identifying suitable error settings for various com-
pressors based on desired compression ratios.

2. Assessing the performance and precision of the pro-
posed framework using multiple cutting-edge com-
pressors and real-world scientific data sets from a di-
verse range of domains.

Evaluation of the experiments shows that FRaZ can iden-
tify the optimal error settings of any given lossy compres-
sor effectively. While fixed-ratio compression takes longer
than fixed-error compression, FRaZ provides a significant
new approach for handling extensive scientific floating-
point data sets.

The literature on dynamically adapting time series com-
pression systems highlights various innovative approaches
and techniques for optimising compression under various
restrictions. These approaches address challenges such
as rate control, energy consumption, real-time processing,
algorithm selection, and data quality preservation. Elas-
tic scheduling frameworks, dynamic compression strat-
egy planners, adaptive algorithm selection strategies, and
wavelet-based error-aware techniques are among the so-
lutions that have been proposed and evaluated. Further-
more, domain-specific compression systems like MOBY
and FRaZ address the unique needs of the maritime in-
dustry and scientific data management, respectively. Col-
lectively, these studies demonstrate the effectiveness and
adaptability of such approaches, providing valuable in-
sights for the development and improvement of time series
compression systems tailored to more restrictive domains.

MOBY[12] and FRaZ[28] have their unique strengths
and address important aspects of time series data com-
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pression, but they do not attempt to meet two crucial con-
straints simultaneously. These systems can either guaran-
tee adherence to a predefined data budget or ensure data
accuracy by not exceeding predefined error bounds. Sys-
tems that can manage data within a predefined budget can
make optimal use of the available resources and ensure
that critical data can be stored and transmitted in light
of these limitations. Systems that can guarantee data ac-
curacy within predefined error bounds ensure that com-
pressed data remains suitable for its intended use. How-
ever, no solution exists that attempts to balance both of
these targets simultaneously.

It is also apparent that the existing systems lack the ca-
pability to dynamically adapt to changes in the importance
of the data. For instance, in time series data, the distri-
bution and patterns in the data can evolve over time due
to various factors. Taking data importance into account
can further optimise compression strategies by prioritising
the accuracy of crucial data. A truly adaptable compres-
sion system would need to be able to dynamically adjust
its strategies not only based on changes in data character-
istics and network conditions but also in response to the
perceived data importance.

IV. PROBLEM

In the context of a compression system that would try to
balance data accuracy and budget constraints, determining
the importance of data plays a pivotal role in the overall ef-
fectiveness of the solution. By evaluating the significance
of the data points, the system can be enabled to allocate
resources and adjust error bounds intelligently, prioritis-
ing the preservation of critical information. By identifying
and preserving these data points with higher accuracy, the
system can provide valuable insights into the underlying
data and help detect potential issues. We denote the im-
portance of a data point (vx, tx) as Ix and define it as the
following:

Ix =

{
1, if (vx, tx) is deemed important
0, otherwise

(1)

I is defined as a binary measure rather than a numeric
measure to be able to handle the case where the data of
the processed tss fluctuate, which could yield a fluctuat-
ing numeric importance measure. If the error bounds of
the models were adjusted using such an importance mea-
sure, the error bounds would potentially be lowered when
the importance measure is raised even slightly due to fluc-
tuations. This, in turn, would require that the constructed
models are terminated, as the data points before the adjust-
ment would no longer be guaranteed to be within the new
error bound. A binary importance measure, on the other
hand, ignores such fluctuations and instead processes all
reported important data points equally. We also introduce

the error of data points in a time series tsk as E (Eq. (2)),
which is defined through the Mean Absolute Percentage
Error (MAPE) measure, i.e. as an average of errors be-
tween the original and the decompressed data points of
tsk. Further, EP denotes the error for a subset P of points
in tsk. We here use PI to denote the subset of important
points, i.e. PI = {(vi, ti) ∈ tsk | Ii = 1} and PO to de-
note the subset of ordinary points, i.e. PO = {(vo, to) ∈
tsk | Io = 0}.

EPO
(MO) =

∑
(vo,to)∈PO

|vo−v̂o|
vo

|PO|

EPI
(MI) =

∑
(vi,ti)∈PI

|vi−v̂i|
vi

|PI |

(2)

We useM to denote a sequence of pairs of models and
corresponding error bounds to represent tsk, i.e. M =
{(m1, ϵ1), (m2, ϵ2), ..., (mn, ϵn)}, where n is the number
of models used to represent tsk, and for each (vk, tk) rep-
resented by some mj , where 1 ≤ j ≤ n, we have that
|vk − mj(tk)| ≤ vk · ϵj (i.e. |vk − v̂k| ≤ vk · ϵj). v̂i
and v̂o in Eq. (2) thus denote decompressed values from
their corresponding model mk in M. The two parts of
Eq. (2) each result in a low E when we intuitively have a
high data quality, i.e. the decompressed values are similar
to the original data points.

To handle multiple tss, we use T to denote a set ofM,
i.e. T = {M1,M2, ..., Mn}, where n denotes the
number of tss. We let MI denote the subset of models
in M involving important data points and MO the sub-
set of models inM involving ordinary data points. TI is
then defined as TI = {M1

I ,M2
I , ..., Mn

I } and TO as
TO = {M1

U ,M2
U , ..., Mn

U}.
The objective of this paper is thus to find some T , such

that the sum of all E is minimised:

min
TI ,TO

∑
MI∈TI

E(MI) · |MI |
|TI |

+
∑

MO∈TO

E(MO) · |MO|
|TO|

(3)

s.t.



(∑
M∈T

∑
(m,ϵ)∈M S(m) + S(t(m))

)
≤ Θ,

1 ≤ i ≤ n, ∀(mI , ϵI) ∈ Mi
I , ∀(mO, ϵO) ∈ Mi

O,

ϵI < ϵO,

if S(TL)+
S(t(TL)) >
Θ

1 ≤ i ≤ n, ∀(mI , ϵI) ∈ Mi
I , ∀(mO, ϵO) ∈ Mi

O,

ϵI = ϵO = 0,

if S(TL)+
S(t(TL)) ≤
Θ

where S denotes a function returning the byte size of the
input; TL denotes a set ofML, where eachM ∈ TL con-
tains only lossless models; n denotes the number of tss;
Θ denotes an upper bound for the bitrate; |M| denotes the
number of data points represented by all (m, ϵ) ∈M; |T |
denotes the total number of data points represented in T ;
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and t is a function that returns a lossless representation of
the timestamps associated with the values represented by
the models in the input.

We thus aim to find the optimal sets of models across all
tss, TI and TO for important data points and ordinary data
points respectively. The first condition in Eq. (3) ensures
that the total byte size for all models in T is below the
upper bound. The second condition ensures that we pri-
oritise a lower error bound for important data points if it is
not possible to compress all data points losslessly. The
third condition allows all models to be losslessly com-
pressed if the total byte size does not exceed the upper
bound. Eq. (3) thus prioritises minimising the difference
between {vi | (vi, ti) ∈ PI} and v̂i over minimising the
difference between {vo | (vo, to) ∈ PO} and v̂o across
all tss. Eq. (3) is based on the assumption that the first
condition can be met. There are, however, cases where
this assumption does not hold, namely if Θ is set too low
compared to the capabilities of the model-based compres-
sion. In this paper, we present Model- And chunK-based
approach for Error-bound Regulation (MAKER); a system
that aims to minimise Eq. (3) and is specifically designed
to deal with this aforementioned case.

DEFINITION 10. The goal of MAKER is to minimise
Eq. (3) continuously as data points arrive while being able
to deal with a critical case of Eq. (3), namely the case
where the first condition cannot be met, which happens
when the data cannot be compressed to a sufficiently small
size that complies with the upper bound.

V. SYSTEM OVERVIEW

Building on the concepts discussed earlier, MAKER is
designed to adapt to the determined importance of that
data. The process is structured into two parts, as shown
in Fig. 1: One for processing incoming data, and the other
for acting when a new chunk of data is ready.

The first part of the process is designed to handle the
incoming data stream and is implemented as generically
as possible to handle any kind of time series data from
various domains. Initially, the data is analysed using the
Importance Determiner component which identifies data
points that deviate significantly from expected patterns,
hence potentially being more important or relevant. As
MAKER is designed to be able to operate on small pro-
cessing units akin to those found in, e.g., ship antennas
or extraterrestrial vehicles, deploying deep learning ap-
proaches to identify outliers, i.e., potential failure pat-
terns, are not viable. Instead, we propose an efficient and
lightweight approach that leaves a small memory foot-
print. We outline our approach in Section VIII, but the
system is designed to easily incorporate other user-defined
algorithms for analysing the importance of data.

Following this, the values from the tss are compressed

into models using the PMC-Mean, Swing filter, and Go-
rilla techniques as explained in the compression system
presented in [12], while timestamps are processed using
our novel Timestamp Compressor, further detailed in Sec-
tion VII.

Figure 1: Flowchart of MAKER

One of the common existing methods for handling ir-
regular time series includes re-sampling the time series
by interpolating values, thereby making them regular if
the time series is irregular due to missing values [2]. An-
other approach is to simply remove the data that contains
irregularity, which is the approach of ModelarDB [17], as
the system described in that paper can only handle regular
time series. Handling irregular time series is crucial as it
helps to maintain the integrity of the data, preserving crit-
ical information that could be lost or misrepresented if the
data were to be re-sampled, interpolated or even discarded.
Additionally, irregular time series may contain useful in-
formation about the underlying system that is not evident
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in regular time series. We know from both ModelarDB
and our previous work MOBY [12] that irregular time se-
ries data do occur, and since missing or delayed values can
be a sign of importance, as they can be caused by e.g. a
malfunctioning sensor[1, 15], the focus should be on keep-
ing this information rather than discarding it.

