The Effects of Co-Location and Task Dependency in a
Collaborative Multiplayer Virtual Reality Environment

A Study of Social Presence and Collision Behaviour

Bjorn Christian Winther, Mikkel Lynggaard Krarup

Supervisors: Carlos Mauricio Castano Diaz, Niels Christian Nilsson

. Master’s Thesis
Medialogy, Copenhagen, Spring 2023

M kel .

Copyright © Aalborg University Copenhagen 2023

AALBORG UNIVERSITY
STUDENT REPORT

Title:

The Effects of Co-Location and Task
Dependency in a Collaborative
Multiplayer Virtual Reality Environment

Theme:
Co-Location and Task Dependency in Virtual Reality

Project Period:
Spring Semester 2023

Project Group:
N/A

Participant(s):

Bjorn Winther

Mikkel Krarup

Supervisor(s):

Niels Christian Nilsson
Carlos Mauricio Castano Diaz
Copies: 0

Page Numbers:

Date of Completion:
June 9, 2023

The Technical Faculty of IT and Design
Aalborg University
http://www.aau.dk

Abstract:

This thesis seeks to investigate the impact of co-
location and task dependency in terms of co-
presence, attentional allocation, perceived behav-
ioral interdependence and collision avoidance. A
mixed factorial design, incorporating both a within-
subject and a between-subject design study includ-
ing 32 subjects was used to form the conclusion.
Collision avoidance and most of the sub-categories
of social presence showed no significant differences
between the conditions according to the Wilcoxon
Signed Rank test, however, some conditions indi-
cated that a significant difference existed, specifi-
cally: attentional allocation in the co-located dis-
tributed vs non co-located distributed condition.
The co-located shared vs co-located distributed con-
dition and the co-located shared vs non co-located
shared condition indicated significant differences
existed between them in terms of perceived behav-
ioral interdependence. Similarly, collision avoidance
did not show significant differences between any of
the conditions. In conclusion, co-location and task
dependency did not prove to have a significant ef-
fect overall when comparing the four conditions.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author.

http://www.aau.dk

Contents

(I__Introduction
[I.1 Research question|.

2 Related workl

2.1 Natural Walking in Virtual Reality| o oL
2.1.1 Challenges related to Natural Walkingin VR|.
2.1.2 The Effects of Natural Walking|

2.2 Social Presencel e

-Presencel

2.3.1 Co-Located vs. Remote Gameplay|

2.4 Collision Avoidancel. o e e
2.4.1 Collision Avoidance In Virtual Reality|.
2.4.2 Mutual Collision Avoidance with natural walkingin VRl
2.5 Game Design Theory|.

3 Methods|

3.1 Study Design|
3.2 Participants| e
3.3 Apparatus| e
3.4 Procedure|l

[3.5.4 Telemetrydata]
3.6 Validity and Reliability|. oo
3.7 SCruml. e e e e

[Design|

4.1 Designrequirements| L L

4.2 Game Design|o

4.3 Level Design|. e
4.3.1 Virtual Environment! L

4.3.2 Game walk-through| o oo oo

4.3.3 Condition altered design| o

|5 Implementation|
5.1 XRInteraction Toolkitl
...
5.3 Multiplayer application with Normcore|
b4 GameManager|.
5.5 PlatformManager| L

28

29

29

30

30

31

31

5.9 Shared vs Distributed Toggle| o oo 32
5.10 Telemetry Datal 32
[0.10.1 Showcasing the telemetry datal 33
lb_Results| 35
[6.1 Social presence|l 35
611 CoPresencel 35

.12 Attentional Allocation] 36

[6.1.3 Perceived Behavioral Interdependence| 37

6.2 Collision Avoidance|. L 38
[7_Discussionl 40
71 Results discussion|. L 40
711 Social Presence Evaluation] 40

[7.1.2 Collision Avoidance Evaluation| o i e 40

7.1.3 Significant differences in findings| o oL oL 41

7.14 Motion sickness confound|. oL Lo 42

715 TestObservations|. 42

7.2 Technical di 10N . . . 43
7.2.1 Low-fidelity prototyping| 43

7.2.2 Testing limitations| 43

7.2.3 Microphoneinputf 43

724 Restricting natural walking| o o oo o oo 43

7.2.5 Lever count desynchronization| L L o oL 44

72.6 Hardwareissues| 44

[72.7 “lelemetry Datal 44

[7.3 Gamedesign discussion| 46
(731 Elevator] e 46

(732 Narratorl e 46
... 47

734 Platform feedbackl 47

B Conclusionl 48
References 49

[0 Appendix 51

1 Introduction

Virtual Reality (VR) is experiencing a surge in popularity [1][2]. VR affords a highly immersive experience
that transports users into virtual worlds, making it appealing for entertainment, education, training, and other
applications. Technological advancements have also contributed to VR’s popularity, with improved hardware
and software capabilities. Additionally, the incorporation of social interaction in VR, allowing multiplayer
experiences and social platforms, has further enhanced its appeal[2]. Finally, the entertainment and gaming
industry has played a significant role in driving VR’s popularity, offering immersive gaming experiences and
introducing VR to a broader audience[2].

Previous work conducted by the researchers [3] found that natural walking was a compelling way to navigate
Virtual Environments (VE) as well as increasing immersion, engagement and confidence in spatial navigation
of the user. Based on the knowledge of the powerful effects of natural walking and preliminary research into a
relevant paper [4] which motivated the researchers of this thesis to include task dependency as an independent
variable for evaluation.

"Task dependency’ in this thesis is defined as: Whether game objectives encourage solving in a shared or a
distributed space among players. Task dependency is interesting to examine as it indicates whether collision
behavior is a genuine concern in co-located environments and to what extent it is reflected in subjective
evaluations of social presence and collision avoidance.

Preliminary research [5][4], in addition to personal aspiration to investigate co-located and non co-located
multi-user VR games that afford natural walking, formed the motivation for this thesis. In the context of
this thesis, co-location is defined as sharing the same physical play-space, contrary to non co-location where
players are in physically separated locations. This research is interesting due to the common perception that VR
experiences are typically non co-located. Therefore exploring the potential effects of co-location, particularly
in terms of social presence is relevant as it might produce valuable insights into the interplay between physical
proximity and immersive virtual environments.

In order to properly evaluate the effects of co-location within virtual environments (VE) it was decided to
use social presence as the foundation for the evaluation as it strongly correlates with the objective of the
thesis. Harms and Bioccas’ validated standardized questionnaire [6] is used to measure and evaluate three
subcategories to social presence: Co-presence, attentional allocation and perceived behavioral interdependence.
Upon further preliminary research it was also deemed beneficial to include collision avoidance as another
dependent variable to be measured and investigated. These measures will be employed in a mixed factorial
design to assess the influence of co-location and task dependency, respectively.

1.1 Research question

This thesis aims to investigate the following research question:

To what extent is social presence and collision behaviour affected by co-location and task dependency in a collaborative
multiplayer (VR) environment.

2 Related work

The following section will explore existing literature that is relevant to this thesis. This exploration aims to
present the combined knowledge from previous research and investigate studies in related scientific fields. By
examining the related work, we can design, implement and evaluate the developed prototype to address and
attempt to answer the research question as effectively as possible.

2.1 Natural Walking in Virtual Reality

Naturally interacting within a VR environment is crucially important in order to create compelling and im-
mersive experiences [7]. Specifically locomotion, referring to movement or the ability to move from one place
to another, is one of the most common and universal tasks which is performed inside a VE. Real walking
is the most natural locomotion technique and has shown a greater sense of presence in users compared to
other techniques that does not include realistic body motion [8]. Furthermore, real walking has also shown
improvement in regards to memory and attention [9]. Despite this, real walking is challenging to implement
and design for as physical space limitations inhibits the ability to walk freely in the VE and must therefore be
considered [7].

2.1.1 Challenges related to Natural Walking in VR

A review from 2018 conducted by Nilsson et al. [10] presents and defines the associated challenges with
natural walking in virtual environments. Furthermore, in the review, research was conducted to understand
how proper multisensory stimuli should be incorporated as feedback for interacting with the environment.
In their book, Bowman et al. [11]] define virtual travel as one of the most common and universal forms of
interaction. Nilsson et al. further explains how virtual travel is usually secondary to other tasks which further
underlines why it is crucial for users to be able to efficiently navigate the environment and remove their
attention from the act of travelling itself [10].

Nordahl et al. [12] identified two interconnected challenges related to walking in virtual environments. The
first challenge involves developing a travel technique that replicates the sensation of real walking, even when
physical space limitations are present and may differ from the size of the virtual environment. The second
challenge involves providing appropriate multisensory feedback to users, directly linked to their interactions
within the virtual environment [12].

The publication discusses various approaches to address the challenge of achieving natural walking sensations
in virtual environments, these are: repositioning systems, proxy gestures and redirected walking[10]. These
techniques all enable users to replicate the sensation of natural walking in a virtual environment regardless of
any physical limitations. Repositioning systems work by counteracting the movement of the user by means of
physical or virtual equalization. Proxy gestures deals with elementary gestures performed by the user that are
interpreted by the system and executed by the virtual avatar. Finally, redirected walking subtly redirects the
users movement within a virtual environment in order to utilize the physical play-space more efficiently and
translate this movement to a bigger environment [7].

Vision serves as a primary and precise source of spatial information, crucial for an individual’s perception of
movement in a virtual environment [10]. However, a phenomenon arises where the individual underestimates
the virtual walking speed when visually presented speeds align with their physical walking speeds. While
vision dominates spatial perception, Waller and Hodgson [13] describes how auditory information also plays
a role in providing the moving observer with details about the virtual environment, including its size, object

2.2 Social Presence 4

positions, and ongoing events. In a virtual environment, auditory cues can be employed to inform observers
about the presence of other users, both within and outside their field of view, often achieved through the use
of footstep sounds. These auditory cues also offer insights into the surface characteristics being traversed.
Additionally, haptic feedback serves as the third external source of sensory information for observers during
virtual travel, actively reproducing forces and movements sensed through touch when in contact with objects
[10].

2.1.2 The Effects of Natural Walking

In a paper that was published in 2023 [3] two different locomotion techniques were evaluated in terms of
their effect on the player experience. One condition used VR controllers where inputs were translated to
movement in the virtual environment and in the other condition natural walking was utilized to allow free
movement within a confined physical play-space. The results of the study indicated that natural walking
afforded significantly higher social presence as well as lowered simulator sickness. Results also showed that
participants in the natural walking condition were more concerned with colliding with other players as well
as forgetting that they were using controllers [3]].

In a study conducted by Ruddle et al. [14] navigation performance in a VE was evaluated based on different
types of body-based information as input. Different locomotion techniques were used as the independent vari-
able of the study and consisted of: natural walking (tracking hall/omnidirectional treadmill) and controller
input for translation and rotation within the VE [14]. A small-scale and a large-scale virtual marketplace were
designed for two different experiments and in both sessions it was found that translational body-based in-
formation significantly increased the accuracy of participants’ cognitive maps (a mental image of the layout
of one’s physical environment). Furthermore, in the small-scale environment participants’ navigation perfor-
mance was also improved with translational body-based information as input [14].

2.2 Social Presence

Social presence has been defined by Short, Williams, and Christie in 1976 as "the degree of salience of the
other person in the interaction and the consequent salience of the interpersonal relationships" [15]. In 1995,
Gunawardena redefined social presence as "the degree to which a person is perceived as a 'real person’ in
mediated communication" [16].

Oh, Bailenson and Welch [17] conducted a study on the concept and implications of social presence, as well as
predictors of social presence. They found that social presence is a subjective experience that can be influenced
by contextual and individual factors. The study found that a crucial component of interactions in virtual
reality is the feeling of "being there" with a "real" person. Additionally, the perceived psychological distance
between interactants has an impact on social presence. The study further divided the predictors of social
presence into three overarching categories: immersive qualities, contextual properties, and individual traits,
and identified subcategories such as visual representation of the communication partner, visual realism, high
levels of interactivity, and haptic feedback. The article noted that physical proximity has a positive impact on
interactants and their sense of social presence [17].

In their study, Oh, Bailenson, and Welch consistently found a positive relationship between physical proximity
and perceptions of social presence [17]. They also noted that vivid perceptions of another person lead to
greater enjoyment and social influence. In conclusion, the study found that when developing multiplayer
virtual reality applications, there should be an emphasis on the immersive qualities, contextual properties, and
individual traits in order to create a sense of social presence that maximizes the benefits of heightened social
presence.

2.3 Co-Presence 5

2.2.1 Dimensions of Social Presence

A consistent and internally valid measure was proposed in 2004 by Harms et al. [6] which was divided
into six sub-dimensions that needs to be considered when measuring social presence. The following six sub-
dimensions will briefly be described:

¢ Co-presence
The observer’s perception of their level of fellowship and aloneness, their extent of peripheral or focused
awareness of the other individual, and their sense of how much the other person is aware of them pe-
ripherally or directly.

* Attentional allocation
The level of attention that the user directs towards an interactant and the corresponding attention re-
ceived from the interactant

* Perceived message understanding
The user’s capacity to comprehend the conveyed message from the interactant, along with their percep-
tion of how well the interactant’s message understanding is.

* Perceived affective understanding
The user’s capacity to comprehend the emotional and attitudinal states of an interactant, along with their
perception of the interactant’s capacity to comprehend the user’s emotional and attitudinal states.

* Perceived affective interdependence
The level of influence and reciprocal impact between the emotional and attitudinal states of the user and
the interactant.

¢ Perceived behavioral interdependence
The degree to which the actions and conduct of a user impact and are influenced by the behavior of the
interactant

2.3 Co-Presence

The following section establishes a foundation for understanding the importance of co-presence in the context
of VR. Co-presence in VR has a potential to revolutionize social interactions and communication in virtual
spaces. By bridging the gap between physical and virtual realities, co-presence in VR opens up new possibili-
ties for shared experiences, team-building, and new forms of interaction.

In 1962, Goffman [18] defined the concept of "co-presence” as "a sense of being together in an environment
where individuals become “accessible, available, and subject to one another™'. Furthermore, he explains that co-
presence extends beyond physical proximity and includes mutual awareness among individuals, emphasizing
the sensory aspects of the virtual environment. Co-presence includes two key dimensions: firstly, the ability
to perceive and sense the presence of other individuals, and secondly, the feeling of being actively perceived
by others and belonging to a cohesive group [18].

