
i of 63

Summary

The risk of fault injections has increased due to the Internet of Things [20]. These fault
injections include attacks such as bits being flipped to zero or one. It has been shown
that this type of fault injection attack can be used to bypass the PAM mechanism (Plug-
gable Authentication Modules). This report concerns the detection of vulnerabilities in
RISC-V programs due to bitflip fault injection attacks. We utilize the Fault-Injection and
Simulation Secure Collection (FISSC) to evaluate our solution. This collection contains
PIN checkers, where each program implements a different number of countermeasures to
ensure a certain level of security.

To detect these vulnerabilities we formalize the RISC-V instruction set architecture by
defining its syntax and semantics, as well as the program configuration of a RISC-V pro-
gram. Furthermore, we have chosen to focus on bitflips occurring in the registers described
by our fault model.

The RISC-V formalization is utilized to create a static analysis that can detect bitflips. We
have chosen to create a value-set analysis, which for each program point determines a
set of possible values. To ensure soundness and monotonicity, we utilize the monotone
framework. We have therefore created a domain which is a complete lattice. This domain
contains the possible values for each register. In addition to this, it includes the possible
bitflips that could happen in each register. The domain also includes the possible flipped
and non-flipped values stored in the heap. We also created transfer functions for each
RISC-V instruction, which describes the effect the instruction has on the environment
based on the domain.

To show that the defined value-set analysis is able to detect bitflip vulnerabilities in regis-
ters, we implement a tool based on the theory above called BitflipperVild. BitflipperVild
takes a RISC-V program as input and creates a CFG, which is then analyzed with our
value-set analysis. To achieve a more efficient analysis, we have created a backward slicing
module.

BitflipperVild is evaluated using FISSC and is able to show that the countermeasures im-
plemented in the collection affects the amount of vulnerabilities in the programs. To do
this, we compare different versions of the same program and show that some bitflips in
a less secure version could result in reaching the privileged point. We were able to show
that all countermeasures preventing bitflips occurring in registers limited ways of reaching
a privileged point.

Value-set Analysis for RISC-V
Detecting Bitflip Vulnerabilities

Master thesis - P10

cs-23-ds-10-02

Aalborg University
The Technical Faculty of IT and Design

Department of Computer Science

Copyright © Aalborg University 2015

Department of Computer Science
Aalborg University

https://www.aau.dk

Title:
Value-set Analysis in RISC-V

Theme:
Specialization in Software

Project Period:
Spring Semester 2023

Project Group:
cs-23-ds-10-02

Participant(s):
Ida Thoft Christiansen
Lena Said Ernstsen

Supervisor(s):
René R. Hansen
Danny B. Poulsen

Copies: 1

Page Numbers without appendix: 60
Page Numbers with appendix: 63

Date of Completion:
June 9, 2023

Abstract:

Bitflip attacks have been shown to be a
real-life security issue, as demonstrated on
the PAM mechanism [13]. Thus, this re-
port concerns a proof of concept for detect-
ing bitflip vulnerabilities in RISC-V pro-
grams using a value-set analysis. This
is achieved by formalizing the RISC-V
language and creating fault models de-
scribing different bitflip attacks. Based
on this formalization, a value-set analy-
sis is defined that utilizes the monotone
framework. In the analysis, we have de-
fined a domain, which has been shown
to be a complete lattice, as well as mono-
tone transfer functions for all instructions.
The defined analysis is implemented as a
tool called BitflipperVild. BitflipperVild
is shown to be able to detect all register-
relevant bitflip vulnerabilities in the pro-
grams found in the collection FISSC [9].
Thus, we are able to use our tool to show
that some possible bitflips can result in an
attacker reaching a privileged point with-
out authentication.

https://www.aau.dk

Contents iii of 63 Contents

Contents

Preface v

1 Introduction 1

2 Formalizing RISC-V 3

2.1 RISC-V . 3

2.2 Syntax and Semantics . 4

2.3 RISC-V Conventions . 7

3 Scope 9

3.1 Requirements . 9

3.2 Existing Tools . 10

3.3 Assumptions . 13

4 Value-set Analysis 18

4.1 Monotone Framework . 18

4.2 Domain and Environment . 19

4.3 Transfer Functions . 21

4.4 Application of VSA . 25

5 Implementation 27

5.1 Automatic Adherence to Assumptions . 27

5.2 Worklist . 30

5.3 Domain . 31

5.4 CFG Recovery . 33

5.5 Backward Slicing . 35

5.6 Interpreter . 36

6 Evaluation 38

Contents iv of 63 Contents

6.1 General Requirements . 38

6.2 CFG Recovery . 39

6.3 Backward Slicing . 41

6.4 Bitflip Analysis . 42

6.5 Benchmarks . 52

7 Conclusion 54

8 Future Work 55

8.1 Relaxing Assumptions . 55

8.2 Scaling . 55

Bibliography 59

A RISC-V Registers 61

B Semantic Evaluation Functions 62

C Benchmark results 63

Preface v of 63 Preface

Preface

This report is the 10th-semester master thesis written at Aalborg University within the
Department of Computer Science. We would like to thank our supervisors René R. Hansen
and Danny B. Poulsen for their continuous supervision during our studies. In this project,
we have defined and developed the tool BitflipperVild, which can be found in [5].

In Chapter 1, we introduce and motivate a real-life problem concerning bitflip attacks. In
Chapter 2, we revise the syntax and semantics describing RISC-V, as well as the conven-
tions of this ISA. In Chapter 3, we define the scope of our project by defining a set of
requirements and assumptions. In Chapter 4, we describe the monotone framework, as
well as define the theory behind the value-set analysis which can detect bitflip vulner-
abilities. In Chapter 5, we describe the implementation of the different modules in our
analysis. This implementation is then evaluated in Chapter 6, using FISSC and perform-
ing benchmark tests. Lastly, we draw a conclusion in Chapter 7 and discuss future work
in Chapter 8.

Aalborg University, June 9, 2023

Lena Said Ernstsen
lsaid18@student.aau.dk

Ida Thoft Christiansen
ichris18@student.aau.dk

1 of 63 Chapter 1. Introduction

Chapter 1

Introduction

The risk of fault injection has increased, due to the number of hardware devices introduced
by Internet of Things [20]. Fault injection attacks are physical attacks that can be used to
bypass authentication [6]. A type of fault injection attack is bitflip fault injection, where
the attack targets a single bit using techniques such as electromagnetic pulses or lasers.

This has been shown to be an actual problem. An experiment using the tool ChipWhis-
perer [13] has been conducted on a PAM mechanism (Pluggable Authentication Modules)
which is used in operating systems, such as Linux and Unix. [21] The ChipWhisperer tool
injects bitflips into the system clock, which can result in instructions being skipped. In this
experiment, the author managed to bypass the authentication itself, which granted them
administrator privileges.

An example of a program which would be vulnerable to similar attacks is the PIN checker
seen in Listing 1.1. In the PIN checker, the bits in the registers are targeted. This is the
verifier used in a PIN checker called VerifyPIN found in the Fault-Injection and Simulation
Secure Collection (FISSC) [9]. VerifyPIN compares each byte in the actual PIN with the
PIN entered by a user and returns 1 if the PIN is correct.

Listing 1.1: An insecure PIN checker vulnerable to bitflips [9].

1 BOOL byteArrayCompare(UBYTE* a1 , UBYTE* a2, UBYTE size) {
2 for(int i = 0; i < size; i++) {
3 if(a1[i] != a2[i]) return 0;
4 }
5 return 1;
6 }

There are several ways a single bitflip could result in the function returning 1 with an
incorrect PIN. One way is to avoid entering the for control structure in line 2 by changing
either variable i or size. Assuming that the PIN size is 4, it is possible with a single bitflip
to flip size from 4 to 0 or flip i from 0 to a number equal to or greater than 4, which both
make the condition in the for-loop false. Another possibility is to change the integer being
returned in the for loop in line 3. Thus, if the integer is changed from 0 to 1, the function
returns as if the entered PIN was correct. Lastly, if only one of the digits is incorrect, it
could be possible to flip a bit in the incorrect PIN to result in the correct PIN. For example,
if the correct PIN is 1234 and the entered PIN is 1235, the last digit could be flipped from
5 to 4.

2 of 63 Chapter 1. Introduction

As mentioned, the example is taken from FISSC [9], which is a public collection of C
programs that includes different versions of VerifyPIN. FISSC can be used to analyze the
robustness of code against fault injection attacks, due to the countermeasures applied in
the programs, which try to counter fault injection attacks. In the collection, the number of
countermeasures differs for each new version, which makes it possible to use the collection
for the evaluation of analysis tools. Therefore, the problem addressed in this master thesis
is being able to analyze and find the effect of bitflips on the PIN checkers in FISSC.

3 of 63 Chapter 2. Formalizing RISC-V

Chapter 2

Formalizing RISC-V

To reduce the scope of our project, we have chosen to focus on analyzing bitflips in the
RISC-V Instruction Set Architecture (ISA). The FISSC C-programs will therefore be com-
piled using a RISC-V cross-compiler to get the equivalent RISC-V instructions. In our
previous work [8] we defined the syntax and semantics of the RISC-V ISA. In this chapter,
we will revise and expand these.

2.1 RISC-V

RISC-V [1] is an open-source ISA, which defines instructions for both 32-bit and 64-bit
architectures. It has a minimal and flexible design, as it only defines a minimal base in-
struction set that can be extended further based on a given use case. Furthermore, there
are established extensions already defined by the developers of RISC-V. In our previous
work [8], we chose to focus on the 32-bit architecture to narrow our scope, and we will con-
tinue focusing on this architecture for this project. The domain for the 32-bit architecture
includes 32-bit values, where the formalization of this domain is the following:

Val = B32

Where B = {0, 1} and 32 indicates that a total of 32 zeroes and ones is used to represent
a given value. The instructions of this architecture have different formats, which describe
what type of value is stored in the 32 bits for each instruction. An example of this format
can be found in Figure 2.1.

Figure 2.1: The format of a 32-bit RISC-V ADD instruction describing how the bits are allocated.

All instructions have an opcode which determine the instruction type. In the example, OP
is the opcode, since it is an ADD instruction. Instructions can include up to two different
source registers and one destination register. Moreover, instead of a source register, in-
structions can include immediate values. For example, instead of rs2, which represents a
value from a register, a constant could be stored in an immediate, turning the instruction
into an ADDI instruction.

2.2. Syntax and Semantics 4 of 63 Chapter 2. Formalizing RISC-V

RISC-V specifies 32 different registers that can be utilized by a program, which we can
formalize as follows:

Register = {x0, . . . , x31}

The registers have different predefined purposes, such as the stack pointer and function
arguments. However, due to the flexible design of the RISC-V ISA, these registers can be
used for other purposes if needed. The complete list of registers, their assembly names,
and their predefined purposes can be found in Appendix A.

RISC-V also includes additional pseudo-instructions, which can be rewritten into base
instructions. Some common pseudo-instructions include mv and jr, which are translated
into addi and jalr, respectively. See section 2.2 for their semantics. The complete list of
pseudo-instructions and their equivalent base-instructions can be found in [22].

2.2 Syntax and Semantics

In order to construct the bitflip analysis, we revise the syntax and semantics for the 32-bit
RISC-V ISA, which we first described in [8]. In this section we define which components
constitute a program configuration for a RISC-V program. Furthermore, we categorize
the different types of instructions and create an abstract syntax rule for each instruction.
Lastly, we define the semantics for each of these rules.

As described in [8], different fault models can be defined to specify where a bitflip could
occur. The fault models describe a bitflip in the instructions, in the program counter, and
in the registers. To ensure that our analysis is able to capture all of these types of faults,
these three components must be included in our program configuration. We thus define a
configuration as follows:

Configuration = Program × Heap × Registers × pc,
where Program = Addr → Instr

and Heap = Addr → Val
and Registers = Register → Val

Program maps from addresses to instructions, as an address in a RISC-V program refers
to a specific instruction. Heap maps from addresses to values, since the heap represents
the memory, where given an address a specific value can be retrieved. Registers maps one
register to a value as the contents of a register is a set of binary values.

Using the defined configuration, we can generalize the different RISC-V instructions into
abstract instructions and define their syntax. The following table is taken from [8].

2.2. Syntax and Semantics 5 of 63 Chapter 2. Formalizing RISC-V

Instr ::= OP rd, rs1, rs2 Perform OP on rs1 and rs2 and store in rd
| OPI rd, rs1, imm12 Perform OPI on rs1 and imm12 and store in rd
| LOAD rd, imm(rs1) Load the value at offset + rs1 and store in rd
| STORE rs2, offset(rs1) Store the content of rs2 at offset + rs1

| LUI rd, imm20 Copy imm20 to rd
| AUIPC rd, imm20 Sum pc with imm20 and store result in rd
| LI rd, imm32 Load an immediate value into rd
| CMP rs1, rs2, L Compare rs1 with rs2 and if true transfer control to L
| JAL rd, offset Call subroutine at offset. Save next pc in rd
| JALR rd, offset(rs1) Invoke subroutine at offset+ rs1. Save next pc in rd
| NOP Move pc to the next instruction

The OP and OPI abstract instructions describe arithmetic and logical operations on contents
of registers and immediates, respectively. To express this, a way to semantically evaluate
the specific type of operation must be introduced. We specify this in Appendix B, where for
example the semantic evaluation of ADD v1, v2 is v1 + v2. Using these semantic evaluation
functions, we define the following semantics for OP and OPI:

[OP]
P(pc) = OP rd, rs1, rs2 pc′ = pc + 2
⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩

x = JOPK(R(rs1), R(rs2))

[OPI]
P(pc) = OPI rd, rs1, imm12 pc′ = pc + 2
⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩

x = JOPIK(R(rs1), imm12)

In the conclusion, both the OP and OPI abstract instructions update the destination register,
rd, to contain the result of performing the operation on the values. This value, x, is
calculated in the side condition by calling the semantic evaluation function for the abstract
instruction. Furthermore, both instructions also move the program counter, pc, to the next
instruction.

The LOAD and STORE instructions describe interactions between the heap and the registers.
The difference between them is that LOAD fetches the values from the heap and saves it in
the register, whereas STORE fetches the contents of the register and saves it in the heap.

[LOAD]
P(pc) = LOAD rd, imm(rs1) pc′ = pc + 2
⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩

x = H(R(rs1) + imm)

[STORE]
P(pc) = STORE rs2, offset(rs1) pc′ = pc + 2
⟨P, H, R, pc⟩ =⇒ ⟨P, H[x 7→ R(rs2)], R, pc′⟩

x = R(rs1) + offset

The LOAD instruction finds the value, x, in the heap by accessing the contents of the source
register at the offset specified by the immediate. This is expressed by the side condition.
The value, x, is then used to update the destination register. The STORE instruction calcu-
lates the address, x, in the side condition using the source register and an offset. However,
instead of updating the register in the conclusion, it updates the heap at address, x, with
the contents of the second source register, rs2.

2.2. Syntax and Semantics 6 of 63 Chapter 2. Formalizing RISC-V

The LUI and LI abstract instructions are similar in that they both update the destination
register with an immediate in the conclusion. The difference is found in the immediate,
where LUI concatenates 12 zeroes onto the immediate to turn it into a 32-bit value. The
concatenation is described by ||B in the side condition.

[LUI]
P(pc) = LUI rd, imm20 pc′ = pc + 2

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩
x = imm20 ||B 012

[LI]
P(pc) = LI rd, imm32 pc′ = pc + 2

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ imm32], pc′⟩

The CMP instruction describes a comparison between the contents of two registers. To
distinguish between the different types of comparisons, we have defined a semantic eval-
uation function, see Appendix B. To express that the result of performing a comparison is
either true or false, we have defined two semantic rules for the CMP instruction:

[CMP-T]
P(pc) = CMP rs1, rs2, L pc′ = addr(L)

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R, pc′⟩
if JCMPK(R(rs1), R(rs2)) → tt

[CMP-F]
P(pc) = CMP rs1, rs2, L pc′ = pc + 2

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R, pc′⟩
if JCMPK(R(rs1), R(rs2)) → ff

The difference between the rules is what the program counter, pc, is updated to in the
premise. If the semantic evaluation of the comparison is true, then CMP-T is applied, and
the program counter is updated to the address of the specified label, L. Otherwise, CMP-F
is applied and the program counter is updated to be the next instruction.

The two jump instructions, JAL and JALR, handle direct jumps and indirect jumps, respec-
tively. This can be seen in the premise, where JAL updates the program counter with an
offset, while JALR updates the program counter with both an offset and the contents of a
given source register. However, both instructions save the next instruction in the destina-
tion register.

[JAL]
P(pc) = JAL rd, offset pc′ = pc + offset

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩
x = pc + 2

[JALR]
P(pc) = JALR rd, offset(rs1) pc′ = pc + y

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩

where x = pc + 2
and y = offset+ R(rs1)

The last instructions are AUIPC and NOP. AUIPC concatenates 12 zeroes to the immediate and
then adds the resulting value to the program counter, saving it in the destination register,
rd. The NOP instruction only updates the program pointer to point to the next instruction,

2.3. RISC-V Conventions 7 of 63 Chapter 2. Formalizing RISC-V

as seen in the conclusion of its semantic rule.

