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Abstract:

This master’s thesis is presenting a novel ap-
plication of the deep learning model Tran-
sUNet for segmenting sea ice into three
charts. Sea Ice Concentration, Stage of De-
velopment, and floe sizes being the output
charts of the model. Sea ice plays a criti-
cal role in global climate systems, and it is
therefore beneficial to have precise measure-
ments of the sea ice extent. Additionally,
the shipping industry will benefit from hav-
ing near real-time updates on the sea ice ex-
tent, as it will make navigation in the arctic
regions more predictable. To address these
challenges, TransUNet, a CNN-Transformer
hybrid offering state-of-the-art segmentation
due to its local and global awareness, is de-
ployed in the context of sea ice classification.
The developed model is selected by training
different TransUNets that differs from each
other by having changes in the configura-
tion of the transformer. It is found that the
number of layers and the patch size has a
large impact on performance, and thus the
best performing model is selected for fur-
ther training(R2 score is used for SIC and
F1 score is used for SOD and FLOE). The
training was ended after 120 epochs, and the
combined validation score topped at 92.15%.
The results from testing show that the model
performs in line with state-of-the-art with a
combined score of 86.22%. Additionally, an
R2 score of 86.91% was achieved on SIC, see-
ing an improvement of 0.57% compared to
previous work. This thesis proves the via-
bility of deploying TransUNets as a semantic
segmentation method in remote sensing for
predicting sea ice charts.
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Chapter 1

Introduction

Sea ice is frozen ocean water, which grows, melts, and forms in the ocean of the arctic regions.
Both local and global climate is affected by the sea ice. With fluctuating temperatures, sea ice
extent also varies and can be categorised from multi-year ice to young first-year ice.[1] Sea ice
is a crucial component for Earth’s ability to regulate it’s climate by reflecting sunlight back into
space and thereby act as an insulator between the ocean and atmosphere.
The arctic sea ice is affected by several weather conditions. Given an imbalance in these weather
conditions from year to year, can result in an increase or decrease in natural occurring phe-
nomenons, such as fluctuations in the area occupied by sea ice. This phenomenon can be
decomposed into trend, seasonality, cyclycity and noise. A change to the extent of sea ice can
affect humans, ecosystems and wildlife.[2]

Several vulnerable species are depending on the sea ice as they use the ice floes for resting
while breeding and hunting. Furthermore, algae and phytoplankton will develop under the
floes, and thus the lowest level of the food chain is decreased if the sea ice extent is decreased.
This will create a domino effect through the food chain and thus decrease the higher hierar-
chies.[3]

The negative consequences can be critical for the species living in the arctic, but the positive
consequences of a receding ice edge are that new shipping routes emerges. Median prediction
is that by 2034 there will be an ice free Arctic route in September, and thus a shipping route
over Asia and Europe will emerge. This will decrease the length of the shipping routes from
China to Europe by more than 7000 km.[4]

In order to help scientists and policymakers to develop strategies for protecting wildlife as well
as guiding ships through the arctic ocean, it is important to monitor and classify the sea ice
extent.
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Initial Problem Formulation

How can satellite data be used to classify total sea ice concentration (SIC), stage of development (SOD)
and floe size (FLOE)?
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Chapter 2

Problem Analysis

The following sections seeks to analyse and answer the initial problem formulation by firstly
getting an understanding of what arctic sea ice is and what terminology is used to classify sea
ice development. After having an understanding of how sea ice is classified, deep learning-
based semantic segmentation will be researched, which will give an overview of the state-of-
the-art with-in the topic, as well as an analysis of the strengths and weaknesses of the different
use cases where the models have been deployed. Lastly, the dataset for the AutoIce challenge
will be analysed in order to understand the strengths and weaknesses of using the dataset.

2.1 Arctic Sea Ice

Cavalieri and Parkinson[5] have looked at fluctuations and trends in Arctic sea ice from 1979 to
2010 utilizing passive microwave data from satellites. Both the extent and the area of the Arctic
sea ice have decreased, according to the research, with the multiyear ice component (MYI)
indicating a bigger decline than the first-year ice component (FYI). According to the authors,
the average ice area declined by about 4.5% per decade.

The greatest sea ice losses occurred in the summer and fall, with September seeing the
worst losses. According to the research, there is substantial interannual variation in sea ice
area, with some years indicating increases. The study also uncovers regional differences in sea
ice patterns, with the Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas experiencing the
most marked decreases. These areas can be seen in Figure 2.1
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2.2. Sea Ice Charts

Figure 2.1: Location map with different regions highlighted. [5]

Cavalieri and Parkinson’s research highlights the significant changes in Arctic sea ice over
the 32-year period and emphasizes the importance of monitoring and comprehending the pro-
cesses underlying these changes in order to more accurately predict future trends and potential
effects on the environment, ecosystems, and human activities in the area.
The importance of having sea ice is the sea ice-albedo feedback mechanism, which is when
sunlight is reflected back into space by the ice and snow. This means that the energy of the sun
rays is not absorbed in the water and thus does not increase the ocean temperature as much as
if the ice had not been there. [6]

However, a positive effect of the decreasing sea ice extent is that new shipping routes emerges.
The time and distance of the southern sea route going from China through the Suez canal to
Europe can be reduced by one third when the northern sea route will open. This will result in
reduced shipping cost and faster delivery times. [7]
In order to monitor when the sea route opens as well as helping ships navigating in the arctic
ocean, maps of the sea ice has to be made in near real time, which leads to the next section.

2.2 Sea Ice Charts

Since 1933, the Arctic and Antarctic Research Institute (AARI) has produced sea ice charts of
the Northern Sea Route (NSR) as it was a goal to develop the NSR as a regularly operating
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2.2. Sea Ice Charts

transport system.[8] The sea ice charts were originally hand-written, but the process of mak-
ing the ice charts has over time been digitized. Throughout the years, several methods for
obtaining the data for producing the sea ice charts has been used, as seen in Figure 2.2. In the
beginning of the time series, the central arctic regions were not covered, as well as there were
only recordings of the summer months.

Figure 2.2: A timeline of different observation methods for tracking sea ice.

2.2.1 Sea Ice Classification

The sea ice is currently being classified in three different charts, as seen in Figure 2.3; Sea Ice
Concentration (SIC), Stage of Development (SOD) and form of ice (FLOE).[9]

The chart parameters for sea ice is as follows:

• "SIC": The total SIC is the area’s percentage of sea ice to open water, SIC is divided into
11 discrete 10 percent-bin classes with percentages ranging from 0% (open water) to 100%
(fully covered sea ice).

• "SOD": The SOD can also be thought of as the type of sea ice, which serves as a represen-
tation for the sea ice’s thickness, or how simple it is to cross. The parameter has 5 classes,
0 being open-water. There are five categories of ice are: new ice, young ice, thin first-year
ice, thick first-year ice, and multi-year ice.