With our Timestamp Compressor, the system is
equipped to handle such delayed or missing sensor read-
ings instead of discarding or interpolating missing values
through a process of constructing offset lists containing
run-length compressed timestamps. This step involves
reading from and writing to memory due to a caching
mechanism, as shown on Fig. 1. Completed models are
also stored in memory until transmission, preserving the
information required for decompression.

Given the computational and storage constraints associ-
ated with some devices, it is often not desirable to write
data to disk due to the computational costs of I/O. In ad-
dition, another reason to avoid writing to disk is the in-
herent longevity concern of the hardware. The lifespan of
flash memory (e.g. SSD disks) can be greatly reduced due
to the fact that they only allow a finite number of writes
before their lifetime is over[9]. This highlights the poten-
tial risks and inefficiencies of disk-dependent operations.
Therefore, recognising that we cannot also make the as-
sumption of large memory availability in these devices,
the emphasis on memory efficiency within our system be-
comes paramount. It is with these considerations in mind
that our system has been designed to perform all its tasks
in memory while optimising the usage of available mem-
ory resources. All operations, from the caching mecha-
nism used in the compression process to storing the fin-
ished models, are memory-bound until the data is ready
for transmission.

The second part of the process shown in Fig. 1 oper-
ates when a new data chunk is to be created. This com-
ponent is responsible for transforming the residual data
from the time series that have not yet been modelled into
model representations. Subsequently, the offset lists con-
taining the timestamps of the completed chunk are read
from memory and compressed using the variable-length
encoding method, Huffman coding [16]. The outcome of
this step is then stored in memory and transmitted along-
side the model representations of the data.

To ensure efficient utilisation of resources and main-
tain a user-defined data budget, the Chunk-based Sched-
uler adjuster is employed before transmission. This is fur-
ther explained in Section IX. This component dynamically
adjusts the error bounds of the compressed data models
according to the restrictions of the data budget and the
calculated importance of the data points, where crucial
points are represented with lower error bounds. This intro-
duces a balance between data quality and compression ef-
ficiency by favouring important data points over ordinary
data points, as described by Eq. (3). The adjusted models

are then transmitted, ensuring data integrity is maintained
even under data budget constraints.

To summarise, the proposed architecture provides a co-
hesive solution for handling irregular time series data, op-
timising data quality and compression efficiency by min-
imising Eq. (3), and effectively adjusting error bounds ac-
cording to the data budget and the determined data impor-
tance. By preserving critical information instead of dis-
carding it, it is well-positioned to support data analysis
tasks such as failure detection, offering enhanced capabil-
ities for various applications in the industry.

VI. RUNNING EXAMPLE

In this section, we present a small data set which will be
used in the following sections as the basis for the presented
examples.

Example 1. Table 1 shows an example of five ts
adapted from the REMS data set [21]. The Timestamp
column contains all timestamps across all ts. The Wind,
Wind sensor temperature, and Humidity tss are regular,
as they have the same number of seconds between each
of their values. The ADC calibration and Pressure tss,
however, are irregular; the ADC calibration ts misses a
value at timestamp 480, and the second reading of the
Pressure ts is delayed five seconds.

Table 1: Sensor values and timestamps adapted from REMS

Time-
stamp

(Seconds)

Wind
(Analog signal)

ADC
calibration

(Analog signal)

Wind sensor
temperature

(Analog signal)

Humidity
(Analog signal)

Pressure
(Analog signal)

0 377.0 31,325.0 3,656.0 492,779 -
60 348.0 32,543.0 - - 3,235,335

120 269.0 32,440.0 - 492,761 -
180 281.0 31,286.0 3,779.0 - -
240 306.0 32,394.0 - 492,791 -
300 319.0 2,180.0 - - -
305 - - - - 3,235,330
360 276.0 20,196.0 2,463.0 492,795 -
420 243.0 64,658.0 - - -
480 237.0 - - 492,804 -
540 248.0 13,775.0 1,666.0 - 3,235,339
600 271.0 32,719.0 - - -

VII. TIMESTAMP COMPRESSOR

To compress timestamps, we provide a more sophisticated
approach compared to the naïve approach of MOBY [12].
Here, timestamps were duplicated across tss, resulting in
a high degree of redundancy. The approach to handling
timestamps in this paper aims to obtain four goals: 1) to
minimise redundancy, 2) to make it possible to handle ir-
regular time series, 3) to minimise the footprint in memory
while the algorithm is running and 4) to minimise the size
of the transmitted timestamps. Our approach consists of
two stages. We provide an overview of these stages in
Section VII.A.
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A Overview of timestamp compression

Offset
Number of
timestamps

60 2
120 1
65 1
55 1
120 1
60 1

Time-

0
60
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240
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2 1

3 2

First 1
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2 1
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Offset

Offset

Full resolution 
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Global offset list Local offset list Time series

Run-length

compression

Run-length

compression

stamp

Figure 2: Overview of relationship between global offset list and local offset list

A. Overview of timestamp compression

The first stage of our Timestamp Compressor is to build
two data structures called the global offset list and the lo-
cal offset list.

Example 2. To illustrate the relationships between
these lists and how they relate to the full resolution
timestamps, an overview based on only Humidity and
Pressure in Example 1 is shown in Fig. 2. Here, four
tables are shown: a Full resolution table containing all
timestamps across all tss, ordered from earliest to latest
timestamp and without duplicates; a Time series table
containing full resolution timestamps for each time se-
ries; and two compressed tables, the global offset list
and the local offset list. The global offset list contains a
compressed representation of the Full resolution table.
The local offset list is a structure containing compressed
representations for all timestamps across all tss. The el-
ements in the local offset lists refer to the Full resolution
table (indicated by dashed arrows). Furthermore, for
each ts, we store the index of the first timestamp in the
global offset list. We detail this stage in Section VII.B.

In the second stage of timestamp compression, the
global offset list and the local offset list are both com-
pressed using Huffman coding. We detail this stage in
Section VII.C.

B. Offset lists

We now detail the process of constructing the offset lists
while building a complete example containing all tss of
Example 1. The general idea of this approach is to store all
timestamps once and then for each ts refer to those times-
tamps instead. Both of these parts can be compressed as
explained in the following. When a new timestamp ar-
rives, it is compressed using a run-length approach on the
offsets.

Table 2: Global offset list containing offsets from timestamp 0

Offset Number of
timestamps

60 5
5 1
55 1
60 4

Example 3. Table 2 shows how the timestamps of Ex-
ample 1 are represented in a global offset list, corre-
sponding to the leftmost table in Fig. 2. The first times-
tamp, 0, is used as the starting point for calculating the
offsets. From this, five timestamps follow, each with a
60-second interval. After this, a single interval of 5 sec-
onds emerges followed by a single interval of 55 sec-
onds. Finally, four timestamps follow, each with an in-
terval of 60 seconds.

To store timestamps associated with each ts, times-
tamps are given an incremental ID, i.e. the first timestamp
in the Timestamp column in Table 1 gets 0, next gets 1 etc.
For each ts, the ID of the timestamp corresponding to the
first value in that ts is stored. The local offset list, which
is similar to the global offset list shown in Table 2, is then
made, containing offsets for each ts. Here, however, the
Offset column describes the number of timestamps in the
timestamp list being skipped.

Example 4. The local offset list containing offset lists
for each ts’ timestamps are shown in Table 3. The
first timestamp of Wind is reconstructed by looking up
the timestamp on index 0 in the list of full resolution
timestamps, reconstructed from the global offset list,
i.e. timestamp 0. The next five timestamps (as denoted
by the Number of timestamps column) for Wind are
found by moving one index forward in the global offset
list (as denoted by the Offset column) per timestamp.
Timestamps for the other columns are reconstructed in
the same way.
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C Huffman compression

As Tables 2 and 3 illustrate, the output of this stage is
two lists that can contain duplicate values. To compress
these lists while taking advantage of the frequencies of
the values, Huffman coding[16] is used as detailed in Sec-
tion VII.C.

Table 3: Local offset list

Wind ADC calibration Wind sensor temp.
Index for first timestamp

0 0 0

Offset Number of
timestamps Offset Number of

timestamps Offset Number of
timestamps

1 5 1 5 3 1
2 1 2 1 4 1
1 4 1 1 3 1

2 1
1 1

Humidity Pressure
Index for first timestamp

0 1

Offset Number of
timestamps Offset Number of

timestamps
2 2 5 1
3 1 4 1
2 1

To minimise the memory footprint of the timestamps,
our model-based compression is designed to run on the lo-
cal offset lists instead of keeping all full resolution times-
tamps in memory for each ts. We do, however, keep a list
of all timestamps, which corresponds to a reconstructed
version of the global offset list, in memory. This is a
trade-off between memory efficiency and performance;
we choose to keep this list of global timestamps in mem-
ory to avoid having to reconstruct the entire global offset
list every time we need a corresponding timestamp for a
cached value. The offset lists are created as the data points
come in, and these representations are used for transmis-
sion. Just before transmission, however, the Huffman cod-
ing of the offset lists happens to further reduce the size of
the transmitted data. The local offset list is kept uncom-
pressed in memory instead of Huffman encoding them im-
mediately to avoid the performance overhead of decom-
pressing the Huffman encoded offset lists when the times-
tamps are needed during model compression. To recon-
struct the full resolution timestamps for all tss, the Full
resolution table (see Fig. 2) is first constructed based on
the global offset list and finally, we look up the correct
timestamps within this list based on the stored index of
the first timestamp along with the offset values in the local
offset list.

C. Huffman compression

This section describes the Huffman compression stage that
is run on the offset lists just before transmission. For a
thorough description of the core concepts of Huffman cod-
ing, we refer to [16], while we in this section describe how
the method has been tailored to our needs.

