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Abstract:

The aim of this project is to produce a set of
tools that can help software developers and
researchers determine the effects of back-
ground processes on energy consumption.
We created a system, comprised of three
components, that can be used to estimate
the power used by individual processes. The
first component is a profiler that uses a set
of benchmarks to calculate the energy con-
sumption characteristic of a given CPU. The
second is a process tracker that records the
CPU usage of running programs. Finally, a
number of scripts are used to analyze the
data provided by the first two components.
While results generated from the process
tracker tests are inconclusive, results from
the profiler have provided an interesting in-
sight into how energy costs differ between
programs.
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Summary

As energy efficiency of software is becoming increasingly important, the number of exper-
iments analyzing the power consumption of the different components of software (such as
programming languages, frameworks, etc) is also on the rise. Some of these experiments suf-
fer from a lack of precision, reliability, and reproducibility due to the fact that current power
monitoring solutions, such as Intel RAPL, provide only high-level information (e.g. package
power consumption). This makes it impossible to determine the effect of background tasks
and processes on the power consumption of the actual software under test. The current best
practice is to try to minimize the effect of such processes by disabling unnecessary programs,
automatic updates, etc. Unfortunately, as modern operating systems are very sophisticated,
this solution is neither reliable nor reproducible.

Additionally, the complexity of modern CPUs also introduces difficulties when trying to
measure the energy usage of individual programs. One of the factors that must be considered
is hyperthreading, supported by virtually all modern CPUs. Hyperthreading enables a CPU
to divide its physical cores into multiple logical ones. From the point of the operating system
and the applications, each logical core behaves as if they were physical cores.

The goal of this project is to develop tools that can help researchers and software developers
ascertain the effect of background processes on power consumption. To do so, we must take
into account the CPU usage of running processes, as well as hyperthreading. When programs
are run over only physical cores, the power consumption increases in a reasonably linear
fashion with each active physical core. However, when hyperthreading is enabled, the increase
in power consumption will not be linear, due to the fact that hyperthreads running on the same
physical core share hardware components. The amount of power used by two hyperthreads
(running on the same physical core) is thus the amount of power used by a single hyperthread
times some multiplier. We assume that this multiplier is unique to each CPU model, or even
to each individual CPU, due to variations in manufacturing.

To help us compute the power usage of individual processes, we have created a system
composed of three components: a profiler that can run a pre-defined set of benchmarks to
collect the information used to calculate the CPU’s power consumption characteristics, a process
tracker, that can collect data on the running processes, and a set of scripts, that are used to
analyze the results obtained by the other tools.

The profiler is a C++ application, able to run micro and macro benchmarks. It accepts con-
figuration options, such as the actual benchmarks to run, number of cores to use, and whether
or not hyperthreading should be used. It then measures the amount of time taken, and power
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consumed by each benchmark. This data is used to determine the power consumption char-
acteristic of the given CPU. This characteristic is comprised of the static power (the theoretical
power consumed when no cores are active), and the hyperthreading ratio mentioned above.
The process tracker is a Rust program, that tracks the CPU usage of currently running processes
using Linux’s /proc pseudo file system.

Finally, the scripts are responsible for analyzing the results produced by the profiler and
process tracker. They can calculate the CPU’s static power consumption, and the hyperthread
energy usage ratio, as well as the CPU utilization, process CPU usage, and process power
consumption using the results from the process tracker. Three methods are used to calculate
these results. The first naively calculates the power as a proportion of CPU time. The second
takes into account hyperthreading over individual cores, while the third includes an algorithm
derived from the HaPPy paper[42].

There are also plans for additional improvements that we could not implement in time.
Such improvements are an UEFI mode for the profiler, and a modification of the Linux sched-
uler. Running the profiler in UEFI mode would allow us to measure the power consumption of
each benchmark without the effects of any background processes. Modifying the Linux sched-
uler to record the amount of time a given process was scheduled for, and on which core it was
running should, in theory allow for more accurate energy usage estimations. We performed
several tests using our tools. Results using the process tracker were inconclusive, demonstrating
large differences between what should be similar environments. However, results from the
profiler provided insight into different energy usages between programs, shining light on how
complex the problem of measuring the energy usage of a single program is. Further research
is required to investigate these results.
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Chapter 1

Introduction

The power usage and energy efficiency of Information and Communication Technology (ICT)
systems has become a major point of consideration in recent years. One of the primary rea-
sons for this is cost: reducing the power consumption of ICT devices may lead do considerable
savings, especially in large data centers. However, perhaps an even more important factor is
the environmental impact of such devices. Some estimates state that, in the worst-case, 20% of
the global electricity demand may be used by ICT infrastructure by 2030 [18].
Improvements to energy efficiency have been primarily driven by advances in chip (and other
hardware) design. For example, an Intel Pentium II Xeon 400 MHz ([14]) server processor, re-
leased in 1998 has a Thermal Design Power (TDP) of 30.8 watts. It has a single core, running
at 400 MHz. Contrasting it with a Intel Xeon W-1390T ([17]), released in 2021, we can see the
increase in efficiency: the W-1390T has 8 physical (16 logical) cores, running at 1.5 GHz, with
a TDP of 35 watts.
However, there is another aspect to consider when we attempt to lower to power consump-
tion of any ICT system: the energy efficiency of software. As power consumption becomes
an increasingly important question, developers have begun to consider the effects of software.
To help with this, research has been conducted to try do determine the energy efficiency of
different programming languages ([2, 25]), frameworks ([4]), coding practices ([22]), and so on.
An important consideration when conducting such an experiment is the choice of power mea-
suring instrument. There are two categories: external power meters, (devices such as the Watts
Up Pro [39]) that measure the power drawn from a socket by the entire system, and internal
power meters that rely on sensors and performance counters. The most prominent example of
the second category is Intel RAPL.
RAPL has several advantages over external power meters: it requires no extra investment, as
it is available on all relatively recent Intel CPUs, it is easy to read, and it provides accurate
and frequent measurements. However, it only provides socket-level power readings, making
it impossible to determine the power consumption of individual CPU cores, threads, or even
processes. This limitation presents an issue: the goal of many of the power consumption ex-
periments is to evaluate the efficiency of some language, framework, etc, in a realistic setting.
This means using a device such as a workstation, or server, and running the tests under an
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operating system. Due to the complexity of modern operating systems, it is impossible to
predict and control the appearance of background processes. Such processes may influence
the results of the experiments, as they themselves use some CPU time, and thus, power.
In this project, our goal is to develop tools that can help researchers quantify the power usage
of such processes, using Intel RAPL.
The structure of this report is as follows: Chapter 1 presents the introduction, problem state-
ment, research questions, and the expected contributions. Chapter 2 lists a number of related
works. Chapter 3 gives a short overview of Intel RAPL, as well as the methods we used to
retrieve in different parts of our system. Chapter 4 introduces our the different components of
our tool. Chapter 5 shows the results we achieved by using our tools. Chapter 6 details some
of the challenges encountered during development, including unimplemented functionality.
Finally, Chapter 7 presents some possible future works, as well as the overall conclusion.

1.1 Problem Statement

The field of computer energy use is gaining more and more relevance in an increasingly green-
focused world. Much research has been done to try and identify the impact of code on energy
use, but experiments often plagued by the issue of background tasks influencing results. Most
modern systems are not single-purpose systems, and run many tasks simultaneously, which
may use computer resources at arbitrary times. Today’s methods of measuring power use
cannot differentiate between different processes, so results may be skewed by code that is not
the code under test. Not much research has been done into identifying or isolating background
tasks in energy measurement. The current best practice is to try and minimize background
tasks where possible, but the actual impact of these processes, or the mitigation, is unknown.
The aim of this research is to develop different measurement techniques and tools to shed
some light on the impact of background tasks. Ideally, it will provide tools that can accurately
measure individual process power consumption. We aim to accomplish this through both
practical and statistical methods with preexisting power consumption measurement tools.

1.2 Research Questions

Our goal in this project is to create a set of tools that can help developers and researchers
determine the power consumption of background processes under Linux, and to evaluate the
accuracy of said tool. This leads to our research question:

RQ1 Is it possible to measure power consumption of individual processes on modern hard-
ware and systems?

RQ1A If so, what level of accuracy can we accomplish?
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1.3 Expected Contributions

Our goal is to produce a number of tools that can help researchers and software developers
quantify the power consumption of a specific process in an environment with background
processes.

1. A profiling tool, which runs a set of benchmarks to create an energy profile of the system.
This profile is used to calculate two sources of energy consumption:

(a) Static energy consumption, which is the baseline level of power the CPU uses just
by being online.

(b) Dynamic energy consumption, which is the power used by the CPU in an active
state, running user code.

2. A process monitoring tool, that monitors running processes and collects statistics such
as CPU cycle counts and memory usage.

3. A set of scripts to aid in the calculation of the total power consumption of individual
processes, using the data generated by the profiling tool and the process monitoring
tool.

Additionally, we would like to evaluate the efficiency and accuracy of these tools, to deter-
mine their usefulness compared to existing solutions.
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Chapter 2

Related Works

2.1 RAPL

Intel RAPL (Rolling Average Power Limit) is a hardware feature present in recent Intel CPUs,
that allows us to programmatically monitor the power consumption of the CPU, and in some
cases the DRAM and the integrated GPU. Khan et al. in “RAPL in Action” [19] investigate the
strengths and weaknesses of the RAPL interface, using methods such as microbenchmarks,
application-level benchmarks, and additional datasets from Taito, a cluster of the Finnish Cen-
ter of Scientific Computing. They find that “RAPL readings are highly correlated with plug
power, promisingly accurate enough, and have negligible performance overhead.”. These find-
ings indicate that RAPL can be used in power consumption experiments. They do note some
problems, the most significant ones being the unpredictable timing of the register updates,
and possible register overflows.

2.2 Scaphandre

Scaphandre [10] is a tool designed to measure power consumption of individual processes on
a system. It’s designed for use on a bare metal host, but has the ability to measure the power
consumption of KVM virtual machines. It is intended to be used in industry with conventional
metric monitoring solutions, but of more interest to us is their method of devising individual
process power metrics.

Scaphandre uses Intel RAPL (3) on both Windows and Linux to gain a system-wide power
consumption metric. To separate processes, Scaphandre assumes the power consumption of a
process is directly proportional to the CPU time e.g a process that uses half of a CPU’s capacity
used half the measured energy usage.
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2.3 Intel Power Gadget

Intel Power Gadget [15] is a tool provided by Intel to monitor and log processor information
such as frequency, temperature, and power usage. Officially, it is supported on Windows
and macOS operating systems, however, there is an unofficial Linux version as well [12]. All
versions use the RAPL Model Specific Registers (MSRs) to gather power usage information.

All versions are capable of outputting the measured values in a comma-separated file for
further analysis. The Windows and macOS versions also provide a user interface that displays
the power, temperature, etc. as a graph.

The advantage of Intel Power Gadget is that it is available for Windows, while most other
energy measurement tools focus on Linux. Additionally, it offers the same granularity as other
RAPL-based tools: package, core, uncore, and dram domains.

2.4 HaPPy

HaPPy: Hyperthread-aware Power Profiling Dynamically [42] is a paper that posits a new
model for attributing power consumption to jobs, taking into account hyperthreading. They
posit an initial, hyperthreading-unware model, where additional core usage linearly translates
to additional power usage, with a static power usage added on top. They show how this
model can map a variety of workloads without hyperthreading, but fails when hyperthreading
is enabled, due to the sharing of various execution components in a single core. They then
present an extended, hyperthreading-aware power model, which takes into account which core
each thread is running on, modelling power consumption with a greater degree of accuracy
than the hyperthreading-unaware model.

2.5 Energy Consumption Benchmarks

Benchmarking is the act of measuring some property of software. In this project, we are inter-
ested in energy consumption. While execution time can sometimes used as a proxy for power
usage, as shown in by Pereira et al. in [26], that is not always the case.
Microbenchmarks are small, well defined programs that usually only do one thing (e.g. some
heavy computation). The Computer Language Benchmark Game (CLBG) [40] is a collection
of such benchmarks. They are used extensively in energy efficiency research, for example, in
papers [26] and [21], that investigate the energy consumption of different programming lan-
guages and programs.
While microbenchmarks are useful, as they can be implemented easily, they are not represen-
tative of real-life workloads. For such tests, macrobenchmarks can be used instead.
OpenBenchmarking.org [3] provides a repository of such benchmarks. Alternatively, it is pos-
sible to use complete programs (such as ones found in the Software-artifact Infrastructure
Repository [33]) as benchmarks. They are used (among other sources) in [31], a paper that
attempts to quantify the influence of software features on energy consumption. Finally, SPEC
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([34]) provides standardized benchmarks for performance evaluation, including power char-
acteristics ([20]).
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Chapter 3

Intel RAPL

RAPL is a set of MSRs, [13] suitable for tracking energy consumption, introduced in the Sandy
Bridge line of processors. The RAPL interfaces can be used to retrieve the energy consumed
by the following domains:

• Package (PKG): energy consumption of the socket.
• Power Plane 0 (PP0): energy consumption of all processor cores on the socket.
• Power Plane 1 (PP1): energy consumption of the integrated GPU.
• DRAM: energy consumption of the RAM attached to the CPU.

