
Summary

The paper ’Exploring the Energy Consumption of Highly Parallel Software on Windows delves into the challenges
of measuring the energy consumption of software on the Windows operating system. Whereas most existing
work for measuring the energy consumption of software is based on Linux, this work aims to overcome the
challenges of measuring energy consumption on Windows and make it more accessible. The paper investigates
different aspects of the process, such as finding and evaluating tools available on Windows, testing DUTs with
symmetric and asymmetric CPU architectures, and using benchmarks to measure and compare their energy
consumption in various situations. The work is based on the following four research questions:

• RQ1: How does the C++ compiler used to compile the benchmarks impact energy consumption?

• RQ2: What are the advantages and drawbacks of the different measuring instruments for Windows
regarding accuracy, ease of use, and availability?

• RQ3: What effect does parallelism have on the energy consumption of the benchmarks?

• RQ4: What effect do P- and E-cores have on the parallel execution of a process?

The first experiment focuses on RQ1, where different C++ compilers are tested to find the most energy-
efficient one. The results showed that the Intel oneAPI was the most energy-efficient and had the fastest
execution time for both benchmarks. Given the good performance of oneAPI, it is used in the second
experiment. The second experiment focuses on RQ2 and aims to find the best measuring instrument defined
in terms of accuracy, ease of use, and availability, where the experiment was conducted by comparing the
correlation of the measuring instruments against a ground truth. In the end, similar performance is found
between the tested measuring instruments. However, given the ease of use, Intel Power Gadget was the most
usable instrument among those tested. Therefore, the third experiment uses Intel Power Gadget, which focuses
on RQ3 and RQ4. In the third experiment, the effect of parallelism on the energy consumption of benchmarks
is examined by executing two macrobenchmarks on an increasing number of cores. This experiment finds that
more resources results in a lower execution time, while the energy consumption will remain the same. Finally,
the effect of P- and E-cores on the parallel execution of a process is analyzed. There are two parts, where one
part executes the same microbenchmark on one core at a time, and the other by executing macrobenchmarks
on four cores, as either four P-cores, 2 P- and 2 E-cores, or 4 E-cores. This experiment found that P-cores will
have a lower execution time, while E-cores, in some cases, have a lower energy consumption.

The paper’s discussion section provides further insights into the research. Firstly, Cochran’s formula was
used to determine the number of measurements needed to gain confidence in the results. Cochran’s formula
found that results deviated between benchmarks, measuring instruments, DUTs, and even cores on the same
DUT. This could be due to the variability in the fabrication process, which can cause changes in the exact
characteristics of each core. Another cause of this could be the CPU, as it is found that CPUs with a high
TDP can result in a high deviation, which results in many measurements being required. Because of this,
an upper limit of 1.000 measurement was introduced, as the additional measurements had a limited effect
on the results. Secondly, the paper analyzes the results of comparing different C++ compilers, where it was
found that the energy consumption, execution time, and measurements required deviated between compilers.
The analysis showed that the code compiled by the oneAPI performs better because it uses AVX functions
and Advanced Vector Extensions to perform calculations in parallel. A discussion is also made about some
observed energy usage trends during the experiments. The trend observed saw the energy consumption of the
idle computer increase during work hours and decrease during non working hours. This was suspected to be
caused by reactive energy consumption, which depends on the time of the day. Another topic discussed is
time synchronization issues, as devices like the Raspberry Pi and an Analog Discovery 2 each kept their time,
which could have caused issues if they were not synchronized. The data acquisition process was changed to
ensure the devices were synchronized every second, but small time drifts could still occur over time.

In conclusion, this research addresses the challenges of measuring software energy consumption on Windows
and provides valuable insights into the impact of different factors on energy consumption and execution
time. The paper demonstrates the importance of choosing an energy-efficient compiler and using the right
tools to measure energy consumption accurately. The findings also suggest that using E-cores can limit
energy consumption and that the impact of parallelism on energy consumption is mixed. This paper’s results
demonstrate the need for more research into software energy consumption on Windows and the importance



of considering various factors when developing energy-efficient software. Future research can build on this
study’s findings and help reduce the environmental impact of software development.
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Abstract

With the evolution of CPUs in recent years,
increasing the number of cores has become the
norm resulting in additional resources for soft-
ware to utilize. Through four research ques-
tions, we investigate the energy consumption
and performance gains obtained from the ad-
ditional processing power and the impact of P-
and E-cores on parallel software. The experi-
ments are conducted on two computers, where
the analysis is made based on energy consump-
tion and execution time on a per-core basis and
on an increasing number of cores. The exper-
iments are primarily conducted on Windows,
where Intel’s Running Average Power Limit is
unavailable. The energy consumption on Win-
dows is measured on the best performing mea-
suring instrument, found through a set of exper-
iments. Through the experiments, it is found,
that more measurements are required to gain
confidence in the results than is generally seen
in the literature. Furthermore, potential issues
when presenting multiple measurements taken
over a period of time as a single value were
discovered, and that no correlation between en-
ergy consumption and execution time when
executing benchmarks on more cores could be
found.

1 Introduction

In recent years there has been rapid growth in
Information and Communications Technology (ICT),
leading to an increase in energy consumption. Fur-
thermore, it is expected that the rapid growth of ICT
will continue, triggering an increase in computational
power needs.[1, 2] Therefore, energy efficiency has
become more of a concern for companies and soft-
ware developers. As ICT has increased, top-of-the-line
desktop CPUs from 2023[3] contain not only a a higher
quantity of cores than CPUs ten years ago[4], but also
different types of cores. This modification aims to

boost performance and energy efficiency[5].
In this paper, we investigate the energy consump-

tion of various benchmarks on Windows 11, compar-
ing the efficiency and tradeoffs between sequential
and parallel execution. Our experiments involve two
Devices Under Test (DUTs): an Intel Coffee Lake CPU
with a traditional performance core setup and an Intel
Raptor Lake CPU with a performance and efficiency
cores (P- and E-cores ) setup. This work analyzes the
impact of Asymmetric Multicore Processors (AMPs)
on parallel execution compared to traditional Symmet-
ric MultiCore Processors. The first two experiments
will focus on C++, where different C++ compilers and
measuring instruments for Windows are compared
and explored using microbenchmarks. C++ was cho-
sen to avoid noise from, e.g., garbage collectors or
just-in-time compilation. The third experiment will
use the best-performing measuring instrument to go
beyond C++ programs to instead focus on larger mac-
robenchmarks. The macrobenchmarks will be run on
various amounts of cores to explore what impact ad-
ditional resources have on execution time and energy
consumption. The following research questions are
formulated:

• RQ1: How does the C++ compiler used to com-
pile the benchmarks impact energy consump-
tion?

• RQ2: What are the advantages and drawbacks
of the different measuring instruments for Win-
dows regarding accuracy, ease of use, and avail-
ability?

• RQ3: What effect does parallelism have on the
energy consumption of the benchmarks?

• RQ4: What effect do P- and E-cores have on the
parallel execution of a process?

To answer these research questions, a command
line framework is created to run a series of different
experiments.
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Section 2 covers the related work, laying the foun-
dation for this work, Section 3 includes the necessary
background information about, e.g., CPUs and sched-
ulers and Section 4 coverers our experimental setup.
In Section 5, Section 6 and Section 7 the experiments
are presented, discussted and concluded upon respec-
tively. The source code for the project can be found on
GitHub1

2 Related Work

This section provided an overview of related work
in energy consumption, parallel software, compilers,
and AMPs. It was built upon our previous work ”A
Comparison Study of Measuring Instruments”[6], where
different measuring instruments were compared to
explore whether a viable software-based measuring
instrument was available for Windows. It was found
that Intel Power Gadget (IPG) and Libre Hardware
Monitor (LHM) on Windows and Intel’s Running Av-
erage Power Limit (RAPL) on Linux had a similar cor-
relation to hardware-based measuring instruments.[6]

2.1 Variations in Energy Measurements

[6] found that energy consumption can vary be-
tween measurements, as was also explored in [7],
which discovered that numerous variables affect varia-
tions in energy measurement. [7] managed to reduce
the variation by 30 times by analyzing different con-
trollable parameters conducted on 100 different nodes.

One such parameter is temperature, which has
produced conflicting conclusions. [8] observed en-
ergy consumption variation on identical processors
without any correlation between temperature and per-
formance. In contrast, [9] found the opposite to be
true. [7] performed an experiment where benchmarks
were executed on three different configurations, ei-
ther right after each other, with a one-minute sleep
between executions or a restart between benchmark
executions. The configurations were not found to have
an impact on the energy variation.

[7] found that disabling C-states resulted in mea-
surements varying five times less on lower workloads
with a 50% higher energy consumption, while no dif-
ference was observed on higher workloads. While
[10] had previously found that disabling Turbo Boost
reduced variation from 1% to 16%, [7] could not find
any evidence supporting this.

[7] found that disabling non-essential processes,
such as Wi-Fi and logging modules, yielded no sub-
stantial difference in energy variation. [11, 12] found
that older CPUs exhibited lower deviation than newer
CPUs. Although a similar experiment in [7] did not

confirm that older CPUs always vary less, they ar-
gued that it depends on the generation and observed
that CPUs with lower Thermal Design Power (TDP)2

deviated less.

2.2 Parallel Software

Amdahl’s law describes the potential speedup
achieved by running an algorithm in parallel based
on the proportion of the algorithm that can be par-
allelized and the number of cores used.[14] In [15],
Amdahl’s law was extended to estimate energy con-
sumption with different amounts of cores. It was
argued that a CPU could lose its energy efficiency
as the number of cores increased and that knowing
how parallelizable a program is before execution al-
lowed for calculating the optimal number of active
cores for maximizing performance and energy con-
sumption.[15]

[16] compared the observed speedup of comput-
ing Laplace equations with one, two, and four cores,
with estimates given by Amdahl’s law and Gustafson’s
law. Gustafson’s law evaluates a parallel program’s
speedup based on the problem’s size and the number
of cores. Unlike Amdahl’s law which assumed a fixed
problem size and a fixed proportion of the program
that could be parallelized, Gustafson’s law takes into
account that larger problems could be solved when
more cores are available and that the parallelization of
a program could scale with the problem size. Compar-
ing the observed and estimated speedup, it was clear
that Gustafson’s law was more optimistic than Am-
dahl’s law, where both underestimated the speedup
on two and four cores.[16]

In [17], three different thread management con-
structs from Java were explored and analyzed. When
allocating additional threads, the energy consumption
was found to increase until a certain point where the
energy consumption would start to decrease. The ex-
act peak point was, however, found to be application-
dependent. The study also found that in eight out of
nine benchmarks, there was a decrease in execution
time when transitioning from sequential execution
on one thread to using multiple threads. It should
be noted that four of their benchmarks were embar-
rassingly parallel, while only one was embarrassingly
serial. The results also showed how a lower execu-
tion time does not imply a lower energy consumption,
which was the case in six out of nine benchmarks.[17]

[18] found that a larger amount of cores in the
execution pool resulted in a lower running time and
energy consumption and concluded that parallelism
could help reduce energy consumption for genetic
algorithms.