[AUIPC]
P(pc) = AUIPC rd, imm_20 pc′ 7→ pc + 2
⟨P, H, R, pc⟩ =⇒ ⟨P, H, R[rd 7→ x], pc′⟩

x = pc + (imm20 ||B 012)

[NOP]
P(pc) = NOP pc′ 7→ pc + 2

⟨P, H, R, pc⟩ =⇒ ⟨P, H, R, pc′⟩

With the above definition of the abstract syntaxes and their corresponding semantics, the
32-bit RISC-V ISA has been formalized. To understand how these instructions are used in
an actual RISC-V program, we will discuss the conventions of a typical RISC-V program.

2.3 RISC-V Conventions

As our goal is to analyze bitflip vulnerabilities in a RISC-V program, we need to under-
stand the conventions used when compiling to RISC-V code. This includes conventions
for the structure of a function, as well as conventions for the instructions. The conven-
tions presented in this section are based on observations of RISC-V programs produced by
cross-compiling the C-programs found in FISSC using the compiler found at [17].

All RISC-V programs include functions, which are each specified with a label representing
the name of the function. Since it is necessary to perform certain instructions for all
programs, default functions, such as start and exit, are always included to ensure correct
startup and termination. Typically, there is also a main function but it depends on the
contents of the program.

A function usually starts with updating the stack and frame pointer to allocate memory for
local variables in the given function. The stack pointer is updated by adding an offset to its
current value, which represents the amount of memory space that should be allocated for
the stack. Additionally, the value of the frame pointer is first stored in the heap before the
same offset is applied. Before the function returns, both the stack and the frame pointer
are reset to the original values before the offsets were applied. The stack and frame pointer
are normally not changed except at the start and the end of the function.

All instructions have an address written as a hexadecimal number. Control transfer func-
tions usually jump only to addresses within the same function or to the first instruction
of another function. Moreover, control transfer instructions that branch, such as blt, nor-
mally refer only to addresses within the same function. An example of a RISC-V function
can be seen in Table 2.1.

In this example the function main first updates the stack and frame pointer with the offset
−16. Afterward, there is a jump to another function at the address 10338. After the func-
tion has been executed, it returns to the next instruction in main at line 6. This instruction
stores the content of register ra into the heap at the location indicated by 0(s0). Lastly,
the stack and frame pointer are reset by adding 16 to sp and loading the original frame
pointer from the heap.

2.3. RISC-V Conventions 8 of 63 Chapter 2. Formalizing RISC-V

1 00010318 <main>:
2 10318: addi sp,sp,-16
3 1031c: sw s0,12(sp)
4 10320: addi s0,sp,16
5 10324: jal ra,10338
6 10328: sw ra,0(s0)
7 1032c: lw s0,12(sp)
8 10330: addi sp,sp,16
9 10334: ret

Table 2.1: Example of the structure of a function in a RISC-V program.

When analyzing the RISC-V code, we assume that the mentioned conventions are followed.
Since the analyzed code is C-code and compiled using a cross-compiler [17] which follows
these conventions, this should be trivial. As the syntax, semantics, and convention for
RISC-V have been defined, we can specify the focus of our project and determine the
necessary requirements to reach our goal prior to defining our bitflip analysis.

9 of 63 Chapter 3. Scope

Chapter 3

Scope

In our previous work [8], we defined a Value-Set Analysis (VSA) that could determine
whether a RISC-V program was vulnerable to bitflips. We also provided a short example,
where we analyzed a simple RISC-V program manually to show how our analysis could
detect vulnerabilities when implemented. We will use our previous analysis, as well as
the syntax and semantics we redefined in Chapter 2, as a foundation for developing an
analysis which examines bitflips in a program. Based on this new analysis we will develop
a tool that can analyze the programs in FISSC for bitflip vulnerabilities. Henceforth, we
will refer to this tool as BitflipperVild. To define the scope of BitflipperVild, we need to
specify the requirements, as well as the assumptions regarding the tool.

3.1 Requirements

As mentioned in Chapter 1, the analysis must be able to show that the countermeasures
implemented in FISSC prevent bitflip attacks from accessing the privileged point. In this
section, we will thus define the requirements we deem necessary to address the problem
stated in Chapter 1, and define more concretely which vulnerabilities BitflipperVild should
be able to detect.

To analyze a given program, we must visit all program points the necessary number of
times. This can be achieved by revisiting the worklist algorithm specified in our previous
work [8]. This algorithm requires a Control Flow Graph (CFG) as input in order for the
analysis to be performed. Therefore, it is a requirement for BitflipperVild to perform a
CFG recovery on a given program. Furthermore, our worklist algorithm should be able to
utilize both a backward slicing method and VSA.

To guarantee that the analysis terminates and provides a usable result, the parameters of
the analysis should satisfy the properties of the monotone framework. More specifically,
the domain should be a complete lattice that follows the ascending chain condition and
the transfer functions should be monotone. This is elaborated further in section 4.1.

As mentioned in section 2.1, we have defined three fault models in [8], which describe
bitflips occurring in the program counter, the instruction, and the register. When a bitflip
occurs in the program counter, a new faulty edge is created in the CFG, which points to
the instruction at the flipped program counter. For an instruction, the bitflip occurs in
the 32-bit binary encoding of the instruction, which changes the instruction into another
instruction. Thus, when the bitflipped instruction is executed, the program is not changed,

3.2. Existing Tools 10 of 63 Chapter 3. Scope

as the CFG is not affected. However, the contents of the memory and registers are updated
to correspond to the result of executing the bitflipped instruction. Lastly, bitflips in the
register change the value being stored in the register. In addition to these three fault mod-
els, we can expand the possible scope of the analysis with a fourth fault model describing
bitflips occurring in the heap. This fault model can be seen below.

[HSEU]
v = H(x) v′ ≡1 v x ∈ Heap

⟨P, H, R, pc⟩ =⇒HSEU ⟨P, H[x 7→ v′], R, pc⟩
(3.1)

This fault model is similar to the fault model describing bitflips in the registers, see Equa-
tion 3.2. However, instead of a bitflip changing a value stored in registers, a bit in a value
stored in the heap is flipped. In [8], we chose to focus on the fault model describing bit-
flips occurring in the values saved in the registers. We will continue focusing on this fault
model.

[RSEU]
v = R(x) v′ ≡1 v x ∈ Register

⟨P, H, R, pc⟩ =⇒RSEU ⟨P, H, R[x 7→ v′], pc⟩
(3.2)

The premise of the RSEU fault model states that given a value, v, from the register, a fault
has occurred if there is a difference of exactly 1 bit. This is expressed by the operator ≡1,
which describes the Hamming distance [14]. The Hamming distance can be written as
Equation 3.3, where v′ is the faulty bitstring of the bitstring v.

v′ ≡1 v iff ∃i ∀j (i, j ∈ [0..31] ∧ v′(i) ̸= v(j) ⇐⇒ i = j) (3.3)

The conclusion of the RSEU fault model states that the register, x, is updated to the faulty
value, v′. When analyzing FISSC programs, we will thus only examine faults that concern
bitflips in a register. Furthermore, as the programs in FISSC consist of multiple functions,
the analysis should be interprocedural. This means that the CFG recovery should be able
to handle control flow between functions. In addition, the analysis should be RISC-V spe-
cific as stated in section 2.1. Thus, it must be possible to determine at which labels an
instruction could cause a bitflip vulnerability. This is necessary, as it allows the user to de-
termine where countermeasures should be implemented. To summarize, the requirements
in Table 3.1 should be satisfied.

The goal of BitflipperVild is to prove that it is possible to use VSA to detect bitflip vul-
nerabilities in RISC-V code, and not to create a polished tool that is ready to be released.
Based on these requirements, we will first examine whether we can use existing tools as
the foundation for BitflipperVild.

3.2 Existing Tools

There already exist tools that can perform static analyses on binaries. As mentioned in
our previous work [8], it is possible to use tools like angr [19] and BAP [7] to perform
specific tasks, such as CFG recovery and backward slicing. As these two tools have similar
features, we will in this section only examine angr to determine whether they can be used

3.2. Existing Tools 11 of 63 Chapter 3. Scope

General

Analyze a FISSC program

Prove countermeasures prevent bitflip vulnerabilities

Determine value-sets for each program point

Be RISC-V specific

Terminate

CFG
Recover a CFG

Interprocedural

Resolve indirect jumps

Backward Slicing Create a slice based on a privileged point

Bitflip Analysis
Detect bitflip vulnerabilities in registers

Determine at which label a vulnerability can occur

Table 3.1: Summary of the requirements for the bitflip analysis.

to satisfy our requirements.

angr is an open-source binary analysis framework [19]. It integrates state-of-the-art analy-
sis techniques. In this section, we will present the architecture of the angr framework, as
well as different state-of-the-art techniques that are implemented in the framework.

Architecture

An overview of angr’s architecture can be found in Figure 3.1.

Binary CLE pyVEX Execution
Manager

Claripy

Results

Figure 3.1: An overview of angr’s architecture [3].

As input, angr loads a binary executable through the CLE module. This module supports
binaries generated on different operating systems, such as Windows and Linux. The binary
is represented in a way that makes it easy to work with by loading it into binary objects,
which are mapped into a single memory space. However, support for RISC-V binaries
requires an extension [4].

The representation is still dependent on the CPU architectures. To address this, the code
is transformed into an intermediate representation (IR) called VEX before being analyzed
[18]. VEX models instructions in a unified way using different classes of objects, such
as expressions and operations. In Listing 3.1, an example can be found of a subtraction
operation in RISC-V translated into the VEX IR.

3.2. Existing Tools 12 of 63 Chapter 3. Scope

Listing 3.1: Example of the VEX representation produced from the RISC-V instructions [16].

1 // RISC -V instructions
2 subi x2, x2 , 8
3
4 // Corresponding VEX IR
5 t0 = GET:I32 (16)
6 t1 = 0x8:I32
7 t3 = Sub32(t0 ,t1)
8 PUT (16) = t3
9 PUT (68) = 0x59FC8:I32

When the VEX IR is generated, it is possible to perform different analyses through the
Execution manager module. This module uses symbolic execution assisted by the Claripy
module, which performs SMT solving. angr has a wide range of analysis techniques
available, which is still expanding. We will describe some of these analysis techniques
more in-depth in the next section.

Static Analysis Techniques

As mentioned in section 3.1, it is necessary to implement a CFG recovery module, a back-
ward slicing module, and a VSA algorithm that can identify bitflip vulnerabilities. angr
implements these three modules to some degree.

In angr, the CFG recovery is implemented in the execution manager module. The algo-
rithm runs in a recursive manner in which possible exits are found for each basic block.
Exits are basic blocks, which are possible successors to the analyzed block. When these
successors are identified, they are added to the CFG accordingly. The process is repeated
recursively until no new exits are found.

As mentioned in our previous work [8, pp. 14–15], one of the challenges when recovering
CFGs is indirect jumps, as the jump destination is represented by a value in a register or
a memory location. Thus, the goal of CFG recovery is to resolve as many indirect jumps
as possible to achieve a complete CFG. To achieve a sound CFG, all possible control flow
transfers should be included in the graph, resulting in no edges being false negatives. On
the other hand, a complete CFG means that all edges included in the graph are possible
edges, and thus no edges are false positives.

To achieve higher completeness for the CFG recovery, angr has implemented an algorithm
that performs backward slicing to remove unresolved jumps. Additionally, to achieve
higher code coverage, angr has implemented another algorithm that performs backward
slicing to remove dead code. This algorithm starts by identifying functions in the applica-
tion, where the direct jumps are recovered by using recursive disassembly. Then different
strategies implemented by angr are utilized to identify jump tables and resolve indirect
call targets, making it possible to reach more of the code. This in turn increases the code
coverage. The graph produced by this algorithm is not complete but is still useful for some
analysis techniques.

3.3. Assumptions 13 of 63 Chapter 3. Scope

angr also provides a VSA, which is performed by the Claripy module. This VSA at-
tempts to identify a tight over-approximation of the program state at any given point
in the program. These program states represent values in memory and registers. VSA
uses an abstract domain to approximate possible values that registers may hold at each
program point. The analysis is performed until a fixed-point is reached, and a tight over-
approximation is found for all program points. This VSA is a sound analysis but lacks
accuracy making it incomplete. Furthermore, the VSA provided by angr does not imple-
ment any bitflip analysis, which means we would have to extend the VSA component with
a bitflip analysis.

Requirement Realization

As angr does not analyze the RISC-V code directly but instead makes an IR, each instruc-
tion being analyzed is changed into multiple instructions. This means that the transfer
functions defined in [8, pp. 21–22] and revised in section 4.3, should instead be created
based on the basic block in the VEX IR. However, after using pyVEX on a RISC-V program
ourselves, we found that one RISC-V instruction did not correspond to a basic block, but
that a single basic block contains several instructions. This was also the case for BAP. Us-
ing pyVEX and angr would thus require extensive manual adjustments to make it possible
to specify in which instructions a bitflip could have occurred. Since this is one of the re-
quirements specified in section 3.1, we deem angr and BAP to be unsuitable to fulfill our
specific case.

3.3 Assumptions

To limit the complexity of the analysis and the scope of the implementation several as-
sumptions have been made. This is due to the implementation being a proof of concept
and not a polished tool ready to be released. The assumptions include both requirements
regarding the RISC-V code, as well as abstractions of the analysis’ implementation.

To limit the scope of the proof of concept, the number of different programs that Bitflip-
perVild is able to analyze has been reduced. To analyze programs beyond the scope, we
can make adjustments to the RISC-V code before it is analyzed. One of these adjustments
is to minimize the number of function calls, where the start and exit functions are removed,
which the compiler creates to allocate and deallocate memory to the program. Thus, only
the actual functions found in the C program are analyzed.

Following this, because the stack pointer is always summed with an immediate at the start
of a function, see section 2.3, we can initialize the stack pointer to be equal to its immediate.
A consequence of this is that some values which should be saved in the heap are not saved
at the correct address. To mitigate this, the contents of the register can be set to consist of
a symbol representing all possible 32-bit values if a load is executed and nothing is saved
in the specified location. This ensures that we do not create an under-approximation.

3.3. Assumptions 14 of 63 Chapter 3. Scope

To reduce the complexity, we can use a symbolic value to access the heap instead of calcu-
lating the actual address. This can potentially lead to an analysis that is not sound. How-
ever, as our focus is on the programs found in FISSC, this is not an issue within our scope.
In the collection, we have only found one instance where two different symbolic values
refer to the same address. However, the analysis remains sound, as we over-approximate
in this case. A way to ensure that local variables cannot be accessed from other methods,
the function name should be part of the symbolic value. As an example, the symbolic
value for Table 2.1 would be main:12(sp) in line 3.

One of the challenges we have observed is due to stack pointers between functions. For
each function in a given program, the stack pointer is increased with an offset. When the
function ends the stack pointer is decreased with the same offset. However, this becomes
a challenge when one function is called multiple times. An illustration of this challenge
and our solution can be seen in Figure 3.2.

F1

F2

F3

sp = 1

sp = 1

sp = 1

sp = 2

sp = 1,2

sp = 1,2

(a)

F1

F2

F31

F32

sp = 1

sp = 1

sp = 1

sp = 2

sp = 1

sp = 2

(b)

Figure 3.2: (a) is an example of calls between three functions leading to heavy over-approximation, where the
problematic calls are marked with red. (b) is an example of how we have solved this challenge, where the
changes are marked with green.

In Figure 3.2a, three functions can be seen, where each function increases and decreases
the stack pointer by one. The initial value of the stack pointer is 0 in F1. The red arrows
represent the problematic returns, as two different values for the stack pointer are possible
and will be returned to both F1 and F2. This is the case when the stack pointer, received
from the caller functions, has different values, as we do not know which value belongs
to which function. Therefore, as an over-approximation, both values are returned to both
functions. This is a problem, as the worklist will add the nodes in F1 to the worklist again
since the environments have changed with the new stack pointers. When the nodes of F1
is analyzed a second time, F3 will return sp = 1, 2, 3. The value-set will increase until an
overflow occurs leading to a very large over-approximation.

To address this challenge, we can simplify the RISC-V code by introducing duplicates of
functions being called multiple times. This will make our analysis polyvariant [15] since
the same function will be analyzed multiple times. This will correspond to the function
being analyzed once at each call site, which achieves a more precise result. The duplication
is illustrated by the green boxes in Figure 3.2b. In this case, F3 is duplicated and the value-

3.3. Assumptions 15 of 63 Chapter 3. Scope

set for the stack pointers in F1 and F2 have not been changed. This can lead to a fixed
point being reached earlier.

Another change that can be applied to the RISC-V code is replacing calls to the <printf>
and <scanf> functions with an I/O mapping. Examples of these changes can be seen
below.

jal ra, 1065c <printf> 7→ sw _print, 0
jal ra, 10270 <scanf> 7→ li _scan, 0

In the example, the jump instructions are changed to store and load immediate instruc-
tions, respectively. For the print instruction, we store 0 in a register called _print, and for
the load instruction, 0 is loaded into a register called _scan. The number being stored and
loaded, in this case 0, is irrelevant, as it is a replacement for their respective instruction.