Not all domains are available on all devices. PP1 is only accessible on desktop CPUs, while
DRAM is only accessible on server devices. PKG and PP0 is available on both client and
server CPUs.

The RAPL MSRs are 32-bit registers, and are updated roughly once every 1ms. This means
that RAPL can be used to collect real-time (or near real-time) power consumption information.
However, as found by [19], the RAPL registers can also easily overflow, which must be taken
into account if they are accessed and read directly.

Different processor architectures might store the consumed power values in different units
and increments. For example, the default value for Sandy Bridge processors is 15.3µJ. The val-
ues of the power and time units can be determined by reading the MSR_RAPL_POWER_UNIT
register [13].

Additionally, the RAPL interface also provides functionality to limit the power usage of
the different CPU domains. However, in this project we only use the reporting functionality of
RAPL.

3.1 Reading RAPL

There are several ways to access the power readings provided by RAPL. This section lists
the methods used in the project, and the advantages and disadvantages of the different ap-
proaches.
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3.1.1 Reading MSRs directly

The values of the RAPL registers can be read by using the RDMSR instruction [13]. This is the
most direct way of accessing the RAPL MSRs, however there are a number of disadvantages.
The main drawback is that the RDMSR instruction must be executed at privilege level 0 (kernel
privilege), otherwise a general protection exception will be generated by the CPU. This means
that user space programs cannot use the RDMSR instruction. Additionally, as discussed in
Intel RAPL, the program using RDMSR must be aware that different architectures use dif-
ferent power and time units, and must be able to calculate these based on the values in the
corresponding registers. Finally, the program must be ready to handle possible overflows in
the RAPL register that stores the actual power consumption values.
Despite these disadvantages, direct MSR access is required if we attempt to retrieve RAPL
readings in bare metal configuration.

Listing 3.1: Reading register values directly.

1 uint64_t RawMSRInterpret::getRegister(uint64_t offset)
2 {
3 uint64_t ret = __LONG_LONG_MAX__;
4 uint32_t *lo, *hi;
5 lo = (uint32_t*)&ret;
6 hi = lo + 1;
7 asm volatile("rdmsr" : "=a"(*lo), "=d"(*hi) : "c"(offset));
8 return ret;
9 }

3.1.2 Using the Powercap interface

It is possible for programs running in user space to access the RAPL readings by using the
Powercap interface provided by the Linux kernel [29]. It is located under the sysfs pseudo file
system: /sys/devices/virtual/powercap. The interface exposes several objects that can be used to
access settings related to power capping.
The exact contents of the pseudo file system might vary depending on the capabilities of the
system, but it typically contains objects (folders) that represent the different power zones (or
domains) of the system.

Figure 3.1 shows the partial result of running the tree command in the /sys/devices/virtu-
al/powercap directory. Here intel-rapl:0 is the power zone for package-0 (indicated by intel-
rapl:0/name). intel-rapl:0/intel-rapl:0:0 is a subzone, in this case the core domain. energy_uj is
the energy counter in microjoules, and max_energy_range_uj is the range of the counter, also in
microjoules.
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powercap
intel-rapl
enabled
intel-rapl:0

device -> ../../intel-rapl
enabled
energy_uj
intel-rapl:0:0

device -> ../../intel-rapl:0
enabled
energy_uj
max_energy_range_uj
name
power

autosuspend_delay_ms
subsystem -> ../../../../../../class/powercap
uevent

name

Figure 3.1: Powercap objects.

Listing 3.2: Reading Powercap.

1 uint64_t PowercapInterface::getCurrentJoules()
2 {
3 ifstream file(this->path);
4 string line;
5 if (file.is_open() && getline(file, line))
6 {
7 file.close();
8 uint64_t power = stoll(line);
9 return power / 1000;

10 }
11 else
12 {
13 exit(-1);
14 }
15 }

Listing 3.2 shows how we can read energy consumption values using the Powercap in-
terface. Here, the path field of the PowercapInterface class contains the path to the file
that corresponds to the power zone we would like to access (e.g. if we are interested the
total power consumption of the system, its value will be set to “/sys/class/powercap/intel-
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rapl:0/energy_uj”)

3.1.3 Using the MSR interface

Another possibility is to make use of the interface located under /dev/cpu/CPUNUM/msr [24],
which provides access to the MSRs of an x86 CPU. As it is an interface similar to Powercap, it
can be accessed from user space. It provides raw values, same as reading the registers directly.
This can be used to test code that is responsible for converting these raw values into some
desired format without having to boot into bare metal mode.

Listing 3.3: Reading an arbitary MSR value.

1 uint64_t LinuxMSRInterpret::getRegister(uint64_t offset)
2 {
3 // cannot use ifstream because of caching
4 int file;
5 uint64_t value;
6 file = open("/dev/cpu/0/msr", O_RDONLY);
7 if (!file) goto fail;
8 if (pread(file, (void*)&value, 8, offset) != 8) goto fail;
9 close(file);

10 return value;
11 fail: exit(-2);
12 }

Listing 3.3 shows how we read the value of an arbitrary MSR (defined by the offset
parameter) using C++.
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Chapter 4

Components

Our system is a design in three parts. First, a profile can be created by the profiler, which runs
a series of benchmarks to calculate the static and runtime power consumption of the CPU.
Second, the process tracker is run to gather data on the process usage, and a set of scripts to
calculate the energy usage of individual processes from the profile and gathered process data.

4.1 Profiler

The profiler is conceptually simple, consisting of a set of benchmarks to stress the system
in different ways, measurement functionality for these benchmarks, and post-processing to
create the profile, a set of data used by the process tracker to estimate power consumption of
a process, even with other processes running on the same system.

4.1.1 Testing Process

The user has the ability to specify options on launch through command line parameters. This
includes which tests to run, how many iterations of tests to run, the filename of the output
file, and which ’test specifications’ to run. For our purposes, a test specification is a number
of threads plus whether it is hyperthreading-enabled or hyperthreading-disabled. A hyper-
threading enabled specification will run on the smallest number of physical cores possible,
while a hyperthreading-disabled specification will not run more than one thread on a single
physical core.

Additionally, it’s possible to specify a confidence interval and a margin of error. These
values are used to automatically determine the number of iterations. This is done by using the
following equation (taken from [7]):

Z∗ ·
√

p̂·(1− p̂)
n ≤ marginO f Error

11



In this equation Z∗ is the critical value, based on the provided confidence interval. p̂ is set
to 0.5, as that is the worst-case scenario (0.5 maximizes the value of p̂ · (1 − p̂)). Finally, n is
the number of desired iterations. After rearranging for n, we get:

n >= Z∗2

4·marginO f Error2

At this point, the right-hand side of the equation can be calculated. The result is the
rounded up to the nearest integer and will be set as the number of iterations for each bench-
mark.

It is also possible to manually set the number of iterations when the benchmark harness is
created.

By default, the profiler runs with a set of default tests over every possible core specification.
The profiler will then run each test in series over each core specification. The order of

tests and the order of core specifications are randomized, but a single test-spec will run all
iterations at once. The tests will record the power consumption in memory. Once all the tests
have completed, the results will be printed, and - if an output file is specified - written to a file
in the json format.

The profiler uses Intel RAPL to measure power consumption, through either the Powercap
interface, or direct MSR access, as specified at compile time.

4.1.2 Benchmarks

We have implemented a number of benchmarks that stress the CPU and memory usage of the
target machine. We’ve included both microbenchmarks and macrobenchmarks, after finding
that microbenchmarks tended to exhibit strange behavior when under load.

Sleep Test

The first ‘benchmark’ we implemented was the sleep test, a simple test that sleeps for a given
number of seconds. This leads to zero processor usage, as the CPU is placed into a halt
state. Our intention behind this test was twofold — first, it is a simple test to implement
and verify correctness. Second, we originally thought a sleep test could be used to get the
static power consumption of the CPU, given it would be online, but not executing any code.
This was quickly dismissed as not viable. While every core in a CPU is asleep, much of the
CPU hardware that takes up the static power consumption can be disabled. This leads to
appreciable power savings, but leaves this unable to calculate the static power consumption.
However, tests similar to this one were used to calculate the static idle power consumption, as
detailed in 4.3.1.

Spin Loop

A spin loop was a second simple benchmark to implement. Given a length of time, it will
spin endlessly on a time-checking function call, until the given length of time has passed.
While this achieves the same goal as the sleep test, it does so in a far more inefficient manner,
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ensuring power is consumed. It was a second simple test to build while we were early on in
development.

To ensure the empty loop is not optimized away by the compiler, we disable compiler
optimizations. In addition, we have inspected the resulting machine code to verify that the
loop is being performed.

Fannkuch-Redux

The Fannkuch-Redux test is an implementation of the Fannkuch-Redux algorithm [9], taken
from the CLBG [8]. This test is intended to simulate CPU-heavy workloads that do not use a
large amount of memory.

Binary Trees

Similarly to the Fannkuch-Redux benchmark, the Binary Trees test is an implementation from
the CLBG. This test simply creates a binary tree of the specified depth. For each node in the
tree, space for an array of doubles with a specified number of elements is also allocated on the
heap. The purpose of this benchmark is to test the effects of memory-intensive applications
(applications that perform frequent allocations) on power consumption.

Ray Tracing

The ray-tracing test was designed to more closely resemble a “real-world” application. It is an
(incomplete) implementation of the simple ray tracing application described in [32]. This was
our first attempt at a more real-world benchmark, under the hypothesis that a more complex
benchmark would better stress the CPU and bring more accurate results than a microbench-
mark.

While not currently implemented (see 4.1.3 for the current multithreading implementation),
this workload should be easy to parallelize and scale indefinitely.

Stress

The stress test uses the Linux program, stress [35] to put the system under load for a period
of time. Like the original sleep and spin loop tests, this was not intended to be an effective
benchmark, but a simple test for our framework.

Phoronix Test Suite

At some point in our testing the need for more in-depth tests was established. We turned our
attention to the Phoronix Test Suite [27], a set of open-source community benchmarks built on
an extensible community platform. While our implementation does not use the Phoronix Test
Suite harness itself, we have adapted a few of their tests to our process.

1. 7zip [1]

2. Linux Kernel Build [36]

13



3. x265 [41]

All tests were chosen specifically because they exhibited good scaling over multiple threads.

4.1.3 Multithreading

Our approach to running tests on multiple threads evolved as development progressed. Orig-
inally, the approach was simple - tests would be built single-threaded, and then run multiple
times simultaneously, over multiple threads. This approach had limitations. Measurement
started from the start of the first test, to the end of the last test. We assumed each test would
run independently and finish at approximately the same time. This was not the case.

In our experiences, when running basic tests on multiple threads, they would end at dif-
ferent points. While we were not able to confirm any assumptions, we assume that contention
was happening either on the shared cache level, the memory reading level, or through shared
hardware in the hyperthreading cores.

As further development progressed, and we developed the capability to run external tests,
rather than only our own implemented code, a different approach to multithreading was de-
veloped. These tests (Stress and the Phoronix Test Suite) run with secondary processes, rather
than in the main process as all previous tests have. To limit which cores they can run on, we
attach these processes to cgroups, using the cpuset subsystem to limit which CPUs they run
on. Then, on a per-test basis, we instruct them to use as many cores as possible, if necessary.

4.1.4 Calculating energy consumption

If Powercap (3.1.2) is used to determine the power consumption, getting both current power
usage and the total amount of energy consumed is simple. Powercap exposes the current
power in microwatts, and the total amount of energy used in microjoules. We can work with
these values directly, or simply divide them to get the current power in watts, and the total
consumed energy in joules.
Calculating the energy usage by reading the MSRs (3.1.3, 3.1.1) (whether directly in a bare
metal, or using the msr interface in Linux), is slightly more involved. The MSR_PKG_ENERGY_STATUS
register stores how much energy has been used, however, as mentioned in Intel RAPL the time
and power units can vary between platforms. This information (along with the power unit
and time unit) is stored in the MSR_RAPL_POWER_UNIT register, and must be retrieved before
the energy usage can be calculated.
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Listing 4.1: Calculating the power usage from MSR values.