In [19], In [19], four different language constructs
1https://github.com/KuskIV/BDEnergy
2The power consumption under the maximum theoretical

load[13]
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used to implement parallelism in C# were tested by
executing a set of micro- and macrobenchmarks on a
different number of threads. It was found that work-
load size greatly influenced execution time and energy
efficiency. A limit was found for a sequential program,
after which changing it to executing in parallel would
be beneficial. The findings remained consistent be-
tween micro- and macrobenchmarks. However, the
impact was less significant for the macrobenchmarks
due to a higher total energy consumption.

2.3 Compilers

[20] sought to optimize energy efficiency and per-
formance across various C++ compilers. They con-
ducted comparisons using different coding styles and
microbenchmarks on compilers such as MinGW GCC,
Cygwin GCC, Borland C++, and Visual C++. Energy
measurements were collected via the Windows Perfor-
mance Analyzer (WPA). The compilers were used with
their default settings, and no optimizations options
were used. [20] found that when choosing a com-
piler and coding style, energy reduction depended
on the specification of the target machine and the in-
dividual application. Based on the benchmark used,
the lowest execution time was achieved with the Bor-
land compiler and the lowest energy consumption
was observed with the Visual C++ compiler. When
considering the coding styles, the study found that
separating IO and CPU operations and interrupting
CPU-intensive instructions with sleep statements de-
creased energy consumption.

2.4 Asymmetric Multicore Processors

Asymmetric Multicore Processors are CPUs where
not all cores are created to be identical, one example
being the combination of P- and E-cores seen in In-
tel’s Alder Lake and Raptor Lake. The use of P- and
E-cores when deciding which cores to run a thread on
are handled by the OS and assisted by Intel’s Thread
Director (ITD). Support for ITD on Linux was intro-
duced in [21], where SPEC benchmarks were executed
to evaluate the estimated Speedup Factor (SP) against
the observed SF. SF represents the relative benefit a
thread receives from running on a P-core. [21] found
that 99.9% of class readings from the benchmark per-
formed equally on P- and E-cores or preferred P-cores.
The experiment indicated that the ITD overestimated
the SF of using the P-cores for many threads and
underestimated it for some. Overall, it was found
that the estimated SF had a low correlation coefficient
(< 0.1) with the observed values. Furthermore, a per-
formance monitoring counter (PMC) based prediction
model was trained, where the model outperformed
ITD but still produced errors. However, the corre-
lation coefficient was higher at (> 0.8). The study
implemented support for the IDT in different Linux

scheduling algorithms and compared the results from
using the IDT and the PMC-based model. [21] found
that the PMC-based model provided superior SF pre-
dictions compared to ITD. Official support for ITD has
since been released.

3 Background

In the following section, different technologies
used for the experiment are introduced.

3.1 CPU States

CPU-states (C-state) manage a system’s energy con-
sumption during different operational conditions. On
a CPU, each core has its own state, which dictates how
much it is shut down to conserve power. The C0 state
represents the normal operation of a core under load
where the number of states varies between CPUs, and
the number of supported states varies between moth-
erboards.[22, 23] The CPU used in [6] had 10 states,
where states higher than C0 represents an increasingly
shut down core, and the highest states will mean the
core is almost inactive.[6]. The C-states can greatly
impact the energy consumption of the benchmarks,
especially the idle case, as was found in [6].

3.2 Performance and Efficiency cores

For the CPU architecture x86, the core layout has
historically been comprised of identical cores. How-
ever, the ARM architecture introduced the big.LITTLE
layout in 2011[24]. big.LITTLE is an architecture uti-
lizing two types of cores, including a set for maxi-
mum energy efficiency and a set for maximum per-
formance.[25]. Intel introduced a hybrid architecture
in 2021[26] similar to big.LITTLE, codenamed Alder
Lake. Alder Lake has two types of cores: P-cores and
E-cores, each optimized for different tasks. P-cores are
standard CPU cores that focus on maximizing perfor-
mance, and E-cores are designed to maximize perfor-
mance per watt and are intended to handle smaller
non-time critical jobs, such as background services[27].

1 void ExecuteWithAffinity(string path)

2 {

3 var process = new Process ();

4 process.StartInfo.FileName = path

5 process.Start ();

6

7 // Set affinity for the process

8 process.ProcessorAffinity =

9 new IntPtr (0 b0000_0011)

10 }

Listing 1: An example of how to set affinity for a
process in C#
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3.3 Processor Affinity

Processor affinity allows applications to bind or
unbind a process to a specific set of cores. When a
process is pinned to a core, the OS ensures that the
process only executes on the assigned core(s) each
time it is scheduled.[28] When setting the affinity for
a process in C#, it is done through a bitmask, where
each bit represents a CPU core. An example was illus-
trated in Listing 1, where the process was allowed to
execute on core #0 and #1.

3.4 Scheduling Priority

When executing threads on Windows, they are
scheduled based on their scheduling priority, which is
decided based on the priority class of the process and
the priority level of the thread. The priority class can
be either IDLE, BELOW NORMAL NORMAL, ABOVE NORMAL,
HIGH or REALTIME, where the default is NORMAL. It is
noted that HIGH priority should be used carefully, as
other threads in the system will not get any proces-
sor time while that process runs. If a process needs
HIGH priority, it is recommended to raise the priority
class temporarily. The REALTIME priority class should
only be used for applications that ”talk” to hardware
directly, as this class will interrupt threads managing
mouse input, keyboard inputs, etc.[29]

1 void ExecuteWithPriority(string path)

2 {

3 var process = new Process ();

4 process.StartInfo.FileName = path

5 process.Start ();

6

7 // Set priority class for process

8 process.PriorityClass =

9 ProcessPriorityClass.High;

10

11 // Set priority level for threads

12 foreach (var t in process.Threads)

13 {

14 thread.PriorityLevel =

15 ThreadPriorityLevel.Highest;

16 }

17 }

Listing 2: An example of how to set priorities for a
process in C#

The priority level can be either IDLE, LOWEST, BELOW
NORMAL, NORMAL, ABOVE NORMAL, HIGHEST and TIME

CRITICAL, where the default is NORMAL. A typical strat-
egy is to increase the level of the input threads for
applications to ensure they are responsive and to de-
crease the level for background processes, meaning
they can be interrupted as needed.[29]

The scheduling priority is assigned to each thread
as a value from zero to 31, where this value is called
the base priority. The base priority is decided using
the thread priority level and the priority class, where a
table showing the scheduling priority given these two
parameters can be found in [29]. The idea of having

different priorities is to treat threads with the same
priority equally by assigning time slices to each thread
in a round-robin fashion, starting with the highest
priority.

When setting scheduling priority, the priority class
is supported for Windows and Linux, while the prior-
ity level is only supported for Windows. An example
of how both priorities are set for a process and its
threads can be seen in Listing 2.

3.5 Open Multi-Processing

Open Multi-Processing (OpenMP) is a parallel pro-
gramming API consisting of a set of compiler direc-
tives and runtime library routines, supporting multi-
ple OSs and compilers.[30] The directives provide a
method to specify parallelism among multiple threads
of execution within a single program without hav-
ing to deal with low-level details, while the library
provides mechanisms for managing threads and data
synchronization.[30]

The directives provide a method to specify paral-
lelism among multiple threads of execution within a
single program without having to deal with low-level
details, while the library provides mechanisms for
managing threads and data synchronization.[30]

When executing using OpenMP, the parallel mode
used is the Fork-Join Execution Model. This model be-
gins with executing the program with a single thread
called the master thread. This thread is executed seri-
ally until parallel regions are encountered, in which
case a thread group is created consisting of the master
thread and additional worker threads. After splitting
up, each thread will execute until an implicit barrier
at the end of the parallel region. When all threads
have reached this barrier, only the master thread con-
tinues.[30]

1 #pragma omp directive -name [

2 clause[ [,] clause ]...

3 ]

Listing 3: The basic format of OpenMP directive in
C/C++

The basic format of using OpenMP can be seen in
Listing 3. By default, the parallel regions are executed
using the number of present threads in the system,
but this can also be specified using num threads(x),
where x represents the number of threads.[30]

3.6 Apparent Energy

In a circuit, two types of energy can be identified:
active energy, which performs useful work, and re-
active energy, which does not. The combination of
these two energies is called apparent energy, which
is what is measured by hardware-based measuring
instruments. Reactive energy occurs because of in-
ductive or capacitive loads in a circuit, resulting in an
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energy loss not utilized by the circuit[31]. The ratio
between active and reactive energy is known as the
power factor[31].

4 Experimental Setup

In this section, we present a detailed description
of the equipment, benchmarks, and procedures used
in the study.

4.1 Measuring Instruments

The measuring instruments used in this work are
based on those used in [6], with a few additions. The
new additions will be introduced in more detail, while
the others will be briefly mentioned, with more detail
available in [6].

Intel’s Running Average Power Limit (RAPL): is a
Mac and Linux exclusive software-based measuring
instrument frequently used in the literature.[6] RAPL
uses model-specific-registers (MSRs) and Hardware
performance counters to calculate the energy con-
sumption of the CPU. The MSRs used by RAPL are
those for the power domains PKG, DRAM, PP0, and
PP1, covered in [6].

In [6] RAPL was found to have a correlation of 0.81
with the ground truth.[6]

Intel Power Gadget (IPG): is a Windows and Mac
exclusive software tool created by Intel, which can
estimate the energy consumption of Intel processors.
IPG uses the same hardware counters and MSRs as
RAPL[32], and is therefore expected to have similar
measurements to RAPL, which was found to be the
case in [6]. [6] found that IPG had a correlation of 0.78
with the ground truth on Windows and a correlation
of 0.83 with RAPL on Linux.[6]

Libre Hardware Monitor (LHM): is a fork of Open
Hardware Monitor supported on Windows and
Linux.[33] LHM is open source and uses the same
hardware counters and MSRs as RAPL and IPG. In [6],
LHM on Windows was found to have a correlation
of 0.76 with the ground truth on Windows and a
correlation of 0.85 with IPG.

MN60 AC Current Clamp (Clamp): is a current
clamp connected to the phase of the wire going into
the power supply unit (PSU), which serves as the
ground truth. The clamp is connected to an Ana-
log Discovery 2, where the Analog Discovery 2 is
connected to a Raspberry Pi 4 to measure and log
measurements continuously.[6] The intrinsic error is
reported to be 2%[34].

