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1 | Introduction

The use of Unmanned Aerial Vehicles (UAVs) for inspection, data collection, and
surveying tasks has been rapidly increasing and the applications are numerous. The
potential for UAVs can be extended to new fields if made able to complete tasks
requiring interaction with the environment, such as lifting, pick-and-place, assembly,
cleaning, or collecting samples [1].
Specific examples are transportation of goods, maintenance of tall structures such
as powerlines or tall buildings [2], assembly or installation of equipment (sensors)
at altitude, and obtaining samples in inaccesible or hazardous locations [3]. This
also includes industrial lifting operations for wind turbine maintenance which is the
focus of, for example, Danish aerospace company Airflight ApS [4].

Adding and controlling a manipulator attached to a UAV - an Unmanned Aerial
Manipulator (UAM) - has proven more difficult due to the lack of a stable base,
which complicates the control task [1]. Other problems include locating objects and
pose-estimating objects in relation to the UAM. Current approaches include using
visual markers on objects [5] and visual servoing for gripping [6], [7].
The manipulator and its gripper are often custom designed parts, which is due to
the special requirements of a UAM, such as low mass. Several different types of
grippers exist and have been tested, and the type of gripper required depends on
the specific objects to be gripped in a given application [1], [8].

The various tasks requires different levels of coupling between the UAM and the
manipulated object. In [9] these are categorized as:

• Momentary coupling: tasks with objects that can be picked up and manipu-
lated while airborne. Typically transportation, lifting or pick-and-place tasks.

• Loose coupling: tasks where the UAM manipulates a static object attached to
the environment while itself remaining airborne. Typically assembly, insertion,
pushing or pulling tasks.

• Strong coupling: tasks where the UAM lands and perches on an object while
interacting with it.

Control algorithms for position control and trajectory tracking have been demon-
strated for both manipulators with few DoFs (1DoF, 2DoF), and manipulators with
more (3+ DoF). Applied control techniques in existing literature include: PID [10],
LQR [11], [12], ADRC with backstepping [13], adaptive control [10], sliding mode,
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Chapter 1. Introduction 1.1. Project objectives

and MPC [3], [14]. More complex controllers tend to provide better performance
but computational time has been an issue [3], [14]. This is a typical issue and also
extends to state estimators for the UAM problem, where for example Unscented
Kalman Filters (UKF) have been shown to perform well [12]. However, they come
at the cost of increased computation time compared to Extended Kalman Filters
(EKF).

The control of aerial manipulators is a promising field of research with an abundance
of possible applications. Development of accurate control strategies that are able
to handle the complex dynamics and complete the manipulation tasks is required
for real-world implementations of aerial manipulation. In order to limit the scope
of tasks this work will focus on generic pick-and-place tasks that require picking up
and moving an object to a different position. This leads to the problem statement:

How can an aerial manipulator be designed, mod-
elled and controlled to be able to complete pick-
and-place tasks?

1.1 Project objectives

The objectives of this project include:

• Design and implementation of a prototype aerial manipulator for laboratory
testing.

• Mathematical modelling of the system.

• Design and implementation of a state estimator for the UAM.

• Design and implementation of a control strategy for the UAM.

• Demonstration and validation of the above points through simulation and
experiments.

These points will be covered in the following chapters.
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System & Model
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2 | System

This chapter will provide descriptions of the components used to build the prototype
system. This includes descriptions of both mechanical and electrical components,
including sensors and actuators, and how these interact. The goal is to provide an
overview of the system. Overall, the UAM is composed of a quadrotor, acting as the
base of the robot, and a manipulator attached to the quadrotor. This is illustrated
in Fig. 2.1. The quadrotor and the manipulator will be described separately in the
following sections.

Figure 2.1: 3D render of the UAM with a two-link manipulator with a simple hook as end-
effector.
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Chapter 2. System 2.1. Quadrotor

Name Description Amount Mass [g]

Base (bottom) Bottom plate of the base with power distribution 1 54

Base (top) Top plate of the base, carries electronics 1 22

Motor arm Arm connecting BLDC motors with the base 4 44

Legs Legs for the UAM to stand 4 11

Propeller T-motor T1045 propeller 10×4.5" 4 12

Servo cage Cage for attaching a servo to the base 1 26

TPU Standoffs Standoffs for mounting electronics 4 1

Propeller guards For shielding propellers in case of a crash 4 11

Table 2.1: Overview and description of mechanical components of the quadrotor, including
amount of the component used in the assembly along with the mass of each individual compo-
nent.

2.1 Quadrotor

The quadrotor is the core part of the UAM, providing the base link to which all
components of the UAM is attached, including motors, the battery, avionics/flight
controller, and the manipulator itself.

2.1.1 Mechanical Parts

The quadrotor is built up of multiple parts. In Table 2.1 an overview of the com-
ponents is displayed. Certain small components such as cables, connectors, screws,
bolts, and nuts are excluded from this table. The two base plates are effectively
reinforced FR4 PCB plates. The top plate has no electrical connections whereas the
bottom plate has built-in power distribution traces for connecting the Electronic
Speed Controllers (ESCs) and the battery.

The arms carrying the motors were designed in SolidWorks and the design was opti-
mized using the Finite Element Analysis (FEA) and topology optimization features
in SolidWorks to reduce the weight. This is illustrated in Fig. 2.2.
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Chapter 2. System 2.1. Quadrotor

Figure 2.2: A screenshot from the SolidWorks Topology Optimization tool. The areas encircled
in red are the areas marked by SolidWorks as eligible for removal. Before running the analysis,
these areas were solid.

The FEA and topology optimization was carried out by applying the motor and
propeller manufacturer’s indicated maximum thrust of the combination of motor
and propeller. This is considered the worst case scenario of applied forces under
normal operating conditions. Other parts were simply designed with low weight in
mind, but as they do not experience the same amount of applied forces, FEA was
not applied. The rotor arm is designed to raise the rotor a small distance above the
base. This slightly decreases the lever arm effect of the rotors on the body, effectively
reducing roll-, and pitch-controllability. This is expected to result in dynamics that
are somewhat dampened, since actuators have to use more control effort to rotate
the quadrotor.

The stand-offs for the electronics were 3D-printed in a flexible plastic (TPU with a
Shore-hardness of 98A) and are designed as two cones stacked on each other in an
"hourglass" fashion to be able to absorb vibrations from the motor.
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Chapter 2. System 2.1. Quadrotor

2.1.2 Electronics & Sensors

The electronics included on the quadrotor are listed in Table 2.2.

Name Description Amount Mass [g]

4S LiPo Battery 5000mAh LiPo battery pack 1 436

T-Motor Air 2216 KV880 Brushless DC motors 4 68

T-Motor Air 20A ESC Electronic Speed Controllers 4 19
for the motors

Teensy 4.0 Microcontroller acting as flight controller 1 6

LSM6DSOX+LIS3MDL High-precision combined accelerometer, 1 4
IMU gyroscope, and magnetometer

GY87 IMU Combined accelerometer, gyroscope, 1 1
and magnetometer

BMP388 Barometer High-precision barometer for altitude 1 2
measurements

SP3485 (RS485) Transceiver for communication 1 1
Transceiver with manipulator servos

APC220 433MHz Wireless communication module for 1 11
Transceiver general purpose user IO

LM2596 Buck Converter Voltage regulator for supplying other 2 16
electronics

Raspberry Pi 4 Model B Onboard computer for image processing 1 49

16MP IMX519 PDAF & Small camera that can be connected 1 7
CDAF Autofocus Camera to the Raspberry Pi

Generic LiPo Battery Alarm Battery level indicator 1 7

Custom PCB Custom made PCB for connecting the 1 36
various electronic components

Table 2.2: Overview and short description of electronic components of the quadrotor

The flight controller is based on a Teensy 4.0 microcontroller (MCU), due to its
small size and high performance, as well as its support for the Arduino IDE and li-
braries, making development easy. The sensor suite consists of two different Inertial
Measurement Units (IMUs), and a high-precision barometer acting as an altime-
ter. To allow the system to communicate with external devices a wireless 433MHz
transceiver module is included on-board and connected to the MCU. Furthermore,
an RS485 module is included since the manipulator servos communicate through
this protocol. These are all connected on a custom PCB illustrated in Fig. 2.3.
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Chapter 2. System 2.1. Quadrotor

Figure 2.3: A 3D-render of the electronic components installed on a custom PCB to connect
them all.

Each of the transceiver modules requires a UART channel, whereas the sensors are
all connected on the same I2C bus. Power is supplied through the screw terminal
from an LM2596 regulator module. The ESCs also connect to this board as they
require control signals from the flight controller. The electrical interconnections of
the system may be found in Appendix A. A Raspberry Pi 4 Model B (RPI) will
be used for collecting data from the MCU and for image processing which will be
used for positioning. The RPI is to be mounted atop the four tall black standoffs
displayed in Fig. 2.3.
3D models exist of all the electronics. These 3D models will be used when approxi-
mating the inertia matrix of the system at a later stage. All the components in this
section are assembled into a quadrotor as displayed in Fig. 2.4.
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Chapter 2. System 2.2. Manipulator

Figure 2.4: A 3D-render of the quadrotor with electronics (including battery, motors, and ESCs)
installed.

2.2 Manipulator

The manipulator consists of several mechanical parts and two servos. An overview
of the components is presented in Table 2.3. It is made with 2 degrees of freedom
(DoF), but it is possible to treat it as either a 1 DoF or 0 DoF (static object) as
well. The first joint of the manipulator rotates around yaw-axis of the quadrotor.
This is an uncommon configuration for aerial manipulators. The reason for choosing
such a design is that it allows the system to use the manipulator to exert torques
about its yaw-axis. Yaw motion for a quadrotor typically has significantly weaker
controllability compared to pitch and roll, since the rotor torques are mainly due to
the drag on the propellers. The second joint axis is rotated 90 degrees compared to
the first joint axis. In principle this joint can also be used to control the quadrotor
attitude, however the mass and inertia of the second link is significantly lower. For
that reason this is only really an option if the UAM is carrying a payload. The end-
effector of the manipulator is a simple hook, which was chosen due to its simplicity
and low weight. A downside to the hook is that it does not fix the payload in place
like a typical robotic gripper would, but rather allows it to swing like a pendulum.
The forces act as a disturbance on the quadrotor, and without sufficient actuation
to offset them, they may cause a crash. This is mainly a problem with heavy
payloads. As a proof of concept however, this work will not deal with particularly
heavy payloads, thus largely eliminating this issue. However, it should be considered
in industrial applications.
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Chapter 2. System 2.2. Manipulator

Name Description Amount Mass [g]

Dynamixel XH430-W210-R Smart servo with RS485 communication 2 84

Link 1 Tube Carbon fiber tube linking joints 1 and 2 1 4

Link 2 Tube Carbon fiber tube linking joint 2 1 8
with the end-effector

Hook The end-effector 1 4

Servo-link 1 connector Connector between joint 1 servo and 1 6
link 1 tube

Servo-joint 2 cage Cage attaching to link 1, holding the 1 22
servo for joint 2

Servo-link 2 connector Connector between joint 2 servo and 1 7
link 2 tube

M3x30 Bolts For holding the links in place 8 0.5

M2x5 Bolts For attaching link connectors to the 16 <0.1
servo horns

M2.5x8 Bolts For keeping the servos in place 16 0.1

Table 2.3: Overview of the components required to for the manipulator. Two servos are used and
are connected in a chain with the other parts.
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Chapter 2. System 2.3. Payload Pallet

Figure 2.5: A 3D-render of the manipulator without the servo in the first joint. The servo horn
is to be attached to the mount on top of the image.

A 3D-render of the manipulator is displayed in Fig. 2.5. Here, only the servo of
joint 2 is seen. This is due to the fact that the servo of joint 1 is placed inside the
servo cage of the quadrotor. Further descriptions of the manipulator geometry such
as the Denavit-Hartenberg parameters are presented in Chapter 3.

