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Abstract:

Federated learning (FL) is a recent
paradigm, which aims to preserve privacy
in distributed networks, where locally col-
lected data is stored client-side. The
training of local models necessitates, that
the client’s data distribution support the
objective of the application. Therefore,
selecting the appropriate clients for aggre-
gation is essential to a successful network.
In this thesis, we propose the use of con-
formal prediction (CP) in a client selec-
tion method in a FL setting. We compare
our proposed method of using a metric
connected to CP as an evaluation crite-
ria for when a client is finished training
locally. Using this criteria, the clients de-
termine whether or not to participate in
aggregation for a specific global training
round. We evaluate three different clas-
sification datasets: MNIST, EMNIST and
CIFAR10 and distributes these datasets
among clients both IID and non-IID. Us-
ing different error rates and number of
clients, we can conclude that our pro-
posed method outperforms the standard
method of aggregating clients in terms of
prediction accuracy for a convolutional
neural network for non-IID data.
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Resumé på Dansk

Med de teknologiske udviklinger, har maskinlæring og kunstig intelligens haft en
banebrydende udvikling med endeløse applikationer. Dertil kræves der en stor
indsamling af data til at træne disse maskinlæringsmodeller. Et problem opstår
ved indsamlingen af data, da det kommer fra forskellige personer/institutter, hvor
det måske ikke er ønsket eller muligt at indsamle dataet til en central lokation pga.
sikkerhedsmæssige årsager. Dertil har fødereret læring vist sig at være et muligt
værktøj til at træne maskinlæringsmodeller uden indsamling af data.

Fødereret læring benytter sig af at indsamle og distribuere maskinlæringsmodellen’s
parametre mellem en central lokation, kaldet en aggregator, og et udvalg af enheder,
kaldet klienter. Hver klient træner lokalt på deres egen maskinlæringsmodel og sender
derefter deres parametre til aggregatoren. Efter indsamlingen af klienternes parametre
opdaterer aggregatoren parametrene ved brug af FedAvg metoden. Derefter udsendes
de nye parametre tilbage til klienterne og processen fortsætter på ny. Det betyder
altså at fødereret læring ikke deler klienternes private data, men i stedet deres
modelparametre. Der findes forskellige metoder til at vælge hvilke klienter der
udtages til aggregation. Standardmetoden er, at tilfældigt vælge en delmængde af
alle klienterne som udtages til aggregation. I denne specialeafhandling, undersøger
vi en udtagningsproces af klienter ved brug af konform prædiktion ved at tilknytte
en metrik baseret på klienternes nøjagtighed til at prædiktere rigtigt. Vi ser på
indflydelsen af både ligeligt fordelt data mellem klienter, samt ikke-ligeligt fordelt
data mellem klienter.

Konform prædiktion er et statistisk værktøj der benyttes efter træning af maskin-
læringsmodeller til at lave prædiktionssæt, hvortil man med en bestemt statistisk
konfidens kan sige, at den korrekte prædiktion ligger i sættet.

Til at vurdere om vores foreslåede udtagningsproces er bedre end en standard udtagn-
ingsproces har vi evalueret præcisionen af maskinlæringsmodellen for begge metoder.
Dertil har vi evalueret forskellige parametre tilknyttet konform prædiktion, samt
evalueret indflydelse af antallet af klienter. Ud fra disse forsøg kan der konkluderes
at vores foreslåede udtagningsproces med ikke-ligeligt fordelt data udkonkurrerer
standardmetoden. Derudover kan der konkluderes at passende parametre fra konform
prædiktion har stor indflydelse på præcisionen af vores foreslåede metode.



Abbreviation List

AI Artificial Intelligence.

CE Cross-entropy.

CNN Convolutional Neural Network.

CP Conformal Prediction.

ERM Empirical Risk Minimisation.

FedSGD Federated Stochastic Gradient Descent.

FedAVG Federated Averaging.

FL Federated Learning.

GTR Global Training Round.

IID Independent and Identically Distributed.

IoT Internet of Things.

LTR Local Training Round.

ML Machine Learning.

PoC Power-Of-Choice.

SGD Stochastic Gradient Descent.
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1. Problem Analysis

1.1 Background and Motivation

Modern mobile phones, smartwatches and autonomous vehicles are just a few of the
many modern inventions which gather a wealth of data each day [36, p. 1]. This
constant availability of massively distributed data has pivoted the success of machine
learning (ML), which further increased the usability of intelligent application, e.g.
speech recognition, next-word prediction, computer vision etc. [34, p. 2]. In order to
obtain insight in the big amount of data, which is generated in the ubiquitous internet
of things (IoT) devices, artificial intelligence (AI) techniques such as deep learning
methods can be utilised [6]. However, a prerequisite of traditional AI techniques is,
that the data is collected and processed at a centralised location. This may not be
feasible in practice due to the high scalability of IoT networks, while also neglecting
the user’s privacy as a result of centralised data storage [6].
For this purpose, federated learning (FL) is a recent ML paradigm, which aims to
preserve privacy in a decentralised ML setting. FL has been used in various applica-
tions such as in healthcare, automation, logistics, etc [9]. As the FL paradigm serves
to perform local training on devices (clients), it necessitates that, the distributed
training supports the objective of the application [9]. It is therefore essential that the
clients, which are beneficial in supporting the application, are weighed higher than
ones that are less beneficial. Throughout this thesis, the focus will be to evaluate the
performance of a proposed client selection strategy for a privacy-aware FL setting.
The following problem analysis provides the context for this thesis.

1.2 Supervised Learning

Consider sampling a stream of labeled data {Xi, Yi}n
i=1, where Xi are the covariates

(e.g. images), Yi are the corresponding labels and n is the amount of data samples
collected. Based on this previously observed data and the covariate Xn+1, it is
desired to determine its label Yn+1. A method of predicting the label Yn+1 is the use
of supervised ML algorithms, e.g. neural networks, decision trees, logistic regression
etc. Although these models are complex and are subject to prolonged training time,
a substantial amount of empirical evidence shows, that these models can give highly
accurate predictions using IID data samples for both training and testing [18, p. 1].
A method to decrease the computational time of a supervised learning algorithm is
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1.3. DISTRIBUTED LEARNING AND FEDERATED LEARNING

to distribute the model to multiple machines, which is known as distributed learning.

1.3 Distributed Learning and Federated Learning
Distributed ML is becoming increasingly relevant in modern technology. This is
both due to the increasing complexity of ML models and the increasing amount of
training data [20, p. 4].

Increasing the complexity of the ML models in return increases their representational
capacity. Considering a neural network, this can be done by either making the
network ’wider’, meaning adding more parameters, or ’deeper’ by adding layers. These
increasingly complex ML models yield significantly more expensive computational
costs, for which distributed learning could be a solution [20, p. 4].

Some challenges occur when considering the amount of training data, which negatively
impacts the performance of the ML model, some of which include overfitting and
underfitting. Underfitting and overfitting means that the ML model is unable to
accurately capture the relations between the input and output. Underfitting is a
result of a limited amount of training data and overfitting occurs due to an overflow
of training rounds, and both result in the model being incapable of generalising to
new data [20, p. 4]. With the increase in data volume these issues are addressed,
however the computational cost of processing the larger data volumes becomes a
relevant issue. For this distributed ML could be a possible solution by distributing
the data among multiple machines and training the same model architecture on each
machine [20, p. 4].
The distributed learning model can be seen in Figure 1.1, which depicts the de-
centralised setting. In this context, decentralised refers to the ML model being
distributed with data to multiple devices (referred to as clients), as opposed to a
centralised setting, where nothing is distributed.

3



CHAPTER 1. PROBLEM ANALYSIS

Figure 1.1: Distributed Learning.

In the decentralised setting, the training data is shared amongst the devices for them
to locally train on. This can however pose a major privacy concern and security risk.

Consider a smart phone, which has access to an unprecedented amount of data with
its powerful sensors, e.g. GPS, microphones, cameras etc. The data collected from
these sensors are valuable in the sense that ML models trained on this data can
greatly improve the usability of intelligent applications. Examples of this are speech
recognition and text entry, which can be improved using language models [7, p. 1].
However, this data may be of sensitive nature, and the user may not always be
willing to share their data for storage in a centralised location. A solution for this is
FL, which aims to locally train the ML model of each client using local data. In this
setting, the clients only receive and transmit model parameters, thereby preserving
their personal data [36, p. 2].