CloudFree EU smart Plug (Plug): is a smart plug with
energy measuring capabilities, used as an alternative
lower-priced, easier-to-use hardware-based measuring
instrument. The accuracy and sampling rate of the
plug is unknown.[35]

Scaphandre (SCAP): is a monitoring agent able to
measure energy consumption.[36] SCAP is designed
for Linux and uses RAPL, and can also measure the
energy consumption of some virtual machines. SCAP
can also be used on Windows, as a kernel driver exists
which allows SCAP to read RAPL measurements on
Windows.[37]. The Windows version of SCAP can
report the energy consumption of the power domain
PKG using the MSRs. SCAP can also estimate the en-
ergy consumption for individual processes by storing
CPU usage statistics alongside the energy counter val-
ues and then calculating the ratio of CPU time for each
Process ID (PID). Using the calculated ratio, SCAP es-
timates the subset of energy consumption belonging
to a specific PID. In this work, both the performance of
SCAP and SCAPs ability to isolate the energy of a pro-
cess will be used, where the latter will be referenced
as SCAPI.

4.2 Dynamic Energy Consumption

Dynamic Energy Consumption (DEC) represented
a way to isolate the energy consumption of a process
and was utilized in [6, 38]. DEC was used to compare
software- and hardware-based measuring instruments,
where the former measures energy consumption of
the CPU only and the latter the entire DUT. A brief
explanation of DEC based on [38] is given:

ED = ET − (PS ∗ TE) (1)

In Equation (1) ED is the DEC, ET is the total en-
ergy consumption of the system, PS is the energy
consumption when the system is idle, and TE is the
execution time of the program execution. ED thus rep-
resents the energy consumption of the running process
only, as the idle energy consumption is subtracted.[38]

4.3 Statistical Methods

This section presents the statistical method used
to analyze the results. It is based on [6], and further
detail can be found there.

Shapiro-Wilk Test: was used to examine if the data
followed a normal distribution. The data in this study
was not expected to follow a normal distribution,
which aligns with what was found in [6]. Understand-
ing the distribution of the data was important, as
some statistical methods assume the data is normally
distributed.[39]
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Mann-Whitney U Test: The Mann-Whitney U Test
was used to evaluate if there was a statistically sig-
nificant difference between samples. It is a non-
parametric test that does not assume normality in the
data.[40]

Kendall’s Tau Correlation Coefficient: is a non-
parametric measure of association able to evaluate
the strength and direction of relationships between
ordinal variables when the underlying data is not
normally distribution.[41]. Kendall’s Tau Correlation
Coefficient is evaluated using the Guilford scale in
Table 1.[42, p. 219]

Values Label

< .20 Almost negligible correlation
.20 − .40 Low correlation
.40 − .70 Moderate correlation
.70 − .90 High Correlation
.90 − 1 Very high correlation

Table 1: The values for the scale presented by Guild-
ford in [42, p. 219]

Cochran’s Formula: is used to estimate how many
measurements are required to achieve a desired confi-
dence level.[43]

In summary, the selection of the Shapiro-Wilk test,
Mann-Whitney U test, Kendall’s Tau correlation coef-
ficient, and Cochran’s formula made it possible to an-
alyze the non-normal distributed data obtained while
determining statistically significant differences, corre-
lations, and appropriate sample size for the measure-
ments.

Workstation 1 (DUT 1)

Processor: Intel i9-9900K
Memory: DDR4 16GB
Disk: Samsung MZVLB512HAJQ
Motherboard: ROG STRIX Z390 -F GAMING
PSU: Corsair TX850M 80+ Gold
Ubuntu: 22.04.2 LTS
Linux kernel: 5.19.0-35-generic
Windows 11: 10.0.22621 Build 2262

Table 2: The specifications for DUT 1

4.4 Device Under Tests

Two workstations were used in the experiments.
The DUTs were chosen to compare CPUs with and
without P- and E-cores. Upon setup of the DUTs, they
were updated to have the same version of Windows
and Linux, and in Tables 2 and 3, the specifications of

the two workstations, referred to as DUT 1 and DUT
2, can be seen.

Workstation 2 (DUT 2)

Processor: Intel i5-13400
Memory: DDR4 32GB
Disk: Kingston SNV2S2000G
Motherboard: ASRock H610M-HVS
PSU: Cougar GEX 80+ Gold
Ubuntu: 22.04.2 LTS
Linux kernel: 5.19.0-35-generic
Windows 11: 10.0.22621 Build 22621

Table 3: The specifications for DUT 2

4.5 Compilers

This section introduced the various C++ compilers
used in the first experiment. MSVC and MinGW were
included as [20] found those to exhibit the lowest
energy consumption, and Intel’s oneApi and Clang
were included as both could be found on lists of the
most popular C++ compilers[44–46]. The versions of
the compilers were illustrated in Table 4

C++ Compilers

Name Version
Clang 15.0.0

MinGW 12.2.0
Intel OneAPI C++ 2023.0.0.20221201

MSVC 19.34.31942

Table 4: C++ Compilers

Clang: is an open-source compiler building on the
LLVM optimizer and code generator and is available
for both Windows and Linux[47]

Minimalist GNU for Windows (MinGW): is an open-
source project which provides tools for compiling
code using the GCC toolchain on Windows. It in-
cludes a port of GCC. Additionally, MinGW can be
cross-hosted on Linux.[48]

Intel’s oneAPI C++ (oneAPI): is a suite of libraries
and tools to simplify development across different
hardware. One of these tools is the C++ compiler,
which implements SYCL, an evolution of C++ for
heterogeneous computing. It is available for both
Windows and Linux.[49]

Microsoft Visual C++ (MSVC): comprises a set of
libraries and tools designed to assist developers in
building high-performance code. One of the included
tools is a C++ compiler, which is only available for
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Windows[50].

4.6 Benchmarks

This work employed microbenchmarks and mac-
robenchmarks to asses the measuring instruments and
analyze the energy consumption. The introduction
and the rationale behind why the specific benchmarks
were selected can be found in this section.

Microbenchmarks

Name Parameter Focus
NBody (NB) 50 ∗ 106 single core

Spectra-Norm (SN) 5.500 single core
Mandelbrot (MB) 16.000 multi core

Fannkuch-Redux (FR) 12 multi core

Table 5: Microbenchmarks

Microbenchmarks: are small, focused benchmarks
testing only a specific operation, algorithm, or piece of
code. They are useful for measuring the performance
of some particular code precisely while minimizing
the impact of other factors, but they may not accu-
rately represent overall performance.[51]

The microbenchmarks used in this work were
from the Computer Language Benchmark Game 3.
The selected benchmarks included single- and multi-
threaded microbenchmarks compatible with the com-
pilers and OSs used in this work. Certain libraries,
such as <sched.h>, were unavailable on Windows, lim-
iting the pool of compatible microbenchmarks. The
chosen microbenchmark benchmarks and their abbre-
viation were presented in Table 5, where the parame-
ters were those specified by the Computer Language
Benchmark Game. During compilation, the only pa-
rameter given is -openmp for the multi-core bench-
marks, ensuring optimization for all cores of the DUT.

Macrobenchmarks

Name Version
3D Mark (3DM) 2.26.8092

PC Mark 10 (PCM) 5.61.1173.0

Table 6: Macrobenchmarks

Macrobenchmarks: are large-scale benchmarks test-
ing the performance of an entire application or sys-
tem. Macrobenchmarks provide a more comprehen-
sive overview of how the system performs in real-
world scenarios and are more suitable for understand-
ing the overall performance of an application or sys-
tem.[51] Application-level benchmarks are a type of

marcobenchmarks testing an application, which pro-
vides a more realistic benchmark scenario.

The two macrobenchmarks used in this work were
made by UL Solutions. One was 3DMark (3DM), a
set of benchmarks for scoring GPUs and CPUs based
on gaming performance. From 3DM, the CPU Pro-
filer benchmark was used, as this work focuses on
the energy consumption of the CPU. The CPU Pro-
file benchmarks executes a 3D graphic, but the main
component of the workloads is from a boids flocking
behavior simulation.[52]. The other macrobenchmarks
was PCMark 10 (PCM), a benchmark meant to test
various tasks seen at a workplace. PCM has three test
groups, including web browsing, video conferencing,
working in spreadsheets, and photo editing. The full
list can be seen in Tables 13 and 14.[53] The versions
of both macrobenchmarks can be seen in Table 6.

Background Processes

Name
searchapp

runtimebroker
phoneexperiencehost

TextInputHost
SystemSettings

SkypeBackgroundHost
SkypeApp

Microsoft.Photos
GitHubDesktop

OneDrive
msedge

AsusDownLoadLicense
AsusUpdateCheck

Table 7: Background Processes

4.7 Background Processes

Steps were taken to limit background processes on
Windows. When the DUTs were set up, all startup
processes in the Task Manager and non-Microsoft and
Intel-related services found in the System Configura-
tion were disabled

During runtime, different background processes
were also stopped. These processes were found by
looking at the running processes using command
Get-Process. A list of processes was found which
are killed using the Stop-Process command before
running the experiments. The list can be found in
Table 7.

5 Experiments

In the following section, the conducted ex-
periments were analyzed. All experiments were

3https://benchmarksgame-team.pages.debian.net/ benchmarksgame/index.html
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carried out on the framework presented in Ap-
pendix B, with the results stored in the database in-
troduced in Appendix C. During the experiments, the
ProcessPriorityClass for the measuring instrument,
framework, and benchmarks were set to High unless
specified otherwise. In addition, suggestions made by
[7, 19] were followed, meaning C-states, Turbo Boost,
and hyperthreading was disabled. On Linux, Wi-Fi
was disabled when benchmarks were running, but no
background processes were stopped as [7] found it
had no noticeable effect. No analysis on the effect of
background processes on Windows was found, which
is why the background processes presented in Sec-
tion 4.7 was disabled in addition to the Wi-Fi. The
benchmarks were executed right after each other in
all experiments, as [7] did not find any effect of ei-
ther restarts or sleep between executions. When using
Cochran’s formula, a confidence level of 95% and a
margin of error of 0.03% was used, as [6] found that
to be fitting.

0 500 1,000 1,500 2,000

Clang

oneAPI

MinGW

MSVC

DEC (Joules)

The DEC of the CPU

Figure 1: CPU measurements by IPG on DUT 1 for
test case(s) FR

5.1 Experiment One

The first experiment investigated RQ 1 and em-
ployed both multi-core microbenchmarks presented in
subsection 4.6, and the measurements were performed
using IPG on DUT 1. IPG was chosen based on its
performance in [6]. This experiment was conducted
based on a hypothesis that the different compilers
would produce assembly code with varying energy
consumption and execution time, as was found in [20].

Compiler Initial Measurements: The initial mea-
surements were taken to gain insight into the number
of measurements required by computing Cochran’s
formula on the results from the initial measurements.
After that, additional measurements were made if re-
quired. The number of measurements chosen for the
initial measurements was 30, as the central limit theo-
rem suggests that a sample size of at least 30 is usually
sufficient to ensure that the sampling distribution of
the sample mean approximates normality, regardless
of the underlying distribution of the population[54].

After the initial 30 measurements, Cochran’s formula
was applied to the measurements, and the required
measurements were illustrated in Table 8, where it
was evident that the required samples varied between
compilers and benchmarks.