2.3 Payload Pallet

As a payload for the pick-and-place tasks a simple pallet with a large loop for the
manipulator’s end-effector to grip was designed. The pallet is simply a cuboid-
shaped, mostly hollow object in which it is possible to place objects. When using
drones for transporting materiel, it is likely that objects would be placed in or on
standardized containers, whether it is a standard UIC 435-2 (EUR/EPAL-pallet), a
propietary carrier board in a manufacturing environment, or specialized containers
for blood samples, medicine, etc.
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Chapter 2. System 2.3. Payload Pallet

Figure 2.6: A 3D-render of the payload as seen with a large loop on top for the hook to catch.

When using the UAM to pick up the payload it should be able identify the pallet.
One way to achieve this is with visual markers such as ArUco markers or AprilTags
that are visible to the onboard camera. The ArUco marker (see Fig. 2.7) is chosen for
this work due to its good pose estimation accuracy, detection rate, and comparatively
low computational cost for detecting single markers [15].

Figure 2.7: ArUco marker visual representation. Imagine this will be glued onto the payload
shown in Figure 2.6. It can be placed either onto the sides of the payload, or on the top part next
to the loop.
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3 | Modelling

In this chapter, a mathematical model of the system in question will be formulated.
The first section will describe the quadrotor kinematic model alone, followed by a
section describing the manipulator model. The third section is dedicated to combin-
ing these two previous models into a coupled model and deriving the dynamics of the
resulting system. The final dynamic modelling is based on Lagrangian mechanics.
The kinematic and dynamic modelling largely follows the approach outlined in [16].
The fourth section contains a Newton-Euler approach to modelling the UAM which
was initially attempted without success. The last section will describe models for
sensors, which will be used to calibrate the sensors and for developing measurement
models for state estimation.

3.1 Quadrotor Model

Throughout this section the model of a quadrotor is developed. The quadrotor
consists of four motors mounted on arms extending from a central body, as described
in the previous chapter. The modelling of the quadrotor will begin with attaching
coordinate frames to the aircraft and describing the chosen parametrization of the
frame rotations before moving on to the individual actuator models. Finally these
will be used to construct the kinematic model of the quadrotor.

3.1.1 Coordinate Frames

To describe the quadrotor’s pose and motion two different frames of reference are
used, namely the inertial frame and the body frame. The inertial frame is the frame
in which Newton’s laws are valid and is considered fixed. The body frame on the
other hand is attached to a point on the aircraft and moves with the quadrotor. As
the inertial frame a local fixed frame with origin at ground level is chosen and is
denoted {W}. The body frame, denoted {B0} with axes {xB, yB, zB}, is attached as
seen in Fig. 3.1 with its origin located in the center of mass (CoM) of the quadrotor.
Furthermore, a link frame denoted {L0} is attached such that it coincides with the
body frame. The base link frame of the quadrotor {L0} and the body frame {B0}
are the same frame in this work, but for the sake of generality, are treated as if they
were separate. The point of attaching both a link and a body frame becomes more
clear, once the manipulator model also comes into play. This is delayed until section
3.2.
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Chapter 3. Modelling 3.1. Quadrotor Model

Figure 3.1: Attachment of frames, with direction of rotation, actuator torques and forces, and
relevant position vectors. Here, the body axis xB should be imagined as pointing away from the
reader due to the perspective

An alternative to this attachment is to let the body xB- and yB-axes point along
the rotor arms rather than between them. Since it is more efficient to produce
pure roll or pitch movements using two rotors rather than one, this attachment is
advantageous, as the alternative attachment would decouple the two rotors along
the axis of the assigned rotor arm from the rotational dynamics around that very
same axis. It can be argued that an automatic flight controller can easily handle this
i.e. by a simple frame transformation, but attaching the frame like this, improves
model clarity at no significant cost.

3.1.2 Attitude Parametrization

Rotations between the inertial frame and the body frame can be parametrized in
multiple different ways. The rotation matrix (or attitude matrix) R ∈ SO(3) is a
typical representation defined as:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , (3.1)
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Chapter 3. Modelling 3.1. Quadrotor Model

and the rotation from the body frame to the world frame is denoted WRB. Rotation
matrices are orthonormal, meaning they exhibit the following properties:

R−1 = RT ⇒ RRT = I3, (3.2a)
∥ri∥2 = 1 ∀ i = 1, 2, 3, (3.2b)

where ri denotes column i in R. This makes the rotation matrix a 9-parameter de-
scription of the attitude with a total of 6 constraints. However, other parametriza-
tions with fewer parameters exist. One such parametrization are the Euler angles
(or Tait-Bryan angles). Here, an angle for the rotation around each axis is given.
The order of rotation can be chosen arbitrarily. A typical rotation order is the or-
der X-Y -Z or alternatively Z-Y -X. Let (ϕ, θ, ψ) denote the angles for rotations
around the x-, y-, and z-axis (or roll, pitch, and yaw (RPY) angles respectively),
then, the equivalent rotation matrices for each rotation is given by:

Rx(ϕ) =

1 0 0
0 cos (ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 , (3.3a)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , (3.3b)

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (3.3c)

which when chained as extrinsic rotations with the X-Y -Z order, combines as

Rxyz = Rz(ψ)Ry(θ)Rx(ϕ) (3.4a)

=

cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ

 .
(3.4b)

This provides the equivalent rotation matrix. The RPY or Euler-angle parametriza-
tion is intuitive and has the lowest amount of parameters necessary to fully parametrize
SO(3), the group of rotations in Euclidean 3D-space R3. The major downside to
this parametrization however, is that it is not free of singularities. That is to say,
there is a point at which the parametrization breaks down and loses a degree of free-
dom. This occurs when the second angle in the rotation order is exactly 90 degrees,
as this causes the third rotation, to rotate in the same plane as the first rotation
did. This problem is known as gimbal lock. The loss of a degree of freedom in the
parametrization can cause serious issues for a controller, potentially causing a UAV
to crash. Although, it is not expected to be a typical occurence for a UAM to be
tilted at a 90◦ angle, it may occur under extreme circumstances, and could make it
significantly more difficult to correct the aircraft’s attitude.

One way to get around this issue is to use a different parametrization, such as the
attitude quaternion. The attitude quaternion is a unit quaternion, i.e. a quaternion
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Chapter 3. Modelling 3.1. Quadrotor Model

with unit norm. Quaternions are a group of hypercomplex numbers with 1 real and
3 complex dimensions defined as:

q = q0 + q1i+ q2j + q3k, (3.5a)
i2 = j2 = k2 = −1, (3.5b)
ij = −ji = k, (3.5c)
jk = −kj = i, (3.5d)
ki = −ik = j. (3.5e)

The intuition for the quaternion parametrization is related to the axis-angle repre-
sentation and the geometric interpretation of complex numbers, as it is a way to
encode the same information. The axis-angle representation represents a rotation in
3D-space as a vector û and a corresponding angle of rotation θ about that vector.
Rotations in the xy-plane (around the z-axis) can be described by a complex number
by applying Euler’s formula:

eiθ = cos θ + i sin θ. (3.6)

To extend this complex representation to three dimensions, an extra complex com-
ponent for both the x-, and y-axes are added. Euler’s formula can then be extended
to the quaternions as:

q = e
θ
2
(ûxi+ûyj+ûzk) = cos

(
θ

2

)
+ sin

(
θ

2

)
(ûxi+ ûyj + ûzk) . (3.7)

The factor of 1
2

ensures that the unit length constraint of the attitude quaternion is
satisfied.
It is common to use a vector notation which allows for the use of linear algebra
techniques such as matrix-vector products for quaternion operations:

q =

[
q0
q1:3

]
, q1:3 =

q1q2
q3

 . (3.8)

With this notation, the real part of the quaternion q0 is typically referred to as
the scalar part and q1:3 is referred to as the vector part. Rotations are applied by
quaternion multiplication. Two competing quaternion multiplication operators exist
[17], the original being introduced by Hamilton (⊙) and the alternative by Shuster
(⊗). Given two quaternions q and p the operators are defined as:

p⊙ q =

[
p0q0 − pT

1:3q1:3

q0p1:3 + p0q1:3 + p1:3 × q1:3

]
, (3.9a)

p⊗ q =

[
p0q0 − pT

1:3q1:3

q0p1:3 + p0q1:3 − p1:3 × q1:3

]
, (3.9b)

where the operator × should be interpreted as the vector cross product. The only
difference between ⊙ and ⊗ is a sign flip at the cross product and it follows that:

p⊙ q = q⊗ p. (3.10)
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Sequences of rotations are therefore performed by multiplying each subsequent
quaternion from the right (Hamilton’s quaternion product) or the left (Shuster’s
quaternion product). Throughout this work, Hamilton’s quaternion convention will
be applied. To rotate a vector v ∈ R3 by a quaternion q, the quaternion and its
conjugate q∗ (its inverse q−1 for non-unit quaternions) is multiplied on the opposite
sides of v: [

0
v′

]
= q⊙

[
0
v

]
⊙ q⋆ =

[
0

R(q)v

]
, (3.11)

and R(q) is the equivalent rotation matrix given by:

R(q) =
(
q20 − ∥q1:3∥2

)
I3 − 2q0 [q1:3]× + 2q1:3q

T
1:3, (3.12)

where the skew-symmetric cross product matrix is defined as:

[x]× ≜

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , x ∈ R3. (3.13)

It can be shown that the vector rotations above are equivalent to applying Rodrigues’
rotation formula, which is more computationally efficient, and is given by:

v′ = v + 2q1:3 × (q1:3 × v + q0v) . (3.14)

Lastly, let ω⃗ be the angular velocities in the body frame {B}, then the kinematics
of the quaternion representation are given by:

q̇ =
1

2
q⊙ ω⃗ =

1

2

[
−qT

1:3

q0I3 + [q1:3]×

]
ω⃗ ≜

1

2
Ξ(q)ω⃗. (3.15)

At a later stage, these kinematics will need to be used in their discrete-time form
which is given by:

qk+1 = Ω(ω⃗k)qk, (3.16a)

Ω(ω⃗k) =

[
cos

(
1
2
∥ω⃗k∥∆t

)
−ψT

k

ψk cos
(
1
2
∥ω⃗k∥∆t

)
I3 − [ψk]×

]
, (3.16b)

ψk =
sin

(
1
2
∥ω⃗k∥∆t

)
∥ω⃗k∥

ω⃗k, (3.16c)

where ∆t is the time step.
Regarding the notation q ⊙ ω⃗ in Eq. 3.15: Although ω⃗ is a vector in R3, and not
a quaternion or vector in R4 this is a common way to denote a quaternion product
where the scalar part of the "ω⃗ quaternion" is zero. That is, the three component
vector is treated as a quaternion with its scalar part equal to zero (also known as a
pure quaternion). [18]

3.1.3 Quadrotor Kinematics

The kinematics of the quadrotor are developed in the inertial frame to have a com-
mon frame of reference once the quadrotor and manipulator models are combined
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and the dynamics are to be derived. Due to the amount of frames, there are many
transformations to keep track of. The notation for the homogeneous transformation
mapping from a frame {B} to another frame {A} is:

ATB =

[
ARB

ArAB
0 1

]
, (3.17)

where ARB ∈ R3×3 is the rotation matrix from {B} to {A}, and ArAB is the vector
between the frames. Here, the prefix A(·) denotes the frame from which the vector
is observed, and the postscripts (·)AB denote that the vector extends from the origin
of {A} to the origin of {B}.
The pose of the quadrotor is described by its orientation q and the position of
the link frame {L0} with respect to the inertial frame {W}, denoted WrWL0

. The
homogeneous transformation from the quadrotor to the inertial frame is given by:

WTL0 =

[WRL0
WrWL0

0 1

]
, (3.18)

where WRL0 = R(q) is the rotation matrix associated with the attitude quaternion
q. The velocity of the quadrotor frame in the inertial frame W ṙWL0

is the time
derivative of the position vector. The quaternion kinematics are related to the
angular velocity relative to the inertial frame as seen from the inertial frame by:[

0
WωW

L0

]
= 2

[
q0 −qT

1:3

q1:3 q0I3 − [q1:3]×

]T
q̇ ≜ 2 [q]T⊗ q̇, (3.19)

or if only considering the non-zero part:

WωW
L0

= 2
[
−q1:3 q0I3 + [q1:3]×

]
q̇ ≜ 2Ψ(q)T q̇. (3.20)

The angular velocity in the inertial frame can be obtained from the local frame
angular velocity by:

WωW
L0

=WRL0

L0ωW
L0
. (3.21)

