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tal for applications in the space in-
dustry. This work studies the im-
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ear (PD, LQR, MPC) and non-linear
(SMC) control strategies in an attitude
control system. Tested on a simu-
lated low earth orbit satellite, the con-
trollers demonstrated diverse perfor-
mance outcomes. Transforming lin-
ear control issues to the principal axis
frame showed improved pointing ac-
curacy, while SMC remained robust to
such changes. Despite the controllers
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the nadir-pointing scenario, LQR in
the principal axis frame performed
slightly better. While MPC was quick-
est to settle in landmark-switching sce-
narios, its output revealed substantial
chatter, indicating a potential for im-
provement. SMC outperformed PD
and LQR for large-angle maneuvers
with equivalent control effort, reinforc-
ing its relevance for large-angle ma-
neuvers.
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Chapter 1

Introduction

The attitude of a satellite describes it’s orientation in space i.e. how it is placed
in the 3D space it occupies. A satellite’s attitude can also be stated as the rotation
from a fixed reference coordinate system to the satellite’s body coordinate system
as shown in Fig 1.1. Being able to determine and control the satellite’s attitude
with extremely high accuracy is crucial for almost all modern day applications. In
some remarkable cases such as in the James Webb Telescope, pointing accuracy of
around 1 milliarcsecond is achieved from the attitude control system. [1] The point-
ing accuracy of a typical satellite equipped with star tracker is around 15 arcsecond.

Figure 1.1: Satellite Body Coordinate and Reference Coordinate Systems

Before a satellite’s attitude can be controlled the current attitude and the angular
velocity has to be estimated. A satellite’s attitude is estimated using the data from
a variety of sensors such as gyroscopes, magnetometers, fine sun sensors and star
trackers. Algorithms such as the Multiplicative Extended Kalman Filter can be
used to combine the data from the sensors to estimate the satellite’s attitude.[2]

However, the primary emphasis of the thesis will be on controlling the satellites’ at-
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CHAPTER 1. INTRODUCTION

titude, rather than estimation. A satellite’s attitude can be controlled using various
types of actuators, such as magnetorquers, reaction wheels, thrusters, and control
moment gyros. Different control strategies can be applied to control the satellite’s
attitude such as Proportional-Integral-Derivative (PID), Linear Quadratic Regulator
(LQR), Sliding Mode Control (SMC) and Model Predictive Control (MPC) depend-
ing on the application.

In this thesis, the aforementioned control strategies will be implemented for a
satellite with a non-uniform mass distribution, utilizing only reaction wheels as
actuators. The evaluation of these control strategies will focus on their accuracy,
considering various test cases derived from common mission requirements.

The system and the controllers are simulated in MATLAB. The controllers are also
implemented in C, and tested in a proprietary high-fidelity simulator from Space
Inventor.[3]
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Chapter 2

Satellite Modelling

In this chapter, the system model along with the model for the actuators are de-
scribed.

2.1 Attitude Representation

The most basic way to represent attitude is by using Euler angles. Euler angles are
a representation of the orientation of an object in 3D space, obtained by combining
three elemental rotations about three different axes. But Euler angles are suscep-
tible to singularities, which can cause ambiguities and difficulties in representing
certain orientations in 3D space.[4] As such in this paper, quaternions are used to
represent satellite’s attitude.
Quaternions are an extension of the complex space and consists of four compo-
nents, a scalar and 3 imaginary parts and is typically written as

q = qxi + qyj + qzk + qw (2.1)

Here qx, qy, qz and qw are real numbers and i, j and k are the basis vectors. Attitude
and rotations are represented by using unit quaternions.

2.2 Quaternion Kinematics

This section describes the quaternion kinematics of the satellite. Kinematics de-
scribes how the attitude of the satellite changes for some angular velocity ω with-
out taking into consideration the forces that are changing the angular velocity.
ω is a 3 component vector that represents the angular velocities in the axis of the
satellite’s body frame. And thus the kinematics are defined as the derivative of the
quaternion as shown in Eq. 2.2.

q̇ =
1
2

ωq (2.2)

The vector ω = [ωx ωy ωz 0] can be interpreted as a pure quaternion, where 0 is
the scalar part and [ωx ωy ωz] forms the vector part. This structure enables us to
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CHAPTER 2. SATELLITE MODELLING 2.3. ATTITUDE DYNAMICS

perform quaternion multiplication with ω and the quaternion q.
An Omega operator can be defined as follows

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (2.3)

As a result, we can derive the final form of the quaternion kinematics: [5]

q̇ =
1
2

Ωq (2.4)

2.3 Attitude Dynamics

Attitude dynamics of a satellite describes how the angular velocity of the satellite
changes over time under the influence of external and internal torques. A satellite
can be subject to a variety of external torques such as gravity gradient torque,
aerodynamic torque, solar radiation pressure, magnetic torque, etc. [6] The satellite
can also be affected by internal torques generated by actuators, such as reaction
wheels.

2.3.1 Rigid Body Mechanics

The rotational behaviour of a satellite subjected to the torques depend heavily on
the mass distribution of the satellite. A satellite is considered as a rigid body
and the mass distribution can be represented by the moment of inertia matrix J.
The moment of inertia matrix of a 3D rigid body is a symmetrical 3 × 3 matrix.
The diagonal values represent the moment of inertia in x, y and z axes and the
off-diagonal elements represent the cross-coupling between the axes. Hence, the
general equation of the angular momentum of a satellite is given by:

H = Jω (2.5)

Through Euler’s second law, the rate of change of angular momentum in an inertial
frame is given by the net torque acting on the body.

ḢI = TI (2.6)

The equation mentioned above can be transformed into the satellite’s body frame
of reference, as the external torque and the satellite’s moment of inertia are easier
to compute in this frame. Thus the rate of change of angular momentum in the
body frame is given by 2.7.

ḢB = TB − ωB × HB (2.7)
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CHAPTER 2. SATELLITE MODELLING 2.4. REACTION WHEELS

Assuming that the moment of inertia of the satellite in the body frame is constant,
and by computing the derivative of Eq. 2.5 and inserting that into Eq. 2.7, the final
form of Euler’s rotational equation can be obtained as follows.[5]

ω̇B = J−1(TB − ωB × (Jωb)) (2.8)

2.3.2 Non-Uniform Mass Distribution

In any rigid body, there’s at least one special reference frame called the principal
axes in which there’s no cross-coupling between the axes and the moment of iner-
tia matrix is a diagonal matrix.
For satellites with non-uniform mass distribution, the body frame is generally dif-
ferent from the principle axes frame. As the moment of inertia in the body frame
is a real symmetric 3 × 3 matrix, it has three orthogonal eigenvectors ek

B and cor-
responding real eigenvalues Jk. The eigenvalues are also known as the principle
moments of inertia and thus the moment of inertia matrix in the principal axis
frame is given as.