• "FLOE": The floe size has six parameters that describe how big or continuous the sea ice
chunks are: Open water is represented by 0, cake ice by 1, small floe by 2, medium floe
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2.2. Sea Ice Charts

by 3, big floe by 4, vast floe by 5, and bergs by 6, which are different types of icebergs and
glacier ice.

Figure 2.3: Ground truths of SIC, SOD, and FLOE.

2.2.2 Remote Sensing

As stated above, satellite data has been used since 1966, of which the Advanced Microwave
Scanning Radiometer (AMSR) and Synthetic Aperture Radar (SAR) are of interest, as AMSR
and SAR are the sensors used for remote sensing of sea ice concentration.[10]

Before going in depth with the two sensor types and their data, it is beneficial to first delve into
the electromagnetic spectrum and electromagnetic radiation and its uses.

Electromagnetic Radiation

The continuous range of wavelengths known as the electromagnetic spectrum include a va-
riety of electromagnetic waves, as seen in Figure 2.4.[11] Depending on the wavelength and
frequency of the waves, the EM spectrum is often divided into portions, each of which has
distinct characteristics and uses. [12]
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2.2. Sea Ice Charts

Figure 2.4: The electromagnetic spectrum visualized.[13]

Electromagnetic radiation is the term used to describe the emission and propagation of
energy in the form of electromagnetic waves. This transfer of energy occurs when electrons,
which are electrically charged particles, oscillate or accelerate.[14] The uses of radiation is de-
pending on the radiation’s strength and frequency.

Microwave radiation is a region of the electromagnetic spectrum that is often defined by wave-
lengths between 1 millimeter and 1 meter and frequencies between 300 MHz and 300 GHz,
which makes it possible to "see through" the clouds, as the longer wavelengths of microwaves
can penetrate through cloud cover. [15] [16] Microwave remote sensing is the practice of using
microwave radiation to gather information about the Earth’s surface and atmosphere. Mi-
crowave remote sensing is separated into passive and active microwave remote sensing, this
difference can be seen in Figure 2.5. [17]
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2.2. Sea Ice Charts

Active  Sensor

Passive  Sensor

Flight path

Figure 2.5: Figure showing the difference between active and passive radar.

The practice of detecting naturally existing microwave radiation from the Earth’s surface
and atmosphere is known as passive microwave remote sensing. [16] This radiation can provide
insight into information on a number of geophysical factors, such as sea surface temperature,
and atmospheric water vapor content. The Earth’s microwave radiation is continually observed
by passive microwave sensors, which are carried onboard satellites, such as GCOM-W. [18]

On the other hand, active microwave remote sensing involves emitting microwaves towards
the Earth’s surface and then observing the backscattered signals, using radars.[19] This makes
it possible to identify characteristics such as different snow cover products and surface rough-
ness. Active microwave remote sensing devices like radars provide high-resolution data in
most situation, and radar remote sensing instrument consists of both a transmitter and a re-
ceiver of energy at the wavelength of interest, such as the Sentinel-1.[20][21] As a result, radars
are excellent for keeping track of dynamic processes and surface characteristics.

Advanced Microwave Scanning Radiometer

The passive microwave instrument, developed by Japan Aerospace Exploration Agency (JAXA),
was launched in 2012 and is a part of the Global Change Observation Mission-Water (GCOM-
W) satellite mission. The GCOM-W mission is used to capture observations of a range of water
cycles such as precipitation, sea ice concentration, soil moisture and sea surface temperature,
and was developed in order to give scientists an improved knowledge of water cycles and cli-
mate change.[22]
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2.2. Sea Ice Charts

The AMSR2 measures properties of the Earth’s surface and atmosphere which is captured
by measuring microwave radiation from 7 frequency bands betweeen 6.9 to 89 GHz, of which
both horizontal and vertical polarization is recorded.[23] AMSR2 has a Spatial resolution that
is dependant on the frequency which are:

• 6.925GHz (35kmx61km)

• 7.3GHz (35kmx61km)

• 10.65GHz (34kmx41km)

• 18.7GHz (14kmx22km)

• 23.8GHz (15kmx26km)

• 36.5GHz (7kmx12km)

• 89.0GHz (3kmx5km)

The AMSR2 channels gives the brightness temperature, which is measured in the unit
Wm�2sr�1Hz�1, which is watt per square metre per steradian per hertz. [24][25]

Brightness temperature is used as a proxy for the intensity of the microwave radiation, in the
context of remote sensing, as brightness temperature is usaually measured in kelvin. However,
in the microwave spectrum the two are closely related as seen in the equations 2.1 to 2.3.

In =
2hn3

c2
1

e
hn
kT � 1

(2.1)

Tb =
hn

k
ln�1

✓
1 +

2hn3

Inc2

◆
(2.2)

When hv << kT, Rayleigh-Jeans approximation can be used, as can be seen in Figure 2.6,
and thus Tb can be written as

Tb =
Inc2

2kn2 (2.3)

where, h is Planck’s constant, v is the frequency of interest, c is the speed of light, k is
the Boltzman constant, T is the temperature in kelvin, Iv is the intensity of radiation for the
frequency of interest, and Tb is the brightness temperature.
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2.2. Sea Ice Charts

Figure 2.6: Planck’s law and Rayleigh-Jeans approximation in the relevant frequencies. The red vertical lines shows
the interval from 6.9 GHz to 89 GHz, as these are within the range of the AMSR2 data.

Synthetic Aperture Radar

Synthetic Aperature Radar (SAR) is a technique used in remote sensing that utilizes radar to
capture images of the Earth’s surface. SAR works by transmitting a microwave beam from a
satellite or airplane and then measure the backscatter signals received from the ground. If the
signal is weak, meaning the sensor is not receiving much backscatter, the surface is smooth,
and the stronger the signal is the rougher the surface is. These signals can then be processed
and create a high-resolution image of the Earth’s surface. [26]

The method artificially extents the antenna aperture by capturing the backscatter as the satelitte
moves along the flight path, which results in a high-resolution image. This is due to the sensor
capturing several backscattring signals from the same location from different positions, which
stitched together increases the resolution of the image.[26][27]

There are different modes for SAR, common modes are spotlight, Extra Wide Swath Mode,
and Stripmap. Spotlight mode has the radar beam fixed on a area and then tilting the beam
as the satellite moves along the flight path, which results in smaller coverage, but higher res-
olution. Extra Wide Swath Mode and Stripmap on the other hand, covers a much larger area,
where the major difference between the two is that Extra Wide Swath Mode allows the satellite
to cover a larger area compared to Stripmap, by electronically steering the radar antenna to
capture multiple sub-swaths in a series of bursts. The data is then combined to create an extra
wide image of the Earth’s surface. [28] Lastly, Stripmap is the conventional SAR mode which
has the radar antenna fixed to receive the backscatter from the narrow swath as the satellite
moves along the flight path.
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2.2. Sea Ice Charts