Lastly, relating the angular velocity relative to the inertial frame as seen from the
local frame to q̇ is described by Eq. 3.15, but can be rearranged as:

L0ωW
L0

= 2Ξ(q)T q̇. (3.22)

3.1.4 Actuator Thrust & Torque

The quadrotor is equipped with actuators in the form of rotors. Here, the relation
between the rotor inputs and the resulting forces and torques is described. In Fig.
3.1 the motor rotation and thrust forces are denoted as (ωi, fi) ∀ i ∈ {1, 2, 3, 4}
and with the vectors si ∀ i ∈ {1, 2, 3, 4} denoting the position of the ith motor in
the body frame {B0}. The body frame is attached at the CoM around which the
actuators are not symmetrically positioned, necessitating the use of the individual
position vectors. All motors and propellers are of the same brand and model and are
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therefore assumed to be identical. The thrust force fi generated by a rotor spinning
with angular velocity ωi is given by:

fi = ktω
2
i , (3.23)

where kt is the lift constant. The thrust is directed along the rotor’s axis of rotation,
aligning with the body frame zB-axis. However, the input is not rotor speed but
a PWM-signal ui ∈ [0, 100]. The relationship between the PWM-signal and the
rotor speed is modelled as approximately linear (since the voltage across the motor
is directly proportional to the rotation speed) leading to:

ωi ≈ krui ⇒ fi ≈ kt(krui)
2. (3.24)

The vector fi is the thrust force vector expressed in the body frame which can be
written as:

fi =

0
0
fi

 . (3.25)

The drag on the propeller, along with the rotor inertia results in a torque being
applied around the rotor axis:

τi = kτω
2
i + Jrω̇i, (3.26)

where kτ is the drag constant and Jr is the moment of inertia of the rotor. The
contribution of the term Jrω̇i is typically small enough to be disregarded leaving the
approximation:

τi ≈ kτ (krui)
2. (3.27)

Furthermore, the thrust force at each rotor creates a torque in the body frame.
When combined with τi the total torque from each rotor is given by:

τ i = si × fi +

0
0
τi

 , (3.28)

where τ i ∈ R3 is the torque exerted on the quadrotor by rotor i, si is the position
vector of rotor i. The total actuation forces expressed in the body frame are therefore
given by:

ft =
4∑

i=1

fi, (3.29)

τ t =
4∑

i=1

τ i. (3.30)

3.2 Manipulator Model

Here, the kinematics of the manipulator with 2 links are described. The assumption
of a fixed base is made, where the fixed base will have the frame {L0}. The first
step is to attach the frames at various places on the body. These frames determine
the forward kinematic equations of the manipulator.
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3.2.1 Frames & Denavit-Hartenberg Parameters

In this section joint frames, link frames, and body frames will be attached at various
places on the body of the manipulator. The Denavit-Hartenberg (DH) parameters
(as described in [19]) will be used for attaching the link frames {Li} for all links
i = 1, . . . , NL. The joint frames {Jj} are simply attached such that they are located
in the center of joints j = 1, . . . , NJ , and have the same orientation as the frame of
link j when the joint is in its zero-position. Similarly, the body frames {Bi}, i =
1, . . . , NB are attached in the center of mass of each link, with the same orientation
as the respective link frames. The Denavit-Hartenberg parameters are given in Table
3.1. An explanation of the parameters is given below:

• αi is the angle from zLi
to zLi+1

measured about xLi
,

• ai is the distance from zLi
to zLi+1

measured along xLi
,

• di is the distance from xLi−1
to xLi

measured along zLi
,

• θi is the angle from xLi−1
to xLi

measured about zLi
.

Given that in the DH-parameter convention the z-axis of a link coincides with the
corresponding joint axis, θi is the joint angle for revolute joints. The procedure for
attaching the frames is outlined in [19]. The attached link frames are displayed in
Fig. 3.2. The positions of the CoM of each link is determined from the CAD model.
The transformation between {Bi} and {Li} is fixed and does not vary. The joint
frames do not move as their joints rotate, so the transformation between {Ji} and
{Li−1} is also fixed and the joint positions can likewise be determined in the CAD
model of the manipulator.

i αi−1 ai−1 di θi
1 0 0 l0 + l1 θ1
2 −π

2
0 0 θ2

3 π
2

0 l2 0

Table 3.1: Table of DH-parameters. Although, the manipulator only has 2 links, a third is
included here, denoting the end-effector frame. Furthermore, the quantities l0, l1, and l2 denote
the distances from the base (link 0) to joint 1, from joint 1 to link 1, and from link 2 to the end
effector respectively.

3.2.2 Forward Kinematics

The forward kinematics of a manipulator with link frames attached according the
DH-parameter convention can be described as a chain of homogeneous transforma-
tions from each link to the previous link [19]. The individual transformations are
given by:

Li−1TLi
=


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) −di sin(αi−1)
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) di cos(αi−1)

0 0 0 1

 .
(3.31)
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(a) The manipulator in its zero position. (b) The manipulator where both joint angles are 45◦.

Figure 3.2: Visualization of attached link frames for the robot in two different configurations.
At the base of the manipulator (bottom of the plot), the frame {L0} is seen. The two frames {L1}
and {L2} have the same origin but with different orientations. At the end of the second link, the
end-effector frame is located.
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Then the transformation from any link i to the base link is given by:

L0TLi
=

i∏
j=1

Lj−1TLj
, (3.32)

where the individual transformation matrices are right-multiplied. Furthermore,
using CAD data the homogeneous transformations Li−1TJi

, JiTLi
and LiTBi

can
be found. With these transformations, it is possible to find the pose of any frame
in the system relative to any other by a series of matrix multiplications of the
transformation matrices.

3.2.3 Velocities and Jacobians

Now the velocities of each body (both angular and translational) and their respec-
tive Jacobians are described. The Jacobians will become useful when deriving the
dynamics of the system [16]. The angular velocity of a body is the same everywhere
on the body, meaning that the joints rotate at the same angular velocity as the en-
tire body. Since only the joints are rotating, the angular velocity of a body relative
to the base link is given by the sum of the angular velocity of its corresponding joint
and all the angular velocities of bodies/joints further up the kinematic chain (i.e.
the bodies closer to the base):

L0ωL0
Bi

=
i∑

j=0

L0ZJj
θ̇j, (3.33)

where L0ZJj
is the z-axis (and therefore the joint axis) of joint Jj as seen from the

base frame, and θ̇j is the joint velocity of joint Jj. The joint axis L0ZJj
can be easily

determined from the rotational part of the transformation L0TJj
:

L0ZJj
= L0RJj

00
1

 . (3.34)

The rotational Jacobians for the bodies are given by:

L0Jω,i =

[
∂ L0ωL0

Bi

∂θ̇1
· · ·

∂ L0ωL0
Bi

∂θ̇NJ

]
, (3.35)

which is easily derived due to the linearity of Eq. 3.33 in the joint velocities θ̇ =[
θ̇1, . . . , θ̇NJ

]T
. This also means that L0ωL0

Bi
= L0Jω,iθ̇.

For the translational velocities of the fixed base manipulator, the velocity of the
CoM (and by extension the body frame) relative to the base depends only on the
angular velocities of the bodies. The translational velocity of a body {Bi} is caused
by the rotation of all joints {Jj} further up the kinematic chain (meaning all j ≤ i)
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as seen from the base link is given by:

L0 ṙ
Jj

Bi
= L0ZJj

θ̇j ×
(
L0rL0

Jj
− L0rL0

Bi

)
(3.36a)

= L0ZJj
θ̇j × L0r

Jj

Bi
(3.36b)

=
(

L0ZJj
× L0r

Jj

Bi

)
θ̇j. (3.36c)

Getting the velocity of each body {Bi} relative to the base link is now a matter of
summing all the velocity components from all joints contributing to the velocity of
each body:

L0 ṙL0
Bi

=
i∑

j=1

L0 ṙ
Jj

Bi
. (3.37)

The Jacobian for the translational velocities of each body is then given by:

L0Jt,i =

[
∂ L0 ṙL0

Bi

∂θ̇1
· · ·

∂ L0 ṙL0
Bi

∂θ̇NJ

]
, (3.38)

which again due to the linearity of Eq. 3.36c is easy to determine and therefore
L0 ṙL0

Bi
= L0Jt,iθ̇.

3.2.4 Servo Model

As a last step in the modelling of the manipulator, the servos are described. The Dy-
namixel servos used in the manipulator have built-in controllers for several different
purposes including a current controller. Under the assumption of perfect controller
tracking the proportional relation between torque and current of a DC-motor can
be applied directly. The motor torque τm is given by [19]:

τm = kmia, (3.39)

where ia is the armature current and km is the torque constant.

3.3 Aerial Manipulator Model

In order to derive the dynamic model of the UAM in the Euler-Lagrange framework,
first the kinematics of the manipulator and the quadrotor must be combined. This
involves treating the quadrotor as a 6 DoF joint, attached to the base link of the
manipulator.

3.3.1 Kinematics

The kinematics of the UAM are made by introducing an extra transformation WTL0

between the inertial frame {W} and the quadrotor/base link {L0}. The transforma-
tion is given by the quadrotor kinematics of Eq. 3.18. Due to this transformation,
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the pose and velocities of each manipulator link must also be changed. The position
of each CoM in the inertial frame is given by:

WrWBi
= WrWL0

+ WrL0
Bi
, (3.40)

where the position of each body relative to the base link as seen in the inertial frame
WrL0

Bi
is found by the following rotation of L0rL0

Bi
:

WrL0
Bi

= q⊙
[
0 L0rL0

Bi

T
]T ⊙ q∗ =WRL0

L0rL0
Bi
. (3.41)

The translational velocity of the bodies can be found by taking the time derivative
of Eq. 3.40. The full derivation can be found in [16] and only the final result is
stated here:

W ṙWBi
= WrWL0

+WRL0

L0Jt,iθ̇ − 2WRL0

[
L0rL0

Bi

]
× Ξ(q)T q̇. (3.42)

The angular velocity of each body in the world frame is the sum of the angular
velocity of the base link (Eq. 3.19) and the angular velocity of the body relative
to the base link. Since this is parametrized by the quaternion, the result is a pure
quaternion with its vector part being the angular velocity:[

0
WωW

Bi

]
=

[
0

WωW
L0

]
+ q⊙

[
0

L0ωL0
Bi

]
⊙ q∗ (3.43)

= 2 [q]T⊗ q̇+

[
0

WRL0
L0Jω,i

]
θ̇. (3.44)

3.3.2 System Jacobians & Lagrangian Dynamics

Using the kinematic equations the equations of motion can be derived with La-
grangian mechanics [16]. First, the state x and the generalized coordinates ξ are
written:

x =
[
ξT ξ̇

T
]T
, (3.45)

ξ =
[
rT qT θT

]T ∈ R7+Nj . (3.46)

The generalized coordinates must be chosen such that they are a complete and
mutually independent representation of the system. The choice of generalized coor-
dinates are a complete representation of the pose of the system, but the quaternion
coordinates are not independent of each other due to the unit norm requirement.
This can be alleviated by adding a constraint which produces a constraint force. The
constraint forces will be discussed in more detail in section 3.3.3. The velocities of
each body in the UAM parametrized by the generalized coordinates can be written
as:

v =
[
W ṙWB0

T , . . . ,W ṙWBN−1

T ,
[
0 WωW

B0

T
]T
, . . . ,

[
0 WωW

BN−1

T
]T]T

, (3.47)
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which implies that there exists a Jacobian WJ of the system with respect to the
generalized coordinates such that v = WJξ̇. This full system Jacobian is given by:

WJ =



WJt,0
...