Huffman coding is a variable-length method which as-
signs short bit-string codes to frequent values in a set,
while infrequent values get longer codes.

Example 5. Figs. 15 and 16 in Section XIV (Appen-
dices) show Huffman trees made from the offset lists
shown in Tables 2 and 3. The corresponding Huffman
codes are shown in Tables 8 and 9 (Appendices) respec-
tively. This is included for completeness.

We use specific control codes to enable correct decom-
pression. Specifically, we use a special value, EOTS, to
indicate the end of a ts (in the case of the local offset list)
and another special value, EOL, to indicate the end of the
list. Like the elements of the offset lists, these values get
their own Huffman code. Furthermore, the value that fol-
lows EOTS is always the index of the first timestamp in
the global offset list (shown in Table 3).

To decode the Huffman codes, the decompressor needs
the correct Huffman codes. These can be transmitted with
an encoding of the Huffman tree constructed by traversing
the tree recursively, starting from the root and accessing
the children left to right. We then use a 1 bit to describe
a leaf node followed by the value it represents, and a 0
bit to represent a non-leaf node. Algorithms 1 and 2 show
the recursive process of encoding the tree. All leaf node
values are represented with a fixed number of bits in the
tree encoding. For instance, most systems allocate 32 bits
for integers, so the same number of bits per value is used in
the tree encoding. We include the algorithm for decoding
the tree in Algorithm 5 (Appendices) for completeness.
The process of encoding and decoding the Huffman tree is
adapted from [18].

Algorithm 1 EncodeTree

Input: Root node Root
Output: Encoding of Huffman tree

1: Bit string Bits
2: Encoding← EncodeTreeRecursive(Root, Bits)
3: return Encoding

Algorithm 2 EncodeTreeRecursive

Input: Tree node Node, bit string Encoding
Output: Encoding of Huffman tree

1: if (Node is a leaf-node) then
2: Append 1 to Encoding
3: Append Node.Value to Encoding
4: else
5: Append 0 to Encoding
6: EncodeTreeRecursive(Node.leftChild, Encoding)
7: EncodeTreeRecursive(Node.rightChild, Encoding)
8: end if
9: return Encoding
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Example 6. Tables 4 and 5 show the result of com-
pressing the global offset list (Table 2) and the local off-
set list (Table 3) using the Huffman codes shown in Ta-
bles 8 and 9 (Appendices) respectively. The Tree rows
show the results of Algorithms 1 and 2 on the offset
lists. The values in square brackets in the tree encoding
are encoded with a fixed length.

To reconstruct the offset lists from the Huffman coding,
we first need to decode the Huffman tree. With this tree,
the bit string can then be deciphered and, using the control
codes, correctly formatted in the offset lists.

Table 4: Final compression of global offset list

Tree 0 0 0 1 [EOL] 1 [4] 1 [1] 0 1 [5] 0 1 [55] 1 [60]
Offset list Ctrl code

TS 111 10 10 01 110 01 111 001 000

Table 5: Final compression

Tree 0 1 [1] 0 0 0 1 [EOL] 1 [3] 0 1 [4] 1 [5] 0 1 [2] 0 1 [0] 1 [EOTS]
First TS Offset list Ctrl code

S1 1110 [0 1011] [110 0] [0 1010] 1111
S2 1110 [0 1011] [110 0] [0 0] [110 0] [0 0] 1111
S3 1110 [1001 0] [1010 0] [1001 0] 1111
S4 1110 [110 110] [1001 0] [110 0] 1111
S5 0 [1011 0] [1010 0] 1000

VIII. IMPORTANCE DETERMINER

We now turn our focus on Eq. (1), and specifically how
data is deemed important in MAKER, along with how the
rest of the system is designed to handle important data.
As detailed in Section IV, we utilise a binary importance
measure to determine importance in order to separate the
data points of a ts into two sets, PI and PU . This section
details a mechanism for determining importance based on
whether a data point is an outlier.

The importance detection mechanism in the MAKER
architecture is responsible for prioritising the preservation
of essential information in the data stream as it is pro-
cessed. This mechanism evaluates the importance of each
data point using a combination of Welford’s online algo-
rithm and Z-score to identify outliers. The combination
of Welford’s online algorithm and Z-score was chosen for
outlier detection in MAKER due to their combined capa-
bility of efficient real-time processing, numerical stability,
and accurate relative positioning of data points, all while
maintaining the flexibility to tailor the process according
to specific needs using a simple threshold. By evaluating
the importance of the data points, it enables the system
to properly adjust the error bounds of the models to fit
within the set data budget. The MAKER architecture also
offers the flexibility to easily integrate custom importance
algorithms, allowing users to tailor the importance detec-
tion mechanism to suit their specific needs. As discussed

in Section IV, the only requirement for the algorithm is
that it returns a binary value describing the importance of
the data point. This extensibility enables more accurate
prioritisation of information in various categories of data
streams.

A. Welford’s online algorithm

Welford’s online algorithm[29] is a single-pass method for
calculating the mean and variance of a stream of data.
Single-pass algorithms for calculating variance can be-
come very unstable if the variance is small relative to
the square of the mean and can in some cases lead to
a phenomenon known as catastrophic cancellation[14].
Welford’s algorithm is designed to be numerically stable
and still efficient, which makes it suitable for process-
ing and calculating variance in data streams in real time.
The algorithm is initialised with a mean (µ) value of 0, a
variance accumulator (S) of 0, and a count (n) of 0. As
each data point (vk, tk) is streamed, the algorithm updates
the mean, variance accumulator, and count accordingly.
Welford’s algorithm is shown in Algorithm 3.

Algorithm 3 OnlineWelford

Input: Data point dataPoint,
Number of data points n,
Running mean mean,
Running sum of squares of differences from the mean
S

Output: The variance of the data stream
1: n← n + 1
2: δ ← dataPoint− mean
3: mean← mean + δ

n
4: δ2 ← dataPoint− mean
5: S← S + δ · δ2
6: if n > 1 then
7: variance← S

n−1
8: else
9: variance← 0

10: end if
11: return variance

B. Z-score

The Z-score is a statistical measure that describes a data
point’s relative position to the mean in terms of standard
deviations. A Z-score of 0 indicates that the data point
is equal to the mean, while a positive or negative Z-score
represents the number of standard deviations above or be-
low the mean, respectively. The Z-score for a data point
(vk, tk) is calculated using the following formula:

Zk =
vk − µ

σ
(4)
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C Outliers importance

where µ is the mean, and σ is the standard deviation
(which can be obtained by calculating the square root of
the variance). We combine the two concepts of Welford’s
online algorithm and the Z-score to be able to efficiently
find outliers. The process is shown in Algorithm 4, where
vk is denoted dataPoint.

Algorithm 4 Z-score Based Outlier Detector

Input: Data stream of incoming data points D, threshold
δ
Initialisation:

1: n← 0 {Number of data points}
2: mean← 0 {Running mean}
3: S ← 0 {Running sum of squares of differences from

the mean}
4: zScore← 0 {Z-score for the latest data point}

Looping process:
5: while D is not empty do
6: dataPoint← D.Current
7: variance← OnlineWelford(dataPoint, n, mean, S)

{Algorithm 3, parameters passed by reference}
8: stdDev←

√
variance

9: if stdDev ̸= 0 then
10: zScore← dataPoint−mean

stdDev
11: else
12: zScore← 0
13: end if
14: if zScore > δ then
15: Mark dataPoint as an outlier
16: mean← dataPoint
17: n← 1
18: end if
19: end while

Example 7. To demonstrate the outlier detection pro-
cess, we consider the ADC calibration ts from Ex-
ample 1. We will use Algorithm 4 to process the
data stream and identify the outliers. The data points
are streamed into the algorithm one by one, and the
mean, variance, and Z-score are updated accordingly.
In Fig. 3, the data points are plotted on a graph, with
the Z-scores for each data point displayed next to them.
We set a Z-score threshold of 2, and any data point with
a Z-score greater than 2 or less than−2 is considered an
outlier. In this example, the data point at timestamp 300
(2, 180) is identified as an outlier. When this outlier is
detected, the Z-score algorithm is reset, using the outlier
as the first point, as shown in line 16-17 in Algorithm 4.

C. Outliers importance

Once the outliers are identified, the importance detection
mechanism temporarily adjusts the error bound when a
data point in the ts is deemed important, allocating more
resources to the outliers while still adhering to the data

budget constraints. We do this to find a satisfactory so-
lution to the minimisation problem posed in Eq. (3). The
updated error bounds are then used for compression, min-
imising information loss and maximising the utility of the
compressed data. A cooldown mechanism is implemented
in this process, which is activated after adjusting the error
bounds. During the cooldown, no further modifications
to the error bounds are allowed, thereby ensuring that the
context, which includes the following data points, is com-
pressed at a higher resolution while reducing the possibil-
ity of erratic adjustments.
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Figure 3: Outlier detection of ADC calibration ts

Example 8. Fig. 3 illustrates the cooldown mechanism
with the red to blue fading data points, starting from the
outlier detected at timestamp 300.

By introducing this cooldown period, MAKER can
maintain a balance between adapting to the changing im-
portance of data points while preserving some stability in
the compression process. Fig. 4 outlines the complete pro-
cess. The dashed lined box shows the Importance Deter-
miner component, and the rest shows how the component
is integrated into MAKER. It is also illustrated that the
Importance Determiner component merely needs to re-
turn whether an incoming data point is an outlier or not.
With this information, MAKER will trigger the cooldown
mechanism if an outlier is detected.

