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Synopsis:

Current fatigue assessment of welded joints is
based on fatigue curves in which several effects
known to influence the fatigue strength, such as
the weld geometry, residual stresses, and material
variations are included. The present work aims
to investigate the influence of including the weld
geometry, as obtained by laser scanning, on
uncertainty in fatigue assessment.

The investigation involves 33 butt welds in
S690 and 32 butt welds in S960, subjected to
low cycle fatigue. Laser scanning is conducted
on each specimen to construct a finite element
model incorporating the actual weld geometry.
Various fatigue indicators are explored to assess
their effectiveness in reducing fatigue uncertainty,
combined with a nonlocal model to account
for the stress distribution. Using a Weibull
distribution based on the weakest-link theory, the
performance of the fatigue indicators in reducing
uncertainty is evaluated.

The highly stressed volume nonlocal model
with maximum principal stress exhibited the
lowest uncertainty, with scatter indices of 3.69 for
S690 and 3.63 for S960, compared to higher values
of 5.11 and 8.42 for the nominal stress approach,
respectively. These findings demonstrate the
influence of weld geometry on uncertainty in
fatigue assessment of butt welded joints.

The study also reveals a relationship between
the local stress and weld toe radius, demonstrat-
ing an exponential stress-raising effect as the weld
toe radius decreases. However, the influence of
other geometric weld features on local stress could
not be explicitly distinguished due to a lack of
clear correlation.
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Abstract

Dette kandidatspeciale er udført som den afsluttende del af kandidatuddannelsen, Design
af Mekaniske Systemer ved Det Ingeniør- og Naturvidenskabelige Fakultet på Aalborg
Universitet.

Projektet omhandler den statistiske usikkerhed, der observeres når svejste emner
udmattelsestestes. Formålet med projektet er at undersøge, om det er muligt at
reducere denne usikkerhed ved at inkludere den faktiske svejsegeometri i numeriske
modeller. Hertil undersøges en række forskellige udmattelsesindikatorer med henblik på
at finde den største reduktion af usikkerhed. Udmattelsesindikatorerne er undersøgt i
kombination med både local og nonlocal modeller, hvortil de nonlocal modeller kan medtage
spændingsgradienterne nær svejsetåen. Der tages udgangspunkt i weakest-link metoden,
der understøtter den statistiske tilgang. Metoden tager udgangspunkt i Weibullfordelingen.
Derudover ønskes det også undersøgt, om en sammenhæng mellem de svejsegeometriske
mål og den resulterende strukturelle respons kan etableres, med henblik på at etablere et
sammenhæng mellem geometriske mål og udmattelsesstyrke.

Simuleringer og eksperimentelt arbejde tager udgangspunkt i en række svejste prøveemner
fremstillet i henholdsvis stål S690 og S960. Prøveemnerne er fremstillet som stumpsøm.
Testemnerne er i forbindelse med forfatternes 3. semester blevet udmattelsestestet og de
tilhørende eksperimentelle resultater kendes derved.

Inden udmattelsestesten blev prøveemnernes svejsegeometri målt med laserscanningste-
knologi, som danner en 3D punktsky af den scannede svejsning. Gennem en behan-
dlingsproces omdannes de rå punktskyfiler til CAD-modeller, der kan benyttes i det kom-
mercielle program ANSYS til at løse de numeriske modeller. Dette muliggøre anvendelsen
af en række forskellige udmattelsesindikatorer til at reducere den statistiske spredning
sammenlignet med den nominelle spænding, som i almindelighed anvendes.

Baseret på den numeriske behandling af de eksperimentelle forsøg, konkluderes det at den
maksimale hovedspænding med en highly stressed volume model giver den største reduktion
i statistisk usikkerhed. Metoden opnåede et spredningsindeks på 3.69 for S690 og 3.63 for
S960, mens den nominelle spændingstilgang resulterede i højere værdier på henholdsvis
5.11 og 8.42. Disse resultater fremhæver den betydelige indflydelse af svejsegeometrien på
usikkerheden i forbindelse med udmattelsesvurdering af stumpsøm.

vii



Design of Mechanical Systems Abstract

Sammenhængen mellem udmattelsesstyrke og geometri undersøges ved at iagttage
variationen af denne maksimale hovedspænding henover svejsegeometrien på de numeriske
simuleringer. Derved kan de geometriske størrelser fra laserscanninen kobles til den
strukturelle respons for hvert prøveemne.

Der er fundet en eksponentiel sammenhæng mellem den lokale spænding og dens tilhørende
rundingsradius, hvori en mindskende rundingsradius medfører stigning i den lokale
spænding. Der kan ikke etableres en relation for de resterende undersøgte geometriske
størrelser.
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Nomenclature

Abbreviations

εN Strain-Life

CAD Computer aided design

COV Coefficient of variation

FEM Finite element method

FOV Field of view

MLE Maximum likelihood estimation

NURBS Non-uniform rational B-spline

POI Point of interest

SN Stress-Life

Symbols

α Weld toe angle

σ̄ Effective stress

x̄ Arithmetic mean

β Weibull shape parameter

∆σ Stress range

γmax Maximum shear strain

κ Highly-loaded-region exponent,
Curvature

λ Weibull scale parameter

ν Poisson’s ratio

ν ′ Effective Poisson’s ratio

ω0 Cutoff frequency

σ1, σ2, σ3 Principal stress

σAMP Absolute maximum principal stress

σeq Equivalent stress

σH Hydrostatic stress

σnom Nominal stress

σ′
y Cyclic yield strength

τmax Maximum shear stress

θ Weibull location parameter,
Auxiliary angle

ε1, ε2, ε3 Principal strain

εAMP Absolute maximum principal strain

εeq,e Equivalent elastic strain

εeq,p Equivalent plastic strain

εeq,tot Equivalent total strain

εnom Nominal strain

A Basquin slope

A0 Reference area

A90 Highly loaded area

B Basquin intersection

b Weld width,
Roller distance

c Arc length

E Young’s modulus
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F Force

h Excess weld height

I Second moment of area

k Undercut

K ′ Cyclic material strength

L Length

N Lifetime

n Normal vector

n′ Cyclic strain hardening exponent

r Weld toe radius

R2 Coefficient of determination

ReH Upper yield strength

ReL Lower yield strength

Sut Ultimate tensile strength

std Standard deviation

T Tangent vector

t Thickness

TN Scatter index

V0 Reference volume

V90 Highly loaded volume

w Strain energy density, Width

x, y, z Cartesian coordinate

Y Lemaitre criterion
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1 Introduction

This project will examine the weld geometry’s influence on the fatigue uncertainty for butt
welded joints by explicitly incorporating the weld geometry in a finite element analysis and
establish what, if any, geometrical measurements influence the uncertainty. The project
is an extension of the experimental work conducted by the authors’ 9th semester project.
This chapter will detail the purpose of this report and present the current contributions
that have formed the basis of knowledge. Additionally, the authors’ 9th semester project
will be summarised to inform the reader of the empirical results which forms the basis of
this work.

1.1 Purpose

Current fatigue assessment of welded joints, as presented by Hobbacher (2016), is based
on fatigue curves in which several effects known to influence the fatigue strength, such as
the weld geometry, residual stresses, and material variations are included. These factors
contribute to the significant scatter observed in welded details and introduce a high level
of uncertainty compared to machined components. Consequently, any modeling approach
relying on such data is also characterised by significant statistical variance, which limits
its effectiveness in accurately predicting fatigue life.

With advances in 3D laser scanning technology and computational power, it has become
possible to model actual weld geometries. The present work aims to investigate the
influence of including the weld geometry, as obtained by laser scanning, on uncertainty
in fatigue assessment. The assessment of uncertainty will be conducted for eight different
fatigue indicators, and applied to both local and nonlocal models. To account for the
uncertainty due to geometrical weld features, a probabilistic model is applied to understand
the scatter. An investigation into the effects of the geometrical features and their specific
influence on the fatigue indicators is warranted to document any relation between the two.
Establishing a potential link will enable the assessment of fatigue performance based on
geometrical measurements.
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1.2 Current Contributions

Hou (2007) was the first to investigate the effects of weld geometry using a laser scanned
model of the real weld geometry and found that the major crack location was correlated
with plasticity of the weld toe. Since then, numerous authors have employed the approach
of using 3D scanning to obtain models of the local weld geometry.

Schork et al. (2018) established the distribution of weld geometry measurements by laser
scanning and their influence on the fatigue strength for different joints. No correlation
between the weld toe radius and angle to the crack initiation site was found.

Stenberg et al. (2018) assessed the fatigue life of laser scanned fillet welds of structural
and high-strength structural steel, and found that the fatigue performance was not only
influenced by the weld geometry parameter but also the difference in material.

Lang and Lener (2016), Niederwanger et al. (2020), and Hultgren et al. (2022) applied the
concept of the weakest-link theory by Weibull (1951) to further reduce scatter in fatigue
results for welded joints.

Lang and Lener (2016) reduced scatter of welded fatigue data when combing the laser
scanned geometry with a probabilistic model.

Niederwanger et al. (2020) found that no improvement in fatigue scatter was obtained
when considering the local weld geometry in comparison to an idealised weld geometry for
linear elastically loaded welded cruciform joints.

Hultgren et al. (2022) found a reduction in the variation of fatigue scatter when modelling
the local geometry and established that the local stress at the weld toe is highly influenced
by the surrounding geometry.

Both Niederwanger et al. (2020) and Hultgren et al. (2022) also applied the concept of a
highly stressed region to include the effects of the stress gradients at the weld toe.

Stenberg et al. (2012) studied the available methods of evaluating the geometrical features
of a weld and determined the sensitive nature of the manual processes. An algorithm for
obtaining the geometrical measurements based on laser scanning was proposed and studied
for T-joints.

Schubnell et al. (2019) presents a round-robin study of different digital methods for
computing the weld toe radius and weld toe angle for both T- and butt joints based
on laser scan data. Both manual and algorithmic methods were investigated, and a fully
automated algorithm is proposed.

Renken et al. (2021) presents an algorithm for obtaining the weld toe radius and performs
a statistical evaluation of each weld feature for a fillet weld. Recommendations for the
resolution of the laser scanning setup is also provided.

2
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1.3 Summary of ’Investigation of Low Cycle Fatigue

Lifetime Assessment in Butt Weld of High Strength

Steels’

This project is an extension of the experimental work conducted by the authors’ 9th

semester project. The purpose of the project was to investigate if butt welded joints
of different high strength steels, structural steels S690 and S960, would have a similar
fatigue strength in low cycle fatigue.

The experimental work consisted of monotonic tensile testing of the base material, laser
scanning of each welded specimen, and stress-based fully reversed fatigue testing in a four-
point bending fixture. A total of 33 specimens of S690 and 32 specimens of S960 were
subject to fatigue testing, producing the SN curve shown in Figure 1.1.

Figure 1.1. SN curve for the nominal stress range for S690 and S960
based on the experimental work by Hermansen and Sørensen (2022) and
an appropriate selected FAT curve for butt welds. (The cyclic material
model and method for calculating the nominal stress range is described in
Chapter 5)

As seen in Figure 1.1, a distinct separation of the data is reported. The specimens
manufactured in S960 generally exhibit a greater fatigue strength compared to that of
the S690. Additionally, the slopes of both data sets display a greater slope in comparison
to the slope of m = 3 for FAT curves. Both of these points are inconsistent with Hobbacher
(2016, Ch. 3.2).
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2 Theoretical Background

This chapter will serve as a baseline for the methods and theory applied. Section 2.1
examines the background for fatigue assessment based on FAT curves. An introduction
to the principle of the weakest-link method is also given. Section 2.2 detail the normal
distribution and its properties when applied to fatigue data. Section 2.3 details the Weibull
distribution and its properties in conjunction with its implementation in fatigue modeling.
Section 2.4 presents the methods for measuring the uncertainty of fatigue. This is used as
a measure of the quality of the fatigue indicator. Section 2.5 introduces relevant fatigue
indicators that are to be used to predict fatigue failure. The fatigue factors are either
stress-, strain-, or energy-based. Section 2.6 presents the geometrical features of a weld
and methods for evaluating said features.

2.1 Established Methods

Methods for assessing high cycle fatigue life of welded joints are well established. Three
commonly used methods are the nominal, hot-spot, and effective notch stress methods.
The nominal approach assumes a nominal geometry of the specimen and calculates nominal
stresses analytically. The hot-spot methods uses the principles of the nominal approach,
but applied for a finite element model, and establishes the nominal stress components
by stress linearization (Niemi, 2003, Ch. 1.1). This method allows for the modelling of
an idealised weld geometry. The effective notch stress methods models an idealised weld
geometry, including the weld toe radius, and computes the maximum stress at the weld
toe (Fricke and Maddox, 2008, Ch. 3.3). (Hobbacher, 2016, Ch. 2.2)

Common for all three methods, is the evaluation of fatigue life based on the relevant FAT
curve (Hobbacher, 2016, Ch. 3.2-3.4). FAT curves are established based on experimental
data of welded components where the fatigue strength is calculated based on a nominal
approach (ECCS, 2018) (Hobbacher, 2016, Ch. 3.2). These FAT curves are obtained for
high cycle fatigue. However, DNVGL-RP-C203 (2016, F.1) states that in the case of low
cycle fatigue N < 10 000, the FAT curves "may be linearly extrapolated to fewer cycles".
DNVGL-RP-C203 (2016) is applicable for offshore steel structures, but the principle of
extrapolation is used in the following. Thus, FAT curves are applied for welded components
in low cycle fatigue applications. As such, the underlying basis for the FAT curves will be
detailed for the commonly applied methods.

5
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Several effects are known to influence the fatigue strength of welded joints. These effects
include the material variation, weld geometry, and residual stresses (Hobbacher, 2016, Ch.
3.2) (Stephens et al., 2001, Ch. 13). All effects are included in the construction of the
FAT curve (Hobbacher, 2016, Ch. 3.2). This will inherently introduce a large degree of
scatter in the experimental data.

When fitting empirical data for the construction of FAT curves, two fundamental
assumption are made. Firstly, the data in a log10(N) vs log10(S) (SN) is assumed
to follow a linear log10− log10 relation as given by Equation (2.1), also known as the
Basquin equation. Secondly, a normal distribution, with input log10(N), is assumed. The
corresponding confidence interval for the fatigue strength is evaluated at N = 2×106 under
the assumption that the distribution is independent of applied stress range as illustrated
in Figure 2.1. (ECCS, 2018, Ch. 5.2)

log10(N) = A log10(S) +B (2.1)

Data

Basquin

Confidence 

bounds

Figure 2.1. Illustrative FAT 90 curve and normal distribution for the fatigue
strength.

Using these assumptions, the basis for stress-based fatigue evaluation is formed. However,
there may be drawbacks in this approach. Firstly, when observing empirical results, the
stress level influences the scatter. At high stress levels the scatter is lower whereas for
lower stress levels the scatter increases (Stephens et al., 2001, Sec. 13.2.1).