WJt,NJ
WJω,0

...
WJω,NJ


∈ R7NB×(7+NJ ), (3.48)

where the translational and rotational parts are found as:

WJt,i =
[
I3 | −2WRL0

[
L0rL0

Bi

]
× Ξ(q)T | WRL0

L0Jt,i

]
∈ R3×(7+NJ ), (3.49)

WJω,i =

[
04×3 | 2 [q]T⊗ |

[
0

WRL0
L0Jω,i

]]
∈ R4×(7+NJ ). (3.50)

To derive the equations of motion, one approach is to determine the kinetic and
potential energies Ekin and Epot, and defining the Lagrangian [16], [20]:

L = Ekin − Epot. (3.51)

The energies can be found with:

Ekin =
1

2
ξ̇
T WJTML

WJξ̇, (3.52)

Epot (ξ) =

NB−1∑
i=0

mig0
WrWBi

, (3.53)

where the matrix ML is the matrix with masses and inertias of the links on the
diagonal:

ML = blockdiag
(
I3m0, . . . , I3mNB−1,

WΘ0, . . . ,
WΘNB−1

)
, (3.54)

where Θ is the matrix:
WΘi =

[
v 0
0 WΦi

]
∈ R4×4, (3.55)

which has an arbitrary positive scalar v and WΦi, the actual inertia tensor of body
i expressed in the world frame, on its diagonal. The local body frame inertia tensor
is related to the inertial frame inertia tensor by [20]:

WΦi =
WRBi

BiΦi
WRT

Bi
. (3.56)

With the energies determined, the equations of motion are then given by:

d

dt

∂L
∂ξ̇

− ∂L
∂ξ

= fξ + fc, (3.57)
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where fξ are the generalized external forces acting on the generalized coordinates,
and fc are constraint forces, that is they are virtual forces that keep any constraints
in check (the quaternion unit norm constraint). This can be written in the standard
form:

M (ξ) ξ̈ +C(ξ, ξ̇)ξ̇ + g(ξ) = fξ + fc, (3.58)

where M(ξ) ∈ RNx×Nx is the system mass matrix, C(ξ, ξ̇) ∈ RNx×Nx is the system’s
Coriolis matrix, and g(ξ) is the gravitational term. Obtaining the matrices M and
C and the vector g from the expression resulting from evaluating Eq. 3.57 can be
unwieldy, especially for large expressions. The closed form expression for the mass
matrix M can be obtained using the system Jacobian:

M =W JTML
WJ. (3.59)

Using the closed form expression of the mass matrix, the Coriolis matrix can be
determined using the Christoffel symbols (see [20]). Each entry in the matrix is
given by:

Cij =
1

2

Nx∑
k=1

(
∂Mij

∂ξk
+
∂Mik

∂ξj
+
∂Mjk

∂ξi

)
ξ̇k. (3.60)

The gravitational terms are comparatively simple to obtain because the potential
energy is typically a far simpler expression than the kinetic energy.

g = ∇Epot =
∂Epot

∂ξ
(3.61)

The expressions can grow rapidly in size for each additional link added to the ma-
nipulator. For the UAM in question the resulting mass matrix and Coriolis matrix
each contain over 24000 and 249000 operations respectively. For this reason the
closed form expressions are not stated here.

In order to obtain the equations of motion, it is necessary to understand how to
map the actuation forces to the generalized forces. These are not the same, since
the actuation forces are the body frame thrust, the body frame torques and the joint
torques, but the generalized coordinates are the inertial frame positions, the quater-
nion, and the joint positions. The joint torques act directly on their corresponding
generalized coordinates so their mapping is simply the identity. The quadrotor body
frame forces act on the body frame coordinates, which map to the inertial frame
through the rotation matrix WRL0 . Mapping the torques to quaternion forces is not
quite as straightforward. One approach to derive the map is to apply the principle
of virtual work as in [21], where the author shows that the mapping is given as:

fq = 2Ξ(q)τt, (3.62)

where fq is the generalized quaternion force. The force map Mf is then defined as:

MF = blockdiag
(WRL0 , 2Ξ(q), INJ

)
, (3.63)

which leads to the relation:
fξ = MF

L0fB, (3.64)
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where fξ is the generalized force vector, and L0fB is the vector of local body forces
containing the total thrust force ft, the quadrotor torques τ t, and the joint torques
τJ :

L0fB =
[
fTt τ T

t τ T
J
]T
. (3.65)

This leaves only the constraints and the corresponding constraint forces to fully
determine the equations of motion.

3.3.3 Constraint Forces

The quaternion unit norm constraint is a holonomic constraint, meaning it is a
constraint imposed on the position variables (here the generalized coordinates) and
can be expressed in the form:

ϕ (ξ) = 0. (3.66)

This is the case for the quaternion norm constraint:

∥q∥ = 1 ⇔ ∥q∥2 = 1 ⇔ ∥q∥2 − 1 = 0, (3.67)

which can also be written equivalently as:

ϕ (ξ) = qTq− 1. (3.68)

This form is preferred as it leads to a particularly simple Jacobian Jϕ. The purpose
of the Jacobian, is to write the constraint in its equivalent Pfaffian form, which is
given by:

Jϕ(ξ) ξ̇ = 0. (3.69)

Then the constraint force can be written with the Lagrange multipliers, as it is
common in the framework of Lagrangian mechanics [20], such that the equations of
motion take the form:

Mξ̈ +Cξ̇ + g − λJϕ = fξ, (3.70a)

Jϕξ̇ = 0, (3.70b)

where λ is the vector of Lagrange multipliers. The goal is to obtain the forward
dynamics of the UAM, which in the unconstrained case (fc = 0) can be achieved by
solving Eq. 3.58 for ξ̈:

ξ̈ = M−1
(
fξ −Cξ̇ − g

)
. (3.71)

In the constrained case the system of equations in Eq. 3.70 must be solved. Since
only the effect of the constraint force is of interest and the constrant force itself
is not important, a choice is made opt not to compute it explicitly. Instead the
Lagrange multipliers can be eliminated by a procedure explained in [20]. The idea
is to determine a projection matrix which projects the generalized forces onto the
components that do work on the system. The projection matrix will have rank
Nx − k, where Nx is the number of generalized coordinates and k is the number
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of constraints. The procedure is begun by taking the time derivative of Eq. 3.70b
which yields:

Jϕ(ξ) ξ̈ + J̇ϕ(ξ) ξ̇ = 0. (3.72)

Solving Eq. 3.70a for ξ̈ and substituting into Eq. 3.72 gives:

J̇ϕξ̇ + JϕM
−1

(
fξ + JT

ϕλ−Cξ̇ − g
)
= 0. (3.73)

This expression can be solved for λ:

λ =
(
JϕM

−1JT
ϕ

)−1
(
−J̇ϕξ̇ + JϕM

−1
(
Cξ̇ + g − fξ

))
, (3.74)

and from Eq. 3.72 the relation Jϕ(ξ) ξ̈ = −J̇ϕ(ξ) ξ̇ can be exploited to yield (after
a bit of work):(

I− JT
ϕ

(
JϕM

−1JT
ϕ

)−1
JϕM

−1
)(

Mξ̈ +Cξ̇ + g − fξ

)
= 0. (3.75)

With the following definition:

Pu ≜ I− JT
ϕ

(
JϕM

−1JT
ϕ

)−1
JϕM

−1, (3.76)

Eq. 3.75 can be written in the form:

Pu

(
Mξ̈ +Cξ̇ + g

)
= Pufξ. (3.77)

Here, Pu is a matrix that projects the generalized forces onto the components that
do work on the system. Eq. 3.77 corresponds to the constrained inverse dynamics
of the aerial manipulator. Making the following definition:

P ≜ M−1PuM = I−M−1JT
ϕ

(
JϕM

−1JT
ϕ

)−1
Jϕ, (3.78)

the projection matrix P is the projection from motions in generalized coordinates to
motions that satisfies the constraint of Eq. 3.68. This gives the constrained forward
dynamics of the aerial manipulator:

Pξ̈ = PM−1
(
fξ −Cξ̇ − g

)
. (3.79)

These are the final equations of motion, and the forward dynamics can be used for
simulating the system. Some simulations of the system using this model can be
found in chapter 6.

3.4 Newton-Euler Aerial Manipulator Dynamics

Initially, an approach to modelling the UAM based on the Newton-Euler equations
of motion was attempted. This approach is described in this section. The proce-
dure is to model the dynamics of the two subsystems (quadrotor and manipulator)
separately, before combining them. The Newton-Euler approach can result in more
compact expressions, making it potentially less expensive in a computational sense
[19] than the Euler-Lagrange formulation. This was the rationale for attempting it.
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3.4.1 Quadrotor Dynamics

Here, the dynamics of the quadrotor are shortly described. The rotational dynamics
are in general given by Euler’s equation of rotational motion:

L0Φ0
L0ω̇W

L0
= −L0ωW

L0
×L0 Φ0

L0ωW
L0

+ τ t (3.80)

where L0Φ0 is the local body frame inertia tensor. The translational dynamics in
the body frame are given by Newton’s equation of motion:

m0
L0 r̈WL0

= WRT
L0

 0
0
m0g

+ ft −L0 ωW
L0

× L0 ṙWL0
, (3.81)

where, on the right hand side of the equation, the first term accounts for the effect
of gravitation (with gravitational acceleration g), the second term accounts for the
effect of the rotor thrust which is modelled to align with the body frame zB-axis.
The third term accounts for the centrifugal force. When expressed in the inertial
frame the centrifugal force is nullified, so the acceleration becomes:

m0
W r̈WL0

=

 0
0
m0g

+ WRL0ft (3.82)

3.4.2 Manipulator Dynamics

The inverse dynamics of a manipulator in the Newton-Euler framework can be de-
termined using the Recursive Newton-Euler algorithm (RNE), which will only be
described briefly here. This algorithm starts by propagating accelerations from the
base forward through the kinematic chain until the last link. This way the accelera-
tions and velocities of each link in the chain is determined. Then, starting from the
end-effector, the link forces and torques are propagated back through the kinematic
chain. This way the joint torques can be determined. The algorithm is summarized
in a general form in Eqs. 3.83-3.84 as it is written by [19].

Recursive Newton-Euler Algorithm

Forward iterations: i : 0 → (NL − 1)

i+1ωi+1 =
i+1Ri

iωi + θ̇i+1
i+1Zi+1, (3.83a)

i+1ω̇i+1 =
i+1Ri

iω̇i +
i+1Ri

iωi × θ̇i+1
i+1Zi+1 + θ̈i+1

i+1Zi+1, (3.83b)
i+1v̇i+1 =

i+1Ri

(
iω̇i × iri+1 +

iωi ×
(
iωi × iri+1

)
+i v̇i

)
, (3.83c)

i+1v̇Bi+1
= i+1ω̇i+1 × i+1rBi+1

(3.83d)
+ i+1ωi+1 ×

(
i+1ωi+1 × i+1rBi+1

)
+ i+1v̇i+1,

i+1Fi+1 = mi+1
i+1v̇Bi+1

, (3.83e)
i+1Ni+1 =

Bi+1Φi+1
i+1ω̇i+1 +

i+1ωi+1 × Bi+1Φi+1
i+1ωi+1. (3.83f)
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Backward iterations: i : NL → 1

ifi =
iRi+1

i+1fi+1 +
iFi, (3.84a)

ini =
iNi +

iRi+1
i+1ni+1 +

irBi
× iFi +

iri+1 × iRi+1
i+1fi+1, (3.84b)

τi =
inT

i
iZi. (3.84c)

Here, the link frames are only denoted by their index number i. Furthermore the
notation (·)Bi

refers the body frame located at the center of mass of link i. The
meaning of the quantities are as follows:

• iωi is the angular velocity of link i,

• iω̇i is the angular acceleration of link i,

• θ̇i is the joint velocity of joint i,

• θ̈i is the joint acceleration of joint i,

• iv̇i is the acceleration of the link i frame,

• iv̇Bi
is the acceleration of the CoM of link i,

• iFi is the force acting on the CoM of link i,

• iNi is the torque acting on the CoM of link i,

• mi is the mass of link i,

• BiΦi is the inertia tensor of link i with respect to its CoM {Bi},

• ifi is the force acting at joint i,

• ini is the three-dimensional torque acting at joint i,

• τi is the joint torque (torque around the joint axis) at joint i.

