
LISTENING BEYOND WORDS:
TRANSFER LEARNING FOR AUDIO

DEEPFAKE DETECTION

Master’s Thesis

Gustav A.P. Bonvang

Aalborg University
M.Sc.Eng. Cyber Security

Spring Semester 2023

Department of Electronic Systems
Aalborg University
Frederikskaj 12, 2450 København SV
www.es.aau.dk

Title:
Listening Beyond Words: Transfer Learning for Audio Deepfake Detection

Participant(s):
Gustav A.P. Bonvang

Supervisors:
Jens Myrup Pedersen
Ashutosh Dhar Dwivedi

Number of pages: 51

Project Type:
Master’s Thesis

Project Period:
Spring Semester 2023

Date Completeted:
June 1, 2023

Abstract:
This project investigates the topic of audio deepfake detection. First, existing
research in the field is examined through which it is found that residual neu-
ral networks and the use of transfer learning have the potential to perform
well in the context of audio deepfake detection. Thus, a novel approach to
the task is proposed which is based on the ResNet50 network architecture
and the use of transfer learning. Models are trained and evaluated using
the In-The-Wild dataset, which is converted to a set of mel spectrograms and
rescaled prio to use in the neural network. Several models are trained using
different hyperparameters, including a range of baseline models which do
not use transfer learning. The best model used transfer learning and achieved
an accuracy of 96.7% and an F1-score of 95.5%, while a comparison to the
non-transfer learning baseline models showed an average 21.90% increase
in accuracy and 44.01% increase in F1-score when using transfer learning.

This work is licensed under CC BY-SA 4.0 cba

All figures and illustrations were created by the author unless otherwise stated in caption.

https://www.es.aau.dk
https://creativecommons.org/licenses/by-sa/4.0/

TABLE OF CONTENTS

Preface iv

1 Introduction 1
1.1 Initial Problem Statement . 2

2 Problem Analysis 3
2.1 Audio Deepfake Classification & Generation 3
2.2 Detection Methods . 5

2.2.1 ML-based approaches . 6
2.2.2 DL-based approaches . 6

2.3 Residual Neural Networks . 8
2.4 Transfer Learning . 9
2.5 Summary & Problem Statement . 11

2.5.1 Scoping & Focus . 12

3 Design & Implementation 13
3.1 Solution Overview . 13
3.2 Design Choices & Setup . 14

3.2.1 Training Data . 14
3.2.2 Machine Learning Framework & Architecture 15
3.2.3 Development Setup . 17

3.3 Spectrogram Generation . 18
3.3.1 The mel scale . 20
3.3.2 Implementation . 21

3.4 Data Loading & Preprocessing . 24
3.5 Model Design & Training . 27
3.6 Model Evaluation . 30

4 Test & Evaluation 32
4.1 Methodology . 32

4.1.1 Evaluation Metrics . 33
4.2 Results . 35
4.3 Discussion . 37
4.4 Final Thoughts . 38

5 Conclusion 40

Bibliography 41

A Code 45

iii

PREFACE

When considering the role that internet memes have played in my last five years as a
university student, it seems only appropriate that my final project should be inspired
by one. And while an Instagram reel of presidents swearing at each other while
playing Minecraft together [1] might seem like harmless fun, it also highlights the
dangers of how sophisticated generative AI models have become.

This thesis seeks to add to the research already conducted in the field by proposing a
solution which utilises residual neural networks and transfer learning – tools in the
deep learning toolbox which have shown great potential in related fields of research.

As my years as a student are drawing to an end, I am happy to have been able to
immerse myself in a research field this interesting and relevant for my final project.
Examining the research of previous work and the various creative approaches pre-
sented within it has been inspiring, and I am looking forward to watching the further
developments which the future will undeniably bring.

Finally, I would like to thank my friends J and K for their professional sparring and
motivational support during the course of the project. Your help has been invaluable,
and I am lucky to have friends like you.

Copenhagen, June 1, 2023

Gustav A.P. Bonvang
gbonva18@student.aau.dk

iv

NOMENCLATURE

ACC Accuracy (as evaluation metric)
AI Artificial Intelligence

ANN Artificial Neural Network
ASV Automatic Speaker Verification
AUC Area Under Curve

BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network

DL Deep Learning
EER Equal Error Rate
FFT Fast Fourier Transform

GAN General Adversarial Network
KNN K-Nearest Neighbors

LR Logistic Regression
LSTM Long Short-Term Memory

ML Machine Learning
PRE Precision (as evaluation metric)

QSVM Quadratic Support Vector Machine
REC Recall (as evaluation metric)
RNN Recurrent Neural Network

ResNet Residual Neural Network
SGD Stochastic Gradient Descent

STFT Short-Time Fourier Transform
SVM Support Vector Machine
TTS Text-to-speech
TTT Time To Train

t-DCF Tandem Detection Cost Function

v

CHAPTER 1

INTRODUCTION

Audio deepfakes refer to artificially generated audio which is created through the
use of machine learning algorithms to replicate the voice of a real person. These
techniques use deep neural networks to analyse and learn the unique patterns and
characteristics of a person’s voice, such as intonation, accent, and speech patterns,
and then create new audio recordings that mimic the original voice with a high
degree of accuracy [2].

Audio deepfakes have become a growing concern in recent years due to the poten-
tial for misuse, such as impersonation with criminal or political intent. An example
of the former occurred in 2019 when cyber criminals called the CEO of a UK-based
energy company, impersonating the CEO of the company’s German parent company.
This resulted in the CEO of the British company transferring C220 000 to an account
controlled by the attackers in the belief that they were transferring money to a Hun-
garian supplier to the company [3]. A 2022 survey conducted by VMware [4] found
that deepfake attacks were on the rise, with 66% of respondents reporting having
experienced them. Of the respondents in question, 58% reported video as the most
common type of deepfake experienced, while 42% reported audio as the most com-
mon type. Delivery methods included both email, mobile messaging, voice and social
media [4].

In February 2023, a series of videos surfaced on the social media platform TikTok,
in which current and previous presidents of the United States appear to be playing
the video game Minecraft while voice chatting with each other and other prominent
public figures such as political commentator Ben Shapiro and UFC commentator and
podcaster Joe Rogan [1]. The videos utilise generative AI to mimic the voices of the
public figures in situations which often involve bickering, profanity and controversial
opinions. While this might seem harmless in an entertainment context, it illustrates
a risk introduced by the increasingly sophisticated generative AI models which have
started to appear in recent years – the potential for misuse to influence political
agendas. An example of the gravity of this issue was seen in October 2019, when
the Governor of California signed Assembly Bill 730 [5] – a bill which, ahead of the
2020 Presidential Elections, would:

[...] prohibit a person, committee, or other entity, within 60 days of
an election at which a candidate for elective office will appear on the

1

2 Chapter 1. Introduction

ballot, from distributing with actual malice materially deceptive audio or
visual media of the candidate with the intent to injure the candidate’s
reputation or to deceive a voter into voting for or against the candidate,
unless the media includes a disclosure stating that the media has been
manipulated [5].

Deepfake attacks do not only target companies and politicians. In April 2023, Danish
newspaper Berlingske printed a story about a Canadian woman who was deceived by
a criminal who called her claiming to be her grandson, using an AI generated model
trained on audio clips of his voice [6]. The attacker posing as the grandson claimed
to have been involved in a traffic accident, upon which the police had arrested him
after finding illegal substances in the car. Another voice was then used to imperson-
ate a police officer who instructed the woman on how to post bail, resulting with
her transferring $58 350 to the attacker’s account. Incidents like these have led the
Federal Trade Commission to warn consumers about these kinds of calls from family
members, recommending that they verify family members through other forms of
communication [7].

1.1 Initial Problem Statement

With audio deepfakes posing a threat to both companies, political persons and pri-
vate individuals, the need for a method for detecting deep fake attacks is becoming
increasingly evident. As such, the main focus of this report will be surveying the
existing research in the field and suggesting a method for audio deepfake detection.

This leads to the following initial problem statement:

How are audio deepfakes generated, and how can they be detected?
What are existing methods in the field, how effective are they, and how
can they be improved?

This problem statement serves as a basis for chapter 2, which seeks to answer the
questions presented in it. Said chapter then concludes in a final problem statement
which serves as the basis for the remaining part of the project, in which a new method
for audio deepfake detection is presented.

CHAPTER 2

PROBLEM ANALYSIS

This chapter examines the questions presented in the initial problem statement. First, a
high-level introduction to deepfake generation is presented, upon which the concept of
audio deepfake detection is investigated in further detail by looking at related literature.
Relevant background information and theory is introduced and explained along the way,
before the chapter concludes with a final problem statement, which serves as the basis
for the remainder of the project.

2.1 Audio Deepfake Classification & Generation

Generally, spoofed audio can be divided into two main categories: AI generated and
non AI generated. The non AI generated types include replay and mimicking, which
refers to replaying recorded clips of a person’s voice which may or may not have
been altered, for nefarious purposes. While this type of attack has also been been
proven detectable using deep learning techniques [8], non AI generated approaches
are left out of the scope of this project, which instead focuses on deepfakes – spoofed
audio created using deep neural networks. The focus area of the project is illustrated
in red in figure 2.1.

Figure 2.1: Types of audio spoofing attacks. Figure inspired by Khanjani et al. [2]

AI generated spoofed audio, hereafter referred to as audio deepfakes, is generally
divided into two categories, as shown in figure 2.1: Voice conversion models and

3

4 Chapter 2. Problem Analysis

(a) General approach for conversion based deepfake generation

(b) General approach for synthesis based deepfake generation

Figure 2.2: The two main approaches to audio deepfake generation. Figure inspired by Almutairi and
Elgibreen [9].

voice synthesis models, also referred to as TTS (Text-To-Speech) models. The main
difference between the two is that voice conversion models takes audio as a direct
input and converts it to audio mimicking another persons voice, while TTS models
are trained to accept text as an input, generating spoofed audio mimicking the voice
of the target. Figure 2.2 illustrates the differences between the two.

Common for the two types is that they are generated using deep learning networks.
In a 2023 survey on audio deepfake generation and detection, Khanjani et al. found
that audio deepfakes are commonly generated using combinations of four types of
neural networks: Convolutional neural networks (CNN), recurrent neural networks
(RNN), general adversarial networks (GAN) and encoder-decoder (ED) networks
[2].

Convolutional Neural Networks
A convolutional neural network (CNN) is a type of artificial neural network specifi-
cally designed for processing and analysing structured grid-like data, such as images
and videos. The key component of a CNN is the convolutional layer, which applies
filters or kernels to input data to extract relevant features. These filters excel at de-
tecting local patterns and perform convolution operations to produce feature maps.
CNNs are commonly used in the image classification realm but have also proven ap-
plicable in audio processing tasks. In this case, images known as spectrograms are
typically generated from audio and fed to a CNN. This concept is further explored in
section 3.3.

2.2. Detection Methods 5

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of neural network that are well-suited
for sequential data processing, making them suitable for various tasks in audio pro-
cessing. RNNs have a unique ability to capture temporal dependencies in sequential
data by maintaining an internal memory or "hidden state" that can persist informa-
tion across time steps. This characteristic makes RNNs effective for processing audio
signals, as audio data is inherently sequential in nature.