2.3 Co-Presence 6

2.3.1 Co-Located vs. Remote Gameplay

In a study conducted by Born et. al. [4] the effect of physical co-presence in a virtual reality environment was
evaluated. The study compared two different setups with a shared (co-located) and a separated play space.
Several variables were considered and measured, these include, task awareness, spatial presence, player com-
munication, interaction and performance. Born et. al. notes that physical co-presence seemingly benefits the
player experience due to the inherent social interaction that these experiences afford. Furthermore, traditional
co-located experiences also provide a higher sense of social presence (the sense of being together with another)
which leads to increased enjoyment, involvement, engagement, competence and positive affect. However, in a
related study Podkosova and Kaufmann [5] examined the impact of a multi-user navigation task in a room-
scale VR environment and found that sharing a physical play space in VR can lead to undesirable effects such
as reduced focus on the task at hand.

Born et. al. [4] chose a between-group design with a sample size of 92 participants collecting player experience
related constructs. The results suggest that physically co-locating users in a virtual environment must be care-
fully considered as it can have a degrading effect on the player’s experience. First and foremost, it is noted how
wired head-mounted displays introduce the first potential interference in gameplay as cable management be-
comes a factor. Born et. al. further specifies two challenges related to the design of multiplayer VR experiences,
these are spatial desynchronization (virtual play space is bigger than the physical demanding redirection tech-
niques to be used) when there is a discrepancy in the size of the virtual and physical world there is a chance
that spatial desynchronization may occur leading to unintentional physical collisions and threatening spatial
orientation of the users [4]. Overall, studies have shown that co-location leads to an increased focus on collision
avoidance in terms of greater clearance distances between users and thereby reducing the focus on the task at
hand.

Results from the study [4] indicate that there is a comprehensible shift in user focus between the two con-
ditions, however, further research is needed to document that these findings apply in more user-engaging
interactions. Therefore, there is a need to develop VR multiplayer experiences where navigation is not the
central objective and evaluate if and how physical collisions affect the experience. The researchers also noted
how ‘the awareness of co-location” of participants is a potentially confounding variable and future research
should compare presence related constructs between co-located and remote participants [4]. Furthermore, the
fact that participants could hear each other in physical space also presented a confounding variable as this
allowed the participants to estimate their physical social surroundings. The study assessed two aspects of
player communication, a subjective evaluation of the quality and the efficiency of the communication between
participants and an objective measurement of the quantity of communication by recording audio during the
test and performing analysis on the resulting audio files [4].

According to the findings of the study, the physical separation or co-location of two players in a multiplayer
virtual reality game can have a significant influence on the player experience [4]. Consistent with anticipated
outcomes and prior research, engaging in co-located play tends to undermine the cooperative social presence,
communication quality, and performance. Therefore, the results expand upon previous investigations by
demonstrating that unconscious processes, stemming from the physical co-presence of the other player and the
technical properties of the VR setup, exert a significant impact on the cooperative experience and effectiveness.
However, it is imperative to exercise caution when interpreting the findings, considering the limitations that
have been addressed. Depending on the specific domain of application, such as educational or entertainment
games, the VR interaction objectives may prioritize either the experiential or the performance related outcomes
[4]. To enable informed design decisions within these domains, it is imperative for future research to delve
deeper into multiple facets of player experience and performance in the context of multiplayer VR.

2.4 Collision Avoidance 7

2.4 Collision Avoidance

Collision avoidance plays a crucial role in creating immersive and safe virtual reality (VR) experiences. In
VR, users are transported to digital environments where they can interact with objects and navigate through
simulated spaces. However, without proper collision avoidance considerations, users may face challenges such
as unintentionally walking into physical objects or colliding with other users, disrupting the sense of presence
and potentially causing discomfort or injuries.

On the basis of the work of Gerin-Lajoie et al in 2005 [19], Podkosova and Kaufmann [5] writes that collision
avoidance behavior is widely understood to prioritize the preservation of the personal space surrounding an
individual. This personal space is commonly modeled as an elliptical zone that must remain unobstructed to
ensure the individual’s psychophysical well-being. When engaged in locomotion, the personal space functions
as a safeguarding zone that introduces a delay in response to unexpected obstacles and facilitates proactive
planning of the locomotor trajectory.

Olivier et al. conducted a study in 2012 [20], on the pairwise interactions between walkers in a natural
setting, and found that individuals were capable of predicting and adjusting their movement trajectories in
response to potential collisions only as necessary. Based on the original source of Olivier et al, Podkosova and
Kaufmann [5] states that walkers’ collision avoidance behavior could be characterized as a mutual function of
their states, denoted as the minimal predicted distance (i.e., the estimated distance at which they would cross
paths at each moment in time). The results of the user study revealed that participants altered their walking
trajectories to avoid collisions only when the minimal predicted distance was less than 1 meter. Additionally,
it was observed that the collision avoidance strategies of individuals depended on their respective roles when
walking on intersecting trajectories [Olivier et al. 2013]. Specifically, the individual who yielded to the other
made more substantial modifications to their trajectory by adjusting both their heading and walking speed.
Thus, it was concluded that collision avoidance was a collaborative process that involved intricate interactions
between individuals.

2.4.1 Collision Avoidance In Virtual Reality

A study by Fink et al (2007) [21] research human perception and action by observing participants in virtual
environments(VE), based on the assumption that locomotor behavior in a VE is similar to that of a real en-
vironment. The main objective of the study is to conclude whether VE’s prove to be a reliable research tool,
when investigating locomotor behavior.

The study [21] conducted an experiment that measured the following three factors: Locomotor path, larger
obstacle clearance and slower walking speed. Subject of the experiments were instructed to walk towards a
stationary destination goal while avoiding a static object in the path, that was matched in the physical- and
Virtual environment. The results of the experiment showed an average of 0.16m larger maximum deviation
(Locomotor path), 0.16m greater obstacle clearance and 0.13m/s slower walking speed. The models that were
fit separately, accurately represented the mean virtual and physical paths with a high degree of correlation
(R? > 0.98), suggesting that the models were very accurate in capturing the virtual and physical paths.

The study suggests a small but reliable difference in locomotor behavior in VE’s compared to real environ-
ments. This research by Fink et al [21], conclude Virtual Environments to be a valuable and reliable research
tool, when evaluating locomotor behavior.

2.5 Game Design Theory 8

2.4.2 Mutual Collision Avoidance with natural walking in VR

A study conducted by Podkosova and Kaufmann [5] in 2018 investigate mutual collision avoidance in virtual
reality. Mutual collision avoidance is the definition of two moving individuals, both avoiding collision with
one another, as opposed to regular collision avoidance where an individual avoids static objects. The effect of
mutual collision avoidance is examined in two scenarios: co-located and non-co-located physical environments.
Sensory abilities, cues, and perception of space in VR differs from that of real life. The common task of collision
avoidance is therefore a valid concern to account for in VR.

This study [5] sets up an experiment to investigate locomotor behaviour of users in pairs, moving around
in a matched physical and virtual space. To achieve an ecological simulation of mutual collision avoidance,
participants were given a destination to walk towards. This creates the most realistic scenario, in which mutual
collision avoidance occurs. The experiment was a within-subject design with subjects in pairs [5]. The goal was
for subjects to pick up an object diagonally across from them when a walk-indication triggered. They would
then be confronted with mutual collision avoidance, as their paths crossed. Two collision types were tested,
frontal — and crossing, relating to the path of the subjects. These two collision types were then tested across
three co-location conditions; Real, virtually co-located, and virtually distributed. An interesting find by the
study, was that the collision behaviour was highly affected by which condition was tried first by the subjects
[5]. The participants who tried the distributed condition first, tended to walk straight through each other’s
respective avatars and completely disregard any personal space. Whereas the subjects who tried the co-located
condition first, tended to respect their partners avatar to a much higher degree across both virtual conditions
and would furthermore not even attempt to go through each other, when trying the distributed condition [5].

The general results of the experiment showed that the crossing collision type produced greater clearing dis-
tance and slower walking speed, across all conditions, compared to frontal collision [5]. The results further
showed a significant difference in locomotor behaviour between real and virtual environments. Greater caution
was displayed across virtual conditions relative to the real condition. Moreover, greater caution was displayed
when subjects were co-located as opposed to being distributed [5]. Although an overall more cautious loco-
motor behaviour was measured in the co-located condition, it should be noted that co-location did produce a
higher score of co-presence, compared to the distributed condition [5].

2.5 Game Design Theory

Understanding the process of transforming an initial concept into a fully realized and enjoyable game ex-
perience is crucial in game design [22]. In order to achieve an optimal game design tailored to the specific
target group, it is essential to involve the target players throughout the development process, maintaining a
play-centric design approach [22]]. Additionally, conducting iterative prototyping and playtesting at an early
stage allows developers to gather feedback on aspects of the game system that may have been overlooked and
redefine the implementation of features [22].

2.5.1 The Structure of Games

In game development, certain essential components are necessary for a game to provide users with an engaging
interactive experience. These components, outlined in [22], will be summarized in this section and utilized as
a guiding framework for the design process of the prototype.

Fullerton [22] provides a description of the components that form the structure of any game, which are as
follows:

2.5 Game Design Theory 9

¢ Players
The design of every interactive experience revolves around the players as the target audience.

* Objectives - The level of involvement that players exhibit in an experience can be defined by their desire
to accomplish the objectives. Objectives, which can either be intrinsic (set by the player) or extrinsic (set
by the system), serve as the primary motivators and driving force behind the experience.

* Procedures Procedures encompass the instructions provided by the system to guide players on how
to navigate and interact within the experience, ensuring that the intended design and vision of the
developers are effectively implemented.

* Rules The rules of a game establish a framework in which players operate, ultimately defining the limits
and possibilities of their actions in order to achieve the objectives set by the game.

¢ Resources Resources refer to the assortment of tools, currencies, or other assets that are accessible to
each individual player within the game.

* Conflict Conflict emerges in games, necessitating players to make strategic choices and resolve them in
a manner that benefits their own objectives.

* Boundaries Boundaries play a crucial role in games as they prevent players from evading obstacles,
objectives, or conflicts that may arise. It is essential to establish these boundaries to ensure that players
are compelled to make decisions and engage with these scenarios instead of unfairly circumventing them.

* Outcome The outcome of a game determines whether players emerge as winners or losers, providing
valuable feedback on their performance, highlighting areas for improvement, and offering insights into
alternative strategies or actions that could have been pursued.

* Challenge Challenges presented in the game should gradually increase in difficulty. This will ensure
a rising sense of tension, engagement, flow, immersion, etc. In order to have a successful game, there
should be a difficulty curve, or players will lose interest in the challenges presented and the experience
will become tedious.

¢ Play Play can be described as the freedom or flexibility that players are afforded within the structured
framework of the game system. It represents the space for exploration, creativity, and personal agency
within the established rules and mechanics.

* Premise The premise of a game serves as a means to captivate and engage users. It includes elements
such as the setting, backstory, conflict escalation, and other compelling aspects of storytelling. By estab-
lishing these elements, the premise draws players into the immersive universe of the game, fostering a
sense of immersion and engagement.

* Characters Players have the opportunity to embody various characters within the game’s universe, en-
abling them to engage in dramatic experiences. Assuming these roles allows players to make choices and
select solutions that align with the background or role they are portraying, enhancing their immersion
and connection to the game.

When developing the prototype, it is crucial to thoroughly consider all of these components to ensure an
engaging and immersive experience for the users. Each of these components, when combined, form the
building blocks of a game, complementing one another to create a vibrant and dynamic experience. They
provide both structure and limitations that guide the progression and course of the overall gameplay, resulting
in a rich and captivating user experience as well as the most optimal game design. It is essential to establish

2.6 Subconclusion 10

clear and well-defined objectives that can be collaboratively achieved using the available resources, while
adhering to the boundaries, rules, and procedures set for the players. Additionally, it is important to provide
players with a distinct and measurable outcome, accompanied by a difficulty curve that considers the players’
expertise, ideally incorporating dynamic scaling of difficulty. Throughout the course of the experience, conflicts
should arise within the game, serving the dual purpose of fostering learning and collaboration, as well as
moving the overall experience forward.

2.5.2 VR Multiplayer Games

As the popularity of VR has surged in recent years [2], there has been a corresponding rise in the number of
VR games available. Consequently, there is an increased need to comprehend the effects and implications of
incorporating VR into gaming experiences.

A paper released in 2018 [2] sought to evaluate the differences between VR and non-VR multiplayer gaming
through the use of a comparative study. A short multiplayer game was developed to be tested in both VR
and non-VR in order to answer what difference VR makes in terms of player experience (Game Experience
Questionnaire (GEQ)). Three different version of the game were tested with different independent variables
being: Non-VR, simple VR and Full VR. The simple VR condition included a regular head mounted display
(HMD) with an Xbox controller and the full VR condition included a HMD with two HTC Vive controllers and
real walking [2]]. In total 30 participants were recruited in the age range of 20-25 all being university students.

The hypotheses of the paper were that Full VR would produce the best results in terms of game experience
as well as better results in the simple VR condition compared to the non-VR condition [2]. The results of the
testing supported the hypotheses by showing significantly increased scores in all but two of the components of
the Game Experience Questionnaire (core module) for the full VR condition. Furthermore, the results showed
that simple VR also had better scores for all but one component compared to the non-VR condition[2].

2.6 Subconclusion

In conclusion an extensive review of existing literature and studies regarding: natural walking, social presence,
co-location, collision avoidance and game design theory has been conducted and provided the researchers with
valuable insights as well as established a foundation for the subsequent research. The exploration of various
theories, methodologies, and findings has shed light on potential shortcomings and areas for further investi-
gation. By examining the key contributions and limitations of prior works, this study is able to build upon
existing knowledge and attempt to make meaningful contributions to the field. The comprehensive under-
standing gained from the related work section will serve as a solid framework for the subsequent research,
design and implementation.

11

3 Methods

3.1 Study Design

This study investigates the effects on social presence and collision avoidance when in a multiplayer virtual
reality game that is either co-located or non co-located physically as well as the impact of either a shared or
distributed task dependency on the previously mentioned variables. The task dependency is implemented as
two different versions of the game with either a shared task focus that encourages participants stay together
in close proximity to each other throughout the experience and exchange information. On the other hand
a distributed task focus encourages players to be separated throughout the experience and also maintain
distance within the environment. These configurations will be further explained in terms of level design,
game mechanics, feedback etc. in the implementation and design sections.

Co-located

Shared

Task

Distributed

N(total) = 32
Figure 1: Mixed factorial design

For this thesis a mixed factorial design was used to evaluate the effects on the dependent variables caused by
manipulating the independent variables. As can be seen in figure [[1] the independent variables are co-location
and task dependency, this is relating to the layout of the tasks and the environment in order to encourage either
distributed or shared play-space navigation and interaction. 16 participants (8 groups) were recruited for both
the co-located and the non co-located condition and each group tried both the shared and the distributed
condition in a counterbalanced condition order.