Gravitation is included by setting 0v̇0 = −ḡ where ḡ is the vector of gravitational
acceleration. The remaining quantities for the base link 0, can be set to 0. The
algorithm can be run both numerically and symbolically depending on whether a
numerical or closed form solution is desired. If the algorithm is evaluated symbol-
ically, the resulting expression can be written in the standard form for mechanical
systems:

τ = M(θ)θ̈ +C(θ, θ̇)θ̇ + g(θ). (3.85)

In order to determine the forward dynamics, this system can be solved for θ̈, yielding:

θ̈ = M(θ)−1
(
τ −C(θ, θ̇)θ̇ − g(θ)

)
. (3.86)

This is equivalent to the Euler-Lagrange approach to modelling the dynamics which
yielded an expression of the same form.
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3.4.3 Aerial Manipulator Dynamics

In order to use the Newton-Euler framework for modelling the UAM the RNE algo-
rithm can be applied. To modify the manipulator system to have the quadrotor as
its floating base, the approach is to set the quantities of the base link fed into the
RNE algorithm as the corresponding quantities of the quadrotor (e.g. 0ω̇0 in the
RNE is set to the angular acceleration of Eq. 3.80)[9]. This yields a set of coupled
differential equations which must be solved to find the standard form of Eq. 3.86.
The resulting system is of course larger as it also contains the quadrotor torques
and forces. Solving this system however, is not trivial, and no correct solution was
found. A simulation of this model found in chapter 6 illustrates the encountered
issue. Due to this issue, the choice was made to use the Lagrangian formulation
instead.

3.5 Sensor Models

This section describes the models for the sensors. The models are to be used for
calibration and as measurement models for the state estimators.

3.5.1 Inertial Measurement Unit

The first sensors are the accelerometer and gyroscope, which, when collected in
the same integrated circuit, are collectively known as an inertial measurement unit
(IMU). The accelerometer and gyroscope are described with fairly simplistic discrete-
time models, very similar to each other.

Gyroscope

The gyroscope model assumes that the gyroscope readings at some time k∆t are
measurements of the true angular velocity in the local frame ωk corrupted by a
bias βg,k and a Gaussian white noise ηk. The bias is modelled as a random walk
stochastic process, integrating Gaussian white noise.

ωm,k = ωk + βg,k + ηk, ηk ∼ N (0,Qg), (3.87)
βg,k = βg,k−1 + ζk, ζk ∼ N (0,Wg). (3.88)

The noise variables ηk and ζk, as white noise processes, have zero mean with covari-
ance matrices Qg and Wg.

Accelerometer

Similarly the accelerometer is modelled as a measurement of the true local frame
acceleration ak at time k∆t, plus gravitational acceleration in the local frame, cor-
rupted by a bias βa,k (also modelled by a random walk process) and white noise
ϵk.

am,k = ak +
WRacc ḡ + βa,k + ϵk, ϵk ∼ N (0,Qa), (3.89)

βa,k = βa,k−1 + εk, εk ∼ N (0,Wa). (3.90)
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Again the Gaussian stochastic variables ϵk and εk are zero-mean and with covariance
matrices Qa and Wa.

3.5.2 Encoders

The encoders in the servos of the manipulator are able to very accurately measure
the position of the joints. Velocity measurements in encoder systems are usually
made by simply taking the difference between the position measurement at time
k∆t and time k − 1∆t. Position measurements in the encoder are largely free from
noise but they do have quantization error. More importantly, backlash in the servo
gears and loose or elastic mechanical joinings in the servo and manipulator can
corrupt measurements. These effects are not explicitly modelled as it is simply
deemed unnecessarily complicated. Instead the choice of a simplistic model is made
given by:

θm,k = θk + υk, υk ∼ N (0,Qe), (3.91)

where the reading θm,k is the noisy measurement of the true joint angle θk at time
k∆t.

3.5.3 Camera

The camera sensor is used to detect the location of the object (to be picked by
the manipulator) with respect to the camera frame. A fixed transformation from
the center of the camera lens to the manipulator’s gripper is then applied to the
resulting coordinates.

To detect the location of an object an OpenCV library [22] that uses ChArUco
and ArUco markers is used, see Fig. 3.3 for the different types of markers. The idea
is to stick ArUco markers to the objects that need to be picked and detect where
those markers are, and to use ChArUco markers to calibrate the camera in order to
get the intrinsic camera parameters. The library then uses these parameters to re-
late the corners of the detected ArUco markers to the real world coordinates, which
is described in more detail in section 5.1. It can do that due to the fact that the
real dimensions of those markers are known.
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(a) Standalone marker (b) ChArUco board

Figure 3.3: Types of markers: a) ArUco marker used to detect the object’s location, b) ChArUco
markers used to calibrate the camera

The camera is an Autofocus Camera for Raspberry Pi, and its exact model can be
found in Table 2.2. The intrinsic calibration of the camera is performed at a focus
distance of approx. 40 cm.

Camera model

To understand what the camera intrinsic parameters are it is necessary to first
look at the model of a pinhole camera, see Fig. 3.4.

Figure 3.4: Pinhole camera model: f is the focal length, {i} is the frame of the 2D image, {C} is
the frame of the camera, and {W} is the world frame

The focal length is the distance between the effective central projection and the
image plane. In other words it is the distance from the center of the camera lens
and the point where all parallel light rays intersect. That is where the image is said
to be in focus, i.e sharp. The optical axis passes through the center of the lens.
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Computing the intrinsic parameters

The OpenCV library computes a projection matrix P, that brings the coordinates
Xw in the world frame into the image frame coordinates xi:

xi = PXw, (3.92)xiyi
1

 = P


Xw

Yw
Zw

1

 ,

xi =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

Xw, (3.93)

where Xw are the control points known from the ChArUco markers dimensions, and
xi are the control points detected from the images of the ChArUco markers, see Fig.
3.5. The size of the checker board squares’ side is known, and so is the size of the
smaller ArUco markers inside the white squares. The OpenCV marker detection
method is using this information to calibrate the camera.

Figure 3.5: ChArUco control points: finding the location of the corners with respect to the image
frame

Matrix P is then decomposed using QR factorization and other matrix computations
techniques to retrieve the individual parameters:

P = K
[
R|t

]
, (3.94)

K =

fx s xo
0 fy yo
0 0 1

 , (3.95)

where
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• K is called the calibration matrix,

• fx and fy are the focal lengths in pixels in the x and y directions,

• xo and yo are the principal point coordinates in pixels, which is located at or
close to the center of the image,

• s is the distortion coefficient (skew parameter), in case the image axes are not
orthogonal,

• R ∈ R3×3 and t ∈ R3 is the rotation matrix and translation vector from the
world coordinate frame to the camera coordinate frame.

The focal lengths (in pixels) are computed in the following way:

fx = fmx, (3.96)

fy = fmy, (3.97)

where mx and my are the pixel densities (with unit [pixels/mm]) in x and y direc-
tions and are taken from the optical sensor physical measurements, and f is the
focal length in millimeters.

To perform intrinsic calibration all that is needed is to have the calibration ma-
trix K. The rotation and translation information is only necessary when performing
extrinsic calibration, which is not used in this project.
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4.1 Inertia Tensors

The inertia tensor for each body in its local frame is estimated using the CAD model
in SolidWorks, which has the ability to compute the inertia tensors for assembled
multibody structures. This can be achieved by numerically integrating the mass
density across each body. This provides the local frame inertia for each component
of the assembly. To find the total inertia tensor, the local inertia tensors of the
components must be moved to the same frame and rotated such that their axes
align [20]. The translation is achieved by applying the parallel axis theorem:

Φ′
i = Φi +mi

(
rTi riI3 − rir

T
i

)
, (4.1)

where Φi is the local inertia tensor of the ith component, Φ′
i is the translated inertia

tensor, mi is the mass of the component, and ri is the vector between the component
body frame and the common assembly frame. To align all the inertia tensors they
are rotated into the common reference frame. This can be achieved with:

Φ′′
i = RiΦ

′
iR

T
i , (4.2)

as was also stated in Eq. 3.56. The total inertia tensor is then found by summation
of the N individual components in the specific assembly:

Φ =
N∑
i=1

Φ′′
i (4.3)

These computations are left to the CAD software. The inertia tensor and position
of the CoM of the manipulator servos are both provided by the manufacturer [23].

4.2 Rotor Parameters

In section 3.1.4 the constants kr, kt, and kτ are described. These are determined by
experiment in a thrust identification stand, consisting of a two lever arms of equal
length connected at a right angle. The connection point can rotate. At the end of
one the rotor is attached and the other is pressing down on a scale, measuring the
thrust. The rotation speed can be measured with a digital tachometer. Providing
a throttle signal (PWM-signal) to the ESC makes the rotor rotate and data can be
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collected. The measurements are made with a fixed supply voltage of 16V.

Thrust and angular velocity measurements were recorded along with their respective
throttle inputs. A least squares fit to the actuator thrust model of Eq. 3.23 was
made. The results are displayed in Fig. 4.1 (for kr) and Fig. 4.2 (for kt). The red
curves depict the fitted models, plotted against a few selected measured data points
(blue). A decrease in accuracy is noticeable at the uppermost end of the throttle
range, but at the middle of the range where the system will mostly operate the fits
are more accurate.

Figure 4.1: Illustration of the fitted linear model ω = kru against a few select data points.

Figure 4.2: Illustration of the fitted quadratic model ft = kt(kru)
2 against a few select data

points.
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The fitted parameter values are found as:

kr = 11.783,

kt = 1.095× 10−6,

and the RMSE of the two fits and the data points are computed as:

ϵkr = 42.950,

ϵkt = 0.0111.

The manufacturer of the motor and the propeller provides torque data for the motor-
propeller combination which is used to make the fit. The result is displayed in Fig.
4.3.

Figure 4.3: Illustration of the fitted quadratic model τ = kτ (kru)
2 plotted against manufacturer

data points.

The parameter kτ is computed as:

kτ = 1.579× 10−7,

and this fit has the following RMSE:

ϵkτ = 0.00677.

4.3 Servo Torque Constant

The servo torque constant of the servos in the manipulator links from Eq. 3.39 are
estimated based on the performance curve that the manufacturer makes available
[23]. The curve is sampled and a linear fit is made, which is displayed in Fig. 4.4
where the torque constant is computed as:

km = 1.402.
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Figure 4.4: Illustration of the fitted linear model τm = kmia plotted against the sampled data
points from the performance graph.

While this model can be used, a fairly large error is observed at the lower end of
the range caused by a deadband in the actuator. This can become a problem for
accurate control. A modification of the linear model to make it affine can be made:

τm = kmia + ι, (4.4)

where ι ∈ R is an offset to model the deadband. To avoid the problem of modelling
negative torques with positive currents the two cases can be applied in practice:

τm =

{
kmia + ι if kmia + ι > 0,

0 otherwise.
(4.5)

Figure 4.5: Illustrated of servo torque model with deadband.
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The deadband model is not easy to use in many control algorithms due to its non-
linear nature, so the original model of Eq. 3.39 can be used if necessary and once
the desired torque is determined a mapping between the two can be applied.

4.4 IMU noise and bias

To estimate the noise level and more importantly the biases of the IMU, data is
collected while the two sensors are at rest on a level surface. The collected data is
displayed in Fig. 4.6. Here, the accelerometer data on the z-axis has been offset by
the gravitational acceleration g to make the biases more easily visible.

Figure 4.6: Accelerometer and gyroscope data for the LSM6DOX IMU at rest.

The biases can be estimated as the means of the signals in Fig. 4.6 and the variance
of the noise can be estimated as the variance of the signals. This process can be
repeated every time the system is powered on to provide an initial estimate for bias
since it can change over time, for instance due to changes in the ambient temper-
ature. The means can be estimated with the sample mean of the measurements y
given by:

β̂ =
1

n

n∑
i=1

ym (4.6)

In Fig. 4.7 the data with the sample mean subtracted is displayed.
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Figure 4.7: IMU corrected data

Noise variance on each channel can similarly be estimated as the sample variance:

σ̂2 =
1

n

n∑
i=1

(y − µ)2 (4.7)

where µ is the sample mean of the channel. Noise variances can also be found in
the datasheet of the IMU [24]. It is assumed that the variance measurements in the
datasheet are more reliable so these are used.

4.5 Camera Calibration

The necessary parameters to be identified are part of the camera calibration matrix
K described in Eq. 3.95. That is achieved by taking pictures of the ChArUco board
from different viewpoints and feeding them to the OpenCV library. Occlusions are
allowed, as noticed in Figs. 4.8c and 4.8d. That is due to the presence of the ArUco
pattern inside the checkerboard pattern, which helps detecting which side of the
pattern the identified square corners are located at.
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(a) Viewpoint 1 (b) Viewpoint 2

(c) Viewpoint 3 (d) Viewpoint 4

Figure 4.8: ChArUco marker captured from four different viewpoints, used to calibrate the
camera.