Generative Adversarial Networks
Generative Adversarial Networks (GANs) are popular in the world of deepfake gen-
eration due to their ability to produce realistic image, video and audio material.
The concept of a GAN consists of two key components: a generator network and a
discriminator network. The generator network generates synthetic data, while the
discriminator network evaluates the authenticity of both real and generated data.
GANs work through an adversarial training process where the generator and dis-
criminator networks compete against each other, leading to the refinement of the
generator’s ability to produce more realistic data, as well as the discriminators abil-
ity to distinguish it.

Encoder-Decoder Networks
Encoder-Decoder (ED) networks, are another type of neural network commonly used
in audio deepfake generation. This kind of network consists of an encoder and a
decoder, which work together to transform input audio data into a desired output
representation. As such, they are most commonly used in conversion based deepfake
generation. In this context, ED networks are employed to convert the voice of one
speaker to mimic the voice of another speaker. The encoder part of the network
extracts relevant features from the input audio, while the decoder part synthesises a
new audio signal that resembles the desired target speaker.

While deepfake generation methods is an entire field of research in itself, only a
brief introduction is given here, as this project will focus mainly on the detection
aspect. This prompts a closer look at existing methods for audio deepfake detection
presented in related literature.

2.2 Detection Methods

While most focus within the realm of deepfake detection focuses on image and video
material [2], efforts have been made to develop solutions for audio deepfake de-
tection as well. These efforts can generally be divided into two main categories:
Those employing traditional machine learning (ML) methods and those using a deep
learning (DL) based approach.

6 Chapter 2. Problem Analysis

2.2.1 ML-based approaches

Rodríguez-Ortega et al. [10] proposed a logistic regression (LR) approach by ex-
tracting entropy features of bona-fide and spoofed audio and training a model to
distinguish between them, achieving an accuracy of 0.98 and correctly predicting all
instances of spoofed audio. This approach however suffered from a high need for
manual pre-processing. The researchers also published the dataset that they created
under the name H-Voice[11].

Singh and Singh [12] later examined a series of different ML classifiers and com-
pared their performance for both binary and multi-class classification scenarios. They
found that the best performing classifier was the quadratic support vector machine
(QSVM) for binary classification, which achieved an accuracy of 0.9756 and hence
outperformed both the linear discriminant, quadratic discriminant, linear support
vector machine (SVM), weighted K-nearest neighbors (KNN), boosted trees ensem-
ble and LR models which were also trained.

Liu et al. [13] proposed a way to detect fake stereo audio, in which they imple-
mented and compared an SVM approach and a deep learning approach utilising a
custom designed convolutional neural network (CNN). They found that while both
models performed well, the CNN was more robust than the SVM. Furthermore, the
SVM suffered from the same need for manual pre-processing of the data as the LR
approach suggested by Rodríguez-Ortega et al. [10].

Based on the existing research focusing on ML-based approaches, it seems that DL-
based models might have some advantages over traditional ML-based models in
terms of both robustness and less need for pre-processing. This prompts a deeper
look into more of the existing DL-based solutions.

2.2.2 DL-based approaches

DL-based approaches differ from traditional ML approaches in several ways. DL
models have more complex architectures with interconnected layers, allowing them
to learn intricate patterns in the training data. DL models can combine feature ex-
traction and classification, significantly reducing the need for manual pre-processing
that exists with traditional ML-based approaches. While DL-based models typically
work well with large amounts of data due to efficient hardware utilisation and opti-
mization algorithms avaible, they also typically require more training data to achieve
high performance.

Generally, most research in DL methods for audio deepfake detection uses variants

2.2. Detection Methods 7

of either recurrent neural networks (RNN) or convolutional neural networks (CNN).
RNNs are well-suited for sequential data processing, making them suitable for tasks
involving audio, such as speech recognition or music generation. They can capture
temporal dependencies and handle variable-length inputs. RNNs process audio se-
quentially, considering the context of previous inputs to make predictions. CNNs,
meanwhile, are primarily designed for spatial data processing such as images. How-
ever, they can also be applied to audio recognition tasks by treating audio as a spec-
trogram or histogram. An example of the latter was proposed by Ballesteros et al.
[14] who developed a model called Deep4SNet – a CNN-based classifier for analysing
audio histograms, which achieved a global accuracy of 0.985 as well as a precision
of 0.985 and recall of 0.944 for deep-voice based recordings.

In general, CNNs excel at capturing local patterns and features, making them use-
ful in audio classification, and they can efficiently process large input volumes and
extract hierarchical representations. However, they may not capture long-term tem-
poral dependencies as effectively as RNNs.

Lataifeh et al. [15] compared the performance of the bidirectional long short-term
memory (BiLSTM) RNN variant, a CNN and traditional ML-based approaches for
deepfake detection. While both the BiLSTM and CNN models performed well (avg.
F1-scores of 0.9776 and 0.9744 during validation, respectively), it was found that
the CNN was the best model for the task when evaluated on a test data set. There,
the CNN model achieved an accuracy of 0.9433 while the BiLSTM model achieved
an accuracy of 0.9100.

While both RNNs and CNNs are viable approaches for audio deepfake detection, they
can also be combined to utilise the qualities of them both. This was demonstrated
by Chintha et al. [16] who developed a model called CRNN-Spoof which combines
a CNN model and a BiLSTM model to classify audio deepfakes. This approach was
considered a success with a 4.27% equal error rate (EER) using the ASVspoof 2019
dataset [17]. Wijethunga et al. [18] demonstrated a similar method of combining
CNNs and RNNs and achieved a success rate of 94% in audio deepfake detection.

Another approach proposed by Subramani and Rao [19] used only CNN models,
specifically the EfficientCNN and RES-EfficientCNN, the latter of which is a version
of the former which utilises residual connections (explained in further detail in sec-
tion 2.3). They achieved F1-scores of 97.61% for the RES-EfficientCNN model and
94.14% for the EfficientCNN model, illustrating that residual connections can im-
prove performance when using CNNs for deepfake detection. This prompts a closer
look into what makes residual neural networks unique and their use in the audio
deep learning domain.

8 Chapter 2. Problem Analysis

2.3 Residual Neural Networks

A residual neural network, or ResNet, is a type of convolutional neural network
that learns residual functions with reference to the layer inputs. The concept was
developed by He et al. [20] and won the ImageNet 2015 competition [21].

The core idea of ResNets is to use residual connections that allow information to by-
pass certain layers and be directly propagated to subsequent layers. This is achieved
by adding residual connections, also often referred to as skip connections, that connect
earlier layers to deeper layers. By doing so, ResNets enable a direct flow of infor-
mation from shallower layers to deeper layers in the model, facilitating the training
process. The concept of a skip connection is illustrated in figure 2.3.

Figure 2.3: An example of a skip connection skipping two layers. Figure by "LunarLullaby" [22],
licensed under CC BY-SA 4.0.

Residual connections help reduce the degradation problem, where deeper networks
start to perform worse than shallower networks due to the difficulty of optimising
deep architectures. With residual connections, it becomes easier for the network to
learn residual mappings, which capture the difference between the desired output
and the current output of a layer. By learning these residual mappings, the network
can better adapt and improve its predictions as the depth increases.

ResNets have been adopted for use in the audio recognition domain. Hershey et
al. [23] compared four different CNN architectures on a dataset consisting of vast
amounts of audio data obtained from YouTube: AlexNet, VGG, Inception V3 and
ResNet50, the latter of which is a 50-layer ResNet variant. They found not only that
these four CNNs, which are commonly used in image classification, performed well
in the audio classification domain, but also that ResNet50 was the one of the mod-
els which performed best. While this specific study focused on identifying topics in
the content of the audio, it seems reasonable to assume that the ResNet50 architec-
ture would also perform well in identifying audio features in the deepfake detection
domain.

https://creativecommons.org/licenses/by-sa/4.0/

2.4. Transfer Learning 9

Rahul T.P. et al. [24] also proposed an approach using residual neural networks,
employing the 34-layer ResNet34 model. They succeeded in solving the vanishing
gradient problem and achieved an EER of 5.32% and a t-DCF (Tandem Detection
Cost Function) score of 0.1514%. The approach in this study differed from many
others in that transfer learning was used, meaning that a pre-trained model was
employed and fitted to the training data set. This concept is covered in further detail
in the following section.

2.4 Transfer Learning

Transfer learning is a ML technique that allows a model to leverage knowledge
gained from solving one task to improve its performance on a different but related
task. Instead of starting the learning process from scratch, transfer learning enables
a model to benefit from the knowledge gained by pre-training on a large dataset or
a similar task.

In transfer learning, a model is typically first trained on a source task with a large
dataset, such as a general image recognition task. It learns general patterns and
features that are relevant to the source task. Then, instead of discarding the learned
knowledge, the model reuses or adapts it to a target task with a smaller dataset
or a different domain. In practice, this means reusing and adjusting the parame-
ters/weights obtained during the original training process. The concept of transfer
learning is illustrated in figure 2.4.

(a) Training a model for a different task with-
out using transfer learning.

(b) Training a model for a different task using
transfer learning.

Figure 2.4: Illustration of the concept of transfer learning.

10 Chapter 2. Problem Analysis

By using transfer learning, models can often achieve better performance in the target
task with less training data and time. The pre-trained model acts as a starting point,
capturing lower-level features that are useful for various tasks, while the fine-tuning
process adjusts the model’s parameters to better suit the specifics of the target task.

Rahul T.P. et al. [24] were not the only ones to demonstrate the usefulness of transfer
learning within the audio classification domain. Choi et al. [25] proposed a method
for identifying genre, mood, instrumentation and other descriptors for music and
found that the pre-trained model outperformed the model using randomly initialised
weights in all test cases. Furthermore, Suratkar and Kazi [26] proposed a model
called EfficientNet which combines a pre-trained CNN with an LSTM network for
deepfake video detection. They achieved an accuracy of 98.69% and an AUC (area
under curve) value of 97.26%, thus indicating that transfer learning may indeed be
applicable in the deepfake detection domain.

2.5. Summary & Problem Statement 11

2.5 Summary & Problem Statement

Throughout this chapter it was found that audio deepfake detection can generally
be divided into ML-based and DL-based approaches. While ML-based methods have
been proven to work well, they often require great amounts of manual preprocessing
and hence most research focuses on DL-based approaches.

In DL-based approaches, variants of either RNNs or CNNs or combinations of the two
are typically used. CNNs developed for use in image recognition, such as residual
neural networks, have been proven to work well in audio classification scenarios
when used in combition with visual audio representations such as spectrograms and
histograms. Furthermore, utilising transfer learning has been shown to improve
performance in audio classification and related deepfake detection tasks.

Based on these findings, this project will focus on applying transfer learning for au-
dio deepfake detection using a ResNet architecture, based on the following problem
statement:

How can a residual neural network using transfer learning be applied for
audio deepfake detection?

Along with the following sub-questions:

i) How well does the model perform?

ii) Does the use of transfer learning improve performance when com-
pared to a similar model that uses randomly initialised weights in-
stead of transfer learning?