By examining multiple factors we are able to investigate the effects of multiple independent variables simul-
taneously. Furthermore, by using this design it is possible to explore both within-subject and between-subject
factors and how these factors interact with each other. In order to get a better understanding of the study
design further explanation on how these conditions were specifically implemented will be presented in the
design [4]] and implementation [B] sections.

3.2 Participants 12

3.2 Participants

In total 16 groups were recruited with two participants in each group, totalling 32 participants, 21 male (66%)
and 11 female (34%). Eight groups were recruited in the first days of the testing for the co-located condition
and another eight groups were recruited in the last days of the testing for the non co-located condition.

Do you have any prior experience with VR? If yes, how many times have you used it in
the past 3 months?

32 svar

@ More than 3 times a week
@ 1-2 times a week
1-2 times a month
@ 1-2 times in 3 months
@ Mever

9,4%
406% ‘
9,4%

Figure 2: VR experience distribution among participants

As can be seen from the above figure [2] only 6 (18,8%) of the participants have regular experience with VR. 12
(37,5%) participants had no experience with VR at all. The remaining 14 (43,7%) participants were relatively
inexperienced VR users and only used it rarely.

In order to recruit participants for the experiment convenience sampling was chosen as well as voluntary
response sampling as both are convenient and efficient ways to recruit a sample of the population which
are immediately available, which was necessary due to the scope of the project and time restrictions [23].
Participants were recruited from group rooms and common areas at Aalborg University and were followed to
the testing rooms. Some participants would also encourage their fellow students to participate which resulted
in even more test participants. It should be noted that convenience sampling will potentially introduce bias
and confounding variables in the collected data, however, to mitigate this potential limitation, an effort will be
made to incorporate voluntary response sampling, which will help acquire feedback that is more objective in

nature [23].

3.3 Apparatus

Two available rooms were located and prepared for testing at the university in cooperation with the infor-
mation desk that informed on the availability of the rooms each day of testing. As it was not possible to
directly reserve the rooms due to economic restrictions it was necessary to regularly inquire about potential
reservations and structure the testing sessions accordingly. On the first days of testing only a single room was
required in the dimensions corresponding to the virtual environment (6x8 meters) as the co-located condition
were to be tested and following this two rooms were required with the same dimensions of free physical space,
it was possible to find two rooms adjacent to each other and clear the needed space.

For the hardware it was chosen to use two Meta Quest 2 HMDs as these headsets do not require a cabled
connection and allows for the software to run directly on the headset affording unrestricted natural walking

3.4 Procedure 13

and orientation in all directions. It was necessary to disable the guardian system on the Meta Quest 2 which is
responsible for creating the safe boundary in the virtual environment as it did not allow for us to define a safe
play space in the required dimensions. This obviously created some security concerns as the system would
have to be very precisely calibrated to not create desynchronization between clients resulting in collisions with
the physical environment or other users. Prior to each intervention the researchers will calibrate the HMDs
based on marked positions in the physical play space and ensure that the environments are aligned both
physically and virtually before participants are given the headsets for testing.

3.4 Procedure

The step-by-step procedure used during the testings will be listed here, from the point where participants
entered the room, until they concluded their testing session. The given instructions were consistent in all
conditions:

* Participants were first instructed to sit at a computer that had the first part of the questionnaire ready
to be filled out. This part included a consent form, demographic information, VR experience and a
preliminary simulator sickness evaluation.

¢ Co-located condition - Participants were given one headset each.

* Non co-located condition - One randomly selected participant from the group were assigned and di-
rected to the adjacent room where a headset was prepared and ready to use.

* Participants were instructed to stand still and await instructions from both the in-game narrator as well
as the researchers while the game started.

* Participants were instructed by the in-game narrator to "help each other cross to the heavens gate, you
can only win if you trust and help each other"

* One of the researchers clarified the information by stating that participants had to help each other to
make it across to the gate, that they could not do it on their own and that they should avoid exceeding
the virtually presented play-space at all costs. A final hint was given that they should pay attention to
their assigned color.

e Participants then began to communicate with each other and interact with the environment to figure
out how the game mechanics worked and ultimately how to win the game. Researchers did not assist
participants during this.

* When entering the virtual elevator the participants were instructed by the researchers to stand still until
it had completely stopped due to consistent desynchronization issues with the elevators movement. No
further interruptions were made to the game experience.

* The test subjects then filled out the second part of the questionnaire measuring the dependent variables:
co-presence, attentional allocation, perceived behavioral interdependence and collision avoidance.

e Participants were given the headsets again to try the second condition respective of whichever condition
they tried first, this time researchers simply instructed that the mechanics and objectives were the same
except for some slight differences.

* Upon completing the second intervention the participants filled out the third and final part of the ques-
tionnaire which evaluated the same constructs as the second part, however, this time after the new
condition had been tested.

3.5 Measures 14

* Subjects were thanked for their participation by the researchers and encouraged to grab snacks and
drinks that were provided after the testing session. Any questions regarding the experience or thesis that
the participants had were also answered by the researchers.

3.5 Measures

3.5.1 Likert scales

Likert scales are commonly used in questionnaires to measure participants’ agreement with specific statements.
They are psychometric response scales that help researchers evaluate the effectiveness of interventions [24]. The
most widely used Likert scale is the 5-point scale, ranging from "strongly disagree" to "strongly agree,” with a
neutral option in the middle. However, researchers can also employ 7-point or 9-point scales to capture more
diverse and accurate responses. Alternatively, a 4-point Likert scale can be used as a "forced choice" scale,
eliminating the possibility of a neutral response [24].

The advantages of Likert scales include their simplicity and ease of comprehension for participants. They
generally yield reliable results when evaluating a prototype [24]. However, Likert scales are not without their
drawbacks. One limitation is the central tendency bias, where respondents tend to choose responses near the
scale’s midpoint, avoiding the extreme ends [24]. Additionally, it is crucial for participants to remain objective
and provide honest opinions, rather than trying to please the experimenters or interviewers. To achieve this,
researchers must account for and seek to eliminate any confounding variables that could influence participants’
responses as much as possible [24].

For this thesis a 7-point likert scale will be used ranging from 1 (not at all) to 7 (very much/well) allowing
for easy comprehension, neutral responses and a more diverse data gathering. Confounding variables will be
considered and mitigated as much as possible by taking them into account, not omitting them from the results
as well as using reliable and valid measures.

3.5.2 Social Presence

To evaluate social presence based on self-report measures, it is crucial to utilize a valid and internally consistent
measure proposed in a relevant study. One such study was conducted by Harms and Biocca in 2004 [6],
where they identified six subdimensions of social presence that need to be considered when measuring it.
These subdimensions are listed in the related work section [2.2.1]. Harms and Biocca’s study provides a
comprehensive framework for understanding and measuring social presence in virtual environments.

For this thesis, it was chosen to focus on the following three sub-dimensions of social presence [6]: Co-presence,
attentional allocation and perceived behavioral interdependence. These sub-dimensions are the most relevant
and accurate in nature in respect to the aim of the thesis. Furthermore, to avoid fatigue in participants, it
was necessary to condense the questionnaire as much as possible and limit the measure, to the most relevant
dependent variables.

3.5.3 Collision Avoidance

In order to evaluate collision avoidance behavior Born et al. [4] formulated three subjective questions which
participants would answer post-intervention. The following three questions were formulated and were rated
on a 5-point likert scale [4]:

¢ Did the presence of your teammate restrict your freedom of movement?

3.6 Validity and Reliability 15

* Did you deliberately avoid physical contact with your teammate?

¢ How much did you pay attention to where your teammate was and what she/he was doing?

This self-report measure is entirely focused on the participants” focus and attention to their teammate and
collision avoidance in the different conditions.

3.5.4 Telemetry data

Telemetry data relating to the participants” headsets will be logged during the testing to support observations
and data collected by the researchers. At fixed time intervals the computer will log positional and rotational
information about each headset and write it to a text document on the pc. After each testing session the logged
data would be categorized and sorted according to the condition that the participants were exposed to. This
data is objective compared to the subjective measures collected after each testing and any potential trends and
tendencies in participants’ movements can be analyzed and perhaps even support other claims.

3.6 Validity and Reliability

To ensure the validity of the test results, internally valid and standardized questionnaires were employed as
well as considering all data points, including outliers [25]. Additionally, ecological validity was ensured by
designing tests that closely resemble real-life scenarios in which the system would be used, thereby ensuring
accurate data collection [25]. To ensure reliability and validity, the standardized questionnaires included
multiple variations of questions related to the same subject [26]. Consistency in testing conditions, instructions,
and circumstances was maintained to enhance the reliability of the data [25]. Efforts were made to minimize
external factors and confounding variables that could influence the outcomes by adhering to a standardized
approach [25].

3.7 Scrum

The Scrum management framework [27] was partly used to structure and coordinate the development effort
into several iterations/sprints. Firstly, a product backlog was created with "Trello.com” which contained all
the relevant features that could potentially be implemented in the game to reach the desired prototype. Fur-
thermore, the backlog would keep track of which person were responsible for implementing which feature,
deadlines and included notes from the researchers that would be discussed during meetings. A sprint was
then defined by the researchers and all vital features were decided upon and included in that sprint backlog
based on research and relevance to the final prototype. Regular sprint reviews were conducted and evaluated
internally by the researchers and deadlines would be established for implementing certain features. If the
deadline was exceeded for any number of reasons, then that feature would be re-evaluated and re-designed or
the deadline would be extended to allow including that feature.

16

4 Design

4.1

Design requirements

The design requirements of this thesis plays a crucial role in guiding the development and implementation
of the proposed application. In order to design an effective and efficient system, it is imperative to establish
a clear set of requirements that will serve as a foundation for the entire design process. This section aims
to define the specific objectives, constraints, and functional specifications that must be addressed and met in
order to fulfill the research question. The design requirements of the system are derived from the findings
presented in the preceding sections, and the relevant research will be referenced along each item.

Natural Walking
The system should support natural walking in the virtual environment, allowing users to move intu-

itively and seamlessly within the virtual space [2.1] [2.1.2].

Multiplayer Functionality
The application must support multiplayer capabilities, allowing multiple users to connect over a network
and synchronize their experiences in real-time [2.5.2.

VR Implementation
The system should be designed for VR, utilize VR headsets and immersive virtual environments to pro-

vide an engaging game experience [2.1] [2.5.2].

Real-time Position and Rotation Tracking
Accurate, real-time tracking of user position and rotation is required to ensure precise and responsive
interactions within the virtual environment and among the interactants [[2.1.1].

Co-location
The system should facilitate co-location, allowing users to share the same physical space while engaging
in the virtual environment [2.3.1].

Incorporation of Game Mechanics and Theory
The application should incorporate game mechanics to enhance engagement and provide interactive el-
ements that motivate and challenge users within the virtual environment [2.5] [2.5.1]].

Concise and Consistent Feedback
Clear and consistent feedback should be provided to users, conveying relevant information about their
actions, progress, and state of the game [2.1.1]].

Condition Toggling
The game should consist of two versions that can easily be switched between, where the task focus is
either shared or distributed among users to allow evaluating collision avoidance, offering distinct collab-

orative experiences [2.4] [2.4.1].

4.2 Game Design 17

¢ Communication and Cooperation
The system should facilitate communication and cooperation among users, enabling effective collabora-
tion and interaction within the virtual environment [2.5.2].

* Mitigation of Simulator Sickness
Game mechanics should be implemented to minimize simulator sickness and provide a comfortable VR
experience, considering factors such as motion sickness and discomfort [2.1.1].

4.2 Game Design

To test the hypotheses, a virtual environment was developed, incorporating game mechanics and essential
functionalities. The application was specifically designed for the Meta Quest 2 VR headset, leveraging its
capability to track the user’s physical position and accurately translate it within the virtual environment. The
virtual setting includes a map divided in two levels, where height is the separation factor. These levels are
equally defined by a boundary that defines the play-space. Calibration is a prerequisite for every user who
starts the application and participates in the game. Once a player completes the calibration process from a
predetermined physical location, the virtual map is aligned with the physical play-space, for which the map
was originally constructed. Additionally, once calibrated, players are able to accurately track each other’s
positions, allowing them to effectively engage with one another without being concerned about potential
collisions. The level design section will further explain the design in categorized subdivisions, to properly
convey the thought process behind the most crucial game design choices and proposed solutions.

4.3 Level Design

A consistent and stable gameplay loop was required and designed by the researchers that would limit un-
intended behavior as much as possible. Several considerations went into the map design, the stages of the
game, feedback, consideration to players and playability. Numerous internal evaluations of the prototype and
feedback from peers, helped the creation and common thread of the game.

4.3.1 Virtual Environment

The map was designed for a physical play-space of 8x6m. Finding a balance of what was logistically plausible
to test and provide a proper physical space that allows players to roam free with natural walking. The map is
designed in two separate levels, distinguished by disparity in height. The idea was to exploit the physical play
space, by having various virtual settings for the players, interchanged by different stories.

The theme is a heaven/hell scenario, where players start in heaven with the task of safely crossing to the
heaven’s gate by cooperating. During the game the players will eventually fall into the hell environment, with
new objectives to complete. This allows for the same physical play-space to be exploited once again with a
new virtual environment. After completing another cooperative task in the hell environment, an elevator will
transport players back up for another try at the heaven section. The two environments, heaven, and hell are
approximately the same dimensions. The reason why they are not identical, is because a precaution had to be
made. Since players are able to roam free at any point during the game, stepping over any edge of the heaven
environment purposefully, had to be accounted for. As a result, the elements in heaven conclude a slightly
smaller virtual play-space. By introducing this change, any player that would step off the edge in heaven,
would still be inside the physical play-space, when falling into hell, although they would be on the edge.
Both the upper and lower levels visually defined a clear edge of the map, to suggest where the play-space
concluded.

4.3 Level Design 18

|

J Levers
~ pulled: 0

Figure 3: The heaven environment Figure 4: The hell environment (shared condition)

4.3.2 Game walk-through

The game requires calibration upon launch for both clients, to accurately synchronize the play-space to the
virtual play space, in addition to synchronizing players physical and virtual positions. The game will not
start until it has registered three connected clients, ensuring the connection of two headsets and a computer
to log positional data. Upon game start, players material will change, platforms spawn and narration begin
shortly after. The objective is explained by the narrator, who incentivizes players to cooperate to cross safely
to the heavens gate. Players are only able to view which platforms their teammate can safely step on and are
therefore forced to cooperate to complete the game. The players colors match the platform they are assigned
to, which is a hint for the players. The game helps players with tips and information but circumvents directly
providing the solution. The design is purposefully created with a problem-solving, cooperating intent to
encourage teamwork and communication.