0 20 40 60

Clang

oneAPI

MinGW

MSVC

Execution Time (s)

The Execution Time

Figure 2: Execution time measurements by IPG on
DUT 1 for test case(s) FR

When the benchmarks were analyzed, it was found
that MB deviated less than FR, with MB requiring as
little as 3 measurements with MinGW, while FR re-
quired up to 61.086 samples with Clang. When the
compilers were analyzed, oneAPI had the lowest re-
quired samples for FR but the highest for MB. 550
additional measurements were conducted for the next
step.

Initial Measurements

Name FR MB
Clang 61.086 40

MinGW 1.644 3
oneAPI 550 222
MSVC 2.994 10

Table 8: The required samples to gain confidence in
the measurements made by IPG on Windows

Compiler Results: After 550 measurements were
obtained, the reported measurements required by
Cochran’s formula still indicated that MSVC, MinGW,
and Clang needed more measurements compared
to oneAPI. Between the different compilers, Clang
stood out where 61.086 measurements were required.
Because this number was much higher than other
compilers, additional measurements were taken for
this compiler. After 10.000 measurements, Cochran’s
formula indicated that 1.289 measurements were re-
quired, which is more in line with other compilers.

When looking at the results for FR in Figures 1
and 2, and for MB in Appendix E, oneAPI had the
lowest DEC and execution time for both benchmarks
and Clang deviated the most in Figure 1.

The first experiment found that the different com-
pilers had a considerable impact on the DEC, exe-
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cution time, and on how many measurements were
required. Ultimately, oneAPI had the lowest DEC and
execution time and was therefore used in the following
experiment.
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Figure 3: A visual representation of how the DEC
evolved as more measurements were made by Clamp
on DUT 2 for benchmark MB

5.2 Experiment Two

The second experiment investigated RQ 2 to iden-
tify the best measuring instrument on Windows for
this study. This decision was based on a combination
of factors, including correlation to the ground truth,
ease of use, and availability.

A couple of changes were made in the experimen-
tal setup for experiment two. Firstly, due to some
issues with SCAP and SCAPI, where the sampling
rate significantly decreased when the DUT was under
full load, the process priority class of the benchmarks
was set to Normal. Secondly, due to an execution time
of less than a second for MB when compiled with
oneAPI, MB’s parameter was changed from 16.000
to 64.000, which increased the execution time to 14
seconds. This avoided a scenario where the Plug only
had one data point per measurement. FR was exe-
cuted 550 times for this experiment, while MB was
executed 222 times, based on Table 8.

Measuring Instrument Initial Measurements: The
required number of measurements for this experiment,
found by applying Cochran’s formula to the mea-

surements, was be found in Appendix H. From Ap-
pendix H, it was found that the Clamp required more
measurements than other measuring instruments, so
a more in-depth analysis was conducted. This analy-
sis was made by performing 3.000 MB measurements
by the Clamp on DUT 2, where the result from this
experiment was illustrated in Figure 3.
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IPG

LHM

SCAP

SCAPI

Clamp (W)

Plug (W)

RAPL

Clamp (L)

Plug (L)

DEC (Joules)

FR MB

Figure 4: The DEC for DUT 1, where both benchmarks
were compiled on oneAPI

In Figure 3, the evolution of the DEC was illus-
trated, where the DEC was found to decrease by 5.84%
between 200 and 3.000 measurements and by 0.3% be-
tween 2.800 and 3.000 measurements. A pattern was
observed, where the DEC decreased between 200 and
1.000 measurements, after which the DEC increased
until measurement 1.400 by 2%, and then decreased
and converged. The DEC at 1.000 measurements was
0.29% from the DEC at 3.000, and due to the time
required to run the additional 2.000 measurements,
the maximum amount of measurement was capped
at 1.000 for this experiment. After 3.000 measure-
ments, the number of measurements required was
15.137. This number is higher than other measur-
ing instruments, which will be covered further in the
discussion. In Appendix I, a graph was illustrated,
showing how many measurements Cochran’s formula
indicated would be required as the number of mea-
surements increased.

Measuring Instrument Results: This experiment’s
results were presented in Figure 4 for DUT 1, and for
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DUT 2, the results were presented in Appendix F. In
Figure 4, MB consumed less energy than FR for Win-
dows, whereas the opposite was the case for Linux
and for DUT 2 in most cases. When comparing the dif-
ferent software measuring instruments for Windows,
SCAP, IPG, and LHM were in all cases within 25 joules
of each other, where IPG reported the lowest DEC
and SCAPI reported the highest DEC. When the hard-
ware measuring instruments were compared, the Plug
reported a higher DEC than the Clamp in all cases.
Between OSs, Linux reported a lower DEC for FR but
a higher DEC for MB for both the Clamp and Plug
on DUT 2 but not DUT 1. When comparing RAPL
to the Clamp, it overreports in all cases, which was
also found on Windows for all measuring instruments,
except for FR on DUT 2.

Figure 5: Heatmap showing the correlation coefficient
between all of the measurement instruments for MB
on dut 1

Based on the results presented in this section, it
was difficult to find conclusions that were true in all
cases across all measuring instruments, DUTs, OSs,
and benchmarks. This is similar to what was found in
[7], where conclusions from other work could not be
proven on their setup.

When the statistical methods from subsection 4.3
were applied to the results, it showed that they did not
follow a normal distribution and did not come from
the same distribution, which was also found in [6, 55].

The correlation between the measuring instru-
ments for MB on DUT 1 was illustrated in Figure 5,
where it was found that all software-based measuring
instruments had a moderate to high correlation be-
tween 0.59 - 0.72 to the Clamp when assessed with the
Guildford Scale, where the Plug also had a moderate
correlation of 0.64. The correlations were higher for FR
than MB, but still within the same categories of mod-

erate or high correlation, as shown in Appendix G,.
Given the similar correlation between the different
software-based measuring instruments, this was as
expected, as they all used the same hardware coun-
ters and MSRs to monitor the energy consumption,
as presented in subsection 4.1. When choosing the
best measuring instrument, SCAP and SCAPI were
excluded despite a high correlation given a low sam-
ple rate and a tedious setup process. Between IPG
and LHM, the performance was equal, where IPG was
more correlated on MB and LHM on FR. The choice
ended up being on IPG, given a better user experience.

SN measurements on DUT 2

Metric E-core P-core Difference
Execution time 58.96 s 13.96 s −76.32%

DEC 31.87 j 26.49 j −16.88%
DEC per second 0.53 w 1.88 w +254.71%

Table 9: The average performance difference between
P- and E-cores on DUT 2, SN

5.3 Experiment Three

The third experiment investigated RQs 3 and 4,
by analyzing what benefit macrobenchmarks gained
from additional allocated cores by executing PCM
and 3DM on an increasing number of cores, mea-
sured by IPG only. Before this was done, the per-core
performance of both CPUs was analyzed, where the
single-core benchmarks introduced in subsection 4.6
were used. This allowed a comparison between the
energy consumption of the P- and E-cores on DUT 2
and the P-cores on DUT 1. When the measurements
were performed, the limit of 1.000 measurements set
in subsection 5.2 was still used.

Per-Core Initial Measurements: An initial 250 mea-
surements were made for each benchmark on each
core, on both DUTs. Afterward, Cochran’s formula
was applied to the result to determine if more measure-
ments were required, as was presented in Appendix K.

NB measurements on DUT 2

Metric E-core P-core Difference
Execution time 29.59 s 11.54 s −60.96%

DEC 19.04 j 26.00 j +36.55%
DEC per second 0.66 w 2.23 w +237.87%

Table 10: The average performance difference between
P- and E-cores on DUT 2, NB

Per-Core Results: For the per-core results, the analy-
sis was based primarily on DUT 2, with results from
DUT 1 presented in Appendix J. When comparing
the difference in performance between P- and E-cores,
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the results were illustrated in Table 9 for SN, and in
Table 10 for NB. for both SN and NB, E-cores were
observed to have a higher execution time and lower
DEC per second compared to P-cores, where the DEC
was higher for P-cores on NB, while it was lower for
SN.

Performance Between Cores

DUT Core Benchmark Average STD
1 SN 79.16 j 1.75 j
1 NB 47.88 j 5.67 j
2 P SN 26.00 j 0.27 j
2 E SN 19.02 j 0.78 j
2 P NB 26.49 j 0.32 j
2 E NB 31.87 j 1.30 j

Table 11: The performance difference between cores
of the same type

When comparing how much performance could
differ between cores of the same type on the same
CPU, Table 11 illustrated the average energy consump-
tion and how much it deviated. Table 11 illustrated
DUT 1 deviates more, with the highest deviation for
NB, while the lowest was for DUT 2, on P-cores for
SN.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Number of Cores

Ex
ec

ut
io

n
ti

m
e

(s
)

0

500

1,000

1,500

D
EC

(j)

0

5

10

15

20

D
EC

pe
r

se
co

nd
(w

)

Figure 6: The evolution of the DEC (blue), DEC per
second (red) and execution time (green) as more cores
are allocated to 3DM on DUT 2

Macrobenchmark Initial Measurements: Following
the analysis of the per-core performance, the two mac-
robenchmarks introduced in subsection 4.6 were exe-
cuted on an increasing amount of cores, starting from
the most efficient one. An initial 30 measurements
were made, as the per-core experiment showed how
250 were too many measurements for DUT 2, as illus-
trated in Appendix K. The initial idea was to start at

one core, which was done for 3DM on both DUTs and
PCM on DUT 1. On DUT 2, PCM could not execute
web browsing on a single core and could not execute
spreadsheet and photo editing on any amount of cores
for unknown reasons. Because of this, DUT 2 started
at two cores to include web browsing. For DUT 1,
web browsing could not execute, so this scenario was
excluded for this DUT. No solution was found to these
issues. After the initial 30 measurements, Cochran’s
formula was applied to ensure enough measurements
were made. The number of required measurements
was presented in Appendix L.
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Figure 7: The evolution of the DEC (blue), DEC per
second (red) and execution time (green) as more cores
are allocated to PCM on DUT 2. Note that the x- and
y- axis does not start at zero.

Macrobenchmark Results: The results for DUT 2
were illustrated in Figure 6 and Figure 7 for 3DM and
PCM, respectively, and for DUT 1 in Appendix M.