FL relies on stochastic gradient descent (SGD), for which the IID property of training
data is important for yielding an unbiased estimate of the gradient [39, p. 2]. In
practice, the data distribution cannot be assumed to be IID both across clients and
in time, which disrupts the convergence rate of optimisation in the FL algorithms.
The data distribution cannot be assumed to be IID, since both the amount and
distribution of data of a client varies significantly. Subsequently, each client would
then be biased to optimise its own ML model, instead of cooperating towards
optimising the global ML model. These issues are known as concept drift, client drift
or model drift caused by statistical heterogeneity [21, p. 1][34, p. 1]. Principles and
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1.4. STATE OF THE ART

challenges of FL is further explained in Chapter 2.
In this thesis a possible solution to model drift is proposed, where the influence of
each client is regulated based on a metric regardless of their data distribution. The
goal of implementing a metric to regulate client influence is to counteract the model
drift as a result of a possible skewed data distribution across clients. In this context,
the metric ultimately decides, which clients should participate in the FL training
process.
For this purpose, conformal prediction (CP), or conformal inference, is an attractive
paradigm, in which a metric is calculated based on the training data and the ML
model. The framework of CP and the validity of a metric for client regulation is
examined in Chapters 3 and 6, respectively.
The metric is used as an indicator, as to which clients should transmit its model
parameters. This client sampling strategy is designed to sort out the specific clients,
for which the metric is high enough. Our proposed client sampling strategy and
alternatives are further explained in Chapter 4.

1.4 State of the Art

There exists an abundance of previous research on the convergence rate of FL,
different client selection strategies for FL and research of non-IID data distributions
of clients. In [15], a Power-Of-Choice (PoC) algorithm for client selection is considered.
A theoretical proof showcases, that selecting clients with the highest local loss for
training instead of unbiased selection, increases the rate of convergence. It was shown
that the PoC algorithm lead to three times faster convergence rate with higher test
performance than randomly picking clients for training.

In [14], a convergence guarantee for strongly convex and smooth problems for FL using
the Federated Averaging (FedAvg) algorithm is shown without making assumptions
that the data is IID or that all clients participate in training. It is shown that the
sampling strategy, number of local training rounds (LTRs) and that the heterogeneity
of training data is crucial for the convergence rate of FedAvg.

In [25], CP is used in a FL setting. A convolutional neural network (CNN) is
trained on different medical image datasets (BloodMnist, DermaMNIST, PathMNIST,
TissueMNIST, RetinaMNIST, OrganMNIST3D) in which each client calculates a quan-
tile. They proposed an algorithm in which the quantile is averaged to improve the
coverage. The coverage convergence rate of the proposed algorithm is compared
to the coverage convergence rate of a local quantile. Both methods achieve similar
empirical coverage, however the proposed algorithm achieved smaller CP sets.

5



CHAPTER 1. PROBLEM ANALYSIS

To the best of our knowledge using CP scores for client participation has not been
done.

1.5 Problem Statement
In this thesis, we examine the performance of a proposed client sampling strategy
utilising different scoring functions from the field of CP in a FL setting. Furthermore
our proposed client sampling method is compared to the standard method of sampling
clients in FL. This leads to the following problem statement:

How does a client sampling strategy utilising CP perform compared to
other sampling strategies in a FL setting?

1.6 Thesis Scope and Limitations
In this thesis we limit ourselves to the following:

1. The aggregator’s test set is drawn from the global data distribution.

2. Each client has a distinct dataset with non overlapping data between clients.

3. Only image classification is examined, and tested on the MNIST, EMNIST and
CIFAR10 datasets.

4. A CNN is used as the ML model for image classification.

6



2. Federated Learning

In this chapter, the concept of FL is explained. The purpose of the chapter is to tackle
the privacy issue, which is the result of data sharing in a distributed environment.
In Section 2.1 the general ML optimisation problem is explained. In Section 2.2 the
general ML optimisation problem is expanded into a decentralised ML optimisation
problem and some FL methods are presented as ways to solve this optimisation
problem. Multiple FL algorithms are compared using a logistic regression example
in Section 2.3.
Finally, in Section 2.4 the remarks on FL is discussed including the model drift which
derives from a decentralised setting.

FL is a decentralised ML technique where multiple clients collaborate to train a
global model without exchanging the client’s datasets [20, p. 167-168]. This is done
using a central server, known as the aggregator, which initialises the multiple clients
with the same initial parameters. Each client has the same model architecture and
their own private datasets. After initialisation, each client trains their model and
afterwards sends their updated model parameters to the aggregator. The aggregator
then updates the global model, and distributes the updated parameters to the
clients once again. The training of clients and aggregation process is then repeated
until completion, which is determined either after a specific number of training and
aggregation rounds, or a sufficiently low loss (given some loss function) for the global
model. When clients are training locally, it will be called the LTR, and the number
of aggregation rounds will be called the global training rounds (GTR).

2.1 Supervised ML Optimisation
A supervised ML problem can be posed as an empirical risk minimisation (ERM)
problem, which has the form:

min
ω∈Rd

f(ω) where f(ω) ≜ 1
n

n∑
i=1
L(xi, yi, ω), (2.1)

where ω is the parameter of the model, which is optimised over, xi ∈ Rd is the i′th

training sample and yi being its corresponding label, n being the number of the
training samples and L is the loss function. Furthermore L is considered to be a
convex differentiable function for all inputs, which in return means that (2.1) is a
convex smooth optimisation problem [4, p. 79]. To solve this, several optimisation

7



CHAPTER 2. FEDERATED LEARNING

algorithms exist, however a widely used algorithm is the stochastic gradient descent
(SGD) algorithm.

2.1.1 Stochastic Gradient Descent

SGD is an optimisation algorithm that converges towards the optimal set of parameters
of a model, which minimises a given loss function. It is a variant of the standard
gradient descent algorithm, which updates the model parameters in the direction of
the negative gradient of the loss function with respect to the entire training data [3,
p. 240]. A parameter update for the standard gradient descent is

ω(τ+1) = ω(τ) − η∇f(ω(τ)), (2.2)

where the parameter η > 0 is called the learning rate, τ denotes the iteration index,
and f is the loss function [3, p. 240].
However, as the standard gradient descent computes the gradients of the entire
training set, its computational time scales with the size of the training set. To reduce
computational time, the SGD updates the model parameters for each training sample
in a random order, using only a small random subset of the training data at a time.
Furthermore, this allows for faster convergence and improves the models ability to
adapt to new data [19, p. 275]. A parameter update for the SGD algorithm is

ω(τ+1) = ω(τ) − η∇Li(ω(τ)), (2.3)

where Li is the loss function for the i′th training sample. The algorithm iteratively
adjusts the parameters in the direction of the negative gradient of the loss function
for each random subset of the training data. The SGD has especially proven useful in
practice when training neural networks on large datasets [3, p. 240].

2.2 Supervised FL Optimisation
The standard supervised ML optimisation problem in (2.1) can be realised in a FL
setting as follows. Let the global dataset be the collection of data from all clients,
and let Pk be the set of indices of data samples of client k from the global dataset.
Furthermore, let the number of data samples of client k be expressed as nk = |Pk|.
Then given that each client optimises their own model, the FL optimisation problem
for client k is given as the ERM problem

Fk(ω) = 1
nk

∑
i∈Pk

L(xi, yi, ω). (2.4)

8



2.2. SUPERVISED FL OPTIMISATION

Using (2.4) to rewrite (2.1), the global FL optimisation problem, i.e. the optimisation
problem in the aggregator, can be expressed as an ERM problem

f(ω) = 1
n

n∑
i=1
Li(xi, yi, ω) (2.5)

= 1
n

K∑
k=1

∑
i∈Pk

Li(xi, yi, ω) (2.6)

= 1
n

K∑
k=1

nkFk(ω). (2.7)

Thereby the FL optimisation problem is

min
ω∈Rd

f(ω) = 1
n

K∑
k=1

nkFK(ω). (2.8)

Similar to the standard supervised ML problem, the FL optimisation problem can
be solved by its own version of SGD, called federated SGD.

2.2.1 Federated Stochastic Gradient Descent

Federated SGD, denoted as FedSGD, selects a fraction C ∈ [0, 1], of the K clients to
perform the gradient computations on each local ML model, which repeats for each
GTR.
Denoting the gradient of the k’th client for the t’th GTR as

gk = ∇Fk(ω(t)), (2.9)

the FedSGD algorithm for C = 1 can be computed [7, p. 4]. Firstly FedSGD computes
the gradient gk for all K clients, then the aggregator aggregates all K gradients and
applies an update to the parameters as

ω(t+1) ← ω(t) − η∇f(ω(t)) = ω(t) − η
K∑

k=1

nk

n
gk. (2.10)

This is then repeated for each GTR [7, p. 4].

An equivalent method would be updating the parameters on each client and aggre-
gating them instead of aggregating the gradients. Updating the parameters for each
client can be expressed as

ω
(t+1)
k ← ω(t) − ηgk for k = 1, . . . , K. (2.11)

9



CHAPTER 2. FEDERATED LEARNING

The weights of the aggregator would then be updated as

ω(t+1) ←
K∑

k=1

nk

n
ω

(t+1)
k . (2.12)

This repeats for each GTR [7, p. 4].

2.2.2 Federated Averaging

Expanding the FedSGD algorithm such that each client computes multiple local
updates on their parameters, i.e. such that

ωk ← ωk − ηgk (2.13)

for multiple LTRs before being aggregated yields the FedAvg algorithm. The number
of LTRs each client performs before getting aggregated is usually denoted by E.
Furthermore B is the local batch size, i.e. the number of training samples at each
LTR before the local parameters are updated. B =∞ indicates that the entire local
dataset is treated as one batch [7, p. 4].

