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Summary

This document serves as a master thesis detailing the outcomes of the project un-
dertaken by our study group during the 10th semester of the Computer Science
program at Aalborg University. The primary objective of this project was to de-
velop an advanced tool capable of optimizing automated planning processes. To
achieve this, we leveraged the cutting-edge technology of Graph Neural Networks.

Building upon a prototype that was developed in the previous semester, our
development process aimed to create a comprehensive tool encompassing hyper-
parameter tuning and feature engineering. The ultimate goal was to produce a
fully functional tool that could significantly reduce the search state space for au-
tomated planners while retaining the essential information required for efficient
plan computation.

To achieve hyperparameter optimization, we employed an automated tool called
SMAC in our project. SMAC allowed us to conduct experiments with various
training parameters, enabling us to narrow down and select a number of relevant
configurations based on accumulated experience.

In this project, we enhanced the previously developed prototype by introduc-
ing valuable features. Our focus was on identifying information that proves useful
during the plan search and could potentially guide the Graph Neural Network to-
wards improved classification. As a result, we incorporated landmarks and relaxed
plans into the model.

Our motivation for this work stemmed from existing approaches that sought to
gain valuable experience by solving smaller planning instances and then applying
that knowledge to larger, more complex planning scenarios. By leveraging this
accumulated knowledge, our tool aimed to enhance the efficiency and effectiveness
of automated planning processes.

Throughout the project, we conducted extensive research, implemented inno-
vative methodologies, and performed rigorous testing to ensure the effectiveness
and reliability of our solution. The final outcome is a complete tool that success-
fully optimizes automated planning processes, contributing to the advancement of
this field.

We believe that our work provides valuable insights and contributes to the

vii



viii Summary

growing body of knowledge in the area of automated planning optimization. By
developing this tool, we aim to facilitate more efficient planning processes, opening
up possibilities for improved problem-solving in various domains.

Aalborg University, June 8, 2023



Chapter 1

Introduction

This project is oriented on the area of automated planning and its improvement.
It is based on previous research and strives to enhance the existing solution with
feature engineering and with the use of a hyperparameters tunning tool. The con-
cept of automated planning focuses on finding an optimal sequence of actions that
leads to achieving all predefined goals, given a specific environment and initial
state. The formalized form of the problems is described in the further part of the
report.

The automated planning area can be described as a discipline of Artificial Intel-
ligence that aims at the development of generic algorithms allowing autonomous
systems to choose and organize their actions to achieve a goal by anticipating their
effects [10]. It is oriented on providing tools to solve planning problems among
versatile problems. Example domains in which such a solution can be applied are:

• Logistics: delivery companies assigning vehicles the routes and packages

• Agriculture: correct distribution of workers and machines for harvesting

• Satellite operations: deciding on a set of operations to take images of various
objects

• Network security: having information about the internal network and auto-
mated discovery of possible exploits

The above-mentioned domains are only a few of many that can be tackled us-
ing automated planning tools. However, all of them suffer from the same issue
which is scalability. With the size of the problems, the computational difficulty
grows exponentially. One of the research areas is focused on exploring the options
for generic tools which could improve the efficiency of planners and which could

1



2 Chapter 1. Introduction

be applied regardless of the domain the planner works with.

The inspiration for the project and the base concept expanded in this research
comes from the work of Daniel Gnad, Álvaro Torralba, Martín Ariel Domínguez,
Carlos Areces and Facundo Bustos in the paper "Learning How to Ground a Plan -
Partial Grounding in Classical Planning" [11]. The solution proposed by the above-
mentioned researchers takes advantage of machine learning algorithms which are
trained using specific domains. Afterwards, the learned knowledge can be applied
in real-world scenarios. Conceptually, experiences learned from small problems
can be used to help solve much bigger instances. Consequently, the model is
trained on small and medium size problems and later it is applied to much more
computationally expensive examples. Intuitively, knowledge gained from solving
problems of delivering 10 packages can prove to be beneficial when applied to
much bigger contexts of 100 packages and more. The planning systems thanks to
the improvements could be applied more broadly in modern solutions at a bigger
scale.

This project builds upon our previous work, which introduced an innovative
technique for optimizing automated planning. The approach involves utilizing a
pre-processor and harnessing the power of graph representation and Graph Neu-
ral Network (GNN) architecture. In the subsequent sections of this report, we will
delve into a detailed description of this process.

The system after the introduction of the GNN enhancement presents promis-
ing results. However, as the solution was only a prototype created to investigate
potential benefits, it was not explored throughout. Therefore, in this project by
performing further analysis and introducing new components of the training and
planning pipeline a more complete solution will be developed.

The project will confront its initial challenge directly by focusing on enhancing
the knowledge input provided to the Graph Neural Network. Although GNNs can
derive valuable insights from the graph structure alone, their capabilities expand
significantly when supplemented with additional feature knowledge.

The success of Graph Neural Networks (GNNs), much like that of traditional
Neural Networks, partially relies on optimal network configuration. In the case of
the prototype solution, this was a weak point. The selection of network parameters
was based solely on empirical evidence, resulting in suboptimal training efficiency
and overall task performance. Given that the tool’s objective is to optimize plan-
ning problems across diverse domains, relying on a single preselected parameter
configuration poses a problem. As a result, significant discrepancies in perfor-
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mance may be observed, highlighting the need for a more adaptive approach.

To address the identified challenges in this project in this project additional
components will be added to the training and planning pipelines. Firstly, the fea-
tures will be introduced which may unlock the full potential of the GNN. Through
the experimental process, the progress will be monitored and the impact on the
performance will be analyzed. This will push the solution one step closer towards
achieving optimal results. Additionally to address the second identified challenge
a hyperparameter tuning tool will be used for training. This will ensure opti-
mal model settings across all domains the GNN will work with. The enhanced
solution may enable the GNNs’ full potential and provide planners with a more
accurate and computationally simpler environment description, even before the
first attempt at solving the planning problem.





Chapter 2

Background

Over time, the field of planning research has implemented standardization mea-
sures, which involve adopting a shared terminology for describing planning prob-
lems and their respective domains. To facilitate the representation of problem
instances, planners have also developed a uniform approach to reasoning about
these issues known as translation. This involves parsing and converting instances
into a universal format that can be readily comprehended by the planner, and is
referred to as "grounding". To dive deeper into the topic of planning, it is necessary
to first clarify these formalities.

2.1 Planning Introduction

The classical planning problem Pc is defined as a tuple Pc = (Dom, Ins), where
Dom represents a specific domain and Ins stands for a given instance of the prob-
lem.

The domain is composed of various elements, including object types, predicate
definitions, and action definitions. Each predicate includes a name and arguments
that can be substituted with objects from a set that is defined by problem instance
Ins. By evaluating these predicates with the specified arguments, it can be deter-
mined whether they are true or false.

An action definition specifies an action along with its arguments and condi-
tions, which are a collection of predicates defining preconditions and effects. For
example, in order to capture an image of a particular star using a satellite, certain
preconditions must be met, such as the satellite being "pointed" at the star, having a
"calibrated" instrument, and having "power_available". The result of satisfying these
preconditions would be obtaining an image of the star, which is the effect.

5



6 Chapter 2. Background

The problem instance is represented by a tuple Ins = (Obj, Init, Goal), where
Obj is the collection of objects that are specified in the problem definitions. This is
then followed by a description of the initial and goal states of the environment in
which the task is situated.

2.1.1 PDDL Problem Representation

The Planning Domain Definition Language (PDDL) is a group of languages that
standardizes the representation of planning problems. A planning task is typically
defined in two files, where one encodes general knowledge about the planning en-
vironment (domain) and the other instantiates the actual problem. This definition
is referred to as a lifted representation of the problem.[9].

The lifted PDDL task Π is represented by a tuple (P, A, ∑, I, G), where P is a
collection of predicates, A is a collection of action schemas, ∑ is a collection of
objects, and I and G represent the initial and goal states of the task. This represen-
tation can be easily translated to the previous notion of classical planning problems
since predicates and action schemas are part of the domain and are common for
all instances in a given environment. The remaining components (∑, I, G) belong
to the problem specification and are unique to each instance. In this report for
simplicity we use examples specified in STRIPS [7] subset of PDDL.

2.1.2 Grounding

Planning models are typically represented using the PDDL notation. However,
planners do not directly understand problems structured using this method and
require a grounded representation of the instances, such as the STRIPS notation.
In this section, we will explain the grounding process, which is one of the most
essential steps in the planning process.

Grounding is a process of translating lifted PDDL representation into an in-
stantiated set of actions and predicates using the objects from ∑ To produce the
grounded representation the computation of all valid instantiates with objects is
needed. The result of the grounding is the set of prepositions also called facts or
atoms and grounded actions referred to as operators. This yields the state space of
the search which is explored by the planner 2.2.1. Moreover, the output consists of
all variations even though only a small subset will be necessary to solve a specific
planning task.

A STRIPS instance is a tuple (F, O, I, G), where F is a set of grounded predi-
cates, O is the set of grounded actions, and I and G are the initial and goal states.



2.2. Planners 7

Instantiated predicates hold binary values and describe the state of the environ-
ment at a given time. A state s ⊆ F is a set of facts (also called atom), with
the initial state being I ⊆ F and goal state G ⊆ F. Instantiated action schemas
are called operators. An operator o is applicable in a state s if its precondition
pre(o) ⊆ s. If the operator is applicable, then the state can be changed by applying
it, resulting in the transition from s to s′ via o, denoted by s o−→ s′. A sequence
of operators that leads from the initial state to the goal state is called a plan. If
such a sequence is found, then the planning task is considered solved. The plan is
optimal if the discovered sequence has the lowest possible cost.

2.2 Planners

Planners utilize a translated and grounded representation of the problem, such as
STRIPS, and employ various algorithms to search for a solution. The typical ap-
proach involves using search algorithms to traverse a tree consisting of all reachable
states via operator applications. The root of the tree is the initial state, and one or
more leaves represent the desired goal states. The intermediate nodes correspond
to states, and the edges connect states with operators applicable in a given state.
The complexity of the traversal grows as the number of reachable states increases,
making the planning process more challenging.

2.2.1 Search State Space Problem

As previously mentioned, planners face the challenge of scalability. The translation
process generates a set of all possible combinations of instantiated objects, even
though only a small fraction of them are relevant to the solution. As the num-
ber of components in the domain increases, the time required to find a solution
also increases. In fact, the time required to solve a problem grows exponentially
in relation to the growth of arguments. Real-world planning challenges, such as
logistics tasks, can have a state space so large that the efficiency and usability of
planners become limited. When considering all the available packages, trucks, and
possible destinations, the number of combinations becomes impossible to handle.
Therefore, the research challenge is focused on addressing the exponential growth
of grounded actions.