A similar observation was made for both DUTs
and macrobenchmarks, where the execution time de-
creased and the DEC per second increased as more
cores were allocated, while the DEC remained the
same. A difference between 3DM and PCM was how
the execution time decreased more for 3DM than for
PCM. This is partly due to PCM having more scenarios
only utilizing a single thread, but also because several
of the scenarios in PCM had constant execution times,
e.g., a video took the same amount of time regard-
less of the processing power, which means that only
parts of the benchmarks could benefit from the addi-
tional allocated cores. For 3DM, the benchmark itself
was embarrassingly parallel, but the measurements
included a startup and shutdown period, which was
not parallel. An additional analysis of the energy con-
sumption over time by PCM and 3DM was analyzed
more in-depth in Appendix O.
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P vs. E Initial Measurements: when executing mac-
robenchmarks on an increasing number of cores, it
was difficult to illustrate how P cores perform against
E cores. This experiment therefore explores how P and
E cores compares, when executing macrobenchmarks.
This was achieved by running PCM on four cores, ei-
ther with four P cores (4P), four E cores (4E) or two
of each (2P2E). PCM was chosen as it represented a
usecase with low CPU usage, where some jobs were
of lower priority, which could see the DEC reduced,
when E cores were available. For this experiment, 30
initial measurements were made, and additional were
made after Cochran’s formula was applied to the re-
sults, if required. The required measurements were
presented in Appendix M.
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Figure 8: CPU measurements by IPG on DUT 2 for
test case(s) PCM

P vs. E Results: The results for the execution time
and DEC are illustrated in Figures 8 and 9, while the
DEC per second was presented in Appendix N. 4E
used the least energy for the DEC, while 4P and 2P2E
used 17.40% and 13.28% more energy, respectively.
For execution time, the order was the opposite, where
4P had the lowest execution time, where 2P2E and
4E executed 3.74% and 29.52% slower, respectively.
This illustrated a use case where E-cores had a lower
energy consumption but a higher execution time.
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Figure 9: Execution time measurements by IPG on
DUT 2 for test case(s) PCM

Estimated Speedup and Actual Speedup: An addi-
tional analysis was conducted by comparing the actual

speedup when executing on more cores against an es-
timate provided by Amdahl’s law. This analysis was
conducted in Appendix R, where it was found that the
estimation followed the actual speedup closely until
the E-cores were used. The actual speedup showed
that the E-cores do not contribute to a speedup of the
3DM benchmark.

6 Discussion

In the following section, results from Section 5 are
discussed.

6.1 Deviating Results

Cochran’s formula was used to determine how
many measurements were required in order to gain
confidence in the results. Using Cochran’s formula,
the amount of required measurements deviated be-
tween benchmarks, measuring instrument, DUTs and
even cores on the same CPU.

The required number of measurements deviated
between cores on the same CPU as a result of the
variability in the fabrication process, where the exact
characteristics of each core can change, despite be-
ing assembled in the same way.[56] When comparing
cores of the same type, it was found that a DEC of 47 j
could have a standard deviation of up to 5.67 j among
cores of the same type.

When comparing the required amount of measure-
ments between DUTs, DUT 2 required less measure-
ments than DUT 1. The cause of this could be either
software or hardware based. When setting up both
DUTs, effort was put into ensuring the DUTs had soft-
ware with the same versions. Both DUTs executed
on a fresh install of Windows, had the same software
downloaded and the same background processes were
disabled, so it seemed unlikely this was the cause.
When comparing hardware, the two DUTs were from
different generations of intel CPUs, released five years
apart. DUT 1 was the older of the two, but no evi-
dence of newer CPUs deviating more was found by [7].
It was however found in [7] that a lower TDP could
result in a lower energy variation, and DUT 2 had a
lower TDP of 65 W opposed to the TDP of 95W found
on DUT 1, which could explain the difference[57].

6.2 C++ Benchmarks Analysis

In the first experiment presented in subsection 5.1,
different C++ compilers were compared and it was
found that the energy consumption, execution time
and measurements required deviated between compil-
ers. For the oneAPI, a low runtime was observed for
the MB benchmark, compared to the other compilers.
This could be because the benchmark was removed as
dead code by the compiler, which is why an analysis
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was conducted in Appendix P, where the instructions
from the decompiled executables were compared be-
tween MinGW and oneAPI. The analysis showed that
the benchmark was not removed as dead code, but
rather that oneAPI achieved a better performance as it
used AVX instructions, Advanced Vector extensions to
perform calculations in parallel, where MinGW used
general purpose registers more, in a combination with
the C++ Standard Library.

6.3 Energy usage trends

The trend where the DEC decreased as more mea-
surements were made, illustrated in subsection 5.2,
was found for both the Clamp and Plug, which in-
dicated that it was not caused by faulty measure-
ments. The trend was however not observed on any
software-based measuring instruments, which is why
the observed reduction in energy consumption may be
caused by changes in the reactive energy consumption.

In order to test if reactive energy consumption
caused the trends of a lower DEC as more measure-
ments were made, an analysis was conducted in sub-
section Q. This analysis was conducted based on en-
ergy measurements from both DUTs and OSs, when
the DUT was on idle, where the energy consumption
during working hours and non-working hours were
compared. In the end, the analysis found that there
was a difference between the energy consumption dur-
ing working hours and non-working hours for both
OSs, where during the working hours the energy con-
sumption increased, and decreased again during the
night. This was likely due to more machines being
turned on during working hours.

When comparing the energy trends during the day
between OSs, both Linux and Windows had spikes,
where more energy was consumed, with higher spikes
on Windows. The spikes and the trends indicated that
not all background processes were disabled on Win-
dows, which impacted how many measurements were
required according to Cochran’s formula. If all back-
ground processes were identified and disabled on Win-
dows, it would mean that less measurements were re-
quired, but given the different trends during working-
and non-working hours, measurements would still
deviate.

The analysis in subsection Q also showed how
DEC in Equation (1), presented in subsection 4.2, had
some assumptions which were unrealistic. When cal-
culating the DEC, it was based on the total and idle
energy consumption. But given how the idle case
and benchmark would be measured at different times,
which could be at the bottom and top of a spike, the
DEC could be too high/low.

6.4 Time synchronization

When measuring the ground truth, four different
devices were used. These devices include the DUTs,
a Raspberry Pi and an Analog Discovery 2. Each of
these devices kept its own time, which were not neces-
sarily synchronized. This was particularly problematic
for external measurement instruments, as even small
differences like 100ms could result in inaccurate data.

To address this issue, the data acquisition process
was changed to ensure that the devices were synchro-
nized every second. However, some problems may
still exist, as small time drifts can occur over time. For
example, the Raspberry Pi did not have a real-time
clock[58] and would therefore become increasingly
inaccurate over time. Additionally, the execution time
of IO events for the Clamp and Plug could result in
a time difference. This is however expected to have
minimal impact on the results, as resynchronization
happens every second.

6.5 Windows

Compared to the literature, this work stood out
by its use of Windows over Linux[59–61]. Windows
was interesting as it is a very popular OS, and because
the only study analyzing measuring instruments and
energy consumption on Windows, to our knowledge,
is [6].

When comparing results between Linux and Win-
dows in Appendix F, Windows was found to have a
lower DEC in some cases, similar to what was found
in [6]. One issue on Windows was finding compatible
benchmarks. Because most studies were conducted
on Linux, most micro- and macrobenchmarks were
made for Linux, which does not guarantee compati-
bility for Windows. This was a problem in the first
experiment, where the C++ benchmarks not only had
to be compatible on Windows, but also the four com-
pilers. The original idea was to find macrobenchmarks
written in C++, compiled on the most energy efficient
compiler, but we did not succeed. Instead PCM and
3DM were chosen, where each had their own issues.
For PCM, each DUT had some scenarios it was unable
to execute, making it difficult to compare the perfor-
mance of the two DUTs. For 3DM, when starting
multiple times after each other, loading times became
increasingly large, until 3DM was restarted. These
loading times did not effect the energy measurements,
but meant the experiments took additional time to
run. Both PCM and 3DM also caused bluescreen with
stop code VIDEO TDR FAILURE on DUT 2 in rare cases,
which was found to be a GPU related issues on the
igdkmdn64.sys process. Neither of the mentioned
issues related to PCM or 3DM was resolved, but is
something to explore in a future work.
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6.6 Cochran’s Formula

Cochran’s formula was used to ensure enough
measurements were taken. In subsection 5.2, an upper
limit was however introduced of 1.000 measurements,
as additional measurements were found to have a
limited effect on the results. This means that the confi-
dence level of 95% was not met for all results shown in
this work. E.g. a case where 1.300 measurements were
required, the confidence level was 92% when the mar-
gin of error was 0.03 or 95% when the margin of error
was 0.034. When 3.000 measurements were required,
the confidence level is 75% with a margin of error of
0.03, or 95% if the margin of error is 0.05, and when
5.000 measurements are required, the confidence level
was 63.2% with a margin of error of 0.03, or 0.95%
with a margin of error of 0.067.

The evolution of the confidence levels and mar-
gin of errors presented, represents what impact it
has when not enough measurements are made. This
shows that in order to gain more confidence in values
presented in this paper, some measuring instruments
and benchmarks could benefit from additional mea-
surements, but that is a subject for a future work.

7 Conclusion

This work explores parallelism, P- and E-cores, and
how this affects energy consumption and execution
time, focusing primarily on Windows, with Linux as a
reference point. This study is based on four research
questions about areas that, until now, have yet to be
explored on Windows in the literature. The first re-
search question revolves around compilers’ impact on
energy consumption and execution time. The second
research question looks into different software-based
measuring instruments for Windows. The third re-
search question looks into the effect parallelism has
on energy consumption. Finally, the fourth research
question analyzes and compares P- and E-cores.

For each experiment, initial measurements are
made before analyzing the results. The initial measure-
ments are made to ensure confidence in the results by
applying Cochran’s formula to the results. Cochran’s
formula is used in this work to ensure enough mea-
surements are made, given a desired confidence level
and margin of error. We find that the sample size
determined by Cochran’s formula is, in many cases,
larger than what is currently seen in the literature.
The sample size found is, in some cases, so large that
an upper limit of 1.000 measurements is introduced,
as the gain from additional measurements is found to
be limited.

This work has a primary focus on Windows.
Through the analysis and comparisons with Linux,
Windows is found to provide valuable depth to the
analysis of energy consumption, whereas Linux is

overall found to be the more convenient OS choice
due to its minimalist nature with less pre-installed
software and background processes. Reaching defini-
tive conclusions is challenging as the results are very
hardware and compiler dependent, and similar obser-
vations are not guaranteed between OSs. Given this,
we conclude that Windows will be a valuable addi-
tion to any research about the energy consumption of
software.

When presenting the results, dynamic energy con-
sumption is used to isolate the energy consumption
of the benchmark. However, an analysis of the idle
energy consumption found that the energy consump-
tion varies between working and non-working hours.
Therefore, it is worth exploring the advantages and
disadvantages of representing multiple measurements
taken over an extended period as a single value in
future work.

Since RAPL is not available on Windows, we com-
pare alternative measuring instruments by measuring
energy consumption on C++ microbenchmarks com-
piled with the most energy efficient compiler. In the
first experiment, exploring RQ 1, Intel’s oneAPI was
found to be the most energy efficient, where a signifi-
cant difference in performance between compilers is
observed. We found that oneAPI achieves the best per-
formance due to its utilization of AVX for parallelism
and other optimizations.

The second experiment tests different measuring
instruments to decide which to use on Windows, as
was formulated in RQ 2. The experiment compares
measurements made by different measuring instru-
ments against a ground truth, where a moderate to
high correlation between 0.59 - 0.80 is found. Between
the different software-based measuring instruments,
similar measurements are made, which is expected to
result from using the same registers when reporting
energy consumption. In the end, Intel Power Gadget
is chosen as our preferred software-based measur-
ing instrument because of its usability compared to
other measuring instruments. In addition to different
software-based measuring instruments, a cheaper al-
ternative to the ground truth is also included: a smart
plug. Similar correlations to the software-based mea-
suring instruments are found when comparing the
correlation between the plug and clamp.

