
Practical Regulatory Compliance in
Database Systems

Alexander Nykjær, Ane Søgaard Jørgensen,
and Jakob Sønderby Kristensen

Summary
The General Data Protection Regulation (GDPR), which came into effect in 2018, regulates
how natural or legal persons such as companies, public authorities, agencies, or other bodies
process the personal data of natural persons [European Commission, 2016]. As a result, many
companies have had to rework their approach to processing personal data, as typical database
practices, such as storing data forever or reusing data for different purposes, are at odds with
GDPR [Agarwal et al., 2022] [Shastri et al., 2019a] [Shastri et al., 2019b].

The objective of this project is to design and prototype a Data Protection Compliance Tool
(DPCT) that supports companies in making their existing database systems GDPR compliant.
This is achieved by allowing a user of DPCT to modify an existing database system in such a
manner, that the following requirements are fulfilled:

1. Personal data is only processed for legitimate and specific purposes.

2. Personal data is only processed on a legal basis.

3. Personal data is associated with an individual.

4. Personal data is only stored for as long as it is necessary to fulfil a purpose, and it is
deleted as soon as that is no longer the case.

5. Operations affecting personal data are logged such that regulators can inspect compli-
ance.

DPCT supports the fulfillment of these requirements by enabling its users to associate all
personal data with metadata that define the purposes for storing it, its associated individual,
and when it should be deleted.

Existing studies propose much of the functionality needed to fulfill the requirements. Kraska
et al. [2019] propose a system that fulfills many of the requirements, but provide only an
abstract design and no implementation. The contribution of DPCT is to implement some
of this functionality and to combine it with the data vacuuming, presented by Palmer and
Srikandarajah [2022], in order to provide companies with a tool that helps them ensure that
all personal data in their existing database systems is compliant with GDPR, and is removed as
soon as that is no longer the case. Although there are preconditions for DPCT to be applicable,
existing work on schema evolution by Curino et al. [2008, 2010] and Nykjær et al. [2023] can
be used to fulfill these preconditions.

DPCT allows a user to register columns in an existing database as containing personal data.
After a column is registered as containing personal data, DPCT can give an overview of the

2

metadata needed to ensure that the personal data is stored in compliance with GDPR. DPCT
enables its users to register the metadata and vacuuming policies needed to document that
the personal data is being processed for legitimate and specific purposes, can be associated
with a natural person, and is deleted when it is no longer being processed for a valid purpose.

The prototype of DPCT fulfills the requirements defined for the system, except for the require-
ment Legal processing, which requires that personal data must be stored with a legal basis. It
is only possible to determine the legal basis on which personal data is being processed using
DPCT if the legal basis is a legal obligation.

The design and implementation of DPCT presented in this report can assist companies in
complying with specific aspects of GDPR. However, this design can be extended to provide
support for additional aspects. Several extensions are presented as future work, including
fulfilling the missing requirement, providing built-in support for the rights of individuals,
and extending logging to support verification of external changes to personal data.

Agarwal, A., George, M., Jeyaraj, A. and Schwarzkopf, M. [2022], ‘Retrofitting GDPR compli-
ance onto legacy databases’, Proceedings of the VLDB Endowment. 15(4), 958–970.
URL: https://doi.org/10.14778/3503585.3503603

Curino, C. A., Moon, H. J., Deutsch, A. and Zaniolo, C. [2010], ‘Update rewriting and integrity
constraint maintenance in a schema evolution support system: PRISM++’, Proceedings of the
VLDB Endowment 4(2), 117–128.

Curino, C. A., Moon, H. J. and Zaniolo, C. [2008], ‘Graceful database schema evolution: The
prism workbench’, Proceedings of the VLDB Endowment 1(1), 761–772.

European Commission [2016], ‘2016 reform of eu data protection rules’.
URL: https://eur-lex.europa.eu/eli/reg/2016/679/oj

Kraska, T., Stonebraker, M., Brodie, M., Servan-Schreiber, S. and Weitzner, D. [2019], Schen-
gendb: A data protection database proposal, in ‘Heterogeneous Data Management, Poly-
stores, and Analytics for Healthcare’, Springer International Publishing, pp. 24–38.
URL: https://doi.org/10.1007/978-3-030-33752-0_2

Nykjær, A. M., Jørgensen, A. S. and Kristensen, J. S. [2023], ‘Towards practical regulatory
compliance in database systems’.

Palmer, A. H. and Srikandarajah, S. [2022], ‘Design and implementation of a system for rule-
based data retention compliance’. Report not publicly available.

Shastri, S., Banakar, V., Wasserman, M., Kumar, A. and Chidambaram, V. [2019], ‘Under-
standing and benchmarking the impact of GDPR on database systems’, arXiv preprint
arXiv:1910.00728 .

Shastri, S., Wasserman, M. and Chidambaram, V. [2019], The seven sins of personal-data
processing systems under GDPR, in ‘11th USENIX Workshop on Hot Topics in Cloud Com-
puting’, USENIX Association.
URL: https://www.usenix.org/conference/hotcloud19/presentation/shastri

Practical Regulatory Compliance in
Database Systems

Master’s Thesis

CS-22-DT-10-03

Aalborg University
Computer Science

Copyright © Aalborg University 2023

Computer Science
Aalborg University

http://www.aau.dk

Title:
Practical Regulatory Compliance
in Database Systems

Theme:
Database Technology

Project Period:
Spring Semester 2023

Project Group:
CS-22-DT-10-03

Participants:
Alexander Nykjær
Ane Søgaard Jørgensen
Jakob Sønderby Kristensen

Supervisor:
Christian S. Jensen

Page Numbers without appendix: 62
Page Numbers with appendix: 82

Date of Completion:
June 15, 2023

Abstract:

The General Data Protection Regula-
tion (GDPR), which came into effect in
2018, regulates the processing of per-
sonal data. This meant that companies
have had to rework their approach to
processing personal data. Understand-
ing of, and compliance with, GDPR re-
mains a problem in 2023.
This project analyses GDPR and exist-
ing work to determine the effect it has
on database systems and proposes five
requirements for a system that can help
companies make their existing database
systems GDPR compliant. A tool,
called Data Protection Compliance Tool
(DPCT), that satisfies four of these re-
quirements is then proposed. DPCT en-
ables its users to register metadata and
vacuuming policies needed to document
that personal data is being processed for
legitimate and specific purposes, can be
associated with a natural person, and is
deleted when it is no longer being pro-
cessed for a valid purpose.
A prototype of DPCT is implemented
and is evaluated using a database for a
fictional web shop storing personal data
about customers. Finally, extensions to
DPCT are presented that provide addi-
tional GDPR support.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the authors.

http://www.aau.dk

Contents

Preface ix

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Context . 2

1.3 Requirements . 3

1.4 Running Example . 4

1.5 Report Outline . 6

2 Related Work 7

2.1 Extending Databases With Compliance . 7

2.2 Schema Evolution . 8

2.3 Data Vacuuming . 9

2.4 Summary . 9

3 Design 11

3.1 Overview . 11

3.2 Metadata . 12

3.2.1 Registering Personal Data . 13

3.2.2 Creating Purposes . 13

3.2.3 Associating Personal Data with Individuals 14

3.3 Vacuuming . 15

3.3.1 Deletion of Personal Data Related to a Purpose 17

3.3.2 Periodic Deletion . 18

3.4 Logging . 18

3.5 Command Layer . 19

4 Implementation 21

v

vi Contents

4.1 Technical Details . 21

4.2 Domain Model Terminology . 21

4.3 Setup and Configuration . 22

4.4 Command Line Interface . 22

4.5 Metadata . 24

4.5.1 Registering Personal Data . 24

4.5.2 Updating Personal Data . 24

4.5.3 Creating a Purpose . 25

4.5.4 Defining the Fields of a Purpose Immediately 25

4.5.5 Associating Personal Data With Purposes 26

4.5.6 Seeing the System Status . 26

4.5.7 Listing Existing Entities . 27

4.5.8 Creating a Storage Policy . 27

4.6 Vacuuming . 28

4.6.1 Creating Vacuuming Policies . 29

4.6.2 Executing Vacuuming Policies . 29

4.7 Logging . 30

5 Evaluation 33

5.1 Setup . 33

5.2 Metadata . 33

5.2.1 Processing With Specific Purposes . 34

5.2.2 Associating Personal Data With Individuals 35

5.3 Vacuuming . 37

5.3.1 Vacuuming of Data With a Single Purpose 38

5.3.2 Vacuuming of Data With Multiple Purposes 40

5.3.3 Vacuuming of Data Across Multiple Tables 42

5.4 Logging . 45

5.4.1 Documenting Purpose . 46

5.4.2 Documenting Vacuuming . 48

5.4.3 Summary . 49

6 Discussion 51

6.1 Metadata . 51

6.1.1 Legal Basis . 51

Contents vii

6.1.2 Associating Personal Data with Individuals 51

6.1.3 Circumventing DPCT . 52

6.1.4 Personal Data Granularity . 52

6.2 Vacuuming . 53

6.2.1 Run-Time of Combined Conditions . 53

6.2.2 Query Analysis . 53

6.2.3 Deletion Guarantees . 53

6.3 Logging . 53

6.3.1 Logging Vacuuming Executions . 53

6.3.2 External Data Manipulation . 54

6.3.3 Logging Guarantees . 54

6.4 Support for Complying with the Rights of Individuals 55

6.5 Process . 55

7 Conclusion 57

8 Future Work 59

8.1 Metadata . 59

8.1.1 Personal Data Granularity . 59

8.1.2 Extended Metadata . 60

8.2 Vacuuming . 60

8.2.1 Optimization of Combined Conditions . 60

8.2.2 Periodic Vacuuming . 61

8.3 Logging . 61

8.3.1 Logging External Queries and Updates . 61

8.3.2 Personal Data and Logging . 61

8.4 Better Support for the Rights of Individuals . 62

Bibliography 63

Appendix A Command Line Interface 65

Preface

This report was written by group CS-22-DT-10-03 as a master’s thesis in Software at Aalborg
University.

The citations in this report are based on the Harvard standard [Mendeley, 2021], where paren-
theses are replaced with square brackets. GDPR articles are referred to by their article number,
and possibly paragraph and point.

We want to thank our supervisor Christian S. Jensen, professor at the Department of Computer
Science, for his help during the semester.

The public source code for the project can be found at:

https://github.com/P9-P10/DataProtectionComplianceTool.

Aalborg University, June 15, 2023

Alexander Nykjær
<anykjal18@student.aau.dk>

Ane Søgaard Jørgensen
<asja18@student.aau.dk>

Jakob Sønderby Kristensen
<jkr18@student.aau.dk>

ix

https://github.com/P9-P10/DataProtectionComplianceTool

Chapter 1

Introduction

Section 1.1 presents the motivation and problem statement for the project, Section 1.2 describes
the context of the project by presenting existing studies that analyse the effects of GDPR on
database systems, Section 1.3 formalises the requirements for DPCT based on GDPR and the
existing studies, and Section 1.4 presents a database system that is used as a running example
throughout the report. Finally, the outline of this report is presented in Section 1.5.

1.1 Motivation and Problem Statement

The General Data Protection Regulation (GDPR), which came into effect in 2018, regulates
how natural or legal persons such as companies, public authorities, agencies, or other bodies
process the personal data of natural persons [European Commission, 2016]. As a result, many
companies have had to rework their approach to processing personal data, as typical database
practices, such as storing data forever or reusing data for different purposes, are at odds with
GDPR [Agarwal et al., 2022; Shastri et al., 2019a,b]. Personal data, in the context of GDPR, is
defined in Article 4(1) as “Any information relating to an identified or identifiable natural person”
and processing is defined in Article 4(2) as “Any operation [...] which is performed on personal
data [...] such as [...] storage, [...] alteration, [...] erasure”. Throughout the report, when referring
to a natural person, the term individual is also used.

It is still a problem in 2023 for companies to understand and comply with GDPR [Datatilsynet,
2023]. The biggest fines, totalling 14.9M DKK, have been given to:

• Gyldendal, for not deleting personal data regarding 685,000 book club members, was
fined 1.1M DKK [Datatilsynet, 2022b].

• Arp-Hansen Hotel Group A/S, for not deleting 500,000 customer profiles, was fined
1.1M DKK [Datatilsynet, 2020].

• Taxa 4x35, for not deleting 9M taxa trips containing personal data, was fined 1.2M DKK
[Datatilsynet, 2019b].

• IDdesign A/S, for not deleting personal data regarding 385,000 customers, was fined
1.5M DKK [Datatilsynet, 2019a].

• Danske Bank, for not being able to document procedures for deleting personal data, and
not being able to show that the personal data of millions of individuals was manually
deleted, was fined 10M DKK [Datatilsynet, 2022a].

1

2 Chapter 1. Introduction

The objective of this project is to design and prototype a Data Protection Compliance Tool
(DPCT) that supports companies in making their existing database systems GDPR compliant.
In the context of this project, a database system is said to be GDPR compliant if it can be
documented that the following apply to all personal data stored in the database system:

i Personal data is associated with an individual.

ii Personal data is only processed for legitimate and specific purposes.

iii Personal data is only processed on a legal basis.

iv Personal data is only stored for as long as it is necessary to fulfil a purpose, and it is
deleted as soon as that is no longer the case.

These are the aspects of GDPR that this project focuses on, as i is needed for the data to be
personal data, and ii, iii, and iv are needed in order for the company to lawfully process the
personal data.

While creating a GDPR compliant database system from the ground up presents an interesting
challenge, it will do little to help the companies that have existing database systems that need
to be made GDPR compliant. This project therefore focuses on creating a tool for making
existing database systems GDPR compliant.

1.2 Context

Existing studies analyse the effects of GDPR on the design and use of of database systems.
These studies, along with GDPR itself, form the basis for the requirements presented in Sec-
tion 1.3.

Shastri et al. [2019a] present a set of requirements for GDPR compliant database systems
and proposes a benchmark, called GDPRBench, that evaluates the performance of a given
database system that fulfills these requirements. The requirements are based on legal cases
arising from GDPR as well as an analysis of GDPR. The study adopts a strict interpretation
of GDPR to define their requirements, such that they propose the worst-case scenario for a
compliant database system.

According to Shastri et al. [2019a], GDPR introduces several behavioural characteristics for
personal data, which they represent as metadata. These are used as a basis for the require-
ments for DPCT as they define the properties for how to treat personal data in accordance
with GDPR.

Shastri et al. [2019b] analyse GDPR and determine how it conflicts with modern database
system design. Based on this analysis, seven “sins” of processing personal data are presented,
each of which is a common practice that is in violation of GDPR.

Two of these sins are relevant to the aspects of GDPR considered in this project. The first
is storing personal data forever. The second is reusing personal data indiscriminately, which
happens when personal data is perceived and used as a resource that can be used without
restriction to help in accomplishing the goals of the company. The remaining sins fall outside
the scope of DPCT as described in Section 1.1.

1.3. Requirements 3

Agarwal et al. [2022] present a tool called GDPRizer. The purpose of this tool is to gener-
ate queries that extract or delete personal data associated with an individual from a legacy
database. This requires the ability to identify all personal data in a database related to a par-
ticular individual, which may not be possible, as legacy databases may have schemas that lack
the necessary information.

The study shows the difficulty of automatically associating personal data with the owning
individual in legacy databases, and it highlights the necessity for user input to handle all
possible relations, which DPCT also utilises.

1.3 Requirements

GDPR [European Commission, 2016] presents requirements for lawfully processing personal
data, and Shastri et al. [2019a], Shastri et al. [2019b], and Kraska et al. [2019] each study how
these requirements affect personal data stored in relational databases. The requirements for
DPCT are extracted from these four sources. Table 1.1 presents the requirements for DPCT
and how they relate to the GDPR articles, and Table 1.2 presents how the requirements are
related to the three other sources, Kraska et al. [2019]; Shastri et al. [2019a,b].

Next, Section 1.4 presents an example of a database system that has the necessary data for
DPCT to make it GDPR compliant and fulfill these requirements.

Name Description GDPR Article
1 Purposeful processing Personal data is only processed for le-

gitimate and specific purposes.
Article 5(1)(b)

2 Legal processing Personal data is only processed on a
legal basis.

Article 6(1)

3 Associated individual Personal data is associated with an
individual.

Article 15

4 Storage limitation Personal data is only stored for as
long as it is necessary to fulfil a pur-
pose, and it is deleted as soon as that
is no longer the case.