JP = AT
BP JB ABP =

J1 0 0
0 J2 0
0 0 J3

 (2.9)

Here the transformation matrix is given by

ABP =
[
e1

B e2
B e3

B
]

(2.10)

Although the order and direction of the eigenvectors can be interchanged, it’s cru-
cial to verify that the resulting principal axis frame forms a right-hand coordinate
system. This can be confirmed by ensuring that e1

B × e2
B = e3

B.

The transformation matrix ABP serves to translate the control problem into the
principal-axes coordinate system. Once the control output is computed, it can be
transformed back into the body frame using the inverse of ABP for implementation
through the actuators.

2.4 Reaction Wheels

The reaction wheel is the primary actuator used for attitude control of satellites.
It mainly consists of a rotating flywheel controlled by a motor. When the reac-
tion wheel speed changes the spacecraft rotates in the opposite direction due to
the conservation of angular momentum. One reaction wheel can only change the
angular momentum of a satellite in a single axis and at least three reaction wheels
are required for the attitude of the satellite to be fully controllable.
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CHAPTER 2. SATELLITE MODELLING 2.4. REACTION WHEELS

The reaction wheel is modeled as a disk with radius r, height h, and mass mri. Its
moment of inertia in the wheel frame is given by:

JW
R =

mrir2/2 0 0
0 (mri/12)(3r2 + h2) 0
0 0 (mri/12)(3r2 + h2)

 (2.11)

The orientation of the reaction wheel can be represented by a vector n̂Ri in the body
frame, and thus the reaction wheel moment of inertia can be transformed to the
body frame using the transformation matrix TRi(0, θRi, ψRi) as shown in Eq. 2.12.
Here the yaw (ψRi) and pitch (θRi) can be interpreted as the Euler angles that will
rotate the vector n̂Ri to align with the x-axis of the body frame.

JB
R = TT

Ri J
W
R TRi (2.12)

The total angular momentum of the satellite is then given as:

HB = JBωB +
nRW

∑
i=1

JB
RiωRin̂Ri (2.13)

and the torque applied on the satellite is given as:

Trw =
nRW

∑
i=1

JB
RiαRin̂Ri (2.14)

where αRi is the angular acceleration of the ith reaction wheel

2.4.1 Reaction Wheel Control

In many satellites, the mechanical design of the reaction wheel makes it one of the
first points of failure.[7] As such for redundancy a satellite is generally equipped
with more than 3 reaction wheels making it an over-actuated system. The total
torque on the satellite in the body frame from the reaction wheels is given by:

Trw = Jrwαrw (2.15)

Here, αrw is a vector of angular acceleration in the reaction wheels, and Jrw is a
3 × nrw matrix equal to:

Jrw = [JB
R1n̂R1 JB

R2n̂R2 ... JB
Rnn̂Rn] (2.16)

The controller gives the desired torque, but there’s no unique solution to calculate
the required reaction wheel acceleration from the desired torque, as Jrw is not a
square matrix. Hence, the Moore-Penrose inverse of the matrix Jrw can be used to
distribute the desired torque among the reaction wheels as shown in Eq. 2.17.[8]

αrw = JT
rw(Jrw JT

rw)
−1Tdes (2.17)
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Chapter 3

Control Methods

In this chapter, the different control methods used to control the spacecraft’s atti-
tude are presented.

3.1 Linearization

As a prerequisite to designing the linear controllers, the nonlinear model consisting
of Eq. 2.4 and Eq. 2.8:

ẋ =

[
q̇
ω̇

]
= f (x, u) (3.1)

needs to be linearized and checked for controllability. Here u represents the torque
applied to the satellite from the reaction wheels given by Eq. 2.14

The model is linearized around operating points (x̄, ū), such that:

f (x̄, ū) = 0 (3.2)

which are found by selecting an operating input ū = 0 and solving Eq. 3.2. In
this case, there are multiple equilibrium points and the unity quaternion is chosen
as the operating point, as we will be utilizing the error quaternion in the linear
control methods, and wish to keep this near unity:

x̄ =
[
q̄1 q̄2 q̄3 q̄4 ω̄1 ω̄2 ω̄3

]
=
[
0 0 0 1 0 0 0

]
(3.3)

The linearization around the operating point is then achieved by a Taylor expansion
of Eq. 3.1:

¯̇x + ˜̇x = f (x̄, ū) + Ax̃ + Bũ (3.4)

where the states and inputs are represented in a small signal model, as perturba-
tions around the operating points:

x = x̄ + x̃ u = ū + ũ (3.5)

Using Eq. 3.2 and 3.5, Eq. 3.4 can be written as:

˜̇x = Ax̃ + Bũ (3.6)
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CHAPTER 3. CONTROL METHODS 3.1. LINEARIZATION

where A, the state transition matrix, and B, the input distribution matrix, are the
linear approximations of Eq. 3.1:

A =

[
∂ f
∂x

]
x, u

B =

[
∂ f
∂u

]
x, u

(3.7)

the Jacobians are then evaluated to obtain:

A =



0 ω̄3
2 − ω̄2

2
ω̄1
2

q̄4
2 − q̄3

2
q̄2
2

− ω̄3
2 0 ω̄1

2
ω̄2
2

q̄3
2

q̄4
2 − q̄1

2
ω̄2
2 − ω̄1

2 0 ω̄3
2 − q̄2

2
q̄1
2

q̄4
2

− ω̄1
2 − ω̄2

2 − ω̄3
2 0 − q̄1

2 − q̄2
2 − q̄3

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(3.8a)

=



0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.5
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(3.8b)

B =



0 0 0
0 0 0
0 0 0
0 0 0

(J−1)11 (J−1)12 (J−1)13

(J−1)21 (J−1)22 (J−1)23

(J−1)31 (J−1)32 (J−1)33


(3.9)

To ensure the system can be controlled using this linear model, the controllability
matrix needs to be computed and its rank checked:

C =
[
B AB A2B A3B A4B A5B A6B

]
(3.10)

resulting in a matrix with only 6 linearly independent columns, thus the controlla-
bility matrix is rank-deficient:

rank(C) = 6 ̸= n (3.11)

Meaning this linear model is not able to control the system. Instead, a reduced-
order model will be utilized. The quaternion can be split into its scalar and vector
parts:

q̇1:3 = −1
2

q1:3 × ω +
1
2

q4ω (3.12a)
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CHAPTER 3. CONTROL METHODS 3.1. LINEARIZATION

q̇4 = −1
2

ωTq1:3 (3.12b)

From Eqs. 2.3 and 2.4 we have:

q̇ =
1
2


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 q (3.13)

which can be equivalently represented as:

q̇ =
1
2


q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q2

−q1 −q2 −q3 q4

 [ω

0

]
(3.14)

where the scalar part can be computed as:

q4 =
√

1 − q2
1 − q2

2 − q2
3 (3.15)