Table 2.1: Pixel spacing of Extra Wide Swath Mode and Stripmap Mode in ground range distance.[29]

Mode
Pixel spacing
Range Azimuth

Full resolution Level-1 GRD
Stripmap 3.5m 3.5m
High resolution Level-1 GRD
Stripmap 10m 10m
Extra Wide Swath 25m 25m
Medium resolution Level-1 GRD
Stripmap 40m 40m
Extra Wide Swath 40m 40m

The greatest advantage of using Extra Wide Swath mode over Stripmap is that it covers a
larger area, which is beneficial for monitoring natural phenomena happening at a large scale.
In Table 2.1, it can be seen that there is a trade-off between coverage and Pixel Spacing. Pixel
Spacing is the distance between adjacent pixels in an image measured in metres in ground
range distance for GRD products.[29]

The satellite mission, Sentinel-1, launched by the European Space Agency (ESA) is a part of the
Copernicus Programme for Earth observation. The mission features two satellites, Sentinel-1A
and Sentinel-1B, that are utilizing C-band SAR instruments which are designed for monitoring
various land and ocean phenomenas, such as land use changes, agriculture, forestry, and ma-
rine environment monitoring.[20]

The Sentinel-1 satellites can operate in four different modes, as seen in Figure 2.7, Stripmap,
Interferometric Wide Swath, Extra Wide Swath, and Wave[30]. As seen in Table 2.1, these
modes provide trade-offs between pixel spacing and coverage, which allows versatile usage for
different applications. Interferometric Wide Swath and Extra Wide Swath are both based on
TOPSAR, which combines sub-swaths, and lastly, Wave is a spotlight mode. [20][31]
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2.3. Deep Learning-Based Semantic Segmentation

Figure 2.7: The acquisition modes of Sentinel-1 satellite. [32]

2.3 Deep Learning-Based Semantic Segmentation

Fully Convolutional Networks (FCN), seen in Figure 2.8, were introduced by Long et al.[33],
and was the first deep learning architecture that could produce dense pixel-wise predictions
for semantic segmentation. FCN differs from a conventional CNN by not flattening the data
before fully connected layers, and instead have convolutional layers, which allows the output
to be the same size as the original input image. The network was trained on annotated images
to predict the class of each pixel, allowing for accurate semantic segmentation, and achieved
state of the art performance on the PASCAL dataset.
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2.3. Deep Learning-Based Semantic Segmentation

Figure 2.8: The model architecture of FCNs.[33]

SegNet, seen in Figure 2.9, was proposed by Badrinarayanan et al. [34] and introduced
the encoder-decoder architecture for semantic segmentation. The encoder part of the network
performs feature extraction, much like a regular backbone of a CNN. However, the decoder part
upsamples the feature maps and the final output is a pixel-wise prediction. SegNet uses max-
pooling in the backbone, and have a corresponding number of upsampling steps, to maintain
the spatial information in the input image.

Figure 2.9: The model architecture of SegNet. [34]

The following models will only be described briefly in this section, as they will be further
explained in chapter 3.

UNet introduced by Ronneberger et al.[35] build ontop of the SegNet, by maintaining the
encoder-decoder architecture, but introducing skip connections by appending a copy of the
feature maps from the encoder layers to the decoder layers. This allows for enhancing the seg-
mentation performance and keep the spatial information.

Vision Transformers (ViTs) were enhanced by Dosovitskiy et al.[36], ViTs are a type of trans-
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2.4. Semantic Segmentation for Sea Ice

former network, which are widely used in Natural Language Processing, but has been adopted
to image classification. Transformers have been tried to replace the CNN backbone of of al-
ready existing encoder-decoder architectures for semantic segmentation. The transformer en-
coder produces a set of features that can be used for pixel-wise prediction using a multi layer
perceptron.

TransUNet presented by Chen et al.[37] and is an example of a U-Net architecture, where
the CNN backbone has been replaced by a CNN-Transformer Hybrid. TransUNet has achieved
state-of-the-art performance on the datasets Synapse multi-organ segmentation dataset and Au-
tomated cardiac diagnosis challenge. A key adjustment compared to the original UNet is that
the receptive field is enlarged, allowing the TransUNet to extract long-range features as well,
which improves the accuracy performance in applications where such features are present.

2.4 Semantic Segmentation for Sea Ice

AI4SeaIce is a continuous project by DMI[38], which develops models for classifying sea ice
using remote sensing data. The AI4SeaIce model uses a U-Net architecture with skip connec-
tions to capture both local and global information in SAR imagery, which is critical for accurate
sea ice concentration charting. The AI4SeaIce model is a continuation of their work on fusing
SAR imagery from sential-1 and AMSR2 data.[10] Their latest work involves using a UNet with
[16, 32, 64, 64] filters for their layers in the model. Additionally, data augmentation has been
used, to create more variation in the data, as well as batch normalization layers to improve
generalization.
The paper demonstrates how sea ice concentration can be classified using remote sensing data.
The AI4SeaIce model classifies sea ice concentration using a scale from 0 to 100% with 10 step
increments of 10%. The ground truths are provided by sea ice chart form DMI. R2-score is used
to evaluate the results, as R2-score does not penalize 10% misclassifications as much as a 100%
misclassifications, these give an R2-score on test data between 69.61% to 86.34%. Additionally,
they investigate several parameters for finetuning.

Another model was introduced by Zhang et. al in 2022[39], which was trained to classify
the stage of development into 4 classes using the SAR images HV-polarization,VV-polarization,
and double-polarization. The test accuracy is found from three scenes, and get accuracies of
95.37%, 95.66%, and 95.85%.

A model trained on the same dataset as AI4SeaIce, called E-MPSPNet[40], seeks to classify
sea ice concentration < 1/10 as Open Water, ice concentration 1–3/10 as Very Open Drift Ice,
sea ice concentration 4–6/10 as Open Drift Ice, and concentration of 7–8/10 as Close Drift Ice.
The proposed model in the paper achieved an accuracy of 94.2%, F-score of 0.930, and MIoU
of 0.892.
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2.5. Dataset for Autoice Challenge

2.5 Dataset for Autoice Challenge

The AI4Arctic Sea Ice Challenge Dataset[9] is a gathering of SAR, AMSR2, ERA5. SAR, seen in
Figure 2.11, and AMSR, seen in Figure 2.12, has already been investigated, and will therefore
not be described in this section. ERA5, seen in Figure 2.10 is a dataset consisting of global
atmospheric reanalysis created by the European Centre for Medium-Range Weather Forecasts
(ECMWF) and is providing environmental variables. ERA5 features various variables such as
air temperature, skin temperature, wind speed and direction, precipitation, and humidity. The
ERA5 dataset is covering the entirety of Earth’s surface, with a resolution of 0.25 degrees ( 31
km).

