
Federated Interference Management for

Industrial 6G Subnetworks

Master Thesis

Bjarke Bak Madsen

Aalborg University

Department of Electronic Systems

MSc. in Signal Processing and Acoustics

With specialization in Signal Processing and Computing





Department of Electronic Systems

Signal Processing and Computing

Aalborg University

http://www.aau.dk

Title:

Federated Interference Management for
Industrial 6G Subnetworks

Theme:

Radio resource optimization with feder-

ated reinforcement learning

Project Period:

Spring semester 2023

Project Group:

1071

Participant(s):

Bjarke Bak Madsen - 20182368

Supervisor(s):

Ramoni Ojekunle Adeogun

Copies: 1

Page Numbers: 100

Date of Completion:

June 2, 2023

Abstract:

6G in-X subnetworks are short-range
low-power cells envisioned to support
extreme communication requirements
for data rate, latency, and reliability.
However, interference represents
a major limiting factor to extreme
communication in dense deployments
of in-X subnetworks. Recent studies
have proposed interference manage-
ment solutions based on multi-agent
reinforcement learning, where the
radio resource optimization problem
is modeled as a multi-Markov deci-
sion process. The studies have been
based on centralized or distributed
training. While centralized training
benefits from the experiences of all
subnetworks during the training, it
may lead to compromised privacy
and security issues since it requires
sharing of measurements between the
subnetworks and a centralized agent.
In contrast, agents in distributed
training rely solely on only local
measurements of the environment
for decision which often leads to
convergence problems. To overcome
these challenges, a client-to-server
horizontal federated reinforcement
learning framework is proposed,
where knowledge is shared implicitly
through locally trained model weights.
Simulations in an industrial environ-
ment using 3GPP propagation models
have shown promising results for
quick convergence, marginal perfor-
mance improvement, and robustness
to non-stationary environments.
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Chapter 1

Introduction

The evolution of wireless communication has transformed the way in which we

communicate and connect with the world around us. The increasing demand for

faster and more reliable communication has resulted in significant improvements

in wireless communication networks, such as the development of 5th generation

(5G) technology. However, as technology continues to expand, the need for even

more efficient and reliable communication networks has become apparent [1]. This

is where 6th generation (6G) technology comes into play. The development of 6G

technology promises to revolutionize wireless communication networks by provid-

ing ultra-reliable communication, higher data rates, and lower latency [2].

With the advancements in technology, the opportunities for applications using

wireless communication are limitless [2]. For example, the use of virtual and

augmented reality technologies in fields such as entertainment, education, health-

care, and manufacturing, enables immersive experiences and enhances training,

visualization, and design capabilities. Similarly, the development of personalized

healthcare solutions are supported, such as wearable devices that monitor health

indicators and transmit data to healthcare providers, improving the accuracy and

efficiency of medical diagnoses and treatments. In addition, wireless networks

can be used for real-time environmental monitoring, such as air and water quality,

climate change, and natural disasters.

To achieve the promise of ultra-reliable communication, higher data rates, and

lower latency in 6G networks, new communication technologies must be devel-

oped. Recently, a new concept referred to as 6G short-range low-power in-X

1



2 Chapter 1. Introduction

(inside-everything) subnetworks [3, 4, 5, 6] is envisioned as a viable technology

for supporting demanding requirements inside entities such as robots, production

modules, vehicles, or even human-body. Since deployment of in-X subnetworks

can become dense, e.g., in-X subnetwork inside vehicles at the intersection of a

busy road, or inside bodies of persons in a crowded event, the development of

intelligent approaches for managing interference via optimized resource allocation

has been the focus of active research in the last few years. See e.g., the works in

[7, 8, 9]. As wireless technologies continue to proliferate, ensuring data privacy

and security is becoming more important and at the same time challenging [2, 10].

Many of the applications that rely on advanced wireless communication networks

involve sensitive personal or environmental data, and protecting this data is cru-

cial to ensuring the trust and reliability of these systems. This is particularly true

for the in-X subnetworks, which are to be deployed inside entities such as cars

or human-bodies as stated earlier. To this end, techniques for resource allocation

must intelligently guarantee the privacy and security of the wireless devices in the

network in addition to the being able to pro-actively adapt to changing wireless

environments.

1.1 Thesis Objective

Radio resource optimization involves allocation of limited radio resources, e.g.,

bandwidth, transmit power, or spectrum occupancy for multiple co-existing ra-

dio devices, while maximizing a specific metric such as Signal-to-Interference plus

Noise Ratio (SINR) or spectral efficiency [5, 9]. Traditional solutions based on

hard-coded heuristics, game theory, and geometric programming face computa-

tional challenges in scenarios with a high number of co-existing devices. Recently,

machine learning, particularly Reinforcement Learning (RL), has emerged as a po-

tential solution where no pre-generated labeled data-sets are required and can be
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adapted to dynamic communication environments [5, 9].

An important question is to what extent RL-based solutions for resource alloca-

tion can achieve extreme communication requirements of several co-existing au-

tonomous subnetworks, such as high availability, low latency, and low packet er-

ror rate. To address this question, distributed algorithms for resource optimization

must be developed without compromising the privacy of any subnetworks. A

well-known learning framework referred to as Multi-Agent Reinforcement Learn-

ing (MARL) attempts to learn the optimal policy for solving complex decision

problems via interaction with complex and dynamic environments [9]. Emerging

in research, Federated Learning (FL) is a privacy-preserving collaborative learning

framework where co-existing devices train a common global model without ex-

plicit exchange of sensitive local data, but by periodically aggregating local model

weights [10].

1.1.1 Project Scope

This thesis aims to explore the applications of a combination between MARL and

FL referred to as Federated Reinforcement Learning (FRL) for solving the complex

problem of radio resource optimization in terms of interference management for

6G ultra-reliable communication systems [10]. By investigating this hypothesis,

this research aims to contribute to the development of efficient and reliable radio

resource optimization solutions for 6G wireless communication systems concern-

ing data privacy. The developed solution based on FRL will be evaluated through

simulation and compared with state-of-art algorithms for interference management

in 6G in-X subnetworks.
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1.1.2 Structure

The first chapter of this master thesis has laid the foundation for a comprehensive

exploration of the intersection between 6G communication and resource optimiza-

tion with a focus on data privacy, utilizing FL methods. The remaining parts of

this thesis are organized as follows:

Chapter 2 will provide literature review of an existing branch of research in the

field of 6G communication technology and interference management. Chapter

3 will explore the fundamentals of RL and its potential for resource optimiza-

tion by providing an overview of the state-of-the-art concepts and methods in the

field. Chapter 4 will present the methodology employed in this study, outlining

the system model and problem formulation. In chapter 5, an approach to a FRL

framework will be proposed and described. In chapter 6, the results of this study

will be presented and analyzed, providing insights into the potential benefits and

challenges associated with this approach. Finally, chapter 7 will present the con-

clusions of this study, highlighting the key findings and offering recommendations

for future research.



Chapter 2

Literature Overview

In recent research, the concept of 6G in-X subnetworks has emerged as a promising

paradigm that envisions the replacement of critical operations running over wired

connection in entities such as industrial robots, production modules, and vehicles

with wireless communication [5]. In-X subnetworks promises the support of more

demanding requirements than what is possible with former 5G solutions. Since the

deployment of in-X subnetworks can easily become dense, interference represent

a major hindrance to achieving the target requirements. Interference management

therefore represent an important component of 6G in-X subnetworks design. This

chapter provides an overview of current literature and state-of-the-art solutions for

6G in-X subnetwork interference management.