Using Eqs. 3.14 and 3.15 we get:

q̇1:3 =
1
2


√

1 − q2
1 − q2

2 − q2
3 q3 −q2

−q3

√
1 − q2

1 − q2
2 − q2

3 q1

q2 −q1

√
1 − q2

1 − q2
2 − q2

3

ω (3.16)

which in combination with the rigid-body dynamics of Eq. ??, is the reduced-order
model[9] :

ẋ =

[
q̇1:3

ω̇

]
= g(x, u) (3.17)

This model is linearized as described previously in this section, resulting in the
Jacobians:

A =

[
∂g
∂x

]
x, u

B =

[
∂g
∂u

]
x, u

(3.18)

which with the operating points:

x̄ =
[
q̄1 q̄2 q̄3 ω̄1 ω̄2 ω̄3

]
=
[
0 0 0 0 0 0

]
(3.19)

are evaluated to obtain:

A =



− ω̄1 q̄1
2α

ω̄3
2 + ω̄1 q̄2

2α
ω̄1 q̄3

2α − ω̄2
2

α
2 − q̄3

2
q̄2
2

− ω̄3
2 − ω̄2 q̄1

2α
ω̄2 q̄2

2α
ω̄1
2 + ω̄2 q̄3

2α
q̄3
2

α
2 − q̄1

2
ω̄2
2 − ω̄3 q̄1

2α
ω̄3 q̄2

2α − ω̄1
2

ω̄3 q̄3
2α − q̄2

2
q̄1
2

α
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.20a)
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CHAPTER 3. CONTROL METHODS 3.1. LINEARIZATION

A =



0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.20b)

B =



0 0 0
0 0 0
0 0 0

(J−1)11 (J−1)12 (J−1)13

(J−1)21 (J−1)22 (J−1)23

(J−1)31 (J−1)32 (J−1)33


(3.20c)

where α =
√
−q̄2

1 + q̄2
2 + q̄2

3 + 1

Computing the controllability matrix with the reduced-order model;

C =
[
B AB A2B A3B A4B A5B

]
(3.21)

results in the controllability matrix being full rank:

rank(C) = 6 = n (3.22)

Thus we have a controllable linear model of Eqs. 2.4 and 2.8

Discretization

As the controllers will be implemented, to be able to execute on an onboard com-
puter, it is necessary to discretize the model. This can be achieved using zero-order
hold discretization and further approximated with sufficient accuracy by:

Ad = eAts ≈ I + Ats (3.23a)

Bd = A−1(eAts − I)B ≈ Bts (3.23b)

Cd = C (3.23c)

where I is an n × n identity matrix, and ts is the sample time.

Now with a controllable model and discrete-time linear time-invariant system, de-
scribed by the set of difference equations:

x̃k+1 = Ad x̃k + Bdũk (3.24a)

yk = Cd x̃k (3.24b)

It is possible to begin the linear controller designs.
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3.2. PROPORTIONAL-DERIVATIVE

CONTROL

3.2 Proportional-Derivative Control

The PD controller is one of the simplest and most widely used controllers in the
industry. It’s a state feedback controller with the control output calculated as the
sum of the proportional, integral and derivative term of the error value.
For satellite attitude control the quaternion set point of the attitude is qre f and the
set point for the angular velocity is ωre f . Hence the error can be calculated as

δq = q ⊗ q−1
re f (3.25)

δω = ω − ωre f (3.26)

Then a simple control law can be given as:

Tc = −kpδq1:3 − kdδω (3.27)

Here, Tc describes the desired torque and kp and kd are positive scalars and δq1:3 is
the vector part of the error quaternion.

But this control will not necessarily take the shortest path to the desired set points
when the quaternion error scalar δq4 is negative. This can be overcome by slightly
modifying the control law as shown in Eq 3.28. [10]

Tc = −kpsign(δq4)δq1:3 − kdδω (3.28)

3.3 Linear Quadratic Regulator

Linear Quadratic Regulator is an optimal state feedback controller for linear sys-
tems such as the one described in Eq. 3.24. The state feedback control law is given
as:

uk = −Kxk (3.29)

Here, the optimal gain matrix K, is the one that minimizes the infinite horizon
discrete quadratic cost function:

J =
∞

∑
k=1

xT
k Qxk + uT

k Ruk + 2xT
k Nuk (3.30)

where Q, R and N are weighing matrices for the states, inputs and an optional
cross-term. These can be seen as tuning parameters for the controller, providing
a trade-off between actuator effort and controller performance. As such, the gain
matrix K can be computed by:

K = (R + BTPB)−1(BTPA + N)T (3.31)
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CHAPTER 3. CONTROL METHODS 3.4. SLIDING MODE CONTROL

Where P is the solution to the discrete-time algebraic Riccati equation:

P = ATPA − (ATPB + N)(R + BTPB)−1(BTPA + NT) + Q (3.32)

Similar to PID, it is not necessary that the LQR controller will take the shortest
path to the set point. This can be overcome by multiplying the gain matrix by a
6 × 6 diagonal matrix:

F =



sign(δq4) 0 0 0 0 0
0 sign(δq4) 0 0 0 0
0 0 sign(δq4) 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(3.33a)

K′ = KF (3.33b)

But as we want to drive the system toward a changing reference quaternion, with

the current state vector x =

[
q1:3

w1:3

]
, integral action and/or relinearization around

the changing reference quaternion would have to be added. Instead, the state

vector is augmented to include the error states: x =

[
δq1:3

δw1:3

]
, as such a single

linearization around the unity quaternion (no error) is sufficient. The control law
then becomes:

uk = −K′
[

δq1:3

δw1:3

]
(3.34)

Comparing this to the PD control law in Eq. 3.28, it can be seen that this LQR is
similar to the PD controller but with optimally derived gains.

3.4 Sliding Mode Control

Various satellite applications require large-angle maneuvers. However, the conven-
tional linear controllers we’ve discussed are not suitable for these maneuvers due
to the high non-linearity in the system dynamics. Moreover, the controller should
be able to ensure system stability during these maneuvers, even if the system is not
perfectly modeled. The robust sliding mode has been considered a good control
design choice, as it ensures accurate tracking even during complex maneuvers and
when faced with model variations. [11]
The sliding surface vector for the controller is chosen as follows: [12]

s = (ω − ωre f ) + kδq1:3 (3.35)
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CHAPTER 3. CONTROL METHODS 3.4. SLIDING MODE CONTROL

where k is a positive scalar parameter. Here by setting the angular velocity set
point, wre f , the quaternion set point qre f is then governed by the kinematics in Eq.
2.2, and as such the controller will have driven the system to the set points if s = 0,
which is the sliding manifold.
Thus the derivative of the sliding variable is:

ṡ = (ω̇ − ω̇re f ) + kδq̇1:3 (3.36)

This equation can be expanded by the system Eqs. 2.2 and 2.8 to get:

ṡ = −J−1ω × (Jω) + J−1Te − ω̇re f +
k
2
[δq4(ω − ωre f ) + δq1:3 × (ω + ωre f )] (3.37)

In this equation Te is the equivalent control law and can be computed from the
equation ṡ = 0 to get:

Te = J(
k
2
[δq4(ωre f − ω)− δq1:3 × (ω + ωre f )]− ω̇re f ) + ω × (Jω) (3.38)

To account for model uncertainties an additional discontinuous term can be added
to the control law to ensure that the system states reach the sliding manifold:

T = J(
k
2
[δq4(ωre f − ω)− δq1:3 × (ω + ωre f )]− ω̇re f − Gs̄) + ω × (Jω) (3.39)

Here G is a positive definite matrix and s̄ is given as the discontinous function:

s̄i = sign(si) (3.40)

To reduce chattering in the control signal, the discontinuous function can be re-
placed with a boundary layer given by the saturation function:

s̄i = sat(si/ϵi) (3.41)

with ϵi a positive constant defining the width of the boundary layer.