In order to answer RQ 4, the third experiment ana-
lyze the performance of P- and E-cores, which in one
case shows a 17.40% higher energy consumption for
P-cores, while E-cores have a 29.52% higher execution
time when executing on four cores, showing that E-
cores can be used to limit energy consumption when
a higher execution time can be afforded. However,
there are cases where the E-cores have a higher energy
consumption than P-cores.

Lastly, RQ 3 is also answered in the third experi-
ment, where parallelism and its effect on energy con-
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sumption are explored using two macrobenchmarks,
PCMark 10 and 3DMark. One represents a realistic
use case, including tasks such as video conferenc-
ing, web browsing, and video editing, while the other
simulates a more demanding workload. Both mac-
robenchmarks are executed on an increasing amount
of cores to examine the effects of additional resources.
For both macrobenchmarks, similar observations are
found. When more cores are allocated, the execution
time decreases, and DEC per second increases, but
the DEC remains the same. This shows that there
is no correlation between execution time and energy
consumption.

8 Future Work

Based on the work presented, certain aspects could
be interesting to take a further look into in a future
work. This could be an extension to the first experi-
ment, to include more compilers of different versions,
more benchmarks and to explore how the different
compiler flags impacts the energy consumption. It
could also be interesting to extend the second experi-
ment to include a similar experiment to the one con-
ducted in [59] on RAPL, an analyze the overhead of
Windows measuring instruments. Future work can
further investigate the impact of reactive energy con-
sumption and how it affects the DEC calculation. It
may be useful to explore more accurate ways of repre-
senting and calculating the DEC that take into account
changes in reactive energy consumption and differ-
ences in energy consumption during working and
non-working hours. Furthermore, additional research
could examine the impact of background processes
on energy consumption during benchmark execution
and explore methods for identifying and disabling
these processes to improve measurement accuracy. By
addressing these limitations and exploring alternative
approaches, future work could improve the accuracy
and reliability of energy consumption analysis in soft-
ware. Finally, it would be relevant to extend this study
to other OSs and other hardware, as the two com-
puters used in this work would sometimes contradict
each other. The inclusion of more hardware could
help back the conclusions found in this work.
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A Abbreviations

In Table 12, a list of all the terms which are abbreviated in this work can be found. They are alphabetically
sorted within their categories. Their first occurrence can also be seen.

Abbreviations used in this work

General Technology and Hardware Terms Abbreviation First Occurrence
Device Under Test DUT Section 1

Efficiency core E-core Section 1
Information and Communications Technology ICT Section 1

Operating System OS subsection 2.4
Performance core P-core Section 1
Power supply unit PSU subsection 4.1

Measuring Instruments Abbreviation First Occurrence
Clamp Linux Clamp (L) subsection 5.2

Clamp Windows Clamp (W) subsection 5.2
CloudFree EU smart Plug Plug subsection 4.1

Intel Power Gadget IPG Section 2
Libre Hardware Monitor LHM Section 2

MN60 AC Current Clamp Clamp subsection 4.1
Plug Linux Plug (L) subsection 5.2

Plug Windows Plug (W) subsection 5.2
Running Average Power Limit RAPL Section 2

Scaphandre Scap subsection 4.1
Scaphandre isolated SCAPI subsection 4.1

Benchmarks Abbreviation First Occurrence
3DMark 3DM subsection 4.6

Fannkuch-Redux FR subsection 4.6
Mandelbrot MB subsection 4.6

Nbody NB subsection 4.6
PCMark 10 PCM subsection 4.6

Spectra-Norm SN subsection 4.6
Compilers Abbreviation First Occurrence

Intel’s oneAPI C++ oneAPI subsection 4.5
Microsoft Visual C++ MSVC subsection 4.5

Minimalist GNU for Windows MinGW subsection 4.5
Energy Consumption Terms Abbreviation First Occurrence

Dynamic Energy Consumption DEC subsection 4.2
Other terms Abbreviation First Occurrence

Biks Diagnostics Energy BDE Appendix B
Intel’s Thread Director ITD subsection 2.4
Model-specific-registers MSRs subsection 4.1
Open Multi-Processing OpenMP subsection 3.5

Performance Monitoring Counter PMC subsection 2.4
Speedup Factor SF subsection 2.4

Table 12: Abbreviations used in this work and their first occurrences. In alphabetical order.
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B The Framework

The framework introduced for the experiments in this work, was called Biks Diagnostic Energy (BDE) and
was a command line tool. It was an extension of the work presented in [6]. BDE could be executed in two
ways, as illustrated in Listing 4, where one was with a configuration, and one was with a path to an executable
file.

1 .\ BDEnergyFramework --config path/to/config.json

2

3 .\ BDEnergyFramework --path path/to/file.exe --parameter parameter

Listing 4: An example of how BDE can be started

When using --config, the user specified a path to a valid JSON file formatted like Listing 5. Through
Listing 5, it was possible to specify paths to executable files and assign each executable file with a parameter
in BenchmarkPaths and BenchmarkParameter respectively. It was also possible to specify the affinity of the
benchmark through AllocatedCores, where an empty list represented the use of all cores and the list 1,2
stated core 1 and 2 were used. When multiple affinities were specified, each benchmark was executed on
both. Lastly, AdditionalMetadata could specify relevant aspects of the experiment that could not already be
specified through the configuration.

1 [

2 {
3 "MeasurementInstruments": [ 2 ],

4 "RequiredMeasurements": 30,

5 "BenchmarkPaths": [

6 "path/to/one.exe", "path/to/two.exe"

7 ],

8 "AllocatedCores": [

9 [], [1,2]

10 ],

11 "BenchmarkParameters": [

12 "one_parameter", "two_parameter",

13 ],

14 "UploadToDatabase": true,

15 "BurnInPeriod": 0,

16 "MinimumTemperature": 0,

17 "MaximumTemperature": 100,

18 "DisableWifi": false,

19 "ExperimentNumber": 0,

20 "ExperimentName": "testing -phase",

21 "ConcurrencyLimit": "multi -thread",

22 "BenchmarkType": "microbenchmarks",

23 "Compiler": "clang",

24 "Optimizations": "openmp",

25 "Language": "c++",

26 "StopBackgroundProcesses" : false,

27 "AdditionalMetadata": {}
28 }
29 ]

Listing 5: An example of a valid configuration for BDE

When using the parameters --path, the --parameter was an optional way to provide the executable with
parameters. When using BDE this way, a default configuration was set up, containing all fields in the
configuration, except BenchmarkPath and BenchmarkParameter.
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1 public interface IDutService

2 {

3 public void DisableWifi ();

4 public void EnableWifi ();

5 public List <EMeasuringInstrument > GetMeasuringInstruments ();

6 public string GetOperatingSystem ();

7 public double GetTemperature ();

8 public bool IsAdmin ();

9 public void StopBackgroundProcesses ();

10 }

Listing 6: The DUT interface which allows BDE to work on multiple OSs

Both Windows and Linux were supported on BDE. This was supported through the IDutService seen in
Listing 6, where all OS dependent operations were located.

1 public class MeasuringInstrument

2 {

3

4 public (TimeSeries , Measurement) GetMeasurement ()

5 {

6 var path = GetPath(_measuringInstrument , fileCreatingTime);

7 return ParseData(path);

8 }

9

10 public void Start(DateTime fileCreatingTime)

11 {

12 var path = GetPath(_measuringInstrument , fileCreatingTime);

13

14 StartMeasuringInstruments(path);

15

16 StartTimer ();

17 }

18

19 public void Stop(DateTime date)

20 {

21 StopTimer ();

22 StopMeasuringInstrument ();

23 }

24

25 internal virtual int GetMilisecondsBetweenSamples ()

26 {

27 return 100;

28 }

29

30 internal virtual (TimeSeries , Measurement) ParseData(string path) { }

31

32 internal virtual void StopMeasuringInstrument () { }

33

34 internal virtual void StartMeasuringInstruments(string path) { }

35

36 internal virtual void PerformMeasuring () { }

37 }

Listing 7: The implementation of the different measuring instruments on BDE

BDE also supported multiple measuring instruments, through a parent class MeasuringInstrument in
Listing 7 the measuring instruments could inherit from. MeasuringInstrument implemented a start (line
10) and stop (line 19) method, and a method which retrieved the data measured between the start and stop.
The virtual methods were measuring instrument specific, an could be overwritten by the specific measuring
instrument. This included a start (line 34) and stop (line 32) method, a method to parse the measurement
data in line 30 and a method in line 36 which performed a measurement by default every 100ms. The method
in line 36 was made for measuring instruments like RAPL, where an action is required to read the energy
consumption.

Listing 8 showed how BDE performed measurements given the configuration. In the configuration, the
burn-in period could be set to any positive integer, where if this value is one, the boolean burninApplied

would be set to true, and the measurements would be initialized in line 7. This initialization would, if the
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results should be uploaded to the database, mean BDE would fetch existing results from the database, where
the configuration was the same, and continue where it was left off. Otherwise, an empty list would be returned.
If burninApplied was set to false, the amount of burn-in specified in the configuration would be performed
before initializing the measurements.

1 public void PerformMeasurement(MeasurementConfiguration config)

2 {

3 var measurements = new List <MeasurementContext >();

4 var burninApplied = SetIsBurninApplies(config);

5

6 if (burninApplied)

7 measurements = InitializeMeasurements(config , _machineName);

8

9 do

10 {

11 if (CpuTooHotOrCold(config))

12 Cooldown(config);

13

14 if (config.DisableWifi)

15 _dutService.DisableWifi ();

16

17 PerformMeasurementsForAllConfigs(config , measurements);

18

19 if (burninApplied && config.UploadToDatabase)

20 UploadMeasurementsToDatabase(config , measurements);

21

22 if (! burninApplied && IsBurnInCountAchieved(measurements , config))

23 {

24 measurements = InitializeMeasurements(config , _machineName);

25 burninApplied = true;

26 }

27

28 } while (! EnoughMeasurements(measurements));

29 }

Listing 8: An example of how BDE performs measurements

Next, a do-while loop was entered in line 9, which would execute until the condition EnoughMeasurements

from line 28 was met. Inside the do-while loop, a cooldown would occur in line 12, until the DUT was below
and above the temperature limits specified in the configuration. Once this is achieved, the Wi-Fi/Ethernet is
disabled, and PerformMeasurementsForAllConfigs would then iterate over all measuring instruments and
benchmarks specified, and perform one measurement for all permutations. Afterward, a few checks were
made. If the burn-in period was over, and the configuration stated that the results should be uploaded
to the database, UploadMeasurementsToDatabase was called. If the burn-in period was not over yet, but
IsBurnInCountAchieved is true, the measurements was initialized similarly to line 7, and the boolean
burninIsApplied was set to true, indicating that the burn-in period was over, and the measurements were
about to be taken.
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C The Database

In [6], a MySQL database was used to store the measurements made by the different measuring instruments.
In this work, a similar database was used with some modifications to accommodate the different focus
compared to [6]. The design of the database was illustrated in Figure 10, where the MeasurementCollection

table defines under which circumstances the measurements were made. This includes which measuring
instrument was used, which benchmark was running, which DUT the measurements were made on, whether
or not there was a burn-in period, etc.