The entire FL algorithm for FedAvg is shown in Algorithm 1.

Algorithm 1: Federated Averaging Algorithm

INPUT:
Number of LTRs E,
Learning rate η,
Local batch size B,
The fraction C of the K clients,
Initial parameters ω(0).

OUTPUT:
The parameters for the global model ω.

Aggregator:
0 : Distribute ω(0) to Clients
1 : for each round t = 1, 2 . . . do
2 : m← max ⌊(C ·K, 1)⌋
3 : S(t) ← (random set of m clients).
4 : for each client k ∈ S(t) in parallel do
5 : ω

(t+1)
k ← ClientUpdate(k, ω(t))

10



2.3. EXAMPLE: COMPARISON BETWEEN SGD, FEDSGD AND FEDAVG FOR
LOGISTIC REGRESSION
6 : end for
7 : m(t) ← ∑

k∈S(t) nk

8 : ω(t+1) ← ∑
k∈S(t)

nk

mt
ω

(t+1)
k

9 : end for

ClientUpdate(k, ω): //Run on client k

5a : B ← (randomly spilt Pk into batches of size B)
5b : for each local epoch i = 1, 2 . . . E do
5c : for each batch b ∈ B do
5d : ω ← ω − η∇L(ω; b)
5e : end for
5f : end for
5g : return ω

[7, p. 5]

2.3 Example: Comparison between SGD, FedSGD
and FedAvg for Logistic Regression

To compare SGD, FedSGD and FedAvg an example using logistic regression is presented.
The data used for the example is the breast cancer dataset from sklearn[5]. In Figure
2.1 the test accuracy is shown for all three methods.

Figure 2.1: Comparison of SGD, FedSGD and FedAvg. FedAvg utilises two LTRs.

In Figure 2.1, the data of the two FL algorithms is IID among 10 clients, where
FedAvg uses two LTRs before aggregation. Furthermore, the results are mean values
from conducting the experiment 100 times.

11



CHAPTER 2. FEDERATED LEARNING

The FedAvg algorithm in Figure 2.1 is seen to achieve a higher accuracy quicker than
FedSGD and SGD, which is due to the increased number of LTRs before aggregation.
Although the FedAvg has double the computational time than FedSGD, the accuracy
is significantly higher per GTR. This means that the FedAvg is more beneficial in a
communication cost context, compared to the two other methods. The FedSGD and
SGD are identical as expected, due to algorithms utilising the same datasets and the
data distribution being IID across clients.

Figure 2.2: Performance of FedAvg utilising various amounts of LTRs.

A comparison between the number of LTRs before aggregation in the FedAvg algo-
rithm is shown in Figure 2.2. An increase in the amount of LTRs is observed to
increase the accuracy per GTR quicker.

Figure 2.3: Performance of FedAvg utilising various amounts of clients.

In Figure 2.3, the FedAvg algorithm is plotted using various amounts of clients and
5 LTRs. In this case, the impact of increasing clients improves the accuracy of the
aggregator, with decreasing variance at further aggregations. However, this result
may vary significantly depending on the ML model and data distribution.
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2.4. REMARK ON FEDERATED LEARNING

2.4 Remark on Federated Learning
A remark on the importance of the data distribution in FL has to be addressed.
Since each client has its own locally sampled data, it cannot be assumed that the
clients data distributions reflects the global data distribution. This means that each
client will be biased against their own data, and does not necessarily generalise well
to solve the global optimisation problem. Therefore sampling strategies have to be
considered, when picking which clients should be chosen in each GTR. So far, in
this project, only picking random clients have been considered, however some metric
could be used as a sampling strategy. We propose a method for sampling clients
based on CP, which is further explained in Chapter 4.
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3. Conformal Prediction

In this chapter, the framework of CP is presented. The purpose of the chapter is to
introduce a metric, which is utilised for the proposed client sampling strategy in a
FL setting. Most traditional prediction methods (such as supervised ML methods),
lack the ability to estimate the uncertainty of the prediction. A way to provide a
statistical confidence on the output for any ML model that outputs a prediction is
CP [25, p. 2].

CP is a method for producing sets of predictive outputs without assumptions on the
data distribution and the predictive ML model. Examples of predictive ML models
include neural networks, decision trees and quantile regression, all of which output
class or point predictions [25, p. 2]. Based on the ML model, the prediction sets are
constructed to include the correct prediction with a certain probability 1− α, where
α ∈ [0, 1] is a user-chosen error-rate parameter [1, p. 4]. For a regression task, the
prediction set would consist of an interval and for a classification task, the prediction
set would consist of one or multiple class labels.
The prediction set is constructed based on a conformal score function, which de-
termines the relation between the model input and output. The score function is
desired to reflect a large number, when the ML model predicts correctly, and a small
number the model is uncertain or incorrect. The selection of a good score function is
pivotal for creating useful prediction sets[1, p. 6]. A good score function is a relative
term, and depends on the task of the ML model. Examples of score functions are
showcased in Section 3.2.
Based on the scores, a quantile is calculated and used for creating the prediction sets.
Depending on the type of CP, the method of calculating the quantile varies.
There are multiple adaptations of CP, which have different goals and complications.
The most widely-used type of CP is split CP, and is much less computationally heavy
than the version it originated from, known as full CP [1, p. 6].

3.1 Split Conformal Prediction
The split CP method splits the training data into a training set and a calibration
set, where the latter is utilised to calibrate the predictive ML model. For the sake of
clarity, an example of split CP will be introduced.
Consider a convolutional neural network (CNN), which takes image inputs and
outputs an estimated probability for each class label. For simplicity’s sake, let
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3.1. SPLIT CONFORMAL PREDICTION

the input to the CNN be the MNIST dataset, which consists of images containing
handwritten digits ranging from zero to nine. The CNN would then output values
for each class, which can be converted to estimated probabilities using the softmax
function [35, p. 64]

σ(zi) = ezi∑K
j=1 ezj

, for i = 1, 2, . . . , K, (3.1)

where zK = [z1, z2, . . . , zK ] is the CNN’s output layer vector and K is the number
of classes. The softmax output of the CNN is denoted f̂(Xi), where examples of
softmax outputs are ’47 % - Class 3’ or ’83 % - Class 0’. Some of the images in
the training set are reserved for calibration, i.e. calibration data is unseen during
training. In this case, the calibration data is a sequence of image and class pairs
(X1, Y1), (X2, Y2), . . . , (Xn, Yn), where Xi are the images, Yi are class labels of the
respective images and n being the length of the calibration set.

In the calibration step the conformal scores are calculated with a possible conformal
score function, which could be

si = 1− f̂(Xi)Yi
, (3.2)

where f̂(Xi)Yi
is the softmax score (estimated probability) for the true class. In this

case, a high conformal score would reflect a low estimated probability, which means
the CNN’s prediction is incorrect or unlikely, and vice versa. On the left in Figure
3.1, the CNN’s output for a handwritten ’1’ is illustrated.

The next step of CP is to define q̂ as the ⌈(n+1)(1−α)⌉
n+1 empirical quantile of the scores

s1, . . . , sn, where ⌈·⌉ is the ceil function [1, p. 4]. Using the score function (3.2),
a low q̂ is the result of low scores, which can be interpreted as the ML model is
well adjusted to the characteristics of the calibration data. Subsequently, a high q̂

is the result of high scores, which can be interpreted as the ML model incorrectly
identifying the classes of the calibration data. In the middle of Figure 3.1, q̂ is
determined with n = 500 and α = 0.1.

Finally, the prediction set C(Xtest) of a new data input Xtest is calculated as

C(Xtest) = {y : f̂(Xtest) ≥ 1− q̂}. (3.3)

This prediction set includes every class label, for which the estimated probability is
large enough, i.e. larger than 1− q̂. On the right in Figure 3.1, a test sample yields
the prediction set {3, 8, 9, 6} sorted by softmax score.
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CHAPTER 3. CONFORMAL PREDICTION

Figure 3.1: The steps of CP using MNIST data: (1) Compute conformal scores on
calibration data, (2) Sort scores and determine q̂ and (3) Determine whether to include

classes in the prediction sets from test samples.

A useful statistical property of constructing prediction sets using this method is the
coverage guarantee that it provides. If the size of the prediction sets are considered
an important part of the sampling strategy, the coverage will affect the quantile q̂.

3.1.1 Coverage

The property of coverage is, that a prediction set contains the true class label or
point prediction with high probability. The exchangeability of a sequence of random
variables is a prerequisite for formally defining the coverage guarantee for split CP.

Definition 3.1 (Exchangeable Sequence of Random Variables)
Let X1, X2, . . . be an exchangeable sequence of random variables (which may be
finitely or infinitely long), and let π be a finite permutation. Then the joint
probability distribution of X1, X2, . . . and the joint probability distribution of the
permuted sequence Xπ(1), Xπ(2), . . . are equivalent [2, p. 473].