The sliding vector in Eq. 3.35 can also be slightly modified to ensure that the
controller takes the shortest path to the reference:

s = (ω − ωre f ) + ksign(δq4)δq1:3 (3.42)

Resulting in the final control law: [12]

T = J(
k
2
[δq4(ωre f − ω)− sign(δq4)δq1:3 × (ω + ωre f )]− ω̇re f − Gs̄) + ω × (Jω)

(3.43)
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3.5 Model Predictive Control

Model Predictive Control is an optimal control strategy. But contrary to LQR, the
optimization is performed online, over a finite horizon instead of the infinite hori-
zon in LQR, while also complying with state and input constraints. The finite
horizon is defined by: The prediction horizon, Hp, which defines how many fu-
ture states should be predicted and included in the cost function, this should be
large enough to reach the control objective at the end of the horizon. The control
horizon, Hu, defines how many future control inputs should be computed, usually
only the first input is applied to the real system, while the remaining are crucial
in the cost function, to optimally reach the objective at the end of the prediction
horizon. The difference between Hp and Hu defines an interval where the control
input is constant.

This allows for MPC to better deal with changing dynamics, shifting objectives
and external disturbances, compared to the static control law derived from opti-
mizing the systems’ long-term behavior in Eq. 3.30.

The following cost function was used:[13]

Jk =
1
2

xk+Hp Pxk+Hp +
1
2

Hp−1

∑
i=0

xT
k+iQxk+i +

Hu

∑
i=0

uT
k+iRuk+i (3.44)

which looks similar to the cost function used in the LQR design, except for the
finite horizon and that the terminal state has its own weighing matrix, P. This is
to ensure stability, by putting more weight on reaching the terminal state, which
as mentioned earlier should have reached the control objective by having a large
enough Hp.
There is no reference trajectory in the cost function, as seen in many other MPC
implementations, for example, the cost function:

Jk =
1
2

Hp

∑
i=0

(xk+i − rk+i)
TQ(xk+i − rk+i) +

Hu

∑
i=0

∆uT
k+iR∆uk+i (3.45)

where r is a vector of reference states, and ∆u is the change in input. This is because
we are dealing with quaternions, and thus cannot simply subtract the reference
quaternion from the quaternion state. Instead, the error is computed by quater-
nion multiplication as in Eq. 3.25. But as we are dealing with a reduced-order
quaternion model, with only the vector part in the state vector, the full predicted
and reference quaternions would have to be reconstructed using Eq. 3.15 before
multiplication. The square root in the cost function would complicate the quadratic
programming (QP) problem to potentially no longer be convex.
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To introduce reference tracking using the cost function in Eq. 3.44, the state vector
is augmented to include the error states as in the LQR design:

x =

[
δq
δω

]
(3.46)

Quadratic Programming Problem

The optimization variable u, can be formulated in vector form as:

Uk =
[
uT

k uT
k+1 . . . uT

k+Hu

]T
(3.47)

The cost function in Eq. 3.44 can thus be written in a more compact form as:[13]

min
Uk

Jk =
1
2
UT

k HUk + cTUk (3.48)

where

H = (ϕT
Hp

PϕHp +
Hp−1

∑
i=1

Qi + RHp) (3.49a)

ϕHp =
[

AHp−1B AHp−2B . . . A0B
]

(3.49b)

AHp = AHp (3.49c)

Qi =
[
ϕT

i Qϕi
]

(3.49d)

RHp =

R . . . 0
...

. . .
...

0 . . . R

 (3.49e)

and

cT = xT
k (AT

Hp
PϕHp +

Hp−1

∑
i=1

Si) (3.50a)

Si =
[
AT

i Qϕi 0
]

(3.50b)

Page 15 of 47



CHAPTER 3. CONTROL METHODS 3.5. MODEL PREDICTIVE CONTROL

Constraints

As mentioned, MPC is unique in the way it is able to take state and input con-
straints into consideration when optimizing the cost function. In this project, there
are no physical constraints on the states of the system, but the reaction wheels do
have physical limits on the amount of angular momentum they can store. To avoid
actuator saturation, input constraints will be utilized:

umin ≤ u ≤ umax (3.51)

The constraints can also be written as two inequalities:

− u + umin ≤ 0 (3.52a)

u − umax ≤ 0 (3.52b)

which are then formulated in matrix-vector form:

F
[
U
1

]
≤ 0 (3.53a)


−1 · · · 0 umin
1 · · · 0 −umax
...

. . .
...

...
0 · · · −1 umin
0 · · · 1 −umax




uk
...

uk+Hu

1

 ≤ 0 (3.53b)

F has the form
[
F1 . . . FHu f

]
, by defining F =

[
F1 . . . FHu

]
the constraints

can be formulated in terms of the optimization variable U :

FU + f ≤ 0 (3.54)

Now that both constraints and the cost function in Eq. 3.44 have been formulated
in terms of U , the Quadratic Programming (QP) problem can be stated as:

minimize
Uk

Jk =
1
2
UT

k HUk + cTUk (3.55a)

subject to FUk ≤ − f (3.55b)

Active Set Method for Solving Convex QP

In this project, the Active Set Method (ASM) is utilized to solve the QP problem
stated in Eqs. 3.55, for the implementation in C.
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A standard QP problem can be represented as follows [14]:

min
x

J(x) =
1
2

xTQx + xTc (3.56a)

subject to aT
i x = bi, i ∈ E , (3.56b)

aT
j x ≥ bj, j ∈ I , j > i ∀ i, j (3.56c)

Here, the QP problem consists of a quadratic cost function to be minimized, sub-
ject to a combination of equality and inequality constraints, where E is the set of
indices for equality constraints, and I the set for inequality constraints.

For the convenience of further manipulation, the problem can be reformulated
with only inequality constraints by transforming each equality constraint into two
opposite inequality constraints [15]:

minimize
x

J(x) =
1
2

xTQx + xTc (3.57a)

subject to Ax ≥ b, (3.57b)

with A now defined as:

A =



aT
1

−aT
1

...
aT

i
−aT

i
aT

i+1
...

aT
j

aT
j+1
...