Secondly, weld fatigue data does not necessarily have to follow a normal distribution.
The resulting fatigue strength distribution is a product of the distribution of the different
effects which influence the fatigue strength. As such, it would be fair to assume the fatigue
strength distribution approaches a normal distribution based on the concepts of the central
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limit theorem (O’Connor and Kleyner, 2012, Ch. 2.6.1). However, such a distribution has
its limits, primarily in its inherent symmetry.

In the work by Weibull (1951) the concept of weakest-link theory was first introduced. This
theory is based on the concept that the single weakest link in a chain, will cause failure of
the entire chain. Analogous to this, the idea of failure sites in welded joints is introduced.
The number of failure sites increases with increasing load and failure happens when the
weakest site reaches a critical value. In the implementation, the failure sites are assumed
to be mutually independent. In his work, Weibull (1951) demonstrated the applicability of
the Weibull distribution for the fatigue life of a steel component. Similar to Niederwanger
et al. (2020); Hultgren et al. (2022), this work will apply the Weibull distribution for the
fatigue data.

Normal or Weibull Distribution

It is crucial to acknowledge that the process of choosing the correct distribution is no trivial
task. It should be recognised that empirical data may not conform to any theoretical
distribution. This work will not consider what distribution is the appropriate to select for
the underlying data, but instead only consider the result of applying the aforementioned
normal and Weibull distributions.

2.2 Normal Distribution

The probability density function of a normal distribution is given by Equation (2.2).
(O’Connor and Kleyner, 2012, Ch. 2.6.1)

f(x) =
1

σ (2π)1/2
e

−
1

2

(
x− µ

σ

)2


for −∞ < x < ∞ (2.2)

A normal distribution consists of two parameter: (O’Connor and Kleyner, 2012, Ch. 2.6.1)

σ = Scale parameter, equal to the standard deviation.
µ = Location parameter, defines the mean.

The normal distribution is a symmetrical distribution centered about its mean value. The
distribution is thus not able to capture any non-symmetrical data, such as skewed or heavy
tailed data. (O’Connor and Kleyner, 2012, Ch. 2.6.1)

When applied to fatigue data, the limits of the input x is nonphysical in the case of fatigue
strength or life due to its negative lower bound. The input considered, is thus evaluated
using log10 first, such as x = log10(N). This results in limits of 0 ≤ log10(N) < ∞ for
fatigue life. (ECCS, 2018, Ch. 5)
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2.3 Weibull Distribution

The Weibull probability density function is given by Equation (2.3) and the cumulative
density function is given by Equation (2.4) (Weibull, 1951).

f(x) =
β

λ

(
x− θ

λ

)β−1

e

−

x− θ

λ

β


for x ≥ 0 (2.3)

F (x) = 1− e

−

x− θ

λ

β


for x ≥ 0 (2.4)

Equations (2.3) and (2.4) consists of three parameter, hence the name three parameter
Weibull distribution, where: (O’Connor and Kleyner, 2012, Ch. 3.4)

β = Shape parameter (Weibull slope or modulus), slope of the failure line on a
Weibull probability plot.
λ = Scale parameter (characteristic life or strength), is the value at which 63.2% of
specimens will fail.
θ = Location parameter (expected minimum life or strength), defines the start
location of Equations (2.3) and (2.4).

The Weibull distribution has the added benefit of being able to represent different data
distributions as shown in Figure 2.2. (O’Connor and Kleyner, 2012, Ch. 2.6.6) (Rinne,
2009, Ch. 3.2)

• β = 1, becomes an exponential distribution.
• β = 2, λ = 1, becomes a Rayleigh distribution.
• β = 3.5, approximates a normal distribution.

Figure 2.2. Weibull distribution representing other distributions.

Fatigue Strength vs Fatigue Life

The physical interpretation of λ and θ are depended on the input of x (O’Connor and
Kleyner, 2012, Ch. 3.4). In the case of fatigue strength, both parameters are related to

8
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the strength of the specimens. θ will thus provide an endurance limit for the strength, i.e.
no fatigue failure below θ.

A similar interpretation can be established for fatigue life, where applied cycles below
θ would not cause failure. However, a fatigue data set with no run-outs using a three
parameter Weibull, is able to obtain a θ greater than the lowest measured fatigue
strength/life, thus becoming nonphysical. This limits the distribution to a two parameter
Weibull distribution, i.e. θ = 0 in Equations (2.3) and (2.4). In the remainder of this work,
a fatigue life approach is applied, thus the input x is lifetime log10 (N).

2.3.1 Determination of Fatigue-Life Distribution

In order to collectively examine the fatigue-life distribution of fatigue tests conducted
at several different stress levels, the data must be converted to a common stress level
(Weibull, 1961, Ch. 9.2-9.3). This is obtained through the connecting link of stress
and lifetime - the assumed SN model. Several model exists for modelling the SN curve
(Caiza and Ummenhofer, 2011), however, in this work the Basquin equation, presented in
Equation (2.1), will be considered.

By fitting the Basquin equation and obtaining the slope, the observed data can be collapsed
to a common fatigue strength as illustrated in Figure 2.3. In the case of a common fatigue
strength, no consensus is known to the authors1. Niederwanger et al. (2020) considers
the median stress value while Li et al. (2018) considers the maximum stress value. The
value of the common fatigue strength will influences the resulting Weibull distribution. A
median value is chosen as it deemed most representative of the data set as it is insensitive
to extreme values.

It should be noted that the assumption of collapsing the data to a shared fatigue strength,
is necessary due to the single input x for the probability distribution function. However, as
shown by Sinclair and Dolan (1953), the distribution for components subjected to fatigue
is not independent of the applied stress. In such cases, a distribution which inputs both
the strength and lifetime is required. However, such distribution is not be considered in
this work.

2.3.2 Weibull Parameter Estimation

The two most common techniques for obtaining the Weibull parameters are rank regression
(least squares) and Maximum Likelihood Estimation (MLE). Applying both methods
will not necessarily produce the same results. O’Connor and Kleyner (2012, Ch. 3.5)
recommends the use of MLE for large data sets and when data is censored, while
recommending the least squares approach for smaller data set (less than 30). In this
work, a least squares approach is applied as the result of the fit can be measured through
the goodness-of-fit.

1In the case of a common fatigue life, a lifetime of N = 2× 106 as mentioned in Section 2.1 should be
selected as illustrated by Hultgren et al. (2022).
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Figure 2.3. SN curve with Basquin fit and data collapsed at median
strength for a nominal stress approach.

To apply the least squares approach, the cumulative distribution is to be rewritten to a
linear space. Equation (2.4) can be rewritten to Equation (2.5).

1

1− F (x)
= e

x− θ

λ

β

(2.5)

By taking twice the natural logarithm of Equation (2.5), the equation becomes
Equation (2.6).

ln

(
ln

(
1

1− F (x)

))
= β ln (x− θ)− β ln (λ) (2.6)

Equation (2.6) has the linear form y = β x+ b, where

x = ln (x− θ)

y = ln

(
ln

(
1

1− F (x)

))
= ln

(
ln
(
S(x)−1

))
b = −β ln (λ)

In order to solve the system, an estimator for the survival rate S(x) = 1−F (x) is needed.
The Kaplan-Meier estimator is chosen due to its popularity and is calculated based on
Equation (2.7), where n is the total number of data points, and i is the current evaluated
failure point. (Rinne, 2009, Ch. 9.3.2.1)

Si =
n− i

n− i+ 1
Si−1, S0 = 1, for i = 1..n (2.7)

By minimising the least squares, as shown by Equation (2.8), of Equation (2.6), the
parameters for the Weibull distribution are obtained.

min
n∑

i=1

(
yi − y (xi)

)2 (2.8)

Figure 2.4 shows the result of a fitting procedure described for the data shown in Figure 2.3.
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Figure 2.4. Linear fit for obtaining the Weibull parameters for the nominal
stress.

2.3.3 Failure Probability for Two Data Sets

When designing welded joints, based on Hobbacher (2016, Ch. 3.2), no distinction is made
for the tensile strength of the base material. Following this approach, the two data sets,
fatigue life for S690 and S960, should be considered as a combined data set as shown in
Figure 2.3, i.e. resulting in a single set of Basquin and Weibull parameters.

However, as shown in Figure 1.1, a clear distinction between S690 and S960 is apparent for
the nominal stress approach. This figure suggests an offset between the two data sets such
that the difference in material is included in the model. Based on this, another approach
is defined wherein the data sets for S690 and S960 are treated separately, however they
are forced to share an identical Basquin slope A in the log10-log10 system, and also share
an identical Weibull slope β as presented in Li et al. (2018). This corresponds to a shift
in FAT class as prescribed in Hobbacher (2016). This is shown in Figure 2.5a where the
Basquin fit for both S690 and S960 have an identical slope, but different intersections B.

Lastly, it is logical to consider the data sets of S690 and S960 as completely separate sets,
sharing no identical properties. This allows the difference in material to be explicitly
modelled. This approach should yield the best possible fit for each data set as no
restrictions are imposed. In Figure 2.5b the two data sets are complete separate, thus
a unique A and B value for each data set.

By comparing the slope of Figures 2.3 and 2.5, it would suggest for the nominal stress
approach, that the two data sets should have an identical slope but different intersections.
Similarly, this can be extended for the distribution of the given data set, allowing for
distribution with identical slope β or unique slopes. How the data is handled, and which
approach is most applicable, depends on the fatigue indicator being investigated. Figure 2.6
illustrates the different combination considered for the two data sets.
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(a) Identical Basquin slope. (b) Completely separate Basquin slopes.

Figure 2.5. Basquin fit with different data handling approaches.

Two data sets

One data set

Separate

Basquin: 
𝐴𝑆690, 𝐵𝑆690
𝐴𝑆960, 𝐵𝑆960

Weibull:
𝛽𝑆690, 𝜆𝑆690
𝛽𝑆960, 𝜆𝑆960

Shared slopes

Basquin: 
𝐴, 𝐵𝑆690, 𝐵𝑆960

Weibull:
𝛽, 𝜆𝑆690, 𝜆𝑆960

Combined

Basquin: 
𝐴, 𝐵

Weibull:
𝛽, 𝜆

Two data sets

One data set

Basquin: 
𝐴𝑆690, 𝐵𝑆690
𝐴𝑆960, 𝐵𝑆960

Weibull:
𝛽𝑆690, 𝜆𝑆690
𝛽𝑆960, 𝜆𝑆960

Basquin: 
𝐴, 𝐵𝑆690, 𝐵𝑆960

Weibull:
𝛽, 𝜆𝑆690, 𝜆𝑆960

Basquin: 
𝐴, 𝐵

Weibull:
𝛽, 𝜆

Figure 2.6. Approach for data set handling and the resulting Basquin and
Weibull parameters.

2.4 Measurement of Uncertainty

In order to evaluate whether the uncertainty of a given fatigue indicator reduces
the uncertainty, compared to the nominal approach, the fatigue indicator’s correlative
capability is examined through a set of measurements. In this work, this is established by
its scatter index, standard deviation, coefficient of determination for the Basquin fit, and
the Weibull slope.

Scatter Index

The scatter index TN , or scatter range index, is defined as the ratio of the 10-90% quantiles.
The life time value at 10% and 90% quantiles are obtained by evaluating the cumulative
distribution considered as illustrated in Figure 2.7 and Equation (2.9). Thus, it is a measure
of dispersion of the data.

TN =
TN,90%

TN,10%
(2.9)

12



2.4. Measurement of Uncertainty Aalborg University

The quantiles at which the scatter index is evaluated are naturally influenced by the shape
of the distribution. If a heavy-tailed Weibull distribution, such as the case of β = 1 in
Figure 2.2 is considered, the resulting scatter index becomes sensitive to small changes in
β. No standard values for the quantiles are known to the authors. Lang and Lener (2016)
applies a 5-95% quantile range, while Niederwanger et al. (2020) applies a 10-90% quantile
range. In this work, the evaluation of the scatter index is limited to a 10-90% quantile
range.

𝑇𝑁,10% 𝑇𝑁,90%

Figure 2.7. Evaluation of scatter index for a normal distribution.

Standard Deviation

Similar to the scatter index, the standard deviation std is also a measure of the data’s
dispersion. Numerically, it can be obtained by solving the cumulative distribution function
n number of times equidistantly distributed in the interval 0 to 1 and obtaining the
corresponding life time Ni (Niederwanger et al., 2020). The standard deviation is then
calculated by Equation (2.10)2 (Stephens et al., 2001, Ch. 13.1).

std =

√√√√ 1

n− 1

n∑
i=1

|Ni −N |2 (2.10)

When each data set obtains a unique distribution, refer to Figure 2.6, a shifted standard
distribution can be obtained by shifting the Ni vector to a common mean value for each
data set (Niederwanger et al., 2020). Figure 2.8 illustrates the numerical evaluation for
obtaining Ni and shifting the standard deviation of each data set to a common mean value.

2The equation has converged for n = 1000.
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Figure 2.8. Illustrative demonstration of the numerical calculation of the
standard deviation for n = 20.

Coefficient of Determination

The coefficient of determination R2 is a measure of the variation for a regression model
fi and its corresponding data yi. Its value varies between 0 and 1, where a value of 1
indicates that the model explains the data, thus no variation. The R2 is calculated by
Equation (2.11). (Ross, 2004, Ch. 9.5)

R2 = 1− SSR

SY Y
(2.11)

Where:

SSR =
∑n

i=1 (yi − fi)
2

SY Y =
∑n

i=1 (yi − yi)
2

The R2 is calculated for the Basquin equation shown in Equation (2.1) and the Weibull
distribution in a linear space Equation (2.6). The R2 for the Basquin fit is thus also a
measure of the uncertainty, while the R2 for the Weibull fit is a measure of the goodness-
of-fit for the distribution itself.

Weibull Slope

When evaluating the Weibull distribution in a linear space, as shown by Equation (2.6),
it becomes apparent that Weibull slope β is a measure of the scatter of the data. If the
scatter is the large, the subsequent Weibull slope will be small, or if the scatter is small,
the Weibull slope is large. The Weibull slope is thus also a measure of the uncertainty of
the data. (Wallin, 1984)
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2.5 Fatigue Indicators

Several different fatigue indicators will be considered for examining their performance for
reducing uncertainty compared to the nominal approach. These fatigue indicators are a
mix of more-or-less well known predictors for modelling the fatigue phenomenon. Stress-,
strain-, and energy-based criteria are investigated.