The following section further defines the overall scope of the research, outlining the
specific areas and boundaries that will be addressed to establish a clear foundation
for the subsequent chapters.

12 Chapter 2. Problem Analysis

2.5.1 Scoping & Focus

As described in section 2.5, the scope of the research presented in this project is
to examine the impact of applying transfer learning when using a ResNet for audio
deepfake detection.

As such, the project will not compare different model types. The ResNet architecture
is chosen based on its merits both in the deepfake detection domain in general and
in the audio classification domain, and as such is the only architecture implemented.

Instead of comparing different model architectures, the evaluation of the developed
model will focus on overall performance and a comparison to a similar model which
does not utilise transfer learning. This means that the aim of the project is not to
develop the most accurate way of detecting audio deepfakes, but rather to build
upon existing research by investigating the impact that the use of transfer learning
can have when using ResNets for audio deepfake detection.

Furthermore, the scope of the project is limited to audio containing speech in the
English language. While the need for robust audio deepfake detection is not limited
in terms of geography, the focus of the project is demonstrating the effectiveness of
transfer learning and not generalising across different languages.

Finally, the aim of the project is not to develop an end product for audio deepfake
detection in practice. Rather, its aim is to demonstrate the use of ResNets and transfer
learning as a viable approach to identifying audio deepfakes, as well as to evaluate
the performance of the solution.

CHAPTER 3

DESIGN & IMPLEMENTATION

This chapter introduces the overall solution design and covers relevant design choices
that were made prior to and during the implementation phase. All steps in the imple-
mentation are then covered in detail with code snippets and appertaining explanations.

3.1 Solution Overview

Figure 3.1 illustrates the overall design of the proposed solution. The idea is to gen-
erate spectrograms from a dataset of audio data, preprocess them and feed them to a
neural network consisting of a ResNet architecture and an output layer with a single
node that uses a sigmoid activation function for binary classification. In this case, an
output of 1 indicates that the input audio is a deepfake (spoof), while an output of 0
indicates that the audio clip is bona-fide (real).

Figure 3.1: Overview of the proposed solution.

Different models can then be trained based on a number of varying factors such as:

• Model hyperparameters

• Parameters set during spectrogram generation

• Whether to use transfer learning, i.e. pre-trained weights for the ResNet model

Before implementing the solution, a number of design choices must be made. These
are described in the following section.

13

14 Chapter 3. Design & Implementation

3.2 Design Choices & Setup

Before designing and implementing the model, some choices must be made regard-
ing how to obtain an appropriate dataset as well as which machine learning frame-
work, specific ResNet model, programming language and hardware will be used in
the implementation. These considerations are explained in this section.

3.2.1 Training Data

Several different data sets containing audio files for deepfake detection exist. They
differ greatly in parameters such as size, language, number of speakers, gender of
speakers, generative model used and amount of preprocessing done beforehand.
This section introduces some of the most popular, publicly available ones and dis-
cusses pros and cons of each.

ASVspoof
The ASVspoof dataset [17] is a collection of audio recordings and corresponding
metadata, designed to support research into automatic speaker verification (ASV)
systems. The dataset was initially created to address the problem of spoofing attacks
on ASV systems but also includes a version specifically intended for use in training
and evaluating audio deepfake detection systems. As the dataset was created as
part of a challenge, it has been widely used in research on the topic, and several
papers have been published with results achieved using this dataset. A drawback
to the dataset within the context of this project is that it contains audio in multiple
languages, which makes it less suitable in the scope of this project as described in
section 2.5.1.

Fake-or-Real (FoR)
The Fake-or-Real dataset [27] was developed by researchers at the Audio Processing
Techniques Lab at York (APTLY). It consists of 195 000 audio files containing both
bona-fide and deepfake speech, the latter of which was created using modern TTS
models like Deep Voice 3 and Google’s Wavenet. The dataset exists in several ver-
sions with varying degress of preprocessing, including a normalised version which is
balanced in terms of the speakers’ genders and has a standardised sample rate and
volume.

H-Voice
The H-Voice dataset created by Ballesteros et al. [11] and differs from the datasets
mentioned above in that it does not consist of audio files. Instead, the audio is
represented as histograms. It consists of a total of 6672 histograms, of which the
deepfake ones are generated using both conversion- and synthesis based methods.

3.2. Design Choices & Setup 15

WaveFake
WaveFake is another dataset for audio deepfake detection presented by Frank and
Schönherr [28]. It consists of 117 985 audio clips from various sources – some are
recordings of actual human speech while others are generated using various TTS
models. The dataset however contains speech in both English and Japanese, meaning
that it is less suitable for use in this project.

In-the-Wild
In-the-Wild [29] is a dataset created in 2022 by Müller et al. [30] for the primary
purpose of evaluating the performance of audio deepfake detection models on "in-
the-wild" data – audio which has been gathered from around the internet and which
one might encounter in real life. It differs from the other datasets mentioned here
primarily in that it focuses on public persons. The dataset contains collected audio –
both bona-fide and deepfake – for 58 celebrities and politicians, ranging from Tupac
Shakur to Queen Elizabeth II and contains 20.8 hours of bona-fide audio and 17.2
hours of deepfake audio, resulting in an average of 23 minutes of bona-fide and 18
minutes of deepfake audio per speaker. It is standardised in terms of sample rate and
file type, however besides this little preprocessing has been done.

Ultimately, In-The-Wild is chosen as the dataset for use in this project, as it provides
a decent amount of high-quality, labeled audio data in English. Furthermore, while
the audio is preprocessed in terms of sample rate and file type, it has not been
preprocessed further, allowing for experimentation with different types and degrees
of preprocessing. In addition, the audio samples being recordings of famous people
plays well into the need for robust audio deepfake detection to avoid misuse for
political purposes which is described in chapter 1.

3.2.2 Machine Learning Framework & Architecture

In order to build, train and evaluate models, a framework is needed. For this pur-
pose, TensorFlow is used, based on number of reasons. TensorFlow is a popular and
well-documented framework developed by Google Brain for building and deploying
machine learning models. It allows for efficient execution on both CPUs and GPUs,
and offers a collection of pre-built neural network layers, optimization algorithms,
and tools for model visualisation and deployment.

Another advantage to using TensorFlow is the Keras API, which is a high-level library
that runs on top of TensorFlow and provides a user-friendly and intuitive API for
building and training deep learning models. It simplifies the implementation process
by offering a modular approach to model design and provides a simple way to define
and stack layers, specify activation functions, and configure various parameters of
the model.

16 Chapter 3. Design & Implementation

Among the pre-built models available in the Keras API is a range of ResNet models
than can be loaded and modified to suit the specific needs for the task at hand. Table
3.1 shows an overview of the ResNet variants included with Keras.

Model Size (MB)
Accuracy

Parameters Depth
Time per inference step (ms)

Top-1 Top-5 CPU GPU

ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6

ResNet50V2 98 76.0% 93.0% 25.6M 103 45.6 4.4

ResNet101 171 76.4% 92.8% 44.7M 209 89.6 5.2

ResNet101V2 171 77.2% 93.8% 44.7M 205 72.7 5.4

ResNet152 232 76.6% 93.1% 60.4M 311 127.4 6.5

ResNet152V2 232 78.0% 94.2% 60.4M 307 107.5 6.6

Table 3.1: ResNet variants available in the Tensorflow Keras API [31].

Variants are provided with different depths, resulting in different complexity and
training times. For this project, ResNet50 is chosen as it provides a balance between
performance and complexity. Furthermore, since the shallower ResNet34 model has
been proven viable in the context of audio classification [24], a deeper model is not
deemed necessary in the scope of this project.

ResNet50
ResNet50, as the name implies, is a ResNet variant which consists of 50 layers – one
initial convolution layer, 16 primary building blocks of three convolution layers each,
and an output layer. The architecture of the model is presented in figure 3.2.

Figure 3.2: ResNet 50 architecture based on table by He et al. [20].

The model takes an input image (or other two-dimensional array-like type of data)
with a dimension of 224 by 224. The initial convolution layer has a kernel size of

3.2. Design Choices & Setup 17

7x7, 64 different kernels and a stride (kernel step size) of 2, yielding an output of
112 by 112. The initial convolution layer is followed by a max pooling layer with a
kernel size of 3x3 and stride 2, which in turn is followed by the functional building
blocks.

The building blocks consist of three layers each and are repeated 3, 4, 6 and 3 times
respectively. This is where the residual connections explained in section 2.3 are
introduced.

After the functional building blocks comes the global average pooling layer which is
applied to reduce the spatial dimensions to a 1x1 feature map. The output of this
layer is flattened and connected to a fully connected layer. This layer combines the
features learned by the previous layers to make predictions.

As the stock ResNet50 architecture was developed for multi-class image classifica-
tion, the fully connected layer ends with a softmax activation function to produce
class probabilities. This can however be changed to use a sigmoid activation func-
tion instead for binary classification purposes.

3.2.3 Development Setup

Table 3.2 shows an overview of the system used for training and evaluating models.
This information is included for reference, as the time to train (TTT) relies heavily
on the hardware used in the training process, and to facilitate reproduction of the
results of the project by following the same implementation steps.

System
OS Ubuntu 22.04.5 LTS

Kernel 5.19.0-42-generic

CPU
Model Intel Core i7-13700F

Cores 16 (8 @ 4.1GHz + 8 @ 5.1GHz)

GPU

Model NVIDIA RTX3070

Cores 5888

Memory 8GB GDDR6

RAM 32 GB DDR4 @ 3600MHz

Table 3.2: Overview of the system used to train and evaluate the models.

18 Chapter 3. Design & Implementation

The development environment consists of a docker container running Ubuntu 22.04.5
with the following relevant software installed:

• Python 3.8.10

• Tensorflow 2.12.0

• NVIDIA System Management Interface (SMI) 530.30.02

• NVIDIA CUDA 12.1

The NVIDIA SMI and CUDA drivers allow for GPU acceleration which, as shown in
table 3.1, greatly the reduces time per inference step – i.e. the time needed to train
models. Besides the above mentioned software packages, various Python libraries
such as NumPy, Matplotliib and PIL (Python Imaging Library).

3.3 Spectrogram Generation

In order to be able to process audio data using the ResNet50 model, it must be
transformed into an image. This is done by generating a spectrogram – a visual
representation of the spectrum of frequencies in a signal as it varies with time. It
is a 3-dimensional plot of time, frequency, and amplitude, where the amplitude of a
signal is represented by the color or intensity of the plot at each point in time and
frequency.

Figure 3.3: An example of a spectrogram. The x-axis represents time and the y-axis represents fre-
quency, while the color indicates amplitude.

Spectrograms can be generated in a number of different ways with the most common
one being the short-time Fourier transform (STFT). This method involves dividing

3.3. Spectrogram Generation 19

the signal into overlapping segments of fixed length, applying a Fourier transform
to each segment to obtain its frequency content, and then plotting the resulting
frequency content over time. In practice, this is done by applying a window function
to each segment of the signal. The window function is typically a smooth, tapered
function that gradually reduces the amplitude of the signal towards the edges of the
segment, with popular choices being the Hamming window, Hanning window, and
Blackman window. The entire process is illustrated in figure 3.4.