1 #define MSR_RAPL_POWER_UNIT 1542
2 #define MSR_PKG_ENERGY_STATUS 1553
3

4 uint64_t MSRInterpretPowerInterface::getCurrentJoules()
5 {
6 if (!this->registered)
7 {
8 this->registered = true;
9 this->shift = this->getShiftMultiplier();

10 }
11 uint64_t power = getRegister(MSR_PKG_ENERGY_STATUS);
12 return (power * 1000) >> shift;
13 }
14

15 #define ENERGY_MASK 0b1111100000000
16 uint64_t MSRInterpretPowerInterface::getShiftMultiplier()
17 {
18 uint64_t reg = getRegister(MSR_RAPL_POWER_UNIT);
19 reg = (reg & ENERGY_MASK) >> 8;
20 return reg;
21 }

Listing 4.1 shows how we calculate the current value of the total amount of consumed
joules using the raw values from the MSRs. This calculation is the same on both Linux (in
which case the getRegister() call will use the function in Listing 3.3), and on bare metal (in
which case the function in Listing 3.1 will be used).
The values for MSR_RAPL_POWER_UNIT and MSR_PKG_ENERGY_STATUS are the addresses of
the corresponding registers, as defined in the Intel Developer Manual [13]. The value for
ENERGY_MASK is a bit mask that can be used to retrieve the Energy Status Units stored in bits
12:8 of the MSR_RAPL_POWER_UNIT register.

Once the amount total energy used can be retrieved, we can calculate the energy used by
each test by measuring directly before and after a test is run, and calculating the difference
between the two values. The power usage of each test can be similarly calculated by measuring
how long a test takes, and then dividing the energy used with the duration.
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Listing 4.2: Measuring test power usage and duration

1 TestDataPoint Harness::runTest(function<Test*()> factory, uint32_t*
↪→ threadids, uint32_t numthreads)

2 {
3 Test** teststorage = new Test*[numthreads];
4 for (uint32_t i = 0; i < numthreads; i++)
5 teststorage[i] = factory();
6 uint64_t start_time = timeMs();
7 uint64_t start = this->interface->getCurrentJoules();
8 for (uint32_t i = 0; i < numthreads; i++)
9 this->threads[threadids[i]]->runTest(teststorage[i]);

10 for (uint32_t i = 0; i < numthreads; i++)
11 this->threads[threadids[i]]->waitForFinish();
12 uint64_t end = this->interface->getCurrentJoules();
13 uint64_t end_time = timeMs();
14 uint64_t value = end - start;
15 TestDataPoint tdp = {
16 .powerUsed = value,
17 .timeTakenMs = end_time - start_time
18 };
19 for (uint32_t i = 0; i < numthreads; i++)
20 delete teststorage[i];
21 delete[] teststorage;
22 return tdp;
23 }
24

Listing 4.2 shows our core logic for running tests. The current power is acquired before
the tests begin, and after the tests finish. This captures both the time taken to finish the tests,
and the total joules consumed by the system in that time. The power in watts can be easily
calculated from this.

4.1.5 Profiler Output

The output of the profiler is a .json file that records the results of all performed benchmarks.
Specifically, it contains the timer’s resolution, and a list of entries for each benchmark. Each of
these entries contain the following data:

• Name: The name of the benchmark (e.g. 7zip, raytracing, etc.)

• Thread count: The number of threads that were used when running this specific instance
of the benchmark.

• Hyperthread enabled: Whether this instance of the benchmark was run in hyperthreaded
or non-hyperthreaded mode.
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• Benchmark results: A list of entries for each run that was performed by this instance of
the benchmark. These contain the following information:

– Time taken: The time it took for the run to finish, in milliseconds.

– Power used: The power used by the given run, in millijoules.

4.2 Process Tracker

The process tracker is a relatively simple Rust utility, with a single purpose: to collect the CPU
usage information of currently running processes.

4.2.1 Configuration Options

There are several configuration options, which can be set based on the current requirements:

Duration: This parameter controls how long the tracker will run for.

1. Set time: run the process tracker for a pre-determined length of time.

2. While a process is running: run the process tracker alongside another process, and stop
when that process terminates.

3. Indefinitely: run the process tracker indefinitely.

Target: This setting will control which process or processes will be tracked.

1. All: collect information of all running processes.

2. Single process: collect information of a single running process, determined by the pro-
cess’ PID.

These options can be combined, for example, if we are only interested in the CPU usage of
a single process with a known PID, we can configure the process tracker to only record that
processes’ information, and to shut down when the process terminates.
Since the tracker can also be run indefinitely, it is necessary to periodically save the collected
information. This prevents data loss in case if a crash, or system power-down, and will reduce
the memory usage of the tracker (as it will not be necessary to keep all measurements in mem-
ory). It is possible to configure how often the measurements are saved.
Finally, the user can set the frequency with which the data is collected. This involves a trade-off
that must be considered on a case-by case basis: higher frequency will mean better accuracy,
however, it will also cause higher CPU (and thus power) usage. Additionally, capturing more
measurements will mean higher memory usage. This can be somewhat offset by configuring
the tracker to write the results more often, but that solution also introduces some overhead
(e.g. CPU time spent serializing the measurements, and disk I/O).
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4.2.2 Process Data Collection

The process tracker will collect the necessary information using the proc pseudo-file system
[30]. It provides a file-system like interface to the Linux kernel, allowing us to retrieve in-
formation as if we were simply reading files, similarly to using the MSR (3.1.1) or Powercap
(3.1.2) interfaces.
Within \proc there is a numerical “subdirectory” for each running process, with the following
format: \proc\[pid]\. To track each processes’ CPU usage, we collect data from \proc\[pid]\stat
and \proc\[pid]\task\.
From the stat file we retrieve the following information:

• The process’ PID (which is the same as the subdirectory name).

• The command that was used to start the process.

• The state of the process (e.g. Sleeping, Running, etc.).

• The time the process has been scheduled in kernel mode (stime).

• The time the process has been scheduled in user mode (utime).

• The logical processor on which the process was last executed.

The \proc\[pid]\task\ directory contains one subdirectory (\proc\[pid]\task\[tid]) for each
thread started by the process with the given PID. Within these subdirectories, there are files
with the same name and contents as in \proc\[pid]. From here, we collect the same data as we
do for the top-level process.

4.2.3 Process Tracker Output

When the tracker is first started, it first collects some details about the system it is running on.
Currently, this includes two pieces of information.
The first is the hyperthread layout of the system (that is, a list of hyperthreads, their siblings,
and a map that shows which physical core the hyperthread belongs to). We collect this, so dur-
ing data analysis we can map each running process to a hyperthread and to a physical core.
The second is the CLC_TCK parameter (collected by running the getconf CLK_TCK command).
This value can be used to calculate the CPU time used by a process.
After this, the tracker takes measurements at the pre-configured interval. Each of these mea-
surements contain the following information:

• UNIX timestamp (milliseconds since epoch).

• Total millijoules consumed.

• A list, containing details of all currently running processes. For each of these processes
we collect the data described in 4.2.2.
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The tracker writes these measurements to a file at the given interval. At the moment, a new
file is created every time the measurements are written. This means that there is no chance
of corrupting the previous measurements (e.g. if the tracker crashes while writing the file),
but will result in large number of output files, especially if run for a long time and/or it is
configured to write the results often.
Additionally, the tracker currently produces .json files as output. This has some advantages,
such as easy parsing (both by humans and machines), but it also means that the resulting files
are quite verbose, and potentially large. This may cause problems if the tracker is run on a
device with limited storage (e.g. embedded systems).

4.3 Analysis Scripts

Both the profiler (4.1) and the process tracker (4.2) produce data only, without actually ana-
lyzing the results. To perform this analysis we have created a number of scripts using Python
and C#. We have selected Python because of the ease of scripting, and C# because of the data
transformation capabilities of LINQ, as well as our familiarity with both languages. However,
as the profiler and the process tracker output raw data, it is possible to implement this analysis
step using different languages, tools, or frameworks depending on the specific needs of the
user.

4.3.1 Using the Process Tracker Results

As described in Process Tracker Output, the process tracker produces a series of .json files.
Each file contains a list of measurements containing data about the system’s uptime, power
consumption, and the state of the running processes at the time of the measurement. From
these, we can calculate some additional information:

• Delta time: The difference between the timestamp values of two consecutive measure-
ments. Similarly to the delta uptime value, it should be constant, but can vary slightly
between measurements. This provides better resolution than the delta uptime value
(milliseconds instead of seconds).

• Delta process time: For each process that was running, we measure its current utime
and stime, corresponding to the time spent in userspace and in the kernel relating to this
program. These are measured in jiffies. With the hz rate of jiffies from the system config,
we can calculate the delta process time, which is the time in milliseconds the process has
been active, in the last time step.

• Delta millijoules: The difference between the millijoules consumed between two con-
secutive measurements. In other words, this shows how much power was used since the
last measurement.

• Watts: The number of watts consumed at the time the measurement was taken. It is
calculated by dividing the delta millijoules value with the delta time.
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Figure 4.1: The delta process time values when running the “stress” command.

Figure 4.1 plots the delta process time values for the process started by the “stress” com-
mand. It shows that the process was running for 120 seconds. While it was running, it used
approximately 650-700 jiffies worth of CPU time between each measurement.

Calculating CPU And Power Usage

Using the data provided by the process tracker, as well as the additional information we
calculated, we can determine the following:

• CPU utilization percentage.

• Total millijoules consumed.

• Watts consumed.

• Process CPU utilization.

• Watts consumed by a process.

Note, these values can only be calculated if the process tracker recorded information on
all running processes (“Target” was set to “All”), as we need the total CPU time used by all
processes.
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CPU Utilization

To calculate the overall CPU utilization of the system, we must first compute the CPU time
used by all processes for each measurement (n is the number of processes):

total_cpu_time_clktck = ∑n
p=1 processp.delta_stime + processp.delta_utime

As utime and stime values are measured in jiffies, the resulting value must be divided with
the CLK_TCK parameter to convert it to seconds.

total_cpu_time = total_cpu_time_clktck
CLK_TCK

Now, total_cpu_time is the CPU time used since the last measurement. To convert it to a
percentage, we simply divide it with the amount of time elapsed since the last measurement:

cpu_util_percentage = total_cpu_time
delta_time

We can perform this calculation for each measurement, and plot the results:
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Figure 4.2: CPU Usage Percentage.

Figure 4.2 shows the CPU utilization over approximately 290 seconds. The same dataset as
in Figure 4.1 was used.
This method of calculating the CPU usage does not take into account multiple cores. For
example, if a process uses two threads for 1 seconds, the total CPU time consumed will be 2
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seconds. As only one second of real time passed, the process’ CPU usage will be 200%.
Figure 4.2 shows that some process (in this case “stress”) was using 600% of the CPU, as it was
configured to run on six threads.

Overall Power Consumption

The total power used can simply be calculated by subtracting the total amount of millijoules
recorded in the first measurement from the total amount recorded in the last measurement.
Additionally, the watts used at each measurement is also calculated, as described above.
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Figure 4.3: Total Amount of Watts Used

Figure 4.3 shows both the amount of millijoules and the amount of watts used during the
measurement period. There is visible correlation between CPU (Figure 4.2) and power usage.

Process CPU Usage

We have two ways to calculate a specific process’ CPU usage. The first is the same procedure
we used to determine the overall (system) CPU utilization: for each measurement we sum up
the process’ delta stime and delta utime values witch is then divided by the CLK_TCK value.
This result is then divided again by the measurement’s delta time value. Just as before, this
can indicate that a specific process used more than 100% of the CPU, if it was running over
multiple threads.

Figure 4.4 shows the CPU used by the “stress” (which is configured to use six threads) and
the “firefox” processes.
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Figure 4.4: CPU Usage

An alternative way of calculating a process’ CPU usage is to first compute the total amount
of CPU time used by the target process p:

process_cpu_time = (p.delta_stime + p.delta_utime)

We then calculate the CPU time used by all processes:

total_cpu_time = ∑n
p=1 processp.delta_stime + processp.delta_utime

With these, we can get the percentage of CPU time spent by process p:

cpu_percentage = ( process_cpu_time
total_cpu_time ) · 100

This approach scales the resulting values between 0 and 100.
Figure 4.5 shows the results of plotting the same two processes as in Figure 4.4 using this

alternative solution.

Process Power Consumption

From the values calculated above, we can estimate the power usage of each process. We call
this a “naive” estimation, as it does not take into account hyperthreading, or data from the
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Figure 4.5: CPU Usage

profiler.

This estimation works by simply dividing up the amount of watts (or millijoules) used at a
given measurement based on the processes’ CPU usage. For example, if at a given moment, 30
watts were consumed, and a particular process used 50% of the CPU, then that process will be
attributed 50% of the power consumption, that is, 15 watts. It is essentially the same approach
as in [10].

processp_watts = watts · ( processp .process_cpu_time
total_cpu_time )

Figure 4.6 shows the estimated watts used by two processes, “stress” and “firefox”. Again,
there is a visible correlation between the processes’ CPU (Figure 4.5), and power usage.