MeasuringInstrument

Id : INT
Name : VARCHAR
SampleRate : INT

Configuration

Id : INT
MinTemperature : INT
MaxTemperature : INT
Burnin : INT
AllocatedCores : JSON

Benchmark

Id : INT
Name : VARCHAR
Compiler : VARCHAR
Optimizations : VARCHAR
BenchmarkSize : VARCHAR
Parameter : VARCHAR
Threads : VARCHAR

DeviceUnderTest

Id : INT
Name : VARCHAR
Os : VARCHAR
Env : VARCHAR

MeasurementCollection

Id : INT
Name : VARCHAR
CollectionNumber : INT
ConfigId : INT
BenchmarkId : INT
MeasurementInstrumentId : INT
AdditionalMetadata : JSON

Measurement

Id : INT
Iteration : INT
CollectionId : INT
PackageTemperatureBegin : DOUBLE
PackageTemperatureEnd : DOUBLE
Execution time : INT
DramEnergyInJoules : DOUBLE
CpuEnergyInJoules : DOUBLE
GpuEnergyInJoules : DOUBLE
BeginTime : TIMESTAMP
EndTime : TIMESTAMP
AdditionalMetadata : JSON

Sample

Id : INT
CollectionId : INT
PackageTemperature
: DOUBLE
ElapsedTime : DOUBLE
ProcessorPowerInWatt
: DOUBLE
DramEnergyInJoules
: DOUBLE
CpuEnergyInJoules : DOUBLE
CpuUtilization : DOUBLE
AdditionalMetadata : JSON

0..*

1

0..*

1
0..*

1

0..*1

1

1..*

1

1..*

1 1..*

Figure 10: An UML diagram representing the tables in the SQL database

In the MeasurementCollection, the columns CollectionNumber and Name represented which experiment
the measurement was from, and the name of the experiment. The Measurement contained values for the entire
energy consumption during the entire execution of one benchmark, while the Sample represented samples
taken during the execution of the benchmark. This meant for one row in the MeasurementCollection table,
there could exist one to many rows in Measurement. Each row in Measurement was associated with multiple
rows in the Sample table, where the samples would be a time-series illustrating the energy consumption over
time.
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D PCMark 10

Given issues with some scenarios on PCM, some scenarios were excluded for the DUTs, where the excluded
scenarios were not the same across both DUTs. The different scenarios and whether they are included are
shown on Tables 13 and 14. Further detail about the workloads can be found in [53]. PCM was presented in
subsection 4.6, while the issues were presented in Section 6.5.

Essentials Productivity Digital Content Creation
App Start-up Writing Photo Editing

Chromium
Firefox

LibreOffice Writer
GIMP

×
×
×
×

Writing simulation × Editing one photo
Editing a batch of photos

!

!

Web Browsing Spreadsheets Video Editing
Social media

Online shopping
Map

Video 1080p
Video 2160p

×
×
×
×
×

Common use
Power use (More complex)

!

!

Downscaling
Sharpening

Deshaking filtering

!

!

!

Video Conferencing Rendering and Visualization
Private call
Group call

!

!

Visualization of a 3D model
Calculating a simulation

!

!

Table 13: List of PCM benchmarks used on DUT1.

Essentials Productivity Digital Content Creation
App Start-up Writing Photo Editing

Chromium
Firefox

LibreOffice Writer
GIMP

×
×
×
×

Writing simulation × Editing one photo
Editing a batch of photos

×
×

Web Browsing Spreadsheets Video Editing

Social media
Online shopping

Map
Video 1080p
Video 2160p

!

!

!

!

!

Common use
Power use (More complex)

×
×

Downscaling
Sharpening

Deshaking filtering

!

!

!

Video Conferencing Rendering and Visualization
Private call
Group call

!

!

Visualization of a 3D model
Calculating a simulation

!

!

Table 14: List of PCM benchmarks used on DUT2.
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E Experiment One

This section illustrated the measurements made for the first experiment, where four different C++ compilers
were compared. The first experiment was presented in subsection 5.1.
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The DEC of the CPU

Figure 11: CPU measurements by IPG on DUT 1 for test case(s) MB
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Figure 12: CPU measurements by IPG on DUT 1 for test case(s) MB

0 5 10 15 20 25 30 35 40 45 50

Clang

oneAPI

MinGW

MSVC

Execution Time (s)

The Execution Time

Figure 13: Execution time measurements by IPG on DUT 1 for test case(s) MB
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F Experiment Two

This section illustrated the measurements made for the second experiment, which aimed to identify the
positive and negative aspect of the different measuring instruments. The second experiment was presented in
subsection 5.2.
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(a) DEC
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(b) Execution Time

Figure 14: DEC and execution time for DUT 2, where FR and MB were measured with different measuring
instruments
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Figure 15: The execution time for DUT 1, where both benchmarks are compiled on oneAPI
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G Correlation from Experiment Two

This section illustrated the correlation heatmap from the second experiment in subsection 5.2.

(a) DUT 1 (b) DUT 2

Figure 16: Heatmap showing the correlation coefficient between all of the measurement instruments on
Windows for the MB benchmark

(a) DUT 1 (b) DUT 2

Figure 17: Heatmap showing the correlation coefficient between all of the measurement instruments on
Windows for the FR benchmark
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H Initial Measurements in Experiment Two

This section illustrated the required measurements for the different measuring instruments from the second
experiment, which were estimated using Cochran’s formula for a desired confidence level of 95% and a margin
of error of 0.03%. The second experiment was presented in subsection 5.2.

Initial Measurements

Name FR MB
Plug (W) 2.474 1.790
Plug (L) 5 4.818

Clamp (W) 16.908 2.855
Clamp (L) 12.837 11.518

RAPL 52 53
SCAP 459 74
SCAPI 453 153

IPG 714 216
LHM 604 45

(a) DUT 1

Initial Measurements

Name FR MB
Plug (W) 916 1.088
Plug (L) 738 1056

Clamp (W) 36.558 44.106
Clamp (L) 2.869 7.021

RAPL 1.298 4.340
SCAP 416 1.478
SCAPI 840 3.095

IPG 379 88
LHM 379 31

(b) DUT 2

Figure 18: The required samples to gain confidence in the measurements made by the different measuring
instruments on both OSs

I Cochran’s Formula Evolution for Experiment Two

This section illustrated the evolution of how many measurements were required, as estimated using
Cochran’s formula, for an increasing number of measurements. The graph was used in the second experiment,
presented in subsection 5.2.
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J Experiment Three

This section illustrated the results from the third experiment, where microbenchmarks were executed on
one core at a time. The third experiment was presented in subsection 5.3
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Figure 19: DEC and execution time for DUT 1, where NB and SN were executed on one core at a time

0 20 40 60 80

0

1

2

3

4

5

6

7

8

9

DEC (Joules)

C
or

e

NB SN

(a) DEC

0 20 40 60

0

1

2

3

4

5

6

7

8

9

Execution Time (s)

C
or

e

NB SN

(b) Execution time

Figure 20: DEC and execution time for DUT 2, where NB and SN were executed on one core at a time
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K Measurements Required in Experiment Three Cores

This section illustrated the required measurements for IPG when measuring the energy consumption on
different cores, estimated using Cochran’s formula for a desired confidence level of 95% and a margin of error
of 0.03%. The values were used for the third experiment, presented in subsection 5.3.

Initial Measurements

Name NB SN
Core 0 5.162 1.991
Core 1 11.771 1.999
Core 2 5.119 2.047
Core 3 4.678 2.039
Core 4 4.597 1.979
Core 5 5.005 2.082
Core 6 4.622 1.852
Core 7 4.996 1.945

(a) DUT 1

Initial Measurements

Name NB SN
Core 0 4 36
Core 1 7 33
Core 2 1 35
Core 3 1 28
Core 4 3 33
Core 5 2 30
Core 6 17 115
Core 7 22 99
Core 8 18 121
Core 9 39 92

(b) DUT 2

Figure 21: The required samples to gain confidence in the measurements made by IPG in different cores

L Measurements Required in Experiment Three Macrobenchmarks

This section illustrated the required measurements for IPG when measuring the energy consumption of
the macrobenchmarks, estimated using Cochran’s formula for a desired confidence level of 95% and a margin
of error of 0.03%. These numbers were used for the third experiment, presented in subsection 5.3.

Initial Measurements

Name 3DM PCM
1 Core 1207 630
2 Cores 1470 579
3 Cores 1531 770
4 Cores 1524 913
5 Cores 2054 820
6 Cores 2359 883
7 Cores 1810 997
8 Cores 1391 811

(a) DUT 1

Initial Measurements

Name 3DM PCM
1 Core 22
2 Cores 183 84
3 Cores 135 80
4 Cores 56 71
5 Cores 79 54
6 Cores 53 78
7 Cores 25 76
8 Cores 20 78
9 Cores 42 77

10 Cores 44 100

(b) DUT 2

Figure 22: The required samples to gain confidence in the measurements made by IPG for the macrobench-
marks
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M Results for Macrobenchmarks in the Third Experiment

This section illustrated the energy consumption for an increasing amount of cores, used in the third
experiment, presented in subsection 5.3.
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Figure 23: The evolution of the DEC (blue), DEC per second (red) and execution time (green) as more cores
are allocated to 3DM on DUT 1
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Figure 24: The evolution of the DEC (blue), DEC per second (red) and execution time (green) as more cores
are allocated to PCM on DUT 1
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Measurements Requied in Experiment Three P- vs. E-Cores

This section illustrated how many measurements were required from IPG when the energy consumption
of PCM on four P-cores, four E-cores, or two of each was measured. These results were used in the the third
experiment, presented in subsection 5.3

Initial Measurements

Name PCM
4P 131
4E 125

2P2E 44

Table 15: The required samples to gain confidence in the measurements made by IPG when comparing P- and
E-cores for DUT 2

N Results for P- vs. E-Cores in Third Experiment

This section illustrated the results obtained when the performance of four P-cores, four E-cores, or two of
each when running PCM on DUT 2. The results were referenced in subsection 5.3
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Figure 25: CPU measurements by IPG on DUT 2 for test case(s) PCM
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O Energy Consumption Over Time

This section illustrated how the energy consumption of both macrobenchmarks evolved over time for DUT
2. The analysis was used in the third experiment in subsection 5.3, and compares the energy consumption for
two and ten cores, to show the difference.
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Figure 26: A timeseries of the energy consumption over time for DUT 2 when running 3DM for all cores