Upon stepping on any platform, a timer displayed on the platform, will count down from one second. After
standing on the platform for one second, the platform exhibits one of two behaviors, depending on whether
it is assigned to that specific player or not. If the platform is solid for the player, it will change its material,
increasing its emission, and trigger a success audio clip. If on the other hand, a player steps on an unassigned
platform, it will trigger a vanish sound and be removed temporarily alongside with all other surfaces in
heaven. This game mechanic was essential, to prevent a potential collision scenario where players in the same
physical play-space would no longer be able to perceive each other, as they would find themselves separated
in different virtual environments, differentiated in virtual height. In terms of safety, it was a vital requirement
to always have players in the same VE, to avoid any collisions.

4.3 Level Design 19

1 AP

(a) Screenshot during gameplay (b) In-game footage

Figure 5: Heaven gameplay

Finding the hidden pathway through the matrix of platforms by collaborating and communicating is the main
objective at hand. If players are on the path of succeeding on their first try at the platforms, they will be forced
into the hell environment. This will happen if they reach the halfway point on the platforms in their first
go. In this case, a narrator will inform the players, that they are simply being forced into hell to experience
it once, as to not cause any doubt or confusion about the game mechanics. Falling down into hell triggers a
fade effect, that completely fades the screen, to counter simulator sickness. Upon landing in hell, the fade is
reversed. The hell setting is a maze with walls and levers. The objective is to find all levers and pull them,
to call for the elevator. All levers are only interactable by a specific player. If playerl interacts with a lever
designed for player2, information will appear in front of playerl’s view. This approach was implemented to
further encourage and promote collaboration and communication among players. Pulling a lever would of
course prompt visual and audio feedback.

In case a player tries to walk through any wall, the canvas will fade to black, and text will appear, to instruct
the player, to move out from the wall. This functionality is also key in preventing players from thinking they
are stuck, if they happen to land inside a wall, after falling from heaven. As seen in figure [6]], visual feedback
is provided to inform players on the amount of pulled levers, in addition to whether the elevator is on its way.
This feedback was also accompanied by a narrator voice-over.

4.3.3 Condition altered design

Given the objective of testing shared versus distributed environments, the application innately had to account
for this. In heaven, the pathway changes according to which condition is tested (shared or distributed). If the
condition is shared, the path of assigned platforms relative to each player will encourage them to cross each
other several times, in addition to constantly being virtually close in proximity to one another. If the condition
is distributed, players will consistently maintain a greater virtual distance from each other, while also ensuring
that their paths do not intersect. Likewise, the hell environment diverges, given what condition is tested as
seen in figure [6]. In the shared condition, the hell environment is a maze, where players are encouraged to
work together to find and pull all levers. In this condition, the levers are exclusively associated with either
player 1 or player 2, thereby restricting their interaction to a specific player, to further incentivize teamwork
and communication. Feedback is naturally provided, in case playerl attempts to interact with a player2-lever.

4.3 Level Design 20

If the condition is distributed, the hell elements are rearranged for a new layout, that is designed to separate
the players. Two color-matched particle effects, appearing as misty fogs, help intuitively guide players to their
intended space figure [6b]l. Additionally, feedback will appear on the canvas, in case a subject finds themselves
on the wrong side of the play-space, which will further help navigate them to the correct space.

(a) Shared condition (b) Distributed condition

Figure 6: The Hell environment in the two different conditions

21

5 Implementation

The following section will cover the implementation of the game, the utilized platform alongside the most
significant libraries, tools and assets used for development. It will present and explain how the developers
have proceeded to implement solutions to satisfy the game design requirements for the application. Excluding
tools, libraries and built in packages by unity, this project features 25+ scripts, that was written/implemented
by the researchers. The most crucial scripts will be presented during this section of the thesis.

The application was built in Unity with XR as the most noteworthy library. More specifically, the extension
used, was the XR interaction toolkit. This library provides functionality to interact with objects in a scene
using Oculus controllers as input. As the network solution, Normcore was chosen. Normcore provides a free
and straightforward solution for hosting a server and synchronizing data between clients.

5.1 XR Interaction Toolkit

The XR Interaction Toolkit is a powerful library that Unity offers to create immersive experiences in VR [28]. It
provides a collection of user-friendly components and features that make it easy to build interactive interfaces
and interactions in VE’s. With this toolkit, developers can add hand and controller tracking, object manip-
ulation, teleportation, and gesture recognition to their VR applications. By using the XR Interaction Toolkit,
developers can create engaging and immersive VR experiences with intuitive user interactions.

5.2 Normcore

Normcore is a Unity plugin specifically designed to facilitate networking and collaborative features within
Unity-based projects [29]. This plugin streamlines the implementation process by providing developers with a
range of pre-built networking components, scripts, and asset management systems. By integrating Normcore
into a project, developers can easily incorporate robust networking capabilities such as real-time collaboration,
synchronized manipulation, and version control. This plugin empowers developers to enhance multiplayer
experiences, enable seamless communication between players, and optimize the networking infrastructure of
their Unity projects, allowing for efficient and scalable networking solutions.

5.3 Multiplayer application with Normcore

As mentioned, the project was setup in Unity using XR and Normcore. It is rather simple to get started with
Normcore in a Unity project, although there are things to consider, in order to best streamline synchronization
between both clients. Normcore does not appoint a master to any client. In some scenarios this will cause
conflicting data between the clients, which in turn can break any multiplayer game. Normcore leaves it up
to the developer, to solve this issue. The solution for this project was simply to appoint one of the clients the
“master”, thus only have the master execute certain parts of the code. Both clients will check if a master has
been assigned and if not, the first connected device, becomes the master of the server. Moving forward the
term “master” will be used to describe the master client, and client to describe the additional regular clients.

5.4 GameManager

The GameManager script essentially takes care of the entire game-loop and interacts with a number of other
scripts as well as setting game variables which certain scripts depend on. The script is run on the master as
well as the client, yet most code in the gamemanager is exclusively executed or set by the master to avoid
conflicting data. Several checks are made in the update function to clarify whether the client is the master,
if all players are connected and whether the platforms have been instantiated. The platforms are instantiated

5.5 PlatformManager 22

once these conditions are true and from there, a constant cycle of checks begin. Nearly all functions that
are called in the GameManager, are effectively called by a reference to the PlatformManager script. This was
done, in order to have all platforms spawn under a parent gameobject that can easily be positioned, as well as
encapsulate all functionality to manage the spawned array of platforms.

When the platforms are spawned, the game commences. A narrator will trigger and instruct the players
upon the game mechanics. At this point, two methods are called continuously to check whether the correct
platforms are collided with, in addition to whether the next row should appear. A counter, to keep track of
failed platforms, ergo platforms that should not be stepped on, is checked to determine if all surfaces should
disappear, effectively sending the players to the hell section. If this is the case, a sequence of coroutines are
triggered to reset the playing field, effectively rearranging the platforms while generating a new path sequence.
The gameloop then returns to call the two aforementioned methods, that fundamentally checks whether the
players are crossing correctly, by stepping on the right platforms.

CheckAndSetAvatarArray() ;
AssignPlayerNumbers();

if (CheckIfServerExist())
{

L

if ('IsServer) { returr

if ('CheckAllPlayersConnected()) { return; }

if (lisPlatformsInstantiated)

{
PlatformManagerScript.RealtimeInstantiatePlatforms();
PlatformManagerScript.SetRandomSequence();
isPlatformsInstantiated = true;
syncedGameVariables._backupBool = true;

}

if (Platform.NumberOfPlatformsDestroyed > 0)

PlatformManager.isResetFinished = f

syncedGameVariables._backupFloat = Platfurm NumberOfPlatformsDestroyed To
PlatformManagerScript.DestroyAllSurfaces(); rcedIntoH:)
PlatformManagerScript.ResetAllPlatforms(); at nRow) t m
PlatformManagerScrlpt.StartCnroutme(PlatformManagerScmpt ActlvateNextRowIE(PlatformManagerScrlpt RowIndex,3));
PlatformManagerScript.StartCoroutine(PlatformManagerScript.SetRandomSequenceAfterXTime(5));
PlatformManagerScript.StartCoroutine(PlatformManagerScript.ResetLocalPlatformvariables(7));
PlatformManagerScript.StartCoroutine(PlatformManagerScript.ResetMaterial(8)); se

runOnceOpen =

runOnceClose =

Platform. NumberOfPlatformsDestroyed = 0;

else if(PlatformManager.isResetFinished) F ING TH M W\
PlatformManagerScript.ActivateNextRowV2(PlatformManagerScript.RowIndex);
PlatformManagerScript.CheckCorrectPath(PlatformManagerScript.RowIndex);
if (PlatformManagerScript.RowIndex > 9) ir

syncedGameVariables._sequenceIndex = PlatformManagerScript.RowIndex;

}
else

AssignServer();

Figure 7: A snippet of the GameLoop exclusively handled by the master client

5.5 PlatformManager

The PlatformManager class/script holds all the functionality for arranging, managing, and manipulating the
platforms. This script primarily handle all platforms as a joined unit as the majority of algorithms in the
class, loop through each gameobject in the array; “PlatformArray”, to execute the correct response. The
platform class, which will be described in the next section, is responsible for the functionality of each individual
platform. The platformManager class however, regularly checks the platform script of each platform, when
looping through the array to check for collision, activation and unique attributes. It also does the exact
opposite, as it will loop through the entire array and set a solid-variable, to identify a path of solid platforms,
that can be stepped on by the respective player.

5.5 PlatformManager 23

The PlatformManager class holds six two-dimensional integer arrays, with hardcoded inputs, to set a random
pathsequence, ergo a pathway for players to follow to win the game. An example of this is shown in figure
. Each input is one of three values, 0, 1 or 2. The numerical value indicates whether the platform is fragile,
solid for player 1 or solid for player 2. In other words, the interaction and movement of player] is confined
exclusively to platforms with a value of 1, while player 2 abides by the same restriction. In case either player
engage with a “fragile” platform, all platforms will withdraw and reset with a new path sequence. The two-
dimensional path sequence arrays are divided in shared and distributed manner. That is, the first three arrays
will have pathways that force crossing and a close proximity relation among players, contrary to the last three
arrays, which feature pathways designed to separate players.

private int[,] pathSequencel = new int[ColoumnLength, RowLength] {

PROOSOSOR RPN
OO0 N

OO0

1,
1,
2,
2,
1,
2,
2,
1,
o,
2,

Figure 8: One of six hardcoded two-dimensional integer arrays to set the path sequence of the platform matrix

The script contains numerous methods and coroutines that traverse through each platform and impose func-
tionality accordingly. To avoid repetition and redundancy, only the most important algorithms of the class will
be presented.

As previously stated, this part of the code in PlatformManager, is exclusively executed by the master client.
The initial method of the script is called RealtimelnstantiatePlatforms().As seen in figure [9] a double for-loop
fills the array platformArray[], while realtime-instantiating prefabs at incrementing positions. Within the same
scope of the loop, each platforms’” spawn position is logged and afterwards relocated to its despawn point,
which is furthermore logged. This functionality is executed by two methods included in the script, and simply
ask for permission to manipulate the passed gameobject as well as storing the transform data.

public void RealtimeInstantiatePlatforms()

platformArray ew GameObject[ColoumnLength, RowLength];
for (int i = 0@ ColoumnLength; i++)
{

for (int j = @; j < RowLength; j++)
{
platformArray[i,j] = Realtime.Instantiate("Platformv2", new Vector3(transform.position.x + i % coloumnMultiplier -coloumnOffset, @, transform.position.z|
{
ownedByClient = false, Tru
preventOwnershipTakeo f

destroyWhenOwnerLeaves =
destroyWhenLastClientLeave

MoveAndSetStartSpawnPosition(platformArray[i, jl.transform.GetChild(@).gameObject);
MoveAndSetDespawnPosition(platformArray[i, jl.transform.GetChild(@).gameObject);
Debug.Log("All Platforms Instantiated and Despawned");

Figure 9: This method instantiate and reposition all platforms realtime, effectively synchronizing what appears to all clients

The next method utilized is called SetRandomSequence() figure [10]]. Its purpose is to establish a sequence
of solid platforms that the corresponding player can successfully step on. It begins by examining a static

5.5 PlatformManager 24

game variable to determine whether the condition is shared or distributed. Depending on the variable’s
value, one of two switch cases is triggered. Within these switch cases, a random integer is generated within
three specific intervals to select the path sequence for the platforms based on the corresponding condition.
As mentioned earlier, the PlatformManager script contains six distinct pre-defined two-dimensional integer
arrays, each holding a value of 0, 1, or 2. The switch case selects one of these arrays based on the randomized
integer. Once a random path sequence is chosen, the array is traversed, and each index is inspected for its
value. If the value is 1, a networked /synchronized boolean called "isSolidPlayerl" associated with the platform
is set to true. Likewise, if the value is 2, "isSolidPlayer2" is set to true. If the value is 0, both variables are set
to false. These assigned values determine which platforms can be stepped on and by which player.

public void SetRandomSequence()

int[,] pathSequence;

if (GameManager.IsTaskSharedStatic)

{
int randomChance = Random.Range(@, 3);
Debug.Log("Shared Task - Path: " + randomChance);
switch (randomChance)

case 0:
pathSequence = pathSequencel;
PlatformSequence = 1;
break;
case 1:
pathSequence = pathSequence2;
PlatformSequence = 2;
break;
case 2:
pathSequence = pathSequence3;
PlatformSequence = 3;
break;
case 3:
default:
pathSequence = pathSequencel;
PlatformSequence = 1;
break;
}
oo
elsel...|
for (int i = @; i < ColoumnLength; i++)
{
for (int j = @; j < RowLength; j++)
{
if (pathSequenceli,j] == 1)
{

platformArray[i, jl.gameObject.Get onentInChildren<PlatformData>()._isSolidPlayerl

else if (pathSequenceli, jl == 2)
{

platformArray[i, jl.gameObject.GetComponentInChildren<PlatformData>()._isSolidPlayer2 =

else

{
platformArray[i, jl.gameObject.GetComponentInChildren<PlatformData>()._isSolidPlayerl
platformArray[i, jl.gameObject.GetComponentInChildren<PlatformData>()._isSolidPlayer2

Figure 10: Sets a random path sequence according to the played condition (Shared/Distributed) and a randomized integer. The
contracted code in the else conditional, line 303, is similar to the first conditional, yet with a random range from 3-6.