Additionally, we have a mechanism to calculate the “naive hyperthreaded” power con-
sumption. This is similar to the naive estimation, where we first allocate power per physical
core, then per process on that core.

coren_watts = watts · (Σcoren_processes.process_cpu_time
total_cpu_time )

processp_watts = coren_watts · ( processp .process_cpu_time
coren_cpu_time )
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Figure 4.6: Estimated Watts Used

4.3.2 Using the Profiler Results

To use the data produced by the profiler, the Python script loads the .json output, which has
the contents described in Profiler Output.
Using the information from the profiler, we can calculate the static power and hyperthread
ratio, as described in [42].

Static Power

The static power is the power consumed by the CPU while no physical cores are in use. It is
calculated by linearly extrapolating from the power consumption of multiple active physical
cores. For example, if for a 4-core machine we measure 10, 15, 20, and 25 watts used when 1,
2, 3, and 4 cores are active respectively, we can extrapolate that the energy usage when 0 cores
are in use is 5 watts.

Figure 4.7 shows the power usage per active core on a 6-core machine, calculated from all
non-hyperthreaded tests. It also shows the extrapolated power usage for 0 active cores, which
in this case is approximately 5.25 watts.
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Figure 4.7: Power Usage Per Core

The static power under use, however, can vary. Static power in this context refers to the
power used by the CPU while the cores are active, but that is not attributable to a specific core.
When the CPU is not under any load, it can disable itself to a level where the static power
drops dramatically. We term this the idle static power. We can estimate the actual static power
consumption quite simply using the CPU active time.

cpu_active_time_ratio = max( coren_active_time_ms
measurement_duration_ms )

static_power_actual = static_power_idle+(static_power− static_power_idle) · cpu_active_time_ratio

Hyperthread Ratio

The hyperthread ratio is the ratio between the energy consumption when only one thread is
active versus when both hyperthreads are active per core. As per [42], using both hyperthreads
of a physical core only increases the power consumption slightly, as most low-level hardware
components are shared between hyperthreads.
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Figure 4.8: Hyperthread Ratio

This is illustrated by Figure 4.8. It shows the calculated energy consumption per physical
core when only one thread is running (blue), versus when both hyperthreads are in use (red).
Aggregating the results shows that the hyperthread ratio of this machine is approximately
1.11. In this case, the ratio is computed over all cores, however, it is also possible to retrieve it
on a per-core basis:

Cores HT Ratio
1 1.128
2 1.147
3 1.189
4 1.082
5 1.113
6 1.074

Table 4.1: HT Ratios Per Active Physical Cores
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Hyperthreaded Power Consumption

Finally, with these values, we can calculate the hyperthreaded power consumption. First, we
subtract the static power usage.

process_power = total_power − static_power_actual

Then, we can assign the power similarly to the naive power estimation. We calculate two
values, for physical and logical cores.

logical_coren_power = process_power · (Σlogical_coren_processes.process_cpu_time
total_cpu_time )

physical_coren_power = process_power · (Σphysical_coren_processes.process_cpu_time
total_cpu_time )

We can calculate the hyperthreading power — the power a process would have used, were
it running alone on a core — using the hyperthreading ratio.

physical_coren_hyperthread_power = physical_coren_power/ht_ratio

Then, the calculation to calculate the process’ power consumption depends on whether
the thread was currently running hyperthreaded — that is, assigned to a physical core with
another running thread — or not. We assume for each measurement taken that if any other
threads ran on that core, every process that ran on that physical core was hyperthreaded. This
can reduce accuracy — if a thread runs hyperthreaded for only a small fraction of its runtime,
the calculation will be inaccurate, but we do not have the data to determine how much was
hyperthreaded, and how much was not.

processp_power =

RunningHyperthreaded physical_coren_hyperthread_power · processp_time
logical_coren_active_time

RunningAlone physical_coren_power · processp_time
logical_coren_active_time

This calculation estimates the virtual power consumption of a hyperthreaded program. In
the case of a program running hyperthreaded, it can be more than the actual power consump-
tion. The issues and pitfalls with this approach are explored more in section 6.3.
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Chapter 5

Results

5.1 System Configuration

Our tests were run on a system with the following specifications:

• CPU: Intel(R) Xeon(R) W-1250P CPU @ 4.10GHz

• RAM: 16 GiB DDR4 3200MHz

• Storage: 512 GB NVMe SSD (Samsung MZVLB512HBJQ-000L7)

• OS: Arch Linux

For the exact components, as well as the list of installed packages, please see Appendix A

5.2 Profiler Results

On our test machine, the profiler produced the following results. The Arrayfire, 7zip and
x265 tests were run with 25 iterations each. These numbers were chosen so we could get the
maximum number of test results in a manageable amount of time. Obviously-incorrect outliers
(any calculation that produced a value over 10,000 watts) were filtered. We used Powercap to
get the energy readings.

Overall, four results were filtered — one from 7zip with 4 cores, 7 threads, one from
x265 with 4 cores, 8 threads, one from x265 with 5 cores, 10 threads, and one from arrayfire
with 4 cores, 7 threads. It is likely these results are from RAPL overflows in some manner.
Through some investigation of the Linux Kernel source code, Linux’s powercap interface does
not handle RAPL overflows in any meaningful way.

With this data we calculated the hyperthreading coefficient to be approximately 1.13. To do
this, we paired each test without hyperthreading with the appropiate test with hyperthreading,
e.g 6 cores 6 threads was paired with 6 cores 12 threads. We then averaged the results over
every test.
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Table 5.1: Average Power Consumption, with hyperthreading enabled and Intel Turbo Boost disabled.

Average Power Consumption 7Zip x265 Arrayfire
1 Core, 1 Thread 12.072 W 14.340 W 15.054 W
1 Core, 2 Threads 13.168 W 16.865 W 16.530 W
2 Cores, 3 Threads 20.488 W 26.292 W 23.527 W
2 Cores, 4 Threads 22.399 W 28.812 W 27.376 W
3 Cores, 5 Threads 28.257 W 37.315 W 34.073 W
3 Cores, 6 Threads 30.742 W 39.385 W 37.877 W
4 Cores, 7 Threads 36.586 W 47.017 W 41.246 W
4 Cores, 8 Threads 39.848 W 48.706 W 41.281 W
5 Cores, 9 Threads 44.560 W 54.802 W 44.322 W
5 Cores, 10 Threads 48.260 W 57.014 W 44.160 W
6 Cores, 11 Threads 54.554 W 62.258 W 61.609 W
6 Cores, 12 Threads 56.595 W 63.416 W 61.705 W
1 Core, 1 Thread 11.937 W 14.381 W 15.117 W
2 Cores, 2 Threads 18.564 W 23.903 W 24.809 W
3 Cores, 3 Threads 24.280 W 33.133 W 33.338 W
4 Cores, 4 Threads 32.762 W 41.729 W 43.429 W
5 Cores, 5 Threads 35.356 W 59.520 W 51.662 W
6 Cores, 6 Threads 47.646 W 58.471 W 61.632 W

We also calculated the static power consumption to be 9.416 watts. This was taken by
averaging every calcuation over each hyperthreaded thread configuration, then linearly ex-
trapolating to 0 cores, 0 threads. This is not the true static power consumpion, as compared to
the computer under no load — a seperate test calculated that to be approximately 0.356 watts.

Some tests did not perform well in a hyperthreaded environment. Arrayfire, for instance,
did not have any noticable difference in average power consumption when active on four, five,
or six cores. The relevant values have been bolded in table 5.1. Further testing is required to
determine how well Arrayfire utilizes hyperthreads. These values have not been excluded in
the calculation of the hyperthreading coefficient.

We calculated two other profiles. One with hyperthreading disabled completely, and one
with turbo boost enabled.

Table 5.2: Average Power Consumption, with hyperthreading disabled and Intel Turbo Boost disabled.

Average Power Consumption 7zip x265 Arrayfire
1 Core 11.693 W 14.451 W 14.863 W
2 Cores 18.461 W 24.137 W 24.370 W
3 Cores 24.478 W 33.333 W 33.230 W
4 Cores 32.979 W 41.144 W 42.898 W
5 Cores 35.236 W 47.521 W 51.053 W
6 Cores 47.195 W 55.237 W 60.771 W
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With hyperthreading disabled, the average power usage overall seems lower, even as com-
pared to single-thread-per-core tests with hyperthreading enabled. While this difference is
small enough it could be attributed to noise, it’s also possible that disabling the hyperthread-
ing hardware entirey can lower power consumption, even if by only a small amount. There was
no significant difference in time taken between hyperthreading enabled and hyperthreading
disabled, for comparable tests with one thread per core.

Table 5.3: Average Power Consumption, with hyperthreading enabled and Intel Turbo Boost enabled.

Average Power Consumption 7zip x265 Arrayfire
1 Core, 1 Thread 23.529 W 28.998 W 29.608 W
1 Core, 2 Threads 26.929 W 33.653 W 32.815 W
2 Cores, 1 Thread 40.609 W 51.733 W 45.943 W
2 Cores, 2 Threads 44.205 W 56.413 W 52.933 W
3 Cores, 1 Thread 49.122 W 64.347 W 58.949 W
3 Cores, 2 Threads 53.369 W 68.021 W 65.125 W
4 Cores, 1 Thread 61.810 W 80.670 W 71.525 W
4 Cores, 2 Threads 67.579 W 83.221 W 71.391 W
5 Cores, 1 Thread 63.069 W 77.054 W 62.733 W
5 Cores, 2 Threads 67.460 W 80.080 W 62.697 W
6 Cores, 1 Thread 75.934 W 87.831 W 87.674 W
6 Cores, 2 Threads 78.714 W 89.335 W 87.898 W

The problems with turbo boost become immediately apparent when the power usage goes
down from four cores to five cores, as the CPU is unwilling to continue using turbo boost
frequencies. This breaks core assumptions made by our models.

5.3 Tracker Results

For our initial tests, we ran a number of Phoronix Benchmarking Suite tests with the process
tracker active. These tests include:

• Mocassin, monte carlo simulations of ionised nebulae.

• Stockfish, an advanced open-source chess benchmark.

• Z3, a theorem prover and SMT solver.

• x264, a multi-threaded video encoder.

Each test was run thirty times, after which the results were graphed and inspected visually.
Many tests had to be excluded for faults and obvious inaccuracies. We chose thirty iterations
to complete tests in a reasonable amount of time.

The Mocassin test had the largest number of invalid tests, with seventeen of the tests having
to be excluded. Fourteen of these tests exhibited similar issues, with the hyperthreading
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Table 5.4: Results (in Joules) of each profiled test.

Average Standard Deviation Minimum Maximum Valid Tests
Mocassin 51490 J 833.32 J 50773 J 53965 J 13
Stockfish 98468 J 7129.5 J 86395 J 112251 J 25
Z3 326.76 J 5.09 J 317 J 342 J 30
x264 5703.4 J 45.21 J 5589 J 5768 J 27

measurement being far more unstable than a valid test. This is likely due to some artifact
introduced in our measurements or calculations.

Other invalid results included:

• An instance where Mocassin did not seem to use any meaningful power. We suspect the
program crashed or failed to run for some reason.

• An instance where the estimated power consumption was 20% of the others.

• An instance where the estimated power consumption was greater than the total power
consumed.

The Stockfish test exhibited similar issues, though its invalid graphs had a different ap-
pearance to Mocassin. Another thing of note is the large variation in power consumption in
the Stockfish test. This may be due to the test itself, as other tests are more consistent in this
regard. Stockfish does not appear to have a consistent execution pattern, which is visible in
individual test graphs.

The Z3 and x264 tests, by comparision, were far more well behaved than the Stockfish or
Mocassin tests. We suspect this is due to their more deterministic nature, as well as being
shorter tests overall. Only three tests had to be excluded from x264, appearing to exhibit
similar-looking flaws as to the Stockfish tests.

Graphs for a variety of these tests can be found in Appendix B.

5.4 Non-Hyperthreaded Tracker Results

We re-ran our tests with hyperthreading disabled, and used the non-hyperthreading profile to
generate the graphs and data. Other than this, the test parameters were exactly the same as
the hyperthreading results.

Table 5.5: Results (in Joules) of each profiled test, with hyperthreading disabled.

Average Standard Deviation Minimum Maximum Valid Tests
Mocassin 46870 J 3345 J 29998 J 49128 J 29
Stockfish 34891 J 2780 J 29825 J 40777 J 28
Z3 300.72 J 24.57 J 213 J 325 J 29
x264 2913.8 J 26.88 J 2833 J 2953 J 25
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As compared to the hyperthreading-enabled results, the power consumption seems de-
creased across the board. Of particular note was the Mocassin test. Every valid test in the
Mocassin test exhibited the strange behaviour that we classified as invalid in the multithread-
ing test. Further improvement and refinement of our algorithm seems necessary.

5.5 Test Under Load

Our final test was to test the algorithm under load. We put the system under stress with the
stress command, saturating every core with load. Then, we ran the z3 test. The assumption is
that, z3 is doing the same amount of computation and should use the same amount of power.

However, our algorithm failed to produce a useful result under these. Instead, we at-
tempted to compare the naive algorithm both under load and not under load, as well as our
algorithm not under load.