The primary tool used for solving the planning instances in this research is Fast
Downward (FD) [16], which is a state-of-the-art planner that employs a heuristic
approach to compute optimal plans. It is compatible with planning problems de-
fined in PDDL and supports various search algorithms like A∗[15], LAMA[33],
and LM-cut[17].
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2.2.2 Preprocessing

The limitation of scalability of planning problems can be approached in various
ways, and this report presents a solution inspired by prepossessing tools. The pro-
posed method involves optimizing planning problem instances before the planner
attempts to solve them. One notable example is the Scorpion planner [37], which
incorporates a preprocessor that analyzes the problem and strives to reduce task
complexity. The Scorpion planner integrates the h2 − preprocessor out of the box
[1], which aims to simplify the planning task model by examining mutex pairs
that cannot belong to any plan. After analysis, unreachable facts are removed,
thereby reducing the search state space. Considering the similar characteristics
of the h2 − preprocessor and the proposed GNN solution, these two approaches
will be compared against each other as well as combined together. The Scorpion
planner with h2 − preprocessor setup will serve as the baseline for comparison.

2.3 Previous Work

The techniques and choices outlined in this report derive from the team’s prior
efforts in the previous research [13]. Specifically, a prototype was constructed to
validate the initial hypotheses, proving that the Graph Neural Networks can be
applied successfully in the automated planning problems’ optimization, thereby
encouraging the ongoing refinement of the approach.

In order to fully comprehend the solution first the basic concepts of graphs and
problem mappings must be explored. A Graph G can be defined as a collection of
nodes V and edges E. Each node v ∈ V is characterized by its specific features,
denoted as xv. In a graph with n nodes, the relationships between nodes are
represented by a binary adjacency matrix A = V × V, where a value of 1 in the
A(i, j) entry indicates that nodes i and j are connected by an edge. Additionally,
two nodes v1 and v2 are considered neighbors if A(v1, v2) = 1.

2.3.1 Mapping Problems onto PDG

Various kinds of graphs are available to represent planning tasks. In the previ-
ous iteration of the research the classification performance of using both the so-
lution based on Causal Graph[34] and the one based on Problem Description Graph
(PDG)[30] was explored. Through experimentation, the PDG was found to be the
most promising option. Consequently, to streamline the project and avoid unnec-
essary complexity, the Causal Graph will not be further explored in this research.
Because of certain practical nuances, the PDG was slightly modified and does not
correspond exactly to what was proposed in [30] however the main structure of the
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graph is the same.

A Problem Description Graph is a graph representation of a planning problem
exploiting the relationship between actions and predicates. To create the Problem
Description Graph, the relationships between operators and predicates are lever-
aged. Furthermore, the PDG is considered a heterogeneous graph due to its inclu-
sion of multiple types of nodes and links. Specifically, four distinct node types are
identified in the graph:

• operator nodes: grounded actions, generate operator nodes, for instance:

– turn_to(satellite1, star1)

• value nodes: single fact:

– pointing(star1, satellite2)

Certain sets of facts are exclusive meaning that one only of the can be true at
the time. This allows for the generation of a logical grouping of such sets -
Variables.

• variable nodes: logical grouping of value nodes reasoning about one specific
object. For variables bound to satellite1 for a predicate pointing could group:

– pointing(satellite1, star1)

– pointing(satellite1, star2)

– pointing(satellite1, star3)

Four distinct types of edges can be observed in the graph, each of which reflects
the relationships between objects in their grounded representation. These edges are
mapped to the PDG in the following manner:

• Value-Variable edge: A Value and Variable have an edge if the Value belongs
to the Variable, the edge is not directed. The variable can have multiple values
but a value node can only be connected to one variable node.

• Value->Operator (Precondition) A precondition Value and an Operator are
related if the Value is in the preconditions of the action from which the oper-
ator was derived. This edge is pointing from value towards the operator

• Operator->Value (Effect) An effect Value and Operator are related if the
Value is in the effects of the action from which the operator was derived.
For this type of connection the operator node point towards the value node.
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Value nodes are connected to one or more operator nodes (by either precondi-
tion or effect edge), if said values appear in either the precondition or effect of the
action definition associated with the operator. This relationship can be visualized
in the figure below.

Figure 2.1: Problem Description Graph with features and labels. Green and red colors indicate
whether an operator is representing a good or a bad action. Purple represents values in the initial
state of the problem and blue represents values in the goal state of the problem.

2.3.2 Graph Neural Networks

Graph Neural Networks are a class of neural networks designed for data that
is represented in graph form. These networks leverage the connections between
nodes, utilizing the edges to propagate information between connected nodes.
Graph Neural Networks have found diverse applications, including the modelling
of social networks [48], physical systems in natural science [35], and protein-protein
interface networks [8].

GNN updates

Bronstein, Bruna, Cohen, and Veličković provide a comprehensive analysis of Graph
Neural Networks (GNNs) [3] in which they identify that all modern GNN archi-
tectures stem from one of three types: Convolutional, Attentional, and Message
Passing. The relationship between these types is such that Convolutional GNNs
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are a subset of Attentional GNNs, which in turn are a subset of Message Passing
GNNs. Since the Message Passing GNN is the most general, we will describe its
logic further.

The Message Passing GNN consists of two functions: an aggregate function
and an update function. To compute a hidden state hu for a node u, the GNN first
aggregates all feature vectors xv for all neighbours v ∈ Nu where Nu is the set of
all nodes that have a direct edge to node u. Then, the GNN combines the node
features xu with the aggregated information from the neighbours and updates the
hidden representation hu as follows:

ht+1
u = ϕ

(
ht

u,
⊕

v∈Nu

ψ(ht
v)

)
(2.1)

The permutation invariant
⊕

controls the aggregation and accepts an arbitrary
number of inputs (one per neighbour v ∈ Nu). The permutation invariant could be
a sum or a pooling mechanism such as max, mean, or min similar to conventional
convolutional networks. The trainable function ψ(xu, xv) transforms the features of
the node u and the feature vectors coming from each neighbouring node that are
passed to the permutation invariant. Finally, to update the hidden representation
hu, the feature vector of node u is combined with the aggregated information z
through a trainable non-linear function ϕ (e.g., ReLU).

In the context of Graph Neural Networks, the number of message-passing func-
tions defined in the network architecture determines the depth of the network.
Suppose we aim to construct a computational graph for a Graph Convolution Net-
work (GCN), which is a specialized variant of a Message Passing GNN. In GCN,
the function ψ is replaced with trainable weight matrix W, which is utilized to per-
form a matrix multiplication operation on the feature vectors of all neighbouring
nodes for a given node, resulting in the final following formula.

ψ(ht
v) = W ∗ ht

v (2.2)

ht+1
u = ϕ

(
ht

u,
⊕

v∈Nu

W ∗ ht
v

)
(2.3)

The following figure shows an example graph:
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Figure 2.2: Example graph and convolutions. Source - [40]

The left-hand side of the figure shows the input graph. To create the embedding
vector for node A, we consider its neighbours B, C, D without any specific order in
the first layer. Next, we iterate over the neighbours of the neighbours. The depth
of the network is clearly visible in the visualization, as it contains three identifiable
layers.

2.3.3 Operator Classification

The aim of utilizing the Graph Neural Network is to reduce the number of grounded
actions and facilitate planning algorithms in discovering the solution. To accom-
plish this goal, node classification is employed as a technique. This method in-
volves classifying whether an operator node belongs to good or a bad class. PDG
is a heterogeneous graph, so only a subset of nodes, namely the operators, are tar-
geted for classification. Variables and Values are not involved in the classification
process. The PDG is input into the GNN to construct a hidden representation of
the nodes. Next, the operator nodes undergo a Sigmoid function to determine the
probability of the operator (action) being either good or bad.

The prototype solution had a straightforward concept, only data regarding the
initial and target states were embedded as features. These features are represented
by binary values, denoted as x ∈ 0, 1. Since the Problem Description Graph is hetero-
geneous, various features can be embedded in different types of nodes. Therefore,
only value-type nodes that are necessary for describing a state will contain this
information.

The GNN classification output provides the probability of an operator being
beneficial for the planner. To classify a specific grounded action as positive, an
additional factor is considered: the threshold. This is a predefined value that sets
a boundary between positive and negative probabilities. The default value in the
prototype solution is 0.5, indicating that any operator with a predicted probability
greater than this threshold will be classified as positive.
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Results

The prototype solution’s experiments were carried out on three distinct planning
domains. To evaluate the model’s performance, two metrics, recall, and precision,
were combined. The recall metric demonstrated that, in all three cases, the models
accurately classified nearly 100% of good actions, while precision ranged from 40%
to 50%. Furthermore, the model identified over 90% of bad actions as negative,
indicating that many of them would be eliminated from the state search space. An
example results can be seen on the figure below:

(a) Recall (b) Precision

Figure 2.3: Satellite domain results

Opportunities for enhancements

While developing the prototype, various opportunities were identified that could
significantly enhance its overall performance. The first improvement that could
potentially enrich the prototype is incorporating additional features. The initial
version was quite limited in terms of information passed to the model.

Planning domains exhibit varying characteristics, and the relations between
their operators and values hold different significance, leading to different interpre-
tations by the GNN. As a result, the models produced using only one type of archi-
tecture and message-passing function display different performances. The crucial
aspect of optimization for any domain is utilizing hyperparameter tuning tech-
niques. Testing and pre-selecting the optimal network components for a particular
domain could considerably enhance the performance across different domains.

Another avenue for enhancing the solution lies in the integration of features.
In the previous research, the prototype solution was trained solely based on the
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graph structure, which limited the exploitation of the GNN’s full potential. By in-
corporating features into the training process, the overall performance of the tool
can be greatly improved.

The final opportunity for enhancing the prototype involves post-processing the
GNN output graphs. Following the classification, the operators are removed, but
no further analysis is performed. This results in value and variable nodes left in
the graphs with no connections or meaning. Furthermore, apart from basic graph
modifications, more in-depth analysis could be conducted. In the planning setting,
problems and their solutions adhere to strict rules. For instance, in the logistics
domain, if the goal is to deliver only one package, only one truck is necessary to
solve the instance. This leads to the constraint that operators concerning this spe-
cific truck are vital, while others can be removed. By identifying such constraints,
it may be possible to significantly reduce the search state space for the planner.

The tool can achieve completeness by enhancing the prototype in the areas
mentioned above. This innovative approach to automated planning optimization
offers a promising alternative to existing solutions. Furthermore, this solution
could be a significant contribution to the research field, inspiring future researchers
to build upon the GNN approach or augment it with supplementary components.

2.4 PyTorch geometric

PyTorch Geometric (PyG) [42] is the chosen library for this project, as it is built on
top of PyTorch [31], and is designed to facilitate the development and training of
Graph Neural Networks (GNNs) for various applications and structured data envi-
ronments. PyG provides a range of features for deep learning on graph-structured
data, including a mini-batch loader that allows operations on many small and sin-
gle large graphs, as well as GPU support. The batching functionality is particularly
important for this project, as the learning process will involve many small problem
instances, each producing its own small graph. This allows for optimization of the
training process and significant improvements in performance.
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Features

3.1 Motivation

Simple landmarks and Relaxed Plan are the two methods presented below that
introduce way of gathering information about a problem prior to execution of the
plan search. They are commonly used in classical planning to guide the planner
during its search in an efficient way. However, as it’s possible to derive them prior
to the execution of planning it allows for using them feature to machine learning
models. There are successful applications in the area of planning that use them as
inputs to machine learning models used to improve planning performance.