Article 5(1)(e)

5 Audit trail Operations affecting personal data
are logged such that regulators can
inspect compliance.

Article 5(2)

Table 1.1: Requirements for a system that facilitates compliance with GDPR. The referenced articles are from
GDPR [European Commission, 2016]

4 Chapter 1. Introduction

Kraska et al. [2019] Shastri et al. [2019a] Shastri et al. [2019b]
1 Their Queries requirement Their Purpose requirement 3.2 Reusing Data

Indiscriminately
2 Their Controlled storage

access requirement
3.2 Reusing Data
Indiscriminately

3 3.2 Existing Schema
Within a Single System,
3.3 Across Systems in the
Enterprise

Their Associated person
requirement

4 Their Time to live
and Timely Deletion
requirements

3.1 Storing Data Forever

5 5 The Audit Process Their Audit trail
requirement

Table 1.2: Sources of the requirements from Table 1.1 beyond GDPR. The absence of a value indicates that the
requirement is not related to the given source.

1.4 Running Example

This section presents a case of a fictional company with an existing database system that the
company wants to make GDPR compliant. This case is used as a running example throughout
the report.

The company is a web shop based in Denmark, which stores account and purchase infor-
mation about their customers. As the web shop is based in Denmark, it must comply with
Danish law. To limit the scope of this example, only Bogføringsloven [Retsinformation, 2006],
in addition to GDPR, are considered.

Bogføringsloven regulates the data that must be stored to document transactions between
individuals and companies. The paragraph considered in this example is §12, which states that
information relevant for bookkeeping should be kept for five fiscal years after a transaction.

The web shop’s database has three tables storing information relevant to this example, namely
the users, orders, and newsletter tables. The schemas of these tables are shown in Figure 1.1,
and excerpts of the data they contain are shown in Table 1.3, Table 1.4, and Table 1.5.

1.4. Running Example 5

Figure 1.1: An overview of the schema of the database used throughout the report.

An excerpt of the data stored in the database system can be seen in the following tables:

id username password name address creation_date
1 yellowgorilla847 31a4d45[..] Emil Olsen 6325 Højagervej 2018-01-20 00:16:00
2 biggoose777 f058301[..] Signe Pedersen 5593 Bøgebakken 2022-10-06 15:43:00
3 goldenbird592 8c2a9f1[..] Emily Sørensen 4479 Neptunvej 2020-04-24 20:54:00

Table 1.3: An excerpt of the users table, where the passwords have been truncated such that all fields can be seen.

id email subscribed
1 emil.olsen@example.com 0
2 signe.pedersen@example.com 0
3 emily.sorensen@example.com 1

Table 1.4: An excerpt of the newsletter table. Attribute id is a foreign key referencing users.id.

id products order_date delivery_address ordered_by
1 Leverpostej 2017-08-26 10:34:00 2761 Hestehavevej 825
2 Rødgrød med fløde 2018-05-06 21:13:00 85 Ellevej 951
3 Rødgrød med fløde 2016-09-10 12:54:00 1858 Gammel Køge Landevej 248

Table 1.5: An excerpt of the orders table. Attribute ordered_by is a foreign key referencing users.id.

6 Chapter 1. Introduction

The following columns contain personal data: username, name, and address in the users table;
email in the newsletter table; and delivery_address in the orders table.

The personal data is associated with individuals identified internally in the database system
by the surrogate key id in the users table.

The web shop processes the personal data for two purposes: username, name, address, and
delivery_address for the purpose of Bookkeeping, as well as name and email for the purpose
of Marketing.

Processing personal data for the purpose of Bookkeeping is valid for five years after the last
purchase by the customer with whom the personal data is associated, in accordance with
Bogføringsloven [Retsinformation, 2006]. After the five years have passed, the personal data
must be deleted at the end of the fiscal year, unless it is being processed for another purpose.

Processing personal data for the purpose of Marketing is only valid so long as the individual,
with which the personal data is associated, is subscribed to the newsletter, i.e., as long as the
value of the subscribed column in the newsletter table is true for that individual. Once the
individual unsubscribes, the personal data must be deleted as soon as possible, unless it is
being processed for another purpose.

The web shop processes the personal data for the purpose of Marketing on the legal basis of
consent, in accordance with point a of GDPR Article 6(1), and processes the personal data for
the purpose of Bookkeeping on the legal basis of legal obligation, in accordance with GDPR
Article 6(1)(c).

1.5 Report Outline

Chapter 2 presents existing work related to GDPR compliance in existing database systems.
The design of DPCT is covered in Chapter 3, and a prototype implementation of this design is
described in Chapter 4. How well the prototype fulfills the requirements defined in Section 1.3
is evaluated in Chapter 5. The decisions made in the design and implementation of DPCT, as
well as the results of the evaluation of DPCT, are discussed in Chapter 6. Extensions of DPCT
to provide additional support for GDPR and other future work is the subject of Chapter 8.
The conclusion of the project is presented in Chapter 7.

Chapter 2

Related Work

There is existing work that presents solutions or support functionality related to the require-
ments of DPCT. This chapter presents three areas that provide useful tools or functionality for
GDPR compliance in existing database systems.

2.1 Extending Databases With Compliance

Kraska et al. [2019] propose a data management system called SchengenDB that is meant to
help companies comply with GDPR. The purpose of the system is to protect personal data, by
only allowing the data to be processed for specific purposes with the owning individual’s
permission, and to support individuals’ right to be forgotten by being able to delete the
personal data stored about an individual. SchengenDB also supports auditing to document
compliance with GDPR by extending the existing Database Management System (DBMS) log.

SchengenDB proposes functionality similar to what is needed to fulfill requirements 1, 2, 3,
and 5 from Section 1.3.

Each attribute containing personal data is associated with one or more purposes for pro-
cessing the personal data. Each purpose has a legal basis that allows the processing of the
personal data for the associated purposes. These purposes are used to restrict how and why
personal data can be accessed and processed, by requiring all access to be associated with
specific purposes. Only personal data associated with a matching purpose can be accessed.
Individuals are able to opt-out and opt-in of each purpose. This functionality ensures that
personal data is processed for specific purposes, and that the processing has a legal basis.
This is the functionality needed to fulfill requirements 1 and 2 from Section 1.3.

Supporting individuals’ right to be forgotten requires associating personal data with the own-
ing individual, and being able to delete it. This is similar to requirement 3. In order for
SchengenDB to be able to support this, it requires that individuals are unique within the
database systems of the company. A similar precondition is necessary for DPCT.

7

8 Chapter 2. Related Work

SchengenDB extends the DBMS log to include read operations as well as the queries that were
invoked and the associated purposes. This information is also added to a log entry created
to record update operations. This additional information allows the DBMS log to be used
to audit compliance with GDPR by inspecting the log and ensuring that the purposes are
enforced. This extension of the DBMS log is similar to the audit trail specified in requirement
5.

SchengenDB presents functionality relevant to the fulfillment of the requirements. DPCT
builds on this work by providing an implementation of some of this functionality. DPCT
associates each element of personal data with a purpose, a legal basis for processing, and the
owning individual. DPCT also logs updates to metadata associated with the personal data,
which can be used to verify compliance.

SchengenDB and DPCT differ on their focus in regards to deleting personal data. SchengenDB
focuses on supporting the individuals’ right to be forgotten (GDPR Article 17), while DPCT
focuses on deleting data when it is no longer necessary for fulfilling any purpose (GDPR
Article 5(1)(e)). Both approaches can be extended to support the other.

2.2 Schema Evolution

This section presents existing work on schema evolution, which can be used to support GDPR
compliance of existing databases. Compliance with GDPR in an RDBMS requires a single
notion of individuals [Kraska et al., 2019], which in this report is interpreted as each individual
having a unique identifier. Agarwal et al. [2022] show that this is not always the case in legacy
database systems, and that it can be difficult to identify all related information. Schema
evolution can be used to create such unique identifiers in existing databases where they do not
already exist. Modifying the schema such that individuals can be represented with a unique
identifier and migrating the database supports associating personal data with individuals
according to requirement 3.

Curino et al. [2008] present a tool for schema evolution in relational databases called PRISM.
The tool provides a language for schema modifications and means of evaluating the effect of
changes to the schema, translation of queries to the transformed schema, automatic migration
of data to the transformed schema, and documentation of changes made to the schema.

Curino et al. [2010] extend this functionality, allowing for the evolution of integrity constraints
and supporting updates performed on previous versions of a schema. The evolution of in-
tegrity constraints adds further support for creating unique identifiers for individuals, by
allowing for the removal and addition of foreign key constraints. This enables the removal of
the unconventional representations of relationships mentioned by Agarwal et al. [2022].

Nykjær et al. [2023] propose a system using schema evolution to improve the GDPR com-
pliance of an existing database system. The proposed system allows owners to change the
schema of their relational databases to better support associating personal data with individ-
uals and reducing duplication of personal data. Query rewriting is used to allow applications
using the database to continue to function while the schema changes.

2.3. Data Vacuuming 9

2.3 Data Vacuuming

Palmer and Srikandarajah [2022] propose an approach for rule-based data retention compli-
ance by defining an approach in which a user can specify a set of keep and removal rules,
which are associated with specific attributes in a database. A removal rule defines a Boolean
condition according to which the associated attribute values should be deleted. If multiple
removal rules exist, they are executed one by one. A keep rule defines a Boolean condition
for associated attributes according to which they should be kept, which ensures that the data
is not deleted by any of the removal rules. If multiple keep rules exist for some attribute,
it is kept if any of the rules evaluate to true. The purpose of this approach is to be able to
define arbitrary removal and keep rules for data in a database, and ensuring that all data, that
should be kept, is kept.

An adapted version of this functionality is incorporated into DPCT, as requirement 4 implies
that it should be possible to remove personal data when certain conditions are met.

2.4 Summary

Existing studies propose much of the functionality needed to fulfill the requirements defined
in Section 1.3. Kraska et al. [2019] propose a system that fulfills many of the requirements,
but provide only an abstract design and no implementation. The contribution of DPCT is to
implement some of this functionality and to combine it with the data vacuuming, presented
by Palmer and Srikandarajah [2022], in order to provide companies with a tool that helps
them ensure that all personal data in their existing database systems is compliant with GDPR,
and is removed as soon as that is no longer the case.

Although there are preconditions for DPCT to be applicable, existing work on schema evolu-
tion by Curino et al. [2008, 2010] and Nykjær et al. [2023] can be used to fulfill these precon-
ditions.

Chapter 3

Design

3.1 Overview

The core of DPCT is three components, marked in blue in Figure 3.1, each of which has a
distinct set of responsibilities.

The Metadata component is responsible for keeping track of personal data, including where
it is stored, and what metadata is defined for each piece of personal data. This component is
described in further detail in Section 3.2.

The Vacuuming component is responsible for deleting personal data that no longer has any
valid purpose for processing. To do this, the component facilitates the specification of vacu-
uming policies for when data should be deleted. Data is then deleted periodically according
to these policies. This component is described in further detail in Section 3.3.

The Logging component is responsible for documenting compliance. This is done by logging
the operations performed by DPCT. Logging when data is registered as personal data, changes
to metadata, and the creation and execution of vacuuming policies for deleting personal data
allows for documenting that the database system is compliant with GDPR. This component is
described in further detail in Section 3.4.

To facilitate interaction with users and databases, there are two layers of functionality, marked
in green in Figure 3.1, that serve to separate these interactions from the core functionality of
DPCT.

The Command layer provides a set of commands for interacting with the core. Users can
access these commands through a User Interface, which in the case of the prototype imple-
mentation of this design presented in Section 4.4 is a command line interface. This layer is
described in more detail in Section 3.5.

The Data Access layer provides an abstraction over database access that can be changed de-
pending on the database management system in use. All interactions with the Data Access
layer are routed through the Logging component. This ensures that every interaction with the
data is logged. This layer is described in more detail in Section 4.1.

11

12 Chapter 3. Design

Figure 3.1: Architecture diagram of DPCT.

3.2 Metadata

The requirements in Section 1.3 necessitate registering and maintaining additional metadata
about personal data stored in the database. The metadata is needed to determine whether
the personal data can be stored in compliance with GDPR. GDPR compliance requires that (a)
personal data is used for one or more explicit and lawful purposes, as stated by requirements
1 and 2, that (b) the associated individual of the personal data is known, as stated by require-
ment 3, and that (c) the personal data is stored only as long as it is needed to fulfill at least
one of the associated purposes, as stated by requirement 4.

Determining whether a piece of personal data can continue to be stored requires the following
information:

• A purpose for processing the personal data.

• The personal data’s time to live.

• Whether the personal data is required to fulfill a legal obligation.

• The individual the personal data belongs to.

3.2. Metadata 13

When personal data is no longer needed, GDPR Article 6(1)(e) requires that it is no longer
possible to associate it with an individual. The process of removing the personal data that is
no longer needed is presented in Section 3.3.

The remainder of this section explains the nature of the metadata and how it is used to ensure
that the storage of personal data in the database is compliant with GDPR.

3.2.1 Registering Personal Data

When DPCT is first deployed on an existing database system, none of the data is assumed to
be personal data. DPCT allows users to register data stored in the database as personal data.
As an example, a user could register the data stored in the name column of the users table
from Section 1.4 as personal data. DPCT then stores a reference to this table and column, such
that it is possible to associate it with the required metadata.

It is worth emphasising that personal data is managed at the column level. This is based on
the assumptions that a single column storing personal data in a relational database contains
data of the same nature, and that the data stored in that column is being processed for the
same purposes. The nature of personal data stored in the column may be apparent from the
name. An example of this is the address column in the users table shown in Table 1.3 of the
example. However, there is no guarantee that the nature of the personal data will be clear to
a user based on the names of the table and column. Therefore, DPCT allows the user to also
provide a description of the data.

Section 6.1 presents further discussion of the granularity of personal data.

3.2.2 Creating Purposes

GDPR Article 5(1)(b) requires a legitimate purpose for storing and processing personal data.
As such, DPCT requires that one or more purposes is defined for each column storing personal
data.

A user can create a purpose, which requires a name and description of the purpose, and
specifying whether or not processing data for this purpose is based on a legal obligation. The
name and description serves to inform users about the nature of the purpose. The specification
of a legal obligation is a simplification of the legal basis required by GDPR Article 6(1), and
is used to determine whether personal data should be deleted as the result of the owning
individual objecting to the processing. If personal data has a purpose indicating that it is
being processed based on a legal obligation, it must not be deleted based on objections by
the individual. As an example, personal data stored with the purpose of Bookkeeping from
Section 1.4 is being processed based on a legal obligation and must not be deleted even if
an individual objects, while personal data stored for the purpose of Marketing is not being
processed based on a legal obligation and must be deleted if an individual requests it. The
consequences of this simplified approach are discussed in Section 6.1 and a more elaborate
approach to representing the legal basis of a purpose is discussed in Section 8.1.

Purposes are also used to determine how long personal data can be stored. The conditions
for which data can be stored is referred to as the Time to Live (TTL), and when it expires
the purpose is no longer valid for a given piece of personal data. An example of the TTL for

14 Chapter 3. Design

a purpose is that Bogføringsloven [Retsinformation, 2006] mentioned in Section 1.4 requires
that relevant personal data is kept for five fiscal years since the last transaction, and as such
must only be deleted once those five years have elapsed. Another example is that personal
data may need to be deleted when an individual withdraws consent. These TTLs and their
use in deleting data are explained in greater detail in Section 3.3.

3.2.3 Associating Personal Data with Individuals

DPCT assumes that:

I Individuals are represented in the database system by a unique identifier.

II The identifiers representing individuals are single-column, i.e, not multi-column.

III The identifiers are stored in a single table known by DPCT.

IV A one-to-many relationship exists between an identifier and the personal data of the
individual that identifier represents.

These assumptions result in a simplified approach, from both the user and DPCT’s point of
view. Methods for satisfying requirement III are presented in Chapter 2. How to relax these
assumptions and the effects on DPCT are discussed in Section 6.1.

Constructing the one-to-many relationship in requirement IV is achieved by defining an as-
sociation expression for the columns that are registered as storing personal data. This associ-
ation expression must describe how data stored in the column relates to the identifiers of the
individuals and must result in a one-to-many relationship. Under the current assumptions,
the association expression is the column in the table storing the personal data that holds the
foreign keys to the table storing the individuals’ identifiers.