Equivalent Stress

Equivalent stress σeq is a well established failure criteria for mild steel. The criteria
is calculated by Equation (2.12) based on the three principal stresses σ1, σ2, and σ3.
(Stephens et al., 2001, Ch. 10.3.1)

σeq =

√
1

2

(
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
)

(2.12)

Maximum Principal Stress

The maximum principal stress criteria is found to work better for steel with a more brittle
behaviour. The criteria can be expanded using the absolute maximum principal stress
σAMP which is evaluated by Equation (2.13). (Stephens et al., 2001, Ch. 10.3.1)

σAMP = max(|σ1|, |σ2|, |σ3|) (2.13)

Maximum Shear Stress

A more conservative criteria than the equivalent and principal stress approach, is the
maximum shear stress τmax. The maximum shear is evaluated by the principal stresses as
given in Equation (2.14). (Stephens et al., 2001, Ch. 10.3.1)

τmax =
σ1 − σ3

2
(2.14)

Total Equivalent Strain

Analogous to the three presented stress approaches, similar strain methods can be
deployed. The total equivalent strain εeq,tot to calculated on the three principal strains
ε1, ε2 and ε3. The method used for calculating the total equivalent strain is given by
ANSYS (2023a, p. 2096-2097) and differs from the methods presented in Stephens et al.
(2001, Ch. 10.4.1) as it separates the equivalent strain into an elastic and plastic component
as shown in Equations (2.15) and (2.16). For the elastic component, ν ′ is the material
Poisson’s ratio, while it is fixed at 0.5 for the plastic component. The total equivalent
strain is the sum of the two components.

εeq,e =
1

1 + ν ′

√
1

2

((
εe,1 − εe,2

)2
+
(
εe,2 − εe,3

)2
+
(
εe,3 − εe,1

)2) (2.15)

εeq,p =
1

1 + ν ′

√
1

2

((
εp,1 − εp,2

)2
+
(
εp,2 − εp,3

)2
+
(
εp,3 − εp,1

)2) (2.16)

εeq,tot = εeq,e + εeq,p (2.17)
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Maximum Principal Strain

The maximum principal strain εAMP is evaluated identical to its stress equivalent by the
use of Equation (2.18). (Stephens et al., 2001, Ch. 10.4.1)

εAMP = max(|ε1|, |ε2|, |ε3|) (2.18)

Maximum Shear Strain

The maximum shear strain γmax is calculated by evaluating the principal stresses and the
Poisson’s ratio as shown in Equation (2.19). (Stephens et al., 2001, Ch. 10.4.1)

γmax =
ε1 − ε3
1 + ν

(2.19)

Lemaitre Criterion

Lemaitre (1996, p. 11-15, 95-97) introduced the Lemaitre damage criterion as a way to
incorporate progressive damage into a mesomechanical approach using stress triaxiality.
The approach is expanded to an estimate of the strain energy density release rate and is
shown in Equation (2.20).

Y =
σ2
eq

2E
Rv (2.20)

Rv =
2

3
(1 + ν) + 3 (1− 2 ν)

(
σH
σeq

)2

(2.21)

Where σH is the hydrostatic stress and σeq is the equivalent stress.

Strain Energy Density

Strain energy density is a measure of the strain energy per unit volume. As a fatigue
indicator it captures the effect of plasticity as an increase in the strain energy stored both
as elastic and inelastic energy (Stephens et al., 2001, p. 329). For elastic loading, the
strain energy density is Equation (2.22).

w =
1

2
σeq εeq,tot (2.22)

For elastic-plastic strains, the strain energy density is evaluated by numerical integration
of the stress-strain curve, as shown in Figure 2.9.

2.5.1 Local and Nonlocal Models

When evaluating the above-mentioned fatigue indicators, different models can be
considered, mainly local and nonlocal. A local model, commonly referred to as peak,
refers to evaluating the maximum value of the fatigue indicator considered. An example of
this is the effective notch stress approach which evaluates the maximum principal stress.

It is acknowledged in literature that the fatigue life of a component depends not just on
the maximum stress value, but also on the stress distribution in the surrounding space of
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Figure 2.9. Separation of elastic and inelastic strain energy.

that maximum stress point (Kuguel, 1960b; Sonsino and Fischer, 2005; Kaffenberger and
Vormwald, 2012). Small stress gradients surrounding the maximum stress value, can result
in large volumes where stress values are close to the maximum stress value. On the other
hand, high stress gradients can cause the highly stress volume to be localised around the
maximum stress value.

Several methods are available to incorporate the effects of the stress gradient, as shown in
the works by Kuguel (1960a), Bruder et al. (2008), and Härkegård and Halleraker (2010).
In the following, the method of the highly stressed volume introduced by Kuguel (1960a) is
applied. The method calculates an effective stress σ by considering the volume V90 which
is subjected to 90% of the maximum value of the stress σa,max in relation to a reference
volume V0, as shown in Equation (2.23) (Härkegård and Halleraker, 2010). Note that
different percentages may be defined for the highly stressed volume. A higher percentage
means that only the very local stress gradients in the vicinity of the maximum peak are
included. The size of the reference volume V0 can be selected arbitrarily as it simply scales
the resulting effective stress.

σ = σmax

(
V90

V0

)κ

(2.23)

The highly stressed volume and reference volume are related with exponent κ, which is
determined by minimising the coefficient of variation COV given by Equation (2.24), the
relative standard deviation, for an entire data as illustrated in Figure 2.10.

COV =
std

x
(2.24)

Similar to a highly stressed volume, the method is also applied for a highly stressed area
by simply substituting A90 and A0 into Equation (2.23). Though these methods relates to
a highly-stressed -volume and -area, they are applied for all fatigue indicators presented in
Section 2.5.

2.5.2 Stress Range vs Stress Amplitude

For welded components, the previously mentioned methods, nominal, hot-spot, and
effective notch stress, all compute the stress range by Equation (2.25).

∆σ = σmax − σmin (2.25)
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(a) Effective stress σ for data set at
different exponent κ values.
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ation for finding the exponent κ.

Figure 2.10. Illustrative procedure for obtaining exponent κ for a data set.

Applying the concept of the stress range for the fatigue indicators in Section 2.5, will for
several of the indicators presented produce a range equal to zero. This can be remedied
by evaluating the sign of the fatigue indicator, such as in the case of the equivalent stress,
thus a stress range is obtained. However, this is not the case for Lemaitre Criterion. For a
fully reversed load case, the stress amplitude σa is half the stress range. The consequence
of evaluating the amplitude load for a fully reversed load case instead of the load range,
is only that the intersection B of the Basquin equation differs. The remainder of this
work will evaluate the amplitude loading, due to the fully reversed load case, such that all
fatigue indicators can be applied.

2.6 Geometrical Weld Features

To investigate correlations between the fatigue indicators, or the corresponding lifetime,
the geometrical features of weld must be quantified. The geometrical features are limited
to the external measurements of imperfect shape and dimensions shown in Figure 2.11.

To obtain a magnitude of the allowable geometrical imperfections, the weld quality class
based on DS/EN-ISO-5817 (2023) is highlighted. DS/EN-ISO-5817 (2023) is commonly
used in conjunction with Hobbacher (2016) and DNVGL-OS-C401 (2017) for joints loaded
in fatigue. The weld classes vary from D to B, with B being the highest weld quality class.
When applying DS/EN-ISO-5817 (2023) for fatigue, the weld classes are expanded upon
for the relevant FAT strength. As shown in Table 2.1, weld class B can both be applied
for FAT 90 and 125 depending on the geometrical measurements.

2.6.1 Measurement of Weld Features

To investigate correlations between the fatigue indicators and the geometrical features of
each weld as obtained by laser scanning, it is necessary to establish methods with which
these geometrical features can accurately be identified and extracted from the laser scans.
No consensus on the correct identification of weld features based on digital data in the
form of standards, known to the authors, has been established. The features that are most
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Plate thickness 𝑡

𝜃

Figure 2.11. Quality of weld defined by weld measurements of butt welded
joint. (Adapted from Schork et al. (2018))

troublesome to correctly obtain from laser scan data are the weld toe radius r and the weld
toe angle α. Currently, various methods are employed in the literature to determine these
geometrical features. However, literature specifically addressing butt welds is limited. The
following presents a study of the relevant literature within the field.

Stenberg et al. (2012)

Stenberg et al. (2012), are to the authors knowledge, the first to present an algorithm for
obtaining the weld toe radius and angle for a T-joint. The weld toe radius is obtained by
applying a least square fit for a circle at the weld toe, and selecting the smallest calculated
radius. The weld toe angle is obtained by considering the radius and the arc length c. The
principle of the method is shown in Figure 2.12. Stenberg et al. (2012) did not consider
the presence of undercuts.

𝑟
𝜃

𝜃

𝛼

Base material Weldment 

𝑐

𝑛1 𝑛2

𝑛3

Base material Weldment 

𝑥

𝑧

Figure 2.12. Method proposed by Stenberg et al. (2012). Adapted from
Stenberg et al. (2012).
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DS/EN-ISO-5817 (2023)
Reference

No. Designation C63 B90 B125

5011 Continuous
undercut 𝑡

𝑘

ℎ𝑏

𝛼

𝑟

h ≤ 0.1 t Not permitted Not permitted

5012 Intermittent
undercut

h ≤ 0.1 t,
but max. 0.5mm

h ≤ 0.05 t,
but max. 0.5mm

Not permitted

502 Excess weld
material

𝑡

𝑘

ℎ𝑏

𝛼

𝑟
h ≤ 0.15 b+ 1mm,

but max. 7mm
h ≤ 0.1 b+ 1mm,
but max. 5mm

h ≤ 0.1 b+ 0.2mm,
but max. 2mm

505 Incorrect weld
toe angle𝑡

𝑘

ℎ𝑏

𝛼

𝑟

α ≥ 110◦ α ≥ 150◦ α ≥ 150◦

5052 Incorrect weld
toe radius

𝑡

𝑘

ℎ𝑏

𝛼

𝑟

- r ≥ 1mm r ≥ 4mm

Table 2.1. External imperfections and weld classes relevant for butt weld
loaded in fatigue. Note that several requirements for the 2023 version have
been changed from the previous 2014 version. (DS/EN-ISO-5817, 2023)

Schubnell et al. (2019)

Schubnell et al. (2019) conducted a round-robin study of both manual and algorithmic
methods for determining the weld toe radius and angle by use of laser scanning for both
butt- and T-joints. The study proposes a curvature method due to its simplicity and
reliable performance in determining the weld toe radius. The principle of the method is to
use the inverse relation between the curvature κ and radius of a plane circle to determine
the size of the weld toe radius as shown in Equation (2.26).

r =
1

κ
(2.26)

To obtain continuity for the data, a polynomial is fitted allowing an analytical evaluation
of the curvature. The weld toe angle is calculated by comparing the angle of a fitted line
for the base material, and a fitted line for the weldment. Schubnell et al. (2019) assumes
that no undercut is present.
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Renken et al. (2021)

Renken et al. (2021) proposes an algorithm for evaluating the weld toe radius for a T-joint
based on the osculating circle as shown in Equation (2.27). A piecewise cubic spline fit is
applied to obtain a continuous analytical definition of the weld.

r =

∣∣∣∣∣∣∣∣∣∣∣∣

(
1 +

(
dz

dx

)2
)3/2

d2z

dz2

∣∣∣∣∣∣∣∣∣∣∣∣
(2.27)

Selection of Methods

In this work, the weld toe radius and angle is determined using the method recommended
by Schubnell et al. (2019). Chapter 8 will expand upon the application of this method.
However, none of the available literature presents methods for determining the undercut,
excess weld material or width of the weld. As such, Chapter 8 will present a self-developed
method for determining these remaining measurements.

2.7 Problem Statement

Based on the purpose of this report presented in Chapter 1, the methodology for
quantifying the scatter of data in Sections 2.3 and 2.4, and the fatigue indicators and
models to be investigated presented in Section 2.5 as well as their link to the geometrical
weld features in Section 2.6, a two-part problem statement is formulated as follows:

Is it possible to reduce the scatter of fatigue data of welded butt joints in low
cycle fatigue, when compared to the nominal approach, by considering the

local weld geometry obtained by laser scanning?

Is it possible to establish a correlation between the fatigue performance and
the geometrical weld features?
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3 Experimental Methods

The experimental data for this project was conducted in the authors’ 9th semester project.
This chapter serves as a detailed summary of the necessary information of the experimental
data from Hermansen and Sørensen (2022).

3.1 Specimens

The specimens considered are one-sided butt welds as shown in Figure 3.1. The welding
was conducted according to Liftra’s internal weld procedure qualification record certified
by DNV GL in accordance with DNVGL-OS-C401 (2017). The weld quality, in relation
to DS/EN-ISO-5817 (2023) and Table 2.1, is specified as C.

𝑏 𝑏

𝐿

𝐹/2 𝐹/2

-𝐹/2-𝐹/2

𝑡1

𝑡2
𝑡3

𝑡4

𝑤1

𝑤2

Figure 3.1. Geometrical sizes and measuring points.

No post weld treatment is specified. However, all 32 specimens in S960 are disk ground,
while 17 of the 33 specimens in S690 are also disk ground. Figure 3.2 shows the result
of the post weld treatment. Hermansen and Sørensen (2022, Ch. 6.2) concluded that the
post weld treatment had no effect on the nominal SN curve for S690.

After welding, the specimens are cut to size using a saw and the bottom side is machined
plane. The specimens are manufactured to a nominal thickness t and width w of 6mm

and 50mm respectively. Due to both the angular and axial misalignment of the welding
process, each specimen is measured at the six locations shown in Figure 3.1. Each thickness
measurement is done with a micrometer with a resolution of 0.01mm, while the width
measurements are done with a caliper with a resolution of 0.05mm.
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(a) Partial grinding of S690 specimen. (b) Grinding of entire S960 specimen.

Figure 3.2. Figures from Hermansen and Sørensen (2022).

3.2 Laser Scanning

This section will present the procedure and principle for the laser scanning acquisition of
the welded specimens.

The experimental setup consists of a Wenglor MLWL153 laser line scanner mounted to
a KUKA Quantec KR 120 industrial robot. The scanner works by the principle of laser
triangulation and captures a single profile in its local xz−coordinate system as shown
in Figure 3.3. A single profile consists of 2048 xz−points unless the points are outside
the field of view. The entire 3D scan of the weld is captured by moving the robot in a
linear trajectory parallel to the length of the weld. The robot moves at a constant speed
and distance to the base on which the welded specimen is positioned. The laser scanner
samples a profile at a fixed y−spacing, resulting in a complete 3D scan, point cloud, of the
specimen as illustrated in Figure 3.3. The resulting scan file measures 64MB, totalling
3.44GB for all 65 specimens.

Table 3.1 shows the specifications of the laser scanner. Currently, no standardised
requirements for digital measurement are available. However, the y−spacing is less than the
recommended y−spacing of 0.8mm from Renken et al. (2021). Thus the applied y−spacing
is within the recommendations. As illustrated by Figure 3.3, the x−spacing is depended
on the placement of the specimen within the field of view. The average x−spacing is
measured at ∼ 0.093mm for all scans.

Scan specification Axis Measurement spacing Working range [mm] Resolution [mm]

Scan width x 2048 points pr.
scan profile

150-230 0.079-0.12

Scan length y 0.1mm 99.9

Scan height z 2048 points pr.
scan profile

215-475 0.0096-0.022

Table 3.1. Scan specifications (Wenglor, 2023).
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Figure 3.3. Local coordinate system of the laser scanner and the resulting
point cloud.