Figure 3.4: Illustration of the short-time Fourier transform. Figure adapted from Jeon et al. [32],
licensed under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/

20 Chapter 3. Design & Implementation

The window function is applied to the signal, upon which STFT is performed on the
resulting signal segments using the FFT (Fast Fourier Transform) algorithm. This re-
sults in a number of graphs representing amplitude of individual frequencies, which
are then mapped along the x-asis with amplitude represented in color to form a
spectrogram.

3.3.1 The mel scale

When working with audio recognition, it can be useful to convert the frequency of
the input signal from hertz to mel during preprocessing. The mel scale was proposed
by Stevens et al. in 1937 [33] and is a non-linear frequency scale based on the
idea that humans are more sensitive to changes in lower frequencies than higher
frequencies. It takes into account the way the human ear perceive pitch and groups
frequencies together based on their perceptual similarity. This makes it a useful scale
for tasks like speech and audio processing, where human perception is an important
consideration. The mel scale is defined in equation 3.1 and illustrated in figure 3.5.

m = 2595log(1+
f

700
) (3.1)

Figure 3.5: Graph showing the correlation between frequency represented in Hz and in mel.

When plotting a spectrogram generated from a sound clip containing human speech,
individual frequencies can be more clearly discerned from each other when the sound
is converted from hertz to mel. This is illustrated in figure 3.6 which shows two spec-
trograms of the same audio clip – one with frequency represented in hertz and the
other in mel. Seeing as the ResNet50 model is limited to an input image with a size

3.3. Spectrogram Generation 21

of 224x224 pixels, this can be useful in making sure that the frequency ranges in
which human speech is present are dominant in the generated spectrograms, hope-
fully leading to more accurate learning of features in the sound waves and better
performance for the model.

(a) A spectrogram of human speech shown in the hertz
scale.

(b) A spectrogram of the same file with frequencies con-
verted to the mel scale.

Figure 3.6: Two spectrograms of the same audio clip showing frequency in hertz and mel, respectively.

3.3.2 Implementation

Figure 3.7 shows an overview of the implementation with the spectrogram genera-
tion process marked in green. Audio clips are loaded from the original dataset and
used to generate spectrograms which end up comprising the image dataset used to
train and evaluate the model. The entire code for this part of the implementation is
included in appendix A.3.

In practice, the spectrograms are generated using the librosa library for Python. It is
a high-level library built on top of other scientific computing libraries in Python, such
as NumPy and SciPy, and provides a wide range of functions and tools for tasks such
as loading and analysing audio files. In this case, the built-in function for generating
spectrograms using the FFT algorithm is used.

Listing 3.1 shows how the parameters for spectrogram generation are specified. The
window size – i.e. number of samples pr. FFT – is defined as n_fft, while hop_length
represents hop length, i.e. distance between windows (for reference see figure 3.4).
The factor variable is a value which specifies the ratio between the length of the

22 Chapter 3. Design & Implementation

Figure 3.7: Overview of the implementation with spectrogram generation process marked in green.

input audio clip and the width of the resulting spectrogram. A factor of one means
that 1 second of audio results in 224 pixels of width.

1 samplecount = 31779
2 n_fft = 2048
3 hop_length = 512
4 factor = 1
5 outpath = "/tf/spectrograms /1 _NOISY_N2048_H512"
6

7 if os.path.isdir(outpath):
8 sys.exit("Path already exists , exiting")
9 else:

10 os.mkdir(outpath)

Listing 3.1: Code for defining parameters and paths for use in spectrogram generation.

As shown in listing 3.2, the program then enters a loop where it iterates through
all the files in the dataset. For each file, it checks if a spectrogram already exists in
the output folder so as not to perform any redundant operations. The audio is then
loaded into memory and the length of each clip is saved in the audiolength variable.
The audio is then converted from hertz to mel and a the spectrogram is created using
librosa’s melspectrogram function. Finally, in line 21 np.abs converts all values in
the spectrogram instance to positive values, before the power_to_db function con-
verts the amplitude to decibel.

1 for i in range(samplecount):
2

3 input_file = "/tf/release_in_the_wild/" + str(i) + ".wav"
4 output_file = outpath + "/" + str(i) + ".png"
5

3.3. Spectrogram Generation 23

6 if not(os.path.isfile(output_file)):
7

8 signal , sr = librosa.load(input_file)
9 audiolength = librosa.get_duration(

10 y=signal ,
11 sr=sr,
12 hop_length=hop_length ,
13 n_fft=n_fft)
14

15 mel_signal = librosa.feature.melspectrogram(
16 y=signal ,
17 sr=sr,
18 hop_length=hop_length ,
19 n_fft=n_fft)
20

21 spectrogram = np.abs(mel_signal)
22 power_to_db = librosa.power_to_db(spectrogram , ref=np.max)

Listing 3.2: Loop for spectrogram generation.

In listing 3.3, the spectrogram is finally rendered using matplotlib. The default axes
are removed so as to only include the actual spectrogram content in the output data
which is subsequently fed to the model.

1 # Plotting the mel spectrogram
2 fig = plt.figure ()
3 fig.set_size_inches(factor*audiolength , 1)
4 ax = plt.Axes(fig , [0., 0., 1., 1.])
5 ax.set_axis_off ()
6 fig.add_axes(ax)
7

8 # Display and save the final spectrogram
9 librosa.display.specshow(

10 power_to_db ,
11 sr=sr,
12 hop_length=hop_length ,
13 cmap="magma")
14

15 plt.savefig(
16 output_file ,
17 dpi=224,
18 bbox_inches="tight",
19 pad_inches =0)
20

21 plt.close ()

Listing 3.3: Rendering and exporting spectrogram using matplotlib.

24 Chapter 3. Design & Implementation

3.4 Data Loading & Preprocessing

After the audio dataset has been converted into spectrograms, the resulting image
dataset is almost ready to be used for training and evaluating the model. It is how-
ever still necessary to perform some preprocessing on the data, which is done when it
is loaded into the main program used to train and evaluate models. Figure 3.8 shows
an overview of the entire implementation with the data loading process marked in
blue. The code for this part of the implementation can be seen in its entirety in
appendix A.1.

Figure 3.8: Overview of the solution with the part of the program used to load data marked in blue.

In the code shown in listing 3.4, the path for the spectrograms is first defined along
with the path for the .csv file containing labels and the fraction of the dataset to
reserve for testing when loading the data.

A function, dataSplit(), is then called. This function imports the data to a working
directory called "workdir" and sorts the files into subfolders according to their label
and whether they are to be used for training/validation or testing. Furthermore, it
clears the working directory on each run, which enables loading the data with differ-
ent ratios between training, validation and test data. The resulting folder structure
of the "workdir" directory is shown in figure 3.9. The dataSplit() function is not
explained in detail here but can be seen in its entirety in appendix A.2.

1 inputData = "/tf/spectrograms /1 _NOISY_N2048_H512"
2 labels = "/tf/labels.csv"
3 testSplit = 0.1
4

5 dataSplit(inputData , labels , testSplit)
6

3.4. Data Loading & Preprocessing 25

7 training_dir = pathlib.Path("/tf/spectrograms/workdir/training").
with_suffix(’’)

8 test_dir = pathlib.Path("/tf/spectrograms/workdir/test").with_suffix(’
’)

9

10 test_count = len(list(test_dir.glob(’*/*. png’)))
11 train_count = len(list(training_dir.glob(’*/*. png’)))
12 validation_split = test_count / train_count

Listing 3.4: Code for splitting dataset in training/evaluation and test sets.

Figure 3.9: Folder structure of the "workdir" directory.

Executing the code shown in listing 3.4 results in the following output:

1 Cleared working directory , loading new files ...
2 Found 31779 files in /tf/spectrograms /1 _NOISY_N2048_H512
3 Reserving 3177 files for testing and using 28602 files for training
4 and validation.
5 Succesfully loaded 31779 files.

Listing 3.5: Output when executing the code shown in listing 3.4

In this case, 10% of the dataset is reserved for testing and moved into the test
subfolder in the workdir directory.

Next – as shown in listing 3.6 – image size and and batch size are specified, before
three dataset objects are created for training, validation and testing, respectively.
As of now, the code reserves as large a portion of the dataset for validation as for
testing, however this can easily be changed in order to experiment with different
division ratios.

During the dataset creation process, the spectrograms are resized by cropping them
at a random point along the x-asis. As explained in section 3.3, the spectrograms
generated have a height of 224 pixels and a width corresponding to 224 pixels mul-
tiplied by the length of the audio clip in seconds, meaning that a random crop will
result in a square image of 224x224 pixels.

26 Chapter 3. Design & Implementation

1 batch_size = 50
2 img_height = 224
3 img_width = 224
4

5 print("\033[1 mCreating training and validation datasets :\033[0m")
6 training_ds , validation_ds = tf.keras.utils.

image_dataset_from_directory(
7 training_dir ,
8 validation_split=validation_split ,
9 subset="both",

10 seed =123,
11 image_size =(img_height , img_width),
12 batch_size=batch_size ,
13 crop_to_aspect_ratio=True
14)
15

16 print("\n\033[1 mCreating test dataset :\033[0m")
17 test_ds = tf.keras.utils.image_dataset_from_directory(
18 test_dir ,
19 seed =123,
20 image_size =(img_height , img_width),
21 batch_size=batch_size ,
22 crop_to_aspect_ratio=True
23)
24

25 class_names = training_ds.class_names
26 print("\nNames of",str(len(class_names)), "classes:", class_names)

Listing 3.6: Code for loading spectrograms as Tensorflow dataset objects.

The code shown in listing 3.6 produces the output shown in listing 3.7 below:

1 Creating training and validation datasets:
2 Found 28601 files belonging to 2 classes.
3 Using 25423 files for training.
4 Using 3178 files for validation.
5

6 Creating test dataset:
7 Found 3178 files belonging to 2 classes.
8

9 Names of 2 classes: [’real ’, ’spoof ’]

Listing 3.7: Output of code shown in listing 3.6.

In order to manually verify that the spectrograms have been loaded and prepro-
cessed correctly, nine random spectrograms from the training dataset are selected
and plotted along with their corresponding labels, resulting in the image shown in
figure 3.10.

3.5. Model Design & Training 27

Figure 3.10: A selection of nine randomly chosen spectrograms from the final training dataset.

3.5 Model Design & Training

Now that the data has been loaded and preprocessed, it is ready to be used for
training and evaluating models. This part of the implementation phase is shown in
red in figure 3.11, and the code is included in appendix A.1.

Listing 3.8 shows the code in which the model is defined. First, a model instance
is created using the keras.Sequential() function. The Keras Sequential model is a
fundamental building block in the Keras library, as it provides a simple way to create
neural networks by stacking multiple layers sequentially.

28 Chapter 3. Design & Implementation

Figure 3.11: Overview of the solution with the part of the program used to train and evaluate models
marked in red.