Table 5.6: Z3 tests, with and without load, calculated with different algorithms.

Average Standard Deviation Minimum Maximum
Z3 With Load 194.1 J 3.95 J 187 J 202 J
Z3 326.9 J 4.99 J 318 J 342 J
Z3 Our Algorithm1 359.2 J 5.09 J 349 J 374 J

It is clear either our assumption that the z3 test would use the same amount of power is
incorrect, or the naive algorithm cannot accurately model the power consumption. In addition,
our algorithm produced a different result for the power consumption than the naive algorithm.
Further research is required.

1The values here are different from the values in 5.3 because those values did not add the static power consump-
tion. The naive values were not calculated with the static power consumption removed, so we added the static power
consumption back in for these values.
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Chapter 6

Development and Discussion

6.1 Profiler

Initial development of the profiler began with a simple base, focusing first on getting some
tests up and running, as well as results reporting. At this time the results weren’t compiled
into a profile, but instead just reported on the screen.

The profiler was built to be extensible and portable, and at this point can run both directly
under Linux, as a userspace program, and as a UEFI bare-metal application. Under Linux it
supports both reading the Powercap interface as well as the RAPL MSRs directly (using the
/dev/cpu/*/msr interface). For the purposes of these tests, the Linux implementation reads
the registers directly. This was done mostly to ensure our calculations between the raw register
value and the joules were accurate.

Initial tests were performed with two very simple, basic tests. One was a spin-loop, using
library-provided functions to check the time repeatedly until a set amount of time had passed.
The other was a sleep test, using a library-provided function to do no work for a set amount
of time. In both of these cases, the tests were configured to run for ten seconds each, and to
run fifteen times each in total. Under Linux, background processes were kept to a minimum
of what was required to run the machine. Under UEFI, the initial assumption was that the
only code running will be the code we wrote, and code from libraries we called. While this
assumption turned out not to be entirely accurate, as there is an interrupt handler that handles
periodic timer interrupts, we still expected the UEFI version to still produce more accurate
results than the Linux version.

The results were immediately surprising, with two notable results. One was that the spin-
loop power usage was not comparable across the Linux and UEFI implementation, being
nearly twice as much on average under Linux than UEFI. The other was that the sleep test
under UEFI was using almost as much power as the spinloop.

The theory for the sleep test was simple. Investigating the source code of POSIX UEFI[28]
revealed that the sleep function we were using was implemented in terms of the UEFI Stall
function[38]. The UEFI stall function is defined as a fine-grained stall which does not yield
execution of the processor for the duration. While the actual implementation is firmware-
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Linux UEFI
Spin Sleep Spin Sleep

1 268.335 J 3.598 J 115.869 J 122.262 J
2 274.870 J 3.429 J 126.696 J 118.663 J
3 277.260 J 3.428 J 127.443 J 121.469 J
4 282.228 J 3.453 J 127.445 J 122.294 J
5 282.282 J 3.468 J 126.782 J 117.263 J
6 281.114 J 3.434 J 125.638 J 121.154 J
7 283.572 J 4.009 J 127.513 J 122.651 J
8 284.103 J 3.551 J 128.256 J 124.066 J
9 284.093 J 3.424 J 127.169 J 123.163 J
10 284.770 J 3.448 J 127.334 J 122.981 J
11 284.983 J 3.468 J 127.360 J 122.272 J
12 285.355 J 3.766 J 128.223 J 122.699 J
13 285.573 J 3.787 J 128.080 J 123.234 J
14 286.178 J 3.432 J 128.040 J 123.717 J
15 285.068 J 3.537 J 127.889 J 123.276 J

Table 6.1: Energy used by the spin and sleep tests under Linux and UEFI

dependent, it’s reasonable to believe it could be implemented as a spin-loop, for fine grained
control.

As for the different results for the spin-loop, multiple hypothesises were presented. One
is that the UEFI environment does not have as fine grained control of the CPU’s frequency
and speed as Linux does. Another is that the implementation of the library functions differ
signifigantly. A third, is that the overhead from Linux or other processes is affecting the results,
but this seems unlikely. Other than the second hypothesis, we can assume from the results of
the sleep test that Linux’ influence is not on the same magnitude as the difference seen, as the
total power usage of a system not doing anything is far lower.

To address the second hypothesis, a third test was devised. This test was based on an
implementation of the Computer Language Benchmark Game’s Fannkuch Redux test[6]. For
this test, only five iterations of the tests were performed. Our assumption was that the code
and running time for this should be identical, because it makes no library calls and was com-
piled with the same compiler flags, excluding what was necessary to compile to the different
environments.

The results seem to confirm the hypothesis that there’s some environmental effect influ-
encing the power consumption. Unfortunately, due to time constraints, we were not able to
continue to determine the true cause of it.

We were able to lower the energy consumption of the sleep test, to approximately 40J, by
implementing a proper sleep function, using UEFI’s events to set a timer, and halting the CPU
using the HLT instruction [13]. The difference between this and the Linux sleep measurements
is assumed to be due to the UEFI interrupt loop, which periodically awakens the CPU on a
timer to service events.

To solve this, and take advantage of the full power of the CPU, we would have to bring
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Linux UEFI
fannkuch-redux fannkuch-redux

1 1232.451 J 993.775 J
2 1238.991 J 991.534 J
3 1248.773 J 990.912 J
4 1245.948 J 989.649 J
5 1246.257 J 985.584 J

Table 6.2: Energy used by the fannkuch-redux test under Linux and UEFI

the CPU out of the UEFI Boot Services and take complete control of the system, running
completely on the bare metal. To this end, several tasks would have to be completed.

1. Establishment of our own memory allocator.

2. Basic terminal capabilities, to write to the screen.

3. Activation of the High Precision Event Timer, or other timer hardware, to deliver an
interrupt after a period of time.

4. Setting up interrupts on the CPU.

5. Multi-core capability.

In the time we had allocated to this, only some of these tasks were even partially completed.
While we maintain that it’s possible, and likely still useful, to continue this work and port the
profiler to a truly bare-metal environment, we did not have the time, resources, or expertise
required to do it. Even if we had, we would only have a program that worked on systems of
this particular configuration. For example, while Intel CPUs implement the RAPL interface,
AMD CPUs have a different RAPL implementation.

6.2 Bare-Metal Profiler

One of our initial goals with the profiler was to develop a version that could run and execute
in a UEFI bare-metal environment. The assumption behind this was to take elimination of
background processes to the extreme; running our code and our code alone in a bare-metal
environment would allow us to acquire ’pure’ samples.

This did not work as planned for a number of reasons. Development was an immediate
issue, as programming in a bare metal environment was more difficult than programming
under Linux. There are fewer libraries and API calls that could be used, which meant many
things taken for granted under a standard operating system had to be programmed by hand,
or gone without.

As development continued, even the UEFI boot services weren’t enough for our needs, so
we briefly branched out into pure bare-metal development. Under the UEFI boot services, we
had access to a limited number of APIs [37] and limited library support. Not only that, but
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we suffered the constraints of the UEFI platform as well. By default, only one CPU core was
active, and the CPU frequency was locked, with a consistent timer tick to service UEFI events.
Shortly before we abandoned the UEFI bare-metal support, we considered going beyond the
UEFI platform and going completely bare metal. But this required contending with various
features of the CPU directly, such as CPU frequency setting, hardware P-states, and High
Precision Event Timers [11].

Ultimately these efforts were struggling against a larger problem; the mismatch between
the UEFI bare-metal environment, and a Linux environment. We theorized that this would
allow us to get more pure measurements of the performance of the hardware, but we failed
to take into account how complex the hardware actually was, and the environment that the
operating system sets up to take advantage of these hardware features would be difficult to
replicate exactly. The effort required to replicate a Linux-like CPU environment from scratch
is far less than simply running Linux.

Furthermore, while relevant for our research, avoiding realistic environments for more
’pure’ measurements may not achieve ideal results. As discussed in 6.3, there is no clear
singular way to assign power usage to processes when hyperthreading is involved. Accurate
measurements may only be attainable either with certain conditions or assumptions made, or
as a complete system, with results unable to be generalized.

We still believe that further elimination of background processes is a desirable goal for
future work. However, a pure bare-metal implementation may not be feasible, and other
approaches should be investigated instead. One possible approach is using a Linux kernel,
with userspace stripped down to the absolute minimum.

6.2.1 Design Decisions

Much of our initial design was affected by the goal for UEFI compatibility, which precluded
the use of libraries. The Sleep Test, Spin Loop, Fannkuch-Redux, Binary Trees and Ray Tracing
tests were all affected in a variety of ways.

The primary issue in design was one of extracting results. Printing the results to the screen
and copying them manually is slow and error-prone, but UEFI provided functionality for
opening and saving files on the EFI filesystem. We never implemented this functionality, but
did not expect it to be difficult.

Sleep Test: The Sleep Test sleeps for a period of time, a conceptually simple test. However,
the UEFI function we were using, Stall, did not put the CPU into an optimized sleep state,
rendering the Sleep test’s power consumption similar to the later Spin Loop test. We worked
on an optimized sleep implementation to mitigate this. Our first attempt used UEFI events
and a halting loop, which was able to achieve moderate power savings, but not enough to be
comparable to Linux. We theorized a second, fully bare-metal attempt, using timer interrupts
fully controlled by us, but abandoned the prospect before completing it.

Spin Loop: The spinloop test used an API call to get the current system time. Our interface,
posix-UEFI, translated the equivilent UEFI call into a format similar to the localtime function.
On UEFI, the time calls do not return time to a precision greater than one second, however,
which limited this use. We contemplated using more precise timers, such as HPET, but decided
against it.
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Fannkuch-Redux: Fannkuch-Redux was chosen specifically because of it’s simple, plain-C
implementation. There were no major issues implementing or running this on UEFI.

Binary Trees: While there were no major issues implementing binary trees on UEFI, when
we contemplated implementing it on the bare-metal, several issues arose in the terms of mem-
ory management. We would have to write our own memory management routines, as binary
trees made strong use of memory allocation functions.

Raytracing: Raytracing as implemented ran into similar issues as binary trees in terms of
memory allocation, but had a few additional functions not accessible in UEFI. The raytracing
code has the ability to save the image to a file, which is possible under Linux but difficult
under UEFI. While it could have been implemented, as UEFI does provide capability for ma-
nipulating the file system, we opted not to implement this as it gave us no useful benefit other
than debugging.

6.3 Hyperthreading Power Measurement

The HaPPy paper [42] presents a hyperthreading-aware model of power measurement that
is capable of assigning power consumption to both individual cores and individual hyper-
threads. However, assigning power consumption to individual processes presents a greater
challenge not addressed by this paper. The crux of the issue comes down to the ‘hyperthread-
ing multiplier’, termed in HaPPY as Rht. This defines the ratio of power usage by a fully-active
hyperthreaded core, to a hyperthreaded core with only a single thread active. However, when
both threads are active, the power per thread, when both threads are running, is evenly split
in their model between the two threads.

This produces unintuitive results in a process-tracking model. We are assuming values
of Rht between 1 and 2, and that two processes scheduled on hyperthreads will not have
adverse affects on the runtime of the other. When running a process on a core, the power
used by the process will go down if a second process is scheduled on that core. But this is not
accurate to the true state of things, as the total power usage has only slightly gone up. This
would seem a great win in energy efficiency, but it can lead to a very temperamental power
consumption, where the power consumption of a process now varies wildly on factors outside
of the programmer’s control. In addition, it breaks the intuition that stopping that program
would reduce the power consumption of the system, by the amount of power that program
used.

We have not determined a way to model power consumption with a single value such that
both factors can be accounted for at once. However, accounting for either factor is simple
independently.

Additionally, the HaPPY paper’s model of verifying the calculations of the power used by
a single process can be drawn into question. Their model works by assuming the power usage
is relatively constant, such that if a program uses X amount of power, not running the program
will lower the total power consumption by X. With the factors mentioned here, our results, as
well as turbo boost in the following section, we do not believe this model generates accurate
results for our use case.
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6.4 Intel Turbo Boost

During initial testing we have noticed behavior that was inconsistent with both our expec-
tations and with the behavior described in [42]. We assumed that power consumption will
scale mostly linearly with the number of active physical cores. However, in our tests we have
observed a phenomenon where more active cores would sometimes consume less power than
fewer cores.
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80
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Figure 6.1: Inconsistent power consumption

Figure 6.1 illustrates this behavior. Each pair of columns in the graph represents a physical
CPU core. The first bar in the pair is the power consumption when only one thread is running
on that core (i.e. hyperthreading is not enabled). The second bar is the power consumed with
hyperthreading enabled (i.e. there are two threads on one physical core).
In this example, running five physical cores simultaneously (with and without hyperthreading)
used less power than using only four cores.
After investigating, we concluded that this behavior was caused by Intel Turbo Boost [16].
Turbo Boost increases the frequency of processor cores when certain criteria (such as low
power consumption, low temperature, etc.) is met. This means that the effects of Turbo Boost
are unpredictable, as we can not determine when, and how much it will increase the CPU
frequency. Therefore, in order for our tests to produce consistent results, Turbo Boost must be
disabled. Unfortunately, this means that our power usage estimations may be less accurate, if
the system under test is using Turbo Boost when the process tracking measurements are taken.