3.3 Tensile Test

Tensile testing of standardised dog-bone test specimen made in the base materials was
conducted. Each material was tested at 0◦ and 90◦ to the rolling direction with a tee-
rosette strain gauge mounted. Table 3.2 shows the resulting strengths, Young’s modulus
and Poisson’s ratio.

Both materials obtained values greater than the minimum values prescribed in DS/EN-
10025-6 (2019). The strength value of S960 in the 0° rolling direction are not recorded due
to failure of the test fixture.

R.D. ReL [MPa] ReH [MPa] Sut [MPa] E [GPa] ν

S690QL 0° 847.1 867.8 957.7 223.0± 7.7 0.279± 0.003
90° 843.9 856.5 958.1 196.5± 6.8 0.295± 0.003

S960QL 0° - - - 248.2± 6.9 0.349± 0.003
90° 1038.8 1039 1115.7 178.1± 7.0 0.255± 0.003

Table 3.2. Material parameters from monotonic tensile test. (Hermansen
and Sørensen, 2022, Ch. 5.1)
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3.4 Fatigue

Each specimen is subjected to stress-based fatigue using a Schenck 400 kN servo-hydraulic
testing machine. The load is applied through a four-points bending fixture, shown in
Figure 3.4, resulting in a constant moment across the entire weld. The fatigue testing is
conducted at a constant stress ratio of R = −1, i.e. with zero mean stress. All specimen
fractured due to weld toe failure. The resulting nominal stress SN curve is shown in
Figure 1.1.

𝑏 𝑏

𝐿

𝐹/2 𝐹/2

-𝐹/2-𝐹/2

𝑡1

𝑡2
𝑡3

𝑡4

𝑤1

𝑤2

Figure 3.4. Applied load for four-point bending. b = 65mm, L = 250mm.
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4 Processing and Construction of
Solids

This chapter will describe the process of converting the discrete laser scan measurements
to continuous surface with C2 continuity and superimposing the laser scan onto a 3D solid
model.

4.1 Reverse Engineering Method

For evaluating the stress state of a given laser scan, a 2D or 3D model can be considered.
However, a 2D model is limited to assuming a plane-stress or strain state and does not
incorporate the neighbouring geometry. In this work, the effects of neighbouring geometry
will be taken into account by utilising a 3D model. The laser scans presented in Section 3.2
are thus to be converted to 3D finite element models. In order to obtain a FE model, the
discrete laser scan must be reversed engineered to a C2 continuous CAD model. Several
methods have been applied for this process, as shown in the works by e.g. Hou (2007),
Lang and Lener (2016), Hultgren et al. (2021), and Shojai et al. (2022).

In this work, a process inspired by Lang and Lener (2016) and Shojai et al. (2022) is
applied. The programs MATLAB, MeshLab, and SpaceClaim, are used to achieve the
process. The process consists of the following six steps, each of which are described in the
following sections.

1. Trimming
2. Repairing defects
3. Filtering
4. Triangulation of surface
5. NURBS surface
6. Closing volume

4.2 Trimming

Two types of data trimming is applied to the raw point cloud captured from the laser
scanning process shown in Figure 4.1a. The base plate on which the specimens were
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placed is removed by evaluating a fixed z-value and removing points, as illustrated in
Figure 4.1b.

(a) Raw point cloud.

(b) Removal of base plate.

(c) Manual edge trimming of laser scan.

Figure 4.1. Point cloud trimming process

At the transition between the base plate and the specimen, the laser scanner is unable to
accurately capture the edge of the specimen. As a result, the edges have a reduced z−value
compared to the real geometries. This is most likely caused by too high of a trajectory
speed of the KUKA robot. As a consequence, the outer edges of the laser scans are trimmed
by a manual process in MeshLab. The criteria for the manual trimming process is to only
remove laser profiles which have a reduced z−value compared its neighbouring profile. The
result of an edge trimming process is shown in Figure 4.1c.
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4.3 Repairing Defects

In the laser scanning process, if a point along a laser profile is not within the field of view
shown in Figure 3.3, the point will be missing in the acquisition of the point cloud. This
causes a profile to have less than 2048 points along the affected profile. This is illustrated
in Figure 4.2, with two profiles of the same x-length. However, one profile is missing two
data points, resulting in two fewer data entries.

Position:
Index:

𝑥

Position:
Index:

3231302928272625242322212019181716151413121110987654321

302928272625242322212019181716151413121110987654321

2048

2046

𝑥𝑟𝑒𝑠,6 𝑥𝑟𝑒𝑠,11

Figure 4.2. Illustrative concept of missing data. Data point 13 and 22 are
missing.

The missing data points are caused by two factors. Firstly, each specimen had a unique ID
number drawn on its top surface using a black marker. Due to low amount of light being
reflected at the drawn on ID number, the data points are not within the field of view of
the scanner. In the extreme cases, this can cause more than 100 missing data points as
shown in Figure 4.1c. Secondly, localised geometrical changes, such as a sudden concavity
in the surface, can cause a spike in the reflected light, hence also being located outside of
the field of view.

The missing data points along a profile is required to be regenerated in order to apply
a low pass filter, which will be discussed in Section 4.4. As every laser profile has a
unique x−spacing, the missing data points can not be simply evaluated by evaluating the
x−spacing between each points.

The missing data is reconstructed by evaluating the closest neighbouring profile that is not
missing any data. This establishes an expected lower and upper bound of the positional
x−data. If the start and end data of the profile is missing a data point, the point is
simply reconstructed by assuming the same boundary as the neighbouring profile. By
evaluating the x−spacing, potential candidates for missing points are established. If these
are within the x−value of the neighbouring profile, with an applied tolerance, the point
is reconstructed. The z−value of the reconstructed point is found by either extra- or
interpolating the z−value of the profile itself. This process is implemented in a MATLAB
script. The resulting interpolating is shown Figure 4.3 for the specimen with the worst
case of missing data. For this specimen, 220 points along a single profile are missing due
to the black marker.
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Figure 4.3. Missing data points shown in Figure 4.1 have been interpolated.

4.4 Filtering

Having reconstructed any missing data point for every scan, a noise filtering is applied.
Three sources of noise is identified which can be categorised as caused by the laser or the
robot’s movement. Figure 4.4 shows the noise of a laser profile.

Firstly, two types of noise is caused by the laser scanner: the tolerances for the positional
data supplied by the manufacture, and the user-defined exposure time. The noise due to
the positional tolerances is found to follow a completely random pattern. The noise from
too long of an exposure time follows a normal distribution in both the x and y direction.

Transverse profile

Profile

Figure 4.4. Raw laser scan data of profile and transverse profile. Note that
the axes are not scaled 1:1.
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Secondly, noise produced by the robot results in a sinusoidal noise wave in the direction
of travel for the robot, i.e. in the y−direction. This noise is visible if a transverse profile
is considered, a profile in the y−direction instead of x as shown in Figure 4.4. The
construction of transverse profiles with equal lengths, is possible due to the implemented
interpolation from Section 4.3. The sinusoidal noise due to the robot is only visible for the
first part of the transverse profile.

To filter the laser scans, a low-pass filter is implemented in a MATLAB script. In order to
quantify the cutoff frequency ω0, in which the low-pass filter should activate, the amplitude
spectrum of the profile is desired. This is obtained through a fast Fourier transform. The
resulting amplitude spectrum for a profile and transverse profile are shown in Figure 4.5.

Transverse profile – Amplitude spectrum

0.05-0.3

1.4-1.6

Profile – Amplitude spectrum

Weld toe 

detail

Sinusoidal 

noise

Figure 4.5. Amplitude spectrum for the profile and transverse profile shown
in Figure 4.4.

For a profile, the amplitude spectrum is found to contain the weld toe detail in the range
0.05mm−1 to 0.3mm−1. As such, the cutoff frequency for the filter should be greater than
this upper bound as not to influence the geometrical features of the weld. Through an
iterative process, a cutoff frequency of ω0 = 0.5mm−1 is found be to adequate for all laser
scans.

The transverse sinusoidal noise is found to be to centred about 1.5mm−1. It should be
noted that the sinusoidal noise pattern does not occur along the entire transverse profile,
nor does it exists on every transverse profile. A transverse cutoff frequency of 1.15mm−1

is selected for all laser scans.

The low-pass filters are constructed by the use of a fourth order Butterworth filter design
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and implemented using a zero-phase filter. Figure 4.6 shows the unfiltered and filtered
profile and transverse profile.

Profile – Filtered

Transverse profile – Filtered

Figure 4.6. Unfiltered and filtered profile and transverse profile. Note that
the axes are not scaled 1:1.

4.5 Surface Construction

With a trimmed and filtered laser scan, the remaining geometry of the weld can be
constructed based on manual measurements, mentioned in Section 3.1. From these
measurements, the laser scan can be superimposed on the external geometry, generating
a set of discrete corner points for the specimen. To reduce the number of points, and the
subsequent file size, only the weld toe is superimposed.

Weld Toe Detection

In order to obtain the laser scan which is to be superimposed, an algorithm for determining
the weld toe location is developed. The gradient and curvatures of each laser profile is
examined in a MATLAB script, as shown in Figure 4.7. The gradient and curvature is
numerically evaluated by a central difference approach. However, to not lose any data,
the first and last points are evaluated using a backward- and forward- difference approach
respectively. The maximum peak of each weld toe is determined as an indicator of the
location of the smallest weld toe radius. However, due to the geometrical variety along
a weld profile, the curvature value can not be solely examined. Hence, the value of the
gradient is examined. When the gradient approaches zeros, the location will be at the
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base plate. To distinguish between each side of the weld toe, the sign of the gradient is
evaluated. This results in the vertical lines in Figure 4.7 and is used for estimating the
location of the weld toe.
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Figure 4.7. Positional, gradient, and curvature data and the resulting weld
toe detection. Note that the axes for the positional data is not scaled 1:1.

Applied to an entire point cloud, the resulting weld toe detection is shown in Figure 4.8.
As shown, the location of the weld toe varies along a weld. To ensure a well defined
transition between the superimposed laser scan and the external measurements, the weld
toe detection is extended as shown in Figure 4.9.

Figure 4.8. Applied weld toe detection.

Construction of Surface Model

Several methods for converting a point cloud to a solid CAD model exists through
commercial means. However, the method used in this project is self-developed, and is
based on two concepts. Firstly, the discrete points of the laser scans are converted to a
surface by the use of triangulation and saved as a .stl file format. Secondly, a non-uniform
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Figure 4.9. Weld toe superimposed on external measurement points.

rational basis spline (NURBS) algorithm is used to construct a CAD surface, which can
be enclosed to obtain a watertight solid CAD model.

Through the conversion to .stl format, no approximations are made. The .stl file format
simply describes the discrete points as a triangular surface with a normal, as shown in
Figure 4.10. The triangulated surface thus has C0 continuity.

𝑥

𝑦

𝑧

𝑃1(𝑥, 𝑦, 𝑧)

𝑃2(𝑥, 𝑦, 𝑧)

𝑃3(𝑥, 𝑦, 𝑧)

𝑛

Figure 4.10. Principal for every generated surface in a .stl file.

A surface model is shown in Figure 4.11, where the difference in surface density is shown
by the few faces on the base plate.

Figure 4.11. .stl based surface model. No surface model on the side of the
specimen.
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4.6 Solid Construction

The surface model based on the .stl conversion is only positional continuity C0. In order
to obtain C2 continuity a NURBS algorithm implemented in the commercial software
SpaceClaim is applied. As the NURBS algorithm is just applied, the underlying theory
will not be described. Different methods of calculating the NURBS are available, however
the SpaceClaim documentation provides no insight into the specific methods used (ANSYS,
2023c, Ch. 11.1). Based on the output of the algorithm, it is observed, that in the case
of large geometrical deviations, the algorithm switches to a principal of best-fit spline in
order to maintain C2 continuity, thus producing an error between the inputted .stl file and
the outputted NURBS surface.

To determine the magnitude of this error and assess its acceptability, the Euclidean distance
is calculated between the .stl file and the NURBS surface, resulting in a deviation plot. Two
deviation plots are shown in Figure 4.12. Green represents deviations within a tolerance
of ±0.01mm, while blue and red indicate deviations outside the tolerances. Figure 4.12a
represents a common deviation plot where a single or few points at the weld toe have
deviations outside the tolerance. Figure 4.12b shows a worst case deviation plot where
several areas are outsize the range of the tolerance.

An error of ±0.05mm at the fractured weld toe was determined acceptable. However, no
specimens has a deviation measured greater then ±0.03mm at the location of the fractured
weld toe.

(a) Common. (b) Worst case.

Figure 4.12. Deviation plots.
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Based on the measured errors, the method for constructing NURBS surfaces is deemed
acceptable. The entire surface model can thus be constructed to a solid CAD model.
Figure 4.13 shows the surface model from Figure 4.11 made to a solid CAD model. The
resulting file size of the CAD models varies between 2.2MB to 12.9MB, with an average
of 6.2MB.

Figure 4.13. Final solid model.

4.7 Compensation of Nominal Differences

Throughout the generation of the solid model, three operations are applied which has
an influence on the geometry of the specimen. Firstly, the edge of the laser scans were
trimmed. As such, the width of each specimen will be reduced compared to the actual
specimen. Secondly, in the process of superimposing the laser on external measured points,
as shown in Figure 4.9, an approximation is applied in order to conform with geometrical
boundary conditions of the bottom plane surface, causing a difference in the thickness
measurement. Thirdly, the use of NURBS can for some specimens result in a deviation at
the weld toe.

All solid generated models are measured in the identical locations to the external
measurements, which were done with a caliper and micrometer. Hence, the error of the
models nominal geometrical sizes are known. In order to compensate for the geometrical
difference between the solid model and the external measurements, the applied load is
corrected using Equation (4.1). Equation (4.1) is based on the assumption that the nominal
bending stress should be equal for the external measurements and solid model. However,
this method does not account for the deviation due to NURBS.

σmodel = σmeasured (4.1)

Fmodel = Fmeasured
wmodel t

2
model

wmeasured t
2
measured
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5 Finite Element Modelling of Laser
Scans

This chapter will detail the setup, considerations, and post-processing of the finite element
model for each specimen.

5.1 Boundary Conditions and Setup

This section will describe the boundary condition and load of the four-point bending setup
for the finite element model of each specimen.

Figure 3.4 showed the applied load in the four-point bending fixture. For the FE model,
only the tensile loading is considered as described in Section 2.5.2. The boundary condition
are based on the study conducted in Hermansen and Sørensen (2022, Appx. B). The
boundary condition and load is shown in Figure 5.1 and is the following:

A) Amplitude load in z−direction along load line.
B) Fixed displacement of y and z along load line.
C) Fixed displacement of x and y at the centre of the specimen.

A
A

C

B

B

Figure 5.1. Boundary condition and load for FE model.