Using the example in Section 1.4, when registering the email column in the newsletter table
as storing personal data, and assuming that the individuals’ identifiers are stored in the id
column of the users table, the user must also provide the association expression “newslet-
ter.id”. Using this information, it is possible to construct the one-to-many relationship be-
tween the id column of the users table and the email column of the newsletter table using
the following query:

SELECT individuals.id, newsletter.email
FROM users AS individuals
JOIN newsletter ON individuals.id = newsletter.id

The column storing the individuals’ identifiers is always aliased to avoid name clashes in cases
where the personal data and the identifiers are stored in the same table.

3.3. Vacuuming 15

3.3 Vacuuming

As mentioned in Section 3.2, personal data is associated with one or more purposes. Require-
ment 4 in Section 1.3 states that personal data should not be stored if it is no longer necessary
for fulfilling an associated purpose. To ensure this, DPCT deletes personal data that has no
valid purpose. This process is referred to as vacuuming, and the general principles of the
vacuuming process are based on Palmer and Srikandarajah [2022].

Deletion of personal data can be achieved in different ways, either by removing the data from
the database, by anonymising the data, or by replacing it with a value defined by the user of
the system (GDPR Article 5(1)(e)). DPCT uses a value that can be defined by the user.

As personal data can be used for multiple purposes, e.g., emails being used for both book-
keeping and marketing, it is necessary to determine whether all purposes have elapsed for
a given value before deleting it. This is achieved by combining the set of conditions defined
by the assigned purposes into a statement that updates the values to the value defined by
the user, if all conditions are met. The structure of such a combined statement can be seen
in Listing 3.1. If more conditions are present, these conditions will be appended to the end,
using an AND operator for each condition.

UPDATE Table SET Column = 'Value' WHERE (Condition1) AND (Condition2);

Listing 3.1: The structure of a statement that selects the data to be deleted and replaces it with a user defined
value. Condition1 and Condition2 are conditions that evaluate to true if the value of the column in a given
row should be deleted. If more conditions are defined from different purposes, each condition is appended with
another AND operator.

The structure defined in Listing 3.1 imposes limitations on the queries used in the condi-
tions, namely that the queries should result in Boolean values and that the conditions should
reference the outer query.

An example of such a reference can be seen in Listing 3.2. The condition contains users.id
= u.id, where users.id refers to the users table in the outer query, while u.id refers to the
users table in the inner query.

If the query in the condition does not reference the outer query with a constraint similar to
the example described above, the condition would evaluate to true for all rows if there exists
one row fulfilling that condition. The update statement described in Listing 3.1 would then be
equivalent to UPDATE Table SET Column = ’Value’ WHERE (true);, which would then up-
date all values in the column. However, if the condition references the outer query in a
constraint, it would validate each row to ensure that the id matches the current row, and
therefore only update the values that no longer have a valid purpose.

16 Chapter 3. Design

SELECT id FROM users WHERE
EXISTS(

SELECT * FROM users as u
WHERE u.creation_date > datetime('now', '-2 year')
AND users.id = u.id

);

Listing 3.2: A condition containing a selection query. This query selects all rows from users that are more than
two years old.

DPCT places two restrictions on the content of the conditions, the first being that it should
reference the outer query, and the second being that it should be a Boolean condition. Aside
from these, the user can create arbitrary conditions, allowing them to create conditions which
fit their needs. As a result, it is possible to define contradicting conditions, such that the
combined condition will never evaluate to true. As an example, if one condition specifies that
users created more than two years ago should be deleted, and another condition specifies that
users created less than two years ago should be deleted, no values will ever be deleted, as all
conditions must be true for a value to be deleted. However, preventing this from occurring is
beyond the scope of this project.

As a single purpose can be used for personal data stored in different tables, each purpose has
a condition for each of the associated tables. Each condition specifies when the purpose is no
longer valid for the values in the particular table, such as the condition in Listing 3.2 which is
specific to the users table.

For example, the Marketing purpose may be used in different tables, where the name of the
individual is stored in one table while the email of the individual is stored in another table.
Each of these tables would then have a specific condition to validate the data. This relation
can be seen in Figure 3.2.

3.3. Vacuuming 17

Figure 3.2: Figure showing the relation between a purpose and a set of conditions on different tables.

3.3.1 Deletion of Personal Data Related to a Purpose

As there is a many-to-many relation between columns and purposes, the deletion of personal
data stored with a given purpose requires that all columns relating to a purpose are validated,
which in turn requires evaluating all conditions for each column. As a result, the deletion of
personal data related to a particular purpose will evaluate conditions from other purposes as
well. In Algorithm 1, the pseudocode describing the vacuuming process can be seen.

Algorithm 1 Pseudocode for Vacuuming

procedure CreateUpdateStatement(Purpose)
statement = ""
for column in ColumnsWithPurpose(Purpose) do

for condition in ConditionsForColumn(Column) do
statement.Append(condition)

end for
end for

end procedure
procedure ColumnsWithPurpose(Purpose)

Returns a list of columns with the given Purpose
end procedure
procedure ConditionsForColumn(Column)

Returns a list of Conditions associated with the given Column.
end procedure
Execute(CreateUpdateStatement(Purpose))

By iterating through all purposes related to a specific column, and combining the related
conditions as described in Listing 3.1, DPCT ensures that all personal data with no valid
purpose is deleted, and that only that data is deleted.

18 Chapter 3. Design

3.3.2 Periodic Deletion

It should be possible to define a periodic execution that automatically verifies specific pur-
poses, based on a user-defined duration, such that personal data is deleted as soon as it
becomes unnecessary to store it. As the conditions of some purposes may take a significant
amount of time to evaluate, or are only required to be verified at specific dates, it should be
possible to define different durations for different purposes. One such example is personal
data stored with the purpose of Bookkeeping, which only needs to be deleted at the end of
the fiscal year. This is discussed in more detail in Section 8.2.2.

3.4 Logging

As stated in requirement 5 in Section 1.3, DPCT must log all operations on personal data
in order to create an audit trail. An audit trail must contain the information necessary for
regulators to inspect the compliance of the database system. In this project, this is interpreted
to mean that the audit trail should be able to show that the database system complies with
requirements 1 to 4 from Section 1.3.

DPCT logs all changes made to metadata and the effects of all vacuuming executions, i.e., all
updates carried out by DPCT are logged. As an example, a new purpose being created in
DPCT is logged, and the vacuuming of personal data is also logged. Queries made by DPCT
are not logged, as DPCT only has read access to metadata and not to personal data.

Queries and updates of personal data performed outside of DPCT are currently not logged,
which is discussed in Section 6.3. Ideally, external queries and updates would also be available
for auditing.

A log entry has the following content:

• The log id. A number that is incremented each time a new log entry is created.

• The time and date of the log entry.

• The type of event the log entry is recording. In DPCT this is limited to metadata changes,
called Metadata, and vacuuming executions, called Vacuuming.

• The subject of the log entry, i.e. the entity that is affected. As an example, if a new
purpose is created, the subject of the log entry is the name of the new purpose, or if
personal data is being vacuumed, the subject is the name of the column that is affected.

• The log message. The content of this field depends on what is being logged, but at
minimum contains information about the operation that has been performed, which
in DPCT is limited to create, update, delete, and, in the case of vacuuming policies,
execute. In a log entry regarding updating metadata, the new value of the metadata
is also recorded in the message. In a log entry regarding vacuuming policy executions,
the message contains the statement that was sent to the database, which column was
affected, and the reason for that column being affected. The reason is always that the
personal data in the column is stored under a purpose.

• The format of the log message. Two different formats can be used, these being Plaintext
and JSON.

3.5. Command Layer 19

The syntax of a log entry is the values of the files separated by a delimiter. The delimiter can
be configured. Using an example delimiter of ’|’, the syntax is:

id | timestamp | logType | subject | messageFormat | message

Examples of what an actual log entry looks like in the implementation can be seen in Sec-
tion 4.7.

Using these log entries, it is possible to follow the history of a piece of metadata and the
effects of vacuuming executions, which is covered in more detail in Section 5.4.

Being able to follow the history of metadata and effects of vacuuming over time is necessary
for showing compliance. As an example, showing that the purpose for processing a piece of
personal data was specified at a certain point in time, and has never changed since then, would
show that a company is in compliance with requirement 1. Another example is showing that
vacuuming executions are run periodically, and showing the effects of these executions, would
document that the company is in compliance with requirement 4.

In order to make it easy for regulators to inspect the log, i.e., the audit trail, basic search
functionality is also available. The user can limit the logs to a time frame, a set of log types, or
a set of subjects. As an example, it is possible for the user to specify that they only want to see
log entries from the month of June 2022, of the type Vacuuming, and with the subject “(users,
address)” i.e., the address column in the users table. This would result in the log entries for
vacuuming executions that have affected the address column in the month of June 2022.

3.5 Command Layer

The Command layer presents the functionality provided by the core components, Metadata,
Vacuuming, and Logging, in an API that allows a user to interact with DPCT in the form
of a set of commands. These commands operate on metadata entities in DPCT, such as pur-
poses and columns storing personal data, and are based on Create, Read, Update, and Delete
operations, with some additions.

The Create command creates a new metadata entity in DPCT using the user provided infor-
mation, and is of the form:

Create(entity-type, entity-key)

where entity-type is the type of entity that should be created, e.g., purpose or a column
storing personal data, and entity-key is how this entity can be referenced, e.g., in the case of
purposes, it is a name, and in the case of a column storing personal data, it is a pair of the
table name and the column name. The definitions of these two parameters are the same for
the other commands.

20 Chapter 3. Design

The Update command updates a metadata entity with the information provided by the user,
and is of the form:

Update(entity-type, entity-key, entity-value)

where entity-value is the new value that the entity referenced by the given entity-key
should be updated to. This entity-value can contain a new key for the referenced entity, and
after the command has been run, the old key should no longer reference an entity.

The Delete command deletes a metadata entity in DPCT, and is of the form:

Delete(entity-type, entity-key)

The List command shows all metadata entities of a user provided type, and is of the form:

List(entity-type)

The Show command shows details about a specific metadata entity, and is of the form:

Show(entity-type, entity-key)

The Status command shows the current GDPR compliance status of either all entities of a user
provided type or all entities in DPCT, and is of the form:

Status(entity-type) or Status()

These commands are available to use for all types of metadata entities in DPCT. The user
can access the commands through the user interface, which is described in more detail in
Section 4.4.

Chapter 4

Implementation

4.1 Technical Details

Data Protection Compliance Tool (DPCT) is implemented in the C# language using the .NET
framework and the implementation is publicly available at https://github.com/P9-P10/
DataProtectionComplianceTool. The Command Line Interface is implemented using the Sys-
tem.CommandLine package [Microsoft, 2022].

DPCT interacts with relational databases using the SQLite, as it is small, fast, and self-
contained [SQLite, 2023a]. The implementation of DPCT described in this report contains
9754 lines of code. It has been tested through 176 tests.

In addition to this, DPCT makes use of the object-relational mapper Entity Framework Core.

4.2 Domain Model Terminology

This section introduces the domain model representation of the concepts introduced in Chap-
ter 3. This terminology is used when describing and discussing the implementation of the
design.

Columns storing personal data are referred to as personal data columns, and they are iden-
tified by a pair of the form (tableName, columnName).

Purposes for processing personal data are referred to as purposes, and they are identified by
a name.

Individuals whose personal data is being processed are referred to as individuals, and they
are identified by an integer id.

Conditions for when personal data stored with a specific purpose should be deleted are re-
ferred to as storage policiess, and they are identified by a name.

Specifications of the duration between the vacuuming of personal data stored with a specific
purpose are referred to as vacuuming policies and they are identified by a name.

The attribute on a purpose describing whether or not the data is being processed is based on
a legal obligation is represented by the Boolean legally required.

The user-defined value that is used when vacuuming personal data is referred to as the de-
fault value, and one is defined for each personal data column.

21

https://github.com/P9-P10/DataProtectionComplianceTool
https://github.com/P9-P10/DataProtectionComplianceTool

22 Chapter 4. Implementation

4.3 Setup and Configuration

DPCT is meant to be used on an existing database system, and the user must therefore provide
a connection string to a database at startup. When DPCT is first started it creates additional
tables in the database. These tables are used to store details about the domain entities listed
in Section 4.2. The schema for these tables is shown in Figure 4.1.

The user must also provide a path to the file they want the log to be stored.

Figure 4.1: A figure showing the tables used by DPCT to store information on the domain entities.

4.4 Command Line Interface

The commands described in Section 3.5 have been implemented as a Command Line Interface
(CLI) in the prototype. All commands available to the user are of the form:

[metadata-entity-type] [command] [options],

where [metadata-entity-type] can be any of the domain entities described in Section 4.2,
and [command] can be any of a set of available commands based on the chosen metadata-
entity-type. Options are of the form:

--[option-name] [value]

4.4. Command Line Interface 23

As an example, if a new purpose called Marketing should be created in DPCT, the following
command could be used:

purpose create --name Marketing

The same command could also be used to provide more information in the initial creation
using more options:

purpose create --name Marketing --description "This data is used for mar-
keting" --legally-required false --storage-policies MarketingUsers

This creates a Marketing purpose with a description, and the information that personal data
stored for this purpose is not legally required, and that the vacuuming of data under this
purpose should follow the storage policy MarketingUsers.

All commands and options also have aliases, so the previous commands could also be:

p c -n Marketing -d "This data is used for marketing" -lr false -sps Mar-
ketingUsers

This is useful for quickly using the CLI once the user is familiar with the available commands.
However, for the purposes of readability, only the proper names will be used in examples in
this report.

More examples of commands will be given throughout the report. However, Appendix A
presents a complete list of the available commands.

The following sections contain examples of commands and their output. Lines starting with
the symbol $ indicate that the line is entered by the user. The lines following the user input
are the output produced by DPCT. The following interaction is an example of an interaction
with the prototype using the CLI, which demonstrates this notation.

$ purpose create --name Marketing

Purpose 'Marketing' successfully created
Purpose 'Marketing' is missing a legally required value
Purpose 'Marketing' is missing a vacuuming policy
Purpose 'Marketing' is missing a storage policy

24 Chapter 4. Implementation

4.5 Metadata

This section demonstrates how to use DPCT to manage the personal data in the example
database described in Section 1.4, following the process described in Section 3.2.

4.5.1 Registering Personal Data

The first step is to register a column in the database as containing personal data. The com-
mand and resulting output can be seen in the following interaction:

$ personal-data-column create --table-column users address

Personal data column '(users, address)' successfully created
Personal data column '(users, address)' is missing a purpose
Personal data column '(users, address)' is missing a default value
Personal data column '(users, address)' is missing an association expression

This interaction results in the creation of a row in the columns table as shown in Table 4.1.

id DefaultValue AssociationExpression TableName ColumnName Description
1 NULL NULL users Address NULL

Table 4.1: The contents of the column table after users.address has been registered as containing personal data.

The output of the command informs the user that information is missing about the purpose
for storing the address, about the default value to use when deleting the information, and
about the association expression used to associate individuals with their personal data. A
description of the column can also be added to describe the nature of the data stored in the
column, but it is not required.

4.5.2 Updating Personal Data

The following interaction shows a command that updates the entity describing the address
column by adding a default value, a description, and an association expression.

$ personal-data-column update --table-column users address --default-value
"removed" --description "The customer's address" --association-expression
"users.id"

↪→

↪→

Personal data column '(users, address)' successfully updated to '(users,
address), The customer's address, removed, users.id, Empty'↪→

Personal data column '(users, address)' is missing a purpose

4.5. Metadata 25

The changes to the columns tables as a result of this interaction can be seen in Table 4.2.

id DefaultValue Association-
Expression

TableName ColumnName Description

1 removed users.id users Address The customer’s
address

Table 4.2: The contents of the columns table after users.address has been updated with appropriate values for
default value, description, and association expression.

4.5.3 Creating a Purpose

The output of the update command once again reminds the user that no purpose has been
defined for the column. To specify a purpose for the column, it is first necessary to create a
purpose in DPCT. The following interaction shows a command that creates a new purpose
that can be used to indicate that personal data is used for marketing. The output of the
command informs the user about additional information needed about the purpose.

$ purpose create --name Marketing

Purpose 'Marketing' successfully created
Purpose 'Marketing' is missing a legally required value
Purpose 'Marketing' is missing a vacuuming policy
Purpose 'Marketing' is missing a storage policy

4.5.4 Defining the Fields of a Purpose Immediately

To remove the need for the user to go through several create commands for the other entities
required to define a entity, it is possible to define all the necessary values when the entity is
created.