2.1 6G in-X Subnetworks

With the rise of large scale 5G radio technology deployment, research on 6G radio

technology was initiated. By satisfaction of extreme communication requirements

for low latency, high throughput, and high reliability, 6G is expected to attain

high practical standards that meet performance requirements of more demanding

and critical networks of the future [5]. In this section, an overview of 6G in-X

subnetworks, applications, and requirements is presented.

5
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2.1.1 Extreme Communication

It is desired to extend the current concept of connectivity with user wearables, im-

plants, vehicular components, and other intelligent machines, where demanding

computations can be distributed over the network. The vision of future commu-

nication involves using mixed reality, where requirements for link throughput rise

to the tens to hundreds of Gbps [5]. In early work [3], the vision of 6G in-X

subnetworks for life-critical and mission-critical communication is presented with

extreme short cycles less than 100 µs and stringent reliability of six nines, where

the requirement of a multi-GHz centimeter-wave spectrum is identified. In [4],

a wireless asynchronous real-time system with identification of extreme reliabil-

ity and short cycle time is presented for industrial sensor-actuator or intra-vehicle

communication. Access mechanisms to a multi-GHz centimeter-wave spectrum is

identified to potentially easing services in dense scenarios with coexisting subnet-

works. Extreme communication in terms of requirements can be summarized as

the following three definitions [3, 4, 5].

• Data rate: A throughput of tens to hundreds of Gbps per link.

• Latency: A minimal response delay of < 100 µs.

• Reliability: Minimum annual communication service availability of six nines.

The extreme communication requirements for different use cases may vary, how-

ever at least one of the requirements must be satisfied. Life-critical systems require

high reliability and low latency, whereas entertainment systems often require high

data rates with low latency [5].
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2.1.2 Definition of Subnetworks

As stated earlier, 6G in-X subnetworks are short-range low-power cells installed in

entities such as production modules, vehicles, human bodies, or houses [5]. The

goal is to enable wireless communication support for critical control operations in

factories (e.g., control of robot arms), vehicles (e.g., for ignition or brake control),

and human-bodies (e.g., for wireless pace-maker). The cells are referred to as 6G

in-X subnetworks, where X denotes the domain of deployment such as in-robot, in-

vehicle, in-body, or in-house. Figure 2.1 illustrates the 6G in-X subnetwork concept

in different application domains. The 6G in-X subnetwork concept, features the

following main characteristics [5].

in-body

AP

Pacemaker

Sensors
and

actuators

in-robot

Sensors
and

actuators

AP

in-vehicle

Suspension
and

breaks

in-house

APUsers

AP

Ignition
and
safety

Figure 2.1: Illustrated
examples for subnetworks:

in-robot, in-vehicle, in-body,
and in-house.

• At least one out of data rate, latency, or reliability requirements must be

fulfilled in the terms of extreme communication.

• In both Up-link (UL) and Down-link (DL) scenarios, the range must not be

greater than 10 m to achieve a very low transmit power of 0 dBm or below.

The range can be extended by communication between subnetworks.
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• The operations performed in each subnetwork is controlled by an Access

Point (AP), in a tree or star topology hierarchical structure.

• Some of the subnetworks could be considered mobile in the environment,

due to the nature in cases such as in-vehicle or in-body systems.

As each in-X subnetwork is a part of a larger network, traffic with different char-

acteristics in terms of data flow must be handled. The general case of high critical

flow with latency ≪ 1 ms and a reliability beyond five nines. Another case is

medium critical flow with latency > 1 ms and a maximum reliability of five nines.

The final case where non-critical flows have non-strictly limited latency. The AP

has integrated control processing capabilities, where measurements received from

sensors can be processed and actions can be transmitted to the actuators. Re-

quirements for high critical flows does not allow for external processing, however

medium critical flows can eventually be processed in an external server [5].

Deployment of Subnetworks

Consider the exemplary in-X subnetwork scenarios presented in figure 2.1. The

use of subnetworks in different everyday scenarios will undoubtedly intersect with

each other at some point, such as in-body and in-vehicle. As with other wireless

systems, deployment of subnetworks can be generalized into two subcategories,

coordinated and uncoordinated networks as illustrated on figure 2.2 [5].

Coordination of a network involves consideration and planning of radio perfor-

mance in terms of range when placing the radio units [5]. Coordinated deployment

may be considered useful for stationary subnetwork scenarios, such as industrial

in-production or assembly line modules with static placement.

Typically deployment of in-robot or in-vehicle subnetworks may be characterized

by a dense mobile uncoordinated setting, where wireless technology is a necessity
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Subnetwork
Access point
Device

(a) Coordinated network (b) Uncoordinated network

Figure 2.2: Exemplary illustration of (a) coordinated and (b) uncoordinated subnetworks.

for free movement [5]. The robots may carry out industrial tasks as efficiently as

possible, with no regard to any other subnetwork. This is considered as uncoordi-

nated radio deployment, where overlaps in subnetworks enables interference.

The approach to interference management depends on the deployment of subnet-

works. In the coordinated scenario, controlling each subnetwork enables sharing

information effectively, and scheduling ahead in time for an optimal use of radio

resources [5]. However, the uncoordinated scenario deployment is random and

comparable chaotic where outcomes and capabilities of subnetworks are unknown,

and difficult to synchronize [5]. Subnetworks may be heterogeneous where radio

and hardware resources vary, and be in uncoordinated motion enhances interfer-

ence further. Hence, more adaptive approaches for interference management are

required.

2.2 Interference Management

Interference management aims to allocate available resource such optimal com-

munication is achieved. The objective is to optimize specific performance metrics,

subject to practical resource constraints, by adjusting the available radio resources.

Such allocation decision problems typically involve non-convex objective functions,
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known to be NP-hard where there is no universal optimal solution [11]. Interfer-

ence management in networks can be performed in several ways depending on

specific requirements, restrictions, or available technology. In this section the main

resource management domains and frameworks will be presented followed by a

reflection to the perspective of 6G in-X subnetworks and current literature.

2.2.1 Interference Management Domains

The technique of managing interfering components in a network is based on allo-

cation of available resources. Radio resources may be categorized in spatial, time,

frequency, and power domains [5, 12]. Following in this section, the resource man-

agement domains will be discussed.

Spatial Domain Interference Management

Interference management in the spatial domain refers to concepts of allocating

resources in space, subject to minimizing interference. The power of a transmit-

ted signal decays during propagation, where tolerable interference levels can be

achieved by separating and spreading out antennas [13]. However, this is imprac-

tical in uncoordinated scenarios where spatial separation cannot be guaranteed.

Omnidirectional antennas provide uniform coverage in all directions surround-

ing an antenna, at the cost of emitting energy in directions where no recipients

are located. By physically restricting beam-widths, a directional antenna beam is

formed. Given that the beam is narrow relative to a omnidirectional pattern and

no interfering sources obstruct the path, interference is reduced. However a Line-

of-Sight (LoS) must be maintained between antennas, either by fixing or deploying

steering mechanisms in antennas at the cost of restriction or complexity [14].
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Another method to control directivity is beamforming [14]. The antenna size is

inversely proportional to frequency, making it possible to arrange small arrays of

antennas for 6G applications operating at relative high frequencies. Beamforming

signal processing techniques adjusts signal phase and amplitude at each antenna

element, generating a directional transmission or reception pattern. In [15], an

adaptive beamforming interference control is proposed for a cognitive radio system

using smart antenna arrays. Interference is reduced by directing the transmitter

towards the desired receiver with beamforming, increasing strength of the received

signal while minimizing interference and noise.