The C) boundary condition is necessary to have a fully constrained model and is applied
under the assumption of symmetry. As mentioned in Section 2.5.2 no reversal of the load
is considered, thus only a load in the positive z−direction is considered. Due to the high
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amount of plasticity for the specimens, geometrical non-linearity is applied for the FE
model.

5.2 Material Model

The material model used represents a cyclic material model based on a strain-controlled
fatigue test hysteresis loop. The cyclic material model is estimated based on the
experimentally obtained monotonic values presented in Table 3.2 and calculated using
Equations (5.1) to (5.5) as described in Zhang and Maddox (2009).

σ′
y = 0.608Sut (5.1)

b = −0.1667 log10
(
2.1 + 917/Sut

)
(5.2)

−0.7 < c < −0.5 (5.3)

n′ = b/c (5.4)

K ′ = σ′
y (0.002)−n′

(5.5)

Both the experimental monotonic and estimated cyclic stress-strain curves are shown in
Figure 5.2. Table 5.1 shows the calculated cyclic parameters. The estimated cyclic stress-
strain curves uses a Young’s modulus of 200GPa and Poisson’s ratio of 0.3. The material
model is not intended to describe the evolution of the stress-strain hysteresis loop for fully
reversed loading. Thus, the cyclic hardening effect of the material is not modelled.

Figure 5.2. Monotonic and estimated cyclic material models.

σ′
y [MPa] K ′ [MPa] n′

S690 582.28 1452.7 0.1471
S960 678.35 1630.7 0.1411

Table 5.1. Estimated cyclic values.
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5.3 Local Mesh Convergence Study

To ensure the finite element model is able to capture the level of detail of the laser scan,
two mesh convergence studies are conducted. This section will describe a local mesh
convergence study, which examines the mesh at the fractured weld toe. Section 5.4 will
describe a global mesh convergence.

To limit the computational time and file size, the region of mesh at the fractured weld toe
is defined, similar to the approach applied in Hultgren et al. (2022). To determine the size
of the mesh region, a study using an idealised weld geometry presented in Hermansen and
Sørensen (2022, Ch. 5.4) is conducted. The study evaluated the distance from the weld
from which the stress and strain state reached a nominal value, i.e. no stress-raising effects
from the weld geometry. This distance comes to be 2.4mm equivalent to 0.4t. Based on
this information the surface area of the stressed region around the fractured weld toe is
defined by a range of ±2.4mm from the weld toe region detected using the algorithm
presented in Section 4.5. The volume is defined by moving the surface area down into
the geometry by a distance of 1mm. The resulting fine mesh at the fractured weld toe is
shown in Figure 5.3

The local mesh at the weld toe is constructed to satisfy the spacing of the laser scans. Thus,
the mesh in the y−direction has a fixed spacing according to the laser scan of 0.1mm. The
convergence study is thus examining the mesh spacing along a profile, i.e. the x−direction.
For all studies, the x-spacing is also applied for the mesh in the z−direction. To ensure a
transition between the local and global mesh, an adaptive sizing is applied. The resulting
mesh is shown in Figure 5.3.

2.4 cm

2.4 cm

1.0 cm

Weld toe

Figure 5.3. Global and local mesh at the weld toe.

The measure for the mesh convergence is the maximum equivalent stress and strain. As
the models are subjected to plasticity, the change in stress can not solely be considered.
Figure 5.4 and Table 5.2 show the results from the convergence study. The results indicate
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that at a mesh size of 0.07mm, the equivalent strains are less than 1%. Therefore, a local
mesh size of 0.07mm is applied to the models.

Figure 5.4. Equivalent stress and strain convergence study.

Mesh
size [mm]

Nodes Equivalent
stress [MPa]

Percentage
difference [%]

Equivalent
strain [-]

Percentage
difference [%]

0.20 6.04× 105 842.45 12.20× 10−3

0.12 2.06× 106 845.69 0.38 12.75× 10−3 4.46
0.08 6.15× 106 846.77 0.13 12.96× 10−3 1.67
0.07 8.89× 106 847.28 0.06 13.02× 10−3 0.49
0.06 1.41× 107 847.54 0.03 13.11× 10−3 0.67
0.05 2.37× 107 848.09 0.06 13.23× 10−3 0.89

Table 5.2. Equivalent stress and strain convergence study.

5.4 Global Mesh Convergence Study

Due to the high loading and the applied cyclic material model, the nominal stress at the
base material will cause the base material to experience plasticity. As a consequence, the
structural stiffness of the model will also change. To ensure that this effect is captured,
a mesh convergence study is conducted for the global mesh. This is necessary, as the
change in the element tangent stiffness depends on whether the Gauss point of the element
experiences stresses greater than the yield strength. If the first surface element does not
have Gauss point which captures the plasticity, the element tangent stiffness will not
change. Thus, a mesh convergence study is required for the global mesh of the base
material.

The mesh convergence study is based on an idealised 2D plane stress weld, shown in
Figure 5.5, with a nominal thickness of 6mm and yield strength of 690MPa. To examine
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the effects of increasing plasticity, both the applied load and the size of the global mesh are
considered. Based on Equation (5.6), an analytical expression for the plastic depth in the
thickness direction can be evaluated and compared to the placement of the Gauss points.
It is thus possible to evaluate the number of Gauss points necessary for the structural
response of the base material to have converged for the weld toe.

σ =
M y

I
(5.6)

To measure the number of Gauss point within the plastic zone, a set of elements through
the thickness are evaluated, as illustrated in Figure 5.5 by the red dots which are the Gauss
points.

6
m
m

Figure 5.5. Sectional cut of profile view of idealised weld profile. Red dot
represent the Gauss points through the thickness.

Figure 5.6 and Table 5.3 shows the result from the mesh convergence study. It is shown
that at 29% cross sectional yielding, at least 4 Gauss points, two on either side of the
neutral axis, is needed to capture the structural effects of the base material for the strain
at the weld toe to converge. However, at 42% cross sectional yielding, 8 Gauss points are
needed, i.e. an entire element on either side of the neutral axis must be within the plastic
zone.

Figure 5.6. Global mesh convergence study.

It can thus be concluded that the global mesh at the base material, which is subjected to
loading, must have at least an entire element within the plastic zone on either side of the
neutral axis. It should be noted that the quadrilaterals are used for the study, but the global
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mesh of the welded specimens will be modelled using tetrahedron to easily conform to the
adaptive sizing in the transition to the finer mesh at the weld toe. However, tetrahedron
are simply collapsed quadrilaterals (ANSYS, 2023b, Ch. 12.2). Thus, the location of the
Gauss points from the surface will be the same. The final mesh is shown in Figure 5.3.

Applied load F [N] 6000 7000 9000 11000

Analytical
Distance from surface - 0.27 0.87 1.26to plastic zone [mm]

Cross sectional yielding [%] 0 9 29 42

FEA (2mm)
No. of Gauss points 0 0 4 4within plastic zone
Max plastic strain [-] 5.40E-03 9.05E-03 2.22E-02 5.83E-02

FEA (1mm)
No. of Gauss points 0 0 8 8within plastic zone
Max plastic strain [-] 5.40E-03 9.05E-03 2.21E-02 4.76E-02

FEA (0.6mm)
No. of Gauss points 0 4 12 16within plastic zone
Max plastic strain [-] 5.40E-03 9.06E-03 2.21E-02 4.93E-02

FEA (0.3mm)
No. of Gauss points 0 8 24 32within plastic zone
Max plastic strain [-] 5.40E-03 9.05E-03 2.21E-02 4.97E-02

Table 5.3. Analytical calculation for expected size of plastic zone. No. of
Gauss points for the element highlighted in Figure 5.5 and the maximum
equivalent plastic strain for each load and mesh size.

5.5 Post-processing of Finite Element Analysis

With the finite element models of all laser scanned specimens set up as presented in
Sections 5.1 to 5.4 the simulations of all specimens are executed.

Run Time

In general the run time of each FEM is strongly influenced by the loading. An increase
in loading also yields an increase in run time as the amount of plasticity causing the non-
linearity to increase, requiring more iterations for convergence. The models are executed
on a consumer-grade AMD Ryzen 7 5700x (4.8 GHz) processor with 8 logical cores and
32 GB RAM. The computational time varied from 24min to 4.4 hours with an average
run time of 52min. In writing and exporting the data, the time is roughly doubled. The
resulting simulations occupy a total of 315.1GB of which 19.9GB are exported result files.

Exporting Nodal Results

The results are exported for further processing. The exported nodal results are obtained
by defining named selections in ANSYS Mechanical that contain all area (surface) and all
volume nodes of the weld toe as shown in Figure 5.7. With this, all nodes belonging to
both the defined area and volume are known and results can be exported.
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Area Volume

Figure 5.7. Exported area (surface) and volume nodes.

All nodal values in the area and volume are exported, including their location,
displacement, stress tensor, elastic strain tensor, and plastic strain tensor The results
are imported into MATLAB for post-processing. This is shown for a single specimen in
Figure 5.8, where the equivalent stress from both ANSYS and MATLAB are shown.

Mesh ANSYS MATLAB

Figure 5.8. Nodal results imported in MATLAB and equivalent stress from
both ANSYS and MATLAB.

Nodal Values of Area and Volume

The fatigue indicators, presented in Section 2.5, are computed on a nodal basis. In order
to apply the highly stressed volume and -area models, it is required that the area and
volume associated with the node is also known. This is implemented by considering the
area and volume of a given element and dividing its value by the number of corner nodes
as illustrated in Figure 5.9. A node neighbouring several elements will have the sum of
the associated element’s nodal volume. Using the same approach, the area of each node is
computed by considering nodes belonging to an element face.

Only the elements at the weld toe where the mesh is refined are exported, thus the elements
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Figure 5.9. Element area and volume divided into nodal area and volume.

have a low shape distortion. Hence allowing for this method of distributing the element
area and volume. For a general case, including highly distorted elements, a numerical
integration is required.

Nonlocal Models

With the area and volume nodal values known, the fatigue performance based on both
the local (peak) and nonlocal models can be evaluated. The peak values are simply the
maximum nodal value of the fatigue indicator. For some fatigue indicators the maximum
nodal value is located on the surface of the specimen while for other indicators the
maximum is located in the volume. To ensure comparability of results, all peak values
are recorded on the surface of each specimen. This means that some specimens may
potentially have larger values in the volume, which are not included.

The highly stressed regions are computed as presented in Section 2.5.1. The reference
volume V0 and area A0 are computed based on the mean specimen volume and -area
respectively.

(a) Area. (b) Volume.

Figure 5.10. Varying κ and computation of effective stress σ̄ values.

For all fatigue indicators the nodes with values above 90% of the peak value are found
and their total area and volume recorded. The κ exponent is varied to minimise the
COV. This is done separately for area and volume. In the following, results are presented
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for the effective stress, but the procedure is identical for other fatigue indicators. The
effective stress σ is computed based on Equation (2.23) and shown for varying κ values in
Figure 5.10. The corresponding COV is shown for different value of κ in Figure 5.11. Note
that the coarse sampling of κ is for visual purposes.

(a) Area. (b) Volume.

Figure 5.11. Variation of COV with varying κ.

A perk of the nonlocal model considered, is that the phenomena of the size effect is
apparent (Kuguel, 1960a). Larger sized specimens will experience a decrease in fatigue
strength as the stressed volume is increased (Stephens et al., 2001, Ch. 4.4.2). If written
in terms of the effective stress, then an increase of the effective stress is expected as the
stressed volume is increased. This exact trend is captured for the specimens as shown in
Figure 5.12.

Figure 5.12. Effective stress against the highly stressed volume.

Similarly to the presented procedure, the remaining fatigue indicators are treated using
the highly stressed volume and -area approach to account for the effect of the local weld
geometry on the fatigue strength.
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Nominal Stress and Strain

The nominal true stress and strain are calculated at a specific point on the lower surface
of the xz-symmetry plane within the region of constant moment on the side of fracture,
as illustrated in Figure 5.13. This calculation yields a clearly defined nominal true stress
free of the geometrical influence from the weld. The nominal stress shown in Figure 1.1 is
calculated by the means described here.

𝑏 𝑏

𝐿

𝐹/2 𝐹/2

−𝐹/2−𝐹/2

𝑡1

𝑡2
𝑡3

𝑡4

𝑤1

𝑤2

𝑏 𝑏

𝐿

60

30

Figure 5.13. Location of nominal measurement. Units in mm. b = 65mm,
L = 250mm.
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6 Results of Uncertainty Study

This chapter establishes a baseline for comparison for the investigated fatigue indicators
and produce the results from the finite element- and statistical analysis.

6.1 Baseline

In order to evaluate each method individually, it is beneficial to form a baseline of
comparison for the fatigue indicators. In the following, a baseline based on the nominal
stress and nominal strain are used to evaluate the quality of each method. The nominal
stress is considered due to its common usage as mentioned in Section 2.1, while the nominal
strain is considered due to the non-linear material behaviour of the model. For a method
to be considered acceptable it should be able to reduce the scatter and uncertainty of the
fatigue results compared to the nominal approaches.

Metric and Measurement of Uncertainty Table

The metrics and measurements of uncertainty used to compare each fatigue indicator
and model are presented in Table 6.1. Table 6.1 serves as a summary for the reader
for each variable. All variables within Basquin Eq. relates to the measures of the
Basquin equation. Normal Dist. are the associated uncertainty from applying a normal
distribution. Variables with Weibull Dist. relates to the measure of the Weibull
distribution and its associated uncertainty measures. Refer to Sections 2.1, 2.3 and 2.4 for
detailed explanation of each variable and uncertainty measurement.

47



Design of Mechanical Systems 6. Results of Uncertainty Study

Explanation Reference
B

as
qu

in

E
q.

A Slope of the fitted Basquin equation. Eq. (2.1)
B Intersection with life time axis. Eq. (2.1)
R2 Goodness-of-fit for the Basquin equation. Eq. (2.11)

N
or

m
al

D
is

t. TN Scatter index evaluated using normal distribution. Eq. (2.9)
std Standard deviation for normal distribution. Eq. (2.10)

stdcomb Shifted standard deviation. Fig. 2.8

W
ei

b
u
ll

D
is

t.

β Fitted Weibull slope. Eqs. (2.3), (2.4), & (2.6)
λ Fitted Weibull characteristic life. Eqs. (2.3), (2.4), & (2.6)
R2 Goodness-of-fit for the Weibull distribution fit. Eq. (2.11)
TN Scatter index evaluated using Weibull distribution. Eq. (2.9)
std Standard deviation for Weibull distribution. Eq. (2.10)

stdcomb Shifted standard deviation. Fig. 2.8

Table 6.1. Metrics used to evaluate quality of fatigue indicator.

Based on the fatigue data from S690 and S960, several different approaches can be taken in
how the data sets are linked, as discussed in Section 2.3.3. These approaches are repeated
in Figure 6.1.