The following interaction shows a command that creates a purpose used to indicate that
personal data is used for bookkeeping. The command specifies a reference to a storage policy
that does not exist, so the user is presented with the option of creating it.

$ purpose create --name Bookkeeping --legally-required true --storage-policies
delete-after-five-years↪→

delete-after-five-years storage policy does not exist. Would you like to create
one? (y/n)↪→

$ y

Storage policy 'delete-after-five-years' successfully created
Not reporting status when creating on demand
Purpose 'Bookkeeping' successfully created
Purpose 'Bookkeeping' successfully updated to 'Bookkeeping, None, True, [

delete-after-five-years], Empty, Empty'↪→

Purpose 'Bookkeeping' is missing a vacuuming policy

26 Chapter 4. Implementation

The state of the purposes table as a result of this interaction is shown in Table 4.3, and the
storage policy delete-after-five-years is added to the table storagePolicies as shown in
Table 4.4. The relations between purposes and storage policies are stored in a join table shown
in Table 4.5.

id LegallyRequired Key Description
1 NULL Marketing NULL
2 true Bookkeeping NULL

Table 4.3: The contents of the purposes table after creating the Marketing and Bookkeeping purposes.

id VacuumingCondition PersonalDataColumnId Key Description
1 NULL NULL delete-after-five-years NULL

Table 4.4: The contents of the storagePolicies table after creating the delete-after-five-years storage policy.

PurposesId StoragePoliciesId
2 1

Table 4.5: The contents of the join table representing the many-to-many relation between purposes and storage
policies. It contains a single entry relating purpose Bookkeeping to the storage policy delete-after-five-years.

4.5.5 Associating Personal Data With Purposes

When purposes have been created it is possible to associate them with personal data. The
following interaction shows a command that associates the personal data stored in the column
users.address with the purposes Marketing and Bookkeeping:

$ personal-data-column add-purpose --table-column users address --purposes
Marketing Bookkeeping↪→

Personal data column '(users, address)' successfully updated to '(users,
address), The customer's address, removed, users.id, [Marketing,
Bookkeeping]'

↪→

↪→

4.5.6 Seeing the System Status

An overview of all the necessary information that is still missing can be retrieved with the
status command. The following interaction shows the result of this command given the state
of DPCT produced by the preceding commands:

4.5. Metadata 27

$ status

Purpose 'Marketing' is missing a legally required value
Purpose 'Marketing' is missing a vacuuming policy
Purpose 'Marketing' is missing a storage policy
Purpose 'Bookkeeping' is missing a vacuuming policy
Storage policy 'delete-after-five-years' is missing a vacuuming condition
Storage policy 'delete-after-five-years' is missing a personal data column

4.5.7 Listing Existing Entities

As the status shows, the Marketing purpose is still missing information on whether it is legally
required and the policies for when associated personal data should be deleted. The user can
create a new storage policy, but it is possible that an existing policy could be used. The
following interaction shows how the list command can be used to see the existing entities of
a given type:

$ storage-policy list

Key, Description, Vacuuming Condition, Personal Data Column, Purposes
delete-after-five-years, None, None, None, [Bookkeeping]

4.5.8 Creating a Storage Policy

The previous interaction shows that there is only the storage policy created earlier, which is
not applicable to the Marketing purpose. Therefore, a new storage policy can be created in
the same way as with purposes:

$ storage-policy create --name marketing-policy --description "data used for
marketing should be deleted if the user is not subscribed"↪→

Storage policy 'marketing-policy' successfully created
Storage policy 'marketing-policy' successfully updated to 'marketing-policy,

data used for marketing should be deleted if the user is not subscribed,
None, None, Empty'

↪→

↪→

Storage policy 'marketing-policy' is missing a vacuuming condition
Storage policy 'marketing-policy' is missing a personal data column

The newly added storage policy has a description. The reason for this is that the name should
serve as a concise description that can be used to identify the entity. With Bookkeeping the

28 Chapter 4. Implementation

description was sufficiently concise to act as the name. In the case of the storage policy for
Marketing a longer description is required.

Now it is possible to update the Marketing purpose with the newly added storage policy. It is
also possible to define that it is not legally required as the use of personal data for marketing
is based on consent.

$ purpose add-storage-policy --name Marketing --storage-policies
marketing-policy↪→

Purpose 'Marketing' successfully updated to 'Marketing, None, None, [
marketing-policy], [(users, address)], Empty'↪→

Purpose 'Marketing' is missing a legally required value
Purpose 'Marketing' is missing a vacuuming policy

$ purpose update --name Marketing --legally-required false

Purpose 'Marketing' successfully updated to 'Marketing, None, False, [
marketing-policy], [(users, address)], Empty'↪→

Purpose 'Marketing' is missing a vacuuming policy

4.6 Vacuuming

After a set of purposes and personal data columns have been defined, the storage policies
can be defined. In Section 4.5 a new storage policy named marketing-policy was created as
a result of creating the Marketing purpose. For this storage policy to be fully applicable by
the vacuumer, and for it to be usable for vacuuming, it has to be updated with the following
command:

$ storage-policy update --name marketing-policy --vacuuming-condition
"EXISTS(SELECT u.id FROM users AS u JOIN newsletter AS n ON u.id = n.id
WHERE subscribed = 0 AND u.id = users.id)" --table-column users address

↪→

↪→

Storage policy 'marketing-policy' successfully updated to 'marketing-policy,
None, EXISTS(SELECT u.id FROM users AS u JOIN newsletter AS n ON u.id =
n.id WHERE subscribed = 0 AND u.id = users.id), (users, address), [
Marketing]'

↪→

↪→

↪→

This updates the value of the VacuumingCondition column for the marketing storage policy.
The relevant row of the StoragePolicies tables can be seen in Table 4.6.

4.6. Vacuuming 29

id VacuumingCondition PersonalDataColumnId Key Description
1 MarketingCondition 1 marketing-policy NULL

Table 4.6: The contents of the StoragePolicies table after the storage policy marketing-policy has been updated.
The query making up the VacuumingCondition for marketing-policy has been omitted. This condition can be
seen in Listing 3.2.

4.6.1 Creating Vacuuming Policies

The purpose of the vacuuming policy is to define the duration between deleting personal data
associated with specific purposes. This allows for the periodic deletion of personal data, as
described in Section 3.3.2. Vacuuming policies also act as the entity in the command line
interface used for deletion of expired data related to purposes, meaning that if the user wants
to delete all expired data with the Marketing purpose, the vacuuming policies associated with
Marketing should be executed.

After the storage policy has been updated, the vacuuming policy should then be defined,
which is achieved by executing the following command:

$ vacuuming-policy create --name MarketingVacuuming --purposes Marketing
--duration "1d"↪→

Vacuuming policy 'MarketingVacuuming' successfully created
Vacuuming policy 'MarketingVacuuming' successfully updated to

MarketingVacuuming, , 1d, None, [Marketing]'↪→

This creates a vacuuming policy which is associated with Marketing and has a vacuuming
duration of one day, meaning that the data stored with the Marketing purpose, that is no
longer valid, is deleted with one day intervals. The above command results in a new entry in
the vacuumingPolicies table, which can be seen in Table 4.7.

id Duration LastExecution Key Description
1 1d NULL MarketingVacuuming NULL

Table 4.7: The contents of the vacuumingPolicies table after the vacuuming policy MarketingVacuuming has been
added.

4.6.2 Executing Vacuuming Policies

After the storage policy delete-after-five-years has been fully defined, it can be enforced
by executing the vacuuming policy MarketingVacuuming. This is achieved through the follow-
ing command:

30 Chapter 4. Implementation

$ vacuuming-policy execute --vacuuming-policies MarketingVacuuming

Executing MarketingVacuuming...
Vacuuming policy 'MarketingVacuuming' executed

As a result LastExecution seen in Table 4.7 is updated with the current timestamp, and all
values in the column users.address matching the condition in Table 4.6 are then set to the
value removed, as dictated by the personal data column’s default value.

4.7 Logging

The Logging component described in Section 3.4 is implemented as a plaintext-logger in
DPCT. That is, for every action performed by DPCT, a log entry is appended to a plain-
text file, using the syntax described in Section 3.4. This file can then be searched using the
CLI.

The command that is used to search the log is list with options to narrow the search. These
options are:

• limit, which limits the number of shown results to a given amount.

• numbers, which restricts the result to an inclusive range of log id values.

• date-times, which restricts result to an inclusive range of date-times.

• log-types, which restricts the result to a given list of log-types. In DPCT these are
Metadata and Vacuuming.

• log-formats, which restricts the result to a given list of message formats. In DPCT these
are Plaintext and Json.

• subjects, which restricts the result to a given list of subjects, i.e., the names or ids of
metadata entities in DPCT.

The resulting log entries are sorted by their id, from lowest to highest. If the output is limited
to less than the total amount of log entries in the result, the newest log entries, i.e., the log
entries with the greatest ids are shown.

An example of a narrowed search is:

$ log list --limit 100 --numbers 5 250 --log-formats Plaintext Json
--date-times 2013/04/26T12:00 2019/06/02T15:45:13 --log-types Vacuuming
--subjects "(users, address)" "(users, name)"

↪→

↪→

4.7. Logging 31

which will show the 100 newest log entries that have ids between 5 and 250, have messages
formatted using Plaintext or Json, were made between the 25th of April 2013 at 12:00 and
the 2nd of June 2019 at 15:45:13, and were recording events related to vacuuming of the two
columns address and name in the users table.

Examples of the logs produced by running commands are shown in the following two inter-
actions:

$ personal-data-column create --table-column users address --default-value
"removed" --description "The customer's address" --association-expression
"users.id" --purposes Marketing

↪→

↪→

$ log list --numbers 4 5 --log-types Metadata

4 25-05-2023 10:10:53 Metadata (users, address) Plaintext Personal
data column '(users, address)' created↪→

5 25-05-2023 10:10:53 Metadata (users, address) Plaintext Personal
data column '(users, address)' updated to '(users, address), The customer's
address, removed, users.id, [Marketing]'

↪→

↪→

$ vacuuming-policy execute --vacuuming-policies BookkeepingVacuuming

$ log list --numbers 13 14 --log-types Vacuuming

13 25-05-2023 14:44:32 Vacuuming MarketingVacuuming Plaintext
Vacuuming policy 'MarketingVacuuming' executed↪→

14 25-05-2023 14:44:32 Vacuuming (users, address) Plaintext Execution
of vacuuming policy 'MarketingVacuuming' possible affected (users, address)
because it is stored under the following purpose(s): Marketing. The
following query was executed: "UPDATE users SET address = 'removed' WHERE
EXISTS(SELECT u.id FROM users AS u JOIN newsletter AS n ON u.id = n.id
WHERE subscribed = 0 AND u.id = users.id);"

↪→

↪→

↪→

↪→

↪→

Chapter 5

Evaluation

This chapter evaluates whether the Data Protection Compliance Tool (DPCT) satisfies the
requirements defined in Section 1.3. This is done on a component basis, and each component
is evaluated with respect to the requirements it must satisfy.

5.1 Setup

The running example introduced in Section 1.4 has been used throughout this report. To
demonstrate and evaluate the functionality of the prototype, a database with the same schema
has been seeded with 1000 random users generated using the tool Random User Generator
[Armstrong, 2022]. This database contains a variety of customers, which have placed random
orders on random dates and are subscribed at random to the newsletter.

The database file can be found at https://github.com/P9-P10/DataProtectionComplianceTool/
blob/main/EndToEndCommands/database.sqlite.

The database initially contains the tables shown in Figure 1.1.

5.2 Metadata

As stated in Section 3.2, the metadata component must satisfy requirements 1, 2, and 3. It
must also support fulfillment of requirement 4, by making it possible to determine when
storing personal data is no longer necessary.

1. Personal data is only processed for legitimate and specific purposes.

2. Personal data is only processed on a legal basis.

3. Personal data is associated with an individual.

4. Personal data is only stored for as long as it is necessary to fulfil a purpose, and it is
deleted as soon as that is no longer the case.

33

https://github.com/P9-P10/DataProtectionComplianceTool/blob/main/EndToEndCommands/database.sqlite
https://github.com/P9-P10/DataProtectionComplianceTool/blob/main/EndToEndCommands/database.sqlite

34 Chapter 5. Evaluation

This section assesses the extent to which the metadata component of DPCT, described in
Section 4.5, satisfies these requirements. In the following interactions, some of the output of
the commands is omitted for brevity.

5.2.1 Processing With Specific Purposes

The first step is to register all the columns storing personal data, and can be seen in the
following interaction:

$ personal-data-column create --table-column users username
$ personal-data-column create --table-column users name
$ personal-data-column create --table-column users address
$ personal-data-column create --table-column newsletter email
$ personal-data-column create --table-column orders delivery_address

Then it is possible to check whether all columns containing personal data are associated with
at least one purpose using the status command. In the output from the interaction below
“...” represents additional information that has been omitted.

$ status

Personal data column '(users, username)' is missing a purpose
...
Personal data column '(users, name)' is missing a purpose
...
Personal data column '(users, address)' is missing a purpose
...
Personal data column '(newsletter, email)' is missing a purpose
...
Personal data column '(orders, delivery_address)' is missing a purpose
...

Personal data with no purpose is not deleted because DPCT operates under the assumption
that the data is used for a legitimate purpose that has not yet been specified. Should this turn
out not to be the case, the names of the table and column are sufficient to enable users to
delete this information manually.

In the running example presented in Section 1.4, the purpose for processing information
about customers’ email addresses is Marketing, and the purpose for processing customers’
usernames, names, and addresses is Bookkeeping. These purposes can be created as demon-
strated by the following interaction:

5.2. Metadata 35

$ purpose create --name Marketing --legally-required false
$ purpose create --name Bookkeeping --legally-required true

These purposes can then be associated with the columns containing personal data, which is
demonstrated by:

$ personal-data-column add-purpose --table-column users username --purposes
Bookkeeping↪→

$ personal-data-column add-purpose --table-column users name --purposes
Bookkeeping Marketing↪→

$ personal-data-column add-purpose --table-column users address --purposes
Bookkeeping↪→

$ personal-data-column add-purpose --table-column newsletter email --purposes
Marketing↪→

$ personal-data-column add-purpose --table-column orders delivery_address
--purposes Bookkeeping↪→

It is then possible to determine that all columns containing personal data are being processed
for at least one purpose using the status command, thus fulfilling requirement 1. This also
supports fulfillment of requirement 4 by the vacuuming component. This is covered in more
detail in Section 5.3.

Requirement 2 is not fulfilled, as it is not possible to determine whether the processing of
personal data has a legal basis. DPCT is based on the implicit assumption that all created
purposes have a legal basis. The flag legally-required indicates whether the data must be
stored in order to comply with legislation, i.e., the processing is based on a legal obligation.
When this value is false, it is still legal to process the personal data, but it is not required by
law. The consequences of this are discussed in Section 6.1.

5.2.2 Associating Personal Data With Individuals

Fulfilling requirement 3 requires associating the registered personal data with specific indi-
viduals. This is done by specifying an association expression, which under the current as-
sumptions consists of the column in a table storing personal data that can be used to identify
a specific individual, as described in Section 3.2.3. This must be done for each column storing
personal data, as seen in the following interaction. In the case where a single table has multi-
ple columns storing personal data, these columns will have identical association expressions.
This is the case for the columns users.username, users.name, and users.address.

36 Chapter 5. Evaluation

$ personal-data-column update --table-column users username
--association-expression "users.id"↪→

$ personal-data-column update --table-column users name
--association-expression "users.id"↪→

$ personal-data-column update --table-column users address
--association-expression "users.id"↪→

$ personal-data-column update --table-column newsletter email
--association-expression "newsletter.id"↪→

$ personal-data-column update --table-column orders delivery_address
--association-expression "orders.ordered_by"↪→

These association expressions can be used to construct queries that associate the values of
a column containing personal data with the identifiers of the associated individuals. An
example of such a query is shown in the following interaction with a DBMS managing the
database described in Section 1.4.

SELECT individuals.id, newsletter.email
FROM users AS individuals
JOIN newsletter ON individuals.id = newsletter.id
ORDER BY individials.id;

The first ten rows of the result of the query are shown in the following table.

id email
1 emil.olsen@example.com
2 signe.pedersen@example.com
3 emily.sorensen@example.com
4 naja.moller@example.com
5 katrine.hansen@example.com
6 albert.moller@example.com
7 ella.poulsen@example.com
8 nanna.petersen@example.com
9 victoria.olsen@example.com
10 freja.kristensen@example.com

The following query shows the case of associating personal data stored in the same table as
the identifiers for individuals. As mentioned in Section 3.2 the table storing identifiers for
individuals is given an alias when used in queries. It is not given an alias when used as a
table containing a column storing personal data.