To be able to perform arithmetic operations on the values in a program, we can specify
certain types, which should be checked during the analysis to ensure that we calculate
the correct result. We have assumed that these types only include signed and unsigned
decimal numbers, as well as hexadecimal numbers. As observed in section 2.3, addresses
are always written as hexadecimal numbers. Therefore, if one of the arguments consists
of a hexadecimal value, we can assume that the arithmetic operation is performed on an
address. Otherwise, the type is determined based on whether the instruction performs a
signed or an unsigned operation.

An assumption we make is that a CFG does not contain bitflips. More specifically, when
generating the CFG a bitflip cannot occur. This is because we only consider one bitflip.
Thus, if a bitflip has already occurred in the creation of the CFG, no other bitflips can
take place. Thus, the following bitflip analysis would be redundant, since none of the
calculated values would be possible.

Another challenge can occur when loops access the heap before checking the loop condi-
tion. This is illustrated in the below example based on a snippet from FISSC.

102b0: sw zero,-20(s0) Initializes the heap at address -20(s0) to zero
102b4: j 102c4 Skips the first addition
102b8: lw a4,-20(s0) Loads the first condition argument from heap
102bc: addi a4,a4,1 Adds 1 to the first condition argument
102c0: sw a4,-20(s0) Saves the first condition argument in the heap
102c4: lw a4,-20(s0) Loads the value of the first condition argument from the heap
102c8: addi a3,a3,1 Adds 1 to a variable
102cc: li a5,1 Loads 1 into the second condition argument
102d0: bge a5,a4,102b8 Compares the condition arguments
102d4: ret

The example includes a loop since the destination of the bge instruction refers to an ad-
dress above it. The challenge occurs because register a4 is loaded from the heap and then
saved after being updated. Since both paths should always be taken in the analysis for the
CMP instruction, register a4 will be increased by one until an overflow is reached, as the

3.3. Assumptions 16 of 63 Chapter 3. Scope

environment changes for each iteration due to the heap.

A naive solution would be to stop the loop after the condition is not satisfied for one of
the values, which in this case is when register a4 contains the value two. However, this
results in an under-approximation due to the inclusion of bitflips. If a bitflip happens in
register a4, for example changing the value from one to zero, it is possible to continue in
the iterative structure for an additional time. In this case, register a3 could contain the
values {1,2,3} at 102d4. This will not be reflected in the results of the analysis if we
naively stop when the condition is not satisfied anymore. Thus, it would not be a sound
solution.

Instead, we can manually perform loop unrolling on the RISC-V code and assume that
all loops have been unrolled before performing the analysis. The unrolled version of the
above RISC-V snippet can be seen below.

102b0: sw zero,-20(s0) −20(s0) = 0
102b4: lw a4,-20(s0) a4 = 0
102b8: addi a3,a3,1 a3 = 1
102bc: li a5,1 a5 = 1
102c0: blt a5,a4,102e0 Assert
102c4: lw a4,-20(s0) a4 = 0
102c8: addi a4,a4,1 a4 = 1
102cc: sw a4,-20(s0) −20(s0) = 1
102d0: addi a3,a3,1 a3 = 2
102d4: li a5,1 a5 = 1
102d8: blt a5,a4,102e0 Assert
102dc: ret
102e0: nop
102ef: j 102dc

Since the loop is iterated twice, the loop is duplicated once. The condition is replaced with
a blt since we want to jump out of the loop when the original condition is false, and blt
results in the opposite values as bge. The jump label of the blt instruction points at the
address of a nop instruction which is a "dummy node". This node is used to detect which
combination of bitflips and values could result in the loop terminating prematurely.

To reduce the runtime of the analysis we have also made assumptions regarding the imple-
mentation of BitflipperVild. This includes refraining from looking at bitflips in the stack
and frame pointers. In this way, we can reduce the amount of memory space the analysis
requires and thereby reduce the runtime. Furthermore, as register zero is the assembly
name for register x0, see Appendix A, we can ignore all writes to this register. The analysis
will still produce an over-approximation, as this register is always hard-wired to 0.

The above assumptions can be summarized to:

1. Setup functions are removed
2. Stack pointers are initialized to zero
3. When addresses are not found in the heap, loads result in all 32-bit values
4. I/O functions are replaced with I/O mapping

3.3. Assumptions 17 of 63 Chapter 3. Scope

5. Functions called multiple times are duplicated
6. Loops are unrolled
7. The stack and frame pointers have no bitflips
8. Writes to register zero are ignored

Based on the listed assumptions, some changes to RISC-V programs are necessary to
achieve a favorable analysis result. Some of these assumptions result in more over-approximation.
However, other assumptions are implemented to improve the overall runtime or reduce
complexity.

18 of 63 Chapter 4. Value-set Analysis

Chapter 4

Value-set Analysis

As mentioned in section 3.1, we have decided to perform the bitflip analysis using VSA.
Furthermore, we will also use this analysis to recover the CFG. However, to use VSA we
must define the domain and the transfer functions of the VSA specific to the RISC-V in-
structions. To ensure the transfer functions are monotone and that the analysis terminates,
we can utilize the monotone framework, which we first introduced in [8].

4.1 Monotone Framework

The monotone framework is a conceptual framework, in which given different parameters,
different types of analyses can be achieved. These parameters are the domain and the
transfer functions. The input for an analysis in the monotone framework is a CFG, which
represents the control flow of the program being analyzed. In broad strokes, a monotone
framework consists of a complete lattice, which must satisfy the ascending chain condition,
as well as a space of monotone transfer functions.

A lattice is a partial order, ensuring reflexivity, anti-symmetry, and transitivity of the or-
dering. [11, 12] It has the added requirement that there exists a join, least upper bound,
and a meet, greatest lower bound, for every pair of elements in the underlying set. A
complete lattice is a lattice where a greatest lower bound and a least upper bound always
exist for an arbitrary non-empty subset. It thus follows that given any non-empty set of
elements, we can determine their least upper bound.

For a complete lattice to satisfy the ascending chain condition, the height of the lattice
must be finite. [12] This entails that all chains in the lattice have a finite height. A chain
is a sequence of nodes in the lattice, where each ascending node is larger than or equal to
the one before it.

Monotonicity of a transfer function guarantees that the order of the values is preserved
after applying the function. [11, 12] Furthermore, it determines how the domain is affected
when a statement is applied to values within the domain. Thus, the transfer functions
of the VSA must be monotone to ensure that our analysis complies with the monotone
framework.

The monotone framework ensures that the analysis eventually reaches a fixed point and
thereby terminates, see Kleene’s definition [10]. Thus, if our VSA analysis follows the
monotone framework we can guarantee that the requirement concerning termination is

4.2. Domain and Environment 19 of 63 Chapter 4. Value-set Analysis

satisfied. To follow the monotone framework, one of the aspects we must consider is
defining our domain to be a complete lattice following the ascending chain condition.

4.2 Domain and Environment

The domain from our previous work [8] has been revised to increase its precision. The
revised domain can be seen in Equation 4.1.

VSA = Label → ((Registers → ValSet)× (Heap → ValSet)) (4.1)

Where Label = N. The domain asserts that a specific label maps to a tuple containing
functions, which each map to a lattice of registers and a lattice of addresses in the heap,
both defined in section 2.2. Registers and Heap each map to ValSet which represents a set
of value-sets.

A given value-set in ValSet can be a set of values where a bitflip has not occurred. Addi-
tionally, ValSet can include multiple value-sets which contain an interval of labels, (Label×
Label)⊥, representing at which label a possible bitflip could have occurred. Thereby,
P(Val) contains the bitflipped values for the specified interval. This can be seen below.
The interval includes a bottom element, ⊥, which represents that no bitflips have been ob-
served. This bottom element is necessary to ensure that our domain is a complete lattice.
Furthermore, the top element of our lattice is always a finite interval, since it depends on
the number of instructions in the program.

ValSet = (P(Val)︸ ︷︷ ︸
Non-flipped value-set

×P((Label × Label)⊥ ×P(Val))︸ ︷︷ ︸
Flipped value-sets

)

A concrete instance of a domain for a given program point is called the environment. This
means that given a specific program point, the environment keeps track of the possible
values in the domain. An example of an environment can be seen below. In a real example,
the value-set where bitflips have occurred would have at least 32 values, representing the
32 possible bitflips for a single value:

L1 → ({x1 : {{1, 2, 3},
([1, 4], {1, 2, 3})}},

{0(s0) : {4, 5}})

In the example, L1 represents the current label, x1 represents a register, and 0(s0) repre-
sents a symbolic address in the heap. To ensure that the domain is a complete lattice we
need to define the order of the value-sets within the environment.

Ordering

To describe the ordering of the values within the domain, we define how to compare
different environments. This is formalized in Equation 4.2.

4.2. Domain and Environment 20 of 63 Chapter 4. Value-set Analysis

VS1 ⊑ VS2 =⇒ ∀ v1 ∈ VS1, ∃!v2 ∈ VS2 : v1 ⊑ v2,

where ∀ v1, v′1 ∈ VS1 : v1 ∥ v′1
and ∀ v2, v′2 ∈ VS2 : v2 ∥ v′2

(4.2)

In the above formalization VS1 and VS2 are ValSets, while v1, v′1, v2, and v′2 are value-sets.
Equation 4.2 states that VS1 is partially ordered under VS2 if and only if it holds that for
every value-set v1 in VS1, there must be exactly one value-set, v2 in VS2, such that v1 is
partially ordered under v2. This disallows environments with duplicate ValSets. In addi-
tion, a condition on the ValSets are applied, which ensures that they are discrete, meaning
that no two value-sets can be compared. The ∥ symbol reflects this and symbolizes that
two elements are incomparable.

To ensure that the condition of a complete lattice is satisfied, we also need to describe the
ordering between the value-sets in the domain. When comparing value-sets, we know that
each set contains a finite number of values. This is because we have defined the possible
values in the value-set to be within 32 bits, see section 2.1. Thus, the top value in our
value-set lattice will be the set containing all possible 32-bit values, whereas the bottom
value will be the empty set. The lattice also adheres to the ascending chain condition,
since all sequences of nodes have a finite height. A simplified example can be seen in
Figure 4.1a, which is a complete lattice for sets containing only 2-bit signed values.

∅

{0} {1}{−1}

{−1, 0} {−1, 1} {0, 1}

{−1, 0, 1}

(a) An example of a lattice for sets of signed 2-bit
values.

⊥

[2, 2] [3, 3][1, 1]

[1, 2] [2, 3]

[1, 3]

(b) An example of a lattice for intervals between
1 and 3.

In the case where the interval for both value-sets is the same, we can simply find the least
upper bound for the two sets of values. For example, if we wanted to join the value-set
{−1, 0} with {1} in the 2-bit lattice example, the resulting value-set would be {−1, 0, 1}.

In the case where the intervals for the value-sets are different from each other, we must also
ensure that these bounds can be partially ordered, which can be described by an interval
lattice. Since the largest bound is determined by the largest label, the size of the interval
is finite. Moreover, it is always possible to find the least upper bound and greatest lower
bound between two intervals. To illustrate this, we have made a simple interval lattice for
a program with three labels, see Figure 4.1b. To limit the size of the over-approximation,

4.3. Transfer Functions 21 of 63 Chapter 4. Value-set Analysis

we only join two intervals if one of the bounds is contained within the other or they have
adjacent bounds and contain the same value-sets. For our example, we would join the
intervals [1, 2] and [2, 3] only when they have the same value-sets. However, if one of the
intervals is contained within the other, then we would join the value-sets.

Example

To explain how two environments can be joined within our domain, we have created a
simple example with one register. Note that in a real example, the flipped values would
in most cases contain at least 32 values.

Given two environments, env1 and env2, both containing the register, x1, with following
value-sets:

env1 → {x1 :{{1, 2, 3},

([1, 4], {1, 2, 3})}}
env2 → {x1 :{{2, 7},

([3, 4], {3, 4, 5}),
([5, 6], {5, 6, 7})}}

We can join env1 and env2 by first considering the non-flipped values. For these values,
the least upper bound can be found, which in this case is {1, 2, 3, 7}. For the flipped values,
we compare the intervals, where [3, 4] ⊑ [1, 4] resulting in the join of the values for these
two value-sets. Note that this join is an over-approximation, as labels 1 and 2 now also
have the values of the interval [3, 4]. To minimize the size of the over-approximation, we
do not join the intervals [1, 4] and [5, 6], as neither is contained within the other and they
do not have the same value. The resulting environment from joining env1 and env2 is env
seen below:

env → {x1 :{{1, 2, 3, 7},

([1, 4], {1, 2, 3, 4, 5}),
([5, 6], {5, 6, 7})}}

Based on the above, we determine our domain for VSA to be a complete lattice that follows
the ascending chain condition. Thereby, we have established one of the parameters that
define a monotone framework. We also need to define the second parameter, which is the
monotone transfer functions.

4.3 Transfer Functions

A transfer function specifies the effect a given statement has on the environment. This
function describes the environment for a given label, l, before the statement is executed,
IN(l), and after the statement has been executed, OUT(l). In this section, we will define
the functions that determine the IN and OUT environments.

4.3. Transfer Functions 22 of 63 Chapter 4. Value-set Analysis

The IN environment is the input for the transfer functions. As a given node can have
multiple incoming environments from different branches in the CFG, we must formalize
a way to join these environments. The intuition for both the registers and the heap is to
join all value-sets where no bitflip has occurred, since these are all possible values for the
current node. Furthermore, the intervals of the value-sets containing bitflips should be
extended if possible, as described in section 4.2. Based on this intuition, we can formalize
the IN environment to be IN(l) = JOIN(l), where l ∈ Label and

JOIN(l) =
⊔

l′∈PRED(l)

OUT(l′)

where PRED(l) contains all predecessors to the label, l. To simplify the notation used to
access specific labels in the environment, we say that for an element (R, H) ∈ IN(l), the
following holds:

(R, H)(x) = R(x), if x ∈ Registers

(R, H)(x) = H(x), if x ∈ Heap

(R, H)[x 7→ v] = (R[x 7→ v], H), if x ∈ Registers

(R, H)[x 7→ v] = (R, H[x 7→ v]), if x ∈ Heap

When x is a register, as defined in section 2.1, the function accesses or updates the Regis-
ters, whereas if x is an address, the heap is accessed or updated. Based on this notation, we
define OUT(l), which is dependent on which instruction a given label, l, describes. Below,
the OUT environment is defined for each of the abstract instructions found in section 2.2.

OUT(l) ::= IN(l)[rd 7→ {IN(l)(rs1)×JOPK IN(l)(rs2)}] if l 7→ OP rd, rs1, rs2

| IN(l)[rd 7→ {IN(l)(rs1)×JOPIK imm12}] if l 7→ OPI rd, rs1, imm12

| IN(l)[rd 7→ IN(l)(imm+ rs1)] if l 7→ LOAD rd, imm(rs1)

| IN(l)[offset+ rs1 7→ IN(l)(rs2)] if l 7→ STORE rs2, offset(rs1)

| IN(l)[rd 7→ {imm20||B012}] if l 7→ LUI rd, imm20

| IN(l)[rd 7→ {imm32}] if l 7→ LI rd, imm32

| IN(l)[rd 7→ {l + 1}] if l 7→ JAL rd, offset
| IN(l)[rd 7→ {l + 1}] if l 7→ JALR rd, offset(rs1)

| IN(l)[rd 7→ {addr(l) + (imm20 ||B 012)}] if l 7→ AUIPC rd, imm20

| IN(l) if l 7→ NOP

The transfer functions generally reflect the semantics of the different instructions, see sec-
tion 2.2. The transfer function for the OP and OPI instructions utilizes the semantic eval-
uation functions to fetch the actual arithmetic or logical operation. To compute the new
environment for labels describing these two instructions, a concatenation between the set
of values in the two source registers is performed. The actual operation is then performed
between the elements in each tuple in the resulting set.

The LOAD and STORE instructions both access the heap and the registers. LOAD fetches value-
sets from the heap and stores them in rd. Store saves value-sets found in rs2 at the address
derived from offset+ rs1, which is a symbolic value representing a location in the heap.

4.3. Transfer Functions 23 of 63 Chapter 4. Value-set Analysis

The LUI and LI instructions are similar to their semantic rules, in that they save an imme-
diate in the destination register. The JAL and JALR instructions both update the destination
register with the next label by adding one to the current label, l. For the AUIPC instruction,
we need to get the address of the current label. Therefore, we use the function addr which
fetches the address based on a label. This address is summed with an immediate and then
saved in the IN environment. Lastly, since no values are changed in the NOP instruction,
the OUT(l) is the same as IN(l).

To minimize over-approximation and runtime for loops, we have limited which values are
passed to the successors of the CMP instructions. The CMP instructions include beq, bne, blt,
bltu, bge, and bgeu. Thus, only the values which satisfy the condition should be passed to
the destination node, whereas only the values which do not satisfy the condition should be
passed to the node following the branch instruction. The notation below depicts the true
and false branches of the transfer function for the CMP instructions. For example, BEQ-T is
the case when CMP-T is applied using the beq semantic evaluation function.