∀ i, j ∈ E ∪ I (3.58)

Following this transformation, we can redefine I such that the equality constraints
are included in the set of inequality constraints.

A =



aT
1
...

aT
i
...

aT
n

 ∀ i ∈ I , I = {i | i = 1, 2, . . . , n} (3.59)

If the Hessian of the cost function, ∇2 J(x) = Q, is positive semi-definite, the cost
function is convex and hence, the QP problem is convex. For convex problems,
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the Karush-Kuhn-Tucker (KKT) conditions serve as the necessary and sufficient
conditions for optimality of a solution, x∗ [14]. The Lagrangian of the QP problem
is then defined as:

L(x, λ) = q(x)− λT(Ax − b) =
1
2

xTQx + xTc − λT(Ax − b) (3.60)

with λ being the vector of Lagrange multipliers. Then the KKT-conditions are
given by: [14]

Qx∗ − ATλ∗ = c (3.61a)

λi(ai
Tx∗ − bi) = 0 ∀ i ∈ I (3.61b)

Ax∗ ≥ b (3.61c)

λ∗ ≥ 0 (3.61d)

At the optimal point, it is likely that not all constraints are active. Thus, the active
set is introduced:

A(x) =
{

i ∈ I | aT
i x = bi

}
(3.62)

which is the set of all constraint indices for which, at a given x, the corresponding
optimization variable equals its boundary value [15]
The problem can be further simplified by considering only the active constraints at
the optimal point, A(x∗), reducing the dimensions of A, b, and λ to Ā, b̄ and λ̄∗,
respectively. Then, the KKT-conditions can be written as follows:

Qx∗ − ĀTλ̄∗ = c (3.63a)

Āx∗ = b (3.63b)

or equivalently: [
Q −ĀT

Ā 0

] [
x∗

λ̄∗

]
=

[
c
b

]
(3.64)

This indicates that the original inequality constrained QP problem can be solved
by a sequence of equality constrained subproblems, which forms the basis of the
ASM [14].

The ASM iterates over the subproblems by initially selecting a feasible point xk,
determining the active set of constraints Ak, and defining a working set at each
iteration:

Wk =
{

x | aT
i x = bi ∀ i ∈ Ak

}
(3.65)

The working set is a feasible set for the EQP subproblem, and at every iteration k,
the optimization of xk is performed only within Wk. Given an iterate xk and the
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corresponding working set Wk, the procedure checks whether xk minimizes J(x)
and, if not, computes a step ∆x by solving an equality constrained problem, like
that of Eq. 3.64. [14]

The equality constrained subproblems can be presented in this form:

minimize
xk+∆x

J(xk + ∆x) =
1
2
(xk + ∆x)TQ(xk + ∆x) + (xk + ∆x)Tc, (3.66a)

subject to AWk(xk + ∆x) = bk, (3.66b)

where ∆x = x − xk is the step at the kth iteration, AWk is a submatrix of A, with
rows corresponding to the indices in the set Ak:

AWk =

[
aT

i
...

]
∀ i ∈ Ak (3.67)

Similarly, bk is a subvector of b, again with entries corresponding to the indices in
the set Ak:

bk =

[
bi
...

]
∀ i ∈ Ak (3.68)

As xk is constant at each iteration, this can be further simplified into:

minimize
∆x

J(∆x) =
1
2

∆xTQ∆x + (Qxk + c)T∆x, (3.69a)

subject to AWk ∆x = 0, (3.69b)

This leads to the following linear KKT system:[
Q AWk

T

AWk 0

] [
∆x∗

λ∗

]
= −

[
Qxk − c

0

]
(3.70)

If the sum xk + ∆xk results in a feasible point, we can directly proceed to update
our current iterate:

xk+1 = xk + ∆xk (3.71)

However, if the update renders xk+1 infeasible, we have to adjust our step direction
∆x to maintain feasibility. In this case, we consider ∆x as a direction of search and
scale it using the scalar αk to derive a feasible solution:

xk+1 = xk + αk∆xk (3.72)

The step size αk is chosen to be the largest value in the interval [0, 1] that ensures
all constraints remain valid:

αk = min

(
1, min

i/∈Ak , aT
i ∆xk<0

bi − aT
i xk

aT
i ∆xk

)
(3.73)
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Essentially, we take the largest possible step that does not violate any of the inactive
constraints at the kth iteration.
If αk < 1, it signifies that the step has encountered a constraint, not in Ak, which is
limiting the algorithm from taking a larger step. In such a scenario, we include the
blocking constraint to the active set:

Ak+1 = Ak ∪ {i} (3.74)

Here, i refers to the index of the blocking constraint. Consequently, we construct a
new working set Wk+1 as per Eq. 3.65, using Ak+1, and continue with the iterations.
The ASM continues to iterate until it arrives at a point x̂ that minimizes the ob-
jective function within the current working set. This point is determined when
∆xk = 0. It’s worth mentioning here that at this point, the first three KKT con-
ditions (Eqs. 3.61a through 3.61c) are automatically satisfied. The only condition
left to verify is the non-negativity of the Lagrange multipliers for inequality con-
straints, given by Eq. 3.61d.

If all the Lagrange multipliers in λ̂ (corresponding to x̂) are non-negative, all the
KKT conditions are satisfied, thus indicating that x̂ is indeed the optimal solution
x∗. Consequently, the ASM terminates.
However, if negative Lagrange multipliers exist in λ̂, the constraints associated
with these multipliers can be excluded from the active set. In this case, we update
the active set as:

Ak+1 = Ak \ {j} (3.75)

Here, j corresponds to the index of the smallest Lagrange multiplier:

j = arg min
j∈Wk

λ̂j (3.76)

The algorithm then proceeds to the next iteration with the updated working set
and the process continues until the optimal solution is obtained.

Schur Complement and Cholesky Decomposition for Faster Computation

As shown previously in this section, the equality constrained subproblem is solv-
able via a linear KKT system as in Eq. 3.70, which in combination with the QP
problem in Eq. 3.55, is shown as:[

H AW
T

AW 0

] [
∆x∗

λ∗

]
=

[
−(Hxk + c)

0

]
(3.77)

A straightforward method of solving Eq. 3.77 would be to carry out a matrix
inversion on the left-hand side:
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[
∆x∗

λ∗

]
=

[
H AW

T

AW 0

]−1 [−(Hxk + c)
0

]
(3.78)

This is a rather naive implementation, as several things can be done to speed up
the computation.