For instance, the Action Schema Network(ASN) [45] maps the current state of
the planning problem onto a neural network and uses it to read out the "best" ac-
tion to take in a given state. One particular challenge of this approach is the limited
horizon of the network constrained by the number of hidden layers. This caused
the under-performance of solutions when dealing with an arbitrarily long chain
of actions and states. To address this issue, authors supplied the network with
additional, domain-independent features derived from Disjunctive Action Land-
mark [19]. This particular landmark represents a set of actions from which at least
one has to be used in any plan. Adding this type of knowledge to the features
of machine learning model turned out to be enough to overcome the depth-fixed
horizon limitations of the network.

3.2 Feature selection

The process of feature selection and feature engineering is a crucial part of any
machine learning work. Careful selection of the information that is being fed into
the model is the key to its success as it can vastly improve its predictive power.
This chapter outlines the steps taken to enrich the information used by the tool as
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well as further ideas one could explore.

As previously stated, the former iteration of this project utilized GNNs to eval-
uate the usefulness of certain actions. The GNNs were successful to some extent -
as evidenced by the improved search time of the planner through the built proto-
type as well as the classification metrics [13]. Nonetheless, they were limited by the
use of a small number of features and heavy reliance on the network’s topology.
For these reasons, this iteration of the project puts more emphasis on enriching
the model with valuable information. There are two types of information one can
obtain from the Fast Downward tool by applying straightforward modifications
which were determined as low-hanging fruit - relaxed plan and landmarks.

3.3 Relaxed plan

The term "relaxed" in the context of planning refers to a modification of a plan-
ning problem in which the delete list of, actions is removed. Given an instance,
the corresponding relaxed version is created by copying the actions set and then
removing all negative effects. Therefore, a relaxed planning problem is a version
of the original in which it is not necessary to worry about deleted effects of the
actions. Going further, the relaxed plan is the plan that solves the relaxed planning
problem.

Formally, using the example of the PDDL task Π represented by a previously:

(P, A, ∑, I, G) (3.1)

The corresponding relaxed planning problem is (P, A+, ∑, I, G), where the new
actions set A+. We can define positive e f f+(a) and negative e f f−(a) effects of
action a for all actions a ∈ A, then a relaxed plan is a solution to a problem where:

A+ = a ∈ A|e f f−(a) = ∅} (3.2)

Finding a solution to this relaxed problem assumes that executing an action on
a binary state can only change its value from False to True and never the other way
around.

The concept of relaxed planning problems presents several noteworthy charac-
teristics that are applicable in the context of this project. Specifically, plans gener-
ated using a relaxed representation offer a reliable estimate of the original planning
cost. Moreover, the length of these relaxed plans is commonly utilized as a heuristic
function in planners. It is important to note, however, that the deletion of negative
action effects in relaxed plans does not guarantee a solution to the original plan-
ning problem. Consequently, the removal of these deleted lists merely serves to
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simplify the problem, resulting in a significant drop in computational complexity.
Therefore, the key takeaway from the characteristics of relaxed planning problems
is that they can be leveraged to facilitate efficient planning in this project [51].

Consequently to summarize the advantages of the relaxed plan computation
are:

• The relaxed plan simplifies the planning problems since ignoring the negative
effects makes it easier to reason about the problem.

• It allows the planner to learn valuable information about the key-point propo-
sitions that need to be achieved in order to solve the problem.

• It is often a good approximation of the actual plan, serving as a reference
point.

3.4 Landmarks

As mentioned previously in 2.1.2, a state in a planning problem is represented by
a set of facts. Several facts which reason about the same object can be grouped into
a variable, within the variable only one of the facts can be true at any given time.
A landmark represents which of the values under a variable must be true at some
point in the search in order to solve a planning problem.

The process of finding landmarks is based on analyzing the planning problem
and identifying key propositions needed to achieve the goal. Note that one might
also reason about actions needed to achieve these propositions and then create
so-called Action Landmarks, however, let us further reference landmarks as the
propositional version. Since finding actual landmarks is very complex there are
several types of algorithms that compute them. The algorithms range in complex-
ity and the information the derived landmarks carry. Simple landmark represents
value assignment such as at(truck1, location1) to one variable and is most often rep-
resented as an index of a variable var_xyz. Disjunctive action landmark, the one that
helped ASN overcome the limited horizon obstacles, is a type of landmark that is
represented by a set of simple landmarks such that any plan has to use at least one
action from that set. Finally, the Conjunctive landmark indicates that a set of simple
landmarks have to be true at the same time at some point during the search in or-
der to solve the plan. There are several algorithms which are used for Landmarks
computation such as RHW [32] or Zhu/Givan [53] Landmarks. In this research for
the landmarks computation, the Zhu/Givan was used.
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Landmarks are typically used to help the planner break down the complex task
of planning a problem into smaller sub-parts which then in turn allows the planner
to focus on solving each of them individually. This leads to an efficient search by
focusing on key goals that are more likely to be included in the actual solution.

3.5 Incorporation of Relaxed Plan

A relaxed plan has the same structure as an actual plan - both use the same object
types, predicate definitions and similar action definitions (relaxed actions don’t
have negative effects). There are however slight differences between the two, typi-
cally the relaxed plan is smaller than the actual plan. Unlike a regular plan, actions
in the relaxed plan are never repeated, since once a certain fact is set to true it will
never change its value. A plan - a list of grounded actions - can be used to add a
new feature to the operator nodes. The feature set of the operator nodes that pre-
viously was empty, now has been enriched by the binary flag indicating whether
this operator is in the relaxed plan.

Fast Downward supports finding the relaxed plan out of the box and with a
slight modification to the pipeline from the previous iteration of this project, the
tool was able to output the list of the operators in the relaxed plan into a file.
This file is in turn passed to the preprocessing pipeline that generates the graph
constructs from the grounded representation of the problem. An additional feature
has been placed on the operator nodes that is set to False(0) if the current operator
is not presented in the relaxed plan, or to True(1) if it is. As finding the relaxed
plan is very fast, this step did not increase the complexity and run time of the tool
vastly and provided it with valuable information 6.6. Further deliberations of the
pipeline will be described in chapter 5.

3.6 Incorporation of Landmarks

Similarly to the relaxed plan, landmarks also enrich the feature set of the Fast
Downward tool out of the box. They can be mapped onto the value nodes of the
PDG, and since one value is associated only with one variable it was decided to
not include that landmark information into the variable node.Simple landmarks are
then used to add a Boolean flag indicating whether a certain value is a simple
landmark. Since the selected algorithm also supports Conjunctive Landmarks and
Disjunctive landmarks, for the time being, the tool reads unique facts and creates a
set of simple landmarks out of them disregarding the additional information about
relationships between them.
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Finally a set of simple landmarks is obtained. The additional feature is added to
the node values. They are assigned with the additional feature equal to True(1) if
the value is in the simple landmarks set otherwise False(1).





Chapter 4

Hyperparameters optimization

The current parameters of the Graph Neural Network model were determined
through manual testing, resulting in the selection of the best setting. However, this
method does not fully capture the diversity and complexity of real-world plan-
ning tasks. As previously mentioned, planning domains often vary in complexity,
as well as in the significance and knowledge captured by relationships between
values. Therefore, a more sophisticated approach is necessary to tune the model
parameters for different planning domains accurately.

The next step in developing a complete tool is optimizing the hyper-parameters
of the model. This process involves identifying a set of distinct or continuous pa-
rameters that alter the behaviour of the model, along with their corresponding
possible values. The goal is to find the best configuration of hyper-parameters
with respect to some target function that represents the performance of the model.

Previous hyper-parameter tuning was carried out solely based on classifica-
tion metrics, neglecting the performance of the tool as a planner. Although this
approach was a reasonable starting point, optimizing hyper-parameters based on
plan-related metrics is likely to lead to better results for the actual planner. For
example, if a classifier identifies good operators only for one optimal plan but clas-
sifies operators from other optimal plans as bad, then the classification score of the
model would be lower compared to the model that found good operators from all
optimal plans however the actual end to end performance of the planner might not
be worse.

More formally, let A represent all grounded actions for some problem instance
and P1 ∈ A, P2 ∈ A be two non-overlapping optimal plans, that is: ∧{a ∈ P1|a /∈
P2}. Let cl f1(a) and cl f2(a) represent two classifiers as functions that given an
action return a binary flag indicating whether an action is considered good or bad.

21
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Assume that cl f1 only recognizes actions in P1 as good, while cl f2 recognizes
actions in both P1 and P2 as good. Thus, the classification score of cl f2 would
be higher compared to cl f1 based on classification metrics. However, the actual
planner might perform better when combined with cl f1 since it explores fewer
states by only considering actions from P1, which is a smaller yet sufficient subset of
A. This shows the importance of hyper-parameter tuning with respect to planning
metrics rather than solely relying on classification metrics for machine learning
classifiers used in classical planning problems. Another upside of tuning the model
this way is that it prevents over-fitting, with a simple trick of producing a very low
score when the plan is not found at all.

4.1 Optimization parameters

4.1.1 Message passing functions

The message-passing functions in Graph Neural Networks (GNNs) are indeed crit-
ical for their performance. The selection of the most suitable algorithm depends on
the network’s specifications, such as the number of node features and graph prop-
erties, but also on features as the presence of communities. For example, the choice
of algorithm can be heavily influenced by whether communities can be identified
in the graphs. An excellent example of utilizing graph communities can be seen
in the research paper authored by Mingxia Zhao and Adele Lu Jia, where they
developed a Dual-Attention Heterogeneous Graph Neural Network [52].

Their research focused on Online Agricultural Question and Answering (Q&A)
Communities that aim to help farmers obtain useful suggestions in the form of in-
teractive dialogues. With a constantly growing number of users, traditional meth-
ods failed to provide satisfactory results. Therefore, by utilizing the Dual-Attention
Heterogeneous Graph Neural Network model, which considers the influence of
both the node type and different neighbours of the same type, they obtained better
performance than state-of-the-art methods.

In the hyperparameter tuning process, different message-passing functions will
be considered for the model, drawing inspiration from other researchers’ work.

Sage Convolution - SageConv

A noteworthy message-passing function is discussed in the research paper that
introduces GraphSage [14]. The name Sage is derived from the words sample and
aggregate. Essentially the Sage Convlution was created for feature-rich graphs.
However, it is proven by the creators that it is also suitable for structures with only
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structural features:

"... our approach can also make use of structural features that are present in all graphs
(e.g., node degrees). Thus, our algorithm can also be applied to graphs without node fea-
tures." [14]

Considering these factors, SageConv appears to be an ideal choice for this
project. The plan is to incrementally add features, and the SageConv message-
passing function is well-suited for this approach. Its ability to provide good per-
formance throughout the project steps and produce comparable experiment results
makes it a promising option.

In contrast to a conventional graph convolution where the aggregation function
is fixed, the aggregators in GraphSage are trainable parameters. As a result, each
convolution has its own aggregator, and a Graph Neural Network (GNN) of depth
N consists of N trainable aggregators. The trainable aggregator weights are then
utilized to produce the hidden representation of "neighbourhoods". To obtain the
node’s feature representation, the neighbourhood representation is merged with
that node’s features. This is a crucial concept as it enables GraphSage to be used
in an inductive setting. This technique presumes that immediate neighbours of
a given node should have comparable embeddings (community). The knowledge
gained from the aggregators is carried forward to subsequent iterations, and as
they interact with the same type of graph, they gain more experience, resulting in
a learning model. This approach was a good match for the prototype as it had a
tendency to perform well on unknown graphs on which the model was applied
on.