Figure 2.10: Environmental variables.

Figure 2.11: SAR imagery
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2.5. Dataset for Autoice Challenge

Figure 2.12: AMSR2 channels.

The spatial resolution is 400 square kilometres and originally the SAR images are 10000x10000
pixels, but is downsampled to 5000x5000 pixels. AMSR2 is given in a lower resolution, to com-
pensate for the coarser resolution from AMSR2, the data is resampled to every 50x50 pixel of
the corresponding SAR pixel. The same applies to the ERA5 data, which has been resampled
in the same manner. The AMSR2 data is already contained in the netCDF files, and there-
fore retreived along the SAR images. However, the ERA5 data are gathered with the smallest
difference in time to the data from sentinel-1.

The seasonal variation in number of samples taken at each month is seen in Figure 2.13, and
shows that there are more samples from August through October than the rest of the months.
This can cause problems when generalising the model to the rest of the year, as the sea ice
extent is generally lower in these months compared to the rest of the year.
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2.5. Dataset for Autoice Challenge

Figure 2.13: Number of samples from different months.
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Chapter 3

Methods

This section seeks to investigate the method chosen for classifying sea ice, by describing the
components of the latest advances in semantic segmentation. Firstly, by describing the overall
architecture of TransUNet, as well as the reasoning for implementing the model for classifying
sea ice. Then the section transition into decomposing the model into the key elements of the
TransUNet architecture, which are the UNet and Vision Transformer.

3.1 TransUNet

TransUNet is as stated in section 2.3, a novel model for image segmentation, which combines
the benefits from a UNet and Vision Transformers. The CNN-Transformer Hybrid, seen in
Figure 3.1, integrates the benefits of a UNet to extract the short-range relations in an image and
the global attention of a Vision transformer to extract the long-range relations. [37]

Figure 3.1: The architecture of the TransUNet model. [37]

UNet is a symmetric U-shaped encoder-decoder network, thereby the name, which includes
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3.1. TransUNet

skip-connections in order to enhance the detail of the segmented image output. Due to the
localised feature extraction of convolutional operations of the CNNs, UNets typically sees chal-
lenges with modelling the long-range relations in an image.

On the other hand, transformers rely on attention mechanisms, which allows it to extract
global contextual information of the image. This feature can be an advantage in some domains,
where the context of the target is important, such as Natural Language Processing. In image
segmentation the design of transformers, which solely models global context and treats the
input as 1D sequences results in low resolution features, and thereby lacks the ability to extract
detailed local information. This limits the transformers to tasks that does not need precise
spatial localisation.

TransUNet addresses the weaknesses of both models by combining them to make a hybrid
model, that takes the benefits from both of them such that it can segment based on global
context encoded by the transformer and local features extracted by the CNNs. The architecture
consists of a UNet architecture where the encoder is consisting of CNN layers with maxpooling
and the final layer is a Vision Transformer. The decoder upsamples the encoded features and
for each layer the corresponding feature map from the CNN encoder is concatenated to get the
skip-connections.

3.1.1 UNet

UNet, seen in Figure 3.2, is a CNN architecture designed for biomedical image segmentation,
and was first introduced in the paper "UNet: Convolutional Networks for Biomedical Image
Segmentation" by Ronneberger et al. in 2015. The name "UNet" originates from the shape of
the model. The original UNet model uses the following number of feature channels [64, 128,
256, 512, 1024].[35]
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3.1. TransUNet

Figure 3.2: The architecture of the original UNet model. [35]

The UNet consists of the following components:

1. Encoder (Contracting Path)
The first part of a UNet consists of an encoder part that follows the structure of a typical

CNN. It has a repetitive pattern of two 3x3 unpadded convolutions followed by a rectified lin-
ear unit (ReLU) and a 2x2 max pooling operation with stride two. The max pooling causes the
input channels/feature maps to be downsampled in each layer, and thus capture context in the
image. As the network becomes deeper, the number of feature maps are doubled after each
max pooling operation.

2. Decoder (Expanding Path)
The second part of the UNet is the decoder, which is localizing the segments in the image.

The decoder follows the same structure as the encoder in a reverse manner, meaning that the
decoder consists of upsampling-step that first upsamples the feature maps and a 2x2 convo-
lution that halves the number of feature maps. This is followed by a concatenation of feature
channels from the corresponding encoder layer. The upsampling is followed by two 3x3 convo-
lutions, where the first halves the feature channels and the second maintains the same amount
of channels, each followed a ReLU.

3. Skip Connections
The UNet is able to segment based on both short-range and to some extent long-range fea-

tures. This is due to the skip connections, which was the novelty at the time of publication
of the paper. The presence of skip connections means, that that the output of each encoder
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layer is connected and concatenated to the corresponding layer in the decoder. This allows
the decoder to obtain information from earlier layers in the encoder, which would otherwise
become missing, and as thus help reconstruct the spatial information that was lost during the
downsampling steps in the encoder.

4. Output Layer
The output layer of the UNet is a 1x1 convolution that that maps the feature maps to the

number of classes that is being segmented.

3.1.2 Vision Transformer

Vision Transformer (ViT)[36], seen in Figure 3.3, was a novel approach to image classification
at the time of publishing the paper, which adapts the Transformer architecture normally used
for natural language processing, and applies the concept to images.

Figure 3.3: The architecture of the original ViT model.

The ViT consists of the following components:

1. Patch Embedding
The first thing that occurs in the ViT is that the image in divided into patches of fixed sizes.

Afterwards, each patch is flattened into 1D vectors of size P. As an example, an RGB image
divided into 16x16 patches will result in a (N, P) matrix where N is the number of patches and
P = 16 · 16 · 3, as each color channel is treated individually.

The flattened patches are all transformed into a D dimensional vector by appliyng a linear
projection. This is done by multipling the flattened patches with a trainable embedding tensor
of shape (P2 · channels, D). The tensor will learn to project each flattened patch to dimension
D linearly. This results in N embedded patches of shape (1, D).
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3. Positional Encoding To retain the spatial information, the position of the patches are en-
coded using positional encoding. The positional encoding tensor is added to the patch embed-
dings, which learns 1D positional information for the patches.

4. Transformer Encoder
The patch embeddings, with positional encodings, Z0, is the first input to the L stack of

transformer encoders, where L is the number of transformer encoder layers. Each layer takes
an input represented as (N + 1, D), and the output is of the same shape. The transformer
encoder is made of layers of blocks, which consists of a multi-head attention mechanism and a
multi layer perceptron, each leaded by a normalization.