Two data sets

One data set

Separate

Basquin: 
𝐴𝑆690, 𝐵𝑆690
𝐴𝑆960, 𝐵𝑆960

Weibull:
𝛽𝑆690, 𝜆𝑆690
𝛽𝑆960, 𝜆𝑆960

Shared slopes

Basquin: 
𝐴, 𝐵𝑆690, 𝐵𝑆960

Weibull:
𝛽, 𝜆𝑆690, 𝜆𝑆960

Combined

Basquin: 
𝐴, 𝐵

Weibull:
𝛽, 𝜆

Two data sets

One data set

Basquin: 
𝐴𝑆690, 𝐵𝑆690
𝐴𝑆960, 𝐵𝑆960

Weibull:
𝛽𝑆690, 𝜆𝑆690
𝛽𝑆960, 𝜆𝑆960

Basquin: 
𝐴, 𝐵𝑆690, 𝐵𝑆960

Weibull:
𝛽, 𝜆𝑆690, 𝜆𝑆960

Basquin: 
𝐴, 𝐵

Weibull:
𝛽, 𝜆

Figure 6.1. Approach for data handling and resulting Basquin and Weibull
parameters.

To emphasise the different approaches of data handling, each of the three approaches are
computed for the nominal stress and strain. The results of this are shown in Table 6.2.
Refer to Table 6.1 for description of each column.

48



6.1. Baseline Aalborg University

Baseline - Nominal stress and strain
Basquin Eq. Normal Dist. Weibull Dist.

A B R2 TN std stdcomb β λ R2 TN std stdcomb

σnom −7.37 23.91 0.4 20.66 0.51 7.17 3.4 0.96 21.62 0.52S690 &
S960 εnom −2.89 −3.59 0.72 7.82 0.35 11.62 3.53 0.98 7.65 0.35

σnom −11.76 35.76 0.85 4.94 0.27 0.3 11.24 2.82 0.93 5.35 0.29 0.35S690
εnom −2.87 −3.68 0.81 6.03 0.3 0.33 11.23 3.41 0.92 7.64 0.35 0.36

σnom −11.76 36.72 0.67 7.26 0.34 11.24 3.83 0.97 9.8 0.39S960
εnom −2.87 −3.42 0.65 7.77 0.35 11.23 3.67 0.98 8.89 0.38

σnom −11.75 35.74 0.85 4.94 0.27 0.3 12.98 3.14 0.94 5.11 0.28 0.33S690
εnom −2.8 −3.51 0.81 6.01 0.3 0.33 13.24 3.34 0.96 5.5 0.3 0.34

σnom −11.78 36.77 0.67 7.26 0.34 10.71 3.42 0.97 8.42 0.37S960
εnom −3.02 −3.78 0.65 7.73 0.35 11.45 3.68 0.98 8.6 0.37

Table 6.2. Nominal stress and strain.

Nominal Baseline

The comparison of results from Table 6.2 is to be conducted column-wise for either the
normal or Weibull distribution. A comparison of results between the normal and Weibull
distribution does not provide insight into which distribution most accurately details the
data.

When initially looking at the nominal stress results in Table 6.2, it is seen that the
uncertainty is considerably high when S690 and S960 is evaluated as a single data set in
accordance with Hobbacher (2016, Ch. 3.2). When considering the method of shared slopes
instead, the uncertainty is lower. The corresponding plots are presented in Figures 6.2a,
6.2b and 6.2e for a normal distribution and a Weibull distribution respectively.

When considering the nominal strain in Table 6.2, improved results, in comparison to the
nominal stress, are obtained when S690 and S960 data are combined to a single data set.
This is also observed in Figures 6.2c, 6.2d and 6.2f, for the normal- and Weibull distribution
respectively.

The nominal baseline is thus established based on Table 6.2. As highlighted, the resulting
measures depend on the data handling approach applied.
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Baseline, 21 nominel stress

(a) Nominal stress with normal distribution.

Baseline, 21 nominel stress

(b) Nominal stress with Weibull distribution.
Baseline, 11 nominel strain

(c) Nominal strain with normal distribution.

Baseline, 11 nominel strain

(d) Nominal strain with Weibull distribution.

Figure 6.2. Nominal stress and strain with confidence limits computed with
normal and Weibull distribution.
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6.1. Baseline Aalborg University

(e) Histogram for nominal stress. (f) Histogram for nominal strain.

Figure 6.2. Nominal stress and strain histograms.
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6.2 Uncertainty Results of Fatigue Indicators

In this section the results for the investigated fatigue indicators from Section 2.5 are
presented. The results are presented in tables according to the flow chart in Figure 6.1.
As such, each of the fatigue indicators are treated for three difference data handling
approaches. In the tables, P is used to indicate a peak value of the indicator. A and
V are used to indicate, that a nonlocal model of respectively area and volume has been
used.

In Table 6.3 the results of the approach of a single data set is presented. In Tables 6.4
and 6.5 the results of the approach of shared Basquin and Weibull slopes are presented.
Lastly, in Tables 6.6 and 6.7 the approach of separate data sets are presented. For all
tables, the corresponding results of using the nominal stress and strain are additionally
also shown.

Similar to Table 6.2, the comparison of results is to be conducted column-wise for either
the normal or Weibull distribution and not between each distribution.
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6.2. Uncertainty Results of Fatigue Indicators Aalborg University

Combined Data Set
Basquin Eq. Normal Dist. Weibull Dist.

A B R2 TN std β λ R2 TN std

σnom −7.37 23.91 0.4 20.66 0.51 7.17 3.4 0.96 21.62 0.52

εnom −2.89 −3.59 0.72 7.82 0.35 11.62 3.53 0.98 7.65 0.35

P −10.42 32.95 0.39 20.84 0.51 7.25 3.43 0.96 21.45 0.52
σeq A −9.59 30.46 0.42 19.57 0.5 7.31 3.41 0.96 20.75 0.52

V −9.3 29.52 0.5 15.63 0.47 7.92 3.42 0.96 16.85 0.48

P −10.6 33.97 0.54 13.96 0.45 8.39 3.39 0.98 14.22 0.45
σAMP A −9.84 31.53 0.51 15.2 0.46 8.05 3.38 0.97 15.59 0.47

V −8.3 26.87 0.64 10.31 0.4 9.06 3.27 0.97 10.81 0.41

P −10.74 31.09 0.52 14.92 0.46 8.13 3.38 0.97 15.24 0.47
τmax A −9.28 27.05 0.5 15.7 0.47 7.94 3.38 0.97 16.19 0.48

V −8.46 24.65 0.57 12.85 0.43 8.47 3.35 0.98 13.43 0.44

P −2.6 −2.33 0.81 5.41 0.29 13.98 3.39 0.98 5.15 0.29
εeq,tot A −2.49 −3.01 0.72 7.72 0.35 10.82 3.54 0.92 8.86 0.38

V −2.49 −3.59 0.73 7.51 0.34 10.93 3.51 0.93 8.55 0.37

P −2.68 −2.49 0.81 5.4 0.29 14.03 3.38 0.98 5.11 0.28
εAMP A −2.79 −3.36 0.81 5.44 0.29 13.86 3.53 0.94 5.59 0.3

V −2.77 −3.71 0.81 5.45 0.29 13.77 3.49 0.95 5.55 0.3

P −2.42 −1.77 0.83 5.1 0.28 14.48 3.39 0.98 4.89 0.28
γmax A −2.53 −2.78 0.85 4.6 0.26 15.56 3.49 0.97 4.59 0.27

V −2.5 −3.22 0.85 4.55 0.26 15.71 3.51 0.96 4.57 0.27

P −5.21 3.43 0.39 20.84 0.51 7.25 3.43 0.96 21.45 0.52
Y A −5.21 3.43 0.39 20.85 0.51 7.24 3.42 0.96 21.47 0.52

V −5.17 3.35 0.4 20.53 0.51 7.2 3.4 0.96 21.29 0.52

P −3.07 3.78 0.59 12.1 0.42 9.37 3.49 0.97 11.78 0.42
w A −1.57 3.94 0.48 16.7 0.48 8.16 3.5 0.99 16.55 0.48

V −1.62 4.2 0.49 16.29 0.47 8.29 3.48 0.99 15.73 0.47

Table 6.3. Combined data sets for S690 and S960. The best performing
fatigue indicator is indicated.

53



Design of Mechanical Systems 6. Results of Uncertainty Study

Shared Slopes - S690
Basquin Eq. Normal Dist. Weibull Dist.

A B R2 TN std stdcomb β λ R2 TN std stdcomb

σnom −11.76 35.76 0.85 4.94 0.27 0.3 11.24 2.82 0.93 5.35 0.29 0.35

εnom −2.87 −3.68 0.81 6.03 0.3 0.33 11.23 3.41 0.92 7.64 0.35 0.36

P −16.96 51.1 0.79 6.7 0.32 0.3 11.06 2.87 0.89 5.65 0.3 0.36
σeq A −15.78 47.52 0.87 4.51 0.26 0.25 13.13 2.8 0.93 4.22 0.25 0.3

V −13.6 41.24 0.9 3.84 0.23 0.22 15.02 2.88 0.93 3.67 0.23 0.27

P −13.57 42.21 0.82 5.74 0.3 0.29 11.85 2.97 0.95 5.38 0.29 0.33
σAMP A −13.91 42.8 0.87 4.41 0.25 0.24 13.63 2.86 0.87 4.12 0.25 0.29

V −10.1 31.65 0.9 3.68 0.22 0.21 15.13 2.83 0.96 3.56 0.22 0.25

P −14.55 40.58 0.85 5.16 0.28 0.27 12.52 2.91 0.94 4.78 0.27 0.31
τmax A −13.26 36.81 0.86 4.71 0.26 0.25 13.23 2.86 0.91 4.29 0.25 0.3

V −10.99 30.67 0.87 4.62 0.26 0.24 13.53 2.88 0.94 4.22 0.25 0.29

P −2.58 −2.3 0.81 6.29 0.31 0.29 12.41 3.39 0.91 6.29 0.32 0.32
εeq,tot A −2.46 −3.05 0.73 8.68 0.37 0.33 10.17 3.44 0.9 9.48 0.39 0.4

V −2.47 −3.66 0.75 8.1 0.35 0.32 10.42 3.4 0.9 8.77 0.37 0.39

P −2.66 −2.46 0.8 6.31 0.31 0.29 12.4 3.39 0.91 6.28 0.32 0.32
εAMP A −2.75 −3.35 0.8 6.43 0.32 0.28 12.58 3.46 0.88 6.38 0.32 0.33

V −2.73 −3.71 0.81 6.25 0.31 0.27 12.65 3.41 0.88 6.14 0.32 0.32

P −2.41 −1.75 0.82 5.87 0.3 0.28 12.85 3.4 0.92 5.95 0.31 0.31
γmax A −2.49 −2.76 0.85 5.06 0.27 0.25 14.25 3.44 0.92 5.12 0.28 0.29

V −2.47 −3.21 0.86 4.88 0.27 0.25 14.52 3.45 0.92 5 0.28 0.29

P −8.48 3.07 0.79 6.7 0.32 0.3 11.06 2.87 0.89 5.65 0.3 0.36
Y A −8.52 3.06 0.8 6.54 0.32 0.29 11.15 2.85 0.89 5.53 0.3 0.35

V −8.64 2.92 0.83 5.66 0.29 0.27 11.85 2.78 0.88 4.82 0.27 0.33

P −3.09 3.63 0.64 12.08 0.42 0.39 9.25 3.35 0.92 10.99 0.41 0.43
w A −1.53 3.87 0.54 16.95 0.48 0.48 7.53 3.48 0.98 20.25 0.51 0.52

V −1.58 4.12 0.55 16.16 0.47 0.47 7.59 3.47 0.97 19.62 0.51 0.51

Table 6.4. Separate data sets for S690 with shared Basquin and Weibull
slopes. The best performing fatigue indicator is indicated.
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Shared Slopes - S960
Basquin Eq. Normal Dist. Weibull Dist.

A B R2 TN std β λ R2 TN std

σnom −11.76 36.72 0.67 7.26 0.34 11.24 3.83 0.97 9.8 0.39

εnom −2.87 −3.42 0.65 7.77 0.35 11.23 3.67 0.98 8.89 0.38

P −16.96 52.08 0.79 4.86 0.27 11.06 3.89 0.91 10.49 0.41
σeq A −15.78 48.54 0.82 4.35 0.25 13.13 3.86 0.93 7.25 0.34

V −13.6 42.15 0.86 3.66 0.22 15.02 3.82 0.94 5.63 0.3

P −13.57 42.95 0.78 5.03 0.27 11.85 3.73 0.95 8.28 0.37
σAMP A −13.91 43.67 0.84 3.89 0.23 13.63 3.75 0.94 6.43 0.32

V −10.1 32.35 0.87 3.39 0.21 15.13 3.55 0.96 4.91 0.28

P −14.55 41.39 0.81 4.58 0.26 12.52 3.75 0.95 7.49 0.35
τmax A −13.26 37.69 0.84 3.95 0.23 13.23 3.76 0.92 6.8 0.33

V −10.99 31.45 0.86 3.65 0.22 13.53 3.68 0.92 6.28 0.32

P −2.58 −2.25 0.8 4.62 0.26 12.41 3.43 0.97 6.43 0.32
εeq,tot A −2.46 −2.83 0.76 5.48 0.29 10.17 3.68 0.87 11.09 0.41

V −2.47 −3.42 0.77 5.27 0.28 10.42 3.66 0.86 10.39 0.4

P −2.66 −2.41 0.8 4.59 0.26 12.4 3.43 0.96 6.43 0.32
εAMP A −2.75 −3.18 0.85 3.87 0.23 12.58 3.64 0.9 7 0.34

V −2.73 −3.52 0.85 3.86 0.23 12.65 3.61 0.91 6.82 0.33

P −2.41 −1.71 0.81 4.43 0.25 12.85 3.43 0.97 6.04 0.31
γmax A −2.49 −2.62 0.86 3.71 0.22 14.25 3.59 0.93 5.5 0.3

V −2.47 −3.06 0.85 3.74 0.22 14.52 3.61 0.93 5.39 0.29

P −8.48 4.05 0.79 4.86 0.27 11.06 3.89 0.91 10.49 0.41
Y A −8.52 4.05 0.8 4.75 0.26 11.15 3.88 0.91 10.26 0.4

V −8.64 3.95 0.83 4.12 0.24 11.85 3.85 0.89 8.83 0.38

P −3.09 3.95 0.61 8.62 0.36 9.25 3.67 0.97 13.75 0.45
w A −1.53 3.98 0.34 16.5 0.47 7.53 3.58 0.98 22.04 0.53

V −1.58 4.23 0.34 16.55 0.48 7.59 3.56 0.97 21.21 0.52

Table 6.5. Separate data sets for S960 with shared Basquin and Weibull
slopes. The best performing fatigue indicator is indicated.
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Separate Data Sets - S690
Basquin Eq. Normal Dist. Weibull Dist.