1 model = keras.Sequential ()
2

3 # Add pretrained ResNet50 model:
4 model.add(keras.applications.resnet50.ResNet50(
5 include_top = False ,
6 weights = "imagenet",
7 pooling = "avg")
8)
9

10 # Add output layer with sigmoid activation function for binary
classification:

11 model.add(keras.layers.Dense(1, activation = "sigmoid"))
12 model.layers [0]. trainable = False

Listing 3.8: Defining the model.

Next, the pre-built ResNet50 model is added using the add() method of the sequen-
tial model. The weights parameter specifies whether to use pre-trained weights for
transfer learning (by using weights obtained by training on the imagenet dataset
which consists of millions of natural images) or to train the model from scratch by
setting the parameter to None.

The include_top parameter is set to false, because we do not want to include the
fully connected top layer (output layer) of the pre-built model, as the pre-trained
model is trained for multiclass classification and uses a softmax activation function
in the output layer. Instead, an output layer for binary classification is manually
added in the form a fully connected (dense) layer with just one node using a sig-
moid activation function. This results in an output between zero and one with zero
indicating bona-fide audio and one indicating spoofed audio.

3.5. Model Design & Training 29

The model is compiled as shown in listing 3.9. The Adam optimiser, which is an ex-
tension of the stochastic gradient descent (SGD) algorithm, is chosen due to its fast
convergence and ability to work well on noisy and sparse datasets. Furthermore,
Adam uses a combination of adaptive learning rates and momentum to make ad-
justments to the network’s parameters during training, which helps the model learn
faster and converge more quickly towards the optimal set of parameters that min-
imise the loss function [34].

1 # Compile model
2 model.compile(
3 optimizer = "adam",
4 loss = "binary_crossentropy",
5 metrics = [
6 keras.metrics.BinaryAccuracy (),
7 keras.metrics.Precision (),
8 keras.metrics.Recall (),
9 keras.metrics.TruePositives (),

10 keras.metrics.FalsePositives (),
11 keras.metrics.TrueNegatives (),
12 keras.metrics.FalseNegatives ()
13])

Listing 3.9: Specifying optimiser, loss and compiling the model.

The loss function chosen is binary cross-entropy. It is chosen because it is a widely
used loss function in deep learning for binary classification problems. Cross-entropy
calculates a score that summarises the average difference between the actual and
predicted probability distributions for predicting class 1 (deepfake). The score is
minimised, and a perfect cross-entropy value is 0 [35].

Moreover, evaluation metrics are also specified during compilation. The metrics used
to evaluate the model, as well as the reasoning behind choosing them, are described
in further detail in section 4.1.1. After compiling, a summary of the model is printed
using the model.summary() method, yielding the output shown in listing 3.10 below:

1 Model: "sequential"
2 ___
3 Layer (type) Output Shape Param #
4 ===
5 resnet50 (Functional) (None , 2048) 23587712
6

7 dense (Dense) (None , 1) 2049
8 ===
9 Total params: 23 ,589 ,761

10 Trainable params: 2,049
11 Non -trainable params: 23 ,587 ,712

Listing 3.10: Output of the model.summary() method.

30 Chapter 3. Design & Implementation

Finally, the model is trained using the model.fit() function, which is shown in list-
ing 3.11. First, the number of epochs is defined, upon which steps per epoch is
calculated from the total number of batches in the dataset.

1 epochs = 1
2 steps_per_epoch = len(training_ds)/epochs
3

4 model.fit(
5 training_ds ,
6 steps_per_epoch = steps_per_epoch ,
7 validation_data = validation_ds ,
8 validation_steps = 1,
9 epochs = epochs

10)

Listing 3.11: Training the model using the model.fit() function.

Hyperparameters such as batch size, steps per epoch and number of epochs can have
a great impact on the performance of the model. As such, a number of models are
trained, evaluated and compared to each other. This process is described in the
following section, and an overview of the results is shown in section 4.2.

3.6 Model Evaluation

After the models have been trained, their performance is evaluated using the test
data. A detailed description of the methodology followed and metrics used in the
evaluation can be seen in chapter 4, while this section describes only the implemen-
tation aspect.

The models are evaluated using the evaluate() method of the model instance:

1 results = model.evaluate(
2 test_ds ,
3 return_dict=True
4)

Listing 3.12: Evaluating performance using the model.evaluate() function.

This function makes predictions for the test data and compares them to the labels in
the dataset. It returns a dictionary of the metrics specified during model compilation
(see listing 3.9). Furthermore, as seen in listing 3.13, a function is defined which
calculates the F1-score of the model:

3.6. Model Evaluation 31

1 def f1score(p,r):
2 f1 = 2/((1/p)+(1/r))
3 return f1

Listing 3.13: Function for calculating F1-score of a model.

Finally, a confusion matrix is plotted to visualise the performance of the model. The
code used to generate the confusion matrix is seen in listing 3.14:

1 tp , fp = results[’true_positives ’], results[’false_positives ’]
2 fn , tn = results[’false_negatives ’], results[’true_negatives ’]
3 cmx = np.array ([[tp , fp],[fn, tn]], np.int32)
4

5 cmx_plot = sns.heatmap(
6 cmx/np.sum(cmx),
7 cmap=’Blues’,
8 annot=True ,
9 fmt=".1%",

10 linewidth=5,
11 cbar=False ,
12 square=True ,
13 xticklabels = [’Spoof (1)’, ’Real (0)’],
14 yticklabels = [’Spoof (1)’, ’Real (0)’]
15)
16 cmx_plot.set(xlabel="Actual", ylabel="Predicted")

Listing 3.14: Code for generating the confusion matrix.

CHAPTER 4

TEST & EVALUATION

This chapter first describes the methodology followed when testing and evaluating mod-
els both with and without utilising transfer learning, as well as the metrics used when
evaluating them. The results are then presented and discussed, upon which follows a
broader reflection on the solution within the context in which it exists.

4.1 Methodology

In order to determine whether transfer learning can improve performance in detec-
tion of deepfake audio, models are trained both with and without using pre-trained
weights for the ResNet50 model. Furthermore, different batch sizes and numbers of
epochs are tested to observe their influence on the performance of the models. In
total, 18 models are trained using all combinations of the following variables:

• Transfer Learning (TL): Yes (imagenet pre-trained weights), no (no pre-trained
weights)

• Batch size: 10, 50, 100

• Number of epochs: 1, 5, 10

The learning rate is not included as a variable factor as it is automatically updated by
the Adam optimiser. Furthermore, as the task is a binary classification problem, the
activation function is not a variable parameter either – instead the sigmoid activation
function is used in the output layer of all models trained.

All models are trained with a training/validation/test ratio of 80:10:10. While the
optimal ratio differs by task and circumstances, 80:10:10 is a commonly used ratio
[36], and preliminary tests showed little variation in results when using other ratios
in the data splitting process. The ratio used results in 3 178 files being used for test-
ing. The models are then evaluated and compared based on a selection of relevant
metrics, all of which are described in 4.1.1.

32

4.1. Methodology 33

4.1.1 Evaluation Metrics

Loss
Loss is a metric used measure the error between the predicted outputs of a model and
the actual values. It quantifies how well the model is performing in terms of its ability
to make accurate predictions. The loss function (in this case binary cross-entropy
(BCE)) calculates the difference between the predicted values and the ground truth
values for the inputs of the dataset. As the model improves during training, the
loss decreases, indicating better alignment between the predicted and actual values.
While loss is primarily an internal metric used during the training process to optimise
the model, it is still included in the results shown in section 4.2.

Accuracy
One of the most simple metrics, accuracy measures the proportion of correctly pre-
dicted instances to the total number of instances in a dataset. It provides an overall
assessment of the model’s correctness by calculating the ratio of correctly classified
samples to the total number of samples.

While accuracy is a straightforward metric, it may not always be sufficient for evalu-
ating the performance of a model. In cases where the classes are imbalanced, where
the cost of false positives or false negatives is significantly different, or where differ-
ent types of errors have varying importance, other metrics such as precision, recall or
F1-score may provide a more comprehensive assessment of the model’s performance.

Precision
Precision is a metric used to measure the accuracy of positive predictions made by a
model. It calculates the ratio of true positive predictions (correctly predicted positive
instances) to the total number of positive predictions made by the model, as shown
in equation 4.1. TP indicates true positives while FP indicates false positives.

Precision =
T P

T P+FP
(4.1)

Precision focuses on the precision of positive predictions, indicating how well the
model correctly identifies positive instances. A higher precision value suggests a
lower rate of false positives, meaning that the model has a lower tendency to classify
negative instances as positive.

Precision is especially important in scenarios where false positives carry significant
consequences or where the goal is to minimise incorrect positive predictions. How-
ever, it should be considered along with other metrics such as recall or F1-score to
get a more comprehensive evaluation of the model’s performance.

34 Chapter 4. Test & Evaluation

Recall
Recall is another metric used to measure the ability of a model to correctly identify
positive instances. While precision calculates the ratio of true positives to the total
number of positive predictions made by the model, recall calculates the ratio of true
positives to the total number of actual positive instances. The formula for calculating
recall is shown in equation 4.2:

Recall =
T P

T P+FN
(4.2)

In simple terms, precision evaluates how well the model avoids false positives, while
recall evaluates how well it avoids false negatives. A high precision indicates that the
model has a low rate of false positives, while a high recall indicates that the model
can effectively capture most of the positive instances, minimising false negatives.
Figure 4.1 visualises precision and recall and the reason why a model’s performance
cannot be evaluated based on only one or the other. For this reason, the F1-score
metric is introduced.

(a) Perfect recall, low precision. (b) Perfect precision, low recall. (c) Balanced precision and recall.

Figure 4.1: Illustrating precision and recall.

F1-score
The F1 score is a metric that combines precision and recall into a single value. It pro-
vides a balanced measure of a model’s performance by considering both its ability to
accurately identify positive instances (precision) and to capture all positive instances
(recall).

The F1 score is calculated as the harmonic mean of precision and recall. It ranges
from 0 to 1, with 1 being the best possible score. A higher F1 score indicates a better
balance between precision and recall, meaning the model can effectively identify
positive instances while also minimising false positives and false negatives.

F1-score =
2

1
Precision +

1
Recall

=
T P

T P+ 1
2(FP+FN)

(4.3)

4.2. Results 35

The F1 score is particularly useful when there is an imbalance between the number
of positive and negative instances in the dataset – as is the case here – as it provides
a comprehensive evaluation of the model’s performance by considering both types of
errors.

4.2 Results

Table 4.1 shows loss, accuracy, precision, recall, F1-score and time to train (TTT) for
all 18 models trained and evaluated.