Two crucial methods, which operate continuously throughout the game, are responsible for managing row
activation and verifying correct platform interactions. Both methods rely on the variable "RowIndex," which
serves as an indicator of the current row to inspect and determines whether the subsequent row should appear.

The initial method, "ActivateNextRow()" figure [[TT]], is part of the game’s main loop. It takes the "RowIndex"
as a parameter, which specifies the targeted row within the platform array to activate or move to its spawn

5.5 PlatformManager 25

position. Before triggering the activation process, the method compares the current "RowIndex" with its pre-
vious value to determine if a change has occurred. This check ensures that the method is only invoked when
necessary. When a change is detected, the method proceeds to activate the corresponding row in the platform
matrix based on the updated "RowIndex" value. Furthermore, audio feedback is initiated with each method
call, excluding the first one when "RowIndex" is less than 1. To prevent unnecessary repetitions, the "Previ-
ousRowIndex" variable is updated accordingly. This variable keeps track of the previous "RowIndex" value
and enables the method to identify changes effectively. By continuously tracking changes in the “RowIndex”,
the method optimizes performance by avoiding redundant activations and ensures the efficient execution of
subsequent calls.

public void ActivateNextRow(int rowToActivate)
{
if(PreviousRowIndex == RowIndex) { return; }

for (int targetRow = rowToActivate -1; targetRow < rowToActivate; targetRow++)
{

for (int j = @; j < RowLength; j++)

{

platformArray[targetRow, jl.transform.GetChild(0).gameObject.GetComponent<Platform>().SpawnPlatform();
Debug.Log("SpawnPlatform -100x");

}
if (RowIndex > 1)
{

Realtime.Instantiate("RealtimeAudioObj", new Vector3(5, @, @), Quaternion.identity, new Realtime.InstantiateOptions

ownedByClient = false, T
preventOwnershipTakeover = fa
destroyWhenOwnerLeaves = fa
destroyWhenLastClientLeaves = true
3
}

PreviousRowIndex = RowIndex;

Figure 11: The ”ActivateNextRow()” method checks for an increment of "Rowlndex” to determine if the next row should be
displayed along with audio feedback

The second method, “CheckForCorrectPath()” figure [12]], runs continuously by traversing through the platform-
array, while tracking the number of activated platforms in the given row, in respect to “RowIndex”. Each object
of platform-array is checked and in case of activation, “NumOfPlatformsActivatedInRow” is updated. If this
variable surpass or is equal to two, “RowIndex” is incremented, effectively prompting the previously presented
method “ActivateNextRow()”. In case “RowIndex” exceed four and players have not already been forced into
hell, a coroutine will be triggered to accomplish this task.

5.6 Platform 26

public void CheckCorrectPath(int rowToCheck)
{

for (int i = @; i < rowToCheck; i++)

for (int j = @; j < RowLength; j++)
{

if (platformArray[i, jl.transform.GetChild(®@).gameObject.GetComponent<Platform>().GetPlatformActivated())
{

NumOfPlatformsActivatedInRow++;
Debug.Log("NUmberOFPlatformsActivatedInRow INCREMENTED: " + NumOfPlatformsActivatedInRow)
platformArray[i, jl.transform.GetChild(@).gameObject.GetComponent<Platform>().SetPlatformActivated(false)
if (NumOfPlatformsActivatedInRow >= 2) f 2 or mo
{

RowIndex++;

NumOfPlatformsActivatedInRow = 0;

Debug.Log("CheckCorrectPath Method — Row Index increased! : " + RowIndex);

if (RowIndex > 4 && !forcedIntoHell)
{

Realtime.Instantiate("RealTAudio_ForcedHell", new Vector3(5, @, @), Quaternion.identity, new Realtime.InstantiateOptions
{
ownedByClient = false,
preventOwnershipTakeover =
destroyWhenOwnerLeaves =
destroyWhenLastClientLeaves rue
H;
StartCoroutine(ForcedIntoHell(13));
forcedIntoHell = true;

Figure 12: This function continuously checks for successfull interactions with all platforms to determine when “RowlIndex” should be
increased.

5.6 Platform

The Platform script is a component attached to the platform prefab. Thus, every instantiated platform includes
the platform script. It has various properties and methods for managing the behavior of each platform.
As opposed to the “PlatformManager”, The Platform class is responsible for handling the functionality of
individual platforms in the game. It maintains properties such as “IsSolid”, (indicating whether the platform
is solid) and “timer” (used for tracking time). It also manages the audio and visual aspects of the platform,
including playing sounds and changing materials. The class utilize and relies on components such as colliders,
audio sources, and mesh renderers to achieve its functionality. It interacts with other scripts, such as the
GameManager, to access game data and synchronize the state of the platforms.

The Platform class includes methods for setting the material of the platform, resetting the material timer,
and triggering actions based on player interactions. These actions include checking if the platform is solid
for specific players, triggering success conditions, and handling platform destruction. Additionally, the class
contains methods for despawning and spawning platforms, as well as managing countdown timers and text
objects associated with the platforms. The Platform class is a crucial component of the game, handling the
logic and behavior tied to each individual platform.

In the following paragraph, code snippets will showcase and highlight the most crucial aspects of the Platform
class. These snippets will demonstrate key functionalities, properties, and methods.

“CheckPlatformForPlayers()” is a method called in the “OnTriggerStay()” function of the platform. A guard
clause in the Ontrigger-method will ensure that colliders contain the tag “Player”, before proceeding with
further execution. “CheckPlatformForPlayers() in figure [12]” is repeatedly called if a player collides with any
given platform. Part of the functionality is solely performed by the master client to avoid inconsistency in
the game loop. This functionality includes repositioning of the platform and tracking successful interactions

5.6 Platform

27

which relate to changes in certain game variables. Common functionality for both clients involve tracking

interaction time to provide proper audio and visual feedback simultaneously.

public void CheckPlatformForPlayers(bool isPlayerServer)
{
if (!GameManager.IsServer)
(GameManager.IsServer)
(!GameManager.IsServer) { return; }
(isPlayerServer && syncedPlatformVariables._isSolidPlayerl)

successTimer += Time.deltaTime;
if (successTimer >= TimerThreshold -1)
{

Success();

setActivatedMaterial = true;

}
else if (!isPlayerServer && syncedPlatformvariables._isSolidPlayer2)
{

successTimer += Time.deltaTime;
if (successTimer >= TimerThreshold - 1)
{

Success();

timer += Time.deltaTime;
GlassCracking();
if (timer >= TimerThreshold)
{
PlatformFall();
NumberOfPlatformsDestroyed++;

Figure 13: A method that checks the interaction between player and platform to decide the correct action of the given platform

Nested method calls have been used for optimized organization of the code throughout the implementation.

“PlatformFall()” is an example of this as it is called within “CheckPlatformForPlayers()”.

“PlatformFall()”

furthermore invokes another method to reposition the platform by calling a Hdespawn method. As stated
in the former paragraph, altering the transform of the platform is exclusively performed by the master client
although it will appear similar to both clients as all transforms of any platform is networked and Tthus
synchronized. The remaining part of this method simply resets dependent variables and trigger one of three

audio clips by a classic switch statement.

5.7 Levers 28

public void PlatformFall()
{

int randomAudio = Random.Range(@, 3);
switch (randomAudio)
{
case 0:
audioSource.PlayOneShot(VanishSounds[@]);
break;
case 1:
audioSource.PlayOneShot(VanishSounds[1]);
break;
case 2:
audioSource.PlayOneShot(VanishSounds[2]);
break;
default:
audioSource.PlayOneShot(VanishSounds[1]);
break;
}
DespawnPlatform();
timer = 0;
successTimer = 0;
CountDownSuccessTimer = @;

Figure 14: In case of wrongful interaction PlatformFall() is invoked, effectively despawning the platform and trigger audio feedback
accordingly

5.7 Levers

Levers were used as a core mechanic in the hell-environment which required all six to be activated in order
for the elevator to bring the players back up to heaven. Half of the levers were assigned to one player and the
other half for the other player. The levers could only be pulled by their assigned player and thereby encouraged
cooperation and communication in the shared task focus conditions and in the distributed conditions the levers
were divided on two separated halves of the VE. The levers worked as a simple yet effective mechanic that
would fit in the gameplay loop and worked as a great way to promote the intended kinds of interaction
between all conditions.

5.8 Feedback 29

Pulled == 1 &&

Pulled == 0)

Figure 15: This script is responsible for checking for collisions with users, update and sync state between clients (position, rotation
and color) as well as resetting when the condition is met.

The lever behaviour script would continuously check for collisions with the players” hands, if the ‘grab” button
was being held down and if the player was assigned to that lever, if so, the lever would rotate towards its final
rotation, change material color and play a small sound to signify that it was activated. A synced game variable
would increment for every lever pulled and once all were pulled the elevator would descent and the narrator
would instruct the players.

5.8 Feedback

5.8.1 Avatar

Animating the players’ avatars were done with inverse kinematics meaning that the virtual rig followed the
physical position of the user based on the HMD and controller inputs. Furthermore, synchronized animations
were needed when pulling the “trigger” or “grab” button on the controller in order for the other player to see
the change occur visually. This was done with synced game variables that checked for playerl or player2 input
and updated the state accordingly when a change was detected, allowing both users to receive the information.
A mouth mesh attached to the head of both avatars was also synced and animated according to the input of
the headsets microphone to allow for the users to see when the other person was talking.

5.8 Feedback 30

(a) Avatar before game start (plain color) (b) The Avatar after game initialization

Figure 16: The player avatar created with inverse-kinematics

5.8.2 Animations

A few simple custom animations were created with Unity’s animation system. These included the elevator
transporting the players back up to heaven as well as the gate into heaven. These animations provided visual
feedback to the users allowing them to detect and verify changes in the VE that could help them better
understand the state of the game. Ideally, this feedback would also assist the users in completing their goals
more efficiently without misinterpreting each other unnecessarily.

5.8.3 Canvas

Unity’s canvas was used for fading the screen to black as well as providing on screen information about
the state of the game. The fading effect was done by overlaying a black image in front of the camera and
interpolating the alpha value from 0% to 100% in a few seconds. As can be seen in figure [17], a few checks
are made to determine if the fade effect should trigger. It only triggers if the client is owned locally and then
invokes another method "fallinDownwards()", to check if there is a negative change in y-position of the player.
Finally, it checks a hardcorded y-interval, to determine whether the canvas should continue to fade. The fade
effect was needed when users were falling from heaven to impede motion sickness as this could potentially
have undesired effects in terms of simulator sickness that would have confounded the results. Furthermore,
the fading effect worked as a boundary [2.5.1] when users moved into walls to dissuade them from walking
through obstacles in the VE as there would be no physical way to prevent this.

5.8 Feedback 31

public void ActivateFadeWhenFalling()
{

(!GetComponent<RealtimeTransform>().isOwnedLocallySelf) return;
(!fallinDownwards()) { return; }
(transform.position.y > -89 && transform.position.y < -3)

if (imageColor.a < 1f)

fadeTimer += Time.deltaTime;
imageColor.a += (fadeTimer / 0.5f) x Time.deltaTime;
imageComponent.color = imageColor;

Figure 17: A method to determine if the local player itself is falling, and if so, fade the canvas.

The canvas was also used to deliver on-screen information about the state of the game or instructions on how
to proceed when necessary. A TextMesh would appear on the canvas and prompt players to "move out of the
wall" when stuck or letting them know that "the elevator has arrived" to guide them back to the starting point.
Additionally, TextMeshes were also present in the hell environment and indicated how many levers had been
pulled to guide users towards their objective.

5.8.4 Audio

Unitys 3D spatial audio was used to provide feedback within the VE. Unity’s "AudioSource’ component was
attached to game objects in the scene allowing them to play audio clips when needed. The following game
objects had auditory feedback when interacted with: platforms, levers, elevator and button. These objects
were able to deliver instant auditory and visual feedback when interacted with in order to guide the users
and reinforce understanding of the game mechanics and state of the game. The narrator provided auditory
instructions to the users several times throughout the experience. Furthermore, ambient sounds was also
present to create a soundscape that would compliment the setting (whether in heaven or hell) and ideally to
increase immersion and engagement. Lastly, When the win condition was true, the game would also play a
song as well as write to the canvas to notify users about the outcome of the game.

5.8.5 Visuals

The art-style of the assets ad the environment is stylized but semi-realistic, this was deemed the optimal
solution as complex trigonometry of models heavily impacted the performance of the HMDs. Therefore,
simpler representations of objects with fewer polygons became the most optimal solution without sacrificing
too much in terms of visual impression and realism. Visual effects were also implemented to give feedback
to the users about several aspects relevant to the state of the game. Particle effects were implemented in
both environments, and acted as cosmetics but also to provide information about the intended positions of
the users in the distributed condition of the hell environment. Post-processing effects were used along with
Unity’s universal render pipeline to create glowing materials that would represent props of importance to
the games progression. Unity’s built-in terrain component was used to create an immersive environment
consistent with the theme of the game. Additionally, textures and texture-painting was also heavily used to
obtain the right impression about the environment and style of the game. The skybox within the VE would
dynamically change depending on the position of the user (y-value) to update the background depending on
the location of the user. To represent the users within the VE, a neutral mannequin model was chosen to
represent the users in an objective way without inferring anything in terms of the player model.

5.9 Shared vs Distributed Toggle 32

5.9 Shared vs Distributed Toggle

One of the requirements for the application was to account for the two conditions that should be tested.
These conditions should furthermore be easy to switch between, to streamline testing. A static boolean “Is-
TaskShared” in the “GameManager” class, was created and used throughout the implementation. The variable
is checked in several scripts to determine whether the application should include/exclude certain environment
designs, scene elements and functionality. For example, the sequence of the “solid” platforms is altered accord-
ing to which condition is played. In the shared condition, players are obliged to cross each others pass multiple
times, as opposed to the distributed condition, where a certain distance between players are maintained. The
GameManager furthermore contains a reference to two GameODbjects, that include two different editions of the
hell-scene environment, as can be seen in figure [6]] . These scene elements are toggled according to the played
condition. To streamline testing, two different builds were created, where the only modification was a toggled
boolean, that fundamentally changed the game from shared functionality to distributed.