Time Domain Interference Management

Temporal interference management aims to separate communication in the time

domain, effectively avoiding interference sourced from simultaneously active trans-

missions. Time separation of transmissions does however require queues, increas-

ing the latency for participants. Instead, the concept may be useful for separation

of UL and DL frames, repetitive short-term transmissions schemes, or short-term

interference management. In [12, 16], radios dynamically adapts to changes in the

wireless environment over time. Hence, the time domain is utilized to optimize the

use of frequency resources and transmit levels over different time intervals using

time-division multiple-access methods.

Frequency Domain Interference Management

Management in the spectral domain refers to selection of the scarce available fre-

quency resources. Transmissions that are completely separated in operating fre-

quencies does not interfere with each other. Every antenna pair could be granted

a section of the frequency band to transmit on, however the resources are finite

and properties vary. The propagating characteristics are mainly proportional to
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frequency. A large proportion of frequencies are licensed and regulated with a

cost, and the remaining unlicensed ranges may suffer from overpopulation where

interference is likely to occur [5].

Recall the effect of spatial separation, two transmitting antennas can share fre-

quency if the spatial separation is great enough for tolerable interference. This

suggests the use of an adapt allocation scheme to only switch frequency of trans-

missions that suffers from interference, referred to as interference avoidance [13]. A

great increase in spectral efficiency is achieved if multiple transmissions can share

frequency, given interference is avoided due to spatial separation. In [12], spectrum

sensing and sharing is used for dynamic spectrum access to mitigate interference

for cognitive radios. Frequency reuse methods for mobile cellular networks are

discussed in [17], followed by a discussion on interference cancellation techniques

with the use of more sophisticated algorithms. With focus on ultra-dense networks,

[13] propose interference management with a frequency allocation strategy that

divides the available frequency spectrum into different frequency reuse patterns.

Joint interference management for ultra-dense small-cell networks are proposed in

[16], involving frequency domain coordination techniques such as dynamic spec-

trum allocation and interference alignment.

Power Control

With less transmission power, the range of the signal decreases as well as the inter-

ference. Reducing transmission power is similar to the effect of separating anten-

nas, assuming that the recipient is kept within tolerable range of the signal power.

A power control system adjusts the signal powers to be constant at a recipient sub-

ject to communication requirements, where no more interference than necessary

is generated [14]. In [12], the power control is based on a channel gain estimate

sent by the receiver, where the transmit power level is minimized based on the
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desired signal strength at the recipient. In [16], interference management is jointly

investigated from a multi-domain perspective using the water-filling algorithm for

power control optimization.

2.2.2 Interference Management Frameworks

Allocating resource for any domain typically requires general knowledge about

the network. To guarantee correct time alignment in the long term, a framework

to gather such knowledge must be established. In this section three interference

management frameworks for time coordination will be presented.

Centralized Framework

In the case where radios are within a wide area network, a centralized coordinator

can be used to manage allocation and timing. It is expected that a coordinator can

increase spectral efficiency, however participant must wait for instructions and the

connection must be stable [5].

Implicit and Distributed Framework

Consider a congested group of radios out of any wide area network. In order

for each participant to manage local resources correctly, implicit and distributed

coordination is required. Unlicensed frequency bands are typically regulated with

protocols such as listen-before-talk, where each participant must sense the channel

and postpone transmission if occupied. However, this may not be a viable solution

in the need of critical traffic. A disruptive protocol could be introduced to prioritize

critical traffic which may result in decreasing spectral efficiency [5].
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Hybrid Framework

A combination of distributed and centralized interference management can be pro-

posed as a hybrid approach. A central coordinator manage subnetworks within

wide area network coverage, and switches to distributed and implicit coordination

when the connection is unstable. However to avoid interruptions for life-critical

services, the switching must be performed seamless [5]. A hybrid radio resource

management framework for 6G crowds in a umbrella network are introduced in

[16], where a global decision agent exploits information from each subnetwork for

deciding on policy and actions, while each subnetwork are equipped with a local

decision agent.

2.2.3 Interference Management for 6G in-X Subnetworks

A review of the current literature for 6G in-X subnetworks may enlighten current

possibilities and challenges involved with interference management. However, first

a reflective discussion of the interference management domains in respect to 6G in-

X subnetworks is required to identify drawbacks that rule out entire domains.

Interference Management Domains for 6G in-X Subnetworks

Spatial separation of radios or directional antennas in the scenario of uncoordi-

nated mobile subnetworks is considered to be an impractical. The nature of some

6G in-X subnetworks include a small form factor, referring to a more compact and

portable device where small antennas can be integrated [5]. Beamforming may be

ineffective given the limited form factor for APs and devices preventing a larger

number of antennas, especially for lower carrier frequencies [14].

The time domain may not be an exclusively viable solution domain for extreme
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communication requirements in terms of low latency due to delays from a sched-

ule. However, as mentioned earlier, interference management can be based on a

multi-domain approach, where resources are optimized over intervals of time, and

has proven to be very efficient [12, 16].

Battery capacity is critical for some subnetworks, where a power control may in-

deed be beneficial. Here power can be adjusted in terms of user requirements

such as throughput, energy efficiency, and spectral efficiency while minimizing

interference [12].

Resources in the frequency domain may be sparse, but suffers from less significant

drawbacks in comparison to the other domains. The operational frequency do-

main may be divided into several chunks to be dynamically selected or assigned

to subnetworks, such interference is minimized [12, 17].

Current Literature on Interference Management in 6G in-X Subnetworks

Several interference management solutions for different wireless systems has been

proposed in literature. The new field of 6G in-X subnetworks has received increas-

ing attention lately, as radio concepts with potential to support extreme commu-

nication requirements [3, 5, 6]. Previous work on 6G in-X subnetworks will be

presented in this section as three categories: heuristics, machine learning, and RL.

Heuristic methods can be used to solve interference management problems by gen-

erating near-optimal solutions based on simple rules or algorithms. These methods

can provide good results with low computational complexity. In [18], three heuris-

tic based algorithm viz are presented. The first is ϵ-greedy channel selection, where

each controller selects the best channel with a probability for choosing a random

action instead. Second is nearest neighbor conflict avoidance, where each con-

troller selects channels that is not occupied by subnetworks producing the highest
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interference power. Final is minimum SINR guarantee, where controllers attempt

to select the worst channel satisfying a required threshold value. If no thresh-

old are met, the channel with least interference is chosen. In [18, 19], Centralized

Graph Coloring (CGC) is presented as a benchmark algorithm, where graph col-

oring techniques are used to select the best channel available. However,it is a im-

practical centralized approach based on a global view on the system. A distributed

interference-aware dynamic channel selection is presented in [19], where the num-

ber of packet repetitions are based on channel conditions. A secondary exclusive

group of channels are used when high interference levels are anticipated. In [20],

channel selection is approached based on centralized selective graph constructions,

inspired by the concept of fractional frequency reuse. Here graph identification and

construction approaches for interference mitigation is discussed.