4.a Self-Attention Mechanism
The importance of different patches are weighted in the self -attention mechanism when

the individual patches are being processed. For each patch, the patch’s compatibility with
the other patches is determined by transforming the patch embeddings into three spaces; the
"query" space, Q, the "key" space, K, and the "value" space, V, by applying different linear
transformations.

The query space is a set of query vectors, one for each patch. The query vectors determine
the compatibility of each patch, with respect the patch which is currently being processed. The
query vectors are used to score the relevance or compatibility of each input with respect to the
input being processed.

The key space is a set of key vectors, one for each patch. The key vectors are used together
with the query vectors to calculate an attention score, in order to determine the relevance of
the patch being processed.

The value space is a set of value vectors, one for each patch. The value vectors are a repre-
sentation of the actual patches’ content. The model uses the calculated attention scores to get
a weighted sum of the value vectors, which gives more importance to the value vectors with
high attention scores. This weighted sum is the output of the attention mechanism.

If WQ, WK, and WV denotes the weight matrices for these transformations, the transformed
vectors are computed as Q = XPE · WQ, K = XPE · WK, and V = XPE · WV, where XPE are the
patch embeddings. Then the attention score, A is computed by A = so f tmax(Q · KT/sqrt(D)).
The output, O, of the self-attention mechanism is the weighted sum for each patch, calculated
as O = A · V.

4.b Multi-Head Self-Attention
In the paper, a multi-head self attention mechanism is used, which differs from the regular

self attention mechanism by stacking the self attention mechanisms. The weighted sum for
each head is then concatenated, and the weighted sum for each patch is computed by:
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For each head:

Qh = XPE ⇤ WQh (3.1)
Kh = XPE ⇤ WKh (3.2)
Vh = XPE ⇤ WVh (3.3)

Ah = so f tmax(Qh ⇤ KT
h /sqrt(D)) (3.4)

Oh = Ah ⇤ Vh (3.5)

Concatenate all Oh along the last dimension:

Oconcat = concat(O1, ..., OH) (3.6)

Final output:

O = Oconcat ⇤ WO (3.7)

5. Classification Head
The output from the transformer encoder is a sequence that represents the patches, and can

be viewed as a form of [cls] token, and is used as a global image representation. This sequence
of patch representations is used to compute the output class probabilities by passing it through
a multi layer perceptron.

Extra step for TransUNet: Reshape
In order to make the transformer compatible with the TransUNet, an extra step is intro-

duced, which reshapes the (N, D)-dimensional classification output into a (D, H/16, W/16)-
dimensional feature map.

3.2 Implementation

The model developed for classifying sea ice, seen in Figure 3.4, has several changes. Most
notable is the tiling which is done due to limitations in compute power. Additionally, the num-
ber of feature channels have been changed to [16, 32, 64, 128] due to two reasons; firstly, the
proposed UNet from AI4Arctic has a reduced number of feature channels in each layer and
achieves a good performance. Secondly, due to compute power as well, it was heuristically de-
termined that the used number of feature channels were a good trade-off between the model’s
accuracy and the computational cost.
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Figure 3.4: The architecture of the TransUNet developed for classifying sea ice.

A summary of the model can be found in Appendix A, where the input shape is set to [24,
512, 512], as this is the patch size used for training.

3.2.1 Tiling, Padding, and Stitching

As the segmentation done on all the data during inference is computationally heavy, the input
is cropped into smaller tiles of size [24, 512, 512]. This approach has a drawback, as the input
size is not necessarily divisible by 512, which means the last tile in each column and row is not
of size [24, 512, 512] but smaller, and thus causes problems in the transformer. To overcome this
issue the tiles that are not of size [24, 512, 512] is padded before the transformer encoder. The
reason for not padding it before the convolution encoders is because the ratio between padding
and real data is smaller after the convolutions and thus the features will not be based on the
padding as much as if the ratio had been larger. The last step of the model during inference is
to stitch the tiles together. This approach can leave artefacts in the segmentation output, such
as misclassifications which can manifest as straight lines.
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Chapter 4

Training and Testing

4.1 Training

A Macbook pro with an M1-chip and 8GB ram has been used for training the implemented
model. The model selection was done on a 60GB ram cloud CPU, provided by DMI. However,
due to the AI4SeaIce competition coming to an end, the access to the cloud CPU expired. This
means, that the models in the model selection do not utilize the tiling and stitching which is
implemented in the final model, but due to time limitations the model selection process was
not possible to recreate with the updated model.

4.1.1 Limitations

Due to limitations in compute power, the data is first split into tiles in order to process a
smaller patch at a time, and then after the semantic segmentation the outputs are stitched back
together. This will make the receptive field smaller and thus there is a possibility the model is
less accurate.
Due to time constraints there is a limitation to the different configurations of the transformer
in the model that can be tested, before selecting the best option.

4.1.2 Train Options

Dataset Split

The dataset contains 512 samples, these are then spilt into subsets for training, validation and
testing and the ration is seen in Table 4.1. The subsets are randomly selected, but a seed is used
in order to have the dataset be divided into the same subsets every time a new model is being
trained.
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Table 4.1: The dataset split.

Dataset split
Train Validation Test
462 30 20

In Figure 4.1, the number of samples for each month for the validation and testing subset can
be seen. The split is not even and the uneven split was first discovered late in the project, which
is why the spilt was kept as it is. The uneven split can potentially create bias in the model and
will not generalise as well as if the split had been more even.

Figure 4.1: The months the samples for validation and testing is taken from.

Hyper Parameters

The hyper parameters have been heuristically chosen to be the ones seen in Table 4.2, as these
were found to be a good trade-off between training time and convergence rate of the training
loss.
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Table 4.2: Hyper parameters for training.

Hyper Parameters
Batch size Patch size Learning rate Epochs Epoch length

24 512

Epoch lr

120 100
1-39 0.001
40-64 0.0001
65-69 0.00001
70-120 0.0001

4.1.3 Optimizer

For optimization of the loss function the Adam optimizer is used, which is an algorithm for
stochastic gradient descent-based optimization. For the learning rate a manual form of a sched-
uled learner is being used, as can be seen in Table 4.2.