Graph Attention Network - GATConv

When constructing a heterogeneous Problem Description Graph in the planning
environment, numerous relationships can be revealed. To leverage these relation-
ships, various message-passing functions can be employed. One example of such
a relationship is the proximity of critical operators and facts on the graph. Though
the edge count between them may not be high, this reveals detectable communities
within the graph.

In Graph Neural Networks, a graph community refers to a group of nodes that
are densely connected within themselves and relatively sparsely connected with
the rest of the graph. Communities can be identified by detecting patterns in the
graph’s topology, such as the presence of subgraphs with high clustering coeffi-
cients and small characteristic path lengths. Graph communities are often used as
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a basis for designing message-passing functions in GNNs, as they can help cap-
ture higher-level graph structures and relationships between nodes. By leveraging
graph communities, GNNs can achieve better performance in tasks such as node
classification, link prediction, and graph clustering.

The attention-based architecture in Graph Neural Networks is effectively har-
nessed through the Graph Attention Network (GAT) [46]. GAT computes the hid-
den representation by attending over neighbours, thereby capitalizing on their rela-
tionships. This architecture is not only highly efficient, thanks to its parallelization
across node-neighbour pairs but also adaptable to nodes with varying degrees, as
it allows the specification of arbitrary weights to neighbours. Furthermore, the
GAT model can be applied directly in the inductive setting, which is particularly
valuable in planning, where the task involves classifying operators from various
problem instances.

The attention algorithm in Graph Neural Networks accepts a set of node fea-
tures as input, which is denoted as h = h⃗1, h⃗2, . . . , h⃗N , where h⃗i ∈ RF. Here, N
represents the total number of nodes in the graph, while F denotes the number of
features associated with each node. With one layer, the algorithm generates a new
set of node features, denoted as h′ = h⃗1

′
, h⃗2
′
, . . . , h⃗N

′
, where h⃗i

′ ∈ RF ′.

To enable node-level feature transformations in the Graph Attention Network,
a learnable linear transformation is applied to each node. This transformation
is parameterized by a weight matrix W ∈ RF′×F. Following this, the self-attention
mechanism is performed on the transformed features, resulting in the computation
of coefficients:

eij = a(Wh⃗i, Wh⃗j) (4.1)

The coefficients computed in the Graph Attention Network represent the rela-
tive importance of the features of node j with respect to node i. This is the funda-
mental computation carried out by the algorithm. However, by incorporating the
graph structure information in the mechanism, a more advanced approach called
masked-attention can be employed. This method only computes the coefficient eij
for nodes j that belong to the neighbourhood of node i, denoted as Ni.

In the initial prototype, solution discussed earlier, only the graph structure
was utilized without any incorporation of features. Hence, any attention network
would not have been effective. However, as discussed in Chapter 3, relevant fea-
tures have since been added to the graph, representing important states and ac-
tions for the plan computation. These features correspond to significant nodes in
the graph, such as landmarks and relaxed plans. Therefore, it is anticipated that the
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GATConv will successfully leverage this information.

4.1.2 Training set selection

To effectively train a Graph Neural Network, it’s necessary to have a set of labelled
grounded operators that serve as the target feature for the network’s predictions.
In order to obtain this set, a planner such as Fast-downward [16] must be employed
to solve a planning task and generate a plan. The operators that are included in
the resulting plan are then naturally labelled as "good operators".

However, the number of operators to explore while computing the plan, far
exceeds the operators contained within a single plan, leading to a significant im-
balance between the number of positive samples (i.e., good operators in the plan)
and negative samples (i.e., all other operators). This imbalance can pose a challenge
for the GNN’s training process, potentially resulting in lengthy training times or
even hindering the network’s ability to learn valuable weights.

To enhance the training set for the GNN, one solution is to adjust the param-
eters of the Fast-Downward planner which changes the computation method. By
running the planner with these additional parameters, it performs more computa-
tions and explores all possible routes to solve the instance, rather than searching for
a single plan. This yields a larger set of good operators consisting of all operators
that are part of all computed plans. By considering all possible plans, the num-
ber of positive samples increases, thereby reducing the imbalance between positive
and negative samples. However, even with the larger number of positive samples,
the imbalance remains a significant challenge. This issue has been addressed in
the previous project through measures such as implementing sample weights [13].

Obtaining a set of good operators for a given problem can be challenging due
to the computational complexity involved. Exploring all possible routes to solve a
task is much more computationally expensive than following a heuristic function
to quickly reach the goal. Consequently, it may not always be feasible to perform
such computations within reasonable time frames, which can limit the number of
instances that can be included in the training set for the GNN. This issue is partic-
ularly pronounced when dealing with larger problems. Assumption relies on the
fact that data obtained by running the planner (in perhaps a sub-optimal way) is
better than a lack of data on this problem.

To enhance the training set for the GNN, a combination of the approaches men-
tioned above has been proposed. This results in a dataset with mixed origins of
target features, with the underlying idea that the more instances of training data
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the GNN is exposed to, the better the results will be. Technically, this is achieved
by first obtaining plans for all available instances, followed by a selection process.
The candidates for obtaining good operators are selected based on computation
times, with instances that can be solved in under 30 seconds being eligible for in-
clusion. This training set approach ensures a broader range of problem instances
than using the good operators approach alone, thereby enriching the set of data
that can be used for GNN training.

Despite the advantage of having a larger training set, this solution introduces
an underlying issue. Feeding two different types of training instances to the GNN
may hinder the network’s ability to learn effectively. Although both approaches
leverage the same type of relations and result in similar graph representations,
the relationship between good operators and the overall number of operators dif-
fers between the two types of instances. This could introduce unnecessary noise
to the GNN. To ensure the best performance of the output model, three different
types of training will be performed. Two of these will use the initial approaches
described above, one with computed plans and one with good operators. Addi-
tionally, a model with mixed data will be created. This approach ensures the best
performance for different types of domains, as it enables the selection of the best
candidate from a range of options.

4.1.3 Model parameters

The structure of the Graph Neural Network influences the performance signifi-
cantly. The too-simple network will not be able to capture the relations as the
expressive power will not be enough. On the other hand, too complex a struc-
ture will significantly extend the training process and can even lead to a situation
when the network will learn the noise of the data instead of the desired properties.
Moreover, in the Graph Neural Network, another parameter that can influence the
performance is the aggregation function. In the general equation 2.3 it is denoted
as permutation invariant

⊕
. The simple aggregation can be denoted as:

a(t)u = AGGREGATE(t)({h(t−1)
v : v ∈ N(u)}) (4.2)

The neighbour aggregation of the node u in t-th GNN layer is expressed by
aggregating the neighbour V hidden representation hv in the previous layer t− 1.
N(u) is a set of nodes adjacent to u [49]. The choice of the aggregation function
is crucial. In the case of classification the node representation in the final layer
h(t)u is used for prediction. Therefore the last aggregation is called READOUT and
outputs a probability of an operator belonging to the positive class. READOUT
can be a simple permutation invariant function or a more sophisticated pooling
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function [50]. In this case, as the binary classification is performed the READOUT
function is not parameterized and is set to sigmoid.

ht
u = READOUT(h(t−1)

u ) (4.3)

In the message-passing functions, the aggregation functions play an important
role. Many researchers demonstrate that the specific choice of aggregation func-
tion contributes significantly to the representational power and performance of the
model [49] [14] [41] [5].

To account for all the considerations mentioned above, a hyperparameter op-
timization approach was implemented. The optimization tool, which will be de-
scribed later in this chapter, takes a set of pre-selected parameter options as input.
The network size is determined by specifying the hidden size and number of layers
parameters, which dynamically create the network structure. These parameter val-
ues were chosen empirically based on manual experiments conducted during the
prototype development phase. The selected layers’ numbers are {4,5,6,8} and the
hidden sizes are {4,8,16,32}. Although initial runs had the option to use the sizes
64, 128, and 256, it turned out to be very slow to train and inefficient. Besides the
network size specification, the parameters such as batch size and initial learning
rate were passed to the tool.

On the other hand, the choice of aggregation functions included in the opti-
mization process is based on information from the torch geometric documentation.
For instance, the mean aggregation function is suitable for capturing the distribu-
tion of properties or proportions of elements, while the max function is advan-
tageous in identifying representative elements. Alternatively, the sum function
enables the learning of structural graph properties [49] [43]. Since all of these func-
tions are considered valuable in the planning setting, they will be included in the
set of parameters for the optimizer.

4.1.4 Training parameters

When training causal neural networks and graph neural networks, the choice of
training parameters can significantly impact the training performance. Similarly,
in this project, while optimizing models for a given planning domain, the optimal
values of training parameters may differ. To achieve the best possible optimization
results, the SMAC tool is used to set training parameters, such as the learning rate
and optimization parameters. This subsection focuses on optimizers, as they have
the most significant impact on learning speed. Choosing the right optimizer can
greatly improve training results, especially when a constant number of epochs is
used in training. In this project, two optimizers were considered: Adam [24] and
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RMSProp [18].

Stochastic gradient-based optimization holds significant practical significance
across various domains in science and engineering. Numerous problems in these
fields can be framed as optimizing a scalar objective function, where the goal is to
maximize or minimize it by adjusting its parameters. Gradient descent, an opti-
mization algorithm, leverages the gradient of the objective function to explore the
search space effectively. Therefore, optimisation algorithms such as the two men-
tioned above play a great role in training performance.

RMSprop, a gradient-based optimization technique introduced by Geoffrey
Hinton [18], addresses a common problem encountered in training neural net-
works. When complex functions, such as neural networks, process data, they tend
to exhibit either vanishing or exploding gradients. This issue becomes prominent
in networks with numerous hidden layers that employ activation functions like sig-
moid, as the derivatives are multiplied together during backpropagation. Conse-
quently, the gradient diminishes exponentially as it propagates through the layers,
resulting in ineffective updates to the weights and biases of the initial layers. Since
these initial layers play a crucial role in recognizing the fundamental elements of
the input data, this problem can lead to overall inaccuracies in the model [47].

To overcome this challenge, RMSprop employs a mini-batch learning approach.
It calculates a moving average of squared gradients to normalize the gradient, en-
suring a balanced step size or momentum. By decreasing the step for large gradi-
ent updates and increasing it for smaller steps, RMSprop prevents explosions and
mitigates vanishing gradients. Additionally, RMSprop incorporates an adaptive
learning rate, dynamically adjusting it over time to optimize the learning process
effectively [36].

The Adam optimization algorithm has emerged as a leading choice for deep
learning tasks, offering improved performance over traditional stochastic gradient
descent. It combines the strengths of two algorithms, AdaGrad [6] and RMSprop
described above, making it an adaptive gradient descent method. Adam, as de-
scribed by its creators, is a highly efficient stochastic optimization technique that
utilizes first-order gradients while minimizing memory requirements.

AdaGrad, one of the precursor algorithms, adjusts the learning rate on a per-
parameter basis, making it particularly effective for sparse gradients commonly
encountered in tasks like natural language processing and image recognition. On
the other hand, RMSprop optimizes the learning rate by utilizing a moving average
of squared gradients. By combining the favourable aspects of both AdaGrad and
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RMSprop, Adam achieves enhanced computational efficiency, handles sparse gra-
dients in noisy data effectively, and demonstrates excellent performance on large
datasets.