5.3. Vacuuming 37

SELECT individuals.id, users.name
FROM users AS individuals
JOIN users ON individuals.id = users.id
ORDER BY individuals.id;

The first ten rows of the result of the query are shown in the following table.

id name
1 Emil Olsen
2 Signe Pedersen
3 Emily Sorensen
4 Naja Moller
5 Katrine Hansen
6 Albert Moller
7 Ella Poulsen
8 Nanna Petersen
9 Victoria Olsen
10 Freja Kristensen

As these queries show, specifying an association expression for each column containing per-
sonal data allows for associating personal data with individuals thus fulfilling requirement 3
under the assumptions mentioned in Section 3.2.3.

5.3 Vacuuming

Section 3.3 specifies that the vacuuming component must fulfill requirement 4, which states:

4. Personal data is only stored for as long as it is necessary to fulfil a purpose, and it is
deleted as soon as that is no longer the case.

Using the metadata for personal data shown in Section 5.2, it should be possible to define
policies for when data should be deleted.

To evaluate whether DPCTis capable of this, a set of cases is presented. The cases describe
three different scenarios, which show the base cases the system can handle:

1. Vacuuming data in a single table with a single purpose.

2. Vacuuming data in a single table with multiple purposes.

3. Vacuuming data in multiple tables with multiples purposes.

These cases use the purposes and columns defined in Section 1.4, which are sufficient to
show the different cases the system can be used in. The cases use the database described in
Section 1.4, and the entire database, including the stored metadata, is reset between each case.

38 Chapter 5. Evaluation

These evaluations are not formal proofs of the system, as they are practical evaluations on
a set of data. Therefore this evaluation is used to show that the implementation works as
intended on the data used in the sample database. The formal proofs are beyond the scope of
this project.

As the focus of this project is creating a prototype of a system fulfilling the requirements
specified in Section 1.3, performance metrics, such as run-time of queries, the amount of
updates etc. are not evaluated. These have not been measured as the implementation used
for vacuuming in DPCT has not been optimized for any of these metrics.

5.3.1 Vacuuming of Data With a Single Purpose

The first case to verify, is whether the vacuuming process works for a single purpose defined
on a set of columns in the same table. This is achieved by assigning a storage policy to the
purpose Marketing through the following commands:

$ purpose create --name Marketing --description "Purpose for marketing"
--legally-required false↪→

$ personal-data-column create --table-column users name --description "User's
name" --default-value "removed" --purposes Marketing↪→

$ storage-policy create --name MarketingUsers --description "Storage policy for
the use of customers' names for marketing" --table-column users name
--vacuuming-condition "EXISTS(SELECT u.id FROM users u JOIN newsletter n ON
u.id = n.id WHERE subscribed = 0 AND u.id = users.id)"

↪→

↪→

↪→

$ vacuuming-policy create --name MarketingVacuuming --description "Policy for
vacuuming Marketing purpose" --purposes Marketing --duration "1d"↪→

$ purpose add-storage-policy --name Marketing --storage-policies MarketingUsers

These commands create the purpose Marketing, and the personal data column users.name
with a reference to the purpose, and a default value of ’removed’. The commands then create
a storage policy, and a vacuuming policy for the purpose. After these have been created, the
final command associates the storage policy with the purpose.

The storage policy specifies that values in the column users.name should be deleted if the
associated customer is no longer subscribed to the newsletter, i.e., where subscribed is 0.
The duration specified in the creation of the vacuuming policy, specifies that it should be
automatically executed once every day.

5.3. Vacuuming 39

The next step is to execute the vacuuming policy using the following command:

$ vacuuming-policy execute --vacuuming-policies MarketingVacuuming

After the vacuuming policy is executed, the database described in Section 1.4 should contain
an amount of customers where the name has been replaced with ’removed’ equal to the
amount of customers that are not subscribed, i.e., where subscribed is 0.

This can be verified by running the following queries. The first query selects all costumers
from users where subscribed = 0. The second query selects the costumers which are not
subscribed, and where the name equals ’removed’, as this is only the case once the vacuum-
ing process has been executed. The last query then selects all rows where the name equals
’removed’. If these queries return the same values, the vacuuming has deleted only the correct
tuples.

SELECT users.id, subscribed, name
FROM users

JOIN newsletter AS n ON users.id = n.id
WHERE subscribed = 0
ORDER BY users.id;

SELECT users.id, subscribed, name
FROM users

JOIN newsletter AS n ON users.id = n.id
WHERE subscribed = 0

AND name = 'removed'
ORDER BY users.id;

SELECT users.id, subscribed, name
FROM users

JOIN newsletter AS n ON users.id = n.id
WHERE name = 'removed'
ORDER BY users.id;

When executing the queries on the database all return the same result, showing the vacuuming
component works as expected. The result of the queries consists of a total of 506 rows, the
first ten of which can be seen in the following table:

40 Chapter 5. Evaluation

id subscribed name
1 0 removed
2 0 removed
5 0 removed
17 0 removed
19 0 removed
21 0 removed
29 0 removed
30 0 removed
31 0 removed
32 0 removed

5.3.2 Vacuuming of Data With Multiple Purposes

To verify that vacuuming works with multiple purposes in effect at the same time, multiple
purposes should be assigned to the same column. The purpose Marketing and personal data
column users.name are defined in the same way as the previous case, and the following
commands define a new purpose called Bookkeeping and associates it with users.name.

$ purpose create --name Bookkeeping --description "Purpose for bookkeeping"
--legally-required true↪→

$ personal-data-column add-purpose --table-column users name --purposes
Bookkeeping↪→

$ storage-policy create --name BookkeepingUsers --description "Storage policy
for the use of customers' names for bookkeeping" --table-column users name
--vacuuming-condition "EXISTS(SELECT u.id AS uid, MAX(order_date) AS
last_order_date FROM orders JOIN users AS u ON u.id = ordered_by WHERE u.id
= users.id GROUP BY ordered_by HAVING last_order_date <
datetime('2023-06-02 13:00:00', '-5 year'))"

↪→

↪→

↪→

↪→

↪→

$ vacuuming-policy create --name BookkeepingVacuuming --description "Policy for
vacuuming Bookkeeping purpose" --purposes Bookkeeping --duration "1d"↪→

$ purpose add-storage-policy --name Bookkeeping --storage-policies
BookkeepingUsers↪→

The vacuuming condition defined for Bookkeeping above selects the costumers, where the
date of the last order they made is more than five years old. A specific date has been used to
ensure repeatability.

The rows that will be affected by the vacuuming conditions can be seen in the following
table. These are the customers that are not subscribed to the newsletter and have not ordered
anything within the last five years.

5.3. Vacuuming 41

id username name subscribed last_order_date
55 angrygoose622 Lærke Olsen 0 2017-01-28 05:51:00
148 goldendog216 Marius Madsen 0 2018-03-31 07:16:00
223 blackswan387 Caroline Thomsen 0 2016-12-04 06:56:00
386 orangebird847 Mathias Christensen 0 2017-11-01 16:02:00
452 orangeladybug614 Tobias Johansen 0 2017-12-02 06:55:00
471 crazybear894 Rosa Mortensen 0 2016-09-06 22:43:00
600 sadfish549 Mille Madsen 0 2018-04-23 10:50:00
652 purpleladybug911 Marie Madsen 0 2018-04-27 21:45:00
662 ticklishduck171 Josefine Larsen 0 2018-01-28 13:18:00
710 happypeacock624 Simon Pedersen 0 2016-03-13 19:04:00
929 bigwolf576 Nanna Andersen 0 2017-08-15 19:56:00
949 silverkoala729 Frederikke Sørensen 0 2017-12-31 05:40:00

Then, the vacuuming policies for the associated purposes are executed by running the follow-
ing command:

$ vacuuming-policy execute --vacuuming-policies MarketingVacuuming
BookkeepingVacuuming↪→

To verify that the correct columns have been vacuumed the following queries can be used:

1 SELECT users.id, username, name, subscribed, MAX(order_date) as last_order_date
↪→

2 FROM users
3 JOIN newsletter n ON users.id = n.id
4 JOIN orders o ON users.id = o.ordered_by
5 WHERE subscribed = 0
6 GROUP BY ordered_by
7 HAVING last_order_date < datetime('2023-06-02 13:00:00', '-5 year') ORDER BY

users.id;↪→

8

9 SELECT users.id, username, name, subscribed, MAX(order_date) as last_order_date
↪→

10 FROM users
11 JOIN newsletter n ON users.id = n.id
12 JOIN orders o ON users.id = o.ordered_by
13 WHERE subscribed = 0 AND name = 'removed'
14 GROUP BY ordered_by
15 HAVING last_order_date < datetime('2023-06-02 13:00:00', '-5 year') ORDER BY

users.id;↪→

16

17 SELECT *
18 FROM users
19 WHERE name = 'removed'
20 ORDER BY users.id;

42 Chapter 5. Evaluation

The first query selects all rows that should have been vacuumed by the vacuuming process
and is the combination of vacuuming conditions defined in the storage policies Bookkeepin-
gUsers and MarketingUsers. The method for combining vacuuming conditions is described
in Section 3.3. The second query is identical, except it also checks whether the values of name
have been updated to ’removed’. The third query selects all rows from users, where the name
is set to ’removed’. As these three queries return the exact same costumers, i.e., the same val-
ues for id, the vacuuming component has updated exactly the rows that should be updated
according to the vacuuming conditions.

The result of the queries is shown in the following table:

id username name subscribed last_order_date
55 angrygoose622 removed 0 2017-01-28 05:51:00
148 goldendog216 removed 0 2018-03-31 07:16:00
223 blackswan387 removed 0 2016-12-04 06:56:00
386 orangebird847 removed 0 2017-11-01 16:02:00
452 orangeladybug614 removed 0 2017-12-02 06:55:00
471 crazybear894 removed 0 2016-09-06 22:43:00
600 sadfish549 removed 0 2018-04-23 10:50:00
652 purpleladybug911 removed 0 2018-04-27 21:45:00
662 ticklishduck171 removed 0 2018-01-28 13:18:00
710 happypeacock624 removed 0 2016-03-13 19:04:00
929 bigwolf576 removed 0 2017-08-15 19:56:00
949 silverkoala729 removed 0 2017-12-31 05:40:00

5.3.3 Vacuuming of Data Across Multiple Tables

For the case of vacuuming multiple tables, the two purposes from the previous sections are de-
fined in the same manner. To evaluate vacuuming across multiple tables, the column newslet-
ter.email is registered as containing personal data and the purposes are associated with it:

personal-data-column create --table-column newsletter email --default-value
"removed" --purposes Bookkeeping Marketing↪→

Then storage policies are created for the Marketing and Bookkeeping purposes. As mentioned
in Section 3.3, each table should have its own storage policies, as the vacuuming condition
changes depending on the table on which it is used. After the storage policies have been
created, they are related to the Marketing and Bookkeeping purposes, as seen in the following
interaction:

5.3. Vacuuming 43

storage-policy create --name MarketingNewsletter --table-column newsletter
email --vacuuming-condition "EXISTS(SELECT * FROM newsletter AS n WHERE
n.subscribed = 0 AND n.id = newsletter.id)"

↪→

↪→

storage-policy create --name BookkeepingNewsletter --table-column newsletter
email --vacuuming-condition "EXISTS(SELECT *, MAX(order_date) AS
last_order_date FROM newsletter AS n JOIN orders ON n.id = ordered_by WHERE
n.id = newsletter.id GROUP BY ordered_by HAVING last_order_date <
datetime('2023-06-02 13:00:00', '-5 year'))"

↪→

↪→

↪→

↪→

purpose add-storage-policy --name Marketing --storage-policies
MarketingNewsletter↪→

purpose add-storage-policy --name Bookkeeping --storage-policies
BookkeepingNewsletter↪→

The vacuuming condition defined for BookkeepingNewsletter selects the costumers that have
made their last order more than five years from the defined date. A specific date has been
used to ensure repeatability.

Before the vacuuming is executed, the rows that will be affected by the vacuuming conditions
can be seen in the following table:

id email subscribed
55 laerke.olsen@example.com 0
148 marius.madsen@example.com 0
223 caroline.thomsen@example.com 0
386 mathias.christensen@example.com 0
452 tobias.johansen@example.com 0
471 rosa.mortensen@example.com 0
600 mille.madsen@example.com 0
652 marie.madsen@example.com 0
662 josefine.larsen@example.com 0
710 simon.pedersen@example.com 0
929 nanna.andersen@example.com 0
949 frederikke.sorensen@example.com 0

The policies can then be executed using:

$ vacuuming-policy execute --vacuuming-policies MarketingVacuuming
BookkeepingVacuuming↪→

44 Chapter 5. Evaluation

To verify whether or not the vacuuming executed correctly, the content of the table users is
verified in the same manner as in the last section, while the content of the newsletter table is
verified using the following queries:

SELECT *
FROM newsletter
WHERE EXISTS(SELECT *, MAX(order_date) AS last_order_date

FROM newsletter AS n
JOIN orders ON n.id = ordered_by

WHERE n.id = newsletter.id
AND n.subscribed = 0
GROUP BY ordered_by
HAVING last_order_date < datetime('2023-06-02 13:00:00',

'-5 year'))↪→

ORDER BY id;

SELECT *
FROM newsletter
WHERE EXISTS(SELECT *, MAX(order_date) AS last_order_date

FROM newsletter AS n
JOIN orders ON n.id = ordered_by

WHERE n.id = newsletter.id
AND n.subscribed = 0
AND email = 'removed'
GROUP BY ordered_by
HAVING last_order_date < datetime('2023-06-02 13:00:00',

'-5 year'))↪→

ORDER BY id;

SELECT * FROM newsletter
WHERE email = 'removed'
ORDER BY id;

The above queries are used to evaluate the result of the vacuuming in the same manner as in
Section 5.3.2.

The output of the first two queries is shown in the following table:

5.4. Logging 45

id email subscribed
55 removed 0
148 removed 0
223 removed 0
386 removed 0
452 removed 0
471 removed 0
600 removed 0
652 removed 0
662 removed 0
710 removed 0
929 removed 0
949 removed 0

5.4 Logging

As stated in Section 3.4 the logging component should fulfill requirement 5:

5. Operations affecting personal data are logged such that regulators can inspect compli-
ance.

That is, the log should be able to show that the database system complies with requirements
1 to 4 from Section 1.3. This will be shown through an examination of a log that has been
produced after a number of commands, which can be found at the end of this section, have
been executed. In the following interactions, the log entries contained in the examined log are
referred to by their id number and the vacuuming conditions for the created storage policies
have been replaced with keywords for brevity.

In this example, a user wants to know whether the personal data in the name column of the
users table is stored in a compliant manner, i.e., whether it complies with the requirements 1
to 4.