Intuitively Definition 3.1 states that finitely exchanging positions of random variables
in the sequences does not change the joint distribution of the sequence. Exchange-
ability of the dataset is a necessary condition for the coverage property, while IID is
a sufficient condition. In other terms, IID infers exchangeability, since the joint pdf
of an IID sequence is the product of the marginals. The cumulative property implies
that the joint pdf of the permutation of such sequence is equivalent to the original
sequence. Now the conformal coverage guarantee can be stated.
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Theorem 3.1 (Conformal Coverage Guarantee)
Suppose {Xi, Yi}n

i=1 is the calibration set, (Xtest, Ytest) is a new test point and they
are IID (or exchangeable). Let the scoring function be si = 1 − f̂(Xi)Yi

. Then
define the quantile of the calibration scores as

q̂ = inf
{

q : |{i : s(Xi, Yi) ≤ q}|
n

≥ ⌈(n + 1)(1− α)⌉
n + 1 , q ∈ [0, 1]

}
(3.4)

and the resulting prediction sets as

C(Xtest) = {y : s(Xtest, y) ≤ q̂} = {y : f̂(Xtest)y ≥ 1− q̂}. (3.5)

Then the following holds:

P (Ytest ∈ C(Xtest)) ≥ 1− α. (3.6)

[1, p. 50]

The quantile q̂ is chosen as the infimum of the set of possible quantiles q, which
satisfy the condition in (3.4). If ⌈(n+1)(1−α)⌉

n+1 = 0.95, then the set of quantiles would
consist of every q with a value greater than 95 % or more of the calibration scores.
A prerequisite for the coverage property is that the score function is required to be
monotonic [25, p. 2].

Proof of Theorem 3.1.
Let si = s(Xi, Yi) for i = 1, . . . , n and stest = s(Xtest, Ytest). Consider the case where
the si ≠ sj for i ̸= j. The calibration scores are assumed to be sorted such that
s1 < · · · < sn. In this case if α ≥ 1

n+1 then q̂ = s⌈(n+1)(1−α)⌉ and when α < 1
n+1 then

q̂ =∞. However, in the case where q̂ =∞, then C(Xtest) = Y, meaning that the
coverage property is satisfied (Y denotes the entire label set). Therefore only the
case where q̂ = s⌈(n+1)(1−α)⌉ has to be proven. Note that the following two events
are equal

{Ytest ∈ C(Xtest)} = {stest ≤ q̂}. (3.7)

Inserting the definition of q̂

{Ytest ∈ C(Xtest)} = {stest ≤ s⌈(n+1)(1−α)⌉}. (3.8)
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Since the variables (X1, Y1), . . . , (Xtest, Ytest) are exchangeable,

P (stest ≤ sk) = k

n + 1 ∀ k ∈ Z. (3.9)

This means that stest is equally likely to be anywhere between the calibration points
s1, . . . , sn, thereby yielding the desired result

P (stest ≤ s⌈(n+1)(1−α)⌉) = ⌈(n + 1)(1− α)⌉
(n + 1) ≥ 1− α. (3.10)

■

[1, pp. 50-51]

From [1, p. 51], if the scores s1, . . . , sn have a continuous joint distribution, (3.6) can
be proved to be upper bounded as

P (Ytest ∈ C(Xtest)) ≤ 1− α + 1
n + 1 . (3.11)

However, in practice the scores does not need to have a continuous joint distribution,
since a vanishing amount of white noise can be added to the score to make a discrete
joint distribution continuous [1, p. 51]. The coverage bounds from (3.6) and (3.11)
serve as performance guarantees of CP

1− α ≤ P (Ytest ∈ C(Xtest)) ≤ 1− α + 1
n + 1 . (3.12)

Choosing α = 0 would guarantee Ytest ∈ C(Xtest), but would result in C(Xtest) = Y ,
which is already known beforehand. Finding the optimal α is a task for experimenta-
tion, and will be examined in Chapter 6.

3.2 Examples of CP score functions

As previously mentioned, the choice of score function is essential to the performance
of CP, since it affects the q̂-values. This section will showcase multiple score functions,
which are utilised in experimentation. The purpose of introducing multiple score
functions is to potentially increase the performance of the FL network.
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Figure 3.2: Three score functions are plotted with k1 = 4, k2 = 20 and b = 10.

The score functions evaluated are

s
(1)
i = 1− f̂(Xi)Yi

, (3.13)

s
(2)
i = e−k1f̂(Xi)Yi , (3.14)

s
(3)
i = 1− σ(f̂(Xi)Yi

, k2, b), (3.15)

where σ is a modified sigmoid function defined as

σ(x) = 1
1 + e−k2x+b

. (3.16)

In (3.14), k1 > 0 determines the slope of the function. In (3.15), k2 > 0 determines
the slope (a high k results in the function converging towards a step-function) and b

determines where the center of the slope is [22, p. 71]. These three score functions
are illustrated in Figure 3.2.
The score function s(1) from [1, p. 4] is a linear function of the softmax probability

f̂(Xi)Yi
of the true class for image Xi, hence the conformal scores of the calibration

data scale linearly. Alternatives to this score function are s(2) and s(3), which are
proposed to include biases towards specific softmax probabilities. Using k1 = 4,
the score function s(2) is designed to generally assign softmax probabilities to lower
conformal scores in comparison to s(1). Subsequently, the quantile q̂ is also lower,
which in turn impacts the client selection process.
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Using k2 = 20 and b = 10, the score function s(3) is designed to penalise lower softmax
probabilities with higher conformal scores and reward higher softmax probabilities
with lower conformal scores. In comparison to s(1), the score function s(3) significantly
distinguishes between low and high scores, which ’rewards’ good models for accurate
predictions and ’punishes’ bad models for inaccurate predictions. The influence of
using alternative score functions in client selection is examined in Chapter 6.
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4. Client Sampling Strategies

In an FL setting a sampling strategy determines which clients that will be participat-
ing in the training process and to what extent [pp. 10-11][13]. If the sampling strategy
is not chosen appropriately, it can lead to biased results. If the sampling strategy
selects clients that contain skewed data distributions, may make the resulting global
model perform worse generally. Choosing an appropriate sampling strategy can lead
to an improved performance and robustness of the FL model, by ensuring that the
training process is representative and balanced across all participating clients [33; 16].
This makes the choice of a sampling strategy very important, since each client may
have different data distributions, computational resources and dataset sizes [16].

Some of the sampling strategies that are commonly used in an FL setting are
uniform sampling [12], stratified sampling [26], clustered sampling [24] and importance
sampling [33].

4.1 Uniform Sampling

Uniform sampling is where a fraction of the clients are sampled uniformly at random
from the quantity of all the clients [16].
Let K be the set of all clients, let C ⊆ K that is selected for training and let |K| be
the cardinality of K. Then for uniform sampling the following is obtained

P (ci ∈ C) = 1
|K|

∀ i ∈ K (4.1)

where P (ci ∈ C) is the probability of the i’th client being one of the selected clients
in the training process [12; 16].
Hence all the clients have an equal probability to be selected for the training process
and thereby contribute equally to the training process. This selection process does
not take into account that clients may have different data distributions or amount of
data, which may lead to biased results. In this case a sampling strategy that takes
heterogeneity of the data into account may be needed in order to ensure an unbiased
training process [24, p. 25].

21



CHAPTER 4. CLIENT SAMPLING STRATEGIES

4.2 Stratified Sampling

Figure 4.1: Stratified Sampling.

Stratified sampling is used when the clients have different data distributions. In
stratified sampling the clients are grouped into strata based on the characteristics
that they share (e.g. gender, education etc.) with each stratum consisting of only one
common characteristic [26]. A fraction of clients are then selected from each stratum
to participate in the training process ensuring that the training process includes all
the characteristics. In Figure 4.1 the concept of stratified sampling is illustrated. A
trade-off in stratified sampling compared to uniform sampling is higher precision at
the cost of higher complexity, due to the division of the clients into strata. It should
be noted that the characteristics of the clients might not be accessible [24, Chp. 3].

4.3 Clustered Sampling

Figure 4.2: Clustered sampling.

In clustered sampling the clients are divided into smaller groups called clusters,
and a fraction of these clusters are selected to participate in the training process.
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Usually clustered sampling is used when some pre-existing groups, such as ages,
cities etc. are visible from the data [17]. A key difference between stratified and
clustered sampling is the selection process. In stratified sampling, random samples
are selected from each stratum, whereas in clustered sampling, a random set of
clusters is selected. Generally clustered sampling decreases the precision compared
to uniform and stratified sampling. This is due to each cluster being biased in some
form [24, Chp. 5]. In practice, clustered sampling is used because of the convenience
and lower cost to sample in clusters than using uniform sampling.
In Figure 4.2 the concept of clustered sampling is illustrated.

4.4 Importance Sampling

In importance sampling the clients are weighted according to the importance of their
data in the overall training objective [16]. This means that, clients that contain more
important data are given higher weights, while clients with less important data are
given lower weights.

Figure 4.3: Importance sampling. Left: The different clients are defined. Middle: The
green clients are determined to be of higher importance, illustrated by making the

majority of clients in the sampling space the green clients. Right: A subset of the new
sampling space is selected for training. More clients of a specific color means higher

importance weight.