According to Andrew Ng [29], Adam can be thought of as a fusion of RM-
Sprop and Momentum techniques. This amalgamation of strategies contributes to
Adam’s remarkable versatility and efficacy in various deep-learning applications.
Additionally, Adam’s ability to handle sparse gradients and its computational ef-
ficiency makes it a preferred choice among practitioners in the field.

4.2 SMAC optimization

SMAC, known as sequential model-based algorithm configuration [25], is a ver-
satile tool that effectively optimizes algorithm parameters. It can be applied to
various scenarios, including automating processes, evaluating functions such as
simulations, and adjusting parameters accordingly. To better comprehend the dis-
tinctions between Sequential SMAC and standard model configuration techniques,
it is necessary to introduce two well-known alternatives for tuning the model:

• Grid Search, which computes the product of all possible combinations and
while it guarantees optimal solution it is very complex and unfeasible in
real-life scenarios.

• Random Search solves the complex issue of the Grid search however it does
not guarantee an optimal configuration and blindly looks for the best result.

Both of them could be categorized as "model-less" optimization solutions that per-
form their search solely based on predefined exploration. There exists no feedback
loop that could enhance the search: results computed for each run of the configu-
ration are used only to compare it current best model. This is highly inefficient as
the resources spent on obtaining the performance of certain configurations are not
fully utilized.

Sequential Model-based Optimization (SMBO) which is the premise of SMAC
is an approach that uses a probabilistic search to efficiently search for good so-
lutions in a computationally expensive function space. Its power comes from an
intelligent configuration search that neither checks all possible configurations nor
explores them only at random. Instead, SMBO uses Bayesian search to model
the probabilities of choosing certain configurations and updates these probabilities
given the evidence. The evidence, a numerical value representing the performance
of the model, is analyzed separately for each of the parameters. SMBO obtains the
evidence by choosing a configuration, obtaining its result to them choose the best
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values for certain parameters.

More formally, let a configuration Y represent a set of parameters w ∈W, with
domain of the parameter w equal to D(w) = {v1, v2, ..., vn}, well performing value
vgood and under performing value vbad for a certain parameter w, then probability
of selecting these values have a following relation P(vgood) > P(vbad)

In order to prevent staying in local optima SMBO implements an exploita-
tion/exploration balance that allows the model to stay on track of good values
but at the same time try unexplored configurations.

• exploration - trying out configurations at random, with a goal to possibly find
a totally new, best-performing configuration and leave the local optimum.

• exploitation - trying out configurations that yield good results, given the
evidence on what is believed to be good

The first significant application of SMBO was developed in 1998 [23] and has
been used as a premise for several optimization approaches: SPO[2], SPO+[21],
SPO-TB [22] as well as SMAC [20]. SMBO has been applied to a variety of opti-
mization problems, including hyper-parameter tuning, experimental design, and
reinforcement learning. One of the most popular SMBO algorithms is the Sequen-
tial Model-based Algorithm Configuration (SMAC) algorithm, which is widely
used for optimizing the hyper-parameters of machine learning algorithms. SMAC
works similarly but has some additional features that allow it to exploit promising
configurations faster

4.3 Training

In order to use SMAC one needs to provide it with configuration parameters, their
possible values, and a way to evaluate a configuration. As mentioned previously,
the optimization focus of this project included the evaluation of the actual end-to-
end planner - using the GNN-enhanced Fast Downward tool. In order to achieve
that a set of planner-related metrics has been set.

Since the primary goal of the tool is to solve planning instances, in the case of
failure to do so, a disproportional high punishment was introduced. This was sup-
posed to prevent overfitting and make sure that SMAC prioritizes configurations
that solve the planning problems over the ones that correctly classify the good op-
erators. In the case of the planner successfully obtaining the plan, the main metric
includes the number of operators that were provided to the planner. The objective
of the tool is to minimize this value. This was supposed to enforce the GNN to
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disregard as many operators as possible while keeping the plan solvable (previous
guard)

A set of problems has been selected for training and evaluation. Unlike many
optimization techniques, SMAC does not use the entire evaluation set to evaluate
a single configuration. This would be very inefficient since it would require run-
ning the entire planner for all of the evaluation instances - presumably giving the
optimizer less time to explore different configurations. Instead, SMAC chooses 1
problem at a time and keeps track of a database of performances for each of the
problems. If comparing two configurations becomes problematic, more instances
are used to find the best one.

Using SMAC allowed to significantly automate and control the end-to-end
learning process of the GNN while keeping in mind the performance of the plan-
ner.

4.4 Iterative training process - practical details

Solving hard planning problems might sometimes overwhelm the planner. It can
end up in a rabbit hole - get stuck in a part of the search space where The solution
is hard to find. Fortunately, SMAC supports evaluation time limits. Utilization
of this feature played a significant role since it allowed the training to predefine
a maximum time that can be spent on evaluating a single instance before killing
the planner and returning the disproportional punishment. Since the tool was sub-
mitted for the international planning conference competition [38], where it could
run for 72h hours before being used for planning it was important to make sure
that the knowledge of SMAC is periodically saved in case of any disruptions. In
practice, every 5 hours the execution of SMAC is temporarily paused and the best
configuration model is saved into a persistence state.

4.5 Configuration

In conclusion, optimizing hyperparameters, and selecting suitable message-passing
functions, training sets, and GNN structures are essential for achieving accurate
and effective performance in planning domains. By considering these factors and
leveraging planning metrics, the GNN model can be tuned to enhance the plan-
ner’s performance and deliver improved results in real-world planning tasks. Con-
sequently, all the aforementioned parameters will be incorporated into the SMAC
optimization tool for monitoring and analysis within the model’s specific plan-
ning domain. The insights gained from these reflections may contribute to further
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optimization improvements and a better understanding of best practices.



Chapter 5

Pipeline implementation

The objective of the tool under development is to effectively categorize operators
into good and bad target groups. To achieve this, an essential initial step involves
integrating the tool with the planner. This chapter will elaborate on the pipeline
and delve into the design choices made during the development process, informed
by valuable insights gained from extensive testing and observation.

5.1 Preprocessor implementation

The Graph Neural Network (GNN) tool serves to optimize planning problems,
making them more amenable to efficient solving by the planner. Its primary func-
tion is to perform pre-processing of the tasks and must be integrated into the
original planning pipeline of Fast Downward(FD). To facilitate smooth integration,
we leverage the Scorpion planner [37], a classical planning system built upon FD,
which offers a range of plugins to enhance its capabilities.

One noteworthy plugin is the ability to incorporate a preprocessor into the
planning pipeline. When invoking the Scorpion planner with appropriate options,
it initiates the problem translator, responsible for grounding, followed by the exe-
cution of the designated preprocessor. The preprocessor takes as input a STRIPS
representation of the planning task, identical to that provided to the planner itself.
By default, the Scorpion planner includes the h2-preprocessor [1], which performs
comprehensive problem analysis and optimization. It excels at eliminating redun-
dant operators and identifying unreachable states. However, the framework allows
for the implementation of custom preprocessors to suit specific needs.

Consequently, our objective entails the development of a script that orchestrates
the execution of tailored components for problem optimization. The execution
sequence of the planner can be outlined as follows:

33
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Algorithm 1 Planner execution

Require: problem.pddl, domain.pddl
1: output← translator(domain, problem) ▷ Compute STRIPS representation
2: output← preprocessor(output) ▷ Preprocess the output from translate module
3: plan← search(output) ▷ Compute plan from the preprocessed output

The intuition is to combine the advantages of both preprocessors the h2-preprocessor
and GNN. The functionality of the h2-preprocessor when combined with GNN
brings additional value to the solutions as the trained model is only capable of
removing the operators. However, no further analysis of values or variables is per-
formed. Consequently, by combining the two components as the result they create
a complete optimization tool.

The initial implementation of the preprocessor follows an intuitive three-step
process. Firstly, the h2-preprocessor is executed to analyze the planning task and
perform initial optimization. Subsequently, the output of the first step is passed to
the GNN, which classifies the operators. Finally, once the identified operators are
removed, the h2-preprocessor is rerun on the GNN’s output to eliminate redundant
and unused values and variables.

By following this approach, we aim to achieve optimal results. The h2-preprocessor
contributes to initial optimization, while the GNN’s operator classification en-
hances the selection of operators for removal. The subsequent execution of the
h2-preprocessor on the GNN’s output ensures further refinement by eliminating
redundant values and variables. This solution, based on intuition, is expected to
yield the best possible outcomes.

Algorithm 2 Initial implementation of the preprocessor

Require: output ▷ STRIPS representation from translator
1: output← h2 − preprocessor(output)
2: output← GNN(output) ▷ Classification
3: output← h2 − preprocessor(output)

As the algorithm shows the components in the preprocessor script update the
same output file which is afterwards passed to the planner.

5.1.1 Initial insights

The primary objective of the developed optimization tool was twofold: to acceler-
ate plan computation and to optimize problems that were previously unsolvable
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due to their size, making them feasible for planners to handle. However, the initial
setup proposed for the tool, based on preliminary testing, proved to be inadequate
in achieving these goals.

During the preprocessing stage, striking a balance between the time allocated
for preprocessing and the subsequent planning phase is crucial. It is essential to
consider that exhaustive preprocessing, despite potentially yielding better overall
optimization, can often result in worse outcomes in terms of the total time spent
on solving the problem. Therefore, although the initial setup was based on a theo-
retically sound idea, it could not meet the time constraints in practice.

As a result, further adjustments were necessary to find the appropriate balance
between preprocessing and planning. These adjustments aimed to optimize the
overall efficiency of the process, taking into account the time limitations. The ob-
jective was to strike a balance where the preprocessing stage provided sufficient
optimization while ensuring that the total time spent on the problem remained
within acceptable limits.

The initial experiments revealed that the first application of the h2-preprocessor
did not yield significant optimization improvements for the initial problem ver-
sions. Moreover, as the problem size increased, the computational time consumed
by the preprocessing step became disproportionately large, overshadowing other
crucial stages of the process. Consequently, it was decided to eliminate the h2-
preprocessor from the initial step of the optimization pipeline.

Another significant factor that had a substantial impact on the performance
was the classification threshold, which was previously discussed. The threshold
acts as a boundary for the sample probabilities. Any probability above the pre-
defined threshold is classified as positive, while lower probabilities are classified
as negative. In order to minimize the number of errors, it is ideal to set a higher
threshold value. However, it is important to note that the optimal threshold may
vary depending on the domain or even within different problems in the same do-
main.

Initial experiments revealed that a default threshold value of 0.5 yielded good
results for small problem instances (below 500,000 operators). However, when
dealing with significantly larger instances (exceeding 5 million operators), it be-
came necessary to fine-tune the predefined threshold. To provide a clearer un-
derstanding of the issue, instead of directly referring to threshold values, we will
employ the percentage of operators classified as positive. In smaller problems,
the tool typically selects between 5% to 20% of the actions for further processing.
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However, in the aforementioned larger planning instances, this percentage drops
to nearly 0% or 1%. Consequently, there is a significantly higher likelihood of miss-
ing an important operator during the classification process, as observed in several
cases. To tackle this problem, the concept of retries was introduced to address the
issue at hand.