In some cases, machine learning may provide better quality of service in com-

parison to heuristics by learning from historical data and adapting to changing

network conditions. Patterns can be identified in large data-sets and used to make

predictions and optimize resource allocation. For example, network traffic can be

predicted, network congestion identified, and resources can be allocated to meet

demands of different applications. A hybrid optimization approach can also be

defined where machine learning results can be used as input to heuristics algo-

rithms or the other way around. In [21], a Deep Neural Network (DNN) is success-

fully trained in offline simulations using CGC with mobile subnetworks, which

after training is deployed for real-time distributed channel selection. A novel so-

lution for centralized power control is presented in [7], where instead of using

channel state information as conventional approaches, the decision is based on

positioning information using Graph Neural Network (GNN). Such information

is usually known by a centralized coordinator. Benchmarks such as maximum

transmit power for all links, weighted minimum mean square error, and purposely

inputting errors to the GNN power control are used and discussed. It is shown
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that the limited information provides sufficient data for the proposed method, and

achieves similar results to existing impractical solutions.

Another approach may be RL, which involves an agent learning to make decisions

based on observations [22, 23]. Radio resources can be allocated in dynamic and

uncertain environments. In [9] a joint allocation of channel and transmit powers

are based on a distributed multi-objective optimization problem that maximize the

capacity of subnetworks. An approach of Q-learning for multiple agents based on

limited sensing information is proposed, along with a rule-based algorithm termed

Q-heuristics. Both methods indicate good performance and robustness in compar-

ison to heuristic and former machine learning methods. A distributed framework

for Multi-Agent Reinforcement Learning (MARL) resource management based on

GNN termed GA-Net is presented in [24], where the sum of interference rela-

tionships in channels is used for centralized training methods. Another MARL

approach is proposed in [25], for a distributed channel allocation. A centralized

training procedure is adapted for local training of Deep Q-Network (DQN) mod-

els, performed at a central location. It is shown that convergence and stability may

be enhanced with the use of a Double Deep Q-Network (DDQN).

The choice between heuristics, machine learning, and RL for radio resource allo-

cation depends on the specific problem being addressed, the available data and

resources, and the trade-off between accuracy, computational complexity, and real-

time decision-making. Additionally, sharing sensitive data between subnetworks

may not be a viable practical solution due to user privacy concerns and must be

considered. From other works, [10] presents a survey about the concept of FL,

where MARL techniques allows agents to collaborate and jointly train a model

without directly sharing any sensitive data. This is new to the field of 6G in-X

subnetworks, and may be investigated for compatibility.





Chapter 3

Reinforcement Learning Methods

This chapter provides an overview of RL techniques, which are critical for devel-

oping efficient and reliable solutions for 6G in-X subnetworks. RL is explored in

detail, where each in-X subnetwork is considered as an agent that interacts with the

environment and learns optimal policies. Furthermore, the vision and framework

of FL will be presented.

3.1 Reinforcement Learning

The goal of RL is to learn some desired behavior from interactions with a system.

This section provides the fundamental knowledge, with concepts and solutions,

needed for understanding and implementing RL systems.

3.1.1 Agent-Environment Interaction

The process of picking an action can be described as a Markov Decision Process

(MDP), which is an underlying framework mathematically defined as the four-

tuple (S ,A, P, R) [22]. A state st ∈ S is observed in the environment at time t. The

agent interacts with the environment by taking action a ∈ A(s), yielding a reward

R(s, s′, a), which depends on transitioning from state s to s′, by taking action a.

The interaction can also cause a state transition, where P(s′|s, a) is the probability

of transitioning from state s to s′ when taking action a.

When modeling RL problems as MDPs, fundamentally two systems interact to-

19
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gether. The first system known as an agent must learn an nearly-optimal policy

that maximize the reward by interacting with the second system. The second sys-

tem is the environment that presents a situation known as a state to the agent. A

reward is granted to the agent if the action leads to a desired state. A conceptual

illustration is shown in figure 3.1 [22].

Environment

Agent
Action

Reward

State

Figure 3.1: The
agent-environment

interaction model for MDP.

For simplicity, assume the interactions between agent and environment is defined

by a sequence of discrete time steps, t = 1, 2, . . .. The agent observes environment

state St and take action At to receive the reward Rt+1. The environment change

state to St+1 where the agent will take new action At+1 to continue the circular

interaction loop. The probability that action a in state s at time t will lead to state

s′ at time t + 1 is given by (3.1) [22].

p(s′, r|s, a) = Pr(St+1 = s′, Rt+1 = r|St = s, At = a) (3.1)

Which is known as the Markov property of MDPs. The state transition proba-

bility to a new state s′ depends only on the current state s and action a, that is

conditionally independent of all previous states an actions.

Reward and Return

The goal of the agent is to learn a policy, that maximizes the cumulative reward. It

is thus critical that the rewards truly indicate what is wanted to be accomplished.

The agent should know what to achieve, and not how to achieve it. In general, it is

the expected return, Gt = Rt+1 + Rt+2 + · · ·+ RT, that is maximized, where the last
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time step T indicates the repeated interaction naturally breaks into sub-sequences

known as episodes or trials. For T = ∞ it is known as a continuous task, where the

reward might go towards infinity. To counter this, a discounted return is formed,

Gt =
T

∑
k=t+1

γk−t−1Rk (Finite) (3.2)

Gt =
∞

∑
k=0

γkRt+k+1 (Infinite) (3.3)

where 0 ≤ γ ≤ 1 is the discount rate, used to control how farsighted the agent

is regarding future rewards [22]. As γ approaches 1, future rewards are weighted

more strongly.

Policies and Value Functions

A measure of how good in terms of future rewards it is for an agent to be in a

given state is estimated with value functions. These are defined with respect to

a particular way of acting, known as policies π, which formally maps states to

probabilities of selecting each possible action [22].

π(a|s) = Pr(At = a|St = s) (3.4)

The expected return when starting in state s and following π is defined with the

state-value function vπ(s),

vπ(s) = Eπ [Gt|St = s, At = a] , ∀s ∈ S

= Eπ

[
∞

∑
k=0

γkRt+k+1|St = s

]
(3.5)

where Eπ[·] denotes the expected value of a random variable, given the agent

follows policy π for any time step t [22]. Similarly, action value function denoted
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qπ(s, a) define the value of taking action a in state s under policy π [22].

qπ(s, a) = Eπ [Gt|St = s, At = a] , ∀s ∈ S , a ∈ A

= Eπ

[
∞

∑
k=0

γkRt+k+1|St = s, At = a

]
(3.6)

The goal is to learn the policy that maximize the value function by interacting with

the environment. The goal is not to maximize reward from cycle to cycle, but in

the long run [10].

π∗ = arg max
π

vπ(s), ∀s ∈ S (3.7)

One policy is the ϵ-greedy, where in most instances the maximal estimated action

value is chosen, but with probability 0 ≤ ϵ ≤ 1 an exploratory random action

is selected instead [22]. The probability ϵ sets the order of exploration, which is

beneficial in early stages of learning to obtain knowledge about the environment

(ϵ → 1). When sufficient knowledge has been collected, the agent should start

exploiting the policies instead of exploring the environment (ϵ = 0). However, if

the environment proves to be non-stationary, it would be more efficient to never

stop exploring [22].

3.1.2 Value-Based Methods

Value-based learning also known as tabular methods refer to problems where the

state an action spaces are small enough for approximate value functions to be

presented as arrays and tables [22, 23]. The table associates states with actions

based on previous experiences, and is recursively updated with new values to

improve estimates and the policy. Three fundamental preliminary knowledge viz

are required to solve MDPs with tabular methods, i.e., Dynamic Programming

(DP), Monte Carlo (MC) methods and Temporal-Difference (TD) learning [22].