OUT(l) ::= IN(l)[rs1 7→ {IN(l)(rs1)×< max(IN(l)(rs2))}, if l 7→ BLT-T rs1, rs2, L or
rs2 7→ {IN(l)(rs1)×> min(IN(l)(rs2))}] if l 7→ BGE-F rs1, rs2, L

| IN(l)[rs1 7→ {IN(l)(rs1)×≥ min(IN(l)(rs2))}, if l 7→ BGE-T rs1, rs2, L or
rs2 7→ {IN(l)(rs1)×≤ max(IN(l)(rs2))}] if l 7→ BLT-F rs1, rs2, L

| IN(l)[rs1 7→ {IN(l)(rs1) ∩ IN(l)(rs2)}, if l 7→ BEQ-T rs1, rs2, L or
rs2 7→ {IN(l)(rs1) ∩ IN(l)(rs2)}] if l 7→ BNE-F rs1, rs2, L

| IN(l)[rs1 7→ IN(l)(rs1), rs2 7→ IN(l)(rs2)] if l 7→ BNE-T rs1, rs2, L or
if l 7→ BEQ-F rs1, rs2, L

As seen above, we ignore unsigned comparisons, so the same transfer function is used to
describe both blt and bltu instructions. These instructions check whether the value of the
first argument is less than the value of the second argument. To compare value-sets for
the node following the true branch, the value-set for the first argument contains all values
that are less than the largest value in the value-set of the second argument, as seen in the
transfer function for BLT-T. The value-set for the second argument contains all values that
are greater than or equal to the smallest value in the value-set of the first argument. The
opposite computation is performed for the node following the false branch.

The bge and bgeu instructions check whether the value of the first argument is greater
than or equal to the value of the second argument. Thus, the environment of the node
following the true branch does the same computations as blt and bltu’s environment of
the node following the false branch and vice versa.

The beq instruction checks whether the values in the arguments are equal. The value-sets
passed to the destination node are calculated by taking the intersection of the values from
the two value-sets, as these represent the values they have in common. Thereby, the inter-
section operator ignores the intervals in the value-sets and only performs an intersection
between the values in the value-sets. For BEQ-F, the value-sets are not changed since it is

4.3. Transfer Functions 24 of 63 Chapter 4. Value-set Analysis

not possible to remove any values and still ensure a sound approximation without reason-
ing about the contents of the sets. The bne does the exact opposite of beq and thus keeps
the original value-sets for the destination node and finds the intersection for the following
node.

To make a more precise analysis, it is possible to make a tighter approximation for BNE-T
and BEQ-F in a special case. This is the case when the second source register contains a
value-set with a singleton. This value can safely be removed from the other value-set by
finding the difference between the two sets, as seen below. The difference operator is only
applied to the values in the value-set and ignores the intervals.

OUT(l) ::= IN(l)[rs1 7→ IN(l)(rs1), if l 7→ BNE-T rs1, rs2, L or
rs2 7→ {IN(l)(rs2) \ IN(l)(rs1)}] if l 7→ BEQ-F rs1, rs2, L

and |IN(l)(rs1)| = 1

| IN(l)[rs1 7→ {IN(l)(rs1) \ IN(l)(rs2)}, if l 7→ BNE-T rs1, rs2, L or
rs2 7→ IN(l)(rs2)] if l 7→ BEQ-F rs1, rs2, L

and |IN(l)(rs2)| = 1

Based on the definition of the transfer functions, the nodes in the CFG must include the
name of the instruction to determine which transfer function should be applied. Further-
more, the destination and source registers are also necessary information, as we need to
know which registers to access and update. Because of the JAL and JALR instructions, the
address of the node is also necessary to determine which node to jump to.

We have now defined how each of the transfer functions influences the environment when
applied. However, to ensure that all of our transfer functions are monotone we further
need to establish that the ordering of the values is preserved, as mentioned in section 4.1.

Ordering of Transfer Functions

The monotonicity of the transfer functions depends on whether the output of the functions
preserves the ordering. This can be formalized as:

∀ l ∈ Label, ∀x ∈ Register : IN(l)(x) ⊑ IN′(l)(x)

=⇒ OUT(l)(x)(IN(l)(x)) ⊑ OUT(l)(x)(IN′(l)(x))
(4.3)

The above equation describes the order of the output of a transfer function. It states that
given a label and a register, when an IN environment is partially ordered under another
IN environment, IN′, it implies that the OUT environment with IN(l)(x) as input is also
partially ordered under the OUT environment with IN′(l)(x) as its input.

For example, for a given v1 = ([1, 2], {1, 2, 3}) in VS1 and v2 = ([1, 2], {1, 2, 3, 4}) in VS2,
the order is satisfied, since v1 ⊑ v2, implying that a given transfer function also preserves
the order. However, VS2 cannot also contain the value-set ([1, 2], {3, 4}), since it has the
same interval as v2. It should be noted that this example never occurs in our analysis,
due to the JOIN function, which merges the value-sets with intervals that are within the
other. However, the value-set ([4, 5], {3, 4}) can be in VS2, since it has a different interval.

4.4. Application of VSA 25 of 63 Chapter 4. Value-set Analysis

Thus, the partial order for each value-set in ValSet should be preserved, meaning that
Equation 4.3 must be true for all transfer functions. To show that the transfer functions
preserve the ordering, the function for each abstract instruction is discussed.

For some of the transfer functions, the IN environment does not affect the OUT envi-
ronment. This includes transfer functions for LI, LUI, NOP, AUIPC, JAL, and JALR. In this
case, Equation 4.3 still holds since the value-sets stored in the rd registers for both OUT
environments become equal.

In other cases, the IN environment does affect the OUT environment. This includes trans-
fer functions for OP, OPI, CMP, LOAD, and STORE. To compare the order, we can look at each
register separately and ensure that the ordering is preserved for all registers. If the value-
sets stored in rd are unequal and all other value-sets in the other registers are equal, the
order is preserved since the value-sets in rd will be equal after the transfer function has
been applied. If either rs1 or rs2 differs, then the value-sets stored in rd will preserve the
order from the differing register.

Thus, the transfer functions are determined to be monotone, as the order of the values
remain the same when applying the transfer functions. We can therefore conclude that
our analysis satisfies the conditions of a monotone framework.

4.4 Application of VSA

Taking advantage of the properties of the monotone framework, we can guarantee that our
analysis will terminate, which is a requirement stated in section 3.1. However, VSA can be
applied in different use cases, which we will describe in this section.

As mentioned in section 3.2, the challenge with CFG recovery is indirect jumps. However,
this challenge could be resolved by using VSA to over-approximate which addresses could
be the destination of an indirect jump. In this case, the analysis will continue until it is
certain that all possible jump addresses have been found.

VSA can also be utilized to find possible values in the register. Using these values, we can
derive which values could occur when a bitflip has occurred. To achieve this, we must
apply an additional function after executing the transfer function to determine the OUT
environment of a given node. For each non-flipped value in the value-sets of the registers,
this function should calculate 32 new values, since values each consist of 32 bits. For each
of these new values, only one bit has been flipped. We formalized this function in our
previous work [8]:

f lip(l) = ∀(R,H)(x,y)∈OUT(l) : {x′|x′ ≡1 x}

In this function, R represents the Registers and H represents the heaps. Furthermore, as
our fault model only describes bitflips occurring in registers, we only flip the registers,
x ∈ R, and ignore the heap, y ∈ H.

The flip function is performed immediately after the transfer function is performed. As

4.4. Application of VSA 26 of 63 Chapter 4. Value-set Analysis

an example, if the current node has the label 1 and is an addi instruction, where the
immediate 1 is added to the values in the register x1:{2}. When this node is analyzed,
we calculate the initial OUT environment by applying the transfer function for addi, see
section 4.3. The contents of register x1 will be updated to the value-set {3}. Afterward,
the flip function, seen above, is applied, which results in the following two value-sets:

{x1 : {{3},
([1, 1], {−2147483645, 1, 2, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195,

16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307,
8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915,
1073741827})}}

The resulting value-set contains the 32 values, corresponding to flipping each of the 32
bits representing the value in x1. When all the flipped values are calculated based on the
non-flipped values in each register, the next node can be analyzed, wherein the transfer
function for its instruction may also use the flipped values. Since we assume that only
one bitflip can occur, the flip function is only applied to non-flipped values. Based on the
static analysis defined in this chapter, we can now implement the two cases described in
this section.

27 of 63 Chapter 5. Implementation

Chapter 5

Implementation

Using the RISC-V and VSA formalization as a foundation, we can implement a verification
tool to determine bitflip vulnerabilities. We use VSA to implement the domain, as well as a
CFG recovery and a bitflip analysis module. Furthermore, we also implement a backward
slicing module to reduce the analysis scope, as well as a worklist algorithm, which is used
by the different implementations of VSA. To provide an overview of the different modules
making up BitflipperVild, we have created an illustration of the architecture.

Text File

Enforce
assump-

tions

Initial
recovery

Iterative
recovery

CFG Recovery

Backward
slicing

Bitflip
analysis

Interpreter

Results

Figure 5.1: An overview of the architecture for BitflipperVild.

As seen in Figure 5.1, the input to BitflipperVild is a text file, which contains the RISC-
V code to be analyzed. Before analyzing the text file, it is formatted to adhere to the
assumptions described in section 3.3. The instructions in the file are then used to generate
a CFG in the CFG Recovery module. This is accomplished in two steps as explained in
section 5.4. The CFG is then either sliced in the backward slicing module or used as is and
then analyzed iteratively in the bitflip analysis module. The results of the analysis can then
be saved in a file. Moreover, the analysis results can also be the input of the interpreter
module, which checks which of the bitflips result in an authentication bypass.

5.1 Automatic Adherence to Assumptions

To analyze a RISC-V program with BitflipperVild, it is in most cases necessary to manually
modify the code to ensure that it adheres to the assumptions described in section 3.3.
However, this process is cumbersome and prone to errors. This is due to new instructions
being added because of loop unrolling and duplicated functions, making it also necessary
update the jump addresses to point to the correct instructions.

5.1. Automatic Adherence to Assumptions 28 of 63 Chapter 5. Implementation

This is addressed by creating the module "enforce assumptions", which automatically for-
mats the program to adhere to the assumptions. As seen in Figure 5.1, this module receives
a text file as input. An overview of the components that make up this module can be seen
below.

Text File

Extract
infor-

mation

I/O
mapping

Remove
setup

functions

Loop
unrolling

Duplicate
functions

Formatted text file
Figure 5.2: An overview of the components that format the text file, such that it adheres to our assumptions.

To keep track of which instruction belongs to which function, we have chosen to save
this information in a dictionary, where the key is a function name, and the value is a list
of instruction objects. Thus, information about each program point is extracted from the
text file and saved in objects with properties corresponding to the different parts of the
instruction. These objects are then saved in the list. While extracting the information,
BitflipperVild checks for calls to the printf and scanf functions, as these need to be
replaced with an I/O mapping due to item 4 found in section 3.3.

To adhere to item 1 in our assumption list, the module removes the setup functions. To do
this, BitflipperVild utilizes a list of function names that it should analyze. Based on this
list, we remove all keys in our dictionary, which do not match any of the names in the list.

The module also unrolls the loops in all functions to adhere to item 6 in section 3.3. As seen
in Figure 5.2 this component is executed multiple times. This is due to the implementation
which only unrolls one loop at a time, see Listing 5.1. In line Line 3, a loop is found and
extracted from a function. This is done by checking whether a branch instruction jumps to
an address that is smaller than its own address. If this is the case, the loops variable will
contain a list of nodes in the loop, as well as the index of the next node after the loop. If
no loop is found, this dictionary will be empty.

In the for-loop, the loop is unrolled. The logic for the branch instruction needs to be
changed, as we want to jump to our "dummy" node when the condition is false. However,
as RISC-V jumps to the destination label when the condition is true, we must flip the
branch instruction to represent the opposite instruction, such that it returns true when the
original condition returned false. This is done in line Line 10.

After the branch instruction has been flipped, nodes that are skipped in the first iteration
must be removed, see line 14. To find these nodes, we examine the instruction right before
the loop. If this node is a jump and its destination is an address inside the loop, the nodes
from the start of the loop until the destination of the jump instruction are the nodes that
should be skipped. This is necessary to do since these nodes will never be reached and
thus would become a new entry point for the CFG.

5.1. Automatic Adherence to Assumptions 29 of 63 Chapter 5. Implementation

In line 16, the module unrolls the loop a number of times depending on the value of
number_of_iterations. This is achieved by inserting a copy of the loop nodes into the list
of nodes. Lastly, the index of the node following the loop is updated, as this is used to
return from the "dummy" node to the correct address. Furthermore, the addresses of the
nodes in the function that had been unrolled must be updated.

Listing 5.1: Function used to unroll a loop.

1 def unroll(function_nodes: dict , number_of_iterations: int):
2 visited_lines , loops , function , index =
3 find_and_extract_loop(function_nodes)
4 no_removed = 0
5
6 for index , loop_nodes in loops.items():
7 destination_node = function_nodes[function][index]
8
9 branch_node = function_nodes[function][index - 1]

10 branch_node = flip_branch_instruction(branch_node)
11
12 nodes = function_nodes[function]
13 nodes , index , no_removed =
14 remove_skipped_nodes(nodes , loop_nodes , index)
15
16 for _ in range(number_of_iterations):
17 new_nodes = copy.deepcopy(list(loop_nodes.values ()))
18 nodes = nodes [:index] + new_nodes + nodes[index :]
19
20 index = nodes.index(destination_node)
21
22 return function_nodes , function , index , no_removed

The last component in Figure 5.2 duplicates and renames the functions that are called
multiple times, such that they have unique names. This is necessary since BitflipperVild
is a polyvariant analysis. First, the functions which are called multiple times are found by
examining the destination of all jump instructions. If a function is called multiple times, it
is duplicated and the function name is renamed by adding a number at the end. Then the
addresses are fixed and the callers of this function are updated, such that no two callers
call the same function. As seen in Figure 5.2, this component is called iteratively, since
a duplicated function can also contain calls to other functions. If the component is only
called once, the issue described in section 3.3 is not resolved.

This module makes BitflipperVild more usable, as BitflipperVild then requires less manual
work. The module also prevents human errors which could result in the tool providing
incorrect results or not being able to terminate. Thus, this module outputs a formatted
text file adhering to the assumptions, which can be used by the rest of the modules in
BitflipperVild.

5.2. Worklist 30 of 63 Chapter 5. Implementation

5.2 Worklist

The next module in Figure 5.1 is the CFG recovery. However, to be able to perform VSA
on a CFG, we have created a worklist algorithm that keeps track of which nodes should
be analyzed. The implementation of the worklist algorithm can be seen in Listing 5.2. As
input, this function takes a domain, a CFG, and optionally a target address. Domain is an
abstract class requiring an overload of the join and transfer methods, see section 5.3 for
implementation details. The CFG is a representation of the program’s control flow, and
target_address is a string representing the address of the privileged point in the program.
The target_address is optional as it is only necessary if the CFG is a slice, see section 5.5.

Listing 5.2: The worklist function used to perform VSA with different domains.

1 def worklist_algorithm(domain , cfg , target_address = ""):
2 worklist = cfg.get_entry_nodes ()
3 domain.initialize_environment(cfg , cfg.get_entry_nodes ())
4
5 while worklist:
6 node: CFGNode = worklist.pop(0)
7 for successor in cfg.get_successors(node):
8 if successor.address == target_address:
9 domain.environment[successor.label] = join(domain ,

cfg , successor)
10 continue
11 IN = join(domain , cfg , successor)
12 OUT = domain.transfer(cfg , successor , IN)
13 worklist = update_worklist(domain , successor , OUT ,

target_address , worklist)

The worklist_algorithm function first initializes the worklist and environment of the
domain with the list of entry nodes, see lines 2 and 3. For each node in the worklist, we
iterate through its successors, where we first check whether the address of the successor
is equal to the target address, see line 8. If this is the case we should only perform the
join method on the successor, without calling the transfer method. This is because we
have reached our privileged point and our analysis should therefore terminate. If the
successor is not the target node, we instead calculate its IN environment in line 11, which
is then used to calculate the OUT environment in line 12. Lastly, we update the worklist
by checking whether the environment has changed for the given node in line 13. If the
environment has changed, the successor is added to the worklist. Otherwise, we have
reached a fixed point. This also theoretically makes it possible to handle iterative control
structures, since they will eventually reach a fixed point for the analysis.

This worklist algorithm is used for all VSA analyses, which includes the CFG recovery
and the bitflip analysis. To be able to perform these analyses, we first need to define the
domain.

5.3. Domain 31 of 63 Chapter 5. Implementation

5.3 Domain

To allow different static analyses to be performed, we have created an abstract class, which
defines the necessary methods for our domain. This ensures modularity in BitflipperVild
since the worklist algorithm can utilize any analysis implementing these methods. This is
illustrated in Figure 5.3.

<<abstract>>
Domain

environments : dict
cfg : CFG
heaps: dict

transfer (cfg: CFG, node: CFGNode,
environment: dict, heap: dict): (dict, dict)
join (environments : dict, heap: dict): (dict, dict)

CFGDomain BitflipDomain

- flip (environment: dict,
current_node: CFGNode) : dict

Figure 5.3: A UML diagram of the domain implementation for the analysis.