Consider client ci, then the importance weight assigned to client ci is denoted as ωi.
In importance sampling, a subset C = {c1, c2, . . . cm} of all the clients K is selected,
such that the probability of selecting client ci is proportional to its importance weight
ωi. This gives the following probability of selecting client ci [33]

P (ci ∈ C) = ωi∑N
j=1 ωj

. (4.2)
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Choosing appropriate importance weights are crucial for correct sampling. One
example of weighting clients is by their amount of data, i.e. clients with more data
is weighted higher than clients with less data. The concept of importance sampling
is illustrated in Figure 4.3.

Overall, the choice of sampling strategy depends on the application of the FL task and
the characteristics of the clients. Hence it is important to choose a sampling strategy
that produces representative data for the training model, while also considering
scalability and efficiency [16; 33].

4.5 The Usage of CP in Client Sampling
Our proposal for a sampling strategy, is to include the CP framework to select specific
clients, which positively contributes to counteract model drift. In the CP framework,
conformal scores are calculated based on a calibration set and an error-rate α, which
are used to determine the quantile q̂. A large quantile q̂ is the result of larger scores,
which encodes a worse relation between X and Y , i.e. the client’s model is bad at
correctly predicting.
The error rate α affects the amount of correct predictions a client should have and
the quantile threshold q̂θ then determines how certain that client should be in its
prediction. Therefore a low error rate and a low quantile threshold are desired. This
infers that the client’s ML model correctly predicts with a high softmax probability
consistently. We propose, that each client trains until it satisfies a quantile threshold
q̂θ, which will be specified in Chapter 5. To ensure that a client does not train
infinitely, the number of LTRs is limited. Subsequently, if a client does not satisfy
the threshold after the maximum number of LTRs, the client is not participating in
aggregation this GTR. After each aggregation all clients are updated with the new
parameters and begin training locally again. This is repeated for a predetermined
number of GTR.
There could be several reasons why a client fails to satisfy the threshold, some of
which are: the dataset, the model architecture, the choice of α, the size of the
calibration set or if the client’s model is underfitted due to lack of data. If none
of the clients satisfy q̂ ≤ q̂θ, the choice of α. q̂θ or the number of clients has to be
reconsidered.
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5. Experimental Setup

In this chapter, our proposed methods to incorporate CP in client selection for FL
are described with specific procedures both client-side and aggregator-side. The
ML model and datasets used to conduct experiments are presented, as well as the
method for distributing data among clients IID vs. non-IID.

5.1 Proposed Method

In Section 4.5, we proposed a method for selecting clients for aggregation. The
entire training process can be clearly explained by separating the training into an
aggregator side and a client said.

Aggregator Side

The objective for the aggregator is simply to aggregate and distribute model param-
eters. It distributes an initial set of parameters to the clients, and after the clients
are done training locally, the parameters of the clients which satisfy q̂ ≤ q̂θ will be
aggregated. The model parameters from the aggregated clients are then averaged
using the FedAvg algorithm and distributed back to all clients.

Client Side

After receiving model parameters from the aggregator, the client starts training on
its local data. The local data is split into a training set (80 %) and calibration set
(20 %). Between each LTR, the calibration set is used to calculate the quantile q̂

based on a predetermined error rate α. If a client satisfies that q̂ ≤ q̂θ, the client
is said to be done training. To assure that a client does not training an infinite
number of LTRs, a maximum number of LTRs of 40 epochs has been determined.
If none of the clients satisfy q̂ ≤ q̂θ, the error rate α or the threshold q̂θ has to be
reconsidered. Throughout the experiments q̂θ = 0.25, meaning based on the error
rate α, we require that ≈ 1− α % of all scores has to be below 0.25. This value has
been chosen empirically.
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5.2 The Datasets
The datasets used in the experiments are the MNIST [31; 30], EMNIST [29; 37] and
CIFAR-10 [28; 23] datasets from the Pytorch librabries.
The MNIST dataset is chosen due to it being widely used as a benchmark tool. To
extend the problem from a 10 class classifier, the EMNIST dataset was chosen. The
CIFAR10 dataset was chosen to see how our proposed model performs with a dataset
different from the characteristics (other classes) of MNIST and EMNIST.

The MNIST dataset contains a large database of handwritten digits between 0 to 9.
The digits are converted to 28 × 28 pixel images and the dataset contains 60, 000
training images and 10, 000 test images [30].
The EMNIST dataset is an extended version of the MNIST dataset and as well as
containing images of handwritten digits 0-9, it contains images of handwritten lower
and upper case letters from the English alphabet. We consider the balanced version of
EMNIST, which 112, 800 training images and 18, 800 test images from 47 classes [37].
The CIFAR-10 dataset contains color images in the 32 × 32 pixel format and it
contains the following 10 classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship and truck. The dataset contains 50, 000 training images, 5, 000 images of
each class and the test set consists of 10, 000 images, 1, 000 of each class [23].

5.3 The ML Model
To conduct the experiments, we use a convolutional neural network (CNN), since they
have been shown to achieve high accuracy for image classification problems [38; 25,
p. 40-42; p. 1]. The architecture of our CNN consists of a mixture of convolutional
layers, pooling and fully-connected layers. The specific architecture is shown in
Figure 5.1. Remark: This architecture considers the MNIST and EMNIST 28 × 28
image inputs. The dimensions of each convolutional layer differs slightly when using
the 32 × 32 image input from the CIFAR10 dataset.
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Figure 5.1: Architecture of our CNN. Output returns softmax probabilities.

This architecture has been chosen due to its high performance accuracy on the chosen
datasets as shown in Section 6.1.

5.3.1 Hyperparameters

The hyperparameters of the CNN are the optimiser, the learning rate, the weight
decay, the batch size and the loss function. The optimiser is the Adam optimiser,
which is an extension of SGD. This optimiser has been chosen due to its fast per-
formance and good results. More about the optimiser is found in [20, p. 10]. The
learning rate is set to 0.001 with a weight decay of 0. These values are the default
values from the Pytorch Adam Optimiser [27]. The batch size is set to 128 and has
been chosen through experimentation.
For training, the cross-entropy (CE) function is used as the loss function. The CE
function measures how close the predicted output f̂(x) is to the true class. The CE
loss function for a specific sample (x, y) is given as

LCE = −
n∑

i=1
yi log

(
f̂(x)yi

)
(5.1)

where f̂(x)yi
is the softmax probability for the i’th class, n is total number of classes

and yi is the true probability for the i’th class. The CE loss function is minimised
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when all predictions are correct. More about CE can be found in [20, p. 64].

5.4 Data Distribution

In this thesis, the effect that the data distribution has on the performance of the ML
model in a FL setting is examined. Two scenarios are considered in the FL setting:
balanced IID data among clients and unbalanced non-IID data among clients.

5.4.1 IID Data

In order to make the data balanced and IID among the clients, each client draws an
equivalent amount of samples from the training set. This means that each client has
the same amount of data (balanced), and it the same distribution. This is done by
Pytorch’s build-in function random_split [32]. Each client then generates a training
set and calibration set. The test set from the dataset is reserved for the aggregator,
and therefore not partitioned among the clients.

5.4.2 Non-IID Data

In order to make the data Non-IID and unbalanced among the K clients, the Dirichlet
mean-parameter has been utilised. Similar methods has been used in [8; 10; 11]. The
partitioning a dataset of n classes is illustrated in Figure 5.2.

Figure 5.2: Visualisation of non-IID partitioning of the dataset.

The data is sorted by class and each class is divided into K groups, K being the
total number of clients. To divide a class, K random numbers a1, a2, . . . , aK are
picked, where each number is divided by their sum a0 = ∑K

i=1 ai. This yields random
fractions, for which each client is assigned a corresponding fraction of the class.
This process is repeated for each class and results in each client having a different
distribution and amount of data.
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Similarly to IID data, the test set from the dataset is reserved for the aggregator,
and therefore not partitioned among the clients.
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6. Results

In this chapter, experiments of three different ML scenarios are conducted. The ML
scenarios that we have tested and compared are:

(1) A centralised setting,

(2) A FL setting, where the data is balanced and IID among the clients,

(3) A FL setting, where the data is unbalanced and Non-IID among the clients.

Scenario (1) and (2) are considered as baselines to compare them with the third
scenario. Scenario (3) is considered the realistic scenario, based on the clients’ non-
IID and unbalanced data distribution [7; 34, p. 2; p. 2]. The main objective is to
evaluate the performance of our proposed client sampling strategy in a FL setting,
as explained in Section 4.5. The experiments are conducted using the setup from
Chapter 5.

6.1 Scenario (1) – Centralised Setting
The first scenario is the centralised ML setting and is considered a standard supervised
ML problem. In this setting, all the data is collected and stored at one location,
and is used to train a single ML model. The training set is separated into a smaller
training set (80 %) and a calibration set (20 %). The calibration set is used post
training to calculate the CP quantile q̂ using the score function s(1), and will be
evaluated at each training training round. The accuracy of the model is calculated
for the training set and test set to evaluate how the model performs on known and
unknown data. The accuracy is calculated as the number of correct predictions (the
class with the highest softmax probability) divided with the length of the entire
training/test set.