510 Telemetry Data

The Telemetry script in figure was created to track and store telemetry data of players. Data logging
has been reduced solely to head position as this includes the most accurate measurement of players position
relative to each other. The class contains two string variables, "headPosPath1" and "headPosPath2," represent-
ing the file paths where the telemetry data will be stored. These file paths are constructed by appending the
current datetime string to the directory paths.

public class TelemetryData : MonoBehaviour

c Dictionary<int, RealtimeAvatar> avatars;
) = "Mddyyyyhhmmsstt";
atetime = DateTime.Now.ToString(format);
string headPosPathl = @"/Users/bjornwinther/Desktop/TelemetryData/lheadPosPath" + datetime + ".txt";
S @"/Users/bjornwinther/Desktop/TelemetryData/2headPosPath" + datetime + ".txt";

if (Application.platform == RuntimePlatform.Android) { return; }
void Update()

if (Application.platform == RuntimePlatform.Android) { return; }
if (!GameManager.GameStarted) { return; }
avatars = GetComponent<GameManager>().Avatars;
for (int i = @; i < avatars.Count; i++)
{
RealtimeAvatar player = avatars[il;
if (player.isOwnedLocallySelf) { return; }
int playerNumber = player.gameObject.GetComponent<PlayerData>()._backupInt;

Vector3 headPos = player.gameObject.transform.Find("Head").transform.position;

if (playerNumber == 1)
{

File.AppendAllText(headPosPathl, Time.time.ToString() + " : " + headPos.x + " : " + headPos.y + " : " + headPos.z + "\n");

File.AppendAllText(headPosPath2, Time.time.ToString() + " : " + headPos.x + " : " + headPos.y + " : " + headPos.z + "\n");

Figure 18: The Telemetry data script responsible for tracking and storing the head positions of all connected android devices

As with any script in Unity, the “Update()” function runs continuously throughout the game. The initial guard
clause will check the application platform, to ensure that the data is being stored on a computer and not an
android device, as well as circumventing unnecessary code execution on the Meta Quest 2 device.

510 Telemetry Data 33

If the game has not started yet, indicated by "GameManager.GameStarted", the method returns and does not
proceed further. This counters a potential null reference bug, as the avatar dictionary otherwise would be
empty. The avatar dictionary/list is of course a key component as it provides access to the positional data
of each player. A loop iterates over each avatar in the "avatars" dictionary. For each avatar, it checks if the
avatar is controlled by the local player ("player.isOwnedLocallySelf"), and if so, it skips to the next iteration of
the loop. As mentioned, only the computer executes this part of the code. By checking if it is locally owned,
storing the computers own stationary avatar data is prevented.

A reference to retrieve the player number from the "PlayerData" component is then made to distinguish each
player. Subsequently the position of the avatar’s head is obtained by finding the child gameobject named
"Head" and accessing its position. Depending on the player number, the method appends the current time
and head position coordinates (X, y, z) to the corresponding telemetry file. The data is appended using the
"File.AppendAllText()" function. The script successfully captures and stores the head position of all connected
non-computer devices each frame of the game.

5.10.1 Showcasing the telemetry data

A new separate unity project was created to visualize the data collected by the telemetry script in figure [18].
This project is plain in nature, only including one script and two sphere prefabs with individual materials.
The materials are yellow and blue respectively (to represent each player), with a low alpha value, to appear
semi-transparent. When several semi-transparent objects are spawned on top of each other or in a cluster,
transparency will decrease. This procedure allows for visualizing players movement, as well as prominent and
less prominent areas of the map. The method to visualize the positional data can be seen below, in figure [19].

void ReadTelemetryData(string filePath, GameObject prefab)
if (File.Exists(filePath))
string[] lines = File.ReadAllLines(filePath);
for (int i = 1; i < lines.Length; i += 2)
ine.Split(':');

t.Parse(datalo]);
.Parse(datal[1]);

float z = float.Parse(datal[3]);
Instantiate(prefab, new Vector3(x, y, z), Quaternion.identity);

else
{

Debug.LogError("Telemetry file not found: " + filePath);
}

}

Figure 19: The method parses the telemetry data from a text file and creates an object for every second line, using the corresponding
values provided in the file.

The script to visualize the data, contains a single method, shown in the figure above, which is called twice in
the "start()" function. Each method call includes a specific filepath and a unique prefab corresponding to each
player. An example of the result can be seen below in figure

5.10 Telemetry Data 34

(a) Heaven (Shared condition) (b) Hell (Shared condition)

Figure 20: Heaven and Hell telemetry data (Non-colocation shared condition)

The figures above showcase the output. The outcome closely resembles a heatmap representation. The teleme-
try text files contains positional data for every frame. To limit the amount of instantiated gameobjects, the
script only spawns an object for every second line. The utilization and results of the telemetry data will be
discussed further in section

35

6 Results

This chapter presents the results of data collection and statistical analysis. The data collected is quantitative
and includes subjective self-report measures of co-presence, attentional allocation, perceived behavioral inter-
dependence and collision avoidance. In order to account for confounding variables when testing a randomized
condition order will be implemented. Likert scales were used ranging from 1 (Not at all) to 7 (Very much/well)
and all variables were measured this way. The data was collected from a sample of the target population, con-
sisting of 32 individuals (16 pairs). The participants were exposed to a collaborative multiplayer game in a
virtual reality environment. A mixed factorial design will evaluate the effects of co-location and task focus be-
tween all four conditions. The "IBM SPSS Statistics" software was used for descriptive statistics and statistical
analysis of the data. Given the modest sample size, the Shapiro-Wilk test was chosen to assess the normality
of the data, using an alpha level of 0.05. The conducted normality tests reveals that the data generally departs
from normality, however, some isolated measures appear to be normally distributed but as the whole category
will be evaluated non-parametric tests will be used to check for significant differences in the data. Upon pre-
liminary inspection of the boxplots of the data it becomes clear that the distribution of the data is generally
either very right-skewed or left-skewed depending on the variable measured. This further supports the claim
that the data is not normally distributed, however, several Shapiro-Wilk tests will be conducted in the different
conditions to check for normality regardless. The non-parametric test used is the Wilcoxon Signed Rank Test.

6.1 Social presence

6.1.1 Co-Presence

A Shapiro-Wilk test was used to test for normality in the four groups in regards to co-presence. It was shown
that for the co-located shared condition (W = 0.405, p = < 0.001), the co-located distributed condition (W
= 0.644, p = < 0.001), the non co-located shared condition (W = 0.405, p = < 0.001) and the non co-located
distributed condition (W = 0.398, p = < 0.001) that all departed from normality. As the value p < 0.05 in all
conditions the null hypothesis that the data is normally distributed must be rejected. In the case of co-presence
the data departs from normality and therefore a Wilcoxon Signed Rank test will be used to check if there is a
statistically significant difference in the mean co-presence measures between all four groups.

The Wilcoxon Signed Rank Test showed that for the co-located shared vs distributed conditions (z = -0.736, p =
0.461). Since the p-value is greater than 0.05, we can not reject the null hypothesis. We have sufficient evidence
to conclude that the task focus did not have a statistically significant effect on the co-presence between these
conditions. In the case of the non co-located shared vs distributed conditions (z = -0.962, p = 0.336) reveals
that there is no significant difference in terms of co-presence in these two conditions either. For the co-located
shared vs non co-located shared it shows that (z = -1.633, p = 0.102) and furthermore the co-located distributed
vs non co-located distributed showed that (z = -1.382, p = 0.167) as both of these tests have p > 0.05 we must
also conclude that there are no significant difference in co-presence across all four conditions when compared
in a mixed factorial design.

6.1 Social presence 36

Clustered Bar Mean - Co-presence
M| noticed my teammate
M My teammate noticed me
My teammate’s presence was
obvious to me
My presence was obvious to my
5 teammate
My teammate caught my
attention
@' caught my teammates
attention

Mean score

Co-located Co-located Non co-located Non co-located
shared distributed shared distributed
Condition

Figure 21: Co-presence distribution - Clustered bar mean

6.1.2 Attentional Allocation

In relation to attentional allocation it was shown that for the co-located shared condition (W = 0.826, p = 0.006),
the co-located distributed condition (W = 0.823, p = 0.006), the non co-located shared condition (W = 0.843, p
= (0.011) and the non co-located distributed condition (W = 0.887, p = 0.049). Once again the data appears to
be departing from normality as p < 0.05 in all conditions. Once again the Wilcoxon Signed Rank test will be
used to check for any significant differences in the data.

The Wilcoxon Signed Rank Test is once again used to check for significant differences between the four condi-
tions in the attentional allocation category. The co-located shared vs distributed conditions showed that (z =
-1.682, p = 0.093) which shows no significant differences. The non co-located shared vs distributed condition (z
=-1.782, p = 0.075) again showing no significant differences. In the non co-located shared vs co-located shared
conditions (z = -0.954, p = 0.340) there are no significant differences. Finally, in the co-located distributed vs
non co-located distributed it shows that (z = -1.997, p = 0.046) which reveals a significant difference between
these two conditions in terms of attentional allocation.

6.1 Social presence 37

Clustered Bar Mean - Attentional allocation

| was easily distracted from my

M teammate when other things
were going on
My teammate was easily

M distracted from me when other
things were going on
| remained focused on my

M teammate throughout our
interaction

@ My teammate remained focused
on me throughout our interaction
My teammate did not receive my

.fuI{ attention
| did not receive my teammates
full attention

Mean score

Co-located Co-located MNon co-located MNon co-located
shared distributed shared distributed
Condition

Figure 22: Attentional allocation distribution - Clustered bar mean

6.1.3 Perceived Behavioral Interdependence

In the case of perceived behavioral interdependence the co-located shared condition showed that (W = 0.845,
p = 0.011) the co-located distributed condition (W = 0.796, p = 0.002) the non co-located shared condition (W
=0.771, p = 0.001) and for the non co-located distributed condition (W = 0.697, p = 0.001). These results show
that the data departs from normality once more as all p < 0.05 in all conditions. The Wilcoxon Signed Rank
test will also be used for this variable.

The Wilcoxon Signed Rank Test revealed that in the co-located shared vs distributed conditions (z = -2.201, p =
0.028) which shows that between these two conditions the means of the perceived behavioral interdependence
is significantly different. In the non co-located shared vs distributed conditions (z = -0.707, p = 0.480) no
significant difference exists. In the non co-located shared vs co-located shared conditions (z = -2.207, p = 0.027)
a significant difference exists as p < 0.05. Lastly, in the non co-located distributed vs co-located distributed (z
=-0.316, p = 0.752) no significant difference is found in terms of perceived behavioral interdependence.

6.2 Collision Avoidance 38

Clustered Bar Mean - Perceived behavioral interdependence
My behavior was often in direct
M response to my teammates
behavior
The behavior of my teammate
M was often in direct response to
my behavior
-\ reciprocated my teammates
actions
My teammate reciprocated my
actions
My teammates behavior was
closely tied to my behavior
4 My behavior was closely tied to
my teammates behavior

Mean score

Co-located Co-located Non co-located Non co-located
shared distributed shared distributed
Condition

Figure 23: Perceived behavioral interdependence distribution - Clustered bar mean

6.2 Collision Avoidance

For collision avoidance, the co-located shared condition showed that (W = 0.880, p = 0.038) the co-located
distributed condition (W = 0.873, p = 0.031) the non co-located shared condition (W = 0.883, p = 0.042) and for
the non co-located distributed condition (W = 0.816, p = 0.004) all conditions show that the data departs from
normality and a Wilcoxon Signed Rank test will be used to check for significant differences.

The Wilcoxon Signed Rank Test revealed that in the co-located shared vs distributed conditions (z =-1.633, p =
0.102) the non co-located shared vs distributed conditions (z = -1.604, p = 0.109) the non co-located shared vs
co-located shared conditions (z = -1.633, p = 0.102) and lastly for the co-located distributed and non co-located
distributed conditions (z = -1.604, p = 0.109) that no significant differences exists between the means of the
data.

6.2 Collision Avoidance

Mean score

Clustered Bar Mean - Collision avoidance

Did the presence of your
W teammate restrict your freedom
of movement?
Did you deliberately avoid
M physical contact with your
teammate?
How much did you pay attention
M to where your teammate was
and what she/he was doing?

Co-located Non co-located Non co-located
distributed shared distributed
Condition

Figure 24: Collision avoidance distribution - Clustered bar mean

39

40

7 Discussion

7.1 Results discussion

This section aims to elaborate on the study’s findings. The gathered results will be analyzed and interpreted,
while potential causes will be discussed. The section will include an examination of the results regarding,
co-presence, attentional allocation, perceived behavioral interdependence and collision avoidance.

7.1.1 Social Presence Evaluation

The following three sub-dimensions of social presence were evaluated:
¢ Co-presence
* Attentional Allocation
* Perceived Behavioral Interdependence

All above sub-dimensions were evaluated in a mixed factorial design (four conditions) and all the overall
measured differences between them in terms of co-presence were deemed insignificant. Co-presence refers to
the level of presence experienced by the participant and their partner within the social context. It encompasses
the extent to which the partner feels present in the interaction and how present the participant perceives
themselves to be in the same social setting. It can therefore be argued that co-location and a shared task focus
does not provide a better social connection with the partner in this context.

Attentional allocation refers to the extent of participants” focus on social dynamics. It describes the level
of attention allocated towards comprehending and actively participating in the interpersonal elements of a
specific situation or context. Based on the attentional allocation data gathered, there is insufficient evidence
to suggest that three of the conditions encourages participants to allocate a significantly different amount
of attention towards social dynamics. However, in the co-located distributed vs non co-located distributed
condition a significant difference is found in terms of attentional allocation. This indicates that in a co-located
physical and virtual environment with a distributed task focus participants allocate a significantly different
amount of attention to their teammate.

Perceived behavioral interdependence focuses on the social behaviors exhibited between partners. It pertains
to the way in which the actions of your partner influence your own behavior and vice versa. Based on the data
collected in this category it can be argued that participants did not exhibit a higher tendency to either follow
or reciprocate their partners actions in the non co-located shared vs non co-located distributed condition as
well as the co-located distributed vs non co-located distributed condition as no significant differences were
found. However, in the co-located shared vs co-located distributed condition and in the co-located shared
vs non co-located shared condition significant differences were found suggesting a higher tendency to either
follow or reciprocate their partners actions in these conditions as p < 0.05.

7.1.2 Collision Avoidance Evaluation

Collision avoidance relates to assessing individuals’ subjective experiences related to collision avoidance be-
havior inside the VE. Based on the data collected in this category it can be argued that none of the participants
experienced a higher focus on avoiding collisions in any of the conditions as there are no significant differences
between any of the conditions (p > 0.05).

7.1 Results discussion 41

It is interesting that there was no significant difference among any of the conditions in terms of self-reported
collision avoidance behavior. It should be kept in mind that the collision avoidance measure was not a validated
and standardized questionnaire, which is why the data is potentially ambiguous.

7.1.3 Significant differences in findings

There were a few significant differences found between sub-conditions as can be seen in figure [25].