#
Parameters Results

TL Batch size Epochs Loss ACC PRE REC F1 TTT(s)

1

Yes

10

1 0.103 0.966 0.986 0.921 0.953 45.18

2 5 0.105 0.965 0.986 0.92 0.952 45.72

3 10 0.099 0.966 0.986 0.922 0.953 45.23

4

50

1 0.112 0.964 0.968 0.933 0.951 36.66

5 5 0.106 0.967 0.960 0.951 0.955 37.38

6 10 0.109 0.966 0.958 0.951 0.955 39.12

7

100

1 0.134 0.957 0.975 0.906 0.940 36.92

8 5 0.150 0.951 0.962 0.905 0.933 37.72

9 10 0.120 0.963 0.964 0.937 0.950 38.82

10

No

10

1 0.426 0.808 0.935 0.521 0.669 45.98

11 5 0.381 0.829 0.901 0.607 0.726 45.34

12 10 0.430 0.817 0.685 0.940 0.793 45.64

13

50

1 0.471 0.772 0.797 0.520 0.630 38.91

14 5 0.448 0.779 0.838 0.505 0.630 39.14

15 10 0.434 0.789 0.850 0.525 0.649 39.68

16

100

1 0.514 0.720 0.883 0.287 0.433 34.89

17 5 0.471 0.803 0.775 0.664 0.715 37.63

18 10 0.490 0.789 0.772 0.615 0.685 38.91

Table 4.1: Results of all models trained, showing whether transfer learning/pre-trained weights were
used (TL), batch size, epochs, loss, accuracy (ACC), precision (PRE), recall (REC), F1-score and time
to train (TTT) in seconds.

36 Chapter 4. Test & Evaluation

The best performing model trained was model #5 which achieved both the highest
accuracy (0.967) and F1-score (0.955) and a decently low loss (0.106). This means
that it only misclassified 3.3% of the test data instances and that both precision and
recall values are high – and that they are close to each other.

We observe that the test performance for all models trained using transfer learning
is significantly better than for those trained using randomly initialised weights. To
visualise this, figure 4.2 shows a bar graph of the F1-scores for all models.

Figure 4.2: F1-score (y-axis) for all models trained (y-axis). The models trained using transfer learning
are shown in blue while the models not using transfer learning are shown in red.

While the best performing of the non-transfer learning models (model #12) achieved
an accuracy of 0.817 and an F1-score of 0.793, the best performing of the transfer
learning models (model #5) achieved an accuracy of 0.976 and an F1-score of 0.955,
corresponding to a 19.46% increase in accuracy and a 20.43% increase in F1-score
when using transfer learning. Figure 4.3 shows the confusion matrices for models
#5 and #12.

Interestingly, both models shown in figure 4.3 have low false negative rates of 1.8%
and 2.2%, respectively, in identifying deepfake audio. Conversely, model #12 per-
forms worse in terms of false positives with a false positive rate of 16.1% compared to
1.5% for model #5, significantly lowering its F1-score. Models using transfer learn-
ing also achieved a lower loss with an average of 0.115 across models compared to
0.452 for non-transfer learning.

When looking at averages for all models trained, the average accuracy and F1-score
across transfer learning models (#1-9) were 0.963 and 0.949, respectively, while
the average values across non-transfer learning models (#10-18) were 0.790 for

4.3. Discussion 37

accuracy and 0.659 for F1-score. This corresponds to a 21.90% increase in accuracy
and a 44.01% increase in F1-score when using transfer learning.

(a) Confusion matrix for the best performing transfer
learning model (model #5).

(b) Confusion matrix for the best performing transfer
learning model (model #12).

Figure 4.3: Confusion matrices for the best performing models trained with and without the use of
transfer learning, respectively.

4.3 Discussion

It is clear from the results of the evaluation of the 18 models that transfer learning
yields positive results when used in conjunction with residual neural networks for
audio deepfake detection. There are however some things which should be taken
into consideration and could be explored further in future work.

First, audio files from the dataset were randomly cropped during dataset generation
to fit the input size required by the model. This means that only one second of each
file was used, resulting in only 43% of the total amount of data in the dataset being
utilised. This could be addressed by changing the preprocessing steps to use multiple
crops of each file, which would provide more data for use in the training process.

Second, more different combinations of hyperparameters could be tested to observe
their impact on the performance of the models. While this aspect was not a primary
focus area of the project, the results show that the choice of hyperparameters had an
impact on model performance in terms of both F1-score, accuracy and loss.

38 Chapter 4. Test & Evaluation

Furthermore, only one dataset was used, meaning that the models’ abilities to gener-
alise cannot be confidently determined based on the results achieved in this project.
While the dataset does comprise data from various sources and was developed for
use in generalisation evaluation, the model should be evaluated on data from other
sources in order to determine how well it generalises. Future work could also in-
clude the use of data from various different datasets in the training phase in order to
develop a more robust model and ensure generalisation abilities.

Another potential drawback to the dataset used is that it – while containing data
from various sources – only contains speech from 58 different people. It could be
investigated whether this impacts the models’ abilities to generalise and whether a
more diverse dataset could be used to improve generalisation.

The amount and type of preprocessing carried out on the dataset is another aspect
which could be further investigated in future work. For spectrogram generation,
window length and hop length could be varied to study their impact on model per-
formance. In addition, further preprocessing such as volume normalisation or noise
reduction could be implemented.

Despite these considerations, the results prove that an effective solution for audio
deepfake detection can be implemented using residual neural networks and transfer
learning.

4.4 Final Thoughts

At this point, it has been demonstrated that the combination of residual neural net-
works and transfer learning is a viable method of detecting deepfake audio – albeit
not necessarily the only one. While the scope if this project has been deep learn-
ing based methods for securing audio authenticity, completely different approaches
could potentially be just as effective.

One interesting approach which has not been investigated in this project is digital
watermarking – a process which consists of embedding a unique, imperceptible dig-
ital watermark in audio files during the recording or production process which can
serve as a form of authentication. While this would not be able to prevent all kinds
of harmful use of deepfakes, it provides a different approach that does not rely on
deep learning knowledge and the availability of large datasets.

During the writing of this thesis, Apple Inc. filed a patent describing a system which
would let users of their products train a personal voice model, which can read aloud
messages that they send to their contacts [37]. While the idea might seem innova-

4.4. Final Thoughts 39

tive – and to some, perhaps even beautiful – it would effectively put several deepfake
generation models in the pocket of every single iPhone user on Earth. Synthesised
audio is becoming an increasingly big part of our lives in the form of audio books,
voice assistants and entertainment media, and so should solutions which can distin-
guish synthesised audio from real.

A perfect solution for deepfake detection – not just in the audio domain, but in the
broader sense – could pave the way for a safer and more trusting world. We would
be able to browse the internet without having to doubt whether a video of a celebrity
or politician could be trusted to be real, and we would remove a weapon from the
arsenal of tools which can be used to influence political agendas in undemocratic
ways. That is, however, outside of the scope of this project – although I believe that
the work presented here represents a small step in the right direction.

CHAPTER 5

CONCLUSION

This project has investigated the use of machine learning for audio deepfake detec-
tion. By examining existing research in the field, it was found that residual neu-
ral networks and transfer learning both are techniques which have proved effective
within this domain.

A novel solution for audio deepfake detection was then proposed. The solution con-
sists of converting audio to spectrograms and feeding it to an implementation of the
ResNet50 network architecture which has been pre-trained on a large dataset of nat-
ural images and further trained for audio classification using a dataset comprising
both synthesised and real audio.

The best performing model achieved an accuracy of 96.7% and an F1-score of 95.5%,
proving that the combination of residual neural networks and transfer learning is an
effective approach to audio deepfake detection.

Furthermore, a similar model was trained without the use of transfer learning in
order to study the difference. It was found that, across all models trained, the use
of transfer learning increased the prediction accuracy of models by an average of
21.90% and the F1-score by an average of 44.01%, leading to the conclusion that
transfer learning can improve performance in audio deepfake detection tasks.

40

BIBLIOGRAPHY

[1] A. Diaz, “TikTok AI voice generator turns US presidents into Discord gob-
lins - Polygon,” [Online]. Available: https://www.polygon.com/23610381/
presidents-play-minecraft-ai-voice-meme-joe-biden-trump, Polygon.

[2] Z. Khanjani, G. Watson, and V. P. Janeja, “Audio deepfakes: A survey,” 2023.
DOI: 10.3389/fdata.2022.1001063.

[3] C. Stupp, “Fraudsters Used AI to Mimic CEO’s Voice in Unusual Cybercrime
Case - WSJ,” [Online]. Available: https://www.wsj.com/articles/fraudsters-
use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402,
Wall Street Journal.

[4] VMware, “VMware Global Incident Response Threat Report 2022,” 2022.

[5] M. Berman, “An act to amend, repeal, and add Section 35 of the Code of
Civil Procedure, and to amend, add, and repeal Section 20010 of the Elec-
tions Code, relating to elections.” [Online]. Available: https://leginfo.
legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730.

[6] N. Schaumann, “Det lyder som din datter, der ringer efter penge. I virkelighe-
den er det en helt anden,” [Online]. Available: https://www.berlingske.dk/
internationalt/det-lyder-som-din-datter-der-ringer-efter-penge-
i-virkeligheden-er, Berlingske.

[7] A. Puig, “Scammers use AI to enhance their family emergency schemes | Con-
sumer Advice,” [Online]. Available: https://consumer.ftc.gov/consumer-
alerts/2023/03/scammers-use-ai-enhance-their-family-emergency-
schemes?utm_source=govdelivery, FTC Consumer Advice.

[8] F. Tom, M. Jain, and P. Dey, “End-To-End Audio Replay Attack Detection Using
Deep Convolutional Networks with Attention,” Interspeech 2018, 2018. DOI:
10.21437/Interspeech.2018-2279.

[9] Z. Almutairi and H. Elgibreen, “A Review of Modern Audio Deepfake Detec-
tion Methods: Challenges and Future Directions,” Algorithms 2022, Vol. 15,
Page 155, vol. 15, no. 5, p. 155, May 2022, ISSN: 1999-4893. DOI: 10.3390/
A15050155. [Online]. Available: https://www.mdpi.com/1999-4893/15/5/
155/htmhttps://www.mdpi.com/1999-4893/15/5/155.

[10] Y. Rodríguez-Ortega, D. M. Ballesteros, and D. Renza, “A Machine Learning
Model to Detect Fake Voice,” Communications in Computer and Information
Science, vol. 1277 CCIS, pp. 3–13, 2020, ISSN: 18650937. DOI: 10.1007/978-

41

https://www.polygon.com/23610381/presidents-play-minecraft-ai-voice-meme-joe-biden-trump
https://www.polygon.com/23610381/presidents-play-minecraft-ai-voice-meme-joe-biden-trump
https://doi.org/10.3389/fdata.2022.1001063
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730
https://www.berlingske.dk/internationalt/det-lyder-som-din-datter-der-ringer-efter-penge-i-virkeligheden-er
https://www.berlingske.dk/internationalt/det-lyder-som-din-datter-der-ringer-efter-penge-i-virkeligheden-er
https://www.berlingske.dk/internationalt/det-lyder-som-din-datter-der-ringer-efter-penge-i-virkeligheden-er
https://consumer.ftc.gov/consumer-alerts/2023/03/scammers-use-ai-enhance-their-family-emergency-schemes?utm_source=govdelivery
https://consumer.ftc.gov/consumer-alerts/2023/03/scammers-use-ai-enhance-their-family-emergency-schemes?utm_source=govdelivery
https://consumer.ftc.gov/consumer-alerts/2023/03/scammers-use-ai-enhance-their-family-emergency-schemes?utm_source=govdelivery
https://doi.org/10.21437/Interspeech.2018-2279
https://doi.org/10.3390/A15050155
https://doi.org/10.3390/A15050155
https://www.mdpi.com/1999-4893/15/5/155/htm https://www.mdpi.com/1999-4893/15/5/155
https://www.mdpi.com/1999-4893/15/5/155/htm https://www.mdpi.com/1999-4893/15/5/155
https://doi.org/10.1007/978-3-030-61702-8{_}1/COVER
https://doi.org/10.1007/978-3-030-61702-8{_}1/COVER

42 Bibliography

3-030-61702-8{_}1/COVER. [Online]. Available: https://link.springer.
com/chapter/10.1007/978-3-030-61702-8_1.