4.1.4 Evaluation Metrics

Training

Cross Entropy Loss
During training, cross entropy loss[41] is being used as the loss function for updating weights
and biases. The input has to be of size (minibatch, C, d1, d2, ..., dK), and the loss function is de-
fined as:

`(x, y) = L = {l1, ..., lN}T, ln = �
C

Â
c=1

wc
exp(xn,c)

ÂC
i=1 exp(xn,i)

yn,c (4.1)

where x is the input, y is the target, w is the weight, C is the number of classes, and N
spans the minibatch dimension as well as d1, ..., dk for the K-dimensional case (K=2 in this use
case) [41]. If reduction is not ’none’, but set to ’mean’ as is the case during the training in this
project, then;

`(x, y) = ÂN
n=1 ln

N
(4.2)

Validation

R2 score
The R2 score is defined in equation 4.3. R2 score is also known as coefficient of determination,
and is a measure of similarity between two sets of data, which is useful in the case of SIC, as it is
a continuous value from 0% to 100%. This means that predicting 50% is better than predicting
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0%, when the ground truth is 60%. This similarity, or lack of, between classes should not be
penalized equally which is why the R2 score is used for evaluating SIC.

R2(y, ŷ) = 1 � Ân
i=1(yi � ŷi)2

Ân
i=1(yi � ȳi)2 (4.3)

where ŷi is the predicted value of the i-th sample, yi is the corresponding true value for
total n samples, ȳ = 1

n Ân
i=1 yi, and Ân

i=1(yi � ŷi)2 = Ân
i=1(e)

2.[42]

F1 score
F1 score is the harmonic mean between precision and recall and represents both precision and
recall in one metric. The highest score is 1 and indicates perfect precision and recall, with
0 being the lowest and is found if either precision or recall is zero. Precision is defined as
Precision = tp

tp+ f p and recall is defined as Recall = tp
tp+ f n . The F1 score is then found using

equation 4.4.[43]

F1 = 2 · precision · recall
precision + recall

=
2tp

2tp + f p + f n
(4.4)

The F1 score is used to evaluate SOD and FLOE over accuracy, as there is an uneven class
distribution.

Combined Score
The combined score is the weighted average of SIC and SOD being weighted 2 and FLOE being
weighted 1. This score is used to determine which model is the best, and the best model is
updated in case a higher combined score is reached after validation.

4.1.5 Model Selection

The primary contribution of the work done in this project lies in the addition of the transformer
to the network, therefore the transformer configuration will be the determining factor during
model selection. The selection will be based on different configurations of the transformer, and
training of different configurations will be stopped after 20 epochs to evaluate the best model.
The parameters that will be investigated are the transformer layers and patch sizes used in the
transformer.

The model selection will be based on the combined score obtained on the validation subset,
as it would already have knowledge of the test subset, in case the model selection was based
on the combined score obtained on the test subset. The results can be seen in Table 4.3, and
from this the selected model is the model featuring 12 layers and uses patch sizes of 16x16.
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Table 4.3: Different configurations for the developed model together with the scores after 20 epochs.

Model configurations
Layers Patch size SIC SOD FLOE Combined
4 16 82,545% 77,930% 71,328% 79,624%
6 8 80,028% 66,119% 68,259% 74,373%
8 4 79,133% 67,973% 68,274% 74,393%
8 8 85,244% 78,660% 73,525% 81,689%
12 16 92,003% 84,838% 86,256% 89,135%

4.1.6 Validation Results

The results of the training is seen in Figure 4.2(a better overview of the results can be found in
Appedix B). It is seen that the training and validation losses converges quickly, followed by a
slight linear decrease. The same applies to the R2 score of SIC, which also converges to a steady
state at around 92%-93%. The F1 scores for SOD and FLOE has a positive trend and thus the
combined score increases together with those.

Figure 4.2: The months the samples for validation and testing is taken from.

There is a disruption at the 70th epoch which is most likely due to the learning rate being
changed to 10�4 from 10�5, it had both a negative and positive impact, as the F1 score for FLOE
dropped but the F1 score for SOD increased.
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4.2 Testing

4.2.1 Results

The results from testing can be seen in Table 4.4, and shows that it performs almost as well on
FLOE as SIC and SOD, which is unexpected, as the model performs a bit worse on the FLOE
F1 score during validation. Another unexpected finding is that the score for SIC and SOD is
decreased significantly from the validation scores to the test scores.

Table 4.4: Test results

SIC SOD FLOE Combined
TransUNet SeaIce 86.91 85.34 85.20 86.22

Looking at the confusion matrices, seen in Figure 4.3 to 4.5, of the predictions it can also be
seen that there are biases in the predictions. For SIC it can be seen that 0% and 100% is over
represented in SIC predictions. For SOD "Open Water" and "Thick FYI" is over represented in
the predictions. Lastly, for FLOE it is seen that "Open Water" and "Vast Floe" is over represented
in the predictions. It generally shows the same pattern, namely that the model generally
overestimates or underestimates in its predictions for the charts, and that it sees difficulties
with the intermediate classes.

Figure 4.3: Confusion matrix of SIC segmentation. Figure 4.4: Confusion matrix of SOD segmentation.
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Figure 4.5: Confusion matrix of FLOE segmentation.

Test Examples

To get a better understanding of why the model performs as it does, three examples of infer-
ence will be analysed.

The first is seen in Figure 4.6, and shows a sample scene that has a high score and segments
the sea ice in all charts rather well, with minor segments being misclassified as open water, and
some intermediate misclassifications.

Figure 4.6: An example of a scene with a high score for the segmentation.
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The second example is seen in Figure 4.7, and shows a sample scene where the sea ice is
underestimated in the three charts, and some sea ice being misclassified as open water.

Though the two first examples have performance issues with regards to the intermediate
classes, the sea ice edge is generally segmented well.

Figure 4.7: An example of a scene where the model underestimates the SIC and SOD but overestimates FLOE in
some area and underestimates FLOE in other areas.

The last example can be seen in Figure 4.8, which shows an extreme case of poor performance
with regards to the segmentation. This might be due to the nature of the ground truth labelled
data, which is sea ice charts made using large polygons, whereas the TransUNet makes pixel-
wise predictions for classifying the sea ice. Meaning that the segmented sea ice charts can
potentially be more accurate than the "ground-truth" data. However, this needs to be verified
by a sea ice expert in order to be sure which is more accurate.
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Figure 4.8: An example of a scene with a low score for the segmentation.

4.2.2 AutoIce Challenge Results

The results cannot be directly compared, as the test data used to test the TransUNet is not the
same as the test data used in the challenge. However, it can give an idea of how the TransUNet
generally compares to other models.

The distribution of months for the AutoIce challenge test set can be seen in Figure 4.9, and
differs from the test data used on the TransUNetSeaIce. As it is having most samples taken
from July, it could potentially be a problem for the TransUNetSeaIce as samples from July is
not present in the validation subset.
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Figure 4.9: The months the samples for AutoIce challenge test dataset is taken from.