The abstract class, Domain, contains the cfg, environments, and heaps properties. The cfg
keeps track of the CFG being analyzed, while the environments keeps track of the abstract
environment containing the resulting values for each program point. Lastly, the heaps
keeps track of the values stored in the heap for each program point.

The environments property is a set of key-value pairs wherein the key is a label and each of
the values is a specific environment for that label, as seen below. Thus, we can keep track
of the environment for each program point in the analysis. This is necessary when a node
has multiple predecessors since we need to know the environment for each predecessor
when performing a join to calculate the IN environment.

environments → {label : {environment}}

As our environment must keep track of which values a given register can contain, we
implement it as a dictionary with key-value pairs. The keys are the names of the registers,
while the values are sets of value-set objects for the given register, as seen below.

environment → {register : {value-set}}

We have chosen to implement the environment as a dictionary to ensure that there is only
one set of value-sets for each register. Furthermore, we can efficiently access the set of
value-sets given a specific register. The value in the dictionary is a set, because we want
to keep track of both the values that have been bitflipped and those that have not while
disallowing duplicates. In the case of joining two environments, it is possible that a value
in the dictionary can contain several bitflipped value-sets for the same register.

Each value-set object reflects the value-set defined in section 4.2 and thus consists of two
elements in the case of a bitflip: a tuple of lower and upper bounds and a set of values,

5.3. Domain 32 of 63 Chapter 5. Implementation

as seen below. The values in the value-set are contained in a set, as we want to avoid
duplicates and disregard their order.

value-set → (lower, upper), {values}

The type of values in the value-set can be hexadecimal, signed, or unsigned. The hex-
adecimal values are used to represent addresses. The type of value is determined by the
transfer function. If the instruction is a control transfer instruction, the type will be ad-
dresses. Furthermore, if the instruction is an operation, the type can be determined based
on whether the instruction is unsigned or signed, or the value is written as a hexadecimal.
For value-sets representing the absence of bitflips, the lower and upper bounds are not
initialized.

The heaps property of the abstract class is a dictionary, which represents a heap for each
label. Each key is a label and the values are dictionaries which each represent a single heap
illustrated below. Each key in each heap is a symbolic value, such as -15(sp), representing
where in memory the values should be stored. The value of the heap’s key-value pairs is a
set of value-sets. The heap reduces the over-approximation of the analysis and its inclusion
will thus result in LOAD instructions updating their destination register with concrete values
instead of all possible 32-bit values.

heap → {address : {value-set}}

The Domain abstract class defines two abstract methods called by the worklist algorithm:
transfer and join. The transfer method implements the effects of a given instruction for
each node, which are defined in section 4.3. As output, it returns a tuple containing two
dictionaries. The first dictionary is the updated environment after applying the transfer
method and the second is the updated heap. The join method also takes two dictionaries
as input: the registers and the heaps that should be joined. Thus, the join returns a new
environment and a new heap that corresponds to the environment and heap before the
current node has been analyzed.

As seen in Figure 5.3, two concrete domain classes inherit from the abstract Domain class.
One of these classes is the CFGDomain, which we use to perform the CFG recovery. The
second class is used to determine bitlfip vulnerabilities and is called BitflipDomain. The
two classes each implement the transfer and join in a way that satisfies their use case. We
will discuss this in the next sections.

5.3.1 Bitflip Domain

To perform our bitflip analysis, we have implemented a join and transfer method. The
join method iterates through all the predecessors for a given program point in the anal-
ysis. If the value-sets of the predecessors have the same bounds for a given register, the
joined value-set in the environment will be the union of the two sets. If there are value-
sets in one predecessor, which are not contained in another, they will be added to the
environment. The heaps are joined in a similar manner, where the union is found if two

5.4. CFG Recovery 33 of 63 Chapter 5. Implementation

predecessors contain the same symbolic value.

The environment and heap returned by the join method are then used as input for the
transfer method. This method applies a transfer function, determined by the instruction
type. The transfer functions for our analysis are defined in section 4.3. The environment
and the heap are then updated according to the transfer function. For example, if the
instruction is a type of STORE instruction, the content of the second source register is saved
in the heap at the symbolic value specified by the first source register as a key-value pair.
If the instruction is a LOAD, the specific value from the heap is fetched based on the source
register and used to update the destination register. If the value cannot be fetched from
the heap, the destination register of the instruction will have its sets of value-sets updated
to be a single set containing all possible 32-bit values.

Since our VSA also keeps track of which values are possible when a bitflip has occurred,
another method, flip, is called after the transfer function has been applied. The flip
method takes the output from the transfer method and the current node as input and
returns an updated environment. The flip method iterates through all value-sets in the
environment. If the value-set already contains flipped values they will not be flipped,
since we only handle the case where a single bitflip occurs. Moreover, if the set contains
all possible 32-bit values, they will not be flipped, since the value-set already contains all
possible values. To get the flipped values based on a value set, the 32-bit strings for each
value are obtained. For each string, 32 different values are produced by flipping each of
the bits. Then, a new value-set with all the bitflipped values is added to the environment,
where the lower and upper bounds are set to be the current label.

5.3.2 CFG Domain

The CFG domain is used to create an accurate CFG representation using a VSA which
can handle indirect jumps. As our focus is bitflips occurring in the register and not in the
program counter, we do not include bitflips in the transfer function for this domain. Since
this class also performs VSA, the two domain classes have identical transfer methods,
but the CFG domain has no flip method. The join method is similar to that of the bitflip
domain. Since there is only one value-set for each register due to flipped values being
omitted, the join function for the CFG Domain can merge the value-sets for each register.

5.4 CFG Recovery

As mentioned in the requirements established in section 3.1, CFG recovery is necessary
to perform the bitflip analysis. The recovery is made up of two steps: an initial recovery
and an iterative recovery. In the initial step, we compute an initial CFG based on a text file
containing the RISC-V instructions for a given program. Given the initial CFG, the iterative
step is executed using CFGDomain to compute the destinations for the indirect jumps.

5.4. CFG Recovery 34 of 63 Chapter 5. Implementation

5.4.1 Initial Recovery

The initial CFG recovery is based on a formatted text file, which is created by first compil-
ing C-code using a RISC-V cross-compiler, then fetching the instructions using objdump,
and lastly reformatting the file such that the assumptions are enforced. For each line in
the text file, the initial CFG recovery creates a CFG node. A line consists of three parts: the
address of the instruction, the encoded instruction, and the actual instruction. As men-
tioned in section 4.3, the address and the actual instruction are required for each node in
the analysis. Therefore, when creating a CFG node, the address and instruction are saved.
Furthermore, the destination and source registers are extracted from the arguments of the
instruction when present. For example, given the line:

Address Encoded instruction Actual instruction
10280: 00e686b3 add a3, a3, a4

The instruction is parsed as "add" with a3 as the destination register, and a3 and a4 as
the source registers. Moreover, 10280 is saved as the address. In the case of a pseudo-
instruction, the instruction is parsed as its corresponding set of base instructions. For
example, mv rd, rs1 is parsed as addi rd, rs1, 0, according to [22]. Based on which in-
struction the node represents, we also set a NodeType property which represents its abstract
instruction type defined in section 2.2.

After all the nodes have been created in the CFG, edges are added between the nodes. If
the node is not a jump instruction then one edge is added between the current node and
the node for the next line in the text file. If the node contains a jump instruction, the edge
is added to the node at the address specified by the instruction. For comparison nodes, an
additional node is added to the CFG, such that each comparison has a node representing
the false and the true branches. An edge is added between the false node and the next
instruction, while an edge is added between the true branch node and the node containing
the address specified by the comparison instruction.

However, using this approach it is not possible to handle indirect jumps, since we cannot
resonate about which values are saved in the registers. More specifically, it is not possible
to add edges for the jalr instructions. To make this possible, we perform VSA with the
CFG domain on the graph to compute which values a given register could contain at a
program point with a jalr instruction.

5.4.2 Iterative Recovery

The iterative CFG recovery uses an incomplete CFG to generate a CFG, which includes
indirect jumps. An example of an incomplete CFG could be the CFG created by the initial
recovery for a program containing jalr instructions.

This step is iterative since it is possible to have several jalr instructions pointing at each
other, which results in it not always being possible to determine the complete CFG when
only performing the iterative CFG recovery once. Thus, VSA with the CFG domain is

5.5. Backward Slicing 35 of 63 Chapter 5. Implementation

performed on the resulting graph until a fixed point is reached, meaning no new edges
are added.

Each time the VSA is performed on the incomplete CFG, we update the edges for the
nodes containing a jalr instruction with the new information obtained from performing
the VSA. Moreover, in the case of a node with a jump instruction to a different function, an
edge is added from the function’s return node to the node containing the next instruction
after the jump in the original function.

When the fixed point is reached, the CFG has been recovered and is ready to be analyzed.
However, before performing the bitflip analysis on the CFG, we can reduce the analysis
scope by first performing backward slicing on the graph.

5.5 Backward Slicing

To limit the number of nodes being analyzed in the bitflip analysis using the BitflipDomain,
we can perform backward slicing. To do this, the graph constructed by the CFG recovery
and a target node is used to construct a slice of the CFG. The intuition is to discover which
registers affect the target instruction, and then slice the CFG when all of these registers
have new values loaded into them. This is because the content of the registers will be
overridden and therefore the previous values before the loads have no effect on the target
node. The implementation can be seen in Listing 5.3.

Listing 5.3: Method used to perform backward slicing on a CFG.

1 def __execute(self , cfg: CFG) -> CFG:
2 new_cfg = nx.DiGraph ()
3 new_cfg.add_node(self._target)
4
5 entry_nodes = cfg.get_entry_nodes ()
6
7 worklist , skipped_nodes = [self._target], []
8 self.__update_relevant_registers(self._target)
9

10 while worklist:
11 node: CFGNode = worklist.pop(0)
12
13 for predecessor in cfg.get_predecessors(node):
14 if self.__is_relevant_node(predecessor):
15 if predecessor.type != NodeType.CTRL:
16 self._relevant_registers[predecessor.destination]

= True
17 self.__update_relevant_registers(predecessor)
18
19 if self.__is_graph_finished(entry_nodes , new_cfg):
20 skipped_nodes.append(predecessor)
21 elif self.__should_update_worklist(new_cfg , worklist ,

node , predecessor , entry_nodes):
22 worklist.extend(skipped_nodes)

5.6. Interpreter 36 of 63 Chapter 5. Implementation

23 worklist.append(predecessor)
24
25 self.__add_node(new_cfg , predecessor , node)
26
27 if any(["(" in relevant_register for relevant_register in self.

_relevant_registers]):
28 return self.__finalize(CFG(graph=new_cfg), cfg)
29
30 return CFG(graph=new_cfg)

To create the slice, we initialize a new CFG with the target node in lines 2 - 7. Furthermore,
we find which registers affect the target node in line 8. We then iterate through the pre-
decessor nodes in the CFG, starting from the target node. For each of these predecessors,
we determine whether they override the content of a relevant register in line 14. There are
two cases where this is true. The first case is when the type of instruction for the prede-
cessor node is either an OP, OPI, STORE, or LOAD instruction and their destination register
is deemed relevant. The second case is when the instruction type is a control transfer and
one of the registers in its arguments is deemed relevant. If one of these cases is true, we set
the destination register to be True in line 16, since the destination register is overwritten
by the current instruction. Furthermore, we update the relevant registers in line 17.

In line 19, we check whether all relevant registers have been overwritten. If this is the
case, we have found all of the nodes that must be included in the CFG slice and we should
therefore not add the predecessor node to the worklist. Instead, the predecessor should
be added to a list keeping track of the nodes that have been skipped. This is necessary as
we can come across a node, which was added to the worklist earlier, determining that the
graph is not finished. Thus, the nodes in the list should be analyzed before terminating. In
line 25 we add the predecessor node, which we have just analyzed, to the CFG slice along
with its edges.

In line 27, we check whether one of the addresses in relevant_registers is from the heap.
If this is the case and there is more than one entry node in the slice, we make a larger over-
approximation. This over-approximation is created by making a subgraph that contains
all nodes between the smallest and the largest label of the slice.

As seen in subsection 8.2.2, a CFG slice can be used to perform the bitflip analysis, which
outputs all of the possible bitflips that could occur in the given slice. To find which of these
bitflips actually make the program unsafe, we need to reduce the amount of non-critical
bitflips.

5.6 Interpreter

To reduce the amount of manual work required to check which bitflips can bypass the
authentication, we have implemented an interpreter. Our approach for the interpreter is to
iterate through all the flipped value-sets produced by the analysis. For each value in the
value-sets, the interpreter should then check whether it is possible to reach the privileged

5.6. Interpreter 37 of 63 Chapter 5. Implementation

point when the value is injected.

To achieve this, we have created a new domain, where only one flipped value is injected for
each run. Furthermore, we have modified the worklist for this domain, such that only one
of the branch paths would be taken, resulting in each non-flipped value-set only including
one value. However, this value can also be a range in cases where the source from a load
is undefined.

To limit the number of over-approximations, we modified the transfer functions concern-
ing the heap. In the bitflip analysis, all heap addresses except for the global pointer are
represented by symbolic values, which consist of the function name and the arguments
rather than their actual address. This makes the heap address local, see section 3.3. How-
ever, we observed that this resulted in addresses being unreachable from other functions,
which led to a range being loaded instead. This is not an issue for the bitflip analysis, as
the only time a range is loaded, is when fetching the values of the user and card PINs.
When these values are ranges, it represents that the PINs can be any 32-bit value. Thus,
we try to bypass the authentication without knowing what the PIN is. However for this
interpreter, we instead save the actual address, which results in less over-approximation.

The focus of the interpreter is to assist the user in analyzing the results found by the bitflip
analysis. We have therefore not focused on proving the soundness of this component.
However, we have manually checked the results achieved by using the interpreter on the
results from running the bitflip analysis on the FISSC programs. Based on results of the
interpreter, we have determined that the output of the interpreter appears to be correct.

To ensure that the implementation of the modules in subsection 8.2.2 addresses the re-
quirements found in section 3.1, we need to evaluate this implementation.

38 of 63 Chapter 6. Evaluation

Chapter 6

Evaluation

To analyze a RISC-V program for bitflip vulnerabilities, we must ensure that BitflipperVild
includes the necessary properties. This can be ensured by evaluating whether we have
addressed all requirements specified in section 3.1. These requirements are summarized
below in Table 6.1.

General

Analyze a FISSC program

Prove countermeasures prevent bitflip vulnerabilities

Determine value-sets for each program point

Be RISC-V specific

Terminate

CFG
Recover a CFG

Interprocedural

Resolve indirect jumps

Backward Slicing Create a slice based on a privileged point

Bitflip Analysis
Detect bitflip vulnerabilities in registers

Determine at which label a vulnerability can occur

Table 6.1: Summary of the requirements for BitflipperVild.

Some of the requirements depend upon a program to be analyzed before evaluating them.
Thus, the programs in FISSC will be used as a foundation for this evaluation. The require-
ments involving the analysis of a program include the CFG, backward slicing, and bitflip
analysis categories. The requirements in each of these categories will be evaluated in this
chapter. As the enforce assumptions and the interpreter modules are not a part of our
requirements, they are therefore not critical for our project and we will not evaluate these
modules. However, the interpreter module has been used to verify the manual analysis
performed in section 6.4.

6.1 General Requirements

To evaluate the requirements in the general category, we can examine whether our analysis
has the required properties. We do this by evaluating each of the five requirements. How-
ever, the second requirement is closely related to the requirements in the bitflip analysis

6.2. CFG Recovery 39 of 63 Chapter 6. Evaluation

category. We will therefore evaluate these requirements together in section 6.4.

The first requirement states that BitflipperVild must be able to analyze a FISSC program.
After compiling the program to RISC-V code and formatting the programs to follow the
assumptions described in section 3.3, we were able to produce a bitflip analysis for all pro-
grams in the collection. The results of the bitflip analyses showed the possible value-sets
for each program point in the program. This satisfies the third requirement, which states
that BitflipperVild must be able to produce this. Furthermore, the fourth requirement stat-
ing that our analysis must be RISC-V specific is also satisfied. All analysis results can be
found in [5].

Furthermore, all of the FISSC programs terminated. Since we have shown that our analysis
follows the monotone framework in section 5.3, it will always be the case that the analysis
terminates and the fifth requirement regarding termination is thereby also fulfilled.

6.2 CFG Recovery

One of the requirement categories establishes requirements about the CFG, as seen in
Table 3.1. These include that we should be able to create a CFG based on the RISC-V code.
More specifically, we must be able to handle interprocedural programs, as the programs
in FISSC contain multiple functions. Furthermore, we should also be able to resolve any
indirect jumps.

To ensure that we can create a CFG for RISC-V programs using the minimal instruction set
described in section 2.1, we have specified how the CFG node and edges should be created
for each of these instructions. This can be seen in section 5.4. Thus, the CFG recovery
implementation should be able to handle all RISC-V programs that follow the assumptions
described in section 3.3. We were able to create a CFG for all versions of VerifyPIN. Since
these include interprocedural programs, we have fulfilled this requirement. The resulting
CFG of VerifyPIN 0 can be seen in Figure 6.1.