DP refers to a group of algorithms that can be used to compute the optimal poli-
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cies, given a perfect model of the environment as a MDP [22]. MC methods is

used for solving learning problems based on averaging sample returns. This only

applies for episodic tasks, that is if the experience can be divided into episodes,

that eventually terminate no matter what actions are selected. MC methods does

not require a model of the environment, but are not suited for online computations

[22]. TD learning is a combination of ideas from DP and MC. It is not constrained

by prior knowledge and are able to perform online computation, at the cost of in-

creased analytical complexity [22]. To enhance insight on these applications, two

methods with model-free TD viz is be presented, State–action–reward–state–action

(SARSA) and Q-learning.

State-action-reward-state-action

Assuming the agent will keep following the same policy that was used to generate

the experience, the update rule for SARSA defined in the following [22].

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] (3.8)

SARSA is an on-policy TD control method, meaning the Q(S, A) function is learned

from actions using current policy π(a, s). Thus by using this method, the action

value estimate does not converge to the optimal action value but rather a sub-

optimal action value function by exploration. SARSA is presented as pseudo-code

in algorithm 1.

Q-learning

Q-learning differs from SARSA by following an optimal policy to generate experi-

ences, and using another policy to update Q-values. The update rule for Q-learning
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Algorithm 1 SARSA [22]

Input: Step size α ∈ (0, 1] and small ϵ > 0
Initialise: Q(s, a) for all s ∈ S , a ∈ A(s)

1: loop for each episode
2: Initialize: S
3: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
4: loop for each step in episode
5: Take action A, observe R, S′

6: Choose A′ from S′ using policy derived from Q (e.g., ϵ-greedy)
7: Q(S, A)← Q(S, A) + α [R + γQ(S′, A′)−Q(S, A)]
8: S← S′; A← A′;
9: end loop when S is terminal

10: end loop

is given as the following [22].

Q(St, At)← Q(St, At) + α
[

Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)
]

(3.9)

Q-leaning is an off-policy TD control method, meaning the behavior policy used

to control the agent during learning is different from the estimation policy whose

value is being learned. Q-learning is presented as pseudo-code in algorithm 2.

Algorithm 2 Q-learning [22]

Input: Step size α ∈ (0, 1] and small ϵ > 0
Initialise: Q(s, a) for all s ∈ S , a ∈ A(s)

1: loop for each episode
2: Initialize: S
3: loop for each step in episode
4: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
5: Take action A, observe R, S′

6: Q(S, A)← Q(S, A) + α [R + γ maxa Q(S′, a)−Q(S, A)]
7: S← S′; A← A′;
8: end loop when S is terminal
9: end loop
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3.1.3 Policy-Based Methods

If an environment generates new states on the run, the state space can become

too large for tabular methods. Here the agent must try to generalize knowledge

about known states to unknown states. The type of generalization required is for-

mally known as policy-based methods or function approximation, where the idea

is to parameterize a policy that can generate optimal actions based on historical or

available observations from the domain [22, 23].

Linear Approximation Methods

In the case of function approximation, the value function is not a table but a pa-

rameterized function with weight vector www ∈ Rd. The approximation value of

state s given weight vector www is denoted v̂(s, www) ≈ vπ(s). A special case of func-

tion approximation is when v̂(·, www) is a linear function of the weight vector www.

Linear methods approximate state value function by the inner product of www and

real-valued vector xxx(s)=̇[x1(s), x2(s), . . . , xd(s)]T ∈ Rd [22].

v̂(s, www)=̇ wwwTxxx(s)=̇
d

∑
i=1

wixi(s) (3.10)

Where xxx(s) is the feature vector representing state s. One way to approximate

function values is to use Stochastic Gradient Descent (SGD), where updates for www

is computed in a sequence of discrete time steps t = 1, 2, . . . [22].

wwwt+1=̇ wwwt −
1
2

α∇ [vπ(St)− v̂(St, wwwt)]
2

= wwwt + α [vπ(St)− v̂(St, wwwt)]∇v̂(St, wwwt) (3.11)

Where α > 0 is the step-size, and ∇ f (www) ∈ Rd for any scalar expression f (www)

denotes the vector of partial derivatives with respect to the components of the
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weight vector. The step in wwwt is proportional to the negative gradient of the squared

error, which correspond to the direction where the error decreases most rapidly.

The target output of the tth training sample is denoted Ut ∈ R. By substituting Ut

in the place of vπ(St) in SGD yields following method [22].

wwwt+1=̇ wwwt + α [Ut − v̂(St, wwwt)] xxx(St) (3.12)

If E [Ut|St = s] = vπ(St), that is if Ut is an unbiased estimate, then wwwt is guaranteed

to converge to a local optimum for decreasing α [22].

Policy Gradient Methods

Methods mentioned previously learns the values of actions, and select actions

based on estimated action values. Policy gradient methods can select actions, with-

out the use of a value function. Consider a policy parameter vector denoted as

θθθ ∈ Rd′ . The objective function is defined as J (θθθ) =̇ vπθ
(s0), where vπθ

is the true

value function for πθ determined by θθθ. The policy parameter is updated in the

opposite direction of the gradient as θθθt+1 ← θθθt + α∇J (θθθt), which is the direction

that maximizes the cumulative reward. The policy gradient theorem provides an

analytical expression with equal proportionality of the objective function that does

not involve the derivative of the state distribution [22].

∇J (θθθ) = Eπ

[
∑

a∈A
qπ(St, a)∇θπθ(a|St, θθθ)

]
(3.13)

Given πθ(a|s, θθθ) is differentiable, an approximation of the gradient update can be

based on MC sampling. The point of interest is the one action taken at time t,

replacing the action a with sample action At ∼ π and assuming Eπ[Gt|St, At] =
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qπ(St, At) an approximation can be derived from rearranging (3.13) [10, 22].

∇J (θθθ) ≈∑
i

(
G

T

∑
t=1
∇θ ln πθ(Ai

t|Si
t)

)
(3.14)

Above equation is formally known from the REINFORCE algorithm, where the

policy gradient theorem is used to update the unbiased gradient through MC sam-

pling. The cumulative reward G is approximated from a large number of samples,

which may learn slow due to high variance [22].

3.1.4 Deep Reinforcement Learning

An additional field of theory is DNN, which introduces the concept of automating

the process of designing task-relevant features for function approximation. In com-

bination with RL the value or policy function can be approximated while solving

the curse of dimensionality, that is applications with very large or continuous state

or action spaces [22]. The concept of DNN will be presented in this section, as

an introduction to combining Q-learning with neural networks. With knowledge

about the network architectures, procedures used to train neural networks will be

presented.

Deep Neural Network

DNN are widely used for non-linear function approximation, as a network of in-

terconnected units in layers with properties inspired from neurons, the main com-

ponent of nervous systems. There exists many types of neural networks, figure

3.2 presents a generic fully connected feed-forward DNN. The input vector xxx are

not influenced by the output vector yyy, as the hidden layers in between only feeds

information forward in the network [22].
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Input layer Hidden layers Output layer

Figure 3.2: Conceptual
illustration of a simple

feed-forward DNN with N
inputs, M outputs, and D hidden

layers each with K nodes for
simplicity. Examples with bold

arches indicate parameters
between the first and last layers.