Figure 4: Flowchart of the Importance Determiner component
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IX. CHUNK-BASED SCHEDULER

In this section, we describe the Chunk-based Scheduler
component (CBS) utilised by MAKER. The chunk-based
mechanism divides the data stream into chunks and pro-
cesses each chunk individually, allowing for efficient data
management and error bound control. The main idea be-
hind the chunk-based approach is to adapt the error bounds
according toΘ (as defined in Eq. (3)). For this approach to
work, we need to reformulate Θ (which is an upper bound
for an entire ts) to an upper bound for each chunk. By
defining the upper bound on a per-chunk basis instead,
we achieve a new threshold value that can be used by the
Chunk-based Scheduler. We call this new upper bound the
Budget, and the relationship between Budget and Θ is
shown in Eq. (5). ∑

γ∈Γ

Budget = Θ (5)

This ensures that the most important information is pre-
served within each chunk. We can use this approach to
approximate a solution to Eq. (3), as we allow models
to span over multiple chunks. The chunk-based approach
thus serves as an approach for monitoring the bitrate con-
tinuously to adjust the error bounds as a means to find a
solution for the entire ts rather than a way to strictly se-
cure compliance of the budget within each chunk.

A. Deciding error change

The CBS relies on a set of parameters.

• ChunkSize ρ (see Definition 8): How often error
bounds should be evaluated and models transmitted.

• Budget (see Eq. (5)): Number of bytes available for
transmission of each chunk.

• Buffer: Number of bytes of the accumulated
Budget that has not been utilised.

• BufferGoal: The size of the buffer the CBS strives
on keeping at all times.

• Rigorousness: In how many chunks the CBS needs
to adapt to the BufferGoal.

• MaxAge: Maximum number of time units a model
can span before it is terminated.

Example 9. Fig. 5 shows five chunks, with only PMC-
Mean models. Swing and Gorilla are being left out
for the sake of simplicity. Each square denotes a
model which is finished, with a size of 32 bits. The
ChunkSize is set to 120 seconds, which means that
every 120 seconds, a Budget of 70 bits is allowed.
Note that the Budget and BufferGoal are different
parameters, however, both are 70 bits in this example.

This Budget can be utilised or saved for later if too few
models are finished in the respective chunk. When a chunk
ends, a decision is made on whether to change the error
bounds or if the default error bounds are adhering to the
set Budget. In order to make this decision, linear regres-
sion is applied to the Buffer size of a number of trailing
chunks, called RegressionLength. This is done to en-
sure that chunks that contain a significant number of mod-
els will not increase the error bound accordingly. Instead,
the decision is based on a trend.

Example 9. (continued) Fig. 5 shows this approach,
where the Buffer of each of the five chunks is used.
The prognosis shows the Buffer size trends away from
the BufferGoal, and, for this reason, the error bounds
need to be increased in order to save space. This
process is described in Section IX.B. If the progno-
sis trended toward the BufferGoal, then the level of
Rigorousness would decide whether the error bounds
should be adjusted.

Rigorousness denotes the number of chunks in which
the Buffer should reach the BufferGoal, and if the
trend does not favour the Rigorousness, the error
bounds are adjusted accordingly. The CBS can also force
models to finish if they reach a certain age, which is de-
noted by MaxAge. This is useful in cases where models
become so long that they will never be transmitted. When
a buffer becomes negative, it would be impossible to trans-
mit models. Therefore they are kept in memory, while er-
ror bounds are increased in order to attempt to save enough
buffer to send them. The models are kept for a period if
the Buffer is too small to transmit them, and eventually,
a decision as to whether discard the models or exceed the
budget has to be made.

B. Adjusting error

To intelligently adjust error bounds, the bitrate of each ts
is stored, denoting how much each ts impacts the cost. A
moving weighted mean of the bitrate of the models on the
trailing n data points represents the cost of the individ-
ual ts. The moving weighted mean is defined in Eq. (6),
where xt corresponds to the bitrate of a model at times-
tamp t and |mt| to the length of the sequence a model
represents at timestamp t.

TBt =

∑n−1
i=0 |mt−i|xt−i∑n−1

i=0 |mt−i|
(6)

When error bounds need to be increased due to short-
age of space, as described in Section IX.A, a number
of tss (c) with the highest TB are marked as poten-
tial candidates for increased error bound. Two concur-
rent model compression processes are run on all of the
potential candidates over the course of the next chunk
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Figure 5: Chunk-based scheduler overview

using the default error bound and the maximum error
bound. The concurrent compression enables evaluation
of the increased error bound compared to the default er-
ror bound. The candidates with the largest savings are
prioritised when determining which tss should be com-
pressed using the max error bound. Based on the Buffer
and BufferGoal, the Savings needed are calculated
as Savings = BufferGoal −Buffer . Candidates are
then chosen until the Savings requirements are met. The
chosen candidate tss will have their error bound increased
in the newly finished chunk, whereas the rejected candi-
date tss remain unchanged. This process also helps deter-
mine how many tss (i.e. c) should be marked as candidates
next time the error bounds should be increased. If the sav-
ings obtained through these candidates was not enough to
meet the Savings requirements, the number is increased
and vice versa.

The mechanism for decreasing error bounds works
much in the same way as increasing error bounds. How-
ever, the candidates are chosen based on the lowest TB to
enable as many tss as possible to be decreased. The er-
ror bounds are always decreased to a 0 error bound, which
means that they are lossless. The selection of the candi-
dates is based on those which consume the most bytes,
which is the opposite of what happens when the error
bounds should be increased. It is important to note, that
this process is different from the process described in Sec-
tion VIII, as that component decreases the error bounds
immediately and over the course of a cooldown period.

X. EVALUATION

A. Metrics

This section evaluates the performance of MAKER. The
metrics that have been used for this evaluation are de-
scribed in the following. See Section IV for notation de-

tails.

• ModelSize (bytes) =∑
M∈T

∑
(m,ϵ)∈M

S(m) (7)

This metric refers to the total size of the model repre-
sentations for all models across all tss in the data set,
not including the size of the timestamps. It reflects
the data transmission cost, as larger models require
more data to be transmitted. This metric is only used
to define CompressionRatio.

• TimestampSize (bytes) =∑
M∈T

∑
(m,ϵ)∈M

S(t(m)) (8)

This metric refers to the total size of only the com-
pressed timestamps across the entire data set.

• CompressionRatio (ratio) =

S(TS)

ModelSize + TimestampSize
(9)

This metric denotes how much larger the original
data is compared to the compressed data.

• WeightedErrorBound (%) =∑
M∈T

∑
(m,ϵ)∈M

|m| · ϵ
|T | (10)

where |m| denotes the number of data points repre-
sented by model m.

This metric represents the weighted average error
bound across all data points in all tss in the entire
data set.

14



B Environment

• AverageErrorBound (%) =

∑
(m,ϵ)∈M

|m| · ϵ
|M| (11)

This metric denotes the average error bound across
all the models representing a single ts.

• WeightedActualErrorI (%) =

∑
MI∈TI

E(MI) · |MI |
|TI |

(12)

for models containing important data points and

WeightedActualErrorO (%) =

∑
MO∈TO

E(MO) · |MO|
|TO|

(13)

for models containing ordinary data points. These
metrics correspond to the terms of our minimisation
formula expressed in Eq. (3). They represent the av-
erage actual error observed after decompression and
measure the deviation of the decompressed points
from the original uncompressed data points.

• ImportantPointsPercentage (%) =

|TI |
|T | · 100% (14)

This metric denotes the percentage of important data
points across all tss.

B. Environment

The tests concerning memory usage and runtime perfor-
mance (described in Section X.H) are performed on a Bea-
gleBone with an AM335x 1GHz ARM® processor with
512MB memory. The operating system used is Debian
"Bullseye" Minimal Image[22].

C. Data sets

This section describes the data sets used for our evaluation
of MAKER. We use two data sets:

• Rover Environmental Monitoring Station Telemetry
(REMS)[21]

• Gas sensor array temperature modulation (GAS) [3,
4]

The REMS system is part of the Mars Science Labora-
tory mission launched by NASA in 2011 and it features
data recorded from weather conditions on Mars, such as
wind speed, temperatures and humidity. We use the data
from SOL 1160-1293. The sampling rate is 1 Hz, how-
ever, it is irregular due to gaps with missing values. The
GAS data set contains measurements from metal oxide
semiconductor (MOX) gas sensors in various conditions.
This data set is highly irregular as a result of having a sam-
pling rate of 3.5 Hz, which is rounded to millisecond accu-
racy. Table 6 describes the characteristics of both data sets.
TSs denotes the number of tss excluding the timestamp
column. For REMS, we have discarded the tss containing
text values, so only tss with floating point data remain.

Table 6: Data sets used for evaluation

Data set TSs Sampling
frequency (Hz) Size (MB)

REMS 86 1 3,274.37
GAS 19 3.5 584.16

D. Evaluation parameters

We now evaluate the effects of each of the parameters de-
scribed in Section IX. Table 7 shows the different val-
ues we test for each parameter. When modifying one or
more parameters during evaluation, the default values for
the rest of the parameters are written in bold. Because
the timestamps of GAS are expressed in milliseconds, the
MaxAge is scaled by 1, 000. The Budget is chosen
based on a balance between error and CompressionRa-
tio. ChunkSize is chosen to have approximately 1, 000
data points in each chunk in order to perform error bound
adjustments often. BufferGoal is 10, 000 bytes in or-
der the keep a small capacity for peaks in model creation.
RegressionLength is set to 10 to enable a fast reaction
to changes. Rigorousness is set to 10 in order to not
delay the adjustments for too long. The Z-score threshold
is set to 3.0, which is a common threshold for detecting
outliers as explained by the empirical rule, which states
that 99.7% of all observations in a normal distribution are
within 3 standard deviations of the mean[25].

E. Timestamp encoding techniques

This section examines the effects of using Huffman cod-
ing for compressing the offset lists compared to two other
commonly used techniques; Arithmetic coding and Delta-
delta encoding. These are described in Section III.A.c..