Figure 6.2 shows the power consumption when Turbo Boost is disabled. This aligns with
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Figure 6.2: Power consumption with Turbo Boost disabled.

our expectations, as with each additional active physical core, the power consumption in-
creases in a more-or-less linear fashion.
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Chapter 7

Conclusion

In this project, we attempted to develop a set of tools that could be used to estimate the power
consumption of individual processes under Linux.
We have created a configurable profiling tool that is able to measure the power usage of a
CPU using several pre-defined benchmarks. This data can be used to determine the CPU’s
characteristics, such as the static power, and the hyperthreading ratio.
We have also created an utility program for tracking the CPU time used by all running pro-
cesses and threads. This allows us to calculate the CPU usage of each process. It also tracks
supplemental information, such as the logical processor on which the process or thread was
last executed, and the state it was in.
Finally, we wrote a number of scripts that are used to process the data collected by the other
two components. This processing results in three possible estimates for process-level power
consumption:

1. A simple naive estimation, that only takes into account the CPU percentage used by the
process,

2. A naive hyperthreading that takes into account the time a logical core was active, and

3. A hyperthread-aware estimation, that attempts to take into account hyperthreading, and
its effects on power consumption.

While the results of the naive estimation work as expected (e.g. a process using 50% of
the CPU will be attributed 50% of the energy used), the results from the hyperthread-aware
estimations are more erratic. Sometimes they are able to produce estimates that align with our
expectations (although we have no basis for comparison), but other times the estimates are
obviously wrong (e.g. estimates a higher power usage that the total amount consumed).

We have also encountered a phenomenon whereby disabling hyperthreading slightly, but
consistently lowered the power consumption, even compared to similar tests ran while hyper-
threading is enabled.
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To answer RQ1, we were not able to create a tool that is can take into account hyperthread-
ing, and produce reliable estimates. This also answers RQ1A.

However, we have achieved several of our expected contributions. The profiling tool and
the process tracker are able to collect usable data. While unfortunately our algorithm for
hyperthread-aware estimations is not reliable, we believe that with further refinement it could
become an accurate tool for researchers and developers.

7.1 Future Works

7.1.1 UEFI Profiler

While some work was done on a bare-metal UEFI version of the profiler, we decided to focus
our efforts on the Linux version. However, we believe that it would still be beneficial to create
it, as we expect it to provide a more accurate representation of the CPU’s power consumption.
Further work would need to be done to align the bare-metal performance of the CPU with
Linux’ performance of the CPU.

7.1.2 Linux Scheduler

Our original plans included a modification of the Linux scheduler. The aim of the modification
would have been to make the scheduler keep track of how long, and on which processor, a
given process was scheduled, and to expose this information in a manner that is easy to access
(e.g. a solution similar to /proc).
Depending on how it is implemented it could either work in tandem with the process tracker
(Section 4.2) to provide more accurate and comprehensive information, or it could replace it
entirely.
While plans for this component never got beyond the discussion phase, we think revisiting
it in the future may be worthwhile, as it has the potential of greatly simplifying the way we
collect CPU usage information.

7.1.3 Profiler Improvements

There are some additional improvements to the profiler that may be able to enhance its usabil-
ity.
The first of such improvements is a better method of calculating the number of samples re-
quired for a given confidence interval and margin of error. The current implementation uses
a formula that makes some assumptions, that may not always be correct. For example, it as-
sumes that the samples are normally distributed. A more sophisticated solution, such as the
one used in [5], would probably yield better results.
To use the same formula as in [5], we would have to estimate the standard deviation of the
population. This could be done by first running a limited number of “throwaway” tests that
are only used to calculate the standard deviation. The result can then be used to compute the
number of samples needed for the specified confidence interval and margin of error.
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Running these throwaway tests could also double as warmup. Running warmups is consid-
ered a good practice when benchmarking software [23]. It allows all initializations to run, so
that they will not impact the measurements.

7.1.4 Linux Process Accounting

Our method to acquire the process tracking data is crude, but not uncommon. We poll the
currently running processes at intervals of approximately 100 ms, then read updated values
of their CPU time and the RAPL power measurement at that interval. While polling for RAPL
power measurement is not something we can avoid, there may be a better alternative to process
tracking.

Our primary issue is the imprecision of our data. We do not know when a process switches
running cores, only that it does during a given interval. Additionally,we do not know when
hyperthreads overlap, in the sense of both running on a single core at the same time. We make
some assumptions in these cases that could lead to inaccuracies.

A kernel-based solution would be better, as the kernel has access to all the data we need.
Linux Process Accounting is a kernel subsystem that prints process data as processes start and
end. This subsystem could be used to push data, rather than requring us to pull it, and may
need to be extended to have the data we need.
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Appendix A

Exact Specifications

A.1 System Specification

testpc
description: Desktop Computer
product: 30 DH00HKMT (LENOVO_MT_30DH_BU_Think_FM_ThinkStation P340)
vendor: LENOVO
version: ThinkStation P340
serial: PC1QBC66
width: 64 bits
capabilities: smbios -3.2.0 dmi -3.2.0 smp vsyscall32
configuration: administrator_password=disabled boot=normal chassis=desktop family=

↪→ ThinkStation P340 keyboard_password=enabled power -on_password=disabled sku=
↪→ LENOVO_MT_30DH_BU_Think_FM_ThinkStation P340 uuid =964 A9692 -1035-EB11 -922E-
↪→ ECE5418C3D00

*-core
description: Motherboard
product: 1048
vendor: LENOVO
physical id: 0
version: SDK0Q40104 WIN 3915000358763
slot: Default string

*-firmware
description: BIOS
vendor: LENOVO
physical id: 0
version: S08KT32A
date: 10/14/2020
size: 64KiB
capacity: 16MiB
capabilities: pci upgrade shadowing cdboot bootselect socketedrom edd

↪→ int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard
↪→ int14serial int17printer acpi usb biosbootspecification uefi

*-memory
description: System Memory
physical id: 3c
slot: System board or motherboard
size: 16GiB
capabilities: ecc
configuration: errordetection=ecc

*-bank:0
description: [empty]
physical id: 0
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slot: ChannelA -DIMM0
*-bank:1

description: DIMM DDR4 Synchronous 3200 MHz (0,3 ns)
product: HMA82GU7DJR8N -XN
vendor: SK Hynix
physical id: 1
serial: 73 F9615A
slot: ChannelA -DIMM1
size: 16GiB
width: 64 bits
clock: 3200 MHz (0.3ns)

*-bank:2
description: [empty]
physical id: 2
slot: ChannelB -DIMM0

*-bank:3
description: [empty]
physical id: 3
slot: ChannelB -DIMM1

*-cache :0
description: L1 cache
physical id: 4f
slot: L1 Cache
size: 384KiB
capacity: 384 KiB
capabilities: synchronous internal write -back unified
configuration: level=1

*-cache :1
description: L2 cache
physical id: 50
slot: L2 Cache
size: 1536 KiB
capacity: 1536 KiB
capabilities: synchronous internal write -back unified
configuration: level=2

*-cache :2
description: L3 cache
physical id: 51
slot: L3 Cache
size: 12MiB
capacity: 12MiB
capabilities: synchronous internal write -back unified
configuration: level=3

*-cpu
description: CPU
product: Intel(R) Xeon(R) W -1250P CPU @ 4.10 GHz
vendor: Intel Corp.
physical id: 52
bus info: cpu@0
version: Intel(R) Xeon(R) W -1250P CPU @ 4.10 GHz
serial: To Be Filled By O.E.M.
slot: U3E1
size: 1100 MHz
capacity: 4100 MHz
width: 64 bits
clock: 100 MHz
capabilities: lm fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr

↪→ pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe
↪→ syscall nx pdpe1gb rdtscp x86 -64 constant_tsc art arch_perfmon pebs bts
↪→ rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64
↪→ monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1
↪→ sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
↪→ lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb
↪→ stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase
↪→ tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt
↪→ intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm arat pln pts hwp hwp_notify
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↪→ hwp_act_window hwp_epp pku ospke md_clear flush_l1d arch_capabilities
↪→ cpufreq

configuration: cores=6 enabledcores =6 threads =12
*-pci

description: Host bridge
product: Comet Lake -S 6c Host Bridge/DRAM Controller
vendor: Intel Corporation
physical id: 100
bus info: pci@0000 :00:00.0
version: 05
width: 32 bits
clock: 33MHz
configuration: driver=skl_uncore
resources: irq:0

*-display
description: VGA compatible controller
product: Comet Lake -S GT2 [UHD Graphics P630]
vendor: Intel Corporation
physical id: 2
bus info: pci@0000 :00:02.0
version: 05
width: 64 bits
clock: 33MHz
capabilities: pciexpress msi pm vga_controller bus_master cap_list rom
configuration: driver=i915 latency =0
resources: irq :138 memory:b0000000 -b0ffffff memory:a0000000 -afffffff ioport

↪→ :3000( size =64) memory:c0000 -dffff
*-generic :0 UNCLAIMED

description: System peripheral
product: Xeon E3 -1200 v5/v6 / E3 -1500 v5 / 6th/7th/8th Gen Core Processor

↪→ Gaussian Mixture Model
vendor: Intel Corporation
physical id: 8
bus info: pci@0000 :00:08.0
version: 00
width: 64 bits
clock: 33MHz
capabilities: msi pm cap_list
configuration: latency =0
resources: memory:b123f000 -b123ffff

*-generic :1
description: Signal processing controller
product: Comet Lake PCH Thermal Controller
vendor: Intel Corporation
physical id: 12
bus info: pci@0000 :00:12.0
version: 00
width: 64 bits
clock: 33MHz
capabilities: pm msi cap_list
configuration: driver=intel_pch_thermal latency =0
resources: irq :16 memory:b123e000 -b123efff

*-usb
description: USB controller
product: Comet Lake USB 3.1 xHCI Host Controller
vendor: Intel Corporation
physical id: 14
bus info: pci@0000 :00:14.0
version: 00
width: 64 bits
clock: 33MHz
capabilities: pm msi xhci bus_master cap_list
configuration: driver=xhci_hcd latency =0
resources: irq :124 memory:b1220000 -b122ffff

*-usbhost :0
product: xHCI Host Controller
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vendor: Linux 6.3.4 -arch1 -1 xhci -hcd
physical id: 0
bus info: usb@1
logical name: usb1
version: 6.03
capabilities: usb -2.00
configuration: driver=hub slots =16 speed =480 Mbit/s

*-usb:0
description: Generic USB device
product: 802.11n WLAN Adapter
vendor: Realtek
physical id: 1
bus info: usb@1:1
version: 2.00
serial: 00 e04c000001
capabilities: usb -2.00
configuration: driver=rtl8192cu maxpower =500mA speed =480 Mbit/s

*-usb:1
description: Keyboard
product: DELL USB Keyboard
vendor: DELL
physical id: 6
bus info: usb@1:6
version: 1.05
capabilities: usb -1.10
configuration: driver=usbhid maxpower =100mA speed =1Mbit/s

*-usb:2
description: Mass storage device
product: Cruzer Fit
vendor: SanDisk
physical id: 8
bus info: usb@1:8
version: 1.00
serial: 4C530001140701111152
capabilities: usb -2.10 scsi
configuration: driver=usb -storage maxpower =224mA speed =480 Mbit/s

*-usb:3
description: MMC Host
product: USB2.0-CRW
vendor: Generic
physical id: 9
bus info: usb@1:9
logical name: mmc0
version: 39.60
serial: 20100201396000000
capabilities: usb -2.00
configuration: driver=rtsx_usb maxpower =500mA speed =480 Mbit/s

*-usbhost :1
product: xHCI Host Controller
vendor: Linux 6.3.4 -arch1 -1 xhci -hcd
physical id: 1
bus info: usb@2
logical name: usb2
version: 6.03
capabilities: usb -3.10
configuration: driver=hub slots =10 speed =10000 Mbit/s

*-memory UNCLAIMED
description: RAM memory
product: Comet Lake PCH Shared SRAM
vendor: Intel Corporation
physical id: 14.2
bus info: pci@0000 :00:14.2
version: 00
width: 64 bits
clock: 33MHz (30.3ns)
capabilities: pm cap_list
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configuration: latency =0
resources: memory:b1236000 -b1237fff memory:b123d000 -b123dfff

*-communication :0
description: Communication controller
product: Comet Lake HECI Controller
vendor: Intel Corporation
physical id: 16
bus info: pci@0000 :00:16.0
version: 00
width: 64 bits
clock: 33MHz
capabilities: pm msi bus_master cap_list
configuration: driver=mei_me latency =0
resources: irq :140 memory:b123c000 -b123cfff