46 Chapter 5. Evaluation

5.4.1 Documenting Purpose

The user first inspects if the data is being processed for a valid purpose, and searches the log
by looking for log entries associated with the personal data column (users, name):

$ log list --subjects "(users, name)"

1 05-06-2023 14:03:30 Metadata (users, name) Plaintext Personal data
column '(users, name)' created↪→

2 05-06-2023 14:03:30 Metadata (users, name) Plaintext Personal data
column '(users, name)' updated to '(users, name), None, removed, users.id,
Empty'

↪→

↪→

7 05-06-2023 14:03:30 Metadata (users, name) Plaintext Personal data
column '(users, name)' updated to '(users, name), None, removed, users.id,
[Marketing , Bookkeeping]'

↪→

↪→

18 05-06-2023 14:03:30 Vacuuming (users, name) Plaintext Execution of
vacuuming policy 'AllVacuumingPolicy' possibly affected (users, name)
because it is stored under the following purpose(s): MarketingInformation ,
Bookkeeping. The following query was executed: "UPDATE users SET name =
'removed' WHERE (MarketingUsersCondition) AND
(BookkeepingUsersCondition);"

↪→

↪→

↪→

↪→

↪→

From this interaction the user can see that the personal data column was (1) created, (2)
updated with a default-value removed and an association expression users.id, (7) updated
with two purposes Marketing and Bookkeeping, and (18) the subject of an execution of the
vacuuming policy AllVacuumingPolicy. The user could conclude that the personal data is
being processed under two purposes, Marketing and Bookkeeping. However, the user can
also see that there is a discrepancy between the logged purposes for the personal data column
in log entry 7 and 18, marked in yellow, as the purpose Marketing has been replaced with the
purpose MarketingInformation. The user can inspect this:

5.4. Logging 47

$ log list --subjects Marketing MarketingInformation

3 05-06-2023 14:03:30 Metadata Marketing Plaintext Purpose
'Marketing' created↪→

4 05-06-2023 14:03:30 Metadata Marketing Plaintext Purpose
'Marketing' updated to 'Marketing, None, False, Empty, Empty, Empty'↪→

12 05-06-2023 14:03:30 Metadata Marketing Plaintext Purpose
'Marketing' updated to 'Marketing, None, False, [MarketingUsers], [
(users, name)], Empty'

↪→

↪→

16 05-06-2023 14:03:30 Metadata Marketing Plaintext Purpose
'Marketing' updated to 'MarketingInformation, None, False, [MarketingUsers
], [(users, name)], [AllVacuumingPolicy]'

↪→

↪→

19 05-06-2023 14:03:30 Metadata MarketingInformation Plaintext
Purpose 'MarketingInformation' deleted↪→

From this interaction the user can see that a purpose called Marketing was (3) created, (4) up-
dated with a legally required value False, (12) updated with a storage policy MarketingUsers,
and (16) updated with a new name MarketingInformation and a vacuuming policy AllVac-
uumingPolicy. From this it is possible to determine why log entry 18 has a different purpose
listed, as Marketing has been renamed to MarketingInformation. Furthermore, from log en-
try 19 the user can see that the purpose MarketingInformation has been deleted. As a result,
the user can conclude that the personal data stored in the name column of the users table
is no longer being processed for the purpose of Marketing. However, from the previous in-
teraction, the user found that the personal data was also being processed for the purpose of
Bookkeeping. The user can continue the inspection to see if the purpose Bookkeeping still
exists:

$ log list --subjects Bookkeeping

5 05-06-2023 14:03:30 Metadata Bookkeeping Plaintext Purpose
'Bookkeeping' created↪→

6 05-06-2023 14:03:30 Metadata Bookkeeping Plaintext Purpose
'Bookkeeping' updated to 'Bookkeeping, None, True, Empty, Empty, Empty'↪→

13 05-06-2023 14:03:30 Metadata Bookkeeping Plaintext Purpose
'Bookkeeping' updated to 'Bookkeeping, None, True, [BookkeepingUsers], [
(users, name)], Empty'

↪→

↪→

From this interaction the user can see that the purpose Bookkeeping has been created and
updated with various values, but it has not been renamed or deleted. Therefore the user can
conclude that the personal data stored in the name column of the users table is still being
processed under the Bookkeeping purpose.

48 Chapter 5. Evaluation

5.4.2 Documenting Vacuuming

Now that it has been established that the personal data is being processed for a valid purpose,
the user can inspect the log to see if the personal data is being regularly vacuumed. From log
entry 18 the user can see that the personal data column “(users, name)” was affected by the
execution of the vacuuming policy AllVacuumingPolicy. The user can inspect this vacuuming
policy further:

$ log list --subjects AllVacuumingPolicy

14 05-06-2023 14:03:30 Metadata AllVacuumingPolicy Plaintext
Vacuuming policy 'AllVacuumingPolicy' created↪→

15 05-06-2023 14:03:30 Metadata AllVacuumingPolicy Plaintext
Vacuuming policy 'AllVacuumingPolicy' updated to 'AllVacuumingPolicy, None,
1d, None, [Marketing, Bookkeeping]'

↪→

↪→

17 05-06-2023 14:03:30 Vacuuming AllVacuumingPolicy Plaintext
Vacuuming policy 'AllVacuumingPolicy' executed↪→

From this interaction the user can see that the vacuuming policy AllVacuumingPolicy was
(14) created, (15) updated to have a duration of “1d”, i.e., one day and have the two purposes
Marketing and Bookkeeping, and (17) executed. Because the id of log entry 17 is less than the
id of log entry 19, the user can also conclude that personal data processed for the purpose of
Marketing was vacuumed once before the purpose was deleted.

From log entry 13 and 16 the user can see that two storage policies have been in use, namely
MarketingUsers and BookkeepingUsers. The user can inspect these further:

$ log list --subjects MarketingUsers BookkeepingUsers

8 05-06-2023 14:03:30 Metadata MarketingUsers Plaintext Storage
policy 'MarketingUsers' created↪→

9 05-06-2023 14:03:30 Metadata MarketingUsers Plaintext Storage
policy 'MarketingUsers' updated to 'MarketingUsers, None,
MarketingUsersCondition , (users, name), Empty'

↪→

↪→

10 05-06-2023 14:03:30 Metadata BookkeepingUsers Plaintext Storage
policy 'BookkeepingUsers' created↪→

11 05-06-2023 14:03:30 Metadata BookkeepingUsers Plaintext Storage
policy 'BookkeepingUsers' updated to 'BookkeepingUsers, None,
BookkeepingUsersCondition , (users, name), Empty'

↪→

↪→

From this interaction the user can see that the two storage policies were (8 and 10) created
and (9 and 11) updated with a vacuuming condition, excluded here for brevity, and that they
are associated with the personal data column “(users, name)”.

5.4. Logging 49

5.4.3 Summary

From this example examination, the user can conclude the following about the personal data
stored in the name column of the users table:

1. The personal data can be associated with an individual, as the association expression
users.id is available (see log entry 2).

2. The personal data is being processed for the purpose of Bookkeeping. Previously it was
also being processed for the purpose of Marketing.

3. The personal data is being processed on the legal basis of a legal obligation, because the
legally-required flag on the Bookkeeping purpose is set to True (see log entry 13).

4. The personal data is regularly vacuumed, because the vacuuming policy AllVacuuming-
Policy has a duration of one day. The user can inspect the two vacuuming conditions
MarketingUsersCondition and BookkeepingUsersCondition to see if they are behaving cor-
rectly.

This example examination shows that it is possible to verify that the personal data is being
processed in compliance with GDPR. This was just one example, but it shows that the neces-
sary information is available to verify compliance, within the context of the data DPCT has
access to.

50 Chapter 5. Evaluation

These are the commands that had been run prior to the example examination:

$ personal-data-column create --table-column users name
--association-expression "users.id" --default-value "removed"↪→

$ purpose create --name Marketing --legally-required false
$ purpose create --name Bookkeeping --legally-required true

$ personal-data-column add-purpose --table-column users name --purposes
Marketing Bookkeeping↪→

$ storage-policy create --name MarketingUsers --table-column users name
--vacuuming-condition MarketingUsersCondition↪→

$ storage-policy create --name BookkeepingUsers --table-column users name
--vacuuming-condition BookkeepingUsersCondition↪→

$ purpose add-storage-policy --name Marketing --storage-policies MarketingUsers

$ purpose add-storage-policy --name Bookkeeping --storage-policies
BookkeepingUsers↪→

$ vacuuming-policy create --name AllVacuumingPolicy --purposes Marketing
Bookkeeping --duration "1d"↪→

$ purpose update --name Marketing --new-name MarketingInformation

$ vacuuming-policy execute --vacuuming-policies AllVacuumingPolicy

$ purpose delete --name MarketingInformation

Chapter 6

Discussion

Based on the design described in Chapter 3 and the evaluation of DPCT seen in Chapter 5. The
components of DPCT are discussed in the following sections. First the implementation and
design of metadata is discussed, followed by a discussion of the vacuuming process. Finally
logging is discussed.

6.1 Metadata

6.1.1 Legal Basis

DPCT implements a simplified representation of the legal basis required by GDPR to process
personal data lawfully. It is simplified as it can only describe whether or not personal data is
being processed on the legal basis of “legal obligation”. However, GDPR Article 6(1) presents
a number of possible legal bases for the processing of personal data that can be used by
companies. As a result, if personal data managed by DPCT is not being processed on the
basis of a legal obligation, i.e., the legally required flag on the purpose is false, users of
DPCT have no way of specifying which, if any, of the other available legal bases are in use.
DPCT currently assumes that some legal basis other than legal obligation is in use, such as
consent (GDPR Article 6(1)(a)), but it has no way of verifying this.

A more elaborate approach to representing legal bases is presented in Section 8.1.

6.1.2 Associating Personal Data with Individuals

In Section 3.2.3, four assumptions were made to make it possible to associate personal data
with individuals:

I Individuals are represented in the database system by a unique identifier.

II The identifiers representing individuals are single-column, i.e, not multi-column.

III The identifiers are stored in a single table known by DPCT.

IV A one-to-many relationship exists between an identifier and the personal data of the
individual that identifier represents.

51

52 Chapter 6. Discussion

Relaxing assumptions I and IV is not possible, as they are fundamental to the notion of
associating unique individuals with their personal data. Without a relationship between an
individual and that individual’s personal data, the association is impossible to make.

Relaxing assumptions II and III could possibly require more work on the user’s part when
constructing the one-to-many relationship, as the user would also have to define a query for
combining the tables storing the, now possibly multi-column, identifiers, before the relation-
ship can be built. In many cases, this could be done by using one or more UNION and
FULL JOIN operations, but there might be cases where that would not be enough, and the
user would have to define a more complex operation. Another option would be to make
the database conform to the assumptions, using schema evolution tools such as Curino et al.
[2008, 2010]; Nykjær et al. [2023].

6.1.3 Circumventing DPCT

DPCT does not force a company to use it. As an example, it would be possible for a company
to process data for a different purpose than the one registered in DPCT. However, it is in the
best interest of the company to register these purposes in DPCT, as it allows them to show
compliance.

In the future, it would be prudent to expand DPCT to function as a layer between the DBMS
and the database, requiring all access to go through DPCT, which is then logged for auditing
purposes.

6.1.4 Personal Data Granularity

As mentioned in Section 3.2, personal data is managed at the column level. This is based on
the assumption that all personal data stored in a column has the same nature, e.g., every value
stored in an address column is an address, and it was therefore assumed that they would also
share the same purposes for processing.

However, this assumption may not always hold, and it may be necessary to manage personal
data at the level of individual cells in a column. As an example, it might be necessary to
specify that one half of the addresses is stored under the Marketing purpose and the other
half is stored under the Bookkeeping purpose, which would not be possible under the current
assumption.

Another option is managing personal data at the table level. This is a more practical represen-
tation for some metadata. An example of this is the association expression. The association
expression is the same for all columns in the same table, as each row in a table containing
personal data must be associated with a single individual.

As this discussion shows, there are arguments for managing personal data at different levels
of granularity. As a result, a third option is to combine these different granularities, such that
information relevant to all columns in a table can be stored in a single place while it is also
possible to specify details about individual columns and cells in a column.

An extension supporting this is presented in Section 8.1.

6.2. Vacuuming 53

6.2 Vacuuming

6.2.1 Run-Time of Combined Conditions

As shown in Algorithm 1, the algorithm responsible for creating the combined vacuuming
conditions for a purpose iterates through every column related to a purpose, and then iterates
through all purposes related to those columns. As a result, the run time of the system is
proportional with the amount of columns associated with a purpose, and the amount of
purposes associated with each column. As optimization of DPCT is beyond the scope of this
project, it has not been a focus to optimize this algorithm.

6.2.2 Query Analysis

DPCT does not perform any analysis of the combined vacuuming conditions. Therefore, if a
user was to create an equivalent vacuuming condition for multiple purposes associated with
the same column, i.e., multiple purposes expiring after two years, these conditions will both
be added to the combined vacuuming condition for the column. This results in the same
condition being checked multiple times, resulting in a larger overhead. Therefore it would be
prudent analyze and optimize the combined queries, as described in Section 8.2.

6.2.3 Deletion Guarantees

A user can define arbitrary queries as discussed in Section 3.3, and as a result, they can create
combinations of vacuuming policies which never delete any data. However, this is a result of
allowing a user to create the conditions that fit their needs, without any restrictions, and is
therefore an accepted side effect.

DPCT also allows a user to define arbitrary default values for columns. This allows a user
more freedom, but can result in them attempting to set a column containing integers to a
string. To alleviate this issue, it would be prudent to allow the user to define the datatype of
a column, such that DPCT can determine whether the value is of the correct type. For certain
database systems, such as SQLite and PostgreSQL, this issue is not as prevalent, as SQLite has
dynamic types [SQLite, 2023b] and PostgreSQL has built-in casting between certain types [The
PostgreSQL Global Development Group, 2023a]. However, relying on the specific DBMSs and
their way of handling types is not as extendable as implementing the functionality in DPCT.

6.3 Logging

6.3.1 Logging Vacuuming Executions

DPCT is currently not able to determine if a vacuuming execution actually affected data,
which is why the log entry for vacuuming says the vacuuming possibly affected data. This
is due to DPCT not accessing the personal data that is stored in the database system. As a
result, when running the vacuuming statements, it can not detect if the data was affected by
the deletion statement.

54 Chapter 6. Discussion

As an example, if a user creates a vacuuming condition which is set to false, no data in the
system is effected by that condition. However, DPCT will still state that the data has possibly
been affected.

One way of detecting whether data is affected by vacuuming, is to execute a query that selects
the data that should be deleted, and then determining whether the result is empty. If this is
not the case, the vacuuming statement updates the stored data. However, this would result in
extra queries made on the database, and therefore a larger vacuuming overhead.

Another option is to use a function such as RETURNING, which returns the updated columns
[SQLite, 2023c]. This would enable the DPCT to verify whether the result is non empty.

Implementing one of these methods would result in more complete logs which would be able
to state that a specific purpose has been validated and a certain number of columns were
modified.

6.3.2 External Data Manipulation

DPCT does not log external queries and updates to the database. This makes it possible for
someone with access to the database to, as an example, update the creation_dates in the
users table to the current date, then execute vacuuming, which is logged, and then set the
creation_dates to their original values. The result would be an unchanged database, but the
log would show that vacuuming has been run. This way, it would be possible to build an
audit trail that shows compliance, in this instance that vacuuming has been run, but in reality
the data would not be in compliance.

As a result of the logging component in DPCT not logging external queries and updates, it is
not possible to utilize it as the sole documentation of compliance for a company, as an auditor
would need to compare the DPCT log with the DBMS log.

Methods for expanding DPCT to include logging external queries and updates are described
in Chapter 8.

6.3.3 Logging Guarantees

DPCT creates a new log entry each time a command has been successfully executed. If the
command failed to execute, no log entry is created. This differs from the standard write-ahead
logging technique, where every operation is logged before it is performed [The PostgreSQL
Global Development Group, 2023b]. Write-ahead logging is good for crash-recovery as it
is possible to rebuild the data in the database should something fail during an operation.
However, the log maintained in DPCT is used to document the changes made to the data,
and not the planned operations, as the latter can lead to tampering. As an example, if a user
ran a command and then deliberately made the database system crash after the log entry
had been made, but before the command had an effect on the database, the log would show
that the command had gone through, which the user could then present to regulators as
documentation for compliance.

However, a problem also arises when using this technique. If a database operation is success-
ful, but appending to the log fails, the log and the state of the data in the database system
would be out of sync, and the log would represent an incorrect audit trail.

Ideally a transaction-style system should be used, where either both the database operation
and log append succeed, or both fail.

6.4. Support for Complying with the Rights of Individuals 55

6.4 Support for Complying with the Rights of Individuals

This project was approached from the perspective of a company trying to make their database
system GDPR compliant. Providing built-in support for individuals to exercise their rights
was therefore not a priority. However, it is also in the interest of a company to be able to
comply with individuals’ requests, as this is necessary in order to be GDPR compliant.

Using DPCT as it is, it is possible for the company to comply with individuals’ requests, as
DPCT allows for a user of the system to associate individuals with their personal data using
the association expressions. However, this requires some work on the company’s part, as the
process of complying with individuals’ requests regarding their GDPR rights has not been
automated. Enabling this automation is described in further detail in Chapter 8.

6.5 Process

While the previous sections discuss aspects of the design and implementation of DPCT, this
section discusses relevant aspects of the process of developing DPCT.

The development of DPCT started with a specification of the schema for the database stor-
ing the metadata, and the functionality that should use this information. The information
represented by the schema was correct, however the structure and relations were based on
assumptions that turned out to be incorrect. This resulted in the schema being a hindrance
to the development of the functionality. Several iterations of the database schema have been
developed, and the problems have been mitigated. The vacuuming process is an example of
functionality that remains more complex than necessary because the data structures it requires
underwent multiple iterations and the component had to be adapted.