In the CFG, the different methods have different colors. However, the entry node is col-
ored green. The nodes in <main> are blue, whereas <initialize>, <verifyPIN>, and
byteArrayCompare have pink, purple, and orange nodes, respectively.

Since none of the VerifyPIN versions include indirect jumps, we have created a small
RISC-V program with an indirect jump at address 105e4, as seen on the left-hand side in
Figure 6.2. This is to show that our recovery implementation fulfills this requirement as
well.

The indirect jump instruction should jump to two different nodes, depending on how
many times the instruction in address 105d4 is executed. At address 105d0 the value
105d0 is stored in register a5. At the next address, this value is replaced with the value
105d4. Thus, when we reach address 105e4 an edge is added between this node and the
node at the address found in a5, which is 105d4. At this address, the value in a5 is replaced
with 105d8, as we perform the addi instruction again. Therefore, another edge between
addresses 105e4 and 105d8 is also added. In short, edges from the indirect jump node to

6.2. CFG Recovery 40 of 63 Chapter 6. Evaluation

Figure 6.1: The CFG that corresponds to VerifyPIN 0. The green node represents the entry node, while
the blue, pink, purple, and orange nodes represent the functions <main>, <initialize> <verifyPIN>, and
byteArrayCompare, respectively.

the nodes at addresses 105d4 and 105d8 should be present in the CFG. To avoid looping
until an overflow occurs, the beq instruction checks whether the address stored in register
a5 is equal to address 105dc.

The CFG produced by BitflipperVild when analyzing the small program can be seen on
the right-hand side in Figure 6.2. The green node represents the entry node for the CFG.
Furthermore, the CFG represents the control flow of the program correctly, as it has two
outgoing edges, one that jumps to the instruction at address 105d4 and another at address
105d8. Moreover, two beq nodes are added which each represent either the true or false
branch. As seen, our tool is able to resolve indirect jumps in RISC-V programs.

As mentioned in section 3.3, we do not consider bitflips when generating CFGs. Thus
for the example in Figure 6.2, we do not consider whether the value stored in register
a5 has been flipped. Since our analysis can include false positives, the value-set in the
destination register for jalr can contain several addresses. In this case, the CFG will be
an over-approximation, resulting in some edges being false positives. Thus, there can be
many edges from the jump node. However, as the functions in FISSC do not contain any
indirect jumps, this has not been an issue in our case.

As described above, our CFG recovery implementation is able to create CFGs that use the
syntax described in section 2.1 and follow the assumptions found in section 3.3. Moreover,
it is also able to resolve indirect jumps. Thus, all requirements regarding the CFG recovery
are fulfilled.

6.3. Backward Slicing 41 of 63 Chapter 6. Evaluation

105d0: auipc a5,0x0
105d4: addi a5,a5,4
105d8: nop
105dc: auipc a4,0x0
105e0: beq a5,a4,105e8
105e4: jalr 0(a5)
105e8: ret

Figure 6.2: A RISC-V program which includes two indirect jump and its corresponding CFG. The green node
in the CFG represents its entry node.

6.3 Backward Slicing

The next category of requirements states that BitflipperVild must be able to perform back-
ward slicing based on a given privileged point. This requirement has been addressed by
implementing the module backward slicing, see section 5.5. To evaluate the implemen-
tation, we have constructed the example seen below based on a modified snippet from
VerifyPIN 0.

In Figure 6.3, the code snippet on the left-hand side describes a small program, which
compares the values in registers a4 and a5. The content of register a5 is an immediate
which is loaded at address 105ec, while the content of a4 is dependent on the heap. Given
that the privileged point is the instruction at address 105f4, the computed slice should
include the instructions that write to the registers a4 and a5.

In the above example, register a5 is written to at address 105ec, and register a4 is written to
at address 105f0. However, a4 is influenced by the heap address represented by -20(s0).
Thus, a STORE must be present for this symbolic value, which can be seen at address
105e8, as all affected registers and heap addresses should be written to. Moreover, since
the earliest instruction which influences the value of register a4 is at address 105dc, this
address should be the first node in the slice. Thus, the CFG slice produced by BitflipperVild
is shown to be accurate and our tool can indeed correctly perform backward slicing.

However, to ensure that the slice is always sound, we sometimes make a wider over-
approximation. This is especially the case, when the slice depends on the heap and the
slice contains several entry points. In this case, all nodes between the smallest and largest
label are added to the slice, ensuring that there is only one entry point. This is necessary,

6.4. Bitflip Analysis 42 of 63 Chapter 6. Evaluation

105d0: addi sp,sp,-48
105d4: sw s0,44(sp)
105d8: addi s0,sp,48
105dc: sw zero,-20(s0)
105e0: lw a5,-20(s0)
105e4: addi a5,a5,1
105e8: sw a5,-20(s0)
105ec: li a5,0
105f0: lw a4,-20(s0)
105f4: bge a4,a5,105f8
105f8: ret

Figure 6.3: On the left is a RISC-V program of a comparison. On the right is a slice produced by BitflipperVild,
where address 105f4 is the privileged point. The green node in the CFG represents its new entry node.

as the heap can be written to with new values in one of the nodes that were originally
not added to the slice. These updates to the heap can influence the values in the registers.
Therefore, without over-approximating the slice our representation would not be sound.
A downside of this solution is the increase of nodes that will be analyzed by the bitflip
analysis. However, as we prioritize accuracy higher than efficiency, we deem this solution
appropriate.

Based on the above, our backward slicing module is able to create a CFG slice from a CFG
created by the CFG recovery module and a privileged point. Thus, the requirement for
backward slicing, described in Table 3.1, is satisfied.

6.4 Bitflip Analysis

To check whether the requirement "prove countermeasures prevent bitflip vulnerabilities"
has been fulfilled, we can utilize FISSC to compare the different countermeasures imple-
mented in the collection and examine whether BitflipperVild can detect vulnerabilities.

As mentioned in Chapter 1, the programs in FISSC [9] verify whether the given PIN is
correct. If this PIN is correct a variable g_authenticated is set to true and the user is
granted access to the privileged operations. Furthermore, the programs include a try
counter (PTC), which keeps track of how many attempts the user has left. When the
counter reaches zero, the program terminates without providing access to the user.

On the FISSC website [2], two conditions are stated to determine whether a successful
attack has occurred:

6.4. Bitflip Analysis 43 of 63 Chapter 6. Evaluation

1. A successful authentication with an erroneous PIN
2. A non-decrement of the PTC in case of a failed authentication

Thus, to check if a program is vulnerable to these attacks, we need to examine whether we
can exit the verification as if the correct PIN was given when the actual PIN is incorrect.
Furthermore, we need to examine whether the PTC is decremented each time the user
enters an incorrect PIN.

There are seven different versions of VerifyPIN in FISSC. These all include different coun-
termeasures and thus have different levels of security. An overview of these countermea-
sures can be found in Table 6.2.

v0 v1 v2 v3 v4 v5 v6 v7
Hardened Booleans × × × × × × ×
Fixed-time loop × × × × × ×
Inlined functions × × × ×
PTC decremented first × × × ×
PTC backup ×
Loop counter ×
Double calls ×
Double test × ×
Step counter ×

Table 6.2: The countermeasures and programming features taken for each VerifyPIN program in FISSC [9].

Some of these countermeasures are beyond the scope of our analysis since they do not
secure the registers but instead the control flow. This includes the double test counter-
measure which performs two checks on the same condition instead of one. Another coun-
termeasure beyond our scope is the step counter countermeasure which is used to ensure
that no parts of the program are skipped. This is achieved by incrementing the variable
step_counter for each step and checking whether it has been increased and triggering a
countermeasure if it has not. As both of these countermeasures check the control flow
and there are no values in the registers that can affect them with a single bitflip, they are
not part of our scope. We have therefore decided not to examine these countermeasures
further.

To evaluate BitflipperVild, we examine whether we can determine that it is possible to per-
form a bitflip attack which results in either of the two conditions being satisfied. To do this,
we will for each of the countermeasures examine and compare VerifyPIN versions with
and without the countermeasure. If we can show that an attack has been prevented with
the countermeasure, we deem that our tool can detect the specific bitflip vulnerabilities
protected by the countermeasure.

6.4.1 Hardened Booleans

The first countermeasure is hardened Booleans, which instead of representing true and
false as one and zero, represents them as 0xAA and 0x55, respectively. This prevents a
single injection attack to flip the value from false to true, as it requires additional flips to

6.4. Bitflip Analysis 44 of 63 Chapter 6. Evaluation

achieve 0xAA from the value 0x55. All VerifyPIN versions, except for v0, use hardened
Booleans. Therefore, to evaluate whether BitflipperVild can show that some attacks are
prevented with hardened Booleans, we examine the result achieved by performing our
analysis on v0 and v1. As this countermeasure focuses on the first condition for a suc-
cessful attack, we will not consider the second condition for this evaluation. There are
several places in the program where hardened Booleans are used. To limit the scope of the
evaluation, we focus on the code snippets found in Listing 6.1 and Listing 6.2.

Listing 6.1: The code snippet from VerifyPin 0,
which does not use hardened Booleans.

1 BOOL byteArrayCompare(UBYTE* a1 ,
UBYTE* a2, UBYTE size) {

2 int i;
3 for (i = 0; i < size; i++) {
4 if (a1[i] != a2[i])
5 return 0;
6 }
7 return 1;
8 }
9

10 BOOL verifyPIN () {
11 ...
12 if (byteArrayCompare(

g_userPin , g_cardPin ,
PIN_SIZE) == 1) {

13 // Authenticated
14 } else ...
15 }
16

Listing 6.2: The code snippet from VerifyPin 1,
which uses hardened Booleans.

1 BOOL byteArrayCompare(UBYTE* a1 ,
UBYTE* a2 , UBYTE size) {

2 int i;
3 for (i = 0; i < size; i++) {
4 if (a1[i] != a2[i])
5 return BOOL_FALSE;
6 }
7 return BOOL_TRUE;
8 }
9

10 BOOL verifyPIN () {
11 ...
12 comp = byteArrayCompare(

g_userPin , g_cardPin ,
PIN_SIZE);

13 if (comp == BOOL_TRUE) { {
14 // Authenticated
15 } else ...
16 }

The main difference between Listing 6.1 and Listing 6.2 can be seen in lines 5 and 7.
In these lines, 0 is replaced with BOOL_FALSE and 1 is replaced with BOOL_TRUE, which
represent the hardened Booleans. When analyzing the programs, we have determined
that the privileged points are the if-statements in the verifyPIN function, as they check
whether the PIN was correct. Therefore, a successful attack can occur when the incorrect
PIN is given, but the value returned from byteArrayComare is equal to the value in the
condition of the if-statement in the verifyPIN function.

The result of running BitflipperVild on these two versions of VerifyPIN can be seen in
Listing 6.3 and Listing 6.4. The results show that there are multiple possibilities where
an attack can lead to VerifyPIN 0 being vulnerable due to the lack of hardened Booleans.
In the RISC-V code corresponding to the above code snippets, the registers a4 and a5
correspond to the two values being compared. Therefore, we only show the value-sets
for these registers. Furthermore, we only show some of the flipped values, including the
relevant ones that can cause a successful attack.

6.4. Bitflip Analysis 45 of 63 Chapter 6. Evaluation

Listing 6.3: The result from analyzing VerifyPin 0.

a4:
<ValueSet(None: {0, 1})>
<ValueSet ((184 , 185): { -2147483648 , 1 ...}) >
<ValueSet ((241 , 242): { -2147483648 , 1 ...}) >
<ValueSet ((250 , 254): { -2147483647 , 0, ...}) >
<ValueSet ((269 , 271): { -2147483648 , -2147483647 , 0, 1, ...}) >

a5:
<ValueSet(None: {1})>
<ValueSet ((271 , 271): { -2147483647 , 0, ...}) >

Listing 6.3 shows the results achieved for VerifyPIN 0 at the label corresponding to the
privileged point. The non-flipped value can either be 0 or 1 since we include both the case
where the correct PIN is given, as well as the case where it is incorrect. To check whether
an injection attack is possible, we assume that the entered PIN is incorrect. Furthermore,
to successfully attack the program, either register a4 should be flipped to 1, or a5 should
be flipped to 0. Based on our results these two cases are both possible.

Register a5 can be flipped to 0 at label 271, which is part of the RISC-V instructions making
up the instruction in line 12 in Listing 6.1. It is only possible to flip it at a single label since
the value is loaded into the register just before it is used.

The register a4 can be flipped to 1 at labels 184-185, 241-242, and 269-271. The instructions
at labels 184-185 and 241-242 correspond to line 5 in the source code, and consists of a li
and j instruction in the RISC-V code. The labels 269-271 correspond to the value in the
if-statement, which consists of the instructions fetching the contents of the return register,
as well as the instruction assigning the value 1 to register a5. The labels 250-254 are not
relevant, since they represent when the value is flipped from 1, indicating a correct PIN
was entered. If this value is flipped from 1, it is not classified as an attack, as none of the
attack conditions are met.

The shortened result of running BitflipperVild on VerifyPIN 1 can be found in Listing 6.4.
As seen in Listing 6.4, the value 170 cannot be flipped to 85 in register a5, since it is not
included in the flipped values for label 274 at the privileged point. Furthermore, it is not
possible to flip 85 to 170 in register a4, as seen in the values of the value-set for label
185-186.

Listing 6.4: The result from analyzing VerifyPin 1.

a4:
<ValueSet(None: {170, 85})>
<ValueSet ((185 , 186): {21, 4181, 134217813 , 65621 , 1073741909 , 213,

262229 , 536870997 , -2147483563 , 341, 2097237 , 69, 81, 84,
268435541 , 33554517 , 4194389 , 597, 67108949 , 1109, 8388693 ,
16777301 , 524373 , 131157 , 1048661 , 87, 93, 8277, 2133, 16469 , 117,
32853}) > // From 85

<ValueSet ((242 , 243): {...}) > // From 170
<ValueSet ((251 , 255): {...}) > // From 170
<ValueSet ((271 , 271): {...}) > // From 170 or 85

6.4. Bitflip Analysis 46 of 63 Chapter 6. Evaluation

<ValueSet ((273 , 274): {...}) > // From 170 or 85

a5:
<ValueSet(None: {170}) >
<ValueSet ((274 , 274): {138, 162, 168, 65706 , 2218, 8362, 131242 ,

262314 , 16554 , 1073741994 , 536871082 , -2147483478 , 174, 171,
16777386 , 186, 42, 4266, 8388778 , 4194474 , 524458 , 2097322 ,
1048746 , 33554602 , 268435626 , 134217898 , 67109034 , 32938, 426,
682, 234, 1194}) >

Based on the above, BitflipperVild shows that programs without hardened Booleans are
susceptible to this kind of bitflip attack, as it is possible to enter the privileged point for
VerifyPIN 0 and not in VerifyPIN 1. Thus, the effect of the countermeasure applied by
VerifyPIN 1 is visible in our analysis.

6.4.2 Fixed-time loop

The second countermeasure we examine is fixed-time loop. This countermeasure checks
whether the number of iterations of a loop is correct. As seen in Listing 6.5, it checks
whether variable i in byteArrayCompare has been incremented to be equal to size in
VerifyPIN 2.

Listing 6.5: The code snippet from VerifyPin 2, which uses fixed-time loop.

1 BOOL byteArrayCompare(UBYTE* a1 , UBYTE* a2, UBYTE size) {
2 int i;
3 BOOL status , diff = BOOL_FALSE;
4 for (i = 0; i < size; i++) {
5 if (a1[i] != a2[i])
6 diff = BOOL_TRUE;
7 }
8 if (i != size)
9 countermeasure ();

10 if (diff == BOOL_FALSE)
11 status = BOOL_TRUE;
12 else
13 status = BOOL_FALSE;
14 return status;
15 }
16
17 void countermeasure () {
18 g_countermeasure = 1;
19 }

As mentioned in section 3.3, we unroll all loops in the program being analyzed. Therefore,
to check whether we can discover this type of bitflip attack, we first need to check whether
we have exited the loop prematurely. Secondly, if this is the case we need to check whether
the condition in line 8 leads to the countermeasure being be false. The results achieved
from analyzing VerifyPIN 2 using BitflipperVild can be seen in Listing 6.6.