The retries algorithm plays a crucial role in determining the completion of fu-
ture steps and ultimately determining whether a plan has been found or not. When
a solution cannot be reached with the current set of operators, the algorithm per-
forms a rollback and passes a larger set of operators to the planner. This ensures
that even if the initial threshold value was insufficient for a particular problem, it
is adjusted to a lower value so that more operators are classified as positive, even-
tually leading to a solution.

To optimize performance and minimize unnecessary planner runs, the thresh-
old is initially adjusted to ensure that the proportion of operators classified as pos-
itive is not lower than 10%. Subsequently, based on a parameter passed, a certain
number of additional retries are computed. By default, three retries are performed,
and the results are stored in separate files, ready to be used and passed to the plan-
ner. The number of operators included in each consecutive retry increases by 10%.
Therefore, if the initial run with 10% of the operators fails, the algorithm rolls back
and utilizes 20% and 30% respectively in subsequent retries. The preprocessor
algorithm, incorporating these implemented changes, is presented as follows.

Algorithm 3 Preprocessor retries computation

Require: output, threshold, retriesNum ▷ output - STRIPS representation
1: de f aultPredictions← GNN(output)
2: for i in de f aultPredictions do
3: if de f aultPrediction[i] ≥ threshold then
4: predictions.add(de f aultPrediction[i])
5: end if
6: end for
7: operators%← predictions/totalNum
8: if operators% ≤ 10% then
9: predictions← top 10% of defaultPredicitons

10: end if
11: r ← 0
12: for RetriesNum do
13: gnnretries{r} ← top 10% ∗ r of defaultPredicitons
14: r ++

15: end for
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This algorithm precomputes the initial operators’ predictions and additionally
produces multiple files storing predictions with higher thresholds for future even-
tual failures.

Algorithm 4 Planner execution with retries

Require: problem.pddl, domain.pddl, retriesNum
1: output← translator(domain, problem)

2: initial_output← output
3: output← preprocessor(output)
4: plan← search(output)
5: retry← 0
6: while not plan or not retry = retriesNum do
7: plan← search(output, retry)
8: retry ++

9: end while
10: if plan then
11: return plan
12: end if
13: plan← search(initial_output) ▷ search with original STRIPS without

preprocessing

The algorithm presented above demonstrates the process of computing a plan
using retries. The preprocessor analyzes the information provided, selects relevant
predictions, and passes them to the h2-preprocessor for further optimization. The
planner then attempts to find a solution based on this refined input. If the num-
ber of retries exceeds a certain threshold, the planner resorts to using the original
STRIPS from the translator component to continue the search for a solution.

Upon testing the new implementation, the tool encountered an additional is-
sue related to the h2-preprocessor, which is executed after the GNN classification.
In this preprocessing step, the objective is to remove unused values and variables
from the graphs. By postprocessing the classification, which considers only the
operators with the h2-preprocessor, the planner would be presented with an even
simpler task. However, due to the time spent analyzing certain problems, the pro-
cessing sometimes exceeded the pre-set time limits.

To address this challenge and for experimental purposes, two potential solu-
tions have been proposed, both of which will be tested. The first implementation
will completely exclude the use of the h2-preprocessor and directly pass the classi-
fication results to the planner. The second algorithm will incorporate time limits on
the h2-preprocessor since it is an iterative process. This approach allows for stop-
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ping the preprocessing at an intermediate state, even if it is not fully optimized.
This approach could still yield valuable results and potentially overcome the time
constraint issue.

5.1.2 Final implementations

After a thorough investigation of the issues encountered during the preliminary
testing phase, several adjustments were made to the aforementioned tool. The
final versions selected for the experimental phase have demonstrated the highest
performance and have shown the most promising potential based on empirical
evidence. As a result, the following configurations will be further tested:

1. Scorpion planner with the h2-preprocessor as a base for comparison

2. Scorpion with preprocessor which uses only GNN classification and retries
logic

3. Scorpion with preprocessor which uses GNN classification followed by h2-
preprocessor with set time limit and retries logic

Through the comparison of these configurations, it will be possible to not only
identify the best-performing model but also understand how different components
influence the computation of plans. Furthermore, the diversity of problem com-
plexity during the experimental phase will provide insights into how these config-
urations scale with larger instances. By analyzing the results, it will be possible
to determine which of the configurations are the most effective within the given
context. This evaluation will contribute to a better understanding of the tool’s
capabilities and guide further improvements.
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Experimental Settings

To conduct meaningful experiments, the first step was to establish baseline results
using the state-of-the-art planner, Fast Downward. Thanks to the custom imple-
mentation of Scorpion planner the pipeline including h2 − preprocessor and the
Fast Downward was created. The planner’s settings were kept consistent in both
the baseline and subsequent experiments to ensure clear and accurate outcomes.

During the experimentation phase, the GNN is run as a preprocessor and op-
timises the planning task. The planner is then executed using the same settings as
in the baseline development, and the results are compared using various metrics
such as the number of operators in the task and the computation time for the plan.
Further details on these metrics will be provided in the upcoming section of this
chapter.

The experiments are run using a tool that allows running and evaluation plan-
ners on multiple problem instances automatically. The Lab [39] is a Python package
suited for planners benchmarking. Additionally, the tool includes code for parsing
the results of the runs and creating reports. Thanks to that setup all experiments
are run using the same setup and environment ensuring valid experimentation.

6.1 Data

To conduct the experiments four different planning domains were selected. They
differ in complexity and will provide the best overview of the solution’s potential.
The domains are satellites, depots, barman and rovers.

The satellite domain deals with the modelling of a satellite observation schedul-
ing problem. This problem involves using one or more satellites to observe objects
in space. Each satellite is equipped with different instruments that have distinct

39
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characteristics and require appropriate calibration targets. The satellites can be
directed towards various targets for observation. In the original version of the
domain, there are considerations for downlinking the observation data to the sta-
tion, but this is only possible within certain time windows. Moreover, the energy
consumption factors were taken into account. The satellite relies on its battery for
power and can be recharged using solar panels and the energy provided by the
sun. In this version of the problem, the satellites consume energy while perform-
ing actions, and the instruments need to be warmed up before use. However, for
simplicity, we will focus on the basic version of the domain, excluding energy and
data downlinking constraints. The tasks are based on finding the most efficient
covering of the observations given as a goal. [28]

The depots domain is another domain utilized for experimentation. It involves
actions related to loading and unloading trucks using available hoists located at
fixed positions. The cargo being handled consists of crates that can be stacked and
unstacked onto a predetermined set of pallets at these locations. Unlike specific
order requirements in the Blocks domain, the trucks in this domain do not hold
crates in any particular order. This flexibility allows the trucks to function simi-
larly to a table in the Blocks domain, enabling crates to be rearranged. The depots
domain is considered more complex as it combines elements from two simpler do-
mains, namely Logistics and Blocks. By merging logistics-related tasks with the
stacking of blocks, this domain presents additional challenges and sub-problems.
While the primary objective remains to achieve efficient delivery, the domain also
incorporates smaller-scale problems. This complex domain serves as a valuable
test set to evaluate the capabilities of the tool and assess its performance in han-
dling more intricate problem scenarios. [26]

Another domain to consider is the realm of the Barman. Within this domain, an
automated bartender takes charge, deftly handling drink dispensers, glasses, and
a shaker. The objective is to devise a comprehensive plan for the robot, dictating
its actions in order to fulfil a specified set of drink orders. In this domain, the re-
moval of certain actions carries crucial information, reflecting the robot’s inherent
limitation of grasping only one object at a time. Moreover, it acknowledges the
prerequisite that glasses must be cleaned of any liquid and contaminants before
they can be filled. This is an example of a hard domain. the difficulty comes from
the complex plans instead of the number of operators. [4]

One of the domains that will be employed is the rovers domain, which is a
simplified rendition of the challenges faced by NASA during the Mars Exploration
Rover missions launched in 2003. In this project, we will utilize a version of the
problem that focuses on planning for multiple rovers equipped with different sets



6.2. Training 41

of equipment, which may have some overlapping capabilities. These rovers are
tasked with traversing the surface of a planet, moving between designated way-
points, gathering data, and returning to the lander. This is the simplest domain
that will be used for experiments. [27]

The problems chosen for experimentation are obtained from a repository which
is specifically created for storing viable benchmarks for automated planning [44].
This is a collection of benchmark sets generated with the Autoscale tool. The tool
automatically computes a good scaling in task difficulty so that it is easy to com-
pare the performance of different planners. Each domain mentioned earlier will
be subjected to testing using 30 diverse problem instances. These instances vary in
terms of the difficulty of finding a solution (measured by the number of goals to
satisfy) as well as the size of the problem (measured by the number of objects in-
volved). By incorporating this comprehensive approach, we can thoroughly assess
the performance of the solution across all complexity levels. This will allow us to
identify scenarios where the solution outperforms the base approach and those in
which it may lag behind.

6.2 Training

The training as mentioned before is performed with the support of the hyperpa-
rameters tuning tool SMAC. However, to ensure comparable results the parameters
such as time constraints and number of training epochs are kept constant. This ap-
proach enables to investigate of different domains in terms of the tool performance.
Consequently, valuable knowledge will be obtained which in the future will allow
optimization of the solution so that it shows similar performance across all do-
mains. The number of epochs is set to 500. This is determined empirically based
on the experiences from the previous project.

The chosen loss function for the training process is the Binary Cross Entropy
(BCE) [12]. Based on the knowledge gained from the previous project [13], this
loss function was found to be suitable for the current project. The primary objec-
tive of minimizing the loss calculated using the BCE is to reduce the amount of
information required to represent the operators’ labels and increase the predicted
probability for the labels. By averaging the loss over the entire data set, the result-
ing model exhibits good average performance across all data points. Furthermore,
the BCE can be a weighted loss function which enables this technique for optimiz-
ing unbalanced data sets. This is necessary in this case to preserve the model from
predicting all samples as negative which typically in the unweighted environment
would produce the best results for the model perspective. The introduced weights
are calculated based on the relations of positive and negative samples.
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W0 =
N
N0

(6.1)

W1 =
N
N1

(6.2)

In the above equations, the w0 is the weight of negative samples and the w1 is
positive. The weights are computed dynamically for every dataset which ensures
consistency of the sample’s importance across all datasets.

To conduct the SMAC hyperparameter optimization, a separate dataset must
be carefully chosen. The selection process is based on the time required by the
planner to solve each planning instance. Therefore, data splitting occurs after all
available tasks have been run through the planner. Subsequently, instances are
filtered based on the time it took for the planner to solve them. The first filter
removes instances solved in more than 120 seconds, and the remaining instances
are then sorted by planner time. Preferably, instances with longer planner times
are chosen. Additionally, the tool ensures that the number of selected instances
is no more than 10% of the total number of instances. This filtering approach
helps to select the most balanced (solvable but not trivially easy) instances for the
optimization process, thereby improving the quality of the final model.

6.3 Experimental Metrics

During the previous iteration of this project, the prototype metrics were strictly fo-
cused on operator classification performance (BCE). The recall and precision were
taken into account as only a limited scope of the tool was tested [13]. However, in
this project, a full spectrum of the pipeline is taken into consideration. Therefore,
to visualize the advantage of the preprocessor the two metrics that are the primary
goal to optimize are taken into consideration. These are the number of operators
passed to the planner, plan search time and coverage.