A real-valued weight vector www and bias vector bbb are associated to each layer, corre-

sponding to synaptic connections in a real neural network. An expression for the

output of the network, as function of the input passing through d ∈ {1, 2, . . . , D}

hidden layers, can be derived as the following [26].

yyy = f (xxx) = fD (. . . f2( f1(xxx)) (3.15)

The output of each neuron is passed through a non-linear activation function such

as the Sigmoid logistic function g(x) = 1/(1 + e−x), or the non-linear Rectified

Linear Unit (ReLu) g(x) = max(0, x) among others, depending on the problem

type. The output vector of the dth hidden layer denoted hhh(d) can be expressed

based on the output from the previous layers [26].

hhh(d) = fd

(
hhh(d−1)

)
= g(d)

(
www(d)hhh(d−1) + bbb(d−1)

)
(3.16)

When an input sample has been propagated through the network, the performance

can be calculated in terms of loss based on the type of RL problem. The goal is to

find an optimal weight vector www∗, that minimizes the loss. In value based problems,

the loss can be defined as the error between some target value yn and a predicted

value ŷn. Three common methods are Mean Absolute Error (MAE) weighting error
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values linearly, Mean Square Error (MSE) penalizing higher errors, and the Huber

loss as a combination of both methods.

LMAE =
1
N

N

∑
n=1
|yn − ŷn| (3.17)

LMSE =
1
N

N

∑
n=1

(yn − ŷn)
2 (3.18)

LHuber =


1
2 (yn − ŷn)

2 for |yn − ŷn| ≤ δ

δ|yn − ŷn| − 1
2 δ2 otherwise

(3.19)

Where n ∈ {1, 2, . . . , N} denote the sample number, and δ is the discrimination

parameter. In the case of RL problems, the loss is based on the reward signal.

Deep Q-Network

Q-learning being a value-based method is constrained to small state and action

spaces, where there is no generalization ability for unseen states. To accommodate

this, consider a DQN where a DNN is applied to approximate the values Q̂(s, a) =

f (s, a, θθθ), given vector θθθ with the DQN learning parameters [22]. From the Q-

learning term (3.9), loss is defined as the error between target value and predicted

values.

ΓQ = Rt+1 + γ max
a

Q(St+1, a)︸ ︷︷ ︸
Target yn

− Q(St, At)︸ ︷︷ ︸
Prediction ŷn

(3.20)

The Q-value estimation if fitted to optimization of θθθ, where the DQN loss term

typically is defined using one of (3.18), (3.17), or (3.19) based on the problem type,

and substituting ΓQ =̇ yn − ŷn. It has also been shown that modifying the standard

Q-learning loss ΓG to be in the interval [−1, 1] can improve stability. To improve

the convergence the concept can be divided into a main network that approximates

the value function, and a target network that estimates the expected returns from

an action. This is known as a DDQN, where the loss function is divided equally
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defined by the following [22].

ΓDDQN = Rt+1 + γ max
a

Q(St+1, a, θθθtarget)−Q(St, At, θθθmain) (3.21)

The weights of the main network is updated continuously, whereas the weights of

the target network is updated over limited periods of time. The used policy may be

ϵ-greedy, where ϵ = max
(
ϵmin, (ϵmax − ϵmin)/ϵstep

)
decreases to a low fixed value

ϵmin over the first ϵstep steps resulting in more exploitation over time [22].

To improve training in non-stationary environment, the experience replay method

may be utilized to store the prior experience (St, At, Rt, St+1). The memory has

a fixed length and accumulate experiences at every timestep. At each time step

multiple Q-learning updates can be performed known as a mini-batch, based on

samples drawn from the replay memory with an uniform distribution or an algo-

rithm. This base updates on a batch of experience, where samples can be reused

multiple times, typically accelerating convergence and reducing requirements for

the total number of samples. Using an algorithm to draw relatively new samples

in the replay memory allows the environment to change over time. However if the

environment changes rapidly over short ranges of time, sample uncorrelation is

proportional to the time separation resulting in convergence problems [22].

Proximal Policy Optimization

Policy-based methods can also be adapted to DNN, where one approach is the

Proximal Policy Optimization (PPO). Two main concepts enable PPO, the clipped

surrogate objective, and training over multiple epochs when performing a pol-

icy update. Consider the policy gradient, where the objective is to optimize the

weights of a DNN [27].

L(θ) = Êt
[
log πθ(at|st)Ât

]
(3.22)
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Where πθ is an stochastic policy and Ât is a estimation of the advantage function

at timestep t. Multiple optimization steps within the same trajectory using (3.22)

are not stable, due to accumulation of large gradients [27]. Instead, the surrogate

objective lt(θ), is introduced as a probability ratio between current and old policies.

The objective function is rewritten to

L(θ) = Êt
[
lt(θ)Ât

]
(3.23)

lt(θ) =
πθ(at|st)

πθ,old(at|st)
(3.24)

where θold is the policy weights from before the update. To mitigate the possibility

of excessively large gradient update, the objective is modified to penalize the policy

[27]. The objective function is rewritten to

L(θ) = Êt
[
min

(
lt(θ)Ât, clip (lt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(3.25)

where the surrogate objective is modified by clipping the probability ratio to the in-

terval [1− ϵ, 1+ ϵ]. The final objective loss is the minimum between the clipped and

unclipped objectives, to produce a lower bound on the unclipped value [27]. This

approach only ignore the change in probability ratio when the objective improve,

and is included when the objective becomes worse. The clipping is illustrated in

figure 3.3.

(a) Positive advanage (b) Negative advanage

Figure 3.3: Plot illustrating a
single timestep of the update

function in (3.25), as a function of
probability ratio l, for (a) positive

advantages, and (b) negative
advantages.

The PPO can be integrated as actor-critic style, where a policy function is used

for decision making and a value function for evaluation during learning is trained
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simultaneously. A single actor approach is shown in algorithm 3 [27].

Algorithm 3 Vanilla PPO, actor-critic style [27]

1: Input: Number of epochs K, minibatch size B ≤ T
2: for iterations 1, 2, . . . do
3: Run policy πθ,old for T timesteps
4: Compute advantage estimate Â
5: Optimize (3.25) wrt. θ
6: θold ← θ
7: end for

Learning Procedure

The learning process for DNN consists of updating the network weights such that

the loss is minimized. To automate the learning process, the gradient of the loss is

estimated with Automatic Differentiation (AD) methods that exploits the differen-

tiation chain rule. A special case known as reverse AD, referred to as backpropa-

gation, is a popular and efficient method to achieve automatic learning [28].

Given the activation functions are differentiable, backpropagation is a efficient

method to learn by alternating forward and backward passes of samples through

the network. Passing samples through the network given current weights is known

as a forward pass, where the loss can be calculated at the output for assessment.

The loss can be propagated back through the network, known as a backward pass,

where the gradient of the loss function with respect to the weights of the network

can be efficiently estimated [22]. Gradient methods are feasible to calculate the

updates, such as SGD and Adaptive Moment Estimation (Adam). Estimating the

gradient with momentum from previous gradients and a decaying learning rate,

Adam is able to achieve a quick convergence [28].

Backpropagation produces good results for a low number of hidden layers, but

struggles with deeper networks. Over-fitting occurs when failing to generalize

patterns in the data correctly caused by a large number of weights in the network.
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The partial derivatives in backward passes either decay resulting in slow learning,

or grow resulting in unstable learning [22].