During the initial stages of the project, the project group reflected on the progress of the project
every second week. However, once development of the prototype began, these reflection days
stopped. The initial reflection days made this possible, as little changed regarding the project
direction during development, but it would still have been beneficial during development,
with regards to the final stages of the project, by providing more opportunities for refinement.

The prototype was developed iteratively using test driven development. The practice of test
driven development provided benefits, such as revealing inconsistencies between components
early. However, the resulting interfaces are more complex and in some cases more tightly
coupled than necessary. The reason for this is that insufficient attention was paid to refactoring
and simplifying the interfaces.

The prototype has more functionality than is presented in the report. This functionality par-
tially implements or supports some of the features described in Chapter 8, and has been
omitted to limit the scope of the report to functionality that has been fully implemented.

Chapter 7

Conclusion

The General Data Protection Regulation (GDPR) requires that companies only store and pro-
cess personal data so long as they have specific purposes with valid legal bases for doing
so. In this project, a Data Protection Compliance Tool (DPCT) is designed, implemented, and
evaluated. DPCTaims to help companies make their existing database systems GDPR compli-
ant. Requirements for this system are based on GDPR and existing research on GDPR’s effects
on database systems. These requirements are used to determine the additional information
that must be provided about personal data in order to ensure that it is stored in compliance
with GDPR.

DPCT supports the capture of this additional information by associating all personal data
with metadata that define the purposes for storing it, its associated individual, and when it
should be deleted.

DPCT allows a user to register columns in an existing database as containing personal data.
After a column is registered as containing personal data, DPCT can give an overview of the
metadata needed to ensure that the personal data is stored in compliance with GDPR. DPCT
enables its users to register the metadata and vacuuming policies needed to document that
the personal data is being processed for legitimate and specific purposes, can be associated
with a natural person, and is deleted when it is no longer being processed for a valid purpose.

The prototype of DPCT fulfills the requirements defined for the system, except for the require-
ment Legal processing, which requires that personal data must be stored with a legal basis. It
is only possible to determine the legal basis on which personal data is being processed using
DPCT if the legal basis is a legal obligation.

The design and implementation of DPCT presented in this report can assist companies in
complying with specific aspects of GDPR. However, this design can be extended to provide
support for additional aspects. Several extensions are presented as future work, including
fulfilling the missing requirement, providing built-in support for the rights of individuals,
and extending logging to support verification of external changes to personal data.

57

Chapter 8

Future Work

8.1 Metadata

8.1.1 Personal Data Granularity

DPCT represents personal data as references to specific columns. As already discussed in
Section 6.1, this representation has limitations. It requires information about a table storing
personal data to be repeated across all references to columns in the table, and it is not possible
to represent metadata about individual values or subsets of values in a column.

These limitations can be removed by using a different representation of personal data that
supports describing personal data with multiple levels of granularity. Figure 8.1 shows a
schema with tables that allows relating metadata to tables, columns, rows, and cells containing
personal data.

Figure 8.1: An overview of a schema that allows for representing multiple granularities of personal data.

59

60 Chapter 8. Future Work

8.1.2 Extended Metadata

Only the metadata necessary to determine whether personal data can continue to be stored is
included in DPCT. To fully comply with GDPR, additional metadata is required.

A more elaborate representation of legal basis is needed, as the current representation of the
legal basis for the processing of personal data is simplified as mentioned in Section 6.1. A
complete representation of legal basis requires an auditor be able to determine which legal
basis applies to a given purpose, and verify that it is valid. This can be accomplished by
replacing the legally_required flag in the table purposes with a reference to a specific legal
basis.

Information about the source of personal data about an individual is also required (GDPR
Article 15). As the source may differ between individuals, this requires a way to relate meta-
data to a specific individual. In the case where the source differs between values of personal
data for the same individual, it requires being able to relate metadata to a specific value of
personal data. This would be possible using the more granular representation of personal
data described previously.

Similarly to the source of personal data, it is also required that a company keep track of what
personal data is shared, and what entities it is shared with (GDPR Article 15). This can be
done by creating a table with the possible entities, and relating these to the personal data
shared with them.

It also required that a company be able to inform individuals about how their personal data is
processed (GDPR Article 15), and if it is used for automated decision making (GDPR Article
22). This requires changing and extending the current representation of metadata. A table
recording the usages of personal data needs to be added. Personal data should then be
associated with one or more usages, and purposes should be associated with usages instead
of personal data. It would then be possible to determine how personal data is processed, and
for what purpose. A flag indicating whether it performs automated decision making can be
added to the table recording usages.

8.2 Vacuuming

8.2.1 Optimization of Combined Conditions

As mentioned in Section 6.2, DPCT currently does not conduct any analysis on the combined
conditions created in the vacuuming component. As a result, the combined condition can
result in a statement containing the same condition multiple times. This could be alleviated
using the chase and back-chase algorithm described in [Curino et al., 2008].

The pseudo code presented in Algorithm 1 describes the procedure for generating the com-
bined condition. It is not part of the scope of the project to optimize this algorithm, and it
would therefore be prudent to focus on reducing the run-time of the system in the future
work. This could be done using memoisation techniques.

8.3. Logging 61

8.2.2 Periodic Vacuuming

Periodic vacuuming is not implemented in DPCT as this was deemed outside the scope of the
project. However, there are different methods of implementing this functionality.

One of these methods is using an in-process scheduler, which can be implemented by starting
a scheduled thread running within DPCT that periodically deletes data. However, this method
requires that the process is constantly running to ensure that the data is deleted.

Another method is to generate a set of cron jobs, which is a functionality used for running
commands at regular intervals on a Unix system [Kubernetes, 2023]. These cron jobs should
be set to execute based on the duration defined in the vacuuming policy, and contain the
combined query which is needed to vacuum the database. This query will have the same
structure as the one seen in Listing 3.2. However, this means that whenever a new purpose,
and vacuuming policies are added, the cron jobs must be updated. This requires system access
to the device executing the cron jobs.

A third option is to develop a system that runs on a server and periodically executes the
vacuuming policies. This process must have access to the database, and so that it is able to
adapt to new purposes and vacuuming policies being added.

Of the three above mentioned possibilities, the third option is preferred for expanding DPCT,
as it allows for periodic vacuuming without being dependent on DPCT running in the back-
ground, and without having to create, manage, and update cron jobs.

8.3 Logging

8.3.1 Logging External Queries and Updates

As mentioned in Section 6.3, DPCT does not log external queries and updates. This could be
achieved by recording queries in the DBMS log, copying and merging it with the information
logged by DPCT, similarly to the approach of Kraska et al. [2019]. Not every DBMS supports
logging, such as SQLite. However, several relevant DBMSs do, such as the ones analysed by
Shastri et al. [2019a].

Without copying the DBMS log, it would only be possible to log external queries and updates
if the system had access to every external query and update. The method of implement-
ing this depends on the DBMS. Some, such as PostgreSQL, can be extended to support this
functionality. Alternatively, a proxy can be used to provide access to queries and updates.

Logging all queries would enable DPCT to determine who is using which data. Logging every
update would allow DPCT to prevent the circumvention mentioned in Section 6.1. An example
of how this prevents circumvention, is that it enables determining if a value was changed just
before a vacuuming execution or status report, and then changed back afterwards.

8.3.2 Personal Data and Logging

If all queries and updates made to a database system were logged, the logs would also contain
personal data about the individuals stored in the system. As a result, there would be a need to
ensure that personal data is removed from the logs as well. This could be achieved by either
vacuuming the log or anonymising the personal data stored in the log, such that it cannot be
referred back to particular individuals.

62 Chapter 8. Future Work

8.4 Better Support for the Rights of Individuals

As mentioned in Section 6.4, providing support for the rights of individuals is not a priority
in this project. However, the requirements already fulfilled by DPCT provides the foundation
necessary to provide better support for complying with these rights. Being able to respond to
users exercising their rights is also in the interest of the company, as it is needed in order to
be fully GDPR compliant. Automating the responses can save the company time and money,
as they will not have to manually respond to each request.

Because the rights of individuals are based on the individuals making requests to the com-
pany, functionality supporting individuals’ ability to make such requests is required. This can
be done by expanding DPCT to allow individuals access to a limited set of functionality.

The rights to data access (GDPR Article 15), data portability (GDPR Article 20), and to being
informed of automated decision making (GDPR Article 22), require that the individuals can
make requests to receive their personal data and the associated metadata. DPCT stores the
relevant GDPR metadata, and it is possible to construct queries using the association expres-
sions on personal data columns to extract all personal data for a given individual from the
database system.

The rights to erasure (GDPR Article 17) and rectification (GDPR Article 16) require that the
individuals can make requests to have their personal data changed. In both cases the purpose
for processing the personal data must be taken into account before the changes are made,
and the company should therefore be able to review the requests before they are acted upon.
However, there may also be many cases, where the data can be rectified or deleted without
needing approval. As an example, if personal data is being processed on the legal basis of
consent only, the data can be deleted immediately as the company is obligated to comply with
the request.

The rights to object (GDPR Article 21), restriction of processing (GDPR Article 18), and to
not be subject to automated processing (GDPR Article 22), require that individuals can make
requests to limit the processing of their personal data. This may be difficult to fully automate,
as it is up to the company how exactly they will react. As an example, it might be the case
that the company has legitimate reasons for not complying with a request. However, it would
be possible for DPCT to log the date and time of the arrival of the request, and notify the
company that they need to react in a timely manner.

Bibliography

Archita Agarwal, Marilyn George, Aaron Jeyaraj, and Malte Schwarzkopf. Retrofitting GDPR
compliance onto legacy databases. Proceedings of the VLDB Endowment., 15(4):958–970, apr
2022. URL https://doi.org/10.14778/3503585.3503603.

Keith Armstrong. Random user generator, 2022. URL https://randomuser.me/. Accessed
02/06-2023.

Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema evolution: The
prism workbench. Proceedings of the VLDB Endowment, 1(1):761–772, 2008.

Carlo A. Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Update rewriting and in-
tegrity constraint maintenance in a schema evolution support system: PRISM++. Proceedings
of the VLDB Endowment, 4(2):117–128, 2010.

Datatilsynet. Møbelfirma indstillet til bøde, 2019a. URL https://www.datatilsynet.
dk/afgoerelser/afgoerelser/2019/jun/moebelfirma-indstillet-til-boede. Accessed
07/06-2023.

Datatilsynet. Datatilsynet indstiller taxaselskab til bøde på 1,2 mio. kr., 2019b.
URL https://www.datatilsynet.dk/afgoerelser/afgoerelser/2019/mar/datatilsynet-
indstiller-taxaselskab-til-boede-paa-12-mio-kr. Accessed 07/06-2023.

Datatilsynet. Arp-hansen hotel group a/s indstilles til bøde, 2020. URL https:
//www.datatilsynet.dk/afgoerelser/afgoerelser/2020/jul/arp-hansen-hotel-group-
as-indstilles-til-boede. Accessed 07/06-2023.

Datatilsynet. Danske bank indstilles til bøde, 2022a. URL https://www.datatilsynet.
dk/afgoerelser/afgoerelser/2022/apr/danske-bank-indstilles-til-boede. Accessed
07/06-2023.

Datatilsynet. Gyldendal indstilles til bøde, 2022b. URL https://www.datatilsynet.dk/
afgoerelser/afgoerelser/2022/jun/gyldendal-indstilles-til-boede. Accessed 07/06-
2023.

Datatilsynet. Gdpr for små virksomheder, 2023. URL https://www.datatilsynet.dk/presse-
og-nyheder/nyhedsarkiv/2023/maj/gdpr-for-smaa-virksomheder. Accessed 07/06-2023.

European Commission. 2016 reform of eu data protection rules, 2016. URL https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

63

https://doi.org/10.14778/3503585.3503603
https://randomuser.me/
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2019/jun/moebelfirma-indstillet-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2019/jun/moebelfirma-indstillet-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2019/mar/datatilsynet-indstiller-taxaselskab-til-boede-paa-12-mio-kr
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2019/mar/datatilsynet-indstiller-taxaselskab-til-boede-paa-12-mio-kr
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2020/jul/arp-hansen-hotel-group-as-indstilles-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2020/jul/arp-hansen-hotel-group-as-indstilles-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2020/jul/arp-hansen-hotel-group-as-indstilles-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2022/apr/danske-bank-indstilles-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2022/apr/danske-bank-indstilles-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2022/jun/gyldendal-indstilles-til-boede
https://www.datatilsynet.dk/afgoerelser/afgoerelser/2022/jun/gyldendal-indstilles-til-boede
https://www.datatilsynet.dk/presse-og-nyheder/nyhedsarkiv/2023/maj/gdpr-for-smaa-virksomheder
https://www.datatilsynet.dk/presse-og-nyheder/nyhedsarkiv/2023/maj/gdpr-for-smaa-virksomheder
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

64 Bibliography

Tim Kraska, Michael Stonebraker, Michael Brodie, Sacha Servan-Schreiber, and Daniel
Weitzner. Schengendb: A data protection database proposal. In Heterogeneous Data Manage-
ment, Polystores, and Analytics for Healthcare, pages 24–38. Springer International Publishing,
2019. URL https://doi.org/10.1007/978-3-030-33752-0_2.

Kubernetes. Cronjob, 2023. URL https://kubernetes.io/docs/concepts/workloads/
controllers/cron-jobs/. Accessed 30/05-2023.

Mendeley. Harvard format citation guide, 2021. URL https://www.mendeley.com/guides/
harvard-citation-guide. Accessed 11/11-2022.

Microsoft. System.commandline overview, 2022. URL https://learn.microsoft.com/en-
us/dotnet/standard/commandline/. Accessed 11/06-2023.

Alexander Mundbjerg Nykjær, Ane Søgaard Jørgensen, and Jakob Sønderby Kristensen. To-
wards practical regulatory compliance in database systems, 2023.

Anton Hinsby Palmer and Sujeepan Srikandarajah. Design and implementation of a system
for rule-based data retention compliance, 2022. Report not publicly available.

Retsinformation. Bekendtgørelse af bogføringslov, 2006. URL https://www.
retsinformation.dk/eli/lta/2006/648.

Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay Chidambaram.
Understanding and benchmarking the impact of GDPR on database systems. arXiv preprint
arXiv:1910.00728, 2019a.

Supreeth Shastri, Melissa Wasserman, and Vijay Chidambaram. The seven sins of personal-
data processing systems under GDPR. In 11th USENIX Workshop on Hot Topics in
Cloud Computing. USENIX Association, 2019b. URL https://www.usenix.org/conference/
hotcloud19/presentation/shastri.

SQLite. What is sqlite?, 2023a. URL https://www.sqlite.org/index.html. Accessed
29/05/2023.

SQLite. Datatypes in sqlite, 2023b. URL https://www.sqlite.org/datatype3.html. Accessed
05/06-2023.

SQLite. Returning, 2023c. URL https://sqlite.org/lang_returning.html. Accessed 03/06-
2023.

The PostgreSQL Global Development Group. Value storage, 2023a. URL https://www.
postgresql.org/docs/current/typeconv-query.html. Accessed 05/06-2023.

The PostgreSQL Global Development Group. 30.3. write-ahead logging (wal), 2023b. URL
https://www.postgresql.org/docs/current/wal-intro.html. Accessed 07/06-2023.

https://doi.org/10.1007/978-3-030-33752-0_2
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://www.mendeley.com/guides/harvard-citation-guide
https://www.mendeley.com/guides/harvard-citation-guide
https://learn.microsoft.com/en-us/dotnet/standard/commandline/
https://learn.microsoft.com/en-us/dotnet/standard/commandline/
https://www.retsinformation.dk/eli/lta/2006/648
https://www.retsinformation.dk/eli/lta/2006/648
https://www.usenix.org/conference/hotcloud19/presentation/shastri
https://www.usenix.org/conference/hotcloud19/presentation/shastri
https://www.sqlite.org/index.html
https://www.sqlite.org/datatype3.html
https://sqlite.org/lang_returning.html
https://www.postgresql.org/docs/current/typeconv-query.html
https://www.postgresql.org/docs/current/typeconv-query.html
https://www.postgresql.org/docs/current/wal-intro.html

Appendix A

Command Line Interface

This appendix presents the commands that are available in DPCT. Commands that have sim-
ilar structure and functionality are not repeated, but a reference to the similar command is
given.