Co-located
Yes No
-
. Attentional
allocation
]
g . \
= < 7 [| PEILEII\ ed
behavioral
mterdependence
& T
w
(2]
] \L
-]
=
=
=
A
A v

N(total) = 32

Figure 25: Significant differences between the conditions visualized

Attentional allocation showed a difference between co-location and non co-location in the distributed (task
dependency) condition. The results indicate increased attentional allocation in the non-colocated condition, as
compared to co-located.

Perceived behavioral interdependence showed a significant difference between the co-located shared and dis-
tributed condition. This indicates that the condition altered design of the system works. Interestingly, the users
exhibit improved behavioral interdependence in the distributed condition, compared to the shared condition.

As depicted in the above figure, a significant difference was also found between the co-located shared and
non co-located shared conditions when measuring perceived behavioral interdependence. Although a modest
sample size, the results indicate slightly better feelings of perceived behavioral interdependence and increased
attentional allocation in the non co-located condition which aligns with what was found in section [2.3.1].

7.1 Results discussion 42

7.1.4 Motion sickness confound

A preliminary measure of prior motion sickness was conducted to account for confounding variables tied to
motion- and simulator sickness when exposed to VR. As can be seen from figure [26| the distribution of prior
experience with motion sickness reveals that 24 participants (75%) has never or rarely experienced motion
sickness when exposed to VR. The remaining eight participants indicated that they sometimes or frequently
experience motion sickness when exposed to VR. However, it was deemed that there was no reason to sus-
pect that motion sickness would differ between conditions as input, control and visual environment stayed
consistent throughout testing. Test observations also supported this claim as there were no visual or auditory
indications that participants experienced a higher degree of simulator sickness during exposure.

Have you experienced motion sickness while wearing VR headsets before? If yes,
how often?

32 svar

® Always

@ Frequently
Sometimes

@ Rarely

@ Never

Figure 26: Preliminary motion sickness experience measure

7.1.5 Test Observations

Several observations were made during testing that potentially affected the game experience. These observa-
tions will be listed here as mediating factors that potentially played a role in positively or negatively shaping
the final results. Some of these observations might not be detrimental to the game experience or the results
but will be listed regardless as considerations of the testings.

Observations during the interventions ascertained that participants communicated both through gestures and
verbal communication. Gestures identified included pointing, crouching and touching platforms to clarify to
their teammate which one to step on next. Participants also interacted with one another inside the VE by danc-
ing, boxing, waving and touching each other which presumably sensitized them to the VE to a certain extent.
Participants also heavily utilized the 3D spatial audio in both the co-located and non-colocated conditions
to locate and guide each other inside the VE to their respective objectives. Observations by the researchers
determined that there was a high degree of confidence in terms of spatial navigation, the users’ movements
clearly indicated trust in the system as well as the representation of objects and the other user’s avatar inside
the VE.

When navigating the platforms different forms of communication were used to identify and guide the other
user to their assigned platforms. Some participants indexed the platforms from either the left or the right
side, some participants simply resorted to give directional information (e.g. "up and left", "beside me", "to
my right" etc.). Furthermore, when crossing paths on the platforms the users often coordinated who went

7.2 Technical discussion 43

first and took turns prompting each other to cross before or after the other, this was especially true in the
co-located condition but also occurred in the non co-located condition. Interestingly, in the non co-located
condition the participants also avoided physical collisions despite being physically separated into different
rooms. Some participants thought that they should synchronize stepping on the platforms or that there was a
time limit to successfully complete that section, perhaps enforced by the fact that there were visual timers on
every platform.

In the shared hell-section of the game most participants chose to split up and call upon each other when they
encountered a lever that could only be pulled by their teammate. Some participants also resorted to stick
together and switch pulling the levers depending on which player was assigned to it. Some participants felt
that they needed to synchronize pulling the levers while some participants thought that pulling the levers
would have a detrimental effect on the games progression, perhaps enforced by the fact that the levers were
red when inactive. Upon discovering that there were no other interactive elements in the hell-section the
participants figured out that they had to interact with the levers in order to progress.

7.2 Technical discussion

The technical discussion will delve into the specific challenges related to the technical implementation of the
system. These complications will be listed to give an overview of the issues encountered, be transparent about
possible mediating factors as well as potential solutions for future work.

7.2.1 Low-fidelity prototyping

It would have been beneficial to employ a more play-centric approach by recruiting small numbers of partici-
pants and evaluating several iterations of low-fidelity prototypes along the development process. This would
allow for valuable insights and early feedback on various aspects of the development, the core mechanics and
direction of the game. From this preliminary data the target group would influence and steer the development
towards the most crucial mechanics and visual impression, promoting usability, understanding and generally,
an improved user experience.

7.2.2 Testing limitations

The sample size for this evaluation was rather modest (N = 32) and must be considered when examining the
results. It would have been ideal to recruit more participants for testing as increasing the sample size would
have increased the statistical power and generalizability of the findings as well as making the sample more
representative of the population. Therefore, the statistical conclusions presented in this study are relatively
ambiguous and the question remains whether a true effect actually exists.

7.2.3 Microphone input

In the co-located conditions the microphones on the HMDs were unintentionally left active, this introduced
some potential mediating factors in the sense that participants could hear each other twice both in the real-
world and VE. The active microphones were discovered too late by the researchers and as a result it was not
possible to change the setup in future sessions as this would interfere with the reliability of the findings.

7.24 Restricting natural walking

In regards to the technical implementation it was a balance between affording the users with real walking but
simultaneously restricting unintended movement inside the VE. It was not possible to impede the physical

7.2 Technical discussion 44

movement of the participants in the real world and altering the position of their virtual avatars would only
introduce desynchronization issues between clients. These limitations were constantly considered during
development and often required game design modifications that were compatible with these requirements.
One participant in the non co-located condition realized that walking directly through the virtual walls was
a viable strategy as there were no physical obstructions to impede their movement. Another participant also
realized that it was possible to skip the last row of platforms when moving fast enough as the timer would not
trigger a reset and the win condition would become true. All other participants were observed to respect the
virtual environment as well as the established boundaries and navigated it as intended by the researchers.
Furthermore, the system required extremely precise calibration between each condition as well as utilizing
the fade effect on the canvas to attempt to prevent any further physical movement of the user when
colliding with unintentional virtual objects. Additionally, the participants were instructed to not exceed the
virtual play-space during the introduction segment of the game.

7.2.5 Lever count desynchronization

The synchronized variable responsible for keeping track of the amount of pulled levers were susceptible to
desynchronization issues if two were pulled within a short time frame of each other. This proved to become an
issue with two of the groups that mistakenly thought that they should pull two levers simultaneously resulting
in the variable being accessed by two clients at the same time and only being updated once. This issue would
be fixed with the "Wizard of Oz" method where the researchers would manually increment the synchronized
variable as the third client to match the in-game lever count.

7.2.6 Hardware issues

Both of the Oculus Quest 2 HMDs used for the evaluation experienced some difficulties in the co-located
testing sessions. This was presumably caused by the physical lighting conditions which disrupted the sensors
on the headset resulting in extremely low frame-rate, poor tracking and desynchronization. This however was
fixed before every testing session and only once resulted in desynchronization between clients but quickly
fixed itself again.

7.2.7 Telemetry Data

The collected telemetry data was not used for its intended purpose because of failed considerations. Initially
it was meant to showcase movements of all tested subjects in an averaged heatmap-like representation. The
intention was to identify navigational tendencies, with actual data representation to verify any claim made
from the thesis. During the visualization process of the telemetry data, it was realized that it did not make sense
to visualize movement data across different test sessions, as this would only provide a confusing, inconclusive
result. The pathway in heaven alters between six paths that are randomly chosen, why it would only provide
a chaotic and ambiguous result. The same goes for the hell environments, although one could argue that the
hell distributed environment, might show a somewhat accurate representation, as it heavily encourage players
to only roam on their half of the play-space.

Although the telemetry data is not able to show general tendencies by comparing data across all sessions, it
can indicate whether game mechanics and functionality worked as intended by observing visualized telemetry
data for each individual game session. As can be seen in the below figure [27], the movement of both players
are clearly depicted. It is clear that players understand and oblige the game mechanics in this session. In figure
[27a],, the players are crossing the platforms to make their way to the heavens gate. Interactants paths do not
cross and a certain distance is maintained between them, demonstrating the envisioned behavior and dynamic.
It can clearly be seen that the subjects fall down around halfway through, indicating that they have triggered

7.2 Technical discussion 45

the mechanic of being forced down into hell. In the hell environment in figure [27b], the subjects are clearly
seen, respecting each others play-space, which indicate that the implemented game mechanics, feedback and
environment has worked as intended as well.

(a) Heaven (Distributed condition) (b) Hell (Distributed condition)

Figure 27: Heaven and Hell telemetry data (Non-colocation distributed condition)

(a) Heaven (Shared condition) (b) Hell (Shared condition)

Figure 28: Heaven and Hell telemetry data (Colocation shared condition)

In figure [28], the portrayed movement data of the shared condition is depicted. Contrary to figure [27], it is
clearly displayed how subjects engage with each other in this condition. This again verifies the implementation
of the changed environment, paths and mechanics that is toggled according to what condition is initialized.
Figure clearly shows how the participants pathways cross several times in heaven, in addition to con-
stantly being in close proximity to each other virtually and physically (as it is co-located). Figure shows
the interactants movement in hell in the shared condition. The observed behavior clearly shows how they

7.3 Game design discussion 46

exchange paths and even appear to follow each other. This of course can not be stated with absolute certainty,
as the representation does not provide any way of evaluating the time of each instantiated object. Players are
subsequently clearly seen making their way to the elevator in every figure.

One should keep in mind that the above four figures solely depict one game session out of 32, why the
observed tendencies can not necessarily be generalized. One would have to examine telemetry data for each
game session and develop a suitable evaluation method, in order to make a any definitive conclusive statements
of the game mechanics. The visualized telemetry data did coincide with what was generally observed during
the test sessions. Subjects generally obliged and used all game mechanics as intended.

7.3 Game design discussion

In this section, the impact of the game design on the player experience will be discussed, along with potential
improvements for future development. It is important to note that the application’s final state was a high-
fidelity prototype, resulting in certain shortcomings. By closely observing the test sessions, significant flaws
and areas where implementation was lacking were identified, and their implications will be explored in the
following subsections.

7.3.1 Elevator

The elevator which was responsible for transporting players up to heaven had several issues related to it.
Firstly, when changing the position of the elevator with an animation, desynchronization between clients
would occur, attempting to synchronize the animation playback with a synced game variable yielded similar
results. It was also attempted to use Unity’s physics engine to move the elevator towards a target position
with the players inside, collision logic with the avatars collider and the elevators collider were responsible for
"pushing" the players towards the target position, but still introduced a tiny delay between clients. In order to
solve this issue the researchers instructed players to be stationary after entering the elevator and pressing the
button.

Furthermore, a slight oversight was the fact that upon calling the elevator one of the participants could theoret-
ically take the elevator up to heaven and leave the other player behind. This only occurred with one group but
introduced a severe issue where players would be desynchronized and would have no way to avoid collisions
as they were on different levels (y-axis). However, the game design took this into account as the now solo
player in heaven had no way of progressing without their partner. This meant that he/she were forced to go
back down to hell in order to progress the game along with their teammate.

Additionally, the elevator also risks posing as a confounding variable, as participants would always be close
in virtual proximity when using the elevator, no matter the condition. Ideally, the distributed condition would
include two elevators, one for each player, to keep the virtually, and thereby physically separated (For the co-
located test subjects). Alternatively, the elevator could have been wider and divided the floor in two confined
spaces, respectively for each player. Although the elevator ride is only a brief part of the experience, it might
have influenced the results.

7.3.2 Narrator

Upon starting the game the narrator would verbally instruct the participants on their objectives. Participants
consistently missed the verbal instructions from the narrator presumably because they were focused on in-
teracting with their teammate or becoming sensitized to the environment. To solve this issue, the researchers
consistently briefed all participants on their objectives after the narrator had finished as participants would

7.3 Game design discussion 47

have been clueless on how to progress if they did not receive this information. Furthermore, upon being forced
into hell the narrator would similarly verbally instruct the players that they would have to face hell at least
once in order to make it, this went relatively unnoticed as the game progressed despite this change of events. A
solution to this issue would have been to stop incrementing the variable "RowIndex" when the forced-into-hell
event started as to stop progression and force their focus towards the narrator. Similarly, this was mitigated
by consistently instructing all participants on what had just happened after being forced into hell and that this
was intended as a game mechanic.

7.3.3 Tutorial

The inclusion of a small introductory tutorial could have been beneficial in facilitating the understanding of
fundamental game mechanics. This, in turn, would have allowed players to focus more on their objectives,
the environment, and their teammate. Another approach could have involved incorporating a test round to
familiarize players with the basic mechanics. However, it should be noted that such a test round might have
introduced bias by providing additional exposure time in the VE in one condition. While a tutorial would have
been the most optimal solution, it was not given priority due to the time constraints of the thesis.

7.3.4 Platform feedback

A rather infrequent confusion arose from the timers of the platforms. A few users thought that these timers
indicated a need to hurry through the platform-section resulting in unintended failures by the participants,
they did however discover that this was not the case upon re-entering heaven once more and took their time
positioning themselves in the correct row and index.

48

8 Conclusion

This thesis attempted to answer the research question: "To what extent is social presence and collision be-
haviour affected by co-location and task dependency in a collaborative multiplayer (VR) environment. To
investigate this research question, a virtual environment was developed and a mixed factorial design study
including 32 participants was conducted. The collected data departed from normality and therefore a non-
parametric test, the Wilcoxon Signed Rank test, was performed to evaluate whether a significant difference
could be found.

Social presence can be broken down into six subcategories, three of which were deemed relevant to this study.
These sub-dimensions were analyzed with the Wilcoxon Signed Rank test to find out whether or not social
presence was improved /degraded in any of the conditions. Results indicated that the three subcategories of
social presence did not prove a significant difference except in a few certain conditions. Attentional allocation
showed a significant difference in task dependency between shared co-location and distributed co-location.
This provides vague argumentation for prioritizing a distributed task focus when developing multiplayer
VR environments. Attentional allocation also showed a significant difference between distributed co-location
and distributed non co-location. Furthermore, perceived behavioral interdependence revealed a significant
difference between shared co-location and shared non co-location. The remaining measures did not indicate
any significant differences among co-location and non-colocation. The findings of this thesis indicate a slight
improvement in the case of non-colocation.