In this test, we compare TimestampSize with the results
of running Arithmetic coding on the offset lists. The over-
head occurring from the frequency information is included
in these results. The Delta-delta encoding was run on the
raw timestamps. Figs. 6 and 7 show the results of these
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E Timestamp encoding techniques

Table 7: Parameter values used for evaluation. Default parameters are written in bold

Parameter REMS GAS
MaxAge (time units) 1M 1,000M
Budget (bytes) 40k, 50k, 60k, 70k, 80k, 90k, 100k, 110k, 120k 32k, 36k, 40k, 44k, 48k, 52k, 56k, 60k, 64k, 68k
ChunkSize (time units) 1k 286k
BufferGoal (bytes) 10k; 100k 10k
RegressionLength 10; 100 10
Rigorousness 10
Default error bound 5
Max error bound 10; 15 10
Z-score threshold (δ) 1; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0; 5.5
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Figure 6: Timestamp compression for REMS. Fig. 6b is a
scaled version of Fig. 6a. OL denotes offset lists.
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compression techniques along with the results of com-
pressing with MAKER’s Huffman coding implementation
(i.e. TimestampSize); the results of compressing times-
tamps with only the offset lists; the results of compressing
using MOBY; and the full resolution sizes. Due to the dif-
ference in the sizes of the values, we provide two scalings
for each data set. For REMS, the approach of MAKER
offers the best compression, however, for GAS, a combi-
nation of offset lists and Arithmetic coding gives the best
compression. On the REMS data set, MAKER provides a
CompressionRatio of 131, 818.8 compared to storing the
timestamps in full resolution and 8.5 compared to MOBY.
For GAS, these ratios are 129.3 and 22.6 respectively. The
reason for these improvements is the approach our Times-
tamp Compressor takes to handle timestamps. Where
MOBY duplicates compressed timestamps for each ts, re-
sulting in very high redundancy, the approach of MAKER
is to reference the same timestamps across tss using the
offset lists.

It is worth noting that GAS has a smaller full resolution
size than REMS, however, the compressed timestamps are
larger than those of REMS. This is due to the irregular na-
ture of the GAS data set, which causes the offset lists to
grow. This is seen in the Only OL (offset lists) bars in
Fig. 7a when compared to the corresponding bar in Fig. 6a.
However, the former also shows that the offset lists can
be compressed efficiently using either Huffman coding or
Arithmetic coding. This is because the offset lists con-
tain a lot of very small values that occur frequently when
timestamp intervals fluctuate. This is handled well by both
the Huffman coding step, as short codes are assigned to
frequently occurring values, and Arithmetic coding, as the
sizes of the subintervals are based on the frequencies. This
shows us that our approach is robust enough to not explode
in size on irregular ts.
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F. Different Budget Configurations

The following results illustrate the trade-offs made by the
compression system based on changing the Budget pa-
rameter.

a. The impact of Budget

The impact of the Budget on the CompressionRa-
tio, WeightedErrorBound, WeightedActualErrorI, and
WeightedActualErrorO was analysed for both REMS and
GAS.

First, we analyse the REMS data set, shown in Fig. 8a.
As the Budget increases from 20, 000 to 140, 000, the
CompressionRatio decreases substantially, from 11.83 to
5.04. An examination of the WeightedErrorBound shows
that it starts at 2.82 at a Budget of 20, 000 and signif-
icantly decreases to 0.41 when the Budget is raised to
140, 000. This demonstrates that a larger Budget per-
mits the error bounds across the tss to be adjusted to more
strict values, thereby reducing the WeightedErrorBound
and forcing the system to compress with higher accuracy.
The rate of decrease in WeightedErrorBound significantly
slows down after a Budget of 120, 000, showing dimin-
ishing returns on the error bound reduction with further
increases in the Budget.

The WeightedActualErrorI and WeightedActualErrorO
results show a similar pattern to the error bounds.
The WeightedActualErrorO decreases from 0.416 at a
Budget of 20, 000 to 0.00052 at a Budget of 140, 000,
while the WeightedActualErrorI is always zero. This is a
significant feature of the system, demonstrating that it suc-
cessfully prioritises the accuracy of important data points,

keeping their error levels near zero, while ordinary data
points are the ones that are mostly affected by the varia-
tions in the Budget. Similarly to the error bound, the
rate of decrease in the WeightedActualErrorO slows down
dramatically as the Budget exceeds 120, 000.

Next, we evaluate the impact of the Budget on the
GAS data set, shown in Fig. 8b.

As the Budget increases the CompressionRatio de-
creases, starting at 3.33 at a Budget of 32, 000 and go-
ing down to 2.41 at a Budget of 68, 000. This be-
haviour is similar to what was observed in the REMS
data set. WeightedErrorBound and WeightedActualEr-
rorO decrease with an increasing Budget. Similarly to
the REMS data, WeightedActualErrorI is at zero and re-
mains stable, ensuring us that the system retains the crit-
ical information accurately. Additionally, the same di-
minishing returns can be seen on both the Compression-
Ratio, WeightedErrorBound, and WeightedActualErrorO,
confirming that the Budget only affects the system in a
certain range of values.

The observations from both data sets underscore the
system’s ability to maintain a lossless compression for
important data points, thereby effectively managing the
trade-off between CompressionRatio and data accuracy.
However, determining the optimal Budget requires care-
ful consideration of the specific application’s needs and
the limitations of the data transmission and storage capac-
ity.

b. Distribution of AverageErrorBound across tss

Fig. 9 presents the distribution of the AverageErrorBound
for different tss across the entire REMS, tested at three
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Figure 9: AverageErrorBound distributions of REMS

distinct Budget configurations: 40, 000, 80, 000, and
120, 000. The y-axis represents the frequency of occur-
rence of various intervals of the AverageErrorBound in
the data set at the respective Budget configuration. The
distributions provide an interesting insight into the over-
all performance of the compression system under vary-
ing Budget allocations. More specifically, they illumi-
nate how the AverageErrorBound is distributed across the
data set at each Budget level and how it evolves as the
Budget increases.

• As demonstrated in Fig. 9a, at a Budget of 40, 000,
the AverageErrorBound spans across a range of (0,
9]. Most frequently, it falls within the (0, 1] in-
terval, though a considerable portion of tss experi-
ence larger error bounds. This variation shows that
MAKER’s performance can vary considerably un-
der this Budget, with some tss achieving low error
bounds while others experience higher ones.

• When the Budget is increased to 80, 000, as de-
picted in Fig. 9b, a significant shift in the distribu-
tion can be observed. Here, the majority (41.86%) of
the tss have an AverageErrorBound in the (0.0, 0.5]
interval, signifying that the compression system can
model a substantial portion of tss with minimal er-
ror at this Budget level. However, it is important
to note that some tss still exhibit larger error bounds,
indicating a balance must be struck between low er-
ror bounds and effective Budget management, es-
pecially for those tss that display more complex be-
haviours.

• Upon further increasing the Budget to 120, 000
(Fig. 9c), the AverageErrorBound significantly skews
towards the lower end, with 65.38% of tss falling
within the (0.00, 0.01] interval. The shrinking
range from (0.0, 5.0] at a Budget of 80, 000 to
(0.00, 0.09] at a Budget of 120, 000 signifies a ma-

jor improvement in the compression system’s capa-
bility to reduce errors, even more so than the im-
provement observed from 40, 000 to 80, 000. This
demonstrates that, with more resources at its dis-
posal, the system is increasingly effective at repre-
senting the tss with high accuracy. One thing to note
is that 2 of the ts had a higher AverageErrorBound of
about 5, but these were excluded for clarity. The rea-
son for their existence in this configuration is further
explained in Section X.F.c..

The observed distribution alterations imply that the
compression system improves its capability of assigning
lower error bounds to all tss in the data set with a higher
Budget. This provides a quantitative understanding of
the Budget parameter’s influence and showcases that a
larger Budget contributes to a more consistent and pre-
cise compression throughout the entire data set.

However, it is important to recognise the concept of di-
minishing returns beyond a certain threshold. Despite the
dramatic improvement from 80, 000 to 120, 000, it is un-
likely that this rate of error reduction will continue indefi-
nitely with further increases in Budget, but this is heav-
ily correlated with the behaviour of future data. Further
reductions are not only less likely but may also be less
meaningful in practical terms due to the already high pre-
cision achieved.

c. The maximum AverageErrorBound and AverageAc-
tualError across increasing budgets

The AverageErrorBound and AverageActualError metrics
provide an additional perspective on the compression sys-
tem’s performance. These metrics elucidate how the tss
within the data set are treated by the system, specifi-
cally how the "worst-case" performance of the algorithm
changes as the budget increases.
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Figure 10: Maximum AverageErrorBound and Maximum AverageAc-
tualError of REMS

In Fig. 10, the following is observed:

• Max AverageErrorBound: This metric represents the
highest AverageErrorBound across all tss for differ-
ent Budget configurations. As expected, the max-
imum AverageErrorBound across all tss decreases
with an increasing Budget. This shows that a larger
Budget allows the algorithm to allocate smaller er-
ror bounds, leading to more accurate model repre-
sentations across all tss. An intriguing observation,
however, is the minimal decrease in the maximum
AverageErrorBound beyond a Budget of 100, 000.
This is indicative of a point of diminishing returns,
where further increases in the Budget contribute lit-
tle towards "worst-case" model precision.

• Max AverageActualError: This metric represents the
highest AverageActualError across all tss for dif-
ferent Budget configurations. As the Budget
increases, the maximum AverageActualError de-
creases substantially. Notably, the interval between
a Budget of 110, 000 and 120, 000 shows a dis-
proportionate reduction in the maximum AverageAc-
tualError.