6.4. Bitflip Analysis 47 of 63 Chapter 6. Evaluation

Listing 6.6: The result from analyzing VerifyPin 2.

a4:
<ValueSet(None: {0, 1, 2, 3, 4})>
... // Flips before first check
<ValueSet (((197 , 198): {4, ...})>
... // Flips before second check
<ValueSet ((216 , 217): {5, ...})>
... // Flips before third check
<ValueSet ((235 , 236): {6, ...})>
... // Flips before fourth check
<ValueSet ((254 , 255): {7, ...})>
... // Flips before fifth check
<ValueSet ((273 , 274): {5, ...})>

a5:
<ValueSet(None: {4})>
<ValueSet ((183 , 189): {0, -2147483644}) >
<ValueSet ((196 , 198): { -2147483644}) >
<ValueSet ((215 , 217): {0, -2147483644}) >
<ValueSet ((234 , 236): {0, -2147483644}) >
<ValueSet ((253 , 255): {0, -2147483644}) >
<ValueSet ((272 , 274): {0, -2147483644}) >
<ValueSet ((307 , 310): {0, -2147483644}) >

Listing 6.6 shows the value-sets of register a4 and a5 for the "dummy" node, which con-
tains the possible values when the loop is terminated prematurely. Register a5 contains
the size variable, whereas register a4 contains the variable i. Based on the value-sets in
register a5, it is possible to terminate the loop when the value is flipped from 4 to either
0 or -2147483644 since these are the only values that are less than or equal to the values
in {0, 1, 2, 3, 4}. Thus, for each iteration, a flip can occur at the labels seen in Listing 6.6 at
register a5. A bitflip can also occur in register a4, which flips one of the values 0, 1, 2, 3, or
4 to be equal to or greater than 4. This will also result in the loop terminating prematurely.

However, due to the countermeasure, seen in Listing 6.5 at line 9, not all the described
attacks will be successful. This is because the value stored in register a4 needs to be equal
to the value in a5. If a bitflip occurs in register a5, it will only be equal to the value in
register a4 if it is flipped during the first iteration and is flipped to zero. Thus compared
to a version without the countermeasure, the labels where a bitflip can lead to a successful
attack are reduced to 183 - 189.

For register a4, the number of possible program points where a bitflip leads to a successful
attack is also reduced. Since we only allow one bitflip, register a4 needs to be exactly 4
when terminating the loop to ensure that it is equal to the value in register a5. Thus, the
loop needs to be terminated before the first iteration, since the only value in {0, 1, 2, 3, 4}
that can be flipped to 4 with a single bitflip is 0. This can be seen in the four value-sets
in Listing 6.6. The first one contains 4, while the remaining value-sets for the other checks
contain 5, 6, 7, and 5 as the smallest value, respectively.

When examining the possible values for the false-node of the fixed-time loop countermea-

6.4. Bitflip Analysis 48 of 63 Chapter 6. Evaluation

sure at line 8 in Listing 6.5, BitflipperVild arrives at the same conclusion. The value-sets
for this node can be seen in Listing 6.7. Thus, to avoid the countermeasure, the values in
registers a4 and a5 both need to be either 0 or 4.

a4:
<ValueSet(None: {0, 4})>
<ValueSet ((212 , 213): {4})>
<ValueSet ((231 , 232): {4})>
<ValueSet ((250 , 250): {4})>
<ValueSet ((277 , 278): {4})>

a5:
<ValueSet(None: {4})>
<ValueSet ((183 , 189): {0})>
<ValueSet ((276 , 278): {0})>
<ValueSet ((307 , 310): {0})>

Listing 6.7: The result from analyzing VerifyPin 2. The snippet is for the instruction at line 8 in Listing 6.5.

Based on these observations, the fixed-time loop countermeasure only reduces the number
of possible successful bitflip attacks in byteArrayCompare. It does not completely remove
the vulnerability. Our tool is able to catch these vulnerabilities, as it can determine at
which labels a bitflip can occur, resulting in a premature termination of a loop that also
skips the countermeasure.

6.4.3 Inlined Functions

Another way that a FISSC countermeasure improves the robustness of the programs is by
changing the features of the program by inlining functions. Since VerifyPIN 3 implements
this programming feature, the function byteArrayCompare does not exist and its body is
instead part of the function verifyPIN. This improves the robustness since the omission
of functions avoids passing parameters, which could be targeted by an injection attack [9].
To examine whether our tool is capable of detecting this type of vulnerability, we compare
the analysis of versions 2 and 3.

After running BitflipperVild on both VerifyPIN 2 and 3, we found that the number of labels
at which a bitflip could occur in register a4 for version 2 is higher than for version 3. More
specifically, for version 2 there were nine different labels at which a bitflip could affect
the value in register a4, whereas there were only four different labels in version 3. This is
because the value is stored in the return register, a0, and afterward loaded into register a4
from a0, which introduces five more instructions, increasing the risk of a bitflip occurring.
Based on this, our tool is able to detect that there is a higher risk when functions are not
inlined.

6.4.4 PTC Decremented First and Backup

VerifyPIN uses a global variable called PTC, which keeps track of how many tries the
user has used to enter a correct PIN. A bitflip can occur in the try counter, such that the
attacker obtains more than the specified number of tries. In theory, if the PIN was of size
four and the attacker had 10,000 tries, they would at some point guess the correct PIN
if they systematically try all PIN combinations. Because these countermeasures focus on

6.4. Bitflip Analysis 49 of 63 Chapter 6. Evaluation

the second condition for a successful attack, we will concentrate on this condition when
analyzing the vulnerabilities.

VerifyPIN 3 does not implement any countermeasures that prevent an attack directed at
the PTC. When running BitflipperVild on VerifyPIN 3, we can see that the variable is saved
as a byte. This means that the largest signed value it can contain is 127. However, as the
PTC variable is 2 after being decremented once, the largest value it can be flipped to is 66.
Moreover, as only one bitflip can occur, it is only possible to get 66 additional tries, which
might not be enough to guess the correct PIN. If the try counter is flipped when it is 0 or
1 instead, the largest values would be 64 and 65, respectively. Even though the try counter
can not be flipped to a value close to 10,000, it does still increase the vulnerability of the
code.

VerifyPIN 4 implements two countermeasures to combat this vulnerability. The first coun-
termeasure starts the verification by decrementing the try counter. The second counter-
measure creates a backup copy of the try counter. This is used to continuously check
whether the try counter and its backup are the same, preventing vulnerabilities caused by
a bitflip in the try counter. The implementation of the backup try counter can be seen in
Listing 6.8.

Listing 6.8: The two comparisons to the backup try counter at the start of verifyPIN

1 BOOL verifyPIN () {
2 ...
3 if (g_ptc > 0) {
4 if (ptcCpy != g_ptc) countermeasure ();
5 g_ptc --;
6
7 if (g_ptc != ptcCpy -1) countermeasure ();
8 ptcCpy --;
9 ...

10 }
11 }

When analyzing VerifyPIN 4 with BitflipperVild, we found that the PTC backup counter-
measure makes the program more robust, as it is not possible to flip a bit in the g_ptc
variable without triggering the countermeasure. This is due to the multiple checks made
to ensure that the PTC backup and the actual PTC are always the same, as seen in lines
4 and 7. Our tool shows that there are fewer bitflip vulnerabilities in VerifyPIN 4 com-
pared to VerifyPIN 3, as it is not possible to increase the try counter with a single bitflip
in version 4.

6.4.5 Loop Counter

The countermeasure enforcing a loop counter checks the number of times a loop has been
iterated through when verifying the PIN. In FISSC, this is achieved by including a variable,
loop_counter, which is incremented at the end of each loop iteration. This countermea-
sure is only able to make the program more robust if it is used in combination with the

6.4. Bitflip Analysis 50 of 63 Chapter 6. Evaluation

fixed-time loop countermeasure. Therefore, after the loop has terminated both the variable
i, which is used in the for-loop and the loop_counter are compared to the size variable.
Thus, all three variables need to be equal to the same integer. VerifyPIN 4 implements
these countermeasures and after running the analysis we achieved the following results.

Listing 6.9: The value-sets for registers a4 and a5
at the label comparing the loop counter with size.

a4: // loop_counter
<ValueSet(None: {0, 4})>
<ValueSet ((240 , 241): {4})>
<ValueSet ((262 , 263): {4})>
<ValueSet ((284 , 284): {4})>
<ValueSet ((316 , 318): {4})>

a5: // size
<ValueSet(None: {4})>
<ValueSet ((317 , 318): {0})>

Listing 6.10: The value-sets for registers a4 and a5
at the label comparing the variable i with size.

a4: // i
<ValueSet(None: {0, 4})>
<ValueSet ((243 , 244): {4})>
<ValueSet ((265 , 266): {4})>
<ValueSet ((287 , 287): {4})>
<ValueSet ((321 , 323): {4})>

a5: // size
<ValueSet(None: {4})>
<ValueSet ((322 , 323): {0})>

Listing 6.9 shows the value-sets for registers a4 and a5 at the instruction which skips the
call to the countermeasure function when comparing loop_counter and size. Listing 6.10
shows the value-sets at the instruction which skips the countermeasure function when
comparing i and size. As seen, the value-sets for these two instructions are identical,
aside from the labels. They both indicate that the countermeasure call can be skipped if
the loop iterates the right amount of times or if a flip occurs in register a4 from 0 to 4 or
in register a5 from 4 to 0.

However, the values in a4 refer to different variables. Thus, if the value in a4 referring
to i is flipped to 4, it is not possible to also skip the countermeasure for loop_counter,
since we assume that only one bitflip can occur. Therefore, it is only possible to perform a
successful attack if register a5 is flipped to 0, as both the loop_counter and i are initialized
to 0.

In short, this countermeasure does not prevent a successful attack with a single bitflip
completely but prevents more attacks compared to a version without the loop counter.
Thus, BitflipperVild is able to detect this type of vulnerability.

6.4.6 Double Calls

Another way of making a program more robust towards bitflips is to call the critical func-
tion twice. This results in it being necessary to perform an attack twice to meet the con-
ditions for a successful attack. In VerifyPIN 5, the critical function is byteArrayCompare
and this is therefore called twice. Both of the calls need to return true for the PIN to be
accepted and provide access to the privileged point.

As observed in subsection 6.4.2, to successfully attack the program by skipping the critical
part in byteArrayCompare, a bitflip should occur either in the size variable or in the
variable i. Therefore, as we call the byteArrayCompare function twice, it is only possible

6.4. Bitflip Analysis 51 of 63 Chapter 6. Evaluation

to prematurely terminate the loop in one of the instances of this function. The variable
size is a parameter that is passed to the byteArrayCompare function. In RISC-V, a constant
is an immediate, which is loaded into a register using instructions, such as li and lui.
Therefore, it is not possible to flip the size before it is passed to the functions.

A scenario where a successful attack would be possible using a single bitflip would be if
the size variable was called by reference, meaning that the size variable at the location
of the callee would be updated by reference with the flipped value. However, this would
defeat the purpose of having the double call countermeasure.

To test whether this countermeasure makes VerifyPIN more robust, we have run our tool
on VerifyPIN 5. We found that our assumptions were correct, as a bitflip must occur in
both function instances to perform a successful attack. This is not allowed since we assume
that only one bitflip can occur. As the results of BitflipperVild reflect this, we deem our
tool able to detect this type of vulnerability.

6.4.7 Limitations

Based on the above analysis and evaluation, we can see that BitflipperVild can detect
vulnerabilities in versions 0-5 of the FISSC programs. We have thus shown that our tool can
find vulnerabilities caused by single bitflip attacks. However, more advanced attacks that
change the control flow or perform multiple bitflips are not supported by BitflipperVild.

As mentioned, one limitation is that we cannot detect injection attacks where a bitflip
affects the control flow. This is because it would require analyzing changes in the CFG,
which is not part of our scope, see section 3.3. Thus, BitflipperVild cannot show that the
countermeasures double test and step counter prevent attacks. To support the detection of
attacks that should be prevented by these countermeasures, it would require constructing a
new domain which applies our bitflip analysis on the destination for control flow transfers.
This analysis would create all possible CFGs for a given bitflip.

Another limitation is that the result needs to be interpreted to find vulnerabilities. Thus,
the user needs to have a certain knowledge of the context of the program, as well as an
understanding of different possible bitflip attacks. Moreover, to ensure that the attack is
not a false positive, it is necessary to construct a path that proves that this is not the case.
This can be mitigated by using the interpreter described in section 5.6, but the user still
needs to have some understanding of the program being analyzed.

In our evaluation of the bitflip analysis module, we have used and compared the different
versions of programs found in FISSC to understand the impact of the different counter-
measures. Without the comparison, it might be a challenge to detect and identify vul-
nerabilities. This is due to the countermeasures already defining specific vulnerabilities,
which allows a user to identify which subset of the result they should consider, improving
comprehensibility.

As seen, the requirements in the "bitflip analysis" category are satisfied, as we have shown
that we can detect vulnerabilities in the registers. This is supported by the analyses per-

6.5. Benchmarks 52 of 63 Chapter 6. Evaluation

formed on the VerifyPIN versions. Moreover, as seen in the listings containing the results
of the analysis, the labels at which a bitflip can occur are shown. Thus, both the require-
ments regarding proving countermeasures prevent vulnerabilities, as well as the bitflip
analysis requirements have been fulfilled.

6.5 Benchmarks

To assess the performance of the analysis executed by BitflipperVild, we will in this section
run benchmark tests on our tool. These include both individual tests on each module, as
well as tests on how the tool as a whole performs. These tests were conducted on a
MacBook Pro with 8 GB RAM and an Intel Core i5 with 2,3 GHz. The results can be
seen in Table 6.3, which shows the average runtime of ten iterations for each component
in seconds. Benchmarks tests were not conducted on the interpreter module, as it would
be difficult to compare the different version due to the interpreter requiring a privileged
point.

Assumptions Complete CFG Bitflip analysis Entire analysis
v0 0.03 0.59 15.98 22.13
v1 0.03 0.64 18.79 26.37
v2 0.03 0.80 38.40 43.25
v3 0.03 0.65 24.21 20.40
v4 0.04 1.11 44.21 52.99
v5 0.05 1.47 63.18 75.15
v6 0.04 0.85 24.80 25.94
v7 0.05 2.44 147.9 151.23

Avg 0.04 1.07 47.18 65.93

Table 6.3: The runtime of the different components on the seven versions of VerifyPIN. All results are shown
in seconds.

As seen, the bitflip analysis module spends on average 47.1798 seconds to analyze each
file. Compared with the other modules, which spend at most 1.07 seconds, the majority of
the runtime is due to the bitflip analysis module. This is because the module analyzes the
same nodes several times to ensure that we find a fixed point.

For example, the number of nodes in the CFG for v7 is 565. The number of nodes analyzed
in the CFG recovery module is 1808, while it is 10667 for the bitflip analysis module. This
means that every node in the CFG is analyzed on average 3 times in the CFG recovery
module and 19 times in the bitflip analysis module.

The difference between the modules is also due to the bitflip analysis environment con-
taining a larger amount of values, since the domain includes flipped values. Thus, a
given environment of a program point is more likely to change when a node has multi-
ple predecessors, as this can affect the environment of its successors. This can be seen in
Appendix C.

In Table 6.3, the runtime for the entire analysis can be found. This includes performing
automatic assumption adherence, a complete CFG recovery, and a bitflip analysis. The

6.5. Benchmarks 53 of 63 Chapter 6. Evaluation

connection between the number of calls to the transfer functions and the runtime for each
file can be seen in Figure 6.4, where each point corresponds to a VerifyPIN version.

2,000 4,000 6,000 8,000 10,000 12,000

50

100

150

Number of calls to the transfer functions

R
un

ti
m

e
[s

ec
on

ds
]

Results
linear Regression: R2 = 0.964

Figure 6.4: A linear regression plot showing the correlation between number of analyzed nodes and the
runtime of BitflipperVild

It can be seen that there is linear growth when comparing runtime with calls to the transfer
functions. VerifyPIN 7 spends approximately 2.5 minutes performing the entire analysis.
However, this program contains multiple calls to duplicated countermeasure functions,
which results in a large number of nodes with multiple predecessors being analyzed.
Since different transfer functions have different implementations, the specific runtime for
each instruction will vary. Thus, it is not an exact correlation.

Based on the above, we can see that the runtime is influenced by the amount of calls
to transfer functions, which is influenced by the number of nodes in the given program,
as well as the number of nodes with multiple predecessors. Furthermore, other factors
such as which instructions are analyzed influence the runtime. Given that BitflipperVild
is an analysis tool, we deem that its average runtime of approximately one minute for the
programs in FISSC is acceptable.

54 of 63 Chapter 7. Conclusion

Chapter 7

Conclusion

The problem presented in Chapter 1 addresses bitflip vulnerabilities and states that we
must be able to analyze and find the effect of bitflips on the PIN checkers in FISSC. To
further specify the different aspects of the problem, we have introduced requirements
in section 3.1 necessary to solve the problem. All of these requirements were met, as
concluded in Chapter 6.

The problem was solved by creating the tool BitflipperVild which can analyze RISC-V
programs. This tool is a proof of concept. BitflipperVild can create a CFG based on a set of
RISC-V instructions and then either perform backward slicing or a bitflip analysis on the
CFG. To assist the user in gaining a higher comprehension of the results provided by the
tool, we have also created an interpreter module. This module can find the bitflips which
are able to bypass the authentication indicated by a given privileged point.

To construct BitflipperVild, we have created syntax and semantics describing the RISC-
V instruction set architecture, as well as a fault model describing bitflip vulnerabilities
occurring in registers. Based on these definitions, we have created a value-set analysis, by
utilizing the monotone framework, we have defined the domain to be a complete lattice
following the ascending chain condition and the transfer functions to be monotone.