Using the datasets MNIST, EMNIST and CIFAR10, the training accuracy and test
accuracy of the CNN are plotted Figure 6.1.
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Figure 6.1: Accuracy for MNIST, EMNIST and CIFAR10 datasets using our proposed CNN.

From Figure 6.1 it is seen that the CNN achieves an accuracy of ≈ 99 % in training
and testing for the MNIST dataset, a training and testing accuracy of ≈ 95 % and
≈ 90 % for the EMNIST dataset, and a training and test accuracy of ≈ 97 % and
≈ 81 % for the CIFAR10 dataset. A reason for the higher accuracy using the MNIST
dataset is the low number of classes and the fact that the images are grey-scaled.
A reduction in accuracy is observed using the EMNIST dataset, which is possibly due
to the increase in classes from 10 to 47. The accuracy using the CIFAR10 dataset
achieves similar results to the EMNIST dataset, although with a reduction in testing
accuracy. This could be a consequence of the CIFAR10 dataset containing a higher
variety of images in the different classes and the fact that it is RGB colored images.
In Figure 6.2 the CNN’s CE loss is plotted for each dataset.

Figure 6.2: CE loss for MNIST, EMNIST and CIFAR10 datasets using the CNN.

Notably, the test CE loss using the EMNIST dataset is higher than using CIFAR10
dataset, although it has a higher accuracy. This could be the result of the CE loss
function being a sum and the EMNIST dataset consisting of more classes than the
CIFAR10 dataset, hence the CE loss is greater. Therefore, we will only evaluate the
accuracy.
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The quantiles for different error rates α were also calculated to give an indication
of which α-values are possible in the centralised setting. The results are shown in
Figures 6.3 and 6.4 for the MNIST dataset, and the EMNIST and CIFAR10 datasets,
respectively.

Figure 6.3: The quantile for different error rates for the MNIST dataset.

Figure 6.4: Left: The quantile for different error rates for the EMNIST dataset. Right: the
quantile for different error rates for the CIFAR10 dataset.

From Figure 6.3, it is possible to achieve a low quantile with an error rate of 0.02,
after a reasonable number of training rounds. These error rates (0.02, 0.05, 0.1) will
be evaluated for scenario (2) and (3) to see if they are achievable in a FL setting.
From Figure 6.4 it is seen that a low quantile is achievable for an error rate of 0.2
and 0.3 for both the EMNIST and CIFAR10 datasets.
The low quantile in Figure 6.3 in combination with a very low α is the result of the
CNN consistently predicting correct. The spike in the quantile using α = 0.02 is
possibly a result of the SGD updating the parameters in the training round. Setting
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6.2. SCENARIO (2) – FL SETTING WITH BALANCED IID DATA

α = 0.01 yielded the quantile q̂ = 1 for all GTRs, hence we determine α = 0.02 as
the lower bound for our CNN.

From Figures 6.4 and 6.1, there is observed to be a relation between the test accuracy
of our model and the value of the quantile q̂. When the model exceeds a test accuracy
of 1− α, the quantile starts decreasing. As an example, when the test accuracy for
EMNIST reaches ≈ 80 %, the quantile for α = 0.2 drops immediately. This means
that not only do we get a high accuracy, but we also predict the true class with a
high softmax probability.

6.2 Scenario (2) – FL setting with Balanced IID
Data

In this scenario, the influence of clients and error rates on the performance of the
aggregator is evaluated. The accuracy of the aggregator is calculated for 5, 10 and
15 clients, with three different error rates for each. The quantile threshold q̂θ is set
to 0.25 and the score function s(1) is used.
In the standard FL method, a random subset of clients participate in aggregation
each GTR, which is denoted as ’Frac’ in Table 6.1. A quarter of the clients participate
in aggregation each GTR. However, since such few clients are considered in this
thesis, we also compare our proposed method with aggregating all clients.
When using our proposed method, clients were allowed up to 40 LTRs, but ceases
training when they have reached a quantile below the threshold. When not using
our proposed method, clients were allowed 20 LTRs.
For each number of clients, the data distribution among the clients is fixed, e.g. for
5 clients, each client have the same local data for all three methods. The results are
presented in Table 6.1, which shows the highest accuracy achieved in 10 GTRs.

From Table 6.1, aggregating all clients each GTR is observed to achieve the highest
accuracy. Our proposed method achieves approximately the same accuracy, while
only choosing a fraction of all clients yields a significantly lower accuracy. In Table
6.1 an ’X’ means that our proposed method fails, which is due to none of the clients
achieving a quantile below the threshold with the chosen error rate. This could be
due to multiple reasons, which include: a lack of LTRs for each client, a lack of data
for each client or the quantile threshold being too strict.
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CHAPTER 6. RESULTS

5 Clients 10 Clients 15 Clients
MN

IS
T

α Accuracy α Accuracy α Accuracy

0.02 99.3 % 0.02 X 0.02 X

0.05 99.5 % 0.05 99.2 % 0.05 99.1 %

0.1 99.2 % 0.1 98.5 % 0.1 98.4 %

All 99.7 % All 99.4 % All 99.6 %

Frac 73.5 % Frac 65.2 % Frac 37.9 %

5 Clients 10 Clients 15 Clients

EM
NI

ST

α Accuracy α Accuracy α Accuracy

0.4 68.7 % 0.4 X 0.4 X

0.5 70.8 % 0.5 X 0.5 X

0.6 63.8 % 0.6 X 0.6 X

All 77.9 % All 29.8 % All 15.0 %

Frac 3.3 % Frac 2.5 % Frac 2.9 %

5 Clients 10 Clients 15 Clients

CI
FA

R1
0

α Accuracy α Accuracy α Accuracy

0.5 68.5 % 0.5 X 0.5 X

0.6 65.0 % 0.6 66.2 % 0.6 X

All 81.4 % All 68.7 % All 44.7 %

frac 21.6 % Frac 12.8 % Frac 17.9 %

Table 6.1: Accuracy for different error rates using IID data.

Choosing all clients for aggregation yields the highest accuracy, which is possibly due
to the IID data of the clients. Since every client is included and the data distribution
is identical, each client’s bias may only contribute an insignificant amount to model
drift. From Table 6.2, our method is shown to also aggregates all clients each GTR.
This means that for IID data, there is no benefit in using our method as compared
to aggregating all clients. Similar tables for EMNIST and CIFAR10 are shown in
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6.3. SCENARIO (3) – FL SETTING WITH UNBALANCED NON-IID DATA

Appendix A.

5 Clients 10 Clients 15 Clients

GTR

α
0.02 0.05 0.1 0.02 0.05 0.1 0.02 0.05 0.1

1 1 5 5 X 10 10 X 14 15

2 3 5 5 X 10 10 X 15 15

3 4 5 5 X 10 10 X 15 15

4 4 5 5 X 10 10 X 15 15

5 5 5 5 X 10 10 X 15 15

6 5 5 5 X 10 10 X 15 15

7 4 5 5 X 10 10 X 15 15

8 5 5 5 X 10 10 X 15 15

9 5 5 5 X 10 10 X 15 15

10 5 5 5 X 10 10 X 15 15

Table 6.2: Number of aggregated clients for MNIST IID data for each GTR.

6.3 Scenario (3) – FL Setting with Unbalanced
Non-IID Data

Similar to Section 6.2, the influence of clients and error rates on the performance
of the aggregator is evaluated. The results are calculated using identical setup
parameters as in Section 6.2, where only the data distribution among clients differs.
Different score functions are also evaluated to see if they have any effect on the
performance of the aggregator. In Table 6.3 a comparison of accuracy for the different
sampling methods for 5, 10 and 15 clients is shown.
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CHAPTER 6. RESULTS

5 Clients 10 Clients 15 Clients
MN

IS
T

α Accuracy α Accuracy α Accuracy

0.02 98.6 % 0.02 95.1 % 0.02 97.4 %

0.05 97.8 % 0.05 95.0 % 0.05 98.1 %

0.1 96.9 % 0.1 95.3 % 0.1 96.6 %

All 90.7 % All 73.9 % All 94.9 %

Frac 11.3 % Frac 11.6 % Frac 12.8 %

5 Clients 10 Clients 15 Clients

EM
NI

ST

α Accuracy α Accuracy α Accuracy

0.3 63.0 % 0.3 48.2 % 0.3 52.5 %

0.4 60.3 % 0.4 66.2 % 0.4 57.5 %

0.5 54.1 % 0.5 53.1 % 0.5 59.8 %

All 28.5 % All 11.4 % All 6.5 %

Frac 6.9 % Frac 7.3 % Frac 3.5 %

5 Clients 10 Clients 15 Clients

CI
FA

R1
0

α Accuracy α Accuracy α Accuracy

0.3 48.8 % 0.3 35.7 % 0.3 25.7 %

0.4 47.2 % 0.4 44.7 % 0.4 58.8 %

0.5 50.7 % 0.5 52.3 % 0.5 53.7 %

All 64.3 % All 50.3 % All 51.8 %

Frac 11.3 % Frac 12.9 % Frac 10.9 %

Table 6.3: Accuracy for different error rates using non-IID data.