Measurements for 3DM were illustrated in Figure 26 and Figure 27 for both two and ten cores, both have a
similar startup period until 14 seconds, after which the benchmark started. On ten cores, the load was on 25
watts for 18 seconds, while for two cores the energy consumption was on 12 watts for 60 seconds.
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Figure 27: A timeseries of the energy consumption over time for DUT 2 when running 3DM on two cores
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Figure 28: A timeseries of the energy consumption over time for DUT 2 when running PCM for all cores

Measurements for PCM were illustrated in Figure 28 and Figure 29. Compared to 3DM, there were smaller
differences between two and ten cores. One cause was that PCM required fewer resources, meaning additional
resources had diminishing returns. When looking at Figure 29, it was observed that the peak wattage usage of
12 for 3DM on two cores was exceeded during runtime. This occurred between 225s − 235s, 370s − 380s, and
570s − 620s, which amounts to 9% of the total runtime. This indicated that the affinity was only set for some
processes related to PCM, which meant that too many resources were allocated to some processes. We could
not solve this, meaning the performance gained when allocating more cores to PCM represents a lower limit.
Because if the affinity were set correctly, the execution time would be higher on a few cores, resulting in more
significant decreases in execution time when allocating additional cores.
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Figure 29: A timeseries of the energy consumption over time for DUT 2 when running PCM on two cores
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P C++ Compiler Analysis

Different compilers were compared in the first experiment in subsection 5.1. Through the analysis it found
that both the energy consumption and measurements required deviated between compilers. The largest
difference was found when comparing oneAPI against the other compilers, where one potential cause was if
oneAPI had removed the entire benchmark as dead code.[62]. An analysis was conducted on MB, where the
executables compiled by oneAPI and MinGW were decompiled to compare the instructions used.

The assembly code showed that oneAPI used several function calls unique for Intel processors such as
intel new feature proc init and intel fast memset, where both function calls were part of Intel’s

default C++ libraries.[63] MinGW used more general-purpose registers and utilized the C++ Standard Library
more than oneAPI.

1 push r15 {__saved_r15}

2 push r14 {__saved_r14}

3 push r13 {__saved_r13}

4 push r12 {__saved_r12}

5 push rbp {__saved_rbp}

6 push rdi {__saved_rdi}

7 push rsi {__saved_rsi}

8 push rbx {__saved_rbx}

9 sub rsp , 0x228

10 movaps xmmword [rsp+0x200 {__saved_zmm6 }],

xmm6

11 movaps xmmword [rsp+0x210 {__saved_zmm7 }],

xmm7

12 mov r13 , rcx

13 mov rcx , qword [rcx+0x20]

14 mov rax , qword [rcx+0x8]

15 movsd xmm7 , qword [r13+0x10]

16 subsd xmm7 , qword [r13]

17 test rax , rax

18 js 0x140003a75

19

20

21

22

23

24

25

26

27

Figure 30: MinGW assembly showing the setup for the
mandelbrot function

1 push ebp {__saved_ebp}

2 mov ebp , esp {__saved_ebp}

3 push ebx {__saved_ebx}

4 push edi {__saved_edi}

5 push esi {__saved_esi}

6 and esp , 0xffffffe0

7 sub esp , 0x320

8 mov eax , dword [ebp+0x8 {_RawVals

}]

9 vmovsd xmm0 , qword [eax+0x10]

10 vmovsd xmm1 , qword [eax+0x18]

11 vsubsd xmm2 , xmm0 , qword [eax]

12 vsubsd xmm0 , xmm1 , qword [eax+0x8]

13 vmovsd qword [esp+0x1f8 {var_148}],

xmm0

14 mov eax , dword [eax+0x20]

15 mov ecx , dword [eax+0x4]

16 vmovss xmm3 , dword [eax+0x4]

17 vmovss xmm0 , dword [eax+0x8]

18 xor edi , edi {0x0}

19 cmp ecx , 0x8

20 xmmword [esp+0xa0 {var_2a0}], xmm0

21 jae 0x408fcb

22

23

Figure 31: oneAPI assembly showing the setup for the
mandelbrot function

For Mandelbrot, MinGW only used standard X86 instruction[64] to calculate the floating points and xmm

registers to store the values. Whereas, oneAPI’s implementation utilized Advance Vector extensions (AVX)[65]
to perform the calculations and frequently utilized ymm registers instead of xmm. The usage of AVX increased
calculation speed as it allowed for multiple calculations in parallel. The AVX technology is a set of instructions
introduced by Intel to enhance the performance of floating-point-intensive applications[65]. Compared to
MinGW, oneAPI was better at optimizing the code for the AVX architecture and taking full advantage of
the processing power of the CPU. This usage of AVX was illustrated in Figure 30 and Figure 31, where
the differences between MinGW and oneAPIs way of handling the setup for the Mandelbrot function were
illustrated. The listings show the two approaches to load values into local variables used by oneAPI and
MinGW. When comparing the two approaches, oneAPI used vectorized instructions, such as vmovsd, from
AVX, while MinGW used simple instructions, such as movsd. The Vectorized instructions were better for
execution time, as this operation could be performed simultaneously on multiple values.

oneAPIs use of parallel operations and more minor optimizations was likely the reason it achieved a lower
execution time.
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Q Energy usage trends analysis

Two hypotheses were defined to explore if reactive energy consumption caused DEC consumption to
decrease. (H1:) noise on the electrical network could interfere with the phase synchronization. This could be due
to many machines being connected to the same electrical network and disrupting the harmonics of the
network[66], which can be caused by non-linear loads. A non-linear load is essentially a device with changing
capacitance such as most everyday devices except light bulbs and such. It is mainly caused by electronic
devices like computers, which convert AC power to DC power. The interference caused by non-linear loads
can lead to increased energy consumption, equipment damage, and instability of the power system. The
PSU could have generated reactive energy because it was out of phase with the electrical network, where a
reduction in noise could help synchronize again. Therefore, the observed changes in energy consumption may
be related to the time of the day and week where the measurements were taken, with consumption decreasing
when fewer devices were connected to the electrical network during the night and weekends.

H2: The DUTs’ PSUs may be correcting the phase over time with a Power Factor Correction circuit. According to
[67], there were two main types of Power Factor Correction: passive and active. The behavior observed in the
results could result from an active Power Factor Correction circuit. In order to explore H2, an email was sent
to the manufacturers of both PSUs, to which Cougar did not respond, while Corsair confirmed the PSU had
Power Factor Correction but would not give any more details. Therefore we could not determine which type
of Power Factor Correction was used.
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13/5/23 → 14/5/23 − DUT2WW
15/5/23 → 16/5/23 − DUT2W

14/5/23 → 15/5/23 − DUT2WW
17/5/23 → 18/5/23 − DUT2L

Figure 32: This shows the difference in energy consumbtion, between working hours and non-working hours,
for DUT2. The red represents the working hours and the blue represents the non-working hours. The first
letter is the OS and the second denoted if it is a weekend. W = Windows, L = ”Linux”

To explore H1 regarding electrical network noise interfering with phase synchronization, measurements
were analyzed for both DUTs and OSs over 24 hour periods, where the DUTs executed the same benchmark.
The data was then categorized into working hours (7 : 00 to 16 : 00) and non-working hours (16 : 00 to 7 : 00),
where no significant variation in power consumption peaks between the two categories was found. However,
periods of low energy usage were higher during working hours, which suggested that they did not affect
benchmark measurements but did impact idle case measurements. This observation aligned with the results
presented in Figure 3, which represent the DEC values. One reason this trend might be easier to see on the
idle case is that PSUs are less efficient at low loads, which causes reactive energy to contribute more to overall
usage.[68]
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Figure 33: This shows the difference in energy consumbtion, between working hours and non-working hours,
for DUT1. The red represents the working hours and the blue represents the non-working hours

The impact of reactive power on low loads was tested by making idle measurements on both DUTs during
weekdays and weekends, with the results presented in Figures 32 and 33. The results showed differences
between the energy consumption between working and non-working hours, although minimal. It could also
be observed from the results that the same pattern is present during the weekends, but to a lesser degree.
It should be noted that the recorded measurements were taken close to the end of a semester, which could
influence the results. For DUT2 in Figure 32, when comparing OSs, Windows had a more considerable
difference between peaks and valleys, occurring approximately once every two hours. The reason why these
spikes occur is likely scheduling jobs.Why these peaks only occurred on DUT 2, even with the same versions
of Windows, is a subject for future work.

A similar observation of varying energy consumption between working and non-working hours has, to our
knowledge, yet to be addressed in existing works[55, 59, 60]. While these studies were not directly comparable,
we anticipated some resemblance, indicating that previous research utilizing hardware measurements might
have needed to be more extensive, to reveal this trend.

Through this analysis, it was found that there is a relationship between energy consumption and the time
of day. It seemed to be affected by the number of people on the electrical network, as suggested by H1. These
observations were made on two DUTs and two OSs over multiple days, showing the same pattern, ideally
more measurements would have been made, but due to time constraints it is limited. When comparing day
and night, the energy consumption was higher during working hours compared to weekends and nights, but
whether the cause is reactive energy or some other unaccounted-for factor is a subject for future work.
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R Estimated Speedup Using Amdahl’s Law

We estimated Amdahl’s Law on the 3DM benchmark on DUT 2, which required us to know the paralleliz-
able part of the benchmark. The parallelizable part had to be estimated because we did not have the source
code for the benchmark. Each measurement starts with a period where the system is idle, then 3DM executes,
followed by another period of the DUT being idle. We assumed that the period where 3DM is executed is
the parallelizable part of the whole measurement, while the periods before and after are serial. Based on
this assumption, we gathered estimates of the parallelizable and serial parts of the measurement. Then we
computed the estimated speedup and compared it with the actual speedup.
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Figure 34: Speedup up and Average Watts for DUT2 on 3DM

On Figure 34a, the estimated and actual speedup was illustrated at different amounts of cores. From
using 1-6 cores, the benchmark was executed using P-cores, while from 7-10, progressively more E-cores were
utilized. This can be observed as the estimated and actual speedup follows closely until the DUT uses the
E-cores. It should be noted that Amdahl’s law is not meant for asymmetric CPUs and, as such, does not
account for the difference in computational power of the E-cores. The effect of this was that for 7-10 cores, the
estimated speedup did not follow the actual speedup. The actual speedup results showed that the E-cores
could not contribute to speeding up the benchmark. On Figure 34b, it was illustrated that after six cores, the
average watts increased slower than from 1 to 6 cores, while the E-cores did not provide a speedup on the
benchmark, they also did not increase the energy consumption as much as the P-cores.

S ChatGPT

In this work, ChatGPT, the language model made by OpenAI, has been used to a limited extent to replace
Google search. This for example included assistance to setup Scaphandre given the limited documentation,
and assistance with C++ given our limited experience with this language. ChatGPT also proved useful when
learning a new domain by giving the keywords that could be used for further research on Google. ChatGPT
has not given us any information we could not have found on Google, and has not been used to analyze any
results or write any of this project.
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