Using these definitions we have implemented the analysis, which is able to successfully
describe all possible bitflips in the program. However, the approach taken to implement
BitflipperVild is based on assumptions described in section 3.3. These assumptions were
made to reduce the amount of over-approximation produced by the analysis. The scope of
the analysis is reduced to analyze programs found in FISSC, by introducing these assump-
tions. As a consequence, the authenticity of the analysis result is limited when running
the tool on other programs.

As BitflipperVild is a proof of concept, we deem that the assumptions are appropriate for
the stated problem. Furthermore, as seen in Chapter 6, we were able to find bitflips leading
to an authentication bypass in the PIN checkers due to bitflips in the registers. Thus, we
conclude that BitflipperVild successfully addresses the problem stated.

55 of 63 Chapter 8. Future Work

Chapter 8

Future Work

As mentioned in Chapter 7, BitflipperVild is able to address the problem stated in Chap-
ter 1. However, since BitflipperVild is a proof of concept and is based several assumptions,
future work can be performed to widen its scope and make it into a more usable tool. We
therefore discuss ways to relax the assumptions and to scale the solution in this chapter.

8.1 Relaxing Assumptions

An alternative to automatically enforcing the assumptions on a given RISC-V program,
as seen in section 5.1, is to either remove or relax these assumptions instead. This could
involve handling printf and scanf functions, instead of replacing them.

One assumption we can relax is the removal of setup functions. This would make it
possible to calculate the exact addresses where the memory is saved in the heap instead
of using symbolic values. A downside to this relaxation is that it will likely increase the
runtime since more nodes will be a part of the CFG, and we need to calculate the addresses
where the memory is saved for when a STORE instruction is analyzed.

We could also handle loops instead of performing loop unrolling. However, this change
would lead to a larger over-approximation, since we would need to execute the loop ac-
cording to the flipped values to ensure soundness. Thus, we could risk executing the loop
up to 232 times. In our proof of concept, we do not remove this assumption, as this would
cause a less usable result.

Another possible assumption removal would be to also flip the stack and frame pointer.
This would increase the run time. However, bitflips in these registers only affect the
location of the values saved in the memory. As we do not consider this type of fault
model, we do not deem this an essential change to our proof-of-concept. However, if
BitflipperVild was expanded to include this fault model, it would be necessary to remove
this assumption.

8.2 Scaling

To increase the scope of BitflipperVild, it can be expanded with additional extensions.
These include increasing the number of fault models which the tool is compatible with, as

8.2. Scaling 56 of 63 Chapter 8. Future Work

well as the number of ISAs it can analyze.

8.2.1 Fault Models

A way to expand the scope of BitflipperVild is to extend the number of fault models. The
two fault models discussed in this report, which are not included in our tool, are bitflips
in the program counter, the instructions, and the heap.

To include the fault model regarding bitflips in the program counter, we would have to
add a flip function to the transfer function of the CFGDomain. This function needs to take
into account which address the program counter is flipped to. If the address is not a part
of the program scope, then it should not be included in the CFG. However, if the address
that the program counter jumps to, points to a smaller address, it means that it has created
a loop. Assuming that our assumptions are not relaxed at this point, we would have to
loop unroll each time this occurs. As a consequence, this would considerably increase the
complexity of the CFG. Therefore, it would be advantageous if the assumption of loop
unrolling was either relaxed or removed.

To make the analysis compatible with the fault model describing bitflips in the encoding
of an instruction, we would need to implement a new flip function, as well as a new
representation of the nodes in the CFG. The representation would take the encoding as
input, and based on this encoding derive which instruction and registers are used. The
flip function would take the encoding as input, instead of values in registers. Each bit
in the encoding would be flipped and then checked for whether they represent actual
instructions or registers. If this is the case, the transfer function would need to be applied
multiple times for each possible encoding. In cases where the instruction is flipped to a
control flow instruction, a more extensive modification would be required, as this would
have to be reflected in the CFG.

To include compatibility with the fault model describing bitflips in the heap, a new domain
would need to be added. This domain should handle flipping values stored in the heap.
Similar to the domain described in section 5.3, this flip function would be part of the
transfer function and would have a similar implementation as the domain for the current
fault model. This implementation would thus have the same complexity as our current
implementation.

There exist other types of fault models than those mentioned in this report. As we have
implemented BitflipperVild as a modular program, it improves compatibility with other
types of fault models by simplifying the implementation. However, the complexity of
implementing another fault model depends on the properties of the model.

8.2.2 Architectures

Another way of scaling BitflipperVild is to include the 64-bit architecture for RISC-V as
well. This would make it possible to analyze a larger number of programs. However, this
addition will increase the runtime and memory usage of BitflipperVild, as the number of

8.2. Scaling 57 of 63 Chapter 8. Future Work

possible flipped values are increased from 32 to 64. This might require a more efficient
implementation of BitflipperVild.

Moreover, it is also possible to include other types of ISAs. This modification would
increase the usability of our tool, as it would not be limited to a single type of architecture.

This expansion can be achieved in several ways. A naive way to scale the compatibility
with different architectures would be to create new syntax, semantics, and transfer func-
tions for each new ISA included. In the implementation, we would then need to implement
transfer functions for each ISA and then choose which set of transfer functions should be
used in the analysis based on the input. However, this would require a complex imple-
mentation, as well as duplicate code, since the different ISAs have similar instruction sets
and functionalities. In short, this would reduce the reusability of BitflipperVild.

Another way would be to use a similar approach to angr [19], where we would convert
the program to an intermediate representation (IR), which would then be analyzed. This
would entail changing transfer functions to handle our IR instead of the RISC-V code.
Thus, we would also need to define the syntax and the semantics for the IR. For each of
the ISAs, we would need to implement a converter that converts the instructions to our
IR. This would make it straightforward to include a new ISA without having to create a
domain from scratch.

8.2.3 Conventions

Some of the decisions and assumptions made are based on the observed conventions of
the RISC-V programs produced by the cross-compiler [17]. However, not all compilers
create the same output. Furthermore, it is also possible to manually write RISC-V code
without using a compiler, and therefore not follow these conventions. To expand the scope
of BitflipperVild, we could thus generalize these conventions.

One of these conventions is the structure of a RISC-V program. We have observed that
a function is always structured in columns following the order address, instruction en-
coding, instruction, and arguments. However, if this structure is not followed, an error
would occur in our CFG module. To create a more general tool, we could automatically
detect which columns contain the different parts. To identify the columns containing the
instructions and arguments, we could specify a list of possible instructions and regis-
ters. Furthermore, addresses could be detected by comparing multiple lines and checking
whether there is a difference of four between each hexadecimal value. Lastly, the instruc-
tion encoding would be the remaining column, assuming only these parts are included in
the program.

Another convention specifies that all branching instructions jump to instructions within
the same function. This convention allows us to simplify loop unrolling. However, it
would be possible to not adhere to this convention by detecting whether the destination
instruction is within the same function and then creating a special case for branching to
other functions.

8.2. Scaling 58 of 63 Chapter 8. Future Work

Taking these suggestions for future work into consideration, BitflipperVild could have the
potential to be used in a wider range of cases and real-life cases, by expanding its scope
and improving its usability.

Bibliography 59 of 63 Bibliography

Bibliography

[1] About RISC-V. url: https://riscv.org/about/. (accessed: 10.03.2023).

[2] Université Grenoble Alpes. FISSC: the Fault Injection and Simulation Secure Collection.
url: https://lazart.gricad-pages.univ-grenoble-alpes.fr/fissc/. (accessed:
18.04.2022).

[3] angr. throwing a tantrum, part 1: angr internals. url: https://angr.io/blog/throwin
g_a_tantrum_part_1/. (accessed: 17.05.2023).

[4] angr-platforms. url: https://github.com/angr/angr-platforms. (accessed: 08.03.2023).

[5] BitlfipperVild GitHub Repository. url: https://github.com/IdaThoft/BitflipperVi
ld. (accessed: 27.04.2023).

[6] Jakub Breier and Xiaolu Hou. “How Practical Are Fault Injection Attacks, Really?”
In: IEEE Access 10 (2022), pp. 113122–113130. doi: 10.1109/ACCESS.2022.3217212.

[7] David Brumley et al. “BAP: A Binary Analysis Platform”. In: Computer Aided Verifica-
tion - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Pro-
ceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes
in Computer Science. Springer, 2011, pp. 463–469. doi: 10.1007/978-3-642-22110-
1_37.

[8] Ida Thoft Christiansen and Lena Said Ernstsen. Static Analysis in RISC-V. 2022.

[9] Louis Dureuil et al. “FISSC: A Fault Injection and Simulation Secure Collection”.
In: Computer Safety, Reliability, and Security - 35th International Conference, SAFECOMP
2016, Trondheim, Norway, September 21-23, 2016, Proceedings. Ed. by Amund Skavhaug,
Jérémie Guiochet, and Friedemann Bitsch. Vol. 9922. Lecture Notes in Computer
Science. Springer, 2016, pp. 3–11. doi: 10.1007/978-3-319-45477-1_1.

[10] Stephen Cole Kleene. Introduction to Metamathematics. Princeton, NJ, USA: North Hol-
land, 1952. doi: 10.2307/2268620.

[11] Anders Møller and Michael I. Schwartzbach. Static Program Analysis. Department of
Computer Science, Aarhus University, https://cs.au.dk/~amoeller/spa/. Oct.
2018.

[12] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program anal-
ysis. Springer, 1999. isbn: 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6.

[13] Colin O’Flynn and Zhizhang (David) Chen. “ChipWhisperer: An Open-Source Plat-
form for Hardware Embedded Security Research”. In: Constructive Side-Channel Anal-
ysis and Secure Design - 5th International Workshop, COSADE 2014, Paris, France, April
13-15, 2014. Revised Selected Papers. Ed. by Emmanuel Prouff. Vol. 8622. Lecture Notes
in Computer Science. Springer, 2014, pp. 243–260. doi: 10.1007/978-3-319-10175-
0_17.

https://riscv.org/about/
https://lazart.gricad-pages.univ-grenoble-alpes.fr/fissc/
https://angr.io/blog/throwing_a_tantrum_part_1/
https://angr.io/blog/throwing_a_tantrum_part_1/
https://github.com/angr/angr-platforms
https://github.com/IdaThoft/BitflipperVild
https://github.com/IdaThoft/BitflipperVild
https://doi.org/10.1109/ACCESS.2022.3217212
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.2307/2268620
https://cs.au.dk/~amoeller/spa/
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17

Bibliography 60 of 63 Bibliography

[14] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. “Error detection by
duplicated instructions in super-scalar processors”. In: IEEE Trans. Reliab. 51.1 (2002),
pp. 63–75. doi: 10.1109/24.994913.

[15] Jens Palsberg and Christina Pavlopoulou. “From Polyvariant flow information to in-
tersection and union types”. In: Journal of Functional Programming 11.3 (2001), pp. 263–
317. doi: 10.1017/S095679680100394X.

[16] PyVEX. url: https://github.com/angr/pyvex. (accessed: 27.09.2022).

[17] riscv-gnu-toolchain. url: https://github.com/riscv-collab/riscv-gnu-toolchain.
(accessed: 4.11.2022).

[18] Yan Shoshitaishvili et al. “Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware”. In: 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015. The
Internet Society, 2015. url: https://www.ndss-symposium.org/ndss2015/firma
lice-automatic-detection-authentication-bypass-vulnerabilities-binary-
firmware.

[19] Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive Techniques in
Binary Analysis”. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016. IEEE Computer Society, 2016, pp. 138–157. doi: 10.1109/SP.
2016.17.

[20] State of IoT 2022: Number of connected IoT devices growing 18% to 14.4 billion globally.
url: https://iot-analytics.com/number-connected-iot-devices/. (accessed:
8.03.2023).

[21] V4:Tutorial A2 Introduction to Glitch Attacks (including Glitch Explorer). url: https:
//wiki.newae.com/index.php?title=V4:Tutorial_A2_Introduction_to_Glit
ch_Attacks_(including_Glitch_Explorer)&mobileaction=toggle_view_mobile.
(accessed: 24.05.2023).

[22] Andrew Waterman and Krste Asanović, eds. The RISC-V Instruction Set Manual, Vol-
ume I: User-Level ISA. Version 2.2. RISC-V Foundation. May 2017.

https://doi.org/10.1109/24.994913
https://doi.org/10.1017/S095679680100394X
https://github.com/angr/pyvex
https://github.com/riscv-collab/riscv-gnu-toolchain
https://www.ndss-symposium.org/ndss2015/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
https://www.ndss-symposium.org/ndss2015/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
https://www.ndss-symposium.org/ndss2015/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://iot-analytics.com/number-connected-iot-devices/
https://wiki.newae.com/index.php?title=V4:Tutorial_A2_Introduction_to_Glitch_Attacks_(including_Glitch_Explorer)&mobileaction=toggle_view_mobile
https://wiki.newae.com/index.php?title=V4:Tutorial_A2_Introduction_to_Glitch_Attacks_(including_Glitch_Explorer)&mobileaction=toggle_view_mobile
https://wiki.newae.com/index.php?title=V4:Tutorial_A2_Introduction_to_Glitch_Attacks_(including_Glitch_Explorer)&mobileaction=toggle_view_mobile

61 of 63 Appendix A. RISC-V Registers

Appendix A

RISC-V Registers

The registers mentioned in Chapter 2 are defined in Table A.1. The table is copied directly
from our previous work [8].

Register name Assembly name Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / alternate link register
x6-7 t1-2 Temporary register
x8 s0/fp Saved register (frame pointer)
x9 s1 Saved register
x10-11 a0-1 Function argument / return value registers
x12-17 a2-7 Function argument registers
x18-27 s2-11 Saved registers
x28-31 t3-6 Temporary registers

Table A.1: Mapping from register names to names produced by the compile. [22]

62 of 63Appendix B. Semantic Evaluation Functions

Appendix B

Semantic Evaluation Functions

To keep our semantic definitions generic in section 2.2, we use semantic evaluation func-
tions to describe the semantics of the different specific instructions. Below the semantic
evaluation for all arithmetic and logical operations, OP, can be found.

JADDK(v1, v2) ≜ v1 +32 v2

JSUBK(v1, v2) ≜ v1 −32 v2

JSLLK(v1, v2) ≜ v1 << v2

JSRLK(v1, v2) ≜ v1 >> v2

JSRAK(v1, v2) ≜ v1 >> v2

JANDK(v1, v2) ≜ v1 & v2

JORK(v1, v2) ≜ v1 | v2

JXORK(v1, v2) ≜ v1 ⊕ v2

JSLTK(v1, v2) ≜ v1 < v2

JSLTUK(v1, v2) ≜ v1 < v2

Below the semantic evaluation for all immediate operations OPI, can be found.

JADDIK(v, imm) ≜ v +32 imm
JSUBIK(v, imm) ≜ v −32 imm
JSLLIK(v, imm) ≜ v << imm
JSRLIK(v, imm) ≜ v >> imm
JSRAIK(v, imm) ≜ v >> imm
JANDIK(v, imm) ≜ v & imm
JORIK(v, imm) ≜ v | imm
JXORIK(v, imm) ≜ v ⊕ imm
JSLTIK(v, imm) ≜ v < imm
JSLTIUK(v, imm) ≜ v < imm

Below the semantic evaluation functions for all comparison operations, CMP, can be found.

JBEQK(v1, v2) ≜ v1 = v2

JBNEK(v1, v2) ≜ v1 ̸= V2

JBLTK(v1, v2) ≜ v1 < v2

JBLTUK(v1, v2) ≜ v1 < v2

JBGEK(v1, v2) ≜ v1 ≥ v2

JBGEUK(v1, v2) ≜ v1 ≥ v2

63 of 63 Appendix C. Benchmark results

Appendix C

Benchmark results

To show the relation between the number of calls to the transfer function compared with
the number of nodes and predecessors, we have included the following table. This table is
used in section 6.5.

No. of calls to the transfer functions No. of nodes No. of predecessors
v0 2218 294 8
v1 2490 317 10
v2 3049 321 15
v3 3478 336 15
v4 3992 344 20
v5 5376 393 24
v6 6222 477 16
v7 12475 565 28

Table C.1: A table comparing the number of calls to the transfer functions in both the CFG recovery and
bitflip analysis modules with the number of nodes in the CFG and the number of nodes with more than one
predecessor.

	Front page
	Contents
	Preface
	1 Introduction
	2 Formalizing RISC-V
	2.1 RISC-V
	2.2 Syntax and Semantics
	2.3 RISC-V Conventions

	3 Scope
	3.1 Requirements
	3.2 Existing Tools
	3.3 Assumptions

	4 Value-set Analysis
	4.1 Monotone Framework
	4.2 Domain and Environment
	4.3 Transfer Functions
	4.4 Application of VSA

	5 Implementation
	5.1 Automatic Adherence to Assumptions
	5.2 Worklist
	5.3 Domain
	5.4 CFG Recovery
	5.5 Backward Slicing
	5.6 Interpreter

	6 Evaluation
	6.1 General Requirements
	6.2 CFG Recovery
	6.3 Backward Slicing
	6.4 Bitflip Analysis
	6.5 Benchmarks

	7 Conclusion
	8 Future Work
	8.1 Relaxing Assumptions
	8.2 Scaling

	Bibliography
	A RISC-V Registers
	B Semantic Evaluation Functions
	C Benchmark results