The maximum AverageActualError does not mirror the
trend of the AverageErrorBound. This is because there
are periods in the data stream where there is not enough
Budget to cover the extreme peaks in bitrate, which
causes a few of the ts to increase dramatically in error
bound. Since these results are based on the AverageEr-
rorBound, the maximum AverageErrorBound is heavily
skewed by these few ts.

Although these maximum values represent the "worst-
case" scenarios across all tss in the data set, we do observe
in Fig. 9 that most tss experience significantly lower Aver-
ageErrorBound. The maximum values, however, provide
insights into the potential extent of the error that the algo-
rithm might exhibit for some tss in the data set.

The minimum AverageErrorBound was not included in
this plot as it was always at or very near 0 due to the pres-
ence of at least one static ts in the data set.
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Figure 11: Percentage of important points of GAS and REMS

We now evaluate MAKER on the ImportantPointsPer-
centage metric. Figure 11 illustrates an inverse relation-
ship between the Z-score threshold and the proportion of
identified important points (outliers) within the data set.
Specifically, we observe a trend where an increase in the
Z-score threshold results in a decrease in the proportion
of outliers. This decrease is exponential, suggesting that
most data points in the distribution are within close prox-
imity of the mean, and outliers become progressively rarer
as we increase the threshold.

At each Z-score threshold, the proportion of outliers in
the GAS data set is consistently higher than that in the
REMS data set. This implies that the GAS data set pos-
sesses greater variability or more extreme values. Under-
standing these differences can provide insights for fine-
tuning the Z-score threshold depending on the data set’s
characteristics.

H. Performance

Fig. 13a shows significant improvements in process-
ing rate as opposed to MOBY. On the REMS data set,
MAKER compresses data points 26x faster with a pro-
cessing rate of 184, 000 data points each second. How-
ever, the processing rate is decreased on the very irregular
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Figure 13: Performance

data set GAS at a processing rate of 84, 000 data points
each second. This is due to the creation of and the oc-
casional internal searches of the global offset list, which
impacts the processing rate negatively.

Fig. 13b shows that memory impact on the REMS data
set is vastly reduced compared to MOBY, where MAKER
is using only 5% of the memory required by MOBY. The
memory impact increases on the GAS data set because the
full resolution timestamps and Gorilla models are explod-
ing in size due to the irregularity of the data set.

I. Buffer dynamics

Fig. 12 shows the development of the Buffer throughout
the runtime of the system. Fig. 12a shows how the Buffer
behaves when MAKER chooses which tss should be can-
didates for error bound changes and Fig. 12b shows the
case where the maximum number of candidates are chosen
each time, e.g., the system is able to evaluate savings on
all tss. The behaviour of the Buffer is almost identical,

which demonstrates that MAKER chooses the right can-
didates in the majority of the cases. Fig. 12c reveals that
when the RegressionLength is increased MAKER has
a large negative Buffer several times, which means that
the error bounds are lowered too much because the system
reacts slower compared to a lower RegressionLength.
It is essential for the system to keep the Buffer as
close to the BufferGoal as possible at all times, and
Fig. 12d shows that when the BufferGoal is increased
to 100, 000, the Buffer is shifted upwards, leaving few
cases with a negative Buffer. All of the figures show a
positive spike, which is the result of an extended period
of very limited bitrate across the majority of tss. The low
bitrate results in a build-up of the Buffer, which can be
utilised when possible to bring the Buffer down to the
BufferGoal.

J. Budget utilisation

In the following evaluation, we analysed the system’s
Budget utilisation at different Budget levels to un-
derstand its effectiveness in prioritising important data
and maintaining a balance between data accuracy and
Budget constraints. The Budget utilisation results are
computed as a percentage of the given Budget and are
presented in Fig. 14.

From the results in Fig. 14a, we observe that for
lower Budget configurations (20, 000 to 40, 000 bytes),
MAKER exceeds the available Budget, utilising up to
246.1% for a Budget of 20, 000 bytes. This situation
represents the critical case mentioned in the Section IV,
where the first condition of equation Eq. (3) cannot be met
due to the data being unable to be compressed to a suf-
ficiently small size that complies with the upper bound.
However, MAKER was designed to handle such cases by
prioritising data points deemed important through intel-
ligent error bounds adjustment, thus preserving the most
critical information even when the Budget is exceeded.

As we increase the Budget to 50, 000 bytes, we see
that the Budget utilisation stabilises to around 100%,
indicating that MAKER can effectively utilise the given
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Figure 14: Budget usage by ModelSize of REMS

Budget. This observation is consistent up to a Budget
of 90, 000 bytes, demonstrating that MAKER is capable of
effectively managing resources, ensuring the data quality
and maintaining Budget constraints according to Eq. (3).

As we increase the Budget further to 120, 000 bytes
and beyond, the Budget utilisation starts to decrease,
falling to 82.47% for a Budget of 140, 000 bytes. As
we could see in Section X.G, the amount of data points
deemed important is less than a 0.025%, which indicates
that the system has a sufficiently large amount of resources
to allocate more to not just the important data points, but
many of the ordinary data points as well. In these cases,
the system does not need to use the full Budget as it is al-
ready achieving a high data quality, even while complying
with the constraints presented in Eq. (3).

When increasing the max error bound to 15%, shown
in Fig. 14b, the utilisation remains virtually unchanged on
the Budget configurations that stay within the Budget
at 10% error bound. This is due to MAKER not needing
the increased max error bound. However, when looking
at smaller Budget configurations, their utilisation is de-
creased as they can make use of the extra error bound. The
Budget configuration of 40, 000 almost stays within the
Budget, whereas the 20, 000 and 30, 000 Budget con-
figurations are decreased compared to 10% error bound.

To summarise, these results indicate that MAKER ef-
fectively utilises the Budget, adjusting its strategy dy-
namically based on the available resources. When re-
sources are constrained, it prioritises the most important
data points, ensuring the best possible data quality within
the limited given Budget. When more resources are
available, it can afford to decrease the error bounds, pro-
viding higher data quality across the board while still max-
imising the amount of Budget utilised. Therefore, the re-

sults demonstrate that MAKER can effectively balance the
trade-off between data accuracy and Budget constraints,
making it a viable solution for the problem presented in
Section IV.

XI. DISCUSSION

In this section, we discuss some thoughts, ideas and con-
siderations regarding the functionality and performance of
MAKER.

A. Exceeding the Budget

The flexibility of MAKER could be improved by having
options when confronted with exceeding the budgetary
constraints. Users could tailor the response of the sys-
tem based on their needs - either by discarding older data
models or exceeding the established Budget. This adapt-
ability would enhance MAKER’s versatility and attempts
to accommodate a myriad of scenarios.

Balancing between the freshness of data and ensuring
its continuity is a dilemma. If the Budget is exceeded,
the models not transmitted yet are stored in memory as
explained in Section IX. When selecting which models
to transmit first in the next chunk, MAKER could be
equipped with two potential strategies: ’First In, First Out’
(FIFO), where the oldest models are discarded, or focus-
ing on the newest models, thereby always prioritising the
most recent data. Each approach has its merits, contingent
on the specific requirements of the user. The FIFO method
ensures a continuous data stream, critical for understand-
ing trends and changes over time. Conversely, retaining
the newest models provides the most current snapshot of
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B Performance and memory improvements

the data, essential for real-time response and decision-
making. This approach might lead to gaps in the data,
but the trade-off is access to the most recent and perti-
nent information. The most optimal strategy depends on
individual needs: Timely information necessitates priori-
tising the latest models while understanding longer trends
favours the FIFO approach.

A hybrid approach might serve best, where decisions
are made considering both the model’s age and its impor-
tance. An additional factor to consider could be the bitrate,
where models with a smaller bitrate should be prioritised
in order to preserve and transmit the maximum amount of
data points.

In summary, MAKER strives for data accuracy,
Budget adherence, and user-driven adaptability. Fu-
ture efforts could delve deeper into exploring additional
strategies to further fine-tune this decision-making pro-
cess, thereby enhancing the system’s robustness and flexi-
bility.

B. Performance and memory improvements

Regarding compression and transmission systems, a bal-
ance must be struck between processing speed, mem-
ory footprint, and data integrity. MAKER has been de-
signed to handle these constraints, presenting substantial
improvements over its predecessor, MOBY, in both per-
formance and memory usage.

As shown on Fig. 13a, the improved performance offers
a large processing speed increase. Not only does this mean
faster processing times, but it also translates into less en-
ergy consumed by the system. In an environment where
other tasks might compete for CPU usage, or in the Mars
rover’s case, where energy must be consumed as sparsely
as possible, the speed and efficiency of MAKER become
crucial.

Simultaneously, we have also made substantial strides
in reducing the system’s memory footprint. This im-
provement translates into a system that is not only more
lightweight and efficient but also more compatible with
other applications sharing the same resources. Decreased
memory usage reduces the likelihood of system crashes
due to memory overflow, particularly when processing
larger, complex, or highly irregular data sets.

These improvements do not operate in isolation but
have a synergistic effect with other parts of MAKER as
well. The less memory the system uses, the more room
there is to choose a higher Buffer, allowing for more data
models to be stored. This is tied directly to our ability to
manage the data transmission Budget better, giving the
user more flexibility when choosing between discarding
old models or exceeding the Budget.

By enhancing processing speeds and reducing memory
usage, we have created a system that promises greater sta-
bility and resource efficiency, all within the constraints of

real-world scenarios.

C. Considering irregularity as an importance metric

While this paper has discussed at length the potential sig-
nificance of irregularities in time series data, we have not
formally addressed irregularity as an importance metric,
as outliers have been. Incorporating irregularity as an im-
portance metric could potentially add another layer of so-
phistication to our system, helping us identify more im-
portant data points and improve prioritisation of the data
transmission. The presumption that irregularity could be a
sign of importance has already been established in the pa-
per, as irregular data points often signal a departure from
the norm and therefore could contain valuable informa-
tion.