Supposing that the weight matrices P, Q and R in Eq. 3.49a are symmetric and
positive definite, then H, is also symmetric and positive definite, and can be used
as a pivot for block Gaussian elimination of Eq. 3.77. [14] The resulting system
becomes: [

H AW
T

0 −(AW H−1AW
T)

] [
∆x∗

λ∗

]
=

[
−(Hxk + c)

AW H−1(Hxk + c)

]
(3.79)

Here, −(AW H−1AW
T) is the Schur complement of

[
H AW

T

AW 0

]
and the system

in Eq. 3.79 can be solved using the two equations: [14]:

(AW H−1AW
T)λ∗ = −AW H−1(Hxk + c) (3.80a)

∆x∗ = H−1(−AW
Tλ∗ − (Hxk + c)) (3.80b)

Since H is positive definite, Eq. 3.80a can be solved using Cholesky decomposition
instead of matrix inversion. This significantly reduces computation time.
First, compute the Cholesky decomposition as LLT = (AW H−1AW

T). Next, solve
for y using forward substitution, Ly = AW H−1(Hxk + c). Finally, solve for λ using
back substitution, LTλ∗ = y. At last, use Eq. 3.80b to compute the change ∆x∗ in
the optimization variable xk.
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Chapter 4

Implementation

In this chapter, the implementation in simulation of various control methods will
be presented. The system described in Chapter 2 is simulated in MATLAB, and the
control methods described in Chapter 3 are implemented and simulated in both
MATLAB, and C, in a high-fidelity simulator provided by Space Inventor.

The implementation, in C, is based on confidential information, and will thus not
be shared in this chapter, instead the focus will be on the MATLAB implemen-
tation. The results from the control experiments conducted in Space Inventor’s
simulator, which includes external disturbances such as are shared in Chapter 6.

4.1 System Simulation

The non-linear system model in Eqs. 2.2 and 2.8 is simulated with a time step of 1
sec. The Runge-Kutta 4 (RK4) numerical method is used to propagate the system
states. RK4 is a 4th order fixed-step solver, in which a weighted average of the
derivatives at fixed points, within the time step, is used to propagate the system
as:

k1 = ẋ(tk, xk, uk)

k2 = ẋ(tk+, xk + k1∆t/2, uk)

k3 = ẋ(tk + ∆t/2, xk + k2∆t/2, uk)

k4 = ẋ(tk + ∆t, xk + k3∆t, uk)

k =
1
6
(k1 + 2k2 + 2k3 + k4)

xk+1 = xk + ∆tk

(4.1)

4.1.1 Reaction Wheels

A 4 reaction wheel NASA standard configuration is chosen, where 3 reaction
wheels are aligned with the body frame axis, and the fourth wheel is mounted
such that it has non-zero projections along all three axes. Thus the 3 × 4 orienta-

22



CHAPTER 4. IMPLEMENTATION 4.2. ATTITUDE DETERMINATION

tion matrix for the reaction wheels is given as:

Or =

1 0 0 0.5774
0 1 0 0.5774
0 0 1 0.5774

 (4.2)

In general, the motor control for the reaction wheels has a higher bandwidth than
the attitude control system. Therefore, it is assumed that in the attitude control
system, the desired acceleration of the reaction wheels is achieved instantly.
The desired acceleration is calculated using Eq. 2.17, but is also limited by the
maximum speed and torque that the reaction wheel can provide.

4.2 Attitude Determination

Before the system can be controlled, the system’s current states needs to be es-
timated. Satellite attitude determination has been thoroughly explored in [16],
and is not detailed in this project. In the previous work, different variations of
the Multiplicative Extended Kalman Filter (MEKF) were explored for mission de-
ployment, along with pre-mission calibration filters. The calibration filters consist
of an attitude independent Extended Kalman Filter and Unscented Kalman Filter
for magnetometer bias and scaling factor calibration, and an attitude dependent
MEKF for gyroscope bias and scaling factor calibration. In this project, the scaling
factors are not modeled and thus the sensors are assumed calibrated. An attitude
determination system for mission deployment is implemented to facilitate the de-
velopment of the controllers.

The attitude and the angular velocity are estimated using a star tracker and a
gyroscope. But as a gyroscope’s bias drifts over time, the bias also needs to be esti-
mated. A Sequential Murrel’s formulation of the Multiplicative Extended Kalman
Filter (SMEKF) is applied. It uses star tracker vector measurements and angular
velocity data from the gyroscope to estimate the satellite’s attitude and angular
velocity.

The star tracker is implemented using the Shuster noise model with a standard
deviation of 35 arcsecond.[17]

The gyroscope’s bias is modeled as a random walk process driven by Gaussian
white noise as shown: [18]

ω = ωtrue + βtrue + ηv (4.3a)

β̇true = ηu (4.3b)
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TRANSFORMATIONS

where ηv ∼ N (0, σ2
v ) and ηu ∼ N (0, σ2

u).
The bias variance and the noise variance are selected to be:

σv
2 = 1e-13 σu

2 = 1e-19 (4.4)

The process noise covariance, Q, and the measurement noise covariance, R, matri-
ces are set to the following values:

Q =



10−13 0 0 0 0 0
0 10−13 0 0 0 0
0 0 10−13 0 0 0
0 0 0 10−19 0 0
0 0 0 0 10−19 0
0 0 0 0 0 10−19


(4.5)

R =

5e-6 0 0
0 5e-6 0
0 0 5e-6

 (4.6)

4.3 Principal Axis Transformations

As mentioned in Chapter 2, for satellites with non-uniform mass distribution the
control problem can be transformed to and from the principle axis.

The transformation matrix (ABP) given in Eq. 2.10 represents the rotation from
body frame to principal axis frame. Thus the quaternion attitude in principal axis
frame is calculated by multiplying it with the quaternion representing the same
rotation as shown in Eq. 4.7.

qP = q(ABP)⊗ qB (4.7)

The angular velocity vector is transformed from body frame to principal axis frame
using ABP as shown in Eqs. 4.8. Similarly the controller output i.e. the desired
torque is transformed back to the body frame using the inverse of ABP which is its
transpose.

ωP = AT
BPωB (4.8a)

TB = ABPTP (4.8b)

All the controllers discussed in this chapter are implemented to work in both body
frame as well as in the principal axis frame.
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4.4 PD Control

The simple PD control law given in Eq. 3.28 is implemented. The constants Kp and
Kd are chosen to be proportional to the trace of the satellites inertia matrix J.

Kp =
mean(diag(J))

10
(4.9)

Kd = mean(diag(J)) (4.10)

4.5 LQR

As discussed in section 3.3, LQR control law is similar to the PD control law but
with optimized gains. These gains are calculated using the MATLAB command
dlqr, which takes the discretized linear system from Eq. 3.24 and the following
system and measurement covariance matrices to calculate the optimal gain.