As seen in Table 4.5, it is shown that the TransUNetSeaIce achieves a good performance
compared to the other contestants. TransUNetSeaIce scores the highest F1 score for FLOE, but
falls short on the other charts compared to the team Major who won the competition. They
used the baseline model, which is a standard UNet[44]. They contributed to the advances by
investigating different hyperparameters, and by looking into the dataset in order to have the
validation subset closesly resemble the test subset by using the same regions and have the two
scenes of a region being close in time.

Table 4.5: Comparison of scores of the top contestants of the AutoIce Challenge.

Teams SIC (R2) SOD (F1) FLOE (F1) Combined score
Major 92.02 88.61 70.70 86.39
TransUNet SeaIce 86.91 85.34 85.21 86.22
PWGSN 89.70 76.94 79.12 82.48
crissy 85.34 80.26 74.66 81.17

As seen in Table 4.5, not one solution is the best, but they have different strengths. One
solution is overall performing better than others’ solution, which does not necessarily mean
that the solution is predicting all charts than the others.
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Discussion

5.1 Comparison to Related Work and AutoIce challenge winner

The AI4SeaIce UNet developed by DMI managed to get an R2 score for SIC laying in the range
of 69.61% to 86.34%, whereas the TransUNetSeaIce performs better, as an R2 score of 86.91%
was acheived for SIC.

Compared to the model trained by Major, the TransUNet falls short during testing. How-
ever, it should be noted that Major found validation scenes that were from the same regions
with timestamps close to the data in the test set. This will cause the model to fit well to the val-
idation set, and thus also fit to the test set as the two are closely correlated and might develop
a model that is not generalisable.

5.2 Future Work

For future work it could prove beneficial to try more model configurations, as those investigated
are heuristically found. So more possible solutions to the problem could give a broader insight
into what proves to work rather than hypothesising the best configurations to test. This is a
time consuming task, that would either require more processing power or more time to carry
out the task.
Another improvement to the work carried out in this project would be to go more into detail
with the data, and split the data into training, validation, and testing in a way that emphasizes
on having an equal distribution of the months the samples are taken from. Another solution
could be to investigate the class distribution of the data, and then make the data split based
on the distribution of classes in the samples, such that it is not biased towards classifying the
segments as open water or 100% ice, as for the case of SIC in the TransUNet developed in this
project.
As an alternative to using tiling, padding, and stitching it could potentially lead to a better
model if the semantic segmentation was done directly on the whole scene instead of one tile of
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the scene at a time. Though it did not manifest itself significantly, it still had an influence on
the outcome during inference, and thus it could be interesting to see how the model performs
without the extra step of tiling and stitching, as the receptive field will be increased.
Lastly, in order to be able to directly compare the model to the other contestants of the AutoIce
challenge, the reference data for the test set for by the challenge should be used to test the
model once the reference data has been published and processed for testing.

5.3 Conclusion

This thesis set out to answer the following hypothesis How can satellite data be used to clas-
sify total sea ice concentration (SIC), stage of development (SOD) and floe size (FLOE)?

To accomplish this, different deep learning algorithms for semantic segmentation was inves-
tigated and it was hypothesised that the TransUNet would be a good alternative to the work
carried out by DMI. The TransUNet was trained using different configurations for the trans-
former and the best model after 20 epochs was selected. The model with 12 layers and using
16x16 patches in the transformer was chosen and trained for an additional 100 epochs. The
best scores during validation was 93.29% R2 score for SIC, 91.84% F1 score for SOD, 88.14%
F1 score for FLOE, and 92.14% combined. For testing the results were found to be 86.91% for
SIC, 85.34% for SOD, 85.20% for FLOE, and 86.22% combined, which was not enough to win
the AutoIce challenge. However, it did prove to be better than the UNet proposed by DMI for
segmenting the sea ice concentration by 0.57%.
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Appendix A

Model Summary

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d-1 [-1, 16, 512, 512] 3,472

BatchNorm2d-2 [-1, 16, 512, 512] 32

ReLU-3 [-1, 16, 512, 512] 0

Conv2d-4 [-1, 16, 512, 512] 2,320

BatchNorm2d-5 [-1, 16, 512, 512] 32

ReLU-6 [-1, 16, 512, 512] 0

MaxPool2d-7 [-1, 16, 257, 257] 0

Conv2d-8 [-1, 32, 257, 257] 4,640

BatchNorm2d-9 [-1, 32, 257, 257] 64

ReLU-10 [-1, 32, 257, 257] 0

Conv2d-11 [-1, 32, 257, 257] 9,248

BatchNorm2d-12 [-1, 32, 257, 257] 64

ReLU-13 [-1, 32, 257, 257] 0

MaxPool2d-14 [-1, 32, 129, 129] 0

Conv2d-15 [-1, 64, 129, 129] 18,496

BatchNorm2d-16 [-1, 64, 129, 129] 128

ReLU-17 [-1, 64, 129, 129] 0

Conv2d-18 [-1, 64, 129, 129] 36,928

BatchNorm2d-19 [-1, 64, 129, 129] 128

ReLU-20 [-1, 64, 129, 129] 0

MaxPool2d-21 [-1, 64, 65, 65] 0

Conv2d-22 [-1, 128, 65, 65] 73,856

BatchNorm2d-23 [-1, 128, 65, 65] 256

ReLU-24 [-1, 128, 65, 65] 0

Conv2d-25 [-1, 128, 65, 65] 147,584
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BatchNorm2d-26 [-1, 128, 65, 65] 256

ReLU-27 [-1, 128, 65, 65] 0

MaxPool2d-28 [-1, 128, 33, 33] 0

Conv2d-29 [-1, 128, 2, 2] 4,194,432

Flatten-30 [-1, 128, 4] 0

PatchEmbedding-31 [-1, 4, 128] 0

LayerNorm-32 [-1, 4, 128] 256

MultiheadAttention-33 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-34 [-1, 4, 128] 0

LayerNorm-35 [-1, 4, 128] 256

Linear-36 [-1, 4, 512] 66,048

GELU-37 [-1, 4, 512] 0

Linear-38 [-1, 4, 128] 65,664

Dropout-39 [-1, 4, 128] 0

ViTBlock-40 [-1, 4, 128] 0

LayerNorm-41 [-1, 4, 128] 256

MultiheadAttention-42 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-43 [-1, 4, 128] 0

LayerNorm-44 [-1, 4, 128] 256

Linear-45 [-1, 4, 512] 66,048

GELU-46 [-1, 4, 512] 0

Linear-47 [-1, 4, 128] 65,664

Dropout-48 [-1, 4, 128] 0

ViTBlock-49 [-1, 4, 128] 0

LayerNorm-50 [-1, 4, 128] 256

MultiheadAttention-51 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-52 [-1, 4, 128] 0