However, there are several challenges and considera-
tions associated with this approach. For one, how do we
objectively measure irregularity, and how do we deter-
mine which irregular data points are more important than
others? While the Z-scores used in the Importance De-
terminer component provide a measure of how far a data
point deviates from the mean, this may not directly trans-
late to some hypothetical measure of irregularity. More
research would need to be done to develop an effective
metric for irregularity, and it might require different tech-
niques depending on the specific characteristics of the data
set.

A critical case to consider is when data sets are inher-
ently irregular. In such cases, irregularity would be the
norm rather than the exception, and it could be challeng-
ing to distinguish important irregularities from ordinary
ones. We would need to determine how to measure rel-
ative irregularity within a data set and how to adjust our
importance scoring accordingly.

In conclusion, while incorporating irregularity as an im-
portance metric could potentially enhance our system’s
ability to identify and prioritise important data points, it
would also introduce several complexities and challenges
that would need to be carefully addressed. Future work
could explore this idea in more detail, investigating how an
irregularity metric could be implemented and what impact
it might have on the overall performance and functionality
of our system.

XII. CONCLUSION

In this paper, we have detailed the design and capabilities
of MAKER, a time series compression and transmission
system. This system improves upon the groundwork set
by the model-based compression system MOBY[12], en-
hancing it by introducing the ability to adapt error bounds
in real time according to a user-specified data budget.

At its core, MAKER differentiates between important
and ordinary data points, concentrating on maintaining

22



low error bounds for the significant data. It also identifies
areas of the data set where larger error bounds might lead
to considerable savings, further enhancing its ability to ad-
here to budget constraints. A key feature is the preserva-
tion of timestamps in their original form instead of inter-
polating/discarding them, as data irregularity can denote
importance, and preservation of the timeline at which data
arrived decreases the risk of inconclusive data analysis.

This is made possible through three core compo-
nents. The Importance Determiner component employs
Welford’s online algorithm and Z-scores to identify out-
liers and mark important data points. The Chunk-based
Scheduler component then segments the data stream into
manageable chunks, facilitating continuous monitoring
and intelligent adjustment of error bounds. Finally, the
Timestamp Compressor component, through a blend of
offset lists constructed with run-length encoding on the
offsets and Huffman coding to further enhance the com-
pression ratio, provides lossless compression for times-
tamps and thereby captures the irregularity.

Our evaluation demonstrates that MAKER generally
operates within the defined data budget by intelligently
adjusting error bounds, only faltering in extreme cases
where budgets are unrealistically low based on the in-
coming data. In cases where there is a superfluous bud-
get, the system will maximise the data accuracy as much
as possible across the data set, such that the budget is
utilised to its full potential. On the performance and
memory front, MAKER exhibits an impressive improve-
ment over MOBY. These combined improvements en-
hance MAKER’s adaptability, resilience, and suitability
for diverse scenarios, especially in remote systems where
resource constraints are a common reality.

While there is always room for enhancement and addi-
tional fine-tuning, MAKER represents a step forward in
managing the delicate balance between data integrity, re-
source usage, and adherence to data budget constraints.
Future work might explore additional strategies and mod-
els to further refine the system’s capabilities.

XIII. ACKNOWLEDGEMENT

We thank Torben Bach Pedersen for his time and super-
vision. We also thank Cobham SATCOM for their time,
sharing knowledge, and for lending equipment for test,
and lastly, we thank NASA for elaborating on the REMS
data set.

References

[1] Kiriakos Alexiou, Efthimios G. Pariotis, and He-
len C. Leligou. “Sensor Data Quality in Ships:
A Time Series Forecasting Approach to Compen-
sate for Missing Data and Drift in Measurements
of Speed through Water Sensors”. In: Designs
7.2 (2023). ISSN: 2411-9660. DOI: 10 . 3390 /
designs7020046. URL: https : / / www .
mdpi.com/2411-9660/7/2/46.

[2] Jason Brownlee. How To Resample and Inter-
polate Your Time Series Data With Python. Ac-
cessed on 04/10/2023. Dec. 2016. URL: https:
/ / machinelearningmastery . com /
resample-interpolate-time-series-
data-python.

[3] Javier Burgués, Juan Manuel Jiménez-Soto, and
Santiago Marco. “Estimation of the limit of de-
tection in semiconductor gas sensors through lin-
earized calibration models”. In: Analytica Chim-
ica Acta 1013 (2018), pp. 13–25. ISSN: 0003-2670.
DOI: https : / / doi . org / 10 . 1016 / j .
aca.2018.01.062. URL: https://www.
sciencedirect.com/science/article/
pii/S0003267018301673.

[4] Javier Burgués and Santiago Marco. “Multivariate
estimation of the limit of detection by orthogo-
nal partial least squares in temperature-modulated
MOX sensors”. In: Analytica Chimica Acta 1019
(2018), pp. 49–64. ISSN: 0003-2670. DOI: https:
/ / doi . org / 10 . 1016 / j . aca .
2018 . 03 . 005. URL: https : / / www .
sciencedirect.com/science/article/
pii/S0003267018303702.

[5] Giorgio Buttazzo and Luca Abeni. “Adaptive rate
control through elastic scheduling”. In: Proceed-
ings of the 39th IEEE Conference on Decision and
Control (Cat. No.00CH37187). Vol. 5. Dec. 2000,
4883–4888 vol.5. DOI: 10.1109/CDC.2001.
914704.

[6] Huamin Chen, Jian Li, and P. Mohapatra. “RACE:
time series compression with rate adaptivity and er-
ror bound for sensor networks”. In: 2004 IEEE In-
ternational Conference on Mobile Ad-hoc and Sen-
sor Systems (IEEE Cat. No.04EX975). Oct. 2004,
pp. 124–133. DOI: 10.1109/MAHSS.2004.
1392089.

[7] Giacomo Chiarot and Claudio Silvestri. “Time Se-
ries Compression Survey”. In: ACM Comput. Surv.
55.10 (Feb. 2023). ISSN: 0360-0300. DOI: 10 .
1145/3560814. URL: https://doi.org/
10.1145/3560814.

23

https://doi.org/10.3390/designs7020046
https://doi.org/10.3390/designs7020046
https://www.mdpi.com/2411-9660/7/2/46
https://www.mdpi.com/2411-9660/7/2/46
https://machinelearningmastery.com/resample-interpolate-time-series-data-python
https://machinelearningmastery.com/resample-interpolate-time-series-data-python
https://machinelearningmastery.com/resample-interpolate-time-series-data-python
https://machinelearningmastery.com/resample-interpolate-time-series-data-python
https://doi.org/https://doi.org/10.1016/j.aca.2018.01.062
https://doi.org/https://doi.org/10.1016/j.aca.2018.01.062
https://www.sciencedirect.com/science/article/pii/S0003267018301673
https://www.sciencedirect.com/science/article/pii/S0003267018301673
https://www.sciencedirect.com/science/article/pii/S0003267018301673
https://doi.org/https://doi.org/10.1016/j.aca.2018.03.005
https://doi.org/https://doi.org/10.1016/j.aca.2018.03.005
https://doi.org/https://doi.org/10.1016/j.aca.2018.03.005
https://www.sciencedirect.com/science/article/pii/S0003267018303702
https://www.sciencedirect.com/science/article/pii/S0003267018303702
https://www.sciencedirect.com/science/article/pii/S0003267018303702
https://doi.org/10.1109/CDC.2001.914704
https://doi.org/10.1109/CDC.2001.914704
https://doi.org/10.1109/MAHSS.2004.1392089
https://doi.org/10.1109/MAHSS.2004.1392089
https://doi.org/10.1145/3560814
https://doi.org/10.1145/3560814
https://doi.org/10.1145/3560814
https://doi.org/10.1145/3560814


References

[8] Marco Dalai and Riccardo Leonardi. “Approxima-
tions of One-Dimensional Digital Signals Under
thelinftyNorm”. In: IEEE Transactions on Sig-
nal Processing 54.8 (Aug. 2006), pp. 3111–3124.
ISSN: 1941-0476. DOI: 10.1109/TSP.2006.
875394.

[9] Dell. Hard Drive - Why Do Solid State Devices
(SSD) Wear Out. Accessed on 10/06/2023. Sept.
2021. URL: https : / / www . dell . com /
support / kbdoc / da - dk / 000137999 /
hard - drive - why - do - solid - state -
devices-ssd-wear-out?lang=en.

[10] Frank Eichinger et al. “A Time-Series Compression
Technique and Its Application to the Smart Grid”.
In: The VLDB Journal 24.2 (Apr. 2015), pp. 193–
218. ISSN: 1066-8888. DOI: 10.1007/s00778-
014-0368-8. URL: https://doi.org/10.
1007/s00778-014-0368-8.

[11] Hazem Elmeleegy et al. “Online Piece-Wise Lin-
ear Approximation of Numerical Streams with
Precision Guarantees”. In: Proc. VLDB Endow.
2.1 (Aug. 2009), pp. 145–156. ISSN: 2150-8097.
DOI: 10 . 14778 / 1687627 . 1687645. URL:
https://doi.org/10.14778/1687627.
1687645.

[12] Frederik Agneborn, Emil L. Bech, Teis V. Har-
rington, Martin O. Lykkegaard, Daniel Vilslev.
“MOBY: MOdel-Based compression sYstem”.
Aalborg University, 9th Semester Project/Pre-
Master Thesis, group cs-22-dt-9-01. 2023.

[13] Wang Fuzong, Guo Helin, and Zhao Jian. “Dy-
namic data compression algorithm selection for big
data processing on local file system”. In: Proceed-
ings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence. 2018,
pp. 110–114.