Q =



16 0 0 0 0 0
0 16 0 0 0 0
0 0 16 0 0 0
0 0 0 1600 0 0
0 0 0 0 1600 0
0 0 0 0 0 1600


(4.11)

R =

40000 0 0
0 40000 0
0 0 40000

 (4.12)

which were initially determined using Bryson’s rule, in which the diagonal ele-
ments are the normalized maximum acceptable variations in states and inputs,
Qi,i =

1
xi

2
max

, with the following values:

qmax = 0.25 (4.13a)

ωmax = 0.025 (4.13b)

umax = 0.005 (4.13c)

and then further fine-tuned
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4.6 SMC

The sliding mode controller is implemented with the sliding manifold provided in
Eq. 3.42 and the control law given by Eq. 3.43. The following parameter values
are chosen to ensure that the controller is stable even in the most extreme model
variations.

The gain for the sliding surface is set to:

k = 0.15 (4.14)

To effectively deal with uncertainties and disturbances, the gains for the switching
surface s̄ is set to:

G =

0.01 0 0
0 0.01 0
0 0 0.01

 (4.15)

To minimize chattering in the control signal, ϵ in the saturation function from Eq.
3.41 is set to:

ϵ =

0.01
0.01
0.01

 (4.16)

4.7 MPC

Model Predictive Control solves an optimization problem to get the optimal control
input over a prediction horizon. The linearized state space matrices of the system
can be lifted to form the QP problem with input constraints shown in Eq. 3.55. The
value of various parameters used in MPC are:

With a sampling time of 1 s, a prediction horizon of 10 allows for reaching the
control objective at the end of the horizon, in the slowly changing nadir-pointing
reference trajectory:

Hp = 10 Hu = 10 (4.17)

The constraints are set based on the maximum torque that can be applied to the
satellite from the reaction wheels:

umin = −0.005 umax = 0.005 (4.18)

The cost function weights are set to prioritize eliminating the angular velocity error
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and minimizing actuator effort:

Q =



5000 0 0 0 0 0
0 5000 0 0 0 0
0 0 5000 0 0 0
0 0 0 16000 0 0
0 0 0 0 16000 0
0 0 0 0 0 16000


P = Q (4.19)

R =

1 0 0
0 1 0
0 0 1

 (4.20)

In MATLAB, the QP problem is solved using Yalmip using the MOSEK solver.[19][20]

In C, the Active Set Method is used to solve the QP problem. The code is originally
based on an MPC library for Arduino [21]. Which has been modified to:

1. Have a different cost function given by Eq. 3.44

2. Have dynamic memory allocation

3. Use Space Inventor’s linear algebra functions

4. Implemented in Space Inventor’s simulator environment

5. Allow different constraints on individual states and inputs

6. Allow different weights on individual states and inputs
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Chapter 5

Control Experiments

In this chapter, different experiments will be presented in order to evaluate the
performance of the control methods described in Chapter 3, in a variety of mission
scenarios. The evaluation of the control methods will be based on the following
attributes:

• Mean Squared Reference Tracking Error

• Mean Squared Actuator Effort

• Handling of Non-Uniform Mass Distribution

• Settling time of the system

As mentioned earlier, the experiments will be conducted in the high-fidelity simu-
lator provided by Space Inventor. Here, several different reference trajectory gen-
erators are implemented (see Appendix?).

5.1 Nadir-Pointing

For the purpose of evaluating the pointing accuracy of the controllers, a nadir-
pointing reference trajectory is used, which represents the satellite pointing directly
below itself, perpendicular to Earth. This is a scenario with a reference quaternion
that is constantly changing at a slow rate.

The nadir-pointing reference trajectory has a slew rate of about 0.001 rad/s. Period-
ically, the quaternion reference changes faster, with ωre f increasing up to 0.015 rad/s
as shown in Fig. 5.1.
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Figure 5.1: Changing ωre f during nadir pointing maneuver

The corresponding reference quaternion is seen in Fig. 5.2
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Figure 5.2: Changing qre f during nadir pointing maneuver

5.2 Landmark Pointing

To also evaluate the performance of the controllers, when the reference quaternion
changes quickly and discontinuously (step reference), the reference trajectory is
constructed to emulate the maneuver of tracking landmarks on Earth, which will
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periodically become unavailable due to the satellite’s orbit, and then cause a step
reference change to an available landmark.

The reference switching between two landmarks is modeled by a step reference
change as seen in Fig. 5.3
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Figure 5.3: Changing qre f during landmark-switching maneuver (step reference)

The corresponding angular velocity reference, ωre f , is equal to 0 for the duration
of the test.

5.3 Simulation Setup

During the project period, there was no physical satellite or test setup available,
thus as mentioned earlier, the control experiments are conducted in a high-fidelity
simulator provided by Space Inventor.

5.3.1 Parameters

The tuning parameters of the different controllers, are implemented with the val-
ues mentioned in Chapter 4.

The satellite in the nadir-pointing, landmark-pointing and model uncertainty ex-
periment, is modeled as a micro-satellite with a mass of 12 kg, with the following
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moment of inertia matrix:

J =

 0.167184 −0.035088 0.001204
−0.035088 0.218268 −0.0000516
0.001204 −0.0000516 0.125216

 (5.1)
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Chapter 6

Results

In this chapter, the results obtained from the experiments described in Chapter 5
are presented. They are further discussed in Chapter 7.

6.1 Nadir-Pointing

In Table 6.1, the results of the experiments conducted with the nadir-pointing ref-
erence trajectory are shown. Here, the maximum Euler error, and the RMSE of
the steady state Euler error and control effort are shown. The maximum error
is recorded during the peaks of wre f in Fig. 5.1, while the steady state error is
computed over the slow periods.
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Controller
Controller

Frame
Max Deviation

Steady State
Euler Error (MSE)

Control Effort
(MSE)

PID
Body
Frame

 0.0975
0.1150
0.2990

  0.0009
0.0044
0.0016




3.68e-7
2.33e-6
2.65e-7
2.38e-6


Principal

Axis

 0.0879
0.1260
0.2220

  0.0016
0.0014
0.0012




3.65e-7
2.29e-6
2.47e-7
2.32e-6


LQR

Body
Frame

 0.0747
0.1710
0.2060

  0.0019
0.0024
0.0016




3.85e-7
2.26e-6
2.54e-7
2.28e-6


Principal

Axis

 0.0786
0.1730
0.2080

  0.0018
0.0019
0.0009




3.40e-7
2.26e-6
2.59e-7
2.28e-6


SMC

Body
Frame

 0.0451
0.1190
0.1930

  0.0011
0.0019
0.0022




4.91e-7
2.34e-6
5.74e-7
2.30e-6


Principal

Axis

 0.0780
0.1110
0.1870

  0.0013
0.0013
0.0011




3.47e-7
2.25e-6
2.97e-7
2.27e-6


MPC

Body
Frame

 0.0456
0.0479
0.0705

  0.0040
0.0035
0.0011




1.03e-6
3.05e-6
3.71e-6
2.91e-5


Principal

Axis

 0.0477
0.0161
0.0194

  0.0014
0.0016
0.0027




1.09e-5
1.47e-5
2.36e-5
1.66e-5


Table 6.1: Results from various controllers following a Nadir-Pointing reference trajectory