LayerNorm-53 [-1, 4, 128] 256

Linear-54 [-1, 4, 512] 66,048

GELU-55 [-1, 4, 512] 0

Linear-56 [-1, 4, 128] 65,664

Dropout-57 [-1, 4, 128] 0

ViTBlock-58 [-1, 4, 128] 0

LayerNorm-59 [-1, 4, 128] 256

MultiheadAttention-60 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-61 [-1, 4, 128] 0

LayerNorm-62 [-1, 4, 128] 256

Linear-63 [-1, 4, 512] 66,048

GELU-64 [-1, 4, 512] 0

Linear-65 [-1, 4, 128] 65,664

Dropout-66 [-1, 4, 128] 0
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ViTBlock-67 [-1, 4, 128] 0

LayerNorm-68 [-1, 4, 128] 256

MultiheadAttention-69 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-70 [-1, 4, 128] 0

LayerNorm-71 [-1, 4, 128] 256

Linear-72 [-1, 4, 512] 66,048

GELU-73 [-1, 4, 512] 0

Linear-74 [-1, 4, 128] 65,664

Dropout-75 [-1, 4, 128] 0

ViTBlock-76 [-1, 4, 128] 0

LayerNorm-77 [-1, 4, 128] 256

MultiheadAttention-78 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-79 [-1, 4, 128] 0

LayerNorm-80 [-1, 4, 128] 256

Linear-81 [-1, 4, 512] 66,048

GELU-82 [-1, 4, 512] 0

Linear-83 [-1, 4, 128] 65,664

Dropout-84 [-1, 4, 128] 0

ViTBlock-85 [-1, 4, 128] 0

LayerNorm-86 [-1, 4, 128] 256

MultiheadAttention-87 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-88 [-1, 4, 128] 0

LayerNorm-89 [-1, 4, 128] 256

Linear-90 [-1, 4, 512] 66,048

GELU-91 [-1, 4, 512] 0

Linear-92 [-1, 4, 128] 65,664

Dropout-93 [-1, 4, 128] 0

ViTBlock-94 [-1, 4, 128] 0

LayerNorm-95 [-1, 4, 128] 256

MultiheadAttention-96 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-97 [-1, 4, 128] 0

LayerNorm-98 [-1, 4, 128] 256

Linear-99 [-1, 4, 512] 66,048

GELU-100 [-1, 4, 512] 0

Linear-101 [-1, 4, 128] 65,664

Dropout-102 [-1, 4, 128] 0

ViTBlock-103 [-1, 4, 128] 0

LayerNorm-104 [-1, 4, 128] 256

MultiheadAttention-105 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-106 [-1, 4, 128] 0

LayerNorm-107 [-1, 4, 128] 256
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Linear-108 [-1, 4, 512] 66,048

GELU-109 [-1, 4, 512] 0

Linear-110 [-1, 4, 128] 65,664

Dropout-111 [-1, 4, 128] 0

ViTBlock-112 [-1, 4, 128] 0

LayerNorm-113 [-1, 4, 128] 256

MultiheadAttention-114 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-115 [-1, 4, 128] 0

LayerNorm-116 [-1, 4, 128] 256

Linear-117 [-1, 4, 512] 66,048

GELU-118 [-1, 4, 512] 0

Linear-119 [-1, 4, 128] 65,664

Dropout-120 [-1, 4, 128] 0

ViTBlock-121 [-1, 4, 128] 0

LayerNorm-122 [-1, 4, 128] 256

MultiheadAttention-123 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-124 [-1, 4, 128] 0

LayerNorm-125 [-1, 4, 128] 256

Linear-126 [-1, 4, 512] 66,048

GELU-127 [-1, 4, 512] 0

Linear-128 [-1, 4, 128] 65,664

Dropout-129 [-1, 4, 128] 0

ViTBlock-130 [-1, 4, 128] 0

LayerNorm-131 [-1, 4, 128] 256

MultiheadAttention-132 [[-1, 4, 128], [-1, 2, 2]] 0

Dropout-133 [-1, 4, 128] 0

LayerNorm-134 [-1, 4, 128] 256

Linear-135 [-1, 4, 512] 66,048

GELU-136 [-1, 4, 512] 0

Linear-137 [-1, 4, 128] 65,664

Dropout-138 [-1, 4, 128] 0

ViTBlock1-139 [-1, 128, 2, 2] 0

Conv2d-140 [-1, 64, 8, 8] 73,792

BatchNorm2d-141 [-1, 64, 8, 8] 128

ReLU-142 [-1, 64, 8, 8] 0

Upsample-143 [-1, 64, 16, 16] 0

Conv2d-144 [-1, 64, 65, 65] 73,792

BatchNorm2d-145 [-1, 64, 65, 65] 128

ReLU-146 [-1, 64, 65, 65] 0

Upsample-147 [-1, 64, 130, 130] 0

Conv2d-148 [-1, 32, 130, 130] 18,464
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BatchNorm2d-149 [-1, 32, 130, 130] 64

ReLU-150 [-1, 32, 130, 130] 0

Conv2d-151 [-1, 32, 129, 129] 18,464

BatchNorm2d-152 [-1, 32, 129, 129] 64

ReLU-153 [-1, 32, 129, 129] 0

Upsample-154 [-1, 32, 258, 258] 0

Conv2d-155 [-1, 16, 258, 258] 4,624

BatchNorm2d-156 [-1, 16, 258, 258] 32

ReLU-157 [-1, 16, 258, 258] 0

Conv2d-158 [-1, 16, 257, 257] 4,624

BatchNorm2d-159 [-1, 16, 257, 257] 32

ReLU-160 [-1, 16, 257, 257] 0

Upsample-161 [-1, 16, 514, 514] 0

Conv2d-162 [-1, 16, 514, 514] 2,320

BatchNorm2d-163 [-1, 16, 514, 514] 32

ReLU-164 [-1, 16, 514, 514] 0

Conv2d-165 [-1, 12, 512, 512] 204

FeatureMap-166 [-1, 12, 512, 512] 0

Conv2d-167 [-1, 11, 512, 512] 187

FeatureMap-168 [-1, 11, 512, 512] 0

Conv2d-169 [-1, 7, 512, 512] 119

FeatureMap-170 [-1, 7, 512, 512] 0

================================================================

Total params: 6,275,694

Trainable params: 6,275,694

Non-trainable params: 0

----------------------------------------------------------------

Input size (MB): 24.00

Forward/backward pass size (MB): 731.04

Params size (MB): 23.94

Estimated Total Size (MB): 778.98

----------------------------------------------------------------
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Appendix B

Results

Figure B.1: Result of training and validation loss.
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Figure B.2: Result of SIC
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Figure B.3: Result of SOD.
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Figure B.4: Result of FLOE.
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Figure B.5: Result of weighted average of SIC, SOD, and FLOE.
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