*-communication :1
description: Serial controller
product: Comet Lake Keyboard and Text (KT) Redirection
vendor: Intel Corporation
physical id: 16.3
bus info: pci@0000 :00:16.3
version: 00
width: 32 bits
clock: 66MHz
capabilities: msi pm 16550 cap_list
configuration: driver=serial latency =0
resources: irq :19 ioport :30a0(size =8) memory:b123b000 -b123bfff

*-sata
description: SATA controller
product: Comet Lake SATA AHCI Controller
vendor: Intel Corporation
physical id: 17
bus info: pci@0000 :00:17.0
version: 00
width: 32 bits
clock: 66MHz
capabilities: sata msi pm ahci_1 .0 bus_master cap_list
configuration: driver=ahci latency =0
resources: irq :123 memory:b1234000 -b1235fff memory:b123a000 -b123a0ff ioport

↪→ :3090( size =8) ioport :3080( size =4) ioport :3060( size =32) memory:b1239000 -
↪→ b12397ff

*-pci
description: PCI bridge
product: Comet Lake PCI Express Root Port #21
vendor: Intel Corporation
physical id: 1b
bus info: pci@0000 :00:1b.0
version: f0
width: 32 bits
clock: 33MHz
capabilities: pci pciexpress msi pm normal_decode bus_master cap_list
configuration: driver=pcieport
resources: irq :122 memory:b1100000 -b11fffff

*-nvme
description: NVMe device
product: SAMSUNG MZVLB512HBJQ -000L7
vendor: Samsung Electronics Co Ltd
physical id: 0
bus info: pci@0000 :01:00.0
logical name: /dev/nvme0
version: 4M2QEXF7
serial: S4ENNX1NB02597
width: 64 bits
clock: 33MHz
capabilities: nvme pm msi pciexpress msix nvm_express bus_master cap_list
configuration: driver=nvme latency =0 nqn=nqn .2014.08. org.nvmexpress :144

↪→ d144dS4ENNX1NB02597 SAMSUNG MZVLB512HBJQ -000L7 state=live
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resources: irq :16 memory:b1100000 -b1103fff
*-namespace :0

description: NVMe disk
physical id: 0
logical name: hwmon1

*-namespace :1
description: NVMe disk
physical id: 2
logical name: /dev/ng0n1

*-namespace :2
description: NVMe disk
physical id: 1
bus info: nvme@0 :1
logical name: /dev/nvme0n1
size: 476GiB (512GB)
capabilities: gpt -1.00 partitioned partitioned:gpt
configuration: guid=ce5650e2 -a211 -4359 -8999 -5 e2cf8c302dc logicalsectorsize

↪→ =512 sectorsize =512 wwid=eui .0025388 b01b7d135
*-volume :0

description: Windows FAT volume
vendor: mkfs.fat
physical id: 1
bus info: nvme@0 :1,1
logical name: /dev/nvme0n1p1
logical name: /boot
version: FAT32
serial: 81f3 -8a30
size: 1022 MiB
capacity: 1023 MiB
capabilities: boot fat initialized
configuration: FATs=2 filesystem=fat mount.fstype=vfat mount.options=rw

↪→ ,relatime ,fmask =0022, dmask =0022, codepage =437, iocharset=ascii ,
↪→ shortname=mixed ,utf8 ,errors=remount -ro name=EFI system partition
↪→ state=mounted

*-volume :1
description: EXT4 volume
vendor: Linux
physical id: 2
bus info: nvme@0 :1,2
logical name: /dev/nvme0n1p2
logical name: /
version: 1.0
serial: 1abeb985 -7b3b -4b51 -b935 -2648174719 e3
size: 459GiB
capacity: 459 GiB
capabilities: journaled extended_attributes large_files huge_files

↪→ dir_nlink recover 64bit extents ext4 ext2 initialized
configuration: created =2023 -02 -14 13:01:42 filesystem=ext4

↪→ lastmountpoint =/ modified =2023 -05 -30 10:28:44 mount.fstype=ext4
↪→ mount.options=rw ,relatime mounted =2023 -05 -30 10:28:44 name=Linux
↪→ filesystem state=mounted

*-volume :2
description: Linux swap volume
vendor: Linux
physical id: 3
bus info: nvme@0 :1,3
logical name: /dev/nvme0n1p3
version: 1
serial: a447901a -69d4 -4378 -8ef8 -690 dce8badf4
size: 15GiB
capacity: 15GiB
capabilities: nofs swap initialized
configuration: filesystem=swap name=Linux swap pagesize =4096

*-isa
description: ISA bridge
product: Intel Corporation
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vendor: Intel Corporation
physical id: 1f
bus info: pci@0000 :00:1f.0
version: 00
width: 32 bits
clock: 33MHz
capabilities: isa bus_master
configuration: latency =0

*-multimedia
description: Audio device
product: Comet Lake PCH cAVS
vendor: Intel Corporation
physical id: 1f.3
bus info: pci@0000 :00:1f.3
version: 00
width: 64 bits
clock: 33MHz
capabilities: pm msi bus_master cap_list
configuration: driver=snd_hda_intel latency =32
resources: irq :141 memory:b1230000 -b1233fff memory:b1000000 -b10fffff

*-serial :0
description: SMBus
product: Comet Lake PCH SMBus Controller
vendor: Intel Corporation
physical id: 1f.4
bus info: pci@0000 :00:1f.4
version: 00
width: 64 bits
clock: 33MHz
configuration: driver=i801_smbus latency =0
resources: irq :16 memory:b1238000 -b12380ff ioport:efa0(size =32)

*-serial :1
description: Serial bus controller
product: Comet Lake PCH SPI Controller
vendor: Intel Corporation
physical id: 1f.5
bus info: pci@0000 :00:1f.5
version: 00
width: 32 bits
clock: 33MHz
configuration: driver=intel -spi latency =0
resources: irq:0 memory:fe010000 -fe010fff

*-network
description: Ethernet interface
product: Ethernet Connection (11) I219 -LM
vendor: Intel Corporation
physical id: 1f.6
bus info: pci@0000 :00:1f.6
logical name: eno1
version: 00
serial: 2c:f0:5d:4e:dd:e9
size: 1Gbit/s
capacity: 1Gbit/s
width: 32 bits
clock: 33MHz
capabilities: pm msi bus_master cap_list ethernet physical tp 10bt 10bt -fd 100bt

↪→ 100bt -fd 1000bt-fd autonegotiation
configuration: autonegotiation=on broadcast=yes driver=e1000e driverversion

↪→ =6.3.4 -arch1 -1 duplex=full firmware =0.4-4 ip =172.28.210.106 latency =0
↪→ link=yes multicast=yes port=twisted pair speed =1Gbit/s

resources: irq :139 memory:b1200000 -b121ffff
*-pnp00 :00

product: Motherboard registers
physical id: 1
capabilities: pnp
configuration: driver=system
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*-pnp00 :01
product: Motherboard registers
physical id: 2
capabilities: pnp
configuration: driver=system

*-pnp00 :02
product: 16550A-compatible COM port
physical id: 3
capabilities: pnp
configuration: driver=serial

*-pnp00 :03
product: Motherboard registers
physical id: 4
capabilities: pnp
configuration: driver=system

*-pnp00 :04
product: PnP device INT3f0d
vendor: Interphase Corporation
physical id: 5
capabilities: pnp
configuration: driver=system

*-pnp00 :05
product: Motherboard registers
physical id: 6
capabilities: pnp
configuration: driver=system

*-pnp00 :06
product: Motherboard registers
physical id: 7
capabilities: pnp
configuration: driver=system

*-pnp00 :07
product: Motherboard registers
physical id: 8
capabilities: pnp
configuration: driver=system

*-pnp00 :08
product: Motherboard registers
physical id: 9
capabilities: pnp
configuration: driver=system

*-power UNCLAIMED
description: To Be Filled By O.E.M.
product: To Be Filled By O.E.M.
vendor: To Be Filled By O.E.M.
physical id: 1
version: To Be Filled By O.E.M.
serial: To Be Filled By O.E.M.
capacity: 32768 mWh

*-scsi
physical id: 2
bus info: scsi@4
logical name: scsi4
capabilities: scsi -host
configuration: driver=usb -storage

*-network DISABLED
description: Wireless interface
physical id: 3
bus info: usb@1:1
logical name: wlp0s20f0u1
serial: 08:be:ac:0a:7c:da
capabilities: ethernet physical wireless
configuration: broadcast=yes driver=rtl8192cu driverversion =6.3.4 -arch1 -1 firmware=N/A

↪→ link=no multicast=yes wireless=IEEE 802.11
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A.2 Installed Packages