The experiments were conducted in three separate series, excluding the base-
line run. As mentioned in previous chapters, the previously developed prototype
solution was enhanced with a hyperparameter optimization tool and additional
features. To track the improvements accurately, the components were added one
by one. The first series involved only hyperparameter tuning. In the second se-
ries, the relaxed plan feature was introduced, followed by the addition of land-
marks in the last series. This sequential approach enables precise monitoring of
the progress of the experiment and enables the determination of the effectiveness
of the enhancements.
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6.4 Results of hyperparameters optimization

For all of the domains, a tendency for small and medium-sized networks could be
seen. Big networks were inefficient and seemed to have way worse performance
as well as the execution of learning was way slower. With smaller networks, it was
possible to faster get the models and evaluate them with often better performance

The batch size of 16 seemed to have caused overfitting of the model in many
cases since the classification loss was small however the search was reliant on many
retries - initial predictions were not sufficient to solve the problem. With batch size
4 or 8, the classification loss was smaller but the models were more likely to solve
the planning

During the hyperparameter optimisation process, the SAGEConv message-
passing algorithm was chosen in almost all of the instances. On the contrary, the
GATConv which is an attention-based message-passing algorithm was performing
significantly worse. From such an outcome it can be concluded that an attention-
based network was not a suitable choice in this scenario. The reason behind such
poor performance could be the limited number of features in the network.

6.4.1 Problem with models selected by SMAC

One problem that could have been seen across all tested domains was the fact that
the learning happens on relatively simple problems compared to the 30 selected
benchmark instances. This has often caused SMAC to (correctly) choose models
that perform worse on the benchmark set and better on the training/validation
set. This was discovered by manually testing different models (that SMAC has not
selected) and getting better (sometimes even much better) results.

6.5 Results of the experiments

To analyse the results in the clearest and most structured manner they will be de-
scribed for all the domains separately. As the domains are different in solving
complexity and in the size of the environment considering the number of objects
in the problem instances, a one-by-one analysis will provide the best insights.

In order to enhance clarity regarding the results, it is essential to establish pre-
cise terminology for identifying specific configurations. The three primary config-
urations mentioned earlier will now be outlined using the following designations:

1. Scorpion planner with the h2-preprocessor - base
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2. Scorpion with preprocessor which uses only GNN classification and retries
logic - GNN

3. Scorpion with preprocessor which uses GNN classification followed by h2-
preprocessor with set time limit and retries logic - GNN H2

Additionally, to separate the configurations using different features the prefixes
will be added to the names:

• Model trained using Hyperparameeter Tunning without any features - Raw

• Model trained using Hyperparameeter Tunning with the relaxed plan as fea-
tures - Relaxed

• Model trained using Hyperparameeter Tunning with both relaxed plan and
landmarks as features - Relaxed Landmarks

The performance of only landmarks models was usually very poor and it was
decided not to include it in the competing configurations.

6.5.1 Satellites

The satellite domain as described above is a simple domain to tackle for planners.
The complexity grows based on the number of objects in the problem which is
followed by a growing number of operators grounded.

Coverage

Coverage is a metric that indicates the number of planning problems successfully
solved by the tool. The primary objective of the tool is to attain the highest possible
coverage, as its purpose is to provide a solution that enables the planner to address
previously unsolvable problems through preprocessing. To present an overview of
the performance of all tested configurations, the coverage results will be showcased
in a table.

Domain Base Raw Relaxed
GNN

Relaxed
Landmarks

GNN

Relaxed
Landmarks

GNN H2

Satellite 30/30 30/30 30/30 30/30 30/30

Table 6.1: Coverage Satellites

As the satellite domain is simple to solve, all the configurations achieved 100%
coverage on the problems from the experimentation set.
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Operators

The complexity of the satellite domain is primarily determined by the number of
objects that define the number of all operators. Nevertheless, a significant portion
of these operators are not utilized in the actual plan and can be considered redun-
dant. The following figure illustrates the count of operators that are supplied to
the planner from the base configuration. This configuration is then compared with
the new configurations described above.

Figure 6.1: Number of operators for every configuration

The depicted figure showcases a subset of the problems, specifically those tar-
geted for optimization. Hence, it only includes problems ranging from 10 to 30.
Notably, the graph demonstrates that the number of grounded operators in the
base configuration exhibits an exponential growth pattern, quickly surpassing mil-
lions shortly after problem 17. Conversely, with the aid of preprocessing, the oper-
ator count is substantially reduced, even for the largest problems, ensuring it does
not exceed one million. Furthermore, it is evident that the variance in the operator
count among different preprocessor configurations is relatively minor.
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Figure 6.2: Number of operators for GNN configurations

The provided figure illustrates the comparative analysis of the classification
performance among all GNN configurations. The experimental results demon-
strate that the configurations exhibit nearly identical levels of accuracy. However,
it is worth noting that one of the configurations, which incorporates a relaxed plan
as a feature, underperforms in certain cases. Upon analyzing the model training
and the outcomes, it can be deduced that incorporating a relaxed plan as an inde-
pendent feature introduces unnecessary noise during training, leading to a decline
in overall performance. Conversely, during the experimentation phase and through
analysis of the training process, it was observed that the combination of relaxed
plan and landmarks features yielded the best results.

As previously mentioned, the combination of GNN and h2-preprocessor is ex-
pected to yield superior results. However, it is crucial to consider the time re-
quired for the h2-preprocessor to optimize the output of GNN. Thus, a detailed
examination of the optimization benefits it offers in relation to the time required
for optimization becomes necessary. This investigation will provide a comprehen-
sive understanding of the trade-off between the optimization advantages and the
associated time constraints.
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Figure 6.3: Number of operators GNN vs GNN H2 with time limits and without

The depicted figure demonstrates that the execution of the h2-preprocessor on
the output of GNN does not yield significantly improved results. However, it is im-
portant to note that the computational time required for this process significantly
hampers the performance of the tool, which will be elaborated on in the subsequent
subsection. The results from the figure indicate that employing the h2-preprocessor
with a predetermined time limit does not alter the number of operators in any of
the cases. This is primarily due to the problem instances being too large to analyze
even after classification performed by GNN. The same scenario is observed when
employing the configuration without a time limit on the h2-preprocessor. Slight
improvements in optimization can be observed only in problems 22, 24, and 29;
however, these differences are not significant. Based solely on the classification of
operators, it can be concluded that running the h2-preprocessor may not be worth-
while. Nonetheless, it is important to consider that the primary objective of the
h2-preprocessor is to eliminate unused values and variables. To assess its effective-
ness in this regard, the planner’s execution times must be taken into consideration,
as outlined in the subsequent subsections.

Search time

Another metric taken into consideration for comparing the results is the search
time. This metric specifically measures the time spent on planning, focusing solely
on the search component. Translation and preprocessing times are not included
in this calculation. Analyzing these results allows for an assessment of how the
optimized problem instances influenced the performance of the planner.
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Figure 6.4: Search time of all configurations

The provided figure depicts the search times of all tested configurations. The
axis Y shows the time required for the search to complete in seconds and the X is
the problem. It is evident that the base configuration performs the poorest. It can
be assumed that the search time using the base configuration will increase expo-
nentially, particularly in the last six problems where the computation time tends
to grow much faster than in the earlier part. During the experimentation phase,
it was also discovered that problems 21 and 23 are considerably more computa-
tionally challenging than the others. Although it is difficult to determine the exact
reason behind this complexity, as the number of objects in the instances and the
goal conditions to satisfy are similar to other problems, it can be inferred that the
routes to achieving the goals are more intricate. However, when examining the
performance of the planner after preprocessing by the developed solution, signif-
icant improvements can be observed. Although there is still a noticeable spike in
search times for problems 21 and 23, the overall search time scaling becomes linear.
By excluding these two computationally challenging problems from the figure, the
advantages of the preprocessor become more apparent.



6.5. Results of the experiments 49

Figure 6.5: Search time excluding problems 21 and 23

Planner time

The final metric to consider is the planner time, which encompasses the total time
required for solution computation. This metric incorporates the time taken by the
translator, preprocessor, and search component. By comparing these times, we can
evaluate how the new solution has influenced the overall planning process.
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Figure 6.6: Planner time of all configurations

The presented figure compares the planner times achieved using all configura-
tions. Similarly to the previous subsection, problems 21 and 23 stand out as outliers
with significantly longer computation times compared to other cases. However, it
is evident that the planners utilizing the developed solution perform better over-
all. Consistent with earlier findings, configurations employing the h2-preprocessor
after GNN classification lag behind in larger problem instances. To gain a clearer
understanding of the advantages and for further investigation, let’s divide the ex-
periment into specific cases. Firstly, let’s consider the comparison between the base
configuration and the preprocessor without the use of the h2-preprocessor.
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Figure 6.7: Planner time of base and GNN configurations

The presented figure showcases the performance of the base planner in con-
junction with all the best-performing tool configurations. It is evident that the
solution outperforms the base planner significantly in more challenging problem
instances. This highlights the advantage of the solution when tackling more dif-
ficult scenarios. However, as the computational complexity decreases, the results
become more similar. This can be attributed to the tool’s implementation, as all
tasks in the pipeline are executed using the Python programming language. Al-
though Python is not the most efficient language for processing large files, which
are commonly encountered in planning tasks, it explains why the planner times
appear similar. Nonetheless, it is worth noting that refactoring and outsourcing
the file processing to C++ code would greatly accelerate the entire process. Fur-
thermore, it is noticeable that the configurations utilizing features exhibit slightly
lower performance. This can be attributed to the extra computation required for
relaxed plans and landmarks before preprocessing. While this computation does
not have a significant impact on the overall process performance, it is still reflected
in the results.

Another comparison that confirms the earlier assumption involves contrasting
the pure GNN approach with the GNN combined with the h2-preprocessor.
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Figure 6.8: Planner time of GNN and GNN H2 configurations

As anticipated, the inclusion of the h2-preprocessor results in increased planner
times. Considering the previous results, which highlighted the number of opera-
tors passed to the planner, it can be concluded that the additional processing by
the h2-preprocessor is not optimal in terms of overall performance for this domain.

Bigger problem instances

In previous subsections, it was demonstrated that the benchmark problem set for
the satellite domain achieved 100% coverage in every configuration. However, to
delve deeper into the performance analysis, an additional problem set was chosen.
These instances pose greater challenges for the planner and offer valuable insights
for comparison, highlighting the advantages of the proposed solution. The selected
difficult problems comprise between 1 million and 4 million operators, accompa-
nied by a substantial increase in the number of goal conditions that need to be
fulfilled. This configuration presents a significant challenge for the planner, as ex-
ploring such a vast number of possible states and discovering a route that satisfies
all goal conditions is nearly impossible without preprocessing of the problem in-
stance.

The table below shows the coverage of the base and relaxed landmarks GNN
configurations.
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Domain Base Relaxed
Landmarks GNN

Satellite - big 4/30 11/30

Table 6.2: Coverage Satellite big

The results clearly demonstrate the substantial impact of the preprocessor in
enhancing problem instance resolution. In comparison to the base solution, which
only managed to solve 4 problems, the preprocessor generated more intelligible
inputs for the planner, enabling it to solve 11 of the problems. Moreover, when
examining the problem instances that both configurations successfully solved, the
tool with the preprocessor exhibited significantly improved overall solving times.
For instance, problems 12 and 13 were initially solved by the base configuration
in 1442 and 1381 seconds respectively. However, after applying the preprocessing
step, these same problems were solved in only 875 and 718 seconds respectively,
showcasing the substantial time savings achieved.