A B R2 TN std stdcomb β λ R2 TN std stdcomb

σnom −11.75 35.74 0.85 4.94 0.27 0.3 12.98 3.14 0.94 5.11 0.28 0.33

εnom −2.8 −3.51 0.81 6.01 0.3 0.33 13.24 3.34 0.96 5.5 0.3 0.34

P −15.13 45.91 0.8 6.35 0.31 0.27 11.87 3.26 0.96 6.32 0.32 0.28
σeq A −14.75 44.61 0.87 4.4 0.25 0.24 14.73 3.16 0.98 4.28 0.25 0.26

V −13.27 40.31 0.9 3.82 0.23 0.22 16.06 3.14 0.96 3.79 0.23 0.24

P −12.5 39.15 0.83 5.57 0.29 0.27 12.82 3.27 0.99 5.58 0.3 0.29
σAMP A −13 40.22 0.88 4.3 0.25 0.23 15.77 3.25 0.98 4.06 0.24 0.24

V −9.95 31.23 0.9 3.67 0.22 0.21 16.45 3.16 0.98 3.69 0.23 0.23

P −13.47 37.8 0.85 5.01 0.27 0.26 13.55 3.21 0.98 4.95 0.28 0.27
τmax A −12.39 34.6 0.87 4.6 0.26 0.24 14.61 3.24 0.98 4.5 0.26 0.25

V −10.62 29.75 0.87 4.59 0.26 0.24 14.38 3.25 0.97 4.63 0.27 0.25

P −2.32 −1.76 0.82 5.99 0.3 0.27 12.27 3.25 0.97 5.92 0.31 0.28
εeq,tot A −2.26 −2.55 0.74 8.48 0.36 0.32 9.44 3.48 0.91 11.43 0.42 0.36

V −2.26 −3.09 0.75 7.89 0.35 0.31 9.82 3.47 0.92 10.42 0.4 0.35

P −2.39 −1.9 0.81 6.01 0.3 0.27 12.39 3.25 0.97 5.84 0.31 0.28
εAMP A −2.48 −2.71 0.81 6.15 0.31 0.26 12.01 3.42 0.95 6.77 0.33 0.28

V −2.46 −3.03 0.82 5.96 0.3 0.25 12.42 3.43 0.95 6.43 0.32 0.27

P −2.19 −1.31 0.83 5.63 0.29 0.26 12.59 3.24 0.97 5.64 0.3 0.27
γmax A −2.29 −2.29 0.86 4.89 0.27 0.24 14.01 3.43 0.96 5.25 0.29 0.25

V −2.27 −2.71 0.86 4.71 0.26 0.24 14.29 3.43 0.95 5.08 0.28 0.25

P −7.56 3.07 0.8 6.35 0.31 0.27 11.87 3.26 0.96 6.32 0.32 0.28
Y A −7.61 3.06 0.81 6.2 0.31 0.27 11.97 3.25 0.96 6.2 0.32 0.28

V −7.81 2.94 0.84 5.39 0.29 0.25 13.26 3.24 0.98 5.21 0.29 0.26

P −2.63 3.55 0.66 11.25 0.41 0.34 9.1 3.38 0.94 11.6 0.42 0.35
w A −1.41 3.81 0.54 16.74 0.48 0.47 8.06 3.4 0.99 15.78 0.47 0.48

V −1.48 4.05 0.56 16.01 0.47 0.47 8.24 3.37 0.99 14.57 0.46 0.47

Table 6.6. Separate data sets for S690. The best performing fatigue
indicator is indicated.
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Separate Data Sets - S960
Basquin Eq. Normal Dist. Weibull Dist.

A B R2 TN std β λ R2 TN std

σnom −11.78 36.77 0.67 7.26 0.34 10.71 3.42 0.97 8.42 0.37

εnom −3.02 −3.78 0.65 7.73 0.35 11.45 3.68 0.98 8.6 0.37

P −23.01 69.46 0.85 3.82 0.23 17.31 3.5 0.97 3.98 0.24
σeq A −18.29 55.73 0.83 4.08 0.24 15.07 3.38 0.97 4.58 0.27

V −14.19 43.84 0.86 3.63 0.22 16.36 3.36 0.97 4.06 0.24

P −16.42 51.27 0.8 4.59 0.26 14.31 3.43 0.98 5.07 0.28
σAMP A −16.02 49.8 0.86 3.64 0.22 17.61 3.44 0.98 3.8 0.23

V −10.35 33.06 0.88 3.38 0.21 17.96 3.39 0.99 3.63 0.23

P −17.31 48.6 0.83 4.21 0.24 15.3 3.42 0.97 4.57 0.27
τmax A −15.26 42.87 0.86 3.69 0.22 17.27 3.45 0.98 3.91 0.24

V −11.66 33.15 0.86 3.6 0.22 17.34 3.43 0.97 3.86 0.24

P −3.38 −4 0.85 3.8 0.23 17.3 3.49 0.97 3.97 0.24
εeq,tot A −2.95 −4.06 0.78 5.08 0.28 15.39 3.61 0.96 4.91 0.28

V −3 −4.87 0.79 4.82 0.27 15.43 3.6 0.92 4.88 0.28

P −3.47 −4.19 0.85 3.78 0.23 17.29 3.49 0.97 3.97 0.24
εAMP A −3.49 −4.95 0.89 3.21 0.2 21.05 3.55 0.96 3.18 0.2

V −3.48 −5.43 0.89 3.17 0.2 21.82 3.54 0.95 3.05 0.2

P −3.03 −3.03 0.85 3.81 0.23 16.95 3.47 0.97 4.04 0.24
γmax A −2.99 −3.83 0.88 3.3 0.2 20.26 3.54 0.94 3.31 0.21

V −2.95 −4.32 0.88 3.34 0.2 20.79 3.55 0.94 3.24 0.21

P −11.51 4.29 0.85 3.82 0.23 17.32 3.5 0.97 3.97 0.24
Y A −11.48 4.28 0.85 3.77 0.22 17.52 3.5 0.97 3.91 0.24

V −11.05 4.11 0.87 3.42 0.21 18.86 3.44 0.96 3.49 0.22

P −6.25 4.52 0.82 4.34 0.25 16.91 3.57 0.98 4.22 0.25
w A −2.15 4.22 0.37 15.44 0.46 8.13 3.53 0.97 17.14 0.49

V −2.1 4.51 0.36 15.8 0.47 8.22 3.53 0.97 16.73 0.48

Table 6.7. Separate data sets for S960. The best performing fatigue
indicator is indicated.
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7 Discussion of Results

In this chapter a discussion of the results presented in Section 6.2 is provided with focus
on identifying the best performing fatigue indicators when considering local and nonlocal
models for reducing the uncertainty. A well performing fatigue indicator is to be expressed
through a low scatter index and standard deviation for the specific indicator, which is
direct measure of the quality of the predictor. Additionally, for the Basquin method the
coefficient of determination also expresses the quality of the model, while the β parameter
in the Weibull model also increases with increasing quality.

Firstly, a comparison between mainly the stress and strain indicators is presented for each
of the three approaches presented in Figure 6.1. This is done to evaluate whether or not
the inspected method is expected to provide good results. Next, a comparison between
each of the three approaches is shown with focus on the difference between the local and
nonlocal models evaluating the potential benefit of adapting a nonlocal model. Lastly, a
recommendation of the best performing fatigue indicator and model is provided.

7.1 Evaluation of Data Handling Approach

When considering the three different approaches for handling the S690 and S960 fatigue
data, presented in Figure 6.1, a study of the results of the approaches is now presented.
The focus in the following comparison is on the difference between the different approaches
and is not concerned with the potential improvement or reduction in fatigue data scatter
when considering local and nonlocal models.

Combined Data Set

When combining the data sets, material differences are purposely ignored in the model,
which is the recommended approach for high-cycle fatigue as prescribed by Hobbacher
(2016). However, for low-cycle fatigue the material difference is substantially more
important as indicated by Table 6.3. The stress based fatigue indicators all exhibit poor
predictive capabilities, indicated by large scatter indices and standard deviations, and low
R2 and β for the Basquin equation and Weibull distribution respectively. The energy-
based criteria of Lemaitre and strain energy density similarly model the data quite poorly.
In contrast to this, the strain indicators all show considerably better predictive aptitude,
with several of the indicators showing reduction in the order of three in scatter index in
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comparison to their stress counterpart. This applies to the equivalent, maximum principal,
and maximum shear strain criteria indicating that this approach of combining weld fatigue
data sets irrespective of material may be applicable if strains are considered.

Shared Slopes

Moving to the approach of identical slopes for which results are presented in Tables 6.4
and 6.5, the stress indicators can be seen to be quite capable in reducing the uncertainty
of the fatigue data. This is to be expected as the difference in material is now explicitly
included in the modelling. The results clearly show the beneficial effect that this has on the
stress-based methods which now show an improvement compared to the strain methods.
Lemaitre’s criterion now also exhibits good predictive capabilities on par with that of the
stress.

This approach highlights the effects of the considering different distributions. If the stress
criteria are considered, S960 yields lower uncertainty for a normal distribution then for
a Weibull distribution. If S690 is considered, the Weibull distribution produces lower
uncertainty than the normal distribution. If the strain criteria are considered, the opposite
is observed. The strain energy density still yields no better performance than the nominal
indicators.

Separate Data Sets

Lastly, when considering the data sets completely separate, the results of which are
provided in Tables 6.6 and 6.7, all indicators are expected to provide the best possible
reduction in scatter as no assumptions between the data sets are enforced. This is also
seen as this approach produces the lowest uncertainty for S960. However, the difference
in uncertainty for S690 is still comparable to a shared slope approach. The predictive
capabilities of the strain energy density is still poor.

Overall, it seems that the approach of complete data separation warrants the best possible
reduction in scatter, and has proved to be substantially better than the corresponding
nominal approaches. This indicates that a reduction of the associated fatigue scatter for
butt welded joints can be achieved by incorporating the effects of the weld geometry.

7.2 Evaluation of Local and Nonlocal Models

In the following focus is now on the effects of including a nonlocal model in comparison
to only looking at the local fatigue indicator and whether improvements can be observed.
Based on the principles introduced by Kuguel (1960a) the expected effect is that both the
highly stressed area and volume are better at modelling fatigue failure in comparison to
the peak value as the size of the region that is heavily loaded is included in the model.
This is especially potent when the weld geometry is included as local stress raisers give
rise to considerable regions of high stress.
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Initial offset is taken in Tables 6.6 and 6.7. This is done to purely evaluate the effect of
transitioning from a local to a nonlocal model, without the added influence from combining
the data sets of S690 and S960.

Immediately it is seen, that the effects of the nonlocal models are not consistent from
indicator to indicator. For some indicators the quality improves when moving from the
peak value to area and volume values, and for other indicator the behaviour degrades.

For the stress fatigue indicators the principles of the highly stressed regions seem to be
coherent with the obtained results in that an improvement in predictive capabilities is
observed when the nonlocal models are utilised. Furthermore, the volume consistently
performs better than the area, which is logical as the inclusion of stress gradients in the
thickness direction is included. For the strain-based indicators, the resulting effects are
split when looking at different indicators. The total strain performance worsens when
transitioning to nonlocal modelling, and for the other strain criteria the improvements are
less potent than that of the stress indicators. Lastly, for the energy-based criteria the
Lemaitre criterion shows minute improvements for the area and volume models, while the
strain energy density worsens considerably.

These trend continue when also considering the results for the approach of shared slopes
shown in Tables 6.4 and 6.5, and the total combination of data shown in Table 6.3.
However, the effects of the restrictions on the Basquin and Weibull slope are also included
in the results so the exact cause-effect is unknown.

7.3 Recommendation for Scatter Reduction

Lastly, a recommendation for the most effective fatigue indicator and model at reducing
scatter is provided for each of the three data handling approaches of the fatigue data sets
of S690 and S960 shown in Figure 6.1.
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Combined Data Set

For the combined data set shown in Table 6.3, the maximum shear strain criterion applied
using the highly strained volume model provides the least amount of scatter in the fatigue
data. The corresponding plots are shown in Figure 7.1 for the confidence intervals provided
by the Weibull distribution. Figure 7.1a shows the nominal strain and Figure 7.1b shows
reduced uncertainty when changing fatigue indicator. Figure 7.1c shows the histogram
of fatigue data and the fitted normal- and Weibull distributions. Figure 7.1d shows a
comparison between the predicted lifetime using the Basquin fit, and empirically observed
lifetime.

(a) Nominal strain. (b) Maximum shear strain.

11, max shear

(c) Histogram for maximum shear strain.

11, max shear

(d) Lifetime prediction.

Figure 7.1. Combined fatigue data of maximum shear strain with highly
strained volume.
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Shared Slopes

When looking at the approach of combining the data sets using shared slopes, the best
performing fatigue indicator is the maximum principal stress for a highly stressed volume.
Again the model of using a highly stressed volume reduces the scatter considerably in
comparison to using the peak values. This emphasises the effect of including the weld
geometry. The nominal stress results are shown in Figure 7.2a, while the improved results
shown in Figures 7.2b to 7.2d.

(a) Nominal stress. (b) Maximum principal stress.

21, max principal 
stress

(c) Histogram for maximum principal stress.

21, max principal 
stress

(d) Lifetime prediction.

Figure 7.2. Shared slopes fatigue data of maximum principal stress with
highly stressed volume.
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Separate Data Sets

Lastly, when considering the approach of separating the fatigue data completely, the best
fatigue indicator for only the S690 data is the highly stressed volume of the maximum
principal stress. When looking at only the S960 data the maximum principal strain with
the highly strained volume model provides the least amount of scatter. If the data sets
must be evaluated using the same fatigue indicator then the maximum principal stress
provides the best compromise. Plots of the maximum principal stress using the highly
stressed volume model are shown in Figure 7.3.

(a) Nominal stress. (b) Maximum principal stress.

22, max principal 
stress

(c) Histogram for maximum principal stress.

22, max principal 
stress

(d) Lifetime prediction.

Figure 7.3. Completely separate fatigue data for maximum principal stress
using a highly stressed volume model.
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Final Remarks

Conclusively, it has been shown in the preceding, that fatigue data of butt welded joints
in S690 and S960 can be reduced by modelling the local weld geometry obtained by laser
scanning. The fatigue indicator that reduces scatter most is the maximum principal stress
using a highly stressed model. For a Weibull distribution, a scatter index of 3.69 and
3.63 is obtained, while the nominal stress approach resulted in higher values of 5.11 and
8.42, respectively. This corresponds to a reduction of 27.8% and 56.9% for S690 and S960
respectively. The standard deviations are reduced by respectively 17.9% and 37.8% for the
two data sets respectively.
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8 Geometrical Weld Measurements

Having established a method of reducing the uncertainty for fatigue data, the following
chapter will detail the methods used for determining the geometrical weld features of
the butt weld presented in Section 2.6 and show the resulting distribution of geometrical
feature.

8.1 Determination of Geometrical Features

To determine the geometrical features, the location of the weld toe is needed. This
is obtained by the weld toe detection method described in Section 4.5 and shown in
Figures 4.7 and 4.8.