acl 2.3.1 -3
adobe -source -code -pro -fonts 2.042u+1.062i+1.026vf -1
adwaita -cursors 44.0 -1
adwaita -icon -theme 44.0-1
alsa -lib 1.2.9 -1
alsa -topology -conf 1.2.5.1 -3
alsa -ucm -conf 1.2.9 -1
aom 3.6.1 -1
archlinux -keyring 20230504 -1
argon2 20190702 -5
at -spi2 -core 2.48.3 -1
attr 2.5.1 -3
audit 3.1.1 -1
autoconf 2.71-4
automake 1.16.5 -2
avahi 0.8+22+ gfd482a7 -4
base 3-1
base -devel 1-1
bash 5.1.016 -4
bc 1.07.1 -4
binutils 2.40-6
bison 3.8.2 -5
boost -libs 1.81.0 -6
brotli 1.0.9 -12
bzip2 1.0.8 -5
ca-certificates 20220905 -1
ca-certificates -mozilla 3.89.1 -1
ca-certificates -utils 20220905 -1
cairo 1.17.8 -2
cantarell -fonts 1:0.303.1 -1
clang 15.0.7 -9
cmake 3.26.4 -1
compiler -rt 15.0.7 -2
confuse 3.3-3
coreutils 9.3-1
cpupower 6.3-2
cryptsetup 2.6.1 -3
curl 8.1.1 -2
dav1d 1.2.0 -1
db5.3 5.3.28 -2
dbus 1.14.6 -2
dbus -glib 0.112 -2
dbus -python 1.2.18 -5
dconf 0.40.0 -2
debugedit 5.0-5
debuginfod 0.189 -1
default -cursors 2-1
desktop -file -utils 0.26-2
device -mapper 2.03.21 -1
dhcpcd 10.0.1 -1
diffutils 3.10-1
dmenu 5.2-1
dnssec -anchors 20190629 -3
duktape 2.7.0 -5
e2fsprogs 1.47.0 -1
edk2 -shell 202302 -1
elfutils 0.189 -1
expat 2.5.0 -1
fakeroot 1.31-2
ffmpeg 2:6.0 -8
file 5.44-3
filesystem 2023.01.31 -1
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findutils 4.9.0 -3
firefox 113.0.2 -1
flac 1.4.2 -1
flex 2.6.4 -5
fontconfig 2:2.14.2 -1
freetype2 2.13.0 -1
fribidi 1.0.13 -1
fuse -common 3.14.1 -1
fuse2 2.9.9 -4
gawk 5.2.2 -1
gc 8.2.2 -1
gcc 13.1.1 -1
gcc -libs 13.1.1 -1
gdb 13.1 -3
gdb -common 13.1-3
gdbm 1.23-2
gdk -pixbuf2 2.42.10 -2
gettext 0.21.1 -5
giflib 5.2.1 -2
git 2.40.1 -1
glib -networking 1:2.76.0 -1
glib2 2.76.3 -1
glibc 2.37-3
gmp 6.2.1 -2
gnu -free -fonts 20120503 -8
gnupg 2.2.41 -1
gnutls 3.8.0 -1
go 2:1.20.4 -2
gobject -introspection -runtime 1.76.1 -3
gperftools 2.10-1
gpgme 1.20.0 -3
graphite 1:1.3.14 -3
grep 3.11-1
grml -zsh -config 0.19.5 -1
groff 1.22.4 -10
gsettings -desktop -schemas 44.0-1
gsm 1.0.22 -1
gtk -update -icon -cache 1:4.10.3 -3
gtk3 1:3.24.38 -1
guile 3.0.9 -1
gzip 1.12-2
harfbuzz 7.3.0 -1
hicolor -icon -theme 0.17-3
hidapi 0.14.0 -1
highway 1.0.4 -1
http -parser 2.9.4 -1
hwdata 0.370 -1
i3-wm 4.22 -4
i3blocks 1.5-3
i3lock 2.14.1 -1
i3status 2.14-1
iana -etc 20230405 -1
icu 72.1 -2
imath 3.1.8 -1
intel -ucode 20230516.a-1
iproute2 6.3.0 -2
iptables 1:1.8.9 -1
iputils 20221126 -2
iso -codes 4.15.0 -1
jack2 1.9.22 -1
jansson 2.14-2
json -c 0.16-1
json -glib 1.6.6 -2
jsoncpp 1.9.5 -2
kbd 2.5.1 -2
keyutils 1.6.3 -2
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kmod 30-3
krb5 1.20.1 -1
l-smash 2.14.5 -3
lame 3.100 -4
lcms2 2.15-1
ldns 1.8.3 -2
less 1:633 -1
libarchive 3.6.2 -2
libass 0.17.1 -1
libassuan 2.5.5 -2
libasyncns 1:0.8+ r3+g68cd5af -2
libavc1394 0.5.4 -5
libbluray 1.3.4 -1
libbpf 1.2.0 -1
libbs2b 3.1.0 -8
libcap 2.69-1
libcap -ng 0.8.3 -2
libcloudproviders 0.3.1+ r8+g3a229ee -1
libcolord 1.4.6 -1
libcups 1:2.4.2 -7
libdaemon 0.14-5
libdatrie 0.2.13 -2
libdecor 0.1.1 -2
libdrm 2.4.115 -1
libedit 20221030 _3.1-1
libelf 0.189 -1
libepoxy 1.5.10 -2
libev 4.33-2
libevdev 1.13.1 -1
libevent 2.1.12 -4
libffi 3.4.4 -1
libfontenc 1.1.7 -1
libgcrypt 1.10.2 -1
libgirepository 1.76.1 -3
libgit2 1:1.6.4 -1
libglvnd 1.6.0 -1
libgpg -error 1.47 -1
libgudev 237-2
libice 1.1.1 -2
libidn2 2.3.4 -3
libiec61883 1.2.0 -7
libinput 1.23.0 -1
libisl 0.26-1
libjpeg -turbo 2.1.5.1 -1
libjxl 0.8.1 -2
libkeybinder3 0.3.2 -4
libksba 1.6.3 -1
libldap 2.6.4 -2
libmfx 23.2.2 -1
libmicrohttpd 0.9.76 -1
libmnl 1.0.5 -1
libmodplug 0.8.9.0 -5
libmpc 1.3.1 -1
libnetfilter_conntrack 1.0.9 -1
libnfnetlink 1.0.2 -1
libnftnl 1.2.5 -1
libnghttp2 1.53.0 -1
libnl 3.7.0 -3
libnotify 0.8.2 -1
libnsl 2.0.0 -3
libogg 1.3.5 -1
libomxil -bellagio 0.9.3 -4
libopenmpt 0.7.1 -1
libp11 -kit 0.24.1 -1
libpcap 1.10.4 -1
libpciaccess 0.17-1
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libpng 1.6.39 -1
libproxy 0.4.18 -3
libpsl 0.21.2 -1
libpulse 16.1-6
libraw1394 2.1.2 -3
librsvg 2:2.56.0 -1
libsamplerate 0.2.2 -2
libsasl 2.1.28 -4
libseccomp 2.5.4 -2
libsecret 0.20.5 -2
libsm 1.2.4 -1
libsndfile 1.2.0 -1
libsoup3 3.4.2 -1
libsoxr 0.1.3 -3
libssh 0.10.5 -1
libssh2 1.10.0 -3
libstemmer 2.2.0 -2
libsysprof -capture 3.48.0 -2
libtasn1 4.19.0 -1
libthai 0.1.29 -2
libtheora 1.1.1 -5
libtiff 4.5.0 -4
libtirpc 1.3.3 -2
libtool 2.4.7+4+ g1ec8fa28 -3
libtraceevent 1:1.7.2 -1
libunistring 1.1-2
libunwind 1.6.2 -2
libusb 1.0.26 -2
libutempter 1.2.1 -3
libuv 1.44.2 -1
libva 2.18.0 -1
libvdpau 1.5-1
libverto 0.3.2 -4
libvorbis 1.3.7 -3
libvpx 1.13.0 -1
libwacom 2.7.0 -1
libwebp 1.3.0 -3
libx11 1.8.4 -1
libxau 1.0.11 -2
libxaw 1.0.15 -1
libxcb 1.15-2
libxcomposite 0.4.6 -1
libxcrypt 4.4.33 -1
libxcursor 1.2.1 -3
libxcvt 0.1.2 -1
libxdamage 1.1.6 -1
libxdmcp 1.1.4 -2
libxext 1.3.5 -1
libxfixes 6.0.1 -1
libxfont2 2.0.6 -2
libxft 2.3.8 -1
libxi 1.8.1 -1
libxinerama 1.1.5 -1
libxkbcommon 1.5.0 -1
libxkbcommon -x11 1.5.0 -1
libxkbfile 1.1.2 -1
libxml2 2.10.4 -4
libxmu 1.1.4 -1
libxpm 3.5.16 -1
libxrandr 1.5.3 -1
libxrender 0.9.11 -1
libxshmfence 1.3.2 -1
libxt 1.3.0 -1
libxtst 1.2.4 -1
libxv 1.0.12 -1
libxxf86vm 1.1.5 -1
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libzip 1.9.2 -1
licenses 20220125 -2
linux 6.3.4. arch1 -1
linux -api -headers 6.3-1
linux -firmware 20230404.2 e92a49f -1
linux -firmware -whence 20230404.2 e92a49f -1
lld 15.0.7 -2
llvm -libs 15.0.7 -3
lm_sensors 1:3.6.0. r41.g31d1f125 -2
lshw B.02.19.2 -5
luit 20230201 -1
lz4 1:1.9.4 -1
lzo 2.10 -5
m4 1.4.19 -3
mailcap 2.1.53 -1
make 4.4.1 -2
mesa 23.1.1 -1
mesa -utils 9.0.0 -2
mkinitcpio 35.2-1
mkinitcpio -busybox 1.35.0 -1
mpfr 4.2.0.p9 -1
mpg123 1.31.3 -1
mtdev 1.1.6 -2
nano 7.2-1
nasm 2.16.01 -1
ncurses 6.4-1
netctl 1.28-2
nettle 3.9-1
npth 1.6-4
nspr 4.35-1
nss 3.89.1 -1
ntfs -3g 2022.10.3 -1
numactl 2.0.16 -1
ocl -icd 2.3.1 -1
oniguruma 6.9.8 -1
opencore -amr 0.1.6 -1
openexr 3.1.7 -2
openjpeg2 2.5.0 -2
openresolv 3.13.1 -1
openssh 9.3p1 -1
openssl 3.0.8 -1
opus 1.4-1
p11 -kit 0.24.1 -1
p7zip 1:17.05 -1
pacman 6.0.2 -7
pacman -mirrorlist 20230410 -1
pam 1.5.3 -3
pambase 20221020 -1
pango 1:1.50.14 -1
patch 2.7.6 -10
pciutils 3.10.0 -1
pcre 8.45-3
pcre2 10.42 -2
perf 6.3-2
perl 5.36.1 -1
perl -error 0.17029 -4
perl -mailtools 2.21-6
perl -timedate 2.33-4
phoronix -test -suite 10.8.4 -1
php 8.2.6 -1
pinentry 1.2.1 -1
pixman 0.42.2 -1
pkgconf 1.8.1 -1
popt 1.19-1
portaudio 1:19.7.0 -2
procps -ng 3.3.17 -1
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psmisc 23.6-1
python 3.11.3 -1
python -autocommand 2.2.2 -4
python -cairo 1.23.0 -6
python -configobj 5.0.8 -4
python -fastjsonschema 2.17.1 -1
python -gobject 3.44.1 -4
python -inflect 6.0.4 -2
python -jaraco.context 4.3.0 -3
python -jaraco.functools 3.6.0 -3
python -jaraco.text 3.11.1 -3
python -more -itertools 9.1.1 -4
python -ordered -set 4.1.0 -4
python -packaging 23.1 -1
python -platformdirs 3.5.1 -1
python -psutil 5.9.5 -1
python -pydantic 1.10.8 -1
python -setuptools 1:67.8.0 -1
python -six 1.16.0 -8
python -tomli 2.0.1 -3
python -trove -classifiers 2023.5.24 -1
python -typing_extensions 4.6.2 -1
python -validate -pyproject 0.13-1
rav1e 0.6.6 -1
readline 8.2.001 -2
rhash 1.4.3 -1
rustup 1.26.0 -3
sdl2 2.26.5 -2
sed 4.9-3
shadow 4.13-2
shared -mime -info 2.2+13+ ga2ffb28 -1
slang 2.3.3 -2
source -highlight 3.1.9 -10
speex 1.2.1 -1
speexdsp 1.2.1 -1
sqlite 3.42.0 -1
srt 1.5.1 -3
startup -notification 0.12-7
stress 1.0.6 -1
sudo 1.9.13.p3 -1
svt -av1 1.5.0 -1
sysfsutils 2.1.1 -1
systemd 253.4 -1
systemd -libs 253.4 -1
systemd -sysvcompat 253.4 -1
tar 1.34 -2
terminator 2.1.3 -3
texinfo 7.0.3 -1
tmux 3.3_a -3
tpm2 -tss 4.0.1 -1
tracker3 3.5.2 -1
tree 2.1.0 -1
tzdata 2023c-2
unzip 6.0 -19
usbutils 015-2
util -linux 2.39-4
util -linux -libs 2.39-4
v4l -utils 1.24.1 -2
valgrind 3.21.0 -1
vid.stab 1.1.1 -1
vmaf 2.3.1 -1
vte -common 0.72.1 -1
vte3 0.72.1 -1
vulkan -icd -loader 1.3.245 -1
wayland 1.22.0 -1
which 2.21-6
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x264 3:0.164. r3095.baee400 -4
x265 3.5-3
xbitmaps 1.1.3 -1
xcb -proto 1.15.2 -3
xcb -util 0.4.1 -1
xcb -util -cursor 0.1.4 -1
xcb -util -image 0.4.1 -2
xcb -util -keysyms 0.4.1 -4
xcb -util -renderutil 0.3.10 -1
xcb -util -wm 0.4.2 -1
xcb -util -xrm 1.3-2
xdg -utils 1.1.3+25+ g8ae0263 -1
xf86 -input -libinput 1.3.0 -1
xkeyboard -config 2.38 -1
xorg -bdftopcf 1.1.1 -1
xorg -fonts -encodings 1.0.7 -1
xorg -iceauth 1.0.9 -1
xorg -mkfontscale 1.2.2 -1
xorg -server 21.1.8 -1
xorg -server -common 21.1.8 -1
xorg -sessreg 1.1.3 -1
xorg -setxkbmap 1.3.4 -1
xorg -smproxy 1.0.7 -1
xorg -x11perf 1.6.2 -1
xorg -xauth 1.1.2 -1
xorg -xbacklight 1.2.3 -3
xorg -xcmsdb 1.0.6 -1
xorg -xcursorgen 1.0.8 -1
xorg -xdpyinfo 1.3.4 -1
xorg -xdriinfo 1.0.7 -1
xorg -xev 1.2.5 -1
xorg -xgamma 1.0.7 -1
xorg -xhost 1.0.9 -1
xorg -xinit 1.4.2 -1
xorg -xinput 1.6.4 -1
xorg -xkbcomp 1.4.6 -1
xorg -xkbevd 1.1.5 -1
xorg -xkbprint 1.0.6 -1
xorg -xkbutils 1.0.5 -1
xorg -xkill 1.0.6 -1
xorg -xlsatoms 1.1.4 -1
xorg -xlsclients 1.1.5 -1
xorg -xmodmap 1.0.11 -1
xorg -xpr 1.1.0 -1
xorg -xprop 1.2.6 -1
xorg -xrandr 1.5.2 -1
xorg -xrdb 1.2.1 -1
xorg -xrefresh 1.0.7 -1
xorg -xset 1.2.5 -1
xorg -xsetroot 1.1.3 -1
xorg -xvinfo 1.1.5 -1
xorg -xwd 1.0.8 -1
xorg -xwininfo 1.1.6 -1
xorg -xwud 1.0.6 -1
xorgproto 2022.2 -1
xterm 380-1
xvidcore 1.3.7 -2
xz 5.4.3 -1
yajl 2.1.0 -5
yasm 1.3.0 -6
yay 12.0.4 -1
zimg 3.0.4 -1
zip 3.0 -10
zlib 1:1.2.13 -2
zsh 5.9-3
zstd 1.5.5 -1
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Appendix B

Process Tracker Result Graphs

Several graphs are presented in this section. For these graphs:

• The solid black line represents the total system wattages.

• The dotted black line represents the calculated static power usage of the system.

• The dotted red line represents the calculated power usage for the program under test.

• The solid red line represents the calculated power usage of the program plus the static
usage of the system.

The vertical axis represents watts, and the horizontal axis represents a timestamp in milisec-
onds.
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Figure B.1: An example of a good Mocassin test.
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Figure B.2: An example of a bad Mocassin test.
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Figure B.3: An example of a good Stockfish test.
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Figure B.4: An example of a bad Stockfish test.
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