• Section A.1 presents an overview of all available commands.

• Section A.2 covers the personal-data-column command.

• Section A.3 covers the purpose command.

• Section A.4 covers the vacuuming-policy command.

• Section A.5 covers the storage-policy command.

• Section A.6 covers the log command.

The commands are presented using the built-in help command, which is invoked by using
the ? option, such as:

$ personal-data-column create ?

65

66 Appendix A. Command Line Interface

A.1 Overview

$?

Commands:
pdc, personal-data-column
p, purpose
vacuuming-policy, vp
sp, storage-policy
lg, log
q, quit Quits the program
stat, status Shows the status of all entities in the system

Listing A.1: Overview of the available commands.

A.2 Personal Data Column Command

A.2.1 Overview

• Section A.2.2 covers the personal-data-column delete command.

• Section A.2.3 covers the personal-data-column list command.

• Section A.2.4 covers the personal-data-column show command.

• Section A.2.5 covers the personal-data-column status command.

• Section A.2.6 covers the personal-data-column create command.

• Section A.2.7 covers the personal-data-column update command.

• Section A.2.8 covers the personal-data-column add-purpose command.

• Section A.2.9 covers the personal-data-column remove-purpose command.

A.2. Personal Data Column Command 67

$ personal-data-column ?
Description:

Usage:
! personal-data-column [command] [options]

Options:
?, h, help Show help and usage information

Commands:
d, delete Deletes the given personal data column from the system
list, ls Lists the personal data columns currently in the system
sh, show Shows details about the given personal data column
stat, status Shows the statuses of the personal data columns currently

in the system↪→

c, create Creates a new personal data column in the system
u, update Updates the given personal data column with the given

values↪→

add-purpose, ap Adds the given purposes to the personal data column
remove-purpose, rp Removes the given purposes from the personal data column

Listing A.2: Overview of the personal-data-column command.

A.2.2 Delete

$ personal-data-column delete ?
Description:

Deletes the given personal data column from the system

Usage:
! personal-data-column delete [options]

Options:
-tc, --table-column <table-column> (REQUIRED) The table and column in which

the personal data is stored↪→

?, h, help Show help and usage
information↪→

Listing A.3: The personal-data-column delete command.

68 Appendix A. Command Line Interface

A.2.3 List

$ personal-data-column list ?
Description:

Lists the personal data columns currently in the system

Usage:
! personal-data-column list [options]

Options:
?, h, help Show help and usage information

Listing A.4: The personal-data-column list command.

A.2.4 Show

$ personal-data-column show ?
Description:

Shows details about the given personal data column

Usage:
! personal-data-column show [options]

Options:
-tc, --table-column <table-column> (REQUIRED) The table and column in which

the personal data is stored↪→

?, h, help Show help and usage
information↪→

Listing A.5: The personal-data-column show command.

A.2. Personal Data Column Command 69

A.2.5 Status

$ personal-data-column status ?
Description:

Shows the statuses of the personal data columns currently in the system

Usage:
! personal-data-column status [options]

Options:
?, h, help Show help and usage information

Listing A.6: The personal-data-column status command.

A.2.6 Create

$ personal-data-column create ?
Description:

Creates a new personal data column in the system

Usage:
! personal-data-column create [options]

Options:
-tc, --table-column <table-column> (REQUIRED) The table and column

in which the personal data is stored↪→

-d, --description <description> The description of
the personal data column↪→

-dv, --default-value <default-value> The default value
that attributes in the column should receive upon deletion↪→

-ae, --association-expression <association-expression> The expression that
describes how this personal data column should be associated with the
table containing individuals

↪→

↪→

-ps, --purposes <purposes> The purpose(s) under
which the personal data is stored↪→

?, h, help Show help and usage
information↪→

Listing A.7: The personal-data-column create command.

70 Appendix A. Command Line Interface

A.2.7 Update

$ personal-data-column update ?
Description:

Updates the given personal data column with the given values

Usage:
! personal-data-column update [options]

Options:
-tc, --table-column <table-column> (REQUIRED) The table and column

in which the personal data is stored↪→

-d, --description <description> The description of
the personal data column↪→

-dv, --default-value <default-value> The default value
that attributes in the column should receive upon deletion↪→

-ae, --association-expression <association-expression> The expression that
describes how this personal data column should be associated with the
table containing individuals

↪→

↪→

?, h, help Show help and usage
information↪→

Listing A.8: The personal-data-column update command.

A.2.8 Add Purpose

$ personal-data-column add-purpose ?
Description:

Adds the given purposes to the personal data column

Usage:
! personal-data-column add-purpose [options]

Options:
-tc, --table-column <table-column> (REQUIRED) The table and column in which

the personal data is stored↪→

-ps, --purposes <purposes> The purpose(s) under which the
personal data is stored↪→

?, h, help Show help and usage
information↪→

Listing A.9: The personal-data-column add-purpose command.

A.3. Purpose Command 71

A.2.9 Remove Purpose

$ personal-data-column remove-purpose ?
Description:

Removes the given purposes from the personal data column

Usage:
! personal-data-column remove-purpose [options]

Options:
-tc, --table-column <table-column> (REQUIRED) The table and column in which

the personal data is stored↪→

-ps, --purposes <purposes> The purpose(s) under which the
personal data is stored↪→

?, h, help Show help and usage
information↪→

Listing A.10: The personal-data-column remove-purpose command.

A.3 Purpose Command

A.3.1 Overview

• Section A.3.2 covers the purpose delete command.

• Section A.3.3 covers the purpose list command.

• Section A.3.4 covers the purpose show command.

• Section A.3.5 covers the purpose status command.

• Section A.3.6 covers the purpose create command.

• Section A.3.7 covers the purpose update command.

• Section A.3.8 covers the purpose add-storage-policy command.

• Section A.3.9 covers the purpose remove-storage-policy command.

72 Appendix A. Command Line Interface

$ purpose ?
Description:

Usage:
! purpose [command] [options]

Options:
?, h, help Show help and usage information

Commands:
d, delete Deletes the given purpose from the system
list, ls Lists the purposes currently in the system
sh, show Shows details about the given purpose
stat, status Shows the statuses of the purposes currently in

the system↪→

c, create Creates a new purpose in the system
u, update Updates the given purpose with the given values
add-storage-policy, as Adds the given storage-policys to the purpose
remove-storage-policy, rs Removes the given storage-policys from the purpose

Listing A.11: Overview of the purpose command.

A.3.2 Delete

$ purpose delete ?
Description:

Deletes the given purpose from the system

Usage:
! purpose delete [options]

Options:
-n, --name <name> (REQUIRED) The name of the purpose
?, h, help Show help and usage information

Listing A.12: The purpose delete command.

A.3.3 List

Same as Section A.2.3 but with the purpose keyword instead of personal-data-column.

A.3. Purpose Command 73

A.3.4 Show

$ purpose show ?
Description:

Shows details about the given purpose

Usage:
! purpose show [options]

Options:
-n, --name <name> (REQUIRED) The name of the purpose
?, h, help Show help and usage information

Listing A.13: The purpose show command.

A.3.5 Status

Same as Section A.2.5 but with the purpose keyword instead of personal-data-column

A.3.6 Create

$ purpose create ?
Description:

Creates a new purpose in the system

Usage:
! purpose create [options]

Options:
-n, --name <name> (REQUIRED) The name of the purpose
-d, --description <description> The description of the purpose
-lr, --legally-required Whether the purpose falls under

any legal obligations↪→

-sps, --storage-policies <storage-policies> The storage policies which
personal data stored under this purpose should follow↪→

?, h, help Show help and usage information

Listing A.14: The purpose create command.

74 Appendix A. Command Line Interface

A.3.7 Update

$ purpose update ?
Description:

Updates the given purpose with the given values

Usage:
! purpose update [options]

Options:
-n, --name <name> (REQUIRED) The name of the purpose
-nn, --new-name <new-name> The new name of the purpose
-d, --description <description> The description of the purpose
-lr, --legally-required Whether the purpose falls under any legal

obligations↪→

?, h, help Show help and usage information

Listing A.15: The purpose update command.

A.3.8 Add Storage Policy

$ purpose add-storage-policy ?
Description:

Adds the given storage-policys to the purpose

Usage:
! purpose add-storage-policy [options]

Options:
-n, --name <name> (REQUIRED) The name of the purpose
-sps, --storage-policies <storage-policies> The storage policies which

personal data stored under this purpose should follow↪→

?, h, help Show help and usage information

Listing A.16: The purpose add-storage-policy command.

A.4. Vacuuming Policy Command 75

A.3.9 Remove Storage Policy

$ purpose remove-storage-policy ?
Description:

Removes the given storage-policys from the purpose

Usage:
! purpose remove-storage-policy [options]

Options:
-n, --name <name> (REQUIRED) The name of the purpose
-sps, --storage-policies <storage-policies> The storage policies which

personal data stored under this purpose should follow↪→

?, h, help Show help and usage information

Listing A.17: The purpose remove-storage-policy command.

A.4 Vacuuming Policy Command

A.4.1 Overview

• Section A.4.2 covers the vacuuming-policy delete command.

• Section A.4.3 covers the vacuuming-policy list command.

• Section A.4.4 covers the vacuuming-policy show command.

• Section A.4.5 covers the vacuuming-policy status command.

• Section A.4.6 covers the vacuuming-policy create command.

• Section A.4.7 covers the vacuuming-policy update command.

• Section A.4.9 covers the vacuuming-policy add-purpose command.

• Section A.4.10 covers the vacuuming-policy remove-purpose command.

76 Appendix A. Command Line Interface

$ vacuuming-policy ?
Description:

Usage:
! vacuuming-policy [command] [options]

Options:
?, h, help Show help and usage information

Commands:
d, delete Deletes the given vacuuming policy from the system
list, ls Lists the vacuuming policys currently in the system
sh, show Shows details about the given vacuuming policy
stat, status Shows the statuses of the vacuuming policys currently in

the system↪→

c, create Creates a new vacuuming policy in the system
u, update Updates the given vacuuming policy with the given values
e, execute Executes the given vacuuming policies
add-purpose, ap Adds the given purposes to the vacuuming policy
remove-purpose, rp Removes the given purposes from the vacuuming policy

Listing A.18: Overview of the vacuuming-policy command.

A.4.2 Delete

Same as Section A.3.2 but with the vacuuming-policy keyword instead of purpose.

A.4.3 List

Same as Section A.2.3 but with the vacuuming-policy keyword instead of personal-data-
column.

A.4.4 Show

Same as Section A.3.4 but with the vacuuming-policy keyword instead of purpose.

A.4.5 Status

Same as Section A.2.5 but with the vacuuming-policy keyword instead of personal-data-
column

A.4. Vacuuming Policy Command 77

A.4.6 Create

$ vacuuming-policy create ?
Description:

Creates a new vacuuming policy in the system

Usage:
! vacuuming-policy create [options]

Options:
-n, --name <name> (REQUIRED) The name of the vacuuming policy
-d, --description <description> The description of the vacuuming policy
-dur, --duration <duration> The duration between vacuuming policy

executions↪→

-ps, --purposes <purposes> The purpose(s) under which the personal data
is stored↪→

?, h, help Show help and usage information

Listing A.19: The vacuuming-policy create command.

A.4.7 Update

$ vacuuming-policy update ?
Description:

Updates the given vacuuming policy with the given values

Usage:
! vacuuming-policy update [options]

Options:
-n, --name <name> (REQUIRED) The name of the vacuuming policy
-nn, --new-name <new-name> The new name of the vacuuming policy
-d, --description <description> The description of the vacuuming policy
-dur, --duration <duration> The duration between vacuuming policy

executions↪→

?, h, help Show help and usage information

Listing A.20: The vacuuming-policy update command.

78 Appendix A. Command Line Interface

A.4.8 Execute

$ vacuuming-policy execute ?
Description:

Executes the given vacuuming policies

Usage:
! vacuuming-policy execute [options]

Options:
-vps, --vacuuming-policies <vacuuming-policies> (REQUIRED) The names of the

vacuuming policies that should be executed↪→

?, h, help Show help and
usage information↪→

Listing A.21: The vacuuming-policy execute command.

A.4.9 Add Purpose

Same as Section A.2.8 but with the vacuuming-policy keyword instead of personal-data-
column

A.4.10 Remove Purpose

Same as Section A.2.9 but with the vacuuming-policy keyword instead of personal-data-
column

A.5 Storage Policy Command

A.5.1 Overview

• Section A.5.2 covers the storage-policy delete command.

• Section A.5.3 covers the storage-policy list command.

• Section A.5.4 covers the storage-policy show command.

• Section A.5.5 covers the storage-policy status command.

• Section A.5.6 covers the storage-policy create command.

• Section A.5.7 covers the storage-policy update command.

A.5. Storage Policy Command 79

$ storage-policy ?
Description:

Usage:
! storage-policy [command] [options]

Options:
?, h, help Show help and usage information

Commands:
d, delete Deletes the given storage policy from the system
list, ls Lists the storage policys currently in the system
sh, show Shows details about the given storage policy
stat, status Shows the statuses of the storage policys currently in the

system↪→

c, create Creates a new storage policy in the system
u, update Updates the given storage policy with the given values

Listing A.22: Overview of the storage-policy command.

A.5.2 Delete

Same as Section A.3.2 but with the storage-policy keyword instead of purpose.

A.5.3 List

Same as Section A.2.3 but with the storage-policy keyword instead of personal-data-
column.

A.5.4 Show

Same as Section A.3.4 but with the storage-policy keyword instead of purpose.

A.5.5 Status

Same as Section A.2.5 but with the storage-policy keyword instead of personal-data-
column

80 Appendix A. Command Line Interface

A.5.6 Create

$ storage-policy create ?
Description:

Creates a new storage policy in the system

Usage:
! storage-policy create [options]

Options:
-n, --name <name> (REQUIRED) The name of the storage

policy↪→

-d, --description <description> The description of the
storage policy↪→

-vc, --vacuuming-condition <vacuuming-condition> The condition that must be
fulfilled for data to be deleted↪→

-tc, --table-column <table-column> The data that will be
vacuumed under the condition↪→

?, h, help Show help and usage
information↪→

Listing A.23: The storage-policy create command.

A.6. Log Command 81

A.5.7 Update

$ storage-policy update ?
Description:

Updates the given storage policy with the given values

Usage:
! storage-policy update [options]

Options:
-n, --name <name> (REQUIRED) The name of the storage

policy↪→

-nn, --new-name <new-name> The new name of the storage
policy↪→

-d, --description <description> The description of the
storage policy↪→

-vc, --vacuuming-condition <vacuuming-condition> The condition that must be
fulfilled for data to be deleted↪→

-tc, --table-column <table-column> The data that will be
vacuumed under the condition↪→

?, h, help Show help and usage
information↪→

Listing A.24: The storage-policy update command.

A.6 Log Command

A.6.1 Overview

• Section A.6.2 covers the log list command.

82 Appendix A. Command Line Interface

$ log ?
Description:

Usage:
! log [command] [options]

Options:
?, h, help Show help and usage information

Commands:
list, ls Lists the logs that fall within the given constraints

Listing A.25: Overview of the log command.

A.6.2 List

$ log list ?
Description:

Lists the logs that fall within the given constraints

Usage:
! log list [options]

Options:
-li, --limit <limit> Limits results to

the number given [default: 100]↪→

-n, --numbers <numbers> Limits results to
the specified numbers range (inclusive). Must provide two numbers as
range (e.g. -n 3 6), first minimum then maximum [default: 02147483647]

↪→

↪→

-d, --date-times <date-times> Limits results to
the specified time range (inclusive). Must provide two date times as range
(e.g. -d 2000/04/28T12:34:56 3000/06/16T09:38:12), first minimum then
maximum [default: 01/01/0001 00:00:0031/12/9999

↪→

↪→

↪→

23:59:59]
-lt, --log-types <MetadataSchemaChangeSystemVacuuming> Limits results to the

specified log type(s). [default: SchemaChangeVacuumingMetadataSystem]↪→

-s, --subjects <subjects> Limits results to
the specified subject(s). []↪→

-lf, --log-formats <JsonPlaintextTurtle> Limits results to
the specified log format(s) [default: JsonPlaintextTurtle]↪→

?, h, help Show help and
usage information↪→

Listing A.26: The log list command.

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	2 Related Work
	3 Design
	4 Implementation
	5 Evaluation
	6 Discussion
	7 Conclusion
	8 Future Work
	Bibliography
	Appendix A Command Line Interface