8.1.1 Weld Toe Radius

As mentioned in Section 2.6, the method for obtaining the radius r is based on the curvature
method proposed by Schubnell et al. (2019). The basis for this method, is the inverse
relation between the curvature κ and radius for a circle. This is shown in Equation (8.1),
where T is the tangent vector and c is the arc length.

κ =
1

r
=

∥∥∥∥∂T∂c
∥∥∥∥ (8.1)

By including the information of the normal vector n the directional information can be
expressed as shown in Equation (8.2).

κ = n · ∂T
∂c

(8.2)

Schubnell et al. (2019) applies this principle analytically by use of spline fitting between
data points from the laser scanning process to obtain a piecewise differentiable function
for the entire laser scan. However, in this work the method is implemented numerically.

The arc length dc is obtained by Equation (8.3) from the x− and z−data for a given laser
profile. As all calculations are evaluated numerically, all gradients are calculated using a
central difference approximation1.

dc =
√

∆x2 +∆z2 (8.3)
1The first and last point are evaluated using a backward- and forward difference approach as to not

lose any data.
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The components of the tangent vector are obtained by differentiating the positional data
w.r.t. to the arc length as shown in Equations (8.4) and (8.5).

Tx =
dx

dc
(8.4)

Tz =
dz

dc
(8.5)

The curvature can thus be calculated using Equation (8.6).

κ =

√(
dTx

dc

)2

+

(
dTz

dc

)2

(8.6)

The sign of the curvature can be recovered by evaluating the sign of the cross product
between the tangent derivative and normal vector using Equations (8.7) to (8.9).

nx = −Tz (8.7)

nz = Tx (8.8)

κsign = sign
(
nx

dTx

dc
+ nz

dTz

dc

)
(8.9)

By recovering the sign of the curvature, the weld toe radius can be evaluated for only
concave positional data, i.e. positive curvature, as shown in Equation (8.10).

ri =
1

κi
, if κsign,i = 1 (8.10)

In the study by Renken et al. (2021), it was concluded that a resolution of 0.8mm, for
the xz-points, is necessary to capture representative results of the geometry. As shown
in Section 3.2, the experimental setup is well within the recommendations by Renken
et al. (2021). However, a piecewise spline interpolation is applied to the laser scans. The
evaluation of curvature, and subsequently the radius, is still done numerically. The spline
is evaluated at 50 intermediate points between each laser scan point, effectively reducing
the x-resolution from 0.093mm to 1.86× 10−3mm.

To automate the selection of the smallest radius at the weld toe, the weld toe detection
method from Section 4.5 is applied. The detection method is able to distinguish between
the left and right side of the weld toe, and give a set of point which are potential candidates
for the smallest radius. By searching for the minimum radius within the region found by
the detection method, the weld toe radius is determined. The resulting automated process
is shown in Figure 8.1. This figure also highlights the difficulty in automating the selection
process of the smallest radius, as it is possible that the smallest radius does not necessarily
occur at the weld toe transition, but can occur on top of the weld.
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Figure 8.1. Positional, curvature, and radius data for a single laser profile.
Note that the axes for the positional data is 1:1.

8.1.2 Weld Toe Angle

As mentioned in Section 2.6, the method for obtaining the weld toe angle α is based on
the recommendations proposed by Schubnell et al. (2019), in which the weld toe angle
is calculated based on the angle formed between a line in the base material and a line
following the weldment.

Schubnell et al. (2019) determines the line for the base material, by simply fitting a line
for the base material. The line for the weld is determined by evaluating the tangent at
which the weld toe radius ends. However, in this work, the line for the weld will not be
determined based on the tangent of the weld toe radius, but instead by the use of the weld
toe detection method from Section 4.5. The principle behind finding the angle between
two straight lines is still applied.

Based on the weld toe detection method from Section 4.5, the laser scan can be separated
into base material and weldment. To ensure that the change in geometry at the weld toe
transition, i.e. the undercut and weld toe radius, does not influence the fitting procedure,
a fixed number of data points are excluded. This is highlighted in Figure 8.2 where the
clearly visible undercut is not included in the fitting procedure.
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Figure 8.2. Fitting for base material and weld. Note that the axes for the
comparison is 1:1.

8.1.3 Undercut

The undercut k is determined by evaluating the difference between the line fit for the
base material and the scan data. The interval along the scan data evaluated is the interval
excluded in the fitting procedure for the weld toe angle. The base fitting and the calculated
undercut is shown in Figure 8.3.

Figure 8.3. Linear fit of base material and calculation of undercut.
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8.1.4 Excess Weld Material

Excess weld material h is calculated by evaluating the difference in height between the
weld and base material. The height of the base material is evaluated at the location of
the weld toe detection as illustrated in Figure 8.4. The excess weld is calculated as the
difference between the maximum height and the average of height at each weld toe location
as shown in Equation (8.11).

h = hmax −
(
h1 + h2

2

)
(8.11)
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Figure 8.4. Excess weld height and weld width based on the weld detection
method.

8.1.5 Weld Width

The width of the weld b is evaluated at the same location as the excess weld height
illustrated in Figure 8.4. The width is simply evaluated as the difference between the
x-location at each weld toe.

b = b2 − b1 (8.12)

Both the excess weld material and width of the weld are evaluated using the weld detection
method from Section 4.5, i.e. where the gradient is zero. This location is different from the
location of the weld toe radius, i.e. at maximum curvature. No standard definition of the
location at which these geometrical features are to be evaluated is known to the authors2.

2DS/EN-ISO-17637 (2016), which specifies the manual inspection of welded joints, provides no insight
to the location of where the measurements are to be conducted.
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8.2 Distribution of Weld Features

Due to time constraints, no validation of the methods employed has been conducted.
Ideally, predetermined idealised geometries would be constructed from which the methods
for determining the geometrical features could be compared.

To ensure that the resulting geometrical weld features are representative of the laser scans,
a manual inspection is conducted for each specimen. A total of 65 specimens are examined
totalling 28 870 laser profiles. For each specimen, the laser scans containing the extreme
values of the weld toe radius, angle, and undercut are examined and verified through
visual inspection similar to Figures 8.1 to 8.3. Additionally, the weld toe detection, shown
in Figure 4.8, for the entire laser scan of each specimen is visually inspected.

The resulting distribution of the geometrical features are shown in Figure 8.5. As
mentioned in Section 3.1, all S960 specimens are ground, while roughly half of the S690
specimens are also ground. The effect of the post weld treatment is evident in the increased
weld toe radius for S960. The differences in distributions of respectively the weld toe angle,
excess weld material, and weld width are suspected to be due to the different welding
procedure qualification records for each material. The distributions of undercut are quite
similar and can most likely be attributed to the craftsmanship of the welder.
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Figure 8.5. Distribution of geometrical weld features for all specimens.
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9 Correlation of Strength and
Geometry

In this chapter a possible correlation between the geometrical weld features found in
Section 8.1 and the best performing fatigue indicator, the maximum principal stress,
found in Section 7.1 is investigated. If a significant correlation can be established between
the fatigue indicator and one or more of the geometrical features, this may enable the
quantification of weld quality based on said features. This can potentially form the basis
of a non-destructive testing methodology based on laser scanning of manufactured welds
to determine the fatigue strength.

In order to correlate the fatigue lifetime and the geometrical weld features, it is required
that the variation for each geometrical feature can be reduced to a single representative
quantity for a given specimen, e.g. a single weld toe radius measurement for each
specimen. However, it is difficult to define a method with which this reduction to a
single representative value may be carried out in practice. Instead, the variation of the
geometrical features and the resulting local stress level is investigated.

9.1 Local Variation

When the weld geometry is of good quality, it is anticipated that there will be a connection
between the local weld geometry and the local stress level, characterised by a relatively
low stress magnification, and vice versa for poor weld quality. An investigation into the
influence of the geometrical weld features on the local stress is carried out to validate
whether or not this is the case. The local stress is evaluated as the maximum principal
stress for each laser profile normalised w.r.t. the nominal stress of the given specimen.
The variation of the geometrical weld features along the weld seam, i.e. over the length of
the weld, are found using the procedures presented in Section 8.1.

In Figure 9.1 the results of two scanned specimens are shown. The variation in the local
stress is shown along with the variations of the weld features. Initially scan No. 70 is
inspected. When looking at points of interest (POI) 1 and 2, the expected behaviour
between the stress and the weld toe radius r is observed. When the weld toe radius is
reduced to a small value, an increase in the local stress is observed. Similarly, when the
weld toe radius spikes to a large value, the stress reduces in value. When looking at the
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1 2

Points of 

Interest

Scan No. 70

3 4 5 6

Scan No. 59

7

Figure 9.1. Comparison of variations of normalised maximum principal
stress and geometrical weld features.

other weld features, their specific impact of the local stress is less clear as they do not show
sharply changing values at POI 1 and 2.

For POI 3, 4, and 5 a similar weld toe radius can be observed. However, when inspecting
the stress at these three points, POI 5 clearly has a higher value. At POI 5 the weld toe
angle α is also seen to be the smallest out of the three. Again the remaining geometrical
features are harder to link to direct influences on the local stress due to incoherence.

Lastly, when looking at scan No. 59, a somewhat constant level of local stress is seen
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over the length of the weld, however the geometrical features vary considerably. When
inspecting POI 6 and 7, the local stress is at the lowest level, however the weld toe radius
is different at the two locations. The weld toe angle, undercut, and excess weld material
is at similar values at the two POI, with the weld width being slightly larger for POI 7.

Based on the shown variations it has been demonstrated that no single weld feature governs
the local stress level. The weld toe radius seems to be most strongly linked to the state of
stress in comparison to the other weld features.

9.2 Comparison of Local Stress and Geometrical Features

In this section, the local stress is compared to the local weld features for all specimens
investigated. The resulting plots are shown in Figure 9.2, where the difference in colour
represents different specimens1. For all specimens, data points that lie within 2mm of the
edges of the specimens are not included as to reduce the influence of the plane stress state
at the edges.

Figure 9.2. Normalised stress along the weld compared to magnitude of
local weld geometry features.

When inspecting Figure 9.2, any correlation between the local stress and the geometrical
weld features is to be to seen as diagonal lines in the plots indicating either improvement
or deterioration of the fatigue strength w.r.t. the features. If the data points are pooled
together or if they form horizontal or vertical lines no dependence between weld feature
and the local stress can be established. The weld toe radius clearly has an effect on the
level of the local stress. For decreasing weld toe radius, an exponential increase in the

1Note, due to the amount of specimen, several colours are repeated for different specimens. However,
the data associated with a given specimen is clustered.
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local stress is observed, which is in accordance with expected behaviour. This is observed
for almost all specimens.

With the weld toe angle the behaviour is less clear as the data points are pooled together in
spheres. The dependence of the angle on the stress is unambiguous. For some specimens,
an increase in undercut is reflected with an increase in the local stress. However, several
specimens also show an indifference in stress level with varying undercut magnitude.

The remaining features of excess weld height and weld width show no clear correlation to
the maximum principal stress with maximum values of stress not bearing any relation to
diagonal patterns in the features.

Final Remarks

In general, the maximum principal stress correlates consistently with the weld toe radius
for the investigated butt welds. The direct influence of the remaining features on the stress
can not be derived from Figure 9.2. The fatigue strength, and subsequent fatigue life, is
not only dictated by a single point but influenced by its surrounding geometry. This is also
implicitly seen in the fatigue indicator study, where uncertainty is reduced by considering
a nonlocal volume model.

The exponential relation between the weld toe radius and local stress level, would indicate
that by increasing the weld toe radius, such as through post-weld treatment, the local
stress level can be reduced, potentially improving the fatigue performance.
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10 Conclusion

The purpose of this work was to investigate the influence of including the weld geometry
on uncertainty in fatigue assessment and investigate the relationship between geometrical
features and fatigue performance. This work considered 33 butt welds in S690 and 32 butt
welds in S960, all of which have been loaded in low cycle fatigue. Each specimen has been
laser scanned, allowing for the construction of a finite element model that incorporates the
actual weld geometry.

Several different fatigue indicators have been investigated to examine their performance in
reducing fatigue uncertainty. These indicators have been combined with a nonlocal model
to incorporate the stress distribution at the weld. The performance of a fatigue indicator’s
capability to reduce uncertainty is assessed by applying a Weibull distribution based on
the weakest-link theory.

Among the fatigue indicators investigated, a highly stressed volume nonlocal model with
the maximum principal stress yielded the lowest uncertainty. It achieved a scatter index
of 3.69 for S690 and 3.63 for S960, while the nominal stress approach resulted in higher
values of 5.11 and 8.42, respectively. These findings highlight the significant influence of
weld geometry on the uncertainty associated with fatigue assessment of butt welded joints.

Investigations into the influence of geometrical features on the fatigue performance have
established a relationship between the local stress and weld toe radius, revealing an
exponential stress-raising effect as the weld toe radius decreases. However, the influence of
other geometrical weld features on the local stress can not be explicitly distinguished, as no
clear correlation is observed between the variation of these features and the corresponding
local stress.

The findings of this work demonstrate that including weld geometry in fatigue assessment
reduces uncertainty and reveals a relationship between weld toe radius and the local stress
in butt welded joints.
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11 Future Work

In the following, a listing of the immediate areas in which continued research should be
carried out is presented.

Expansion of Weld Fatigue Data

The data sets considered in this work was limited to butt welds in high strength steels in
low cycle fatigue. In order to quantify the application of the methods, data which expands
on the types of weld, steel, and number of cycles should be investigated.

Fatigue Indicators and Nonlocal Models

A limited number of fatigue indicators was investigated in this work. Further investigation
of more fatigue indicators is necessary to quantify their applicability, such as the approaches
by Findley (1959), Sonsino (1995), Carpinteri et al. (2009), and Susmel (2009, Ch. 3). This
can further be expanded to different nonlocal models, such as the stress gradient approach,
stress averaging approach, and critical distance approaches (Fricke and Maddox, 2008, Ch.
2.1).

Idealised Weld Geometry

Niederwanger et al. (2020) investigated the reduction of scatter in fatigue for laser scanned
cruciform joints compared to idealised weld geometries and found no improvement when
considering the laser scanned geometry. However, a study on the uncertainty compared to
nominal stress, as conducted in this work and by Hultgren et al. (2022), was not performed.
Thus, a comparison between the scanned- and idealised weld geometry as well as the
nominal approach, would establish any necessity of modelling the local weld geometry for
obtaining reliable fatigue results.

Validation of Code for Geometrical Features

As mentioned in Section 8.2 the implemented method for determining the geometrical weld
features has not been validated. As such, the uncertainty of the methods applied is not
known. Ideally, both a numerical and experimental investigation of known welds should be
examined. A numerical study can both provide insight into the accuracy with which the
geometrical features can be determined, but also the effects of applying low pass filtering.
An experimental study, in which the measurements of a known physical weld geometry
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are made, can be troublesome due to variations in the weld geometry. However, a study
comparing manual measurements and digitally obtained measurements, can provide insight
into the pros and cons of each method.
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