The result can be seen in Eq. 4.8, and is later used for pose estimation, as described
in section 5.1.

K =

1764.6 0 1182.5
0 1764.6 895.71
0 0 1

 (4.8)
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This chapter describes the state estimator developed for the Aerial Manipulator.
State estimation is necessary to create a full state feedback controller. First the
measurements obtained from the onboard sensors are described, followed by a de-
scription of the state estimator itself.

5.1 Camera Measurements

The result of this measurement is the estimation of the ArUco marker’s pose with
respect to the camera frame. To achieve that, the marker(s) are first detected in 2D
image space, and then the pose is estimated using the intrinsic camera parameters.

Marker detection

The known geometry properties of the ArUco markers are saved in a dictionary.
The only saved property is the marker size in bits. Provided with this information
the OpenCV detectMarkers() function can detect the position of the four corners
in the correct order, such that they correspond to the world location of the dictio-
nary saved corners. Saving the corner coordinates in the right order is important
for achieving the right transformations necessary for detecting the ArUco marker’s
pose. See Fig. 5.1 for a visual representation of a control point correspondence (the
purple vectors).

44 of 81



Chapter 5. State Estimation 5.1. Camera Measurements

Figure 5.1: ArUco control points: a) finding the location of the corners in the chosen world frame
b) finding the location of the corners with respect to the image frame

The OpenCV marker detection algorithm is divided in two main steps. The first
one involves image segmentation that leads to contours. The contours that are not
convex or do not resemble a square shape are discarded. The second step includes
verification whether the detected marker is a qualified marker. This is where the
inner white pattern of the marker is used. The white and black pixels are counted
and compared to the information saved into the dictionary. If a match is found, a
marker has been detected.

Pose computation

To estimate the pose of the ArUco markers, the rotation and translation that min-
imizes the projection error from 3D to 2D correspondences is solved. The pose
of a marker is placed in the center of the marker and calculated from its corner
coordinates, see Fig. 5.2.

Figure 5.2: ArUco pose estimation, i.e. the marker’s coordinate system
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The necessary transformations are presented in Eqs. 5.1 through 5.3. To be more
specific, Eqs. 5.1 and 5.2 describe the method of projecting 3D world coordinates
onto the image plane.

xi = K
[
I|0

]
(RXw −RCw), (5.1)

where Cw is the coordinates of the camera center in world frame. The rest of
the parameters are explained in section 3.5.3. The detailed version of Eq. 5.1 is
presented in 5.2:

xiyi
1

 =

fx s xo
0 fy yo
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw
Zw

1

 . (5.2)

The rotation matrices and translation vectors allow 3D world points to be expressed
in 3D camera points: 

Xc

Yc
Zc

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw
Zw

1

 . (5.3)

However, the OpenCV library does not produce the rotation in the form of a rotation
matrix, but in the form of a rotation vector. The rotation vector is a minimal
representation of the axis-angle representation previously mentioned in section 3.1.2.
It is related to the axis-angle representation by:

ae = θû ⇒ ∥ae∥ = θ. (5.4)

It is therefore easily mapped to a quaternion by:

q(ae) =

[
cos

(
1
2
∥ae∥

)
sin( 1

2
∥ae∥)

∥ae∥ ae

]
. (5.5)

Lastly, the camera frame does not coincide with the body frame of the quadrotor.
There exists a fixed transformation between the two frames which is best deter-
mined using the CAD model. This transformation BTC is applied to obtain the
measurements as seen from the body frame {B}.

5.2 State Estimator

In this section a state estimator is described. Due to the dynamical model of the
UAM being as complex as it is, evaluating the model in real-time at a rate sufficient
for stabilizing a quadrotor becomes very computationally expensive. For this reason
the dynamical model will not be used for the state estimator. Instead, a vision-
aided IMU-driven approach is taken instead, simply using measurements from the
onboard IMU to propagate the states, and correcting the resulting estimates with
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encoder feedback and the camera measurements whenever available.

The state estimator is based on the Unscented Quaternion Estimator (USQUE)
[25]. The USQUE is an Unscented Kalman Filter (UKF) [26] which is modified
to accomodate the attitude quaternion representation in a manner similar to the
modifications made to the Extended Kalman Filter (EKF) to obtain a Multiplicative
Extended Kalman Filter (MEKF) [18]. In [25] the USQUE was found to converge
faster than the MEKF when initial attitude estimate errors were larger in the context
of satellite attitude estimation. A good guess for the initial attitude of a UAV
would be that it is perfectly parallel to the ground. This is in most cases a quite
accurate initial guess which begs the question whether there is any real advantage
to the USQUE in practice for such a system. Since this particular implementation
relies on visually detecting markers, measurements from the camera system may
be relatively sparse. This can allow gyro drift to accumulate error in the attitude
estimate between the arrival of camera measurements. Since the UAM is equipped
with consumer-grade MEMS IMUs this error can be significant even after a relatively
short amount of time. Here, the ability of the USQUE to correct the estimate faster
can become an advantage.
In this work the USQUE is extended to also provide estimates of the remaining
states, where the USQUE was developed specifically for estimating attitude and
gyro bias only. This section will start by reviewing the classical UKF, followed by
the modifications for the attitude quaternion update as described in [25]. Lastly,
the complete state estimator will be introduced.

5.2.1 Unscented Kalman Filter

The UKF is a state estimation technique for nonlinear systems of the form:

xk+1 = f(xk,uk) +wk, (5.6a)
zk = h(xk) + vk, (5.6b)

where

• xk ∈ Rn is the state vector,

• uk ∈ Rm is the vector of control inputs,

• zk ∈ Rp is the vector of measured outputs,

• wk ∼ N (0,Qk) and vk ∼ N (0,Rk) are vectors of process and measurement
noise respectively which are assumed Gaussian,

• f : Rn × Rm 7→ Rn and h : Rn 7→ Rp denote the state propagation function
and the measurement model respectively.

It can be used as an alternative to the EKF for nonlinear systems where the local
linearization of f and h applied by the EKF is not necessarily accurate. The EKF
estimates the nonlinear function by a linearization, and since a Gaussian propagated
through a linear mapping remains Gaussian, the Gaussian assumption of the Kalman
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filter remains valid. The UKF takes a different approach: rather than estimating the
nonlinear function, the UKF estimates the distribution after propagating it through
the original nonlinear model. It does this by generating a set of points known as
sigma points, deterministically sampled from the covariance matrix and propagates
those points through the functions f and h. It is then simply assumed that the
resulting distribution is also Gaussian, and the resulting mean and covariance are
computed as a weighted average. This process is known as the Unscented Transform
(UT).

The Unscented Transform

There are a few variations of the UT, each with a different procedure for how to
compute the weighted average. Only the scaled UT as presented in [27] is described
here. Furthermore, it is presented in a general form where a mean of a distribution
x̂ is given (with no connection to the state in Eq. 5.6), along with its covariance
Pxx. Initially, the UT must generate the sigma points. With x̂ ∈ Rn, a total of
2n + 1 sigma points will be generated. The sigma points χi are selected such that
the following holds true:

x̂ =
2n∑
i=0

Wiχi, (5.7a)

Pxx =
2n∑
i=0

Wi(χi − x̂)(χi − x̂)T . (5.7b)

Which means that the sigma points are each given by:

χ0 = x̂, (5.8a)

χi = x̂+
√
n+ λci, i = 1, . . . , n, (5.8b)

χn+i = x̂−
√
n+ λci, i = 1, . . . , n, (5.8c)

where ci is the ith column of Cxx which is a matrix square-root typically computed
with the Cholesky decomposition of Pxx = CxxCxx

T , and λ is a tuning parameter
given by:

λ = α2(n+ κ)− n, (5.9)

which can be tuned by varying α and κ. The weights in Eq. 5.7, Wi are given by:

W
[µ]
0 =

λ

n+ λ
, (5.10a)

W
[Σ]
0 =

λ

n+ λ
+ (1− α2 + β), (5.10b)

Wi =
1

2(n+ κ)
, i = 1, . . . , 2n, (5.10c)

where W [µ]
0 is valid for the mean x̂, and W

[Σ]
0 for the covariance Pxx. Here β is an

extra tuning parameter.
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The sigma points χi are propagated through a (nonlinear) function g(·) and the
propagated sigma points ξi are defined:

ξi = g(χi). (5.11)

Thus the mean and covariance of the transformed points are found by applying the
weighted average to the propagated sigma points:

ŷ = W
[µ]
0 ξ0 +

2n∑
i=1

Wiξi, (5.12a)

Pyy = W
[Σ]
0 (ξ0 − ŷ)(ξ0 − ŷ)T +

2n∑
i=1

Wi(ξi − ŷ)(ξi − ŷ)T , (5.12b)

where ŷ is the output mean, i.e. the mean of the transformed distribution and Pyy

the output covariance. This procedure is used in a Kalman filter-like structure to
estimate the time propagation of the state and the expectation of the measurement
model given the state estimate. [27]

UKF Equations

Recall the discrete-time nonlinear state space model described in Eq. 5.6. The UT
is used to obtain the estimates x̂−

k+1 and ẑk, where the x̂− denotes a time-propagated
estimate (also often described as the prediction step) and x̂+ denotes a state estimate
after correction, using measurements. In a linear or an Extended Kalman filter [27],
the Kalman gain is usually given by:

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1. (5.13)

The matrix P−
k is given by Pxx of the UT during a time-update, where x̂−

k is obtained
by applying the UT to x̂+

k−1 with f as the propagation function. To accommodate
the process noise, its covariance is added:

P−
k = Pxx +Qk. (5.14)

The matrix Hk, assumes a linear measurement model, which is not generally the
case here. Instead, the term HkP

−
k H

T
k is obtained from the UT of x̂−

k with the
nonlinear function h as the propagation function, where ẑk is estimated:

Pzz = HkP
−
k H

T
k . (5.15)

The term P−
k H

T
k corresponds to the cross-correlation matrix between x̂ and ẑ which

can be approximated as:

P−
k H

T
k ≈ Pxz =

2n∑
i=0

Wi(χi − x̂−
k )(ξi − ẑk)

T , (5.16)

which leads to the Kalman gain being computed as:

Kk = Pxz(Pzz +Rk)
−1. (5.17)
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The update equations for the UKF are then given by:

x̂+
k = x̂−

k +Kk(zk − ẑk), (5.18a)
P+

k = P−
k −KkPxz

T . (5.18b)

The full set of equations for the UKF can thus be summarized as:

Time update

x̂−
k = UT

(
x̂+
k−1,C

+
k−1, f(·)

)
, (5.19a)

P−
k = Pxx +Qk, (5.19b)

Measurement update

ẑk = UT
(
x̂−
k ,C

−
k , h(·)

)
, (5.19c)

Pxz =
2n∑
i=0

Wi(χi − x̂−
k )(ξi − ẑk)

T , (5.19d)

Kk = Pxz (Pzz +Rk)
−1 , (5.19e)

x̂+
k = x̂−

k +Kk(zk − ẑk), (5.19f)
P+

k = P−
k −KkPxz

T . (5.19g)