[14] Robert van de Geijn and Margaret Myers.
ALAFF Catastrophic cancellation. Accessed on
15/06/2023. Apr. 2023. URL: https://www.
cs.utexas.edu/users/flame/laff/
alaff / a2appendix - catastrophic -
cancellation.html.

[15] Carlos Gonzalez and David Lara Arango. “Tech-
niques for the Automated Detection of Anomalies
and Assessment of Quality in High-Frequency Data
Collection Systems”. In: 4th Hull Performance &
Insight Conference. 2019, pp. 143–152.

[16] David A. Huffman. “A Method for the Construction
of Minimum-Redundancy Codes”. In: Proceedings
of the IRE 40.9 (1952), pp. 1098–1101. DOI: 10.
1109/JRPROC.1952.273898.

[17] Søren Kejser Jensen, Torben Bach Pedersen, and
Christian Thomsen. “Modelardb: Modular model-
based time series management with spark and cas-
sandra”. In: Proceedings of the VLDB Endowment
11.11 (2018), pp. 1688–1701.

[18] Lasse V. Karlsen. Efficient way of storing Huff-
man tree (Lasse V. Karlsen’s reply). Accessed
on 09/05/2023. Apr. 2009. URL: https :
/ / stackoverflow . com / questions /
759707/efficient-way-of-storing-
huffman-tree.

[19] Iosif Lazaridis and Sharad Mehrotra. “Capturing
sensor-generated time series with quality guaran-
tees”. In: Proceedings 19th International Confer-
ence on Data Engineering (Cat. No.03CH37405).
Mar. 2003, pp. 429–440. DOI: 10.1109/ICDE.
2003.1260811.

[20] Hussein Sh. Mogahed and Alexey G. Yakunin. “De-
velopment of a Lossless Data Compression Algo-
rithm for Multichannel Environmental Monitoring
Systems”. In: 2018 XIV International Scientific-
Technical Conference on Actual Problems of Elec-
tronics Instrument Engineering (APEIE). Oct.
2018, pp. 483–486. DOI: 10 . 1109 / APEIE .
2018.8546121.

[21] NASA. Accessed on 07/06/2023. Mar. 2023. URL:
https://atmos.nmsu.edu/data_and_
services / atmospheres _ data / MARS /
curiosity/rems.html.

[22] Robert C. Nelson. Debian 11.x (Bullseye) Mini-
mal Snapshot. Accessed on 15/06/2023. May 2023.
URL: https://forum.beagleboard.org/
t/debian- 11- x- bullseye- monthly-
snapshots/31280.

[23] Tuomas Pelkonen et al. “Gorilla: a fast, scalable, in-
memory time series database”. In: Proc. VLDB En-
dow. 8.12 (Aug. 2015), pp. 1816–1827. ISSN: 2150-
8097. DOI: 10.14778/2824032.2824078.

[24] Piotr Przymus and Krzysztof Kaczmarski. “Dy-
namic Compression Strategy for Time Series
Database Using GPU”. In: New Trends in
Databases and Information Systems. Ed. by Bar-
bara Catania et al. Cham: Springer International
Publishing, 2014, pp. 235–244. ISBN: 978-3-319-
01863-8.

[25] Sheldon M. Ross. “Chapter 2 - Descriptive statis-
tics”. In: Introduction to Probability and Statistics
for Engineers and Scientists (Sixth Edition). Ed. by
Sheldon M. Ross. Sixth Edition. Academic Press,
2021, pp. 11–61. ISBN: 978-0-12-824346-6. DOI:
https : / / doi . org / 10 . 1016 / B978 -
0-12-824346-6.00011-9. URL: https:

24

https://doi.org/10.1109/TSP.2006.875394
https://doi.org/10.1109/TSP.2006.875394
https://www.dell.com/support/kbdoc/da-dk/000137999/hard-drive-why-do-solid-state-devices-ssd-wear-out?lang=en
https://www.dell.com/support/kbdoc/da-dk/000137999/hard-drive-why-do-solid-state-devices-ssd-wear-out?lang=en
https://www.dell.com/support/kbdoc/da-dk/000137999/hard-drive-why-do-solid-state-devices-ssd-wear-out?lang=en
https://www.dell.com/support/kbdoc/da-dk/000137999/hard-drive-why-do-solid-state-devices-ssd-wear-out?lang=en
https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.14778/1687627.1687645
https://www.cs.utexas.edu/users/flame/laff/alaff/a2appendix-catastrophic-cancellation.html
https://www.cs.utexas.edu/users/flame/laff/alaff/a2appendix-catastrophic-cancellation.html
https://www.cs.utexas.edu/users/flame/laff/alaff/a2appendix-catastrophic-cancellation.html
https://www.cs.utexas.edu/users/flame/laff/alaff/a2appendix-catastrophic-cancellation.html
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://stackoverflow.com/questions/759707/efficient-way-of-storing-huffman-tree
https://stackoverflow.com/questions/759707/efficient-way-of-storing-huffman-tree
https://stackoverflow.com/questions/759707/efficient-way-of-storing-huffman-tree
https://stackoverflow.com/questions/759707/efficient-way-of-storing-huffman-tree
https://doi.org/10.1109/ICDE.2003.1260811
https://doi.org/10.1109/ICDE.2003.1260811
https://doi.org/10.1109/APEIE.2018.8546121
https://doi.org/10.1109/APEIE.2018.8546121
https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/curiosity/rems.html
https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/curiosity/rems.html
https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/curiosity/rems.html
https://forum.beagleboard.org/t/debian-11-x-bullseye-monthly-snapshots/31280
https://forum.beagleboard.org/t/debian-11-x-bullseye-monthly-snapshots/31280
https://forum.beagleboard.org/t/debian-11-x-bullseye-monthly-snapshots/31280
https://doi.org/10.14778/2824032.2824078
https://doi.org/https://doi.org/10.1016/B978-0-12-824346-6.00011-9
https://doi.org/https://doi.org/10.1016/B978-0-12-824346-6.00011-9
https://www.sciencedirect.com/science/article/pii/B9780128243466000119
https://www.sciencedirect.com/science/article/pii/B9780128243466000119


References

//www.sciencedirect.com/science/
article/pii/B9780128243466000119.

[26] Raimund Seidel. “Small-Dimensional Linear Pro-
gramming and Convex Hulls Made Easy.” In:
Discrete & computational geometry 6.5 (1991),
pp. 423–434. URL: http://eudml.org/doc/
131168.

[27] Julien Spiegel, Patrice Wira, and Gilles Hermann.
“A Comparative Experimental Study of Lossless
Compression Algorithms for Enhancing Energy Ef-
ficiency in Smart Meters”. In: 2018 IEEE 16th In-
ternational Conference on Industrial Informatics
(INDIN). July 2018, pp. 447–452. DOI: 10.1109/
INDIN.2018.8471921.

[28] Robert Underwood et al. “FRaZ: A Generic High-
Fidelity Fixed-Ratio Lossy Compression Frame-
work for Scientific Floating-point Data”. In:
2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Los Alamitos,
CA, USA: IEEE Computer Society, May 2020,
pp. 567–577. DOI: 10 . 1109 / IPDPS47924 .
2020 . 00065. URL: https : / / doi .
ieeecomputersociety.org/10.1109/
IPDPS47924.2020.00065.

[29] B.P. Welford. “Note on a Method for Calculat-
ing Corrected Sums of Squares and Products”.
In: Technometrics 4.3 (1962), pp. 419–420. DOI:
10 . 1080 / 00401706 . 1962 . 10490022.
eprint: https : / / www . tandfonline .
com / doi / pdf / 10 . 1080 / 00401706 .
1962 . 10490022. URL: https : / / www .
tandfonline.com/doi/abs/10.1080/
00401706.1962.10490022.

[30] Ian H. Witten, Radford M. Neal, and John G.
Cleary. “Arithmetic Coding for Data Compres-
sion”. In: Commun. ACM 30.6 (June 1987),
pp. 520–540. ISSN: 0001-0782. DOI: 10.1145/
214762.214771. URL: https://doi.org/
10.1145/214762.214771.

25

https://www.sciencedirect.com/science/article/pii/B9780128243466000119
https://www.sciencedirect.com/science/article/pii/B9780128243466000119
http://eudml.org/doc/131168
http://eudml.org/doc/131168
https://doi.org/10.1109/INDIN.2018.8471921
https://doi.org/10.1109/INDIN.2018.8471921
https://doi.org/10.1109/IPDPS47924.2020.00065
https://doi.org/10.1109/IPDPS47924.2020.00065
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00065
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00065
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00065
https://doi.org/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771


XIV. Appendices

9

4

2

EOL (1) 4 (1)

1 (2)

5

5 (2) 3

55 (1) 60 (2)

0

0

0 1

1

1

0 1

0 1

Figure 15: Huffman coding tree based on the global offset list show in
Table 2
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Figure 16: Huffman coding tree based on the local offset list show in
Table 3

Table 8: Huffman codes for global offset list

Value Control code
1 01
4 001
5 10
55 110
60 111
EOL 1000

Table 9: Huffman codes for local offset list

Value Control code
0 1110
1 0
2 110
3 1001
4 1010
5 1011
EOTS 1111
EOL 1000

Algorithm 5 DecodeTree

Input: Bit string Encoding
Output: Tree node

1: if (next bit of Encoding is 1) then
2: Value← read value from Encoding
3: Tree node Node
4: Node.Value← Value
5: return Node
6: else
7: Tree node leftChild← DecodeTree(Encoding)
8: Tree node rightChild← DecodeTree(Encoding)
9: Tree node newNode

10: newNode.leftChild← leftChild
11: newNode.rightChild← rightChild
12: return newNode
13: end if
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