[11] D. M. Ballesteros L, Y. P. Rodriguez, and D. Renza, “H-Voice: Fake voice his-
tograms (Imitation+DeepVoice),” Mendeley Data, 2020. DOI: 10.17632/K47YD3M28W.
4.

[12] A. K. Singh and P. Singh, “Detection of AI-Synthesized Speech Using Cepstral
& Bispectral Statistics,” Proceedings - 4th International Conference on Multime-
dia Information Processing and Retrieval, MIPR 2021, pp. 412–417, 2021. DOI:
10.1109/MIPR51284.2021.00076.

[13] T. Liu, D. Yan, R. Wang, N. Yan, and G. Chen, “Identification of Fake Stereo
Audio Using SVM and CNN,” Information 2021, Vol. 12, Page 263, vol. 12,
no. 7, p. 263, Jun. 2021, ISSN: 2078-2489. DOI: 10.3390/INFO12070263. [On-
line]. Available: https://www.mdpi.com/2078-2489/12/7/263/htmhttps:
//www.mdpi.com/2078-2489/12/7/263.

[14] D. M. Ballesteros, Y. Rodriguez-Ortega, D. Renza, and G. Arce, “Deep4SNet:
deep learning for fake speech classification,” Expert Systems with Applications,
vol. 184, p. 115 465, Dec. 2021, ISSN: 0957-4174. DOI: 10.1016/J.ESWA.
2021.115465.

[15] M. Lataifeh, A. Elnagar, I. Shahin, and A. B. Nassif, “Arabic audio clips: Iden-
tification and discrimination of authentic Cantillations from imitations,” Neu-
rocomputing, vol. 418, pp. 162–177, Dec. 2020, ISSN: 0925-2312. DOI: 10.
1016/J.NEUCOM.2020.07.099.

[16] A. Chintha, B. Thai, S. J. Sohrawardi, et al., “Recurrent Convolutional Struc-
tures for Audio Spoof and Video Deepfake Detection,” IEEE Journal on Selected
Topics in Signal Processing, vol. 14, no. 5, pp. 1024–1037, Aug. 2020, ISSN:
19410484. DOI: 10.1109/JSTSP.2020.2999185.

[17] J. Yamagishi, M. Todisco, M. Sahidullah, et al., “ASVspoof 2019: The 3rd Auto-
matic Speaker Verification Spoofing and Countermeasures Challenge database,”
[Online]. Available: https://datashare.ed.ac.uk/handle/10283/3336.

[18] R. L. Wijethunga, D. M. Matheesha, A. A. Noman, K. H. De Silva, M. Tis-
sera, and L. Rupasinghe, “Deepfake audio detection: A deep learning based
solution for group conversations,” ICAC 2020 - 2nd International Conference
on Advancements in Computing, Proceedings, pp. 192–197, Dec. 2020. DOI:
10.1109/ICAC51239.2020.9357161.

[19] N. Subramani and D. Rao, “Learning Efficient Representations for Fake Speech
Detection,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, pp. 5859–5866, Apr. 2020, ISSN: 2374-3468. DOI: 10.1609/AAAI.
V34I04.6044. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/6044.

https://doi.org/10.1007/978-3-030-61702-8{_}1/COVER
https://doi.org/10.1007/978-3-030-61702-8{_}1/COVER
https://doi.org/10.1007/978-3-030-61702-8{_}1/COVER
https://link.springer.com/chapter/10.1007/978-3-030-61702-8_1
https://link.springer.com/chapter/10.1007/978-3-030-61702-8_1
https://doi.org/10.17632/K47YD3M28W.4
https://doi.org/10.17632/K47YD3M28W.4
https://doi.org/10.1109/MIPR51284.2021.00076
https://doi.org/10.3390/INFO12070263
https://www.mdpi.com/2078-2489/12/7/263/htm https://www.mdpi.com/2078-2489/12/7/263
https://www.mdpi.com/2078-2489/12/7/263/htm https://www.mdpi.com/2078-2489/12/7/263
https://doi.org/10.1016/J.ESWA.2021.115465
https://doi.org/10.1016/J.ESWA.2021.115465
https://doi.org/10.1016/J.NEUCOM.2020.07.099
https://doi.org/10.1016/J.NEUCOM.2020.07.099
https://doi.org/10.1109/JSTSP.2020.2999185
https://datashare.ed.ac.uk/handle/10283/3336
https://doi.org/10.1109/ICAC51239.2020.9357161
https://doi.org/10.1609/AAAI.V34I04.6044
https://doi.org/10.1609/AAAI.V34I04.6044
https://ojs.aaai.org/index.php/AAAI/article/view/6044
https://ojs.aaai.org/index.php/AAAI/article/view/6044

Bibliography 43

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2016-December, pp. 770–778, Dec. 2016, ISSN:
10636919. DOI: 10.1109/CVPR.2016.90.

[21] ImageNet, “ImageNet,” [Online]. Available: https://www.image-net.org/
index.php, Last accessed: 29/05/2023.

[22] "LunarLullaby", “A building block in a deep residual network,” [Online]. Avail-
able: https://commons.wikimedia.org/wiki/File:ResBlock.png.

[23] S. Hershey, S. Chaudhuri, D. P. W. Ellis, et al., “CNN architectures for large-
scale audio classification,” 2016.

[24] R. T. P, P. R. Aravind, R. C, U. Nechiyil, and N. Paramparambath, “Audio
Spoofing Verification using Deep Convolutional Neural Networks by Transfer
Learning,” Aug. 2020. [Online]. Available: https://arxiv.org/abs/2008.
03464v1.

[25] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Transfer learning for music clas-
sification and regression tasks,” Tech. Rep., 2017. [Online]. Available: https:
//github.com/keunwoochoi/transfer_.

[26] S. Suratkar and F. Kazi, “Deep Fake Video Detection Using Transfer Learning
Approach,” Arabian Journal for Science and Engineering, pp. 1–11, Oct. 2022,
ISSN: 21914281. DOI: 10.1007/S13369-022-07321-3/FIGURES/8. [Online].
Available: https://link.springer.com/article/10.1007/s13369-022-
07321-3.

[27] APTLY and LaSSoftE, “Datasets – APTLY and LaSSoftE,” [Online]. Available:
https://bil.eecs.yorku.ca/datasets/, Last accessed: 30/05/2023.

[28] J. Frank and L. Schönherr, “WaveFake: A Data Set to Facilitate Audio Deepfake
Detection,” Nov. 2021. [Online]. Available: https://arxiv.org/abs/2111.
02813v1.

[29] Fraunhofer AISEC, “In-the-Wild Audio Deepfake Dataset,” [Online]. Available:
https://deepfake-demo.aisec.fraunhofer.de/in_the_wild, Last accessed:
27/04/2023.

[30] N. M. Müller, P. Czempin, F. Dieckmann, A. Froghyar, and K. Böttinger, “Does
Audio Deepfake Detection Generalize?” Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH, vol. 2022-
September, pp. 2783–2787, Mar. 2022, ISSN: 19909772. DOI: 10 . 48550 /
arxiv.2203.16263. [Online]. Available: https://arxiv.org/abs/2203.
16263v3.

[31] Keras Team, “Keras Applications,” [Online]. Available: https://keras.io/
api/applications/, Last accessed: 29/05/2023.

https://doi.org/10.1109/CVPR.2016.90
https://www.image-net.org/index.php
https://www.image-net.org/index.php
https://commons.wikimedia.org/wiki/File:ResBlock.png
https://arxiv.org/abs/2008.03464v1
https://arxiv.org/abs/2008.03464v1
https://github.com/keunwoochoi/transfer_
https://github.com/keunwoochoi/transfer_
https://doi.org/10.1007/S13369-022-07321-3/FIGURES/8
https://link.springer.com/article/10.1007/s13369-022-07321-3
https://link.springer.com/article/10.1007/s13369-022-07321-3
https://bil.eecs.yorku.ca/datasets/
https://arxiv.org/abs/2111.02813v1
https://arxiv.org/abs/2111.02813v1
https://deepfake-demo.aisec.fraunhofer.de/in_the_wild
https://doi.org/10.48550/arxiv.2203.16263
https://doi.org/10.48550/arxiv.2203.16263
https://arxiv.org/abs/2203.16263v3
https://arxiv.org/abs/2203.16263v3
https://keras.io/api/applications/
https://keras.io/api/applications/

44 Bibliography

[32] H. Jeon, Y. Jung, S. Lee, and Y. Jung, “Area-efficient short-time fourier trans-
form processor for time–frequency analysis of non-stationary signals,” Ap-
plied Sciences, vol. 10, no. 20, pp. 1–10, Oct. 2020, ISSN: 20763417. DOI:
10.3390/APP10207208. [Online]. Available: https://www.researchgate.
net / publication / 346243843 _ Area - Efficient _ Short - Time _ Fourier _
Transform_Processor_for_Time-Frequency_Analysis_of_Non-Stationary_
Signals.

[33] S. S. Stevens, J. Volkmann, and E. B. Newman, “A Scale for the Measure-
ment of the Psychological Magnitude Pitch,” Journal of the Acoustical Society of
America, vol. 8, no. 3, pp. 185–190, 1937, ISSN: NA. DOI: 10.1121/1.1915893.

[34] S. Mahendra, “What is the Adam Optimizer and How is It Used in Machine
Learning - Artificial Intelligence +,” [Online]. Available: https://www.aiplusinfo.
com/blog/what- is- the- adam- optimizer- and- how- is- it- used- in-
machine-learning/, Last accessed: 26/05/2023.

[35] J. Brownlee, “A Gentle Introduction to Cross-Entropy for Machine Learning,”
[Online]. Available: https://machinelearningmastery.com/cross-entropy-
for-machine-learning/, Last accessed: 26/05/2023.

[36] V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis and Data
Mining, vol. 15, no. 4, pp. 531–538, Aug. 2022, ISSN: 19321872. DOI: 10.
1002/SAM.11583.