From Table 6.3, our proposed method is shown to achieve a higher accuracy when
utilising the MNIST and EMNIST datasets compared to the other methods, and a
similar accuracy to including all clients using the CIFAR10 dataset. Compared to
the results from Table 6.1, non-IID data improves the applicability of our method,
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6.3. SCENARIO (3) – FL SETTING WITH UNBALANCED NON-IID DATA

5 Clients 10 Clients 15 Clients

GTR

α
0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

1 3 5 5 3 6 10 2 2 13

2 4 5 5 3 8 10 3 4 15

3 4 5 5 4 7 10 4 7 15

4 4 5 5 6 8 10 3 8 15

5 4 5 5 7 8 10 5 9 15

6 5 5 5 6 8 10 4 9 15

7 5 5 5 7 6 10 6 9 15

8 5 5 5 7 9 10 7 10 15

9 5 5 5 7 10 10 5 10 15

10 5 5 5 6 10 10 8 10 15

Table 6.4: Number of aggregated clients for EMNIST non-IID data for each GTR.

i.e. no failed aggregations for similar error rates. This is possibly due to some clients
receiving more training data, or that the distribution they have does not include
all classes. The possible reduction in classes reduces the complexity for the specific
clients, i.e. fewer classes to predict.
To gain insight on the accuracy of our method, the number of clients participating
in aggregation for the EMNIST dataset is examined and shown in Table 6.4. Similar
tables for MNIST and CIFAR10 are shown in Appendix A.

From Table 6.4, more clients participate in aggregation when increasing the error
rate. For 10 clients and α = 0.5, all clients participate in every GTR, but yield a
significantly higher accuracy compared to including all clients as shown in Table 6.3.
This is possibly due to our method being allowed up to 40 LTRs, whereas the other
methods only use 20 LTRs. For 10 and 15 clients and α = 0.3, the CIFAR10 dataset
achieves a significantly lower accuracy compared to the other error rates, which is a
result of too few clients included in each GTR. This can also be seen in Table A.4
in Appendix A. The essential part of Table 6.4, is that as the GTRs increases, the
number of aggregated clients increase. This means that the clients which were not
considered for aggregation in earlier GTR, have improved and are participating.
An example of the evolution of the accuracy for the three client selection methods is
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CHAPTER 6. RESULTS

shown in Figure 6.5. From this we see that already in the first few GTR the accuracy
using our proposed method exceeds the two other methods. This tendency is present
in all the experiments with non-IID data. This further supports that choosing the
appropriate clients leads to better results using our proposed CNN.

Figure 6.5: A comparison of the three different client selection methods, where the CP is
for the EMNIST dataset with an error rate on 0.4 and for 15 clients.

6.3.1 Different CP Score Functions

Recall the examples of CP score functions presented in Section 3.2:

s
(1)
i = 1− f̂(Xi)Yi

, (6.1)

s
(2)
i = e−4f̂(Xi)Yi , (6.2)

s
(3)
i = 1− σ(f̂(Xi)Yi

, 20, 10). (6.3)

The impact of the score function is examined in relation to the accuracy of the
aggregator for scenario (3). The results are plotted in Figure 6.6 for the EMNIST
dataset with an error rate α = 0.3, a quantile threshold q̂θ = 0.25 and 10 clients.

From Figure 6.6 it is seen that s(2) achieves the highest accuracy, s(3) achieves the
second highest accuracy and s(1) achieves the lowest accuracy. With this error rate
and quantile threshold, s(1) requires that 70 % of softmax probabilities are higher
than 0.7, s(2) requires that 70 % of softmax probabilities are higher than ≈ 0.35, and
s(3) requires that 70 % of softmax probabilities are higher than ≈ 0.55.
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6.4. EVALUATION OF RESULTS

Figure 6.6: Accuracy plot utilising the different score functions presented in Section 3.2.

Therefore, s(2) is more likely to include clients in aggregation, although they may
become less certain in their predictions, i.e. lower softmax probabilities. Instead of
using different score functions, altering the quantile threshold for s(1) would allow
for more clients to participate in aggregation, which yields similar results. However,
excessively increasing the threshold for clients, results in clients immediately ceasing
training after a few or even the first LTR, and subsequently decreasing the accuracy.
Therefore choosing an appropriate quantile threshold is essential.

6.4 Evaluation of Results

From comparing scenario (1) to scenario (2) and (3), we see that distributing the data
among clients yields a lower accuracy than keeping it centralised. From Scenario (2),
we see that aggregating all clients achieves the highest accuracy, hence our proposed
method is worse. Furthermore due to lack of data in each client, our method fails to
produce results for different error rates for a specific quantile threshold.

In Scenario (3), we see that our proposed method outperforms aggregating all clients
and aggregating a random subset of all clients. We believe that parring each client
with a performance metric (CP quantile) benefits the aggregation process.

Our proposed method is shown to improve all clients each GTR using non-IID data
to the point that previously ignored clients can be considered for aggregation, while
improving the accuracy of the aggregator. Therefore discarding clients that was
previously ignored is not beneficial to the training process.
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From evaluating different score functions, we see that it has the same effect as
choosing a different quantile threshold. We see that increasing the quantile threshold
can increase the accuracy of the aggregator, although too great of an increase yields
a worse accuracy. Optimising the error rate and quantile threshold would likely
significantly increase the accuracy of the aggregator.
In Scenario (3), it should be noted that the accuracy of 5 clients cannot be compared
to that of 10 or 15, due to the distribution of data being generated differently when
adding more clients. However, it is still possible to compare the methods used for
each number of clients, since each client has the same distribution for all three
methods (CP, All, Frac).
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7. Conclusion

In this thesis, client selection methods for FL are examined in relation to their
impact on the aggregator’s accuracy. A method utilising the CP framework has been
proposed, in which a quantile based on the prediction-capabilities of the clients was
calculated. This quantile serves as a threshold for client participation in aggregation.

Our proposed method was compared to selecting all of the clients and a fraction of
the clients for aggregation. The methods where evaluated for three different datasets,
MNIST, EMNIST and CIFAR10 for a different amount of clients and error rates. If
the data is IID among clients, selecting all clients every GTR yielded the highest
accuracy. Furthermore, our proposed method fails due to an insufficient amount of
data at each client, which yields that the quantile from each client fails to reach the
threshold in 40 LTR. However, if the data is non-IID among clients, our proposed
method produced similar or higher accuracy than the other two client selection
methods. Our method was shown to include previously ignored clients in later GTRs,
which is due to the method improving the accuracy of both the aggregator as well as
all the clients. Hence we believe that discarding ignored clients is not beneficial for
the training process of the aggregator.

Tuning the error rate and quantile threshold was concluded to be essential to the
accuracy of the aggregator. The error rate affects the amount of correct predictions
a client should have. The quantile threshold then determines how certain that client
should be in its prediction.

To summarise, our proposed client selection method for non-IID gives a good indi-
cation on when each client should stop their local training, however the resulting
accuracy of the global optimisation problem is greatly depending on the error rate
and quantile threshold in our method.

41



8. Further Research

From subjects and experiments examined in this thesis, we recommend the following
topics for further research.

Adaptive Error Rate α and Quantile Threshold q̂θ

In this thesis, the error rate and quantile threshold have been fixed throughout all
GTRs. However, since the number of clients participating in aggregation each GTR
is of importance, choosing the error rate and quantile threshold adaptively could be
considered. A higher error rate or a higher quantile threshold in the earlier GTRs
would allow for more clients to participate in the selection process. If the error rate
or quantile threshold is lowered for the later GTRs, it would incentivise that clients
should train more to be able to participate in client selection. It would be of interest
to see how this affects the accuracy of the aggregator.

Examination of Participating vs. non-Participating Clients

When the data is non-IID among clients, it would be interesting to examine the
difference between clients which participate in client selection and those that do
not. Whether it is the amount of data or the distribution of data in a client that
determines its participation is of interest.

Scalability

Due to the limited availability of computational power to process large amounts of
data, our experiments cannot resemble the real-world application of FL. Therefore,
the behaviour of our proposed method for larger networks and datasets is of great
interest. Furthermore a larger amount of clients would show the applicability of our
proposed method in a real world setting.

Including CP sets in Selection Process

Conformal prediction is primarily used to create sets of predictive outputs. However,
our usage of CP is limited to the quantile of the calibration scores for each client. An
interesting experiment would be to calculate the prediction set for each client every
GTR, and inspect the relation between prediction set size and aggregated clients.

42



Bibliography

[1] Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction
to conformal prediction and distribution-free uncertainty quantification.
arXiv:2107.07511v6, 2022.

[2] Patrick Billingsley. Probability and Measure. John Wiley & Sons, 1995. ISBN
0-471-00710-2.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006. ISBN 978-0387-31073-2.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004. ISBN 978-0-521-83378-3.