5.2.2 Unscented Quaternion Estimator

The reason that is necessary to modify the approach outlined in Eqs. 5.19a-5.19g in
order to accomodate for quaternion representation of the attitude, is that the group
of unit quaternions is not closed under addition. The kinematics of the quaternion
are multiplicative (see Eg. 3.16). When computing the weighted average of the
UT and when performing the measurement update of the state, it is clear that
the attitude quaternion will be subjected to many additions if this filter is directly
applied. This may result in the norm of q̂ deviating from 1. Under the assumption
that the error is small, this can be mitigated by simply normalizing the quaternion.
However, this does deteriorate the accuracy of the attitude estimate. Instead, the
procedure may be modified by a change of variable, and some well placed quaternion
multiplications.
The general idea is to create an error state for the quaternion, which represents the
change in state between the current time instance and the previous time instance
(in a discrete-time setting). The error state for a unit quaternion is thus a small
rotation between the two time steps such that the quaternion qk at time step k is
given by:

qk = qk−1 ⊙ δqk, (5.20)

where qk−1 is the attitude quaternion representing the attitude at time k − 1 and
δqk is the error quaternion representing the rotation between the two. Assuming
that the sampling period for the discrete-time system is relatively short compared to
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the angular velocity of the system, then the rotation represented by δqk is relatively
small. Thus we can change to a different representation of attitude δϑ which is
not restricted to multiplications only. It is chosen such that ∥δϑ∥ ≈ θ for small
rotations where θ is the angle given in Eq. 3.6 for the error quaternion [28]. Typical
representations are the Rodrigues Parameters (RP, also known as the Gibbs vector)
or the Modified Rodrigues Parameters (MRP). These are typically chosen because
they are minimal representations (i.e. they have 3 components instead of 4 like the
quaternions), and they linearize to half angles and quarter angles respectively. In
[25] these are generalized, to a representation with 2 parameters a and fp where
fp = 2(a+ 1). Then δϑ is given by:

δϑ =
fp

a+ δq0
δq1:3, (5.21)

where the RPs corresponds to a = 0 and fp = 2, and the MRPs correspond to a = 1
and fp = 4. The mapping from the 3 component error to the error quaternion is
given by:

δq0 =
−a∥δϑ∥2 + fp

√
f 2
p + (1− a2)∥δϑ∥2

f 2
p + ∥δϑ∥2

, (5.22a)

δq1:3 =
a+ δq0
fp

δϑ. (5.22b)

The procedure is then to define a state vector x̂ which is separated:

x̂ =

[
δϑ̂k

β̂k

]
, (5.23)

where âk is the estimated 3-component attitude error, and β̂k the estimated gyro
bias. The state propagation and measurement functions must be written as functions
of âk instead of the attitude quaternion since it is this attitude error state that will
be propagated and updated as described in Eq. 5.19. However, the quaternion
kinematics of Eq. 3.16 are functions of the quaternion itself. Therefore, mapping
back and forth between q and δϑ is done instead.
The USQUE is initialized with an initial attitude quaternion q̂+

0 and initial state
estimate:

x̂+
0 =

[
0

β̂
+

0

]
, (5.24)

and an initial corresponding covariance matrix P+
0 . The sigma points are calculated

using Eq. 5.8, and for each sigma point χi the corresponding error quaternion δqi

is calculated with Eq. 5.22. This is immediately followed by computing the full
attitude quaternion for each sigma point by applying Eq. 5.20 to each sigma point:

q̂+
k−1,i = q̂+

k−1 ⊙ δq̂k−1,i ∀ i = 0, . . . , n, (5.25)

where q̂+
k−1 is the most recent estimate of the attitude quaternion. These quaternions

are propagated forward in time using Eq. 3.16 where the angular velocity ω̂k is the
gyro measurement with the bias estimate subtracted.

q̂−
k,i = Ω(ω̂k)q̂

+
k−1,i (5.26)
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In order to obtain the state estimates the quaternion from each sigma point is then
converted back to a 3 component error representation, first by computing:

δq̂−
k,i =

(
q̂−
k,0

)−1 ⊙ q̂−
k,i, (5.27)

and then by applying Eq. 5.21. Then the estimates of the mean and covariance can
be computed using Eq. 5.12 as usual in the UT. [25]
For the measurement update, the attitude measurements arrive as quaternion mea-
surements, as described in section 5.1. Therefore, the measurement goes through
the same procedure of mapping to the 3 component attitude error representation:

δqm =
(
q̂−
k,0 ⊙ δq(â−

k )
)−1 ⊙ qm, (5.28)

δϑm =
fp

a+ δqm0

δqm1:3 . (5.29)

At this point, it is possible to apply the update equations (Eqs. 5.19e-5.19g) of the
UKF as normal, and when this is completed the corrected attitude quaternion can
be computed by once again applying Eqs. 5.22 and 5.20.

q̂+
k = q̂−

k,0 ⊙ δq̂(δϑ+
k ) (5.30)

To finish up, the attitude error state δϑ̂
+

k must be reset to 0.

5.2.3 Unscented Estimator for a UAM

In order for the state estimator to be used for the UAM, the state space is extended
to include the remaining necessary states. The full state vector for this estimator is
written as:

x̂ =



p̂B

q̂

θ̂
ν̂
ϖ̂

β̂a

β̂g


∈ R16+2Nj , (5.31)

where the notation (̂·) denotes that the quantity is an estimate and

• p̂B ∈ R3 is the position of the quadrotor body frame relative to the inertial
frame,

• q̂ ∈ R4 is the vector of coefficients of the attitude quaternion,

• θ̂ ∈ RNj is the vector of manipulator joint positions,

• ν̂ ∈ R3 is the velocity of the quadrotor body frame relative to the inertial
frame,

• ϖ̂ ∈ RNj is the manipulator joint velocities,
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• β̂a ∈ R3 is the accelerometer bias,

• β̂g ∈ R3 is the gyro bias.

The filter is implemented with an IMU-driven approach, that is, inputs to the filter
are the bias-corrected gyro and accelerometer measurements. The camera measure-
ments along with encoder feedback is used for the correction in the filter equations.
Therefore, the vector of inputs is given by:

u =

[
â
ω̂

]
=

[
am − βa

ωm − βg

]
∈ R6, (5.32)

where

• â ∈ R3 is the bias-corrected accelerometer measurement,

• ω̂ ∈ R3 is the bias-corrected gyro measurement.

The vector of measured outputs of this state-space system is:

z =


pm

qm

θm
ϖm

 ∈ R13, (5.33)

where

• pm ∈ R3 is the measured position of the quadrotor body in the inertial frame,

• qm ∈ R4 is the measured attitude of the quadrotor body,

• θm is the measured manipulator joint positions,

• ϖm is the measured manipulator joint velocities.

With an approach similar to the one in [29] the discrete-time difference equation for
the state (using Forward-Euler discretization of ẋ) is then given as:

pB,k+1 = pB,k + ν∆t, (5.34a)
qk+1 = Ω(ω̂)qk, (5.34b)
θk+1 = θk +ϖk∆t, (5.34c)
νk+1 = νk +

(W
B R(qk) âk + g

)
∆t, (5.34d)

ϖk+1 =ϖk, (5.34e)
βa,k+1 = βa,k, (5.34f)
βg,k+1 = βg,k, (5.34g)

where g =
[
0 0 g

]T is the vector of gravitational acceleration expressed in the
inertial frame, and W

B R(qk) is the rotation between the body frame and the inertial
frame. Since the quaternion requires special treatment in the estimator, as explained
in the previous section, another state vector δx and measurement model δz is defined,
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which is used internally in the estimator. Here the quaternion itself is replaced by
the attitude error component and the two are given by:

δx̂ =



p̂B

δϑ

θ̂
ν̂
ϖ̂

β̂a

β̂g


∈ R15+2Nj , (5.35)

δz =


pm

δϑm

θm
ϖm

 ∈ R12, (5.36)

where δϑ is the attitude error and δϑm is the measured attitude error which was pre-
viously described by Eq. 5.29. This state vector is used in the unscented filter. The
state propagation function f (δxk,uk) is given by Eqs. 5.34 except for the attitude
error difference which requires the mappings of the USQUE to be applied. As ex-
plained in section 5.2.2, this procedure ultimately applies the quaternion kinematics
of Eq. 5.34b. The observation model h(δxk) : R15+2Nj 7→ R12 is given by:

h(δxk) =


pB,k

δϑk

θk
ϖk

 . (5.37)

With this setup, the UKF equations (Eqs. 5.19a-5.19g) can be applied as usual. It
is worth mentioning that the manipulator joint position state can be excluded from
the state estimator, instead relying on measurements directly with no significant
impact on accuracy, due to the high quality of the encoder measurements. Here it
is included simply for the sake of completeness.
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6 | Simulations & Experiments

This chapter includes simulations of the dynamic models and a test verifying the
performance of the state estimator. The results will be stated along with a comment
about what was expected. The results will be discussed in further detail in chapter 7.

The first dynamic modelling attempt was to use the RNE algorithm, described in
test 6.1, and the presented simulation serves to illustrate an issue with the model
solution. The second attempt at modelling the dynamics was to use the Euler-
Lagrange method, described in tests 6.2, 6.3 and 6.4. These simulations are focused
on the effects of the manipulator torque and manipulator motion on the quadrotor
body, as this is the key component of the coupled dynamics of the system. The
simulated cases are fairly simple as the coupled dynamics can make the results very
complicated to interpret if multiple effects are simulated simultaneously.

6.1 Newton-Euler Simulation

Description

To assess the dynamic model, an initial position of −π/2 rad was set to the second
joint. Moreover, no torque was applied to any of the joint actuators. The thrust
force of the rotors negates the force of gravity, and it is equal at each of the four
rotors. In this particular configuration the link is expected to swing down as a
result of the gravitational forces. The UAM is expected to move a little in the
positive direction of the inertial frame x-axis, as a result of the forces caused by the
configuration and motion of the manipulator.

Result

According to Fig. 6.1 both the second link and the UAV remain in their original
positions. This result is clearly incorrect and points to an error in the solution of
the coupled dynamic equations.
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Figure 6.1: Newton-Euler simulation performance given the joint 2 initial angle of θ2 = −π/2
rad

6.2 Simulation: Joint 1 Torque

Description

The initial setup consists of a constant torque of 0.1 Nm applied to the first joint
servo motor. The second joint is static. The initial positions for both actuators
are zero radians, i.e. it is freely hanging downwards. The thrust force of the rotors
negates the force of gravity, and it is equal at each of the four rotors. The expected
behaviour given this configuration would be to have the manipulator rotate in one
direction, and the quadrotor rotate in the opposite direction. This is because the
manipulator and the quadrotor interact at the same point at the base link, and
according to the Newton’s 3rd law, every action (force) has an equal but opposite
reaction. Thus, in this case the manipulator exerts a force on the quadrotor, which
results in the quadrotor also exerting an equal but opposite force onto the manipu-
lator. Moreover, given the forces applied at the rotors, the quadrotor is expected to
keep its location constant and equal to its initial location.
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Result

According to Fig. 6.2, the expected rotational behaviour mentioned in the descrip-
tion of this simulation is fulfilled. Fig. 6.3 describes the position, velocity and
acceleration which are all constant. The quadrotor’s initial position is 0.5 meters
above ground and it stays that way during the entire simulation time. On top of that,
the quaternion, and its time derivatives are changing over time. The quaternion can
be difficult to interpret, but it is noticeable that only the first two of the coefficients
in the vector part are changing, indicating that it is rotating in the xy-plane. This is
expected as it describes the rotational movement reaction of the quadrotor. Finally,
in Fig. 6.4 the manipulator joint position, velocity, and acceleration is displayed.
The joint velocity is observed to peak after around 4s before it starts dropping off.
This may come as a surprise with a constant torque applied, but it is due to the
rotation of the quadrotor, which also causes the manipulator to rotate, that the
joint torque must also counteract. Eventually the two rotations must fall into an
equilibrium that happens when the joint acceleration stabilizes at 0. The reason for
this "overshoot-like" behaviour where the joint reaches a higher velocity than its
steady state is that the manipulator has a significantly smaller moment of inertia
than the quadrotor, allowing it to build up velocity faster than the quadrotor. Once
the quadrotor starts building velocity, the joint rotation is then slowed down.

(a) Configuration at time t1 < t2 (b) Configuration at time t2

Figure 6.2: Simulation: A torque of 0.1 Nm is applied on the joint 1 servo motor. The initial
joint positions are zero radians. Notice the manipulator frames have negative rotation about the
inertial frame z-axis, while the quadrotor frame has positive rotation.
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Figure 6.3: Quadrotor generalized coordinates and the first and second derivatives throughout
the simulation.
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Figure 6.4: Plot of manipulator joint variables over time for the simulation a with constant joint
1 torque applied.
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6.3 Simulation: Joint 2 Angle

Description

The setup in this test is similar to the one presented in test 6.1, with the only
difference being the initial position of the second joint being equal to π/2 instead of
−π/2. As a result of this, the drifting direction of the quadrotor should be negative
along the inertial frame x-axis. The choice of the initial angle, whether it is positive
or negative is arbitrary. No joint torques are applied and the rotor rotation speeds
(equal at all rotors) is set such that it nullifies the force of gravity. To make the effect
of the manipulator’s initial position more visible the mass and moment of inertia of
the manipulator have been scaled up compared to the physical system.