In the following figures, the Euler error and torque provided by the reaction wheels
over part of the experiments are shown.
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Figure 6.1: Euler angle error during nadir pointing maneuver using the PD controller in principal
axis frame
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Figure 6.2: Reaction wheel torque during nadir pointing maneuver using the PD controller in prin-
cipal axis frame
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Figure 6.3: Euler angle error during nadir pointing maneuver using the LQR controller in principal
axis frame
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Figure 6.4: Reaction wheel torque during nadir pointing maneuver using the LQR controller in
principal axis frame
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Figure 6.5: Euler angle error during nadir pointing maneuver using the SMC controller in principal
axis frame
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Figure 6.6: Reaction wheel torque during nadir pointing maneuver using the SMC controller in
principal axis frame

Note that the y-axis limits are different in Fig. 6.8.
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Figure 6.7: Euler angle error during nadir pointing maneuver using the MPC controller in principal
axis frame
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Figure 6.8: Reaction wheel torque during nadir pointing maneuver using the MPC controller in
principal axis frame
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6.2 Landmark-Pointing

In Table 6.2, the results of the experiments conducted in the landmark-switching
scenario with a step reference are presented. Here, the metrics of interest are the
settling time, steady state error, and control effort.
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Controller
Controller

Frame
Settling Time

(sec)
Steady State

Euler Error (deg)
Control Effort

(MSE)

PID
Body
Frame

92
 0.0031

0.0073
0.0037




4.21e-4
5.37e-5
4.41e-4
2.44e-6


Principal

Axis
97

 0.0407
0.0123
0.0050




4.339e-4
2.39e-4
4.23e-4
4.82e-4


LQR

Body
Frame

99
 0.0167

0.0349
0.0391




4.48e-4
1.36e-4
4.36e-4
3.15e-4


Principal

Axis
102

 0.2000
0.0111
0.0532




4.81e-4
3.03e-4
4.21e-4
5.02e-6


SMC

Body
Frame

59
 0.0578

0.0006
0.0099




3.69e-4
2.26e-5
3.75e-4
1.83e-4


Principal

Axis
57

 0.1600
0.0098
0.0204




4.13e-4
2.33e-4
5.21e-4
3.95e-6


MPC

Body
Frame

21
 0.0185

0.0047
0.0036




8.34e-4
1.39e-4
9.02e-4
6.46e-4


Principal

Axis
21

 0.1110
0.0151
0.0474




1.2e-3
8.89e-4
8.84e-4
1.1e-3


Table 6.2: Results from the Step Response of the system

In the following figures, the Euler errors of all the experiments are shown.
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Figure 6.9: Euler angle error during step reference (landmark-switching maneuver) using the PD
controller in body axis frame
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Figure 6.10: Euler angle error during step reference (landmark-switching maneuver) using the PD
controller in principal axis frame
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Figure 6.11: Euler angle error during step reference (landmark-switching maneuver) using the LQR
controller in body frame
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Figure 6.12: Euler angle error during step reference (landmark-switching maneuver) using the LQR
controller in principle axis frame
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Figure 6.13: Euler angle error during step reference (landmark-switching maneuver) using the SMC
controller in body frame

Note that the y-axis limits are different in Fig. 6.14.
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Figure 6.14: Euler angle error during step reference (landmark-switching maneuver) using the SMC
controller in principal axis frame
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Figure 6.15: Euler angle error during step reference (landmark-switching maneuver) using the MPC
controller in body frame

Note that the y-axis limits are different in Fig. 6.16.
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Figure 6.16: Euler angle error during step reference (landmark-switching maneuver) using the MPC
controller in principal axis frame
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Chapter 7

Discussion and Conclusion

In this chapter, the results from Chapter 6 are discussed and a conclusion of the
work done during the project is presented.

7.1 Discussion

In this thesis, PD, LQR, SMC, and MPC were implemented and tested for their
pointing accuracy and response to large-angle maneuver (step reference) in a satel-
lite with non-uniform mass distribution. The controllers were tested in both the
body frame and the principal axis frame.

It is noted that in the tracking case, there is a slight but notable improvement in
the pointing accuracy of the linear controllers when the control problem is trans-
formed to the principal axis frame, instead of running it directly in the body frame.
It can be inferred that this improvement will be even more drastic as the mass
distribution of the satellite becomes more non-uniform. On the other hand, the
non-linear SMC experienced no such performance improvements because of the
aforementioned frame transformations, which could be attributed to its robustness
to uncertainties

In the nadir-pointing scenario, the LQR controller in the principal axis frame had
the best pointing accuracy of around 10 arcseconds, but almost all controllers per-
formed similarly and the minuscule differences in performance can be attributed
to the individual tuning of the controllers.

In the landmark-switching scenario, MPC was the fastest to settle but again this is
most probably due to the slightly more aggressive tuning of the controller which
can be seen in its increased control effort. The SMC performed better than PD and
LQR, with a similar control effort, showcasing its use for large-angle maneuvers.
Additionally, in MPC a lot of chattering was observed in the control signal as seen
in fig 6.8 which was relected on the quaternion attitude, specifically in the nadir
pointing test case. The cause of this chattering is unclear as it could not be over-
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come by tuning the cost matrix. One hypothesis could be the lack of reference
propagation within the prediction horizon of the controller, another could be a
bug in the implementation.

In the future, it would be interesting to explore implementing a cost function for
MPC, that includes the full reference trajectory, instead of only propagating the cur-
rent quaternion error. This would allow the controller to take into account future
set points, giving it the ability to plan maneuvers ahead of time, while optimizing
the trajectory for actuator efficiency and performance. This could improve the abil-
ity of the system to deal with complex maneuvers, disturbances and slow system
dynamics. Inspiration can be gathered from [22], where a full-order quaternion
model is made controllable by over-actuation with magnetic torques and reaction
wheels, and a cost function with the full reference trajectory included. In [23], a
tube-based MPC approach with reference trajectory is used to control an under
actuated system.

7.2 Conclusion

In this work, the control of a spacecraft with non-uniform mass distribution using
a range of control paradigms has been investigated. Linear and non-linear con-
trol methods were implemented for an attitude control system. The experiment
and implementation were done in simulation, where a satellite in low earth orbit,
containing reaction wheels, was modeled. The purpose of the experiments was to
evaluate the performance of the controllers in different mission scenarios. This was
done using metrics such as maximum deviation, steady state error, settling time
and control effort.

The results show that for satellites with non-uniform mass distribution, linear con-
trol problem should be transformed to the principal axis frame to increase the
stability and performance of the attitude control system.
The results also validate the continued prominence of PID and LQR controllers
within the industry. Despite their simplicity, they can match the performance of
more complex control schemes, such as SMC and MPC, with the caveat that the
implemented MPC is not truly predictive due to its cost function.
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