3.1.5 Multi-Agent Reinforcement Learning

Multiple agents can coexist in a shared environment known as MARL, where

agents receive rewards by interacting with the environment based on the task at

hand [23]. The logical problem involving more than one agent is modeled as a

Multi-Markov Decision Process (MMDP) and may be approached with stochastic

game theory, a framework where agents must produce the optimal decision mak-

ing in a strategic setting [23].

Agents may maximize their own rewards independently, in opposition and com-

pletely regardless to other agents. In another cooperative approach, agents collab-

orate to maximize the overall rewards, and execute collective decisions. A mixed

cooperative-competitive approach allows agents to discover various coordination

strategies, however this requires more intelligent agent behavior. Considering N in-

dependent agents with their individual action spaces and reward signals, a MARL

approach modeled as MMDP is illustrated in figure 3.4 [9].

Environment

Agent 1

Agent 2

Agent N

Joint action

Figure 3.4: The
multi-agent-environment

interaction model for MMDP.

Each of the N agents tries to find an optimal policy π∗n, based on local state and
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action information available. The optimal policy is typically obtained as the policy

that maximizes the total reward function [9].

π∗t (s) = max
πt(s)∈A

{
rt(st, πt(s)) + γ ∑

s′∈S
p(st, s′)π∗t+1(s

′)

}
(3.26)

Where 0 ≤ γ ≤ 1 is the discount factor. If an observation collects all information

about the state in the environment, the MMDP is known as fully observable. This

could be the case of chess, where all information about the entire game is easy to

obtain. Practically, each agent usually only access a part of the information through

an observation, resulting in a Partially Observable Multi-Markov Decision Process

(POMMDP) [23]. Instead of directly observing the state, a set of observations with

subliminal information about the current state is used.

Multi-Agent Reinforcement Learning Methods

MMDP is modeled and defined with the tuple
(

N,S , {An}N
n=1,P , {Rn}N

n=1

)
[23].

The set of all possible states for all agents is defined as the state space S = S1 ×

· · · × SN , and the joint action space containing all possible actions for the nth agent

An is denoted AAA = A1 × · · · × AN . The reward signal for the nth agent is denoted

Rn : S ×AAA× S and the transition probability from state s ∈ S to state s′ ∈ S by

joint action aaa ∈ AAA is denoted P = S ×AAA.

The value-based Q-learning method for a single agent in (3.9) can be extended to

the context of MARL. Consider an instantaneous timestep t, the transition data is

sampled for each agent {st, aaat, Rn, st+1}t≥0 is gathered to update the Q-values [23].

Qn(st, aaat)← Qn(st, aaat) + α
[

Rn + γ max
a

Qn(St+1, aaa)−Qn(st, aaat)
]

(3.27)

For MARL problems collaborative and adversarial behaviors can be configured by

proper design of rewards [23]. To accommodate the curse of dimensionality in
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the value-based Q-learning method, a DQN is extended to MARL. Training may

be distributed, where agents train models locally, or centralized where all agents

train the same model [25]. The max operator in (3.27) utilize the same Q-values

for selection and evaluation of an action. This makes it more likely to select over-

estimated Q-values. To prevent this, the training stability and performance can be

improved with a DDQN, which relies on two similar DQNs [29]. A main evalua-

tion network is used to determine the ϵ-greedy policy, and the other to determine

its target value. The target network is a periodic copy of the main network used

for training [29].

The policy-based PPO method in (3.13) can similarly be extended in context to

MARL. Each agent learns an optimal policy πn
θn by updating the respective param-

eters {θn}N
n=1 from the joint policy πππθ = ∏∀n πn

θn(an|s). The objective function is

rewritten in terms of the nth agent [23].

∇J n(θθθ) = Eπθ
[∇θn ln πθn(an|s)Qn,πθ (s, aaa)] (3.28)

The expectation over the joint policy πππθ implies that the agents have the ability to

observe each others policies.

Multi-Agent Reinforcement Learning Frameworks

The two suggested approaches for MARL, are policies designed to learn how to

solve a complex problem. The approach to training such methods depends on the

system, and how information is relayed. Two general MARL framework viz for

training are considered: centralized training with distributed execution, or distri-

bution training and execution. In common for either approach, distributed execu-

tion refers to agents deployed in an environment and execute the learned policy.

Centralized training requires agents to share mutual experiences and cooperate to
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generate a common model for distributed execution. Here it is assumed a central-

ized unit performs training by collecting observations from agents. However, this

is impractical for systems where sharing information is not possible due to data

sensitivity or where communication with a central unit for training is unstable [25].

Furthermore, training complexity increase with the number of agents. Instead, the

centralized unit can be disregarded if agents are able to perform training locally.

Distributed training and execution without knowledge sharing is a local compet-

itive training process in each agent. Although sharing of potential sensitive data

is avoided in distributed training, the perspective of the environment is partial,

where non-stationary scenarios tends to slow down learning.

3.2 Federated Learning

FL is an algorithmic framework for multiple parties in a network to contribute

learning updates to a global model, under the requirement of keeping data private.

The privacy between parties is kept by exchanging information about the models,

and not the data itself, so that data privacy will not be compromised. The concept

of FL is illustrated on figure 3.5.

Global Model

Local Model 1 Local Model 2 Local Model     

Figure 3.5: Conceptual
illustration of FL.

Two or more parties are needed to jointly build a model, each holding indepen-

dent data used for local model training. The learning profits are conveyed through

model parameters that does not compromise privacy. Encryption schemes may be

used to increase security, however this depends on the problem and how much se-
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curity is required. Parties can be weighted equally, and are always able to use the

global model for local improvement [10]. In this section the basics of FL will be pre-

sented followed by fundamental architectures, categorization by data partitioning,

and an extension of the concept in combination with RL.

3.2.1 Basics of Federated Learning

Consider N parties {Fi}N
i=1, each storing their respective data-sets Di from which

a set of parameters wi is learned. In traditional supervised machine learning, each

training sample j is accompanied by a label with the expected output. A loss

function f j(w) is defined as the error of sample j using parameters w, and is used

to assess training. The loss of a data-set Di can be defined as Fi(w). Similarly, the

common global model loss can be defined as Fg(w) [10].

Fi(w) =
1
|Di| ∑

j∈Di

f j(w) (3.29)

Fg(w) =
N

∑
i=1

ηiFi(w) (3.30)

Where | · | denotes the size of the set and ηi > 0 is the relative impact of each party.

The term η can be configured constrained to ∑N
i=1 ηi = 1, where a natural selection

would be the average η = 1/N. The goal is to find the optimal parameters w∗,

which minimizes the global loss function [10].

w∗ = arg min
w

Fg(w) (3.31)

One solution for (3.31) would be a gradient-descent approach, known as the feder-

ated averaging algorithm. Each party uses local data to perform a number of steps

in gradient descent on current model parameters w̄(t) [10].

∀i, wi(t + 1) = w̄(t)− γ∇Fi(w̄i(t)) (3.32)



38 Chapter 3. Reinforcement Learning Methods

Where γ > 0 is the learning rate, and ∇ f (w) for any scalar expression f (w) de-

notes the vector of partial derivatives with respect to the components of the pa-

rameters w. The global model is updated using a weighted average of the local

parameters from the parties [10].

w̄g(t + 1) =
N

∑
i=1

ni

n
wi(t + 1) (3.33)

Where ni is the number of training samples in the ith party, and n is the total

number of samples in all data-sets. The global weight w̄g can be aggregated back

to the parties, which usually is done at scheduled intervals.