Result

According to Figs. 6.5a and 6.5b the manipulator is swinging as expected, shifting
the joint angle slightly as the quadrotor starts tilting which can be observed when
comparing the peaks in the plot. This is also displayed in Fig. 6.7. Moreover,
as can be seen in Fig. 6.5c the quadrotor’s simulated motion corresponds to the
expected physical response given a force caused by the manipulator’s response to
gravity. The path is marked by the blue dots. Fig. 6.6 showcases the states (and
their time derivatives) of the quadrotor. The position of its CoM is changing over
time. It moves in the negative direction of the x-axis, and it slightly wobbles on
the z-axis, but as the simulation progresses and the quadrotor tilts further it starts
dropping as expected. The wobbling is caused by the motion of the manipulator
which in turn also causes the tilt. As a consequence, the velocity and acceleration
on the x- and z-axes are also growing in the negative direction.
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(a) (b)

(c)

Figure 6.5: Simulation: (a) Joint 2 set at an initial position of π/2, here shortly after starting
the simulation. (b) Link 2 swings down due to gravitation. (c) The UAM base starts moving
due to the effects of the shifting center of gravity. The blue dots indicate the trajectory of the
end-effector.
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Figure 6.6: Quadrotor generalized coordinates and the first and second derivatives throughout
the simulation without joint torques and initial condition θ2 = π/2. The quaternion reveals the
gradually increasing tilt of the quadrotor body.
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Figure 6.7: Plot of manipulator joint variables over time for the simulation a without joint torques.
Observing the peaks of the joint position plot reveals that the angles shift as the quadrotor begins
tilting.
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6.4 Simulation: Joint 2 Torque

Description

This simulation investigates the effect on the quadrotor body of torques applied to
the second joint. Both manipulator joints are initialized at their zero positions. The
thrust force is again set to nullify gravity when the quadrotor is not tilted, and
now a constant torque of 0.05 Nm is applied by the second joint servo. The second
link of the manipulator is expected to rotate up, and the reaction force (torque) is
expected to cause the quadrotor to tilt down in the opposite direction. This should
cause the thrust force to get angled, making the system move in the direction the
two bodies rotate towards, also causing it to lose altitude due to the loss of upwards
thrust. The mass and moment of inertia of the manipulator are scaled up to make
the effects more clear.

Result

In Fig. 6.8, the result of the applied torque makes it clear that the manipulator
link and the quadrotor body rotate towards each other as expected. It can also be
seen that the UAM moves along the inertial frame x-axis in the negative direction
as expected. The drop in altitude is just barely visible in Fig. 6.9 due to the short
simulation time, but the downwards acceleration is easy to see. Fig. 6.10 displays
the joint variables, where the second joint acts as expected, slowing down as it moves
up, mainly due to increased torque caused by the force of gravity acting on the CoM
of link 2.
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Figure 6.8: Simulation: A torque of 0.05 Nm is applied on the joint 2 servo motor. The initial
joint positions are zero radians.
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Figure 6.9: Quadrotor generalized coordinates and the first and second derivatives throughout
the simulation.
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Figure 6.10: Test 3: Representation of manipulator joint states over time
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6.5 State Estimator Validation

Description

This test is performed by collecting data with the IMU and the camera. The sensors
start the test at rest. They are then arbitrarily moved around the room while the
camera is facing an ArUco marker, which it should use to estimate its pose. It is
expected that the estimates should quickly drift while camera measurements are not
available, but should be corrected at measurement updates.

Results

In Fig. 6.11 the attitude estimate is displayed. Here, there are some noticeable very
large steps in the attitude quaternion. Analysis of the raw sensor data reveals that
this is caused by the z-axis of the ArUco marker occasionally being flipped. It is not
known for certain why this occurs, but it is likely that it is due to motion blur. The
particular camera available appears to be sensitive to motion, which is exacerbated
by the fact that camera measurements arrive very slowly, providing only few frames
per second with most not being useful for detecting markers due to the motion blur.
Due to the lack of camera measurements, the accelerometer is simply continuously
integrated without correction which causes the errors to accumulate quickly. In Fig.
6.12 the estimated positions are shown. Here, the camera measurements are delib-
erately left out, as they cause similar steps in the attitude estimates when included.
Leaving out camera measurements from the attitude estimates also provides results
that are more reasonable than when camera measurements are included, as seen in
Fig. 6.13.
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Figure 6.11: Estimate of attitude and bias-corrected angular velocity. The large jumps in the
estimate occur when the corrupted camera measurements arrive.
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Figure 6.12: Estimate of position and velocity. The movements of the sensors was small in this
time frame, but due to a lack of useful measurements from the camera, they still provide better
estimates.
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Figure 6.13: Estimate of attitude without camera measurements.
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This chapter is dedicated to discussing the observations made during simulation and
testing, as well as possible issues, improvements, and future developments.

7.1 Discussion

Two different approaches to modelling the system were described in chapter 3,
namely the Euler-Lagrange and the Newton-Euler. The latter was not success-
fully implemented and so the decision to switch to a different approach to modelling
was made. The simulation in section 6.1 displays a problem with the model, but it
is not the only one. It is however, the one which is most clear in its illustration that
the solution to the forward dynamics is broken. Simulating other cases also yield
results that are not consistent with reality in some way. Simulating the quadrotor
dynamics and the manipulator dynamics in isolation (before attempting to com-
bine them, these simulations were not included in chapter 6 for the sake of brevity)
gave the expected outcomes. This points to the error stemming from the solution
of the coupled system. It was attempted to be solved symbolically, however due
to the complexity of the expressions resulting from the RNE algorithm, the solu-
tion was attempted with MATLAB. This same approach was taken for the isolated
subsystems and worked well. However, it was evidently not successful in solving
the forward dynamics of the UAM. Specialized algorithms for simulating rigid body
dynamics for systems with a floating base exist (for example in [30]), but they are
complex.

The Euler-Lagrange model was demonstrated in several different cases which were all
deemed consistent with the expected outcomes. Model validation with experiments
would however strengthen this conclusion significantly. However, several significant
physical aspects of the system remain unmodeled. These include:

• Drag: Drag on the bodies would dissipate energy from the system and de-
celerate it. A possible simple model of drag on the UAM would be a model
linear in the velocities taking the form:

fd =
1

m

Ax 0 0
0 Ay 0
0 0 Az

ṙxṙy
ṙz

 . (7.1)

Such a model is valid at relatively low speeds, and it is simple enough to not
unnecessarily complicate the equations of motion even further [31].
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• Battery voltage: During flight, the battery voltage will drop, which impacts
the estimated parameters, mainly due to a decrease in rotation speed when
throttle is held constant and battery voltage drops. This is mainly a concern
for the thrust constant. One way to alleviate this is to perform online thrust
constant estimation [5]. This may not be necessary depending on the applied
controller, but it could also make it possible for the system to automatically
adapt its thrust constant when carrying payloads.

• Rotor dynamics: In practice, the rotors have dynamics which have not
been modelled here. The main components originate from inductance in the
motors, inertia of the propeller, and delays from the ESC. A typical approach
to modelling rotor dynamics is to simply model it as a first order system:

G(s) =
K

1 + Ts
, (7.2)

where K is the maximum angular velocity of the rotor, and T the time con-
stant. These two parameters can be determined experimentally.

• Joint friction: Servos have internal friction which cause them to require
extra torque for producing the desired movements. There are many different
friction models, but a typical model would be a combination of static and
viscous friction [19]. If more accurate models are required, then the Stribeck
friction could be included or more advanced models such as Dahl friction could
be developed. All of these models require the identification of one or several
parameters.

The test of the state estimator showed the camera measurements are unreliable in
the current implementation, making it necessary to simply exclude them to get rea-
sonable estimates. However, this causes the integration errors to build up due to
the lack of corrections. Including other position or velocity measurements could im-
prove upon this. Possibilities include using GNSS measurements (only for outdoor
applications), barometer/altimeter measurements (only for the inertial frame z-axis
position), optical flow, or indoor positioning systems based on wireless communi-
cation systems. However, camera measurements are still expected to be necessary
for pick-and-place tasks where the UAM must have very precise position estimates
when picking and placing payloads.
It was also noted that camera measurements arrive at a relatively slow rate. Image
processing can be computationally expensive but currently the drivers for the specific
camera are not directly supported by OpenCV. This causes the transfer of image
data from the camera into the OpenCV application programmed for detecting the
ArUco markers to be slow, which slows down the entire system. However, this is a
software issue which can be fixed. Increasing the amount of available frames should
also partially alleviate the issue with motion blur.
Lastly, testing should be done to verify whether it is in fact feasible to use the de-
rived dynamic model in the UKF instead of integrating gyroscope and accelerometer
measurements with the IMU-driven model. It would most likely cause trouble to
evaluate the model for every single sigma point in the UKF, which is likely to be
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too heavy a burden, but estimates may improve.

Due to time constraints caused by the need to redo the modelling with a different
approach, a controller for the system was not designed. Due to the complexity of
the nonlinear model, designing a controller becomes complicated. Linear controllers
would be valid locally but due to the highly nonlinear nature of the model they are
unlikely to generalize well. It is possible that repeated linearization around several
operating points, possibly combined with a gain scheduling procedure would give
good results and has the advantage of not being especially computationally expen-
sive. Nonlinear controllers are also a possible option. Nonlinear control strategies
that require manipulating the model equations directly would not be a first choice
however.
A nonlinear model predictive controller (NMPC) relying on optimization would be a
good candidate as it has the ability to balance the control effort between the rotors
and the manipulator joints in an optimal sense. This would allow the UAM to effi-
ciently use its manipulator joint to control not only the manipulator joint states, but
also the quadrotor states. The prediction of future states within the finite horizon
is also an advantage, as the NMPC practically computes a trajectory. A downside
is that it requires evaluating the model functions many times at every time step due
to the finite horizon. For this reason the computational load becomes substantial,
especially when combined with an optimization algorithm, and the control algorithm
may become so slow that it is not feasible to use in real time. There is also the con-
cern that since the model is highly nonlinear, it can be assumed to be non-convex
which means that optimization solvers may not be able to find the global minima
and may get stuck. Controllers that are slow to evaluate could be complemented by
simpler and faster trajectory tracking controllers which could make the UAM follow
the trajectory computed by the NMPC. This is deemed to be a good approach that
could be attempted in the future.
It is also possible to take a model-free approach to the control and train a machine
learning model with reinforcement learning to find an optimal control law. The
model could be used for simulating the system which could be used as a starting
point for doing most of the (initial) training. Further training would most likely be
necessary on the physical system, to ensure that the learning agent would also be
able to learn the unmodelled dynamics.

7.2 Conclusion

A prototype UAM has been designed and assembled, including sensing and process-
ing devices. Two separate dynamic models have been investigated and simulated
to verify the results. Only the Euler-Lagrange model showed acceptable results in
simulation, while the Newton-Euler model, based on the Recursive Newton-Euler
algorithm failed due to issues with solving the coupled dynamic equations. This is
likely possible to solve with specialized algorithms for solving this type of system.
The Euler-Lagrange model provides closed form expressions for the dynamics, but
the equations of motion are very complex, and are further complicated by the need
to handle the quaternion constraint. Despite this, several unmodelled dynamics
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such as drag, joint friction, and rotor dynamics could be included to make it a more
accurate representation of reality. A state estimator for the UAM was designed and
implemented. It was made as an adaptation of the Unscented Quaternion Estima-
tor, to also estimate states other than the attitude and gyro bias. Due to corrupted
camera measurements the estimates were better when simply integrating the gyro
and accelerometer measurements.
Due to time constraints - mainly caused by the necessity to redo the dynamic model
in the Lagrangian formulation - a controller was not designed, but as possible future
control designs NMPC or reinforcement learning-based approaches are suggested
due to their ability to handle the highly nonlinear nature of the system without
relying on linearization or manipulation with the equations of motion.
Future work includes control design, and correcting the camera measurement system
to be able to use the measurements for state estimation.
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