[5] Sklearn Datasets. Sklearn datasets load breast cancer. URL https://scikit
-learn.org/stable/modules/generated/sklearn.datasets.load_breast
_cancer.html.

[6] Dinh C. Nguyen et al. Federated learning for internet of things: A comprehensive
survey. arXiv:2104.07914v1, 2021.

[7] H. Brendan McMahan et al. Communication-efficient learning of deep networks
from decentralized data. arXiv:1602.05629 [cs.LG], 2023.

[8] Mi Luo et al. No fear of heterogeneity: Classifier calibration for federated
learning with non-iid data. arXiv:2106.05001, 2021.

[9] Shashi Raj Pandey et al. Fedtoken: Tokenized incentives for data contribution
in federated learning. arXiv:2209.09775v2, 2022.

[10] Tao Lin et al. Ensemble distillation for robust model fusion in federated learning.
arXiv:2006.07242, 2021.

[11] Tzu-Ming Harry Hsu et al. Measuring the effects of non-identical data distribu-
tion for federated visual classification. arXiv:1909.06335, 2019.

[12] Vladimir Braverman et al. The power of uniform sampling for coresets.
arXiv:2209.01901v2, 2022.

[13] Wenlin Chen et al. Optimal client sampling for federated learning.
arXiv:2010.13723v3, 2022.

43

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html


BIBLIOGRAPHY

[14] Xiang Li et al. On the convergense of fedavg on non-iid data. arXiv:1907.02189v4,
2020.

[15] Yae Jee Cho et al. Client selection in federated learning: Convergence analysis
and power-of-choice selection strategies. arXiv:2010.01243v1, 2020.

[16] Yann Fraboni et al. A general theory for client sampling in federated learning.
arXiv:2107.12211v4, 2022.

[17] Yann Frabonin et al. Clustered sampling: Low-variance and improved rep-
resentativity for clients selection in federated learning. arXiv:2105.05883v2,
2021.

[18] Isaac Gibbs and Emmanuel Candés. Conformal inference for online prediction
with arbitrary distribution shifts. arXiv:2110.07661v2, 2022.

[19] Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep Learning. MIT Press,
2016. ISBN 979-1-097-16044-9.

[20] Bin Cui Jiawei Jiang and Ce Zhang. Distributed Machine Learning and Gradient
Optimization. Springer, 2022. ISBN 978-981-16-3420-8.

[21] Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B.
Gibbons. Federated learning under distributed concept drift. arXiv:2206.00799v2
[cs.LG], 2023.

[22] Pooja Kherwa, Saheel Ahmed, Pranay Berry, Sahil Khurana, Sonali Singh,
Jaydip Sen, Sidra Mehtab, David W. W Cadotte, David W. Anderson, Kalum J.
Ost, Racheal S. Akinbo, Oladunni A. Daramola, Bongs Lainjo, Rajdeep Sen,
and Abhishek Dutta. Machine Learning Algorithms, Models and Applications.
IntechOpen, 2021. ISBN 978-1-83969-486-8.

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar10. URL https:
//www.cs.toronto.edu/~kriz/cifar.html.

[24] Sharon L. Lohr. Sampling: Design and Analysis. Taylor & Francis Group, 2019.
ISBN 978-0-3672-7346-0.

[25] Charles Lu and Jayashree Kalpathy-Cramer. Distribution-free federated learning
with conformal prediction. arXiv:2110.07661, 2022.

[26] Per Pettersson and Sebastian Krumscheid. Adaptive stratified sampling for
non-smooth problems. arXiv:2107.01355, 2021.

44

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


BIBLIOGRAPHY

[27] Pytorch. Adam, . URL https://pytorch.org/docs/stable/generated/to
rch.optim.Adam.html.

[28] Pytorch. Cifar10, . URL https://pytorch.org/vision/stable/generated/
torchvision.datasets.CIFAR10.html.

[29] Pytorch. Emnist, . URL https://pytorch.org/vision/main/generated/to
rchvision.datasets.EMNIST.html.

[30] Pytorch. Yann lecun et al., . URL https://yann.lecun.com/exdb/mnist/.

[31] Pytorch. Mnist, . URL https://pytorch.org/vision/main/generated/to
rchvision.datasets.MNIST.html.

[32] Pytorch. Torch.utils.data, . URL https://pytorch.org/docs/stable/data
.html.

[33] Elsa Rizk, Stefan Vlaski, and Ali H. Sayed. Federated learning under importance
sampling. arXiv:2012.07383, 2020.

[34] Yong Shia, Yuanying Zhang, Yang Xiao, and Lingfeng Niu. Optimization strate-
gies for client drift in federated learning: A review. ScienceDirfect: Procedia
Computer Science vol. 214, 2022.

[35] Niladri Syam and Rajeeve Kaul. Machine Learning and Artifical Intelligence
in Marketing and Sales. Emerald Publishing Limited, 2021. ISBN 978-1-80043-
881-1.

[36] Li Tian, Anit Kumar Sahu, Virginia Smith, and Ameet Talwalkar. Feder-
ated learning: Challenges, methods, and future directions. arXiv:1908.07873v1
[cs.LG], 2019.

[37] Western Sydney University. Emnist. URL https://www.westernsydney.edu.
au/icns/resources/reproducible_research3/publication_support_mat
erials2/emnist.

[38] Bing Xue Ying Bi and Mengjie Zhang. Genetic Programming for Image
Classification. Springer, 2021. ISBN 978-3-030-65927-1.

[39] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. Federated learning with non-iid data. arXiv:1806.00582v2, 2022.

45

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/main/generated/torchvision.datasets.EMNIST.html
https://pytorch.org/vision/main/generated/torchvision.datasets.EMNIST.html
https://yann.lecun.com/exdb/mnist/
https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
https://www.westernsydney.edu.au/icns/resources/reproducible_research3/publication_support_materials2/emnist
https://www.westernsydney.edu.au/icns/resources/reproducible_research3/publication_support_materials2/emnist
https://www.westernsydney.edu.au/icns/resources/reproducible_research3/publication_support_materials2/emnist


Appendices

46





A. Appendix

A.1 Number of Clients Participating in each GTR
for IID and nonIID data

This section includes Tables from Scenario 2 and 3 for the number of aggregated
clients each GTR for different datasets with IID or non-IID data.

5 Clients 10 Clients 15 Clients

GTR

α
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

1 2 5 5 X X X X X X

2 5 5 5 X X X X X X

3 5 5 5 X X X X X X

4 5 5 5 X X X X X X

5 5 5 5 X X X X X X

6 5 5 5 X X X X X X

7 5 5 5 X X X X X X

8 5 5 5 X X X X X X

9 5 5 5 X X X X X X

10 5 5 5 X X X X X X

Table A.1: Number of aggregated clients for EMNIST IID data for each GTR
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A.1. NUMBER OF CLIENTS PARTICIPATING IN EACH GTR FOR IID AND
NONIID DATA

5 Clients 10 Clients 15 Clients

GTR

α
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

1 X 4 5 X X 4 X X X

2 X 5 5 X X 10 X X X

3 X 5 5 X X 10 X X X

4 X 5 5 X X 10 X X X

5 X 5 5 X X 10 X X X

6 X 5 5 X X 10 X X X

7 X 5 5 X X 10 X X X

8 X 5 5 X X 10 X X X

9 X 5 5 X X 10 X X X

10 X 5 5 X X 10 X X X

Table A.2: Number of aggregated clients for CIFAR10 IID data for each GTR.
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5 Clients 10 Clients 15 Clients

GTR

α
0.02 0.05 0.1 0.02 0.05 0.1 0.02 0.05 0.1

1 5 5 5 10 10 10 6 15 15

2 5 5 5 10 10 10 8 15 15

3 5 5 5 10 10 10 10 15 15

4 5 5 5 10 10 10 11 15 15

5 5 5 5 10 10 10 13 15 15

6 5 5 5 10 10 10 14 15 15

7 5 5 5 10 10 10 14 15 15

8 5 5 5 10 10 10 14 15 15

9 5 5 5 10 10 10 15 15 15

10 5 5 5 10 10 10 14 15 15

Table A.3: Number of aggregated clients for MNIST non-IID data for each GTR.
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A.1. NUMBER OF CLIENTS PARTICIPATING IN EACH GTR FOR IID AND
NONIID DATA

5 Clients 10 Clients 15 Clients

GTR

α
0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

1 3 4 5 2 6 9 3 7 13

2 4 5 5 2 8 10 3 11 15

3 4 5 5 3 9 10 3 12 15

4 4 5 5 3 9 10 3 14 15

5 4 5 5 2 10 10 3 14 15

6 4 5 5 3 10 10 3 14 15

7 4 5 5 3 10 10 3 14 15

8 4 5 5 2 10 10 3 15 15

9 5 5 5 3 10 10 3 15 15

10 4 5 5 3 10 10 3 15 15

Table A.4: Number of aggregated clients for CIFAR10 non-IID data for each GTR.
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