6.5.2 Depots

The results obtained while performing experiments on the depots’ domain show
a definite advantage of the preprocessing tool in all areas. The problem instances
from the domain are much harder to solve by the planners as compared to the
satellites. Therefore, it is a perfect scenario for the experiments as the coverage is
the metric that the solution aims to improve. However, this time the model with
h2 − preprocessor was needed in order to tackle the balance between solving small
problems efficiently. The time limit of the h2 − preprocessor allowed it to help the
GNN model to solve small problems that turned out to be problematic. For the
larger problems, the time limit was always exceeded, which was beneficial since
GNN can tackle them without any help.

Domain Base Relaxed
Landmarks GNN

Depots 22/30 30/30

Table 6.3: Coverage Depots

The results reveal that the base configuration struggled to solve only 22 out of
30 problems, indicating that the unsolved problems were the most challenging ones
in the problem set. In contrast, the developed solution successfully solved all of the
problems. The optimization process significantly eased the burden on the planner,
enabling it to handle the problems more effectively. This improvement is evident
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not only in the successful solving of all problems but also in the reduced planner
times and search times, highlighting the enhanced efficiency of the solution.

Figure 6.9: Search time base and Relaxed Landmarks GNN

The figure clearly illustrates the exponential growth of the base configuration’s
search time, which rapidly escalates to unreasonable values. However, with the
application of preprocessing, the planner exhibits significantly faster problem in-
stance resolution. The complexity of the problem instances included in the bench-
marks does not reach a threshold where the solution would start to underperform.
From the obtained results, it can be inferred that while the search time eventually
experiences a noticeable increase, it does so much later than in the base configura-
tion. This trend becomes evident when considering the planner times, emphasizing
the improved efficiency and scalability achieved through preprocessing.
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Figure 6.10: Planner time base and Relaxed Landmarks GNN

The figure provides clear evidence of the significant advantage offered by the
developed tool compared to the base configuration. The total time required for
plan computation exponentially increases in the base solution, while it follows a
more linear growth pattern in the case of the preprocessing tool. This observation
highlights the superior efficiency and scalability of the developed tool, which ef-
fectively mitigates the exponential growth of computational time experienced by
the base configuration.

6.5.3 Barman

In the Barman domain, the baseline failed to solve problems 23, 25, 26, and 29,
highlighting the domain’s complexity. However, the similarly to the depots do-
main, Relaxed Landmarks GNN H2 successfully solved all of the problems, un-
derscoring the significant improvement in coverage achieved by using the GNN
model. In this domain analysis, particular attention will be given to the intriguing
disparities between the performance of the GNN model and the h2 − preprocessor.
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Figure 6.11: Planner time base and Relaxed Landmarks GNN problems 1-19

Figure 6.12: Planner time base and Relaxed Landmarks GNN problems 20-30

The analysis of planner time is segmented into two sections: problems 1 to 19
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and problems 20 to 30. As depicted in Figure 6.12, problems 20 to 30 demonstrate
that the GNN model outperforms the base configuration in terms of coverage,
with each model facing challenges in different areas. Notably, the base configura-
tion fails to solve certain problems, as indicated by the absence of a computation
time bar (blue bar). Moreover, significant disparities in computation times can be
observed. For instance, while the base configuration fails to solve problem 26, the
GNN model swiftly resolves it.

Problems 1-19 represented by the first figure 6.11 can be divided into 3 batches:
1-7, 8-14 and 15-19. For the first batch, the base configuration works better de-
spite the fact that GNN correctly reduces the number of operators 6.15. This is
an expected behaviour since the GNN preprocessor adds computational overhead
(graph data generation). However, the base model jumps into the h2− preprocessor
immediately. Nonetheless, with the increasing difficulty of the problems, GNN
starts becoming superior which batch 15-19 visualizes. Although for batch 8-14,
the GNN significantly outperforms the base configuration, its classification was
not successful. Consequently, the advantage in planner time is caused by the abil-
ity to fail much faster than the h2 − preprocessor finishes processing.

The GNN performance gain is caused by a quick burnout of retries and falling
back to the default actions. This happens before the h2 − preprocessor of the Base
Model finishes prepossessing. The benefit of "GNN failing quickly" can be further
evidenced by similar search time of the Base Model that successfully preprocessed
data using h2 and the GNN model



58 Chapter 6. Experimental Settings

Figure 6.13: Search time base and Relaxed Landmarks GNN problems 1-19

Figure 6.14: Search time base and Relaxed Landmarks GNN problems 20-30
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Figure 6.15: Operators number base and Relaxed Landmarks GNN

6.5.4 Rovers

The rover domain served as the simplest benchmarking domain during the exper-
imentation phase. All of the planner configurations successfully achieved 100%
coverage when tested on this domain. Moreover, the computation time for solving
the base configuration did not exceed 5 seconds for any of the problem instances.
These results indicate that the rover domain does not present a challenging envi-
ronment.

This lack of complexity is also reflected in the classification performance. SMAC
consistently selected models that predicted all operators as the positive class, achiev-
ing 100% for the Raw configuration model. Although the Relaxed Landmarks
model seemed to improve the classification performance, both of the models were
worse than the Base model in terms of the total planners time. 6.17

Given the specifications of the domain, the training process was considered
valid since it consistently achieved 100% coverage in problem-solving. However, it
is clear that the developed solution is not worth running in such simple scenarios.



60 Chapter 6. Experimental Settings

The behaviour observed suggests that the solution’s capabilities are suitable for
handling more complex situations.

Figure 6.16: Operators number Base vs Raw vs Relaxed Landmarks

Figure 6.17: Planner time Base vs Raw vs Relaxed Landmarks
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6.6 Experiments outcomes

After the experimentation phase, several conclusions can be made. The results
differ depending on the complexity of the domain and its nature. The simple
domains such as the described above rover domain do not benefit from additional
preprocessing as the problems are easily tackled by the planner. On the other hand,
solving the more complex problems belonging to more complex domains such as
depots, quickly become expensive to solve or even unsolvable at all. Thanks to the
diversity of the domains it is possible to asses the usability of the developed tool
depending on the domain nature.

The primary purpose of the developed solution is to optimize complex prob-
lems and enable the planner to solve instances that would otherwise require pre-
processing. The results indicate that this objective has been successfully accom-
plished. In the satellite domain, although the performance improvement was not
observed in the easier problem instances, the preprocessing step significantly re-
duced the search time in more complex cases. Furthermore, when the tool was
provided with highly complex problems, the preprocessor greatly enhanced the
coverage score of the base configuration.

In the depot domain, a similar trend was observed. Due to its higher complex-
ity, the initial coverage score achieved by the base configuration was not perfect.
However, substantial improvement was achieved after applying the preprocess-
ing step. Additionally, as the problem complexity increased, the search time and
planner time grew exponentially, sometimes resulting in unmanageable processing
times. The preprocessor not only enhanced the coverage score but also significantly
improved both the search time and planner time.

The GNN model demonstrated an enhanced coverage score in the barman do-
main and improved planner times. Additionally, intriguing discoveries emerged
during the examination of figures and the exploration of planning problem run
logs. In some of the problems where the preprocessing failed the GNN was much
faster in failing than the h2 − preprocessor. This resulted in using the original set
of operators, however, the planner time was improved.

This developed tool enables the planner to scale better, and efficiently solve
challenging problems within shorter time frames and even tackle previously un-
solved instances.





Chapter 7

Conclusion

7.1 Conclusion

The goal of this research was to develop a solution which will optimise the au-
tomated planning problems across many domains. The problem that was tackled
included poor scaling of the planner which leads to the inability of solving compu-
tationally challenging problem instances. The cause of the struggles was the grow-
ing number of grounded operators which results in growing search state space and
furthermore to plan computations exceeding reasonable time limits.

The approach used in the research is expanded upon the previously developed
prototype whose potential was proved by the experiments in the previous work of
the group [13]. In this report, the solution was extended and as a result, a complete
optimization tool was created.

The enhancements include hyperparameters optimization which significantly
influenced the training process and overall classification performance. The tech-
nique used was using the SMAC tool which was supplied with possible configu-
rations and it automatically selected the best-performing options.

The prototype developed before also lacked features. Consequently, the next
step for enhancing the solution was feature engineering. The proposed candidates
were relaxed plan and simple landmarks which can be easily computed using a
Fast-Downward planner by passing options and altering the code slightly. The fea-
tures were carefully analyzed in the experimentation phase by adding them to the
prototype solution incrementally.

The results of the proposed solutions were satisfactory. The experimental phase
demonstrated clear advantages in solving more complex problem instances. While
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the solution did not significantly improve overall performance in computing plans
for simple problems (which was not the primary goal), it quickly outperformed
the basic approach when complex domains were employed for comparison. No-
ticeable improvements were observed in both search time and total planner time.
Additionally, the main research goal was accomplished, as the coverage score ex-
hibited significant improvement.

Based on the results, it can be concluded that the research was successful. The
developed tool represents a comprehensive solution capable of enhancing plan-
ner performance. Moreover, it has demonstrated the viability of applying Graph
Neural Networks in the field of automated planning research. Furthermore, the
developed solution serves as a solid foundation for future improvements, with
opportunities to consider additional features and different configurations.

7.2 Future Work

The research provided valuable insights into the strong and weak sides of the so-
lution. Based on the experimental data the flaws of the tool can be identified and
consequently, it is possible to set goals for future improvements.

One of the most significant downsides of the solution is the chosen program-
ming language. Python is significantly slower than C++. With bigger problems
where the number of operators reaches millions, this plays an important role to
improve the planner’s total time Consequently, one of the tasks planned for future
work is outsourcing file processing to a more performant programming language
such as C++.

Another improvement which could improve the performance of the Graph
Neural Network classification is additional features. In the current solution, the
obtained features are easy to compute and do not provide much additional knowl-
edge. However, it could be noticed that the model which used both the relaxed plan
and landmarks performed better in terms of training performance and classifica-
tion. Consequently, by incorporating more features the overall performance could
improve. Besides, implementing new features into the solution, the future task
is to compute more meaningful landmarks features. As described in the section
3.4 there are diverse ways of obtaining landmarks which differ in computational
complexity. In this solution, only simple landmarks were used, however, by incor-
porating more advanced information such as disjunctive or conjunctive landmarks,
the tool could increase the classification accuracy.

The issues concerning the model selection process of SMAC, as pointed out
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in 6.4.1, deserve further attention. A more thorough investigation into improv-
ing SMAC’s model selection mechanism would be beneficial. One potential ap-
proach is to intensify the complexity of the training instances—typically considered
easy—by imposing stricter time constraints, implementing robust retries policies,
or introducing other similar restrictions. This could potentially enable SMAC to
explore superior models that have been manually identified. An unexplored strat-
egy to alleviate this issue could be employing SMAC in two successive rounds,
with the first optimizing the classification loss of the test set, followed by another
aimed at the number of operators in models that resolve the plans.
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