[37] A. Orr, “Apple working on how to read back iMessages in the sender’s voice
| AppleInsider,” [Online]. Available: https://appleinsider.com/articles/
23/02/16/apple-working-on-how-to-read-back-imessages-in-the-
senders-voice, Last accessed: 31/05/2023.

https://doi.org/10.3390/APP10207208
https://www.researchgate.net/publication/346243843_Area-Efficient_Short-Time_Fourier_Transform_Processor_for_Time-Frequency_Analysis_of_Non-Stationary_Signals
https://www.researchgate.net/publication/346243843_Area-Efficient_Short-Time_Fourier_Transform_Processor_for_Time-Frequency_Analysis_of_Non-Stationary_Signals
https://www.researchgate.net/publication/346243843_Area-Efficient_Short-Time_Fourier_Transform_Processor_for_Time-Frequency_Analysis_of_Non-Stationary_Signals
https://www.researchgate.net/publication/346243843_Area-Efficient_Short-Time_Fourier_Transform_Processor_for_Time-Frequency_Analysis_of_Non-Stationary_Signals
https://doi.org/10.1121/1.1915893
https://www.aiplusinfo.com/blog/what-is-the-adam-optimizer-and-how-is-it-used-in-machine-learning/
https://www.aiplusinfo.com/blog/what-is-the-adam-optimizer-and-how-is-it-used-in-machine-learning/
https://www.aiplusinfo.com/blog/what-is-the-adam-optimizer-and-how-is-it-used-in-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://doi.org/10.1002/SAM.11583
https://doi.org/10.1002/SAM.11583
https://appleinsider.com/articles/23/02/16/apple-working-on-how-to-read-back-imessages-in-the-senders-voice
https://appleinsider.com/articles/23/02/16/apple-working-on-how-to-read-back-imessages-in-the-senders-voice
https://appleinsider.com/articles/23/02/16/apple-working-on-how-to-read-back-imessages-in-the-senders-voice

APPENDIX A

CODE

A.1 Program used to train and evaluate models

1 # Import dependencies
2 # --
3

4 import numpy as np
5 import os
6 import PIL
7 import PIL.Image
8 import pathlib
9 import matplotlib.pyplot as plt

10 import seaborn as sns
11 import time
12

13 os.environ[’TF_CPP_MIN_LOG_LEVEL ’] = ’3’
14

15 import tensorflow as tf
16 from tensorflow import keras
17 from tensorflow.keras.preprocessing.image import ImageDataGenerator
18

19 from dataSplit import dataSplit
20

21 # Load and split data
22 # --
23

24 inputData = "/tf/spectrograms /1 _NOISY_N2048_H512"
25 labels = "/tf/labels.csv"
26 testSplit = 0.1
27

28 dataSplit(inputData , labels , testSplit)
29

30 training_dir = pathlib.Path("/tf/spectrograms/workdir/training").
with_suffix(’’)

31 test_dir = pathlib.Path("/tf/spectrograms/workdir/test").with_suffix(’
’)

32

33 test_count = len(list(test_dir.glob(’*/*. png’)))
34 train_count = len(list(training_dir.glob(’*/*. png’)))
35 validation_split = test_count / train_count
36

37

38

45

46 Appendix A. Code

39 # Define parameters and create datasets
40 # --
41

42 batch_size = 100
43 epochs = 10
44 img_height = 224
45 img_width = 224
46

47 print("\033[1 mCreating training and validation datasets :\033[0m")
48 training_ds , validation_ds = tf.keras.utils.

image_dataset_from_directory(
49 training_dir ,
50 validation_split=validation_split ,
51 subset="both",
52 seed =123,
53 image_size =(img_height , img_width),
54 batch_size=batch_size ,
55 crop_to_aspect_ratio=True
56)
57

58 print("\n\033[1 mCreating test dataset :\033[0m")
59 test_ds = tf.keras.utils.image_dataset_from_directory(
60 test_dir ,
61 seed =123,
62 image_size =(img_height , img_width),
63 batch_size=batch_size ,
64 crop_to_aspect_ratio=True
65)
66

67 class_names = training_ds.class_names
68 print("\nNames of",str(len(class_names)), "classes:", class_names)
69

70 # Build and compile model
71 # --
72

73 # Instantiate sequential model type:
74 model = keras.Sequential ()
75

76 # Add pretrained ResNet50 model:
77 model.add(keras.applications.resnet50.ResNet50(
78 include_top = False ,
79 weights = None ,
80 pooling = "avg")
81)
82

83 # Add output layer with sigmoid act. function for binary clasf.:
84 model.add(keras.layers.Dense(1, activation = "sigmoid"))
85 model.layers [0]. trainable = False
86

87 # Compile model
88 model.compile(
89 optimizer = "adam",
90 loss = "binary_crossentropy",

A.1. Program used to train and evaluate models 47

91 metrics = [
92 keras.metrics.BinaryAccuracy (),
93 keras.metrics.Precision (),
94 keras.metrics.Recall (),
95 keras.metrics.TruePositives (),
96 keras.metrics.FalsePositives (),
97 keras.metrics.TrueNegatives (),
98 keras.metrics.FalseNegatives (),
99])

100

101 model.summary ()
102

103 # Model training
104 # --
105

106 steps_per_epoch = len(training_ds)/epochs
107

108 t0 = time.time()
109

110 model.fit(
111 training_ds ,
112 steps_per_epoch = steps_per_epoch ,
113 validation_data = validation_ds ,
114 validation_steps = 1,
115 epochs = epochs
116)
117

118 t1 = time.time()
119 dt = (t1 - t0)
120

121 # Model evaluation
122 # --
123

124 results = model.evaluate(
125 test_ds ,
126 return_dict=True
127)
128

129 def f1score(p,r):
130 f1 = 2/((1/p)+(1/r))
131 return f1
132

133 print("---------------------------------------")
134 print(’\033[1m’+"Model metrics:"+’\033[0m’)
135 for i in results:
136 print(i + ": " + str(results[i]))
137 print("---------------------------------------")
138 print("F1 Score: " + str(f1score(results[’precision ’],results[’recall ’

])))
139 print("Time to train:", dt)
140 print("---------------------------------------")
141

142 tp , fp = results[’true_positives ’], results[’false_positives ’]

48 Appendix A. Code

143 fn , tn = results[’false_negatives ’], results[’true_negatives ’]
144 cmx = np.array ([[tp , fp],[fn, tn]], np.int32)
145

146 cmx_plot = sns.heatmap(
147 cmx/np.sum(cmx),
148 cmap=’Blues’,
149 annot=True ,
150 fmt=".1%",
151 linewidth=5,
152 cbar=False ,
153 square=True ,
154 xticklabels = [’Spoof (1)’, ’Real (0)’],
155 yticklabels = [’Spoof (1)’, ’Real (0)’]
156)
157 cmx_plot.set(xlabel="Actual", ylabel="Predicted")

A.2 DataSplit function used for data sorting

1 import os.path
2 import os
3 import csv
4 import sys
5 import shutil
6 import glob
7

8 def dataSplit(datadir , labelfile , test_share):
9

10 # Clear workdir folder of existing files
11 oldfiles = glob.glob(’/tf/spectrograms/workdir /*/*/* ’)
12 for f in oldfiles:
13 os.remove(f)
14 print("Cleared working directory , loading new files ...")
15

16 # Define paths to sort to
17 p_test_real = "/tf/spectrograms/workdir/test/real"
18 p_test_spoof = "/tf/spectrograms/workdir/test/spoof"
19 p_train_real = "/tf/spectrograms/workdir/training/real"
20 p_train_spoof = "/tf/spectrograms/workdir/training/spoof"
21

22 # Get number of files from labels csv file
23 csv_file = open(labelfile)
24 filecount = len(csv_file.readlines ())
25 csv_file.close()
26

27 # Define numbers of files to be used for test and training
28 test_num = int(test_share*filecount)
29 train_num = int(filecount - test_num)
30

31 print("Found", filecount , "files in", datadir)
32 print(

A.3. Program used for spectrogram generation 49

33 "Reserving",
34 test_num ,
35 "files for testing and using",
36 train_num ,
37 "files for training and validation."
38)
39

40 # Read from labels file and copy files to appropriate folders
41

42 csv_file = open(labelfile)
43 csv_reader = csv.reader(csv_file , delimiter=’,’)
44

45 for row in csv_reader:
46

47 n = row [0]. partition(".")[0]
48 filename = "/"+ str(n) + ".png"
49

50 if(int(n) <= test_num):
51 if(row[2] == "spoof"):
52 shutil.copy((datadir + filename), p_test_spoof +

filename)
53 elif(row[2] == "bona -fide"):
54 shutil.copy((datadir + filename), p_test_real +

filename)
55

56 else:
57 if(row[2] == "spoof"):
58 shutil.copy((datadir + filename), p_train_spoof +

filename)
59 elif(row[2] == "bona -fide"):
60 shutil.copy((datadir + filename), p_train_real +

filename)
61

62 csv_file.close()
63

64 print("Succesfully loaded", filecount , "files.")

A.3 Program used for spectrogram generation

1 import librosa
2 import numpy as np
3 import matplotlib
4 import matplotlib.pyplot as plt
5 import os.path
6 import os
7 import sys
8

9 %matplotlib inline
10 matplotlib.use(’Agg’)
11

50 Appendix A. Code

12 samplecount = 31779
13 n_fft = 2048
14 hop_length = 512
15 factor = 1
16

17 outpath = "/tf/spectrograms /1 _NOISY_N2048_H512"
18

19 if os.path.isdir(outpath):
20 sys.exit("Path already exists , exiting")
21 else:
22 os.mkdir(outpath)
23

24 for i in range(samplecount):
25

26 percentcomplete = (i/(samplecount -1))*100
27

28 print("Generating spectrogram " + str(i) + "/" + str(samplecount
-1) + " (" + str(int(percentcomplete)) + "% done)", end="\r")

29

30 input_file = "/tf/release_in_the_wild/" + str(i) + ".wav"
31 output_file = outpath + "/" + str(i) + ".png"
32

33 if not(os.path.isfile(output_file)):
34

35 signal , sr = librosa.load(input_file)
36 audiolength = librosa.get_duration(
37 y=signal ,
38 sr=sr,
39 hop_length=hop_length ,
40 n_fft=n_fft
41)
42

43 mel_signal = librosa.feature.melspectrogram(
44 y=signal ,
45 sr=sr,
46 hop_length=hop_length ,
47 n_fft=n_fft
48)
49

50 spectrogram = np.abs(mel_signal)
51 power_to_db = librosa.power_to_db(spectrogram , ref=np.max)
52

53 # Plotting the mel spectrogram
54 fig = plt.figure ()
55 fig.set_size_inches(factor*audiolength , 1)
56 ax = plt.Axes(fig , [0., 0., 1., 1.])
57 ax.set_axis_off ()
58 fig.add_axes(ax)
59

60 # Display and save the final spectrogram
61 librosa.display.specshow(
62 power_to_db ,
63 sr=sr,

A.3. Program used for spectrogram generation 51

64 hop_length=hop_length ,
65 cmap="magma"
66)
67

68 plt.savefig(
69 output_file ,
70 dpi=224,
71 bbox_inches="tight",
72 pad_inches =0
73)
74 plt.close ()

	Front page
	Title page
	Contents
	Preface
	1 Introduction
	2 Problem Analysis
	3 Design & Implementation
	4 Test & Evaluation
	5 Conclusion
	Bibliography
	A Code