3.2.2 Architectures of Federated Learning

The architecture of FL can mainly be constructed in to ways, namely client-to-

server model and a peer-to-peer model. The former model is a centralized learning

method where a server is responsible for updating the global model, and the latter

model is a distributed learning method with no need of hosting a server. In either

setup, training of local models in respective parties is a decentralized learning

framework.

Client-to-Server Model

In the client-to-server model a coordinator is considered as a centralized aggrega-

tion server, which aggregate local model updates from the parties. The client-to-

server architecture is illustrated in figure 3.6 and the iterations steps are summa-

rized in the following list [10]. Steps 2 to 5 are repeated until the model converges

or other stopping criteria has been satisfied.

1. Initialize: The coordinator generates a model, and sends it to every party.
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2. Train: Every party trains local models based on data-sets.

3. Submit: Local model weights are uploaded to the coordinator.

4. Aggregation: The coordinator combines the models with aggregation.

5. Update: The global model weights are send back to the parties.

Local
model 1

Data-set

Local
model 2

Data-set

Local
model N

Data-set

Server

Global
model

Coor-
dinator

1

2

3

4

5

Figure 3.6: Conceptual illustration of the client-server architecture of FL systems. The numbers
circled in grey indicates the steps in the process, with focus on actions in party F1.

The client-to-server model does rely on every party sending updates to a single

entity, where the server can become a bottleneck of the system. The parties are

assumed to be constrained by hardware performance, but given that the server is

stable, a portion of the workload will be relieved.

Peer-to-Peer Model

The peer-to-peer model does not rely on a central coordinator, but instead can

any of the parties be data owners and aggregate model updates. The peer-to-peer

architecture is illustrated in figure 3.7 and the iterations steps are summarized in

the following list [10]. Steps 2 to 4 are repeated until the model converges or

satisfies other stopping criteria.

1. Initialize: Each participant generates a local model.
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2. Train: Every party trains local models based on data-sets.

3. Exchange: Requests of model parameter exchange between parties.

4. Aggregation: Aggregate the model received from other parties.

Updated
model N

Trained
model 1

Local
model 1

Updated
model 2

Trained
model 1

Updated
model 1

Trained
model 2

Local
model 2

Local
model N

Updated
model 1

Trained
model N

1
2

3
4

1

1

Figure 3.7: Conceptual illustration of the peer-to-peer architecture of FL systems. The numbers
circled in gray indicates the steps in the process, with focus on actions in party F1.

The performance of individual parties are constrained by limited hardware re-

sources, however distributing the workload between peers does delimit the need

for central coordination or a stable host. Furthermore, two local parties are able to

share knowledge directly.

3.2.3 Data Partitioning

How data is partitioned matters in terms of implementation, as well as the practical

and technical challenges. Consider the ith party with data-set Di, the data-set

contains the feature space Xi as an abstraction of patterns in the data, the label

space Yi associates categories with input and task, and the sample ID space Ii

used to discover possible connections among different features [10]. The methods

of partitioning data-sets within feature, label, and sample space will be discussed

in this section, and may be classified as Horizontal Federated Learning (HFL) and

Vertical Federated Learning (VFL).
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Horizontal Federated Learning

In the case of HFL, the data-sets of parties share the same feature space. The feature

space and label space is assumed to be identical for data-sets i and j, however the

sampling-ID space is different [10].

Xi = Xj, Yi = Yj, Ii ̸= Ij, ∀Di, Dj, i ̸= j (3.34)

The goal is to increase the amount of data with similar features, without trans-

mitting any of the original data. Regional hospitals has different patients but the

symptoms for diseases are similar. HFL provides a secure method to jointly build a

model for identifying diseases between hospitals, without sharing sensitive patient

data [10].

Vertical Federated Learning

VFL is applicable in the case where multiple parties has different features. The

feature space and label space of data-sets i and j is assumed to be different, as the

sample ID space is identical [10].

Xi ̸= Xj, Yi ̸= Yj, Ii = Ij, ∀Di, Dj, i ̸= j (3.35)

It is desired to jointly build a model in a privacy-preserving manner by exploiting

all features from different parties, which can even be used to generate new features.

Banks with credit card-records and e-commerce companies with purchase-histories

from the same clients can cooperate to safely create models used for trust evalua-

tion of clients using VFL [10].
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3.2.4 Federated Reinforcement Learning

The framework of FL can be used to enhance the security of RL, resulting in FRL

where privacy of agents with the ability to handle non-Independent and Identi-

cally Distributed random variables (IID) data is protected. It is believed that per-

formance of learning can be improved as the combination of frameworks introduce

more stability to practical problems. FRL is divided into two categories based on

environment partitioning, namely Horizontal Federated Reinforcement Learning

(HFRL) and Vertical Federated Reinforcement Learning (VFRL) [10]. The concepts

will be formally defined and described in this sections using practical examples.

Horizontal Federated Reinforcement Learning

HFRL is applicable in scenarios where agents with similar decision making tasks

are distributed geographically, and the goal is to train a common model while

keeping data private. When agents share experience, the privacy is protected by

choosing a strategy to exchange encrypted models. Consider N agents {Fi}N
i=1

observing their respective independent environments {Ei}N
i=1 ∈ G, where state

transition probabilities and reward functions are similar [10].

Si = Sj, Ai = Aj, Ei ̸= Ej, ∀i, j ∈ {1, 2, . . . , N}, Ei, Ej ∈ G, i ̸= j (3.36)

Imagine autonomous driving systems, where vehicles on the road explores var-

ious environments and train models locally. Properties of a single environment

constraints the possibility of every situation occurring, hence vehicles in different

environments can share their learned experience to improve the overall perfor-

mance. Consider a client-to-server model where the agents may be composed of

geographically distributed heterogeneous equipment, such as different types of

vehicles in different regions. The following list summarize the HFRL procedure,
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where any user can join and leave at any given time [10].

1. Initialize: If the agent has no model, the global model weights must be

downloaded from the coordinator. If the agent already have a model, the

model type and parameters must be confirmed by the coordinator.

2. Train: Agents make independent observations on their environments. All

agents evaluate selected actions by the next state and received reward. Local

models is trained in state-action-reward-state cycles.

3. Submit: The local model weights achieved by training can be encrypted and

transmitted to the coordinator at any time.

4. Aggregate: An aggregation algorithm is used by the coordinator to train the

global model.

5. Send: The coordinator transmits the aggregated model weights to the agents

6. Update: Agents improve their respective local models using the global weights.

Devices that has just joined or does not meet the hardware requirements for train-

ing can obtain the shared model at any given time. Multiple agents sharing training

experiences from different environments may accelerate the training process and

improve model reliability, as the data correlation is generally reduced and discov-

ery of rare states occurs more frequently [10].

Vertical Federated Reinforcement Learning

VFRL is applied where samples from multiple data-sets belonging to a common

group of users have different feature spaces. The agents interacts with the same en-

vironment from an observation that is a part of the global state, making it suitable

for POMMDP scenarios. The goal is to build a common model from heterogeneous

feature spaces while keeping data private. Consider N agents {Fi}N
i=1 interacting

with a global environment E , where the ith agent obtains the local partial observa-
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tion Oi from the independent interaction Ai [10].

Oi ̸= Oj, Ai ̸= Aj, Ei = Ej,
N⋃

i=1

Oi = S ,
N⋃

i=1

Ai = A, ∀i, j ∈ {