Simulator sickness, a mediating variable, was also investigated pre-intervention in an attempt to assess any
confounding degree of simulator sickness that could potentially interfere with the validity of the results, how-
ever, none of the participants indicated severe issues with simulator sickness that it necessitated intervention
from the researchers at any point during the testing sessions. This thesis can ultimately conclude that minor
significant differences in social presence were found and that no significant differences was found for collision
avoidance between the four conditions.

Drawing a definitive conclusion regarding the research question proves challenging due to the limited num-
ber of measures exhibiting statistically significant differences across the conditions. The few instances are
insufficient to establish a conclusive disparity in social presence between co-location and non co-location. An
argument can be made in support of non co-location, considering the few measures that favored this condi-
tion. The impact of task dependency remains inconclusive, as only one out of six scenarios yielded a significant
difference.

References 49

References

[1] Augmented reality (ar) and virtual reality (vr) headset shipments worldwide from 2019 to 2023.

[2] Jesper Vang Christensen, Mads Mathiesen, Joakim Have Poulsen, Ea Ehrnberg Ustrup, and Martin Kraus.
Player experience in a vr and non-vr multiplayer game. In Proceedings of the virtual reality international
conference-Laval virtual, pages 1-4, 2018.

[3] Bj¢rn Winther, Mikkel L Krarup, Patrick N Andersen, Ungyeol Lee, and Niels C Nilsson. Effects of
walking together in a co-located virtual reality game. In 2023 IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW), pages 257-262. IEEE, 2023.

[4] Felix Born, Philipp Sykownik, and Maic Masuch. Co-located vs. remote gameplay: The role of physical
co-presence in multiplayer room-scale vr. In 2019 IEEE conference on games (CoG), pages 1-8. IEEE, 2019.

[5] Iana Podkosova and Hannes Kaufmann. Mutual collision avoidance during walking in real and collabo-
rative virtual environments. pages 1-9, 2018.

[6] Chad Harms and Frank Biocca. Internal consistency and reliability of the networked minds measure of
social presence. 2004.

[7] Evan A Suma, Gerd Bruder, Frank Steinicke, David M Krum, and Mark Bolas. A taxonomy for deploying
redirection techniques in immersive virtual environments. In 2012 IEEE Virtual Reality Workshops (VRW),
pages 43—46. IEEE, 2012.

[8] Martin Usoh, Kevin Arthur, Mary C Whitton, Rui Bastos, Anthony Steed, Mel Slater, and Frederick P
Brooks Jr. Walking> walking-in-place> flying, in virtual environments. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 359-364, 1999.

[9] Evan Suma, Samantha Finkelstein, Myra Reid, Sabarish Babu, Amy Ulinski, and Larry F Hodges. Evalua-
tion of the cognitive effects of travel technique in complex real and virtual environments. IEEE Transactions
on Visualization and Computer Graphics, 16(4):690-702, 2009.

[10] Niels Christian Nilsson, Stefania Serafin, Frank Steinicke, and Rolf Nordahl. Natural walking in virtual
reality: A review. Computers in Entertainment (CIE), 16(2):1-22, 2018.

[11] Doug Bowman, Ernst Kruijff, Joseph] LaViola Jr, and Ivan P Poupyrev. 3D User interfaces: theory and
practice, CourseSmart eTextbook. Addison-Wesley, 2004.

[12] Rolf Nordahl, Stefania Serafin, Luca Turchet, and Niels Christian Nilsson. A multimodal architecture for
simulating natural interactive walking in virtual environments. PsychNology Journal, 9(3):245-268, 2011.

[13] David Waller and Eric Hodgson. Sensory contributions to spatial knowledge of real and virtual environ-
ments. Human walking in virtual environments: Perception, technology, and applications, pages 3-26, 2013.

[14] Roy A Ruddle, Ekaterina Volkova, and Heinrich H Biilthoff. Walking improves your cognitive map in
environments that are large-scale and large in extent. ACM Transactions on Computer-Human Interaction
(TOCHI), 18(2):1-20, 2011.

[15] Williams E. Christie B. Short, J. The social psychology of telecommunications. pages 64-195, 1976.

[16] Charlotte N Gunawardena. Social presence theory and implications for interaction and collaborative
learning in computer conferences. International journal of educational telecommunications, 1(2):147-166, 1995.

References 50

[17] Catherine S Oh, Jeremy N Bailenson, and Gregory F Welch. A systematic review of social presence:
Definition, antecedents, and implications. Frontiers in Robotics and Al, 5:114, 2018.

[18] Erving Goffman. Behavior in public places. Simon and Schuster, 2008.

[19] Martin Gerin-Lajoie, Carol Richards, and Bradford McFadyen. The Negotiation of Stationary and Moving
Obstructions during Walking: Anticipatory Locomotor Adaptations and Preservation of Personal Space. 2005.

[20] A. Crétual Olivier, A. Marin and]. Pettré. Minimal predicted distance:A common metric for collision avoidance
during pairwise interactions between walk- ers. Gait Posture. 2012.

[21] Philip W Fink, Patrick S Foo, and William H Warren. Obstacle avoidance during walking in real and
virtual environments. ACM Transactions on Applied Perception (TAP), 4(1):2—es, 2007.

[22] Tracy Fullerton. Game Design Workshop. Taylor Francis Group, 2018.

[23] Shona McCombes. An introduction to sampling methods.

[24] Dane Bertram. Likert scales. Retrieved November, 2(10):1-10, 2007.

[25] Thomas Bjerner. Qualitative Methods for Consumer Research. Hans Reitzels Forlag, 2015.

[26] Carrie Scheel, Jim Mecham, Vic Zuccarello, and Ryan Mattes. An evaluation of the inter-rater and intra-
rater reliability of occupro’s functional capacity evaluation. Work, 60(3):465-473, 2018.

[27] Guru99.com. Agile Methodology: What is Agile Software Development Model? 2021. https://www.guru99.
com/agile-scrum-extreme-testing.html#3, (visited on 2023/06/05).

[28] Unity. Xr interaction toolkit.

[29] Normal. Normcore homepage.

https://www.guru99.com/agile-scrum-extreme-testing.html#3
https://www.guru99.com/agile-scrum-extreme-testing.html#3

51

9 Appendix

9.1 Social Presence and Collision Avoidance

The following box plots display the results of the collected data in Co-presence, attentional allocation, perceived
behavioral interdependence and collision avoidance.

65

ts t4 *16 118
60 12
55
12 12 12
50 £ > *
I noticed my WMy teammate Myteammate's My presence Iy teammate | caught my
teammate noticed me presence was was obvious to caught my teammates
obvious to me myteammate attention attention

Figure 29: Co-presence distribution in the co-located shared condition

70 E— — E— E—

65

60

55

50 - -

| noticed my My teammate Myteammate's My presence My teammate | caught my
teammate noticed me presence was —was obvious to caught my teammates
obvioustome myteammate attention attention

Figure 30: Co-presence distribution in the co-located distributed condition

9.1 Social Presence and Collision Avoidance

52

70 B B B R R R
65
*15 *1 *152 *15 15*4 1 4
60 15 3 3 *15
55
1

5.0 ¥

| noticed my My teammate Myteammate's My presence My teammate | caught my

teammate noticed me presence was was obvious to caught my teammates

obvicustome myteammate attention attention
Figure 31: Co-presence distribution in the non co-located shared condition
70 B B B R
65
*16 W7 11*14 W7

60 7 7 11
55
50 €L

| noticed my My teammate Myteammate's My presence My teammate | caught my

teammate noticed me presence was was obvious to caught my teammates

obvicustome myteammate attention attention

Figure 32: Co-presence distribution in the non co-located distributed condition

9.1 Social Presence and Collision Avoidance 53

1
| ' I
1

| was easily My teammate | remained My teammate Myteammate | did notreceive
distracted from was easily focused on my remained did notreceive myteammates
my teammate distracted from teammate focused onme my full attention full attention
when other me when other throughout cur throughout our
things were things were interaction interaction
going on going on

@

wn

.

w

(%)

Figure 33: Attentional allocation distribution in the co-located shared condition

10

3 =]
2
1
| was easily My teammate | remained My teammate Myteammate | did notreceive
distracted from was easily focused on my remained did notreceive myteammates

my teammate distracted from teammate focused onme my full attention full attention
when other me when other throughout cur throughout our
things were things were interaction interaction
going on going on

Figure 34: Attentional allocation distribution in the co-located distributed condition

9.1 Social Presence and Collision Avoidance 54

16 16
7 (e} o
] 01
5
4 O? O?
3
2
1
lwas easily My teammate I remained Myteammate — Myteammate |did notreceive
distracted from was easily focused on my remained did notreceive myteammates

my teammate distracted from teammate focused onme my full attention full attention
when other me when other throughout cur throughout our
things were things were interaction interaction
going on going on

Figure 35: Attentional allocation distribution in the non co-located shared condition
7 -
] '
S
4 o?

| was easily My teammate | remained My teammate Myteammate | did notreceive
distracted from was easily focused on my remained did notreceive myteammates
my teammate distracted from teammate focused onme my full attention full attention
when other me when other throughout cur throughout our
things were things were interaction interaction
going on going on

Figure 36: Attentional allocation distribution in the non co-located distributed condition

9.1 Social Presence and Collision Avoidance 55

SRR NRY

2 2
1 o o

My behavior ~ The behavior of Ireciprocated Myteammate My teammates My behavior
was oftenin my teammate myteammates reciprocatedmy behaviorwas was closely tied

directresponse was oftenin actions actions closely tied to to my
to my direct response my behavior teammates
teammates to my behavior behavior
behavior

Figure 37: Perceived behavioral interdependence distribution in the co-located shared condition

70
65
60
55
50

45

40 —

My behavior The behavior of Ireciprocated Myteammate Myteammates My behavior
was oftenin my teammate myteammates reciprocated my behaviorwas was closely tied

directresponse was oftenin actions actions closely tied to to my
to my direct response my behavior teammates
teammates to my behavior behavior
behavior

Figure 38: Perceived behavioral interdependence distribution in the co-located distributed condition

9.1 Social Presence and Collision Avoidance 56

RRNRL

9 9
3 o <

-

@

wn

My behavior ~ The behavior of Ireciprocated Myteammate My teammates My behavior
was oftenin my teammate myteammates reciprocatedmy behaviorwas was closely tied

directresponse was oftenin actions actions closely tied to to my
to my direct response my behavior teammates
teammates to my behavior behavior
behavior

Figure 39: Perceived behavioral interdependence distribution in the non co-located shared condition
]
S

1 1
1 2 *

My behavior ~ The behavior of Ireciprocated Myteammate My teammates My behavior
was oftenin my teammate myteammates reciprocatedmy behaviorwas was closely tied

directresponse was oftenin actions actions closely tied to to my
to my direct response my behavior teammates
teammates to my behavior behavior
behavior

Figure 40: Perceived behavioral interdependence in the non co-located distributed condition

9.1 Social Presence and Collision Avoidance 57

@

wn

.

1 —_—

Did the presence of your Did you deliberately avoid How much did you pay attention to
teammate restrict your freedom of physical contact with your where your teammate was and
movement? teammate? what she/he was doing?

Figure 41: Collision avoidance distribution in the co-located shared condition

7
]

11
5 *

9
4 *
3 o
2
1

Did the presence of your Did you deliberately avoid How much did you pay attention to
teammate restrict your freedom of physical contact with your where your teammate was and
movement? teammate? what she/he was doing?

Figure 42: Collision avoidance distribution in the co-located distributed condition

9.1 Social Presence and Collision Avoidance 58

7

14
] =]

]
5
4
3
2
1

Did the presence of your Did you deliberately avoid How much did you pay attention to
teammate restrict your freedom of physical contact with your where your teammate was and
movement? teammate? what she/he was doing?

Figure 43: Collision avoidance distribution in the non co-located shared condition

ne

@

.

w

(%)

Did the presence of your Did you deliberately avoid How much did you pay attention to
teammate restrict your freedom of physical contact with your where your teammate was and
movement? teammate? what she/he was doing?

Figure 44: Collision avoidance distribution in the non co-located distributed condition

	Front page
	English title page
	1 Introduction
	1.1 Research question

	2 Related work
	2.1 Natural Walking in Virtual Reality
	2.1.1 Challenges related to Natural Walking in VR
	2.1.2 The Effects of Natural Walking

	2.2 Social Presence
	2.2.1 Dimensions of Social Presence

	2.3 Co-Presence
	2.3.1 Co-Located vs. Remote Gameplay

	2.4 Collision Avoidance
	2.4.1 Collision Avoidance In Virtual Reality
	2.4.2 Mutual Collision Avoidance with natural walking in VR

	2.5 Game Design Theory
	2.5.1 The Structure of Games
	2.5.2 VR Multiplayer Games

	2.6 Subconclusion

	3 Methods
	3.1 Study Design
	3.2 Participants
	3.3 Apparatus
	3.4 Procedure
	3.5 Measures
	3.5.1 Likert scales
	3.5.2 Social Presence
	3.5.3 Collision Avoidance
	3.5.4 Telemetry data

	3.6 Validity and Reliability
	3.7 Scrum

	4 Design
	4.1 Design requirements
	4.2 Game Design
	4.3 Level Design
	4.3.1 Virtual Environment
	4.3.2 Game walk-through
	4.3.3 Condition altered design

	5 Implementation
	5.1 XR Interaction Toolkit
	5.2 Normcore
	5.3 Multiplayer application with Normcore
	5.4 GameManager
	5.5 PlatformManager
	5.6 Platform
	5.7 Levers
	5.8 Feedback
	5.8.1 Avatar
	5.8.2 Animations
	5.8.3 Canvas
	5.8.4 Audio
	5.8.5 Visuals

	5.9 Shared vs Distributed Toggle
	5.10 Telemetry Data
	5.10.1 Showcasing the telemetry data

	6 Results
	6.1 Social presence
	6.1.1 Co-Presence
	6.1.2 Attentional Allocation
	6.1.3 Perceived Behavioral Interdependence

	6.2 Collision Avoidance

	7 Discussion
	7.1 Results discussion
	7.1.1 Social Presence Evaluation
	7.1.2 Collision Avoidance Evaluation
	7.1.3 Significant differences in findings
	7.1.4 Motion sickness confound
	7.1.5 Test Observations

	7.2 Technical discussion
	7.2.1 Low-fidelity prototyping
	7.2.2 Testing limitations
	7.2.3 Microphone input
	7.2.4 Restricting natural walking
	7.2.5 Lever count desynchronization
	7.2.6 Hardware issues
	7.2.7 Telemetry Data

	7.3 Game design discussion
	7.3.1 Elevator
	7.3.2 Narrator
	7.3.3 Tutorial
	7.3.4 Platform feedback

	8 Conclusion
	References
	9 Appendix
	9.1 Social Presence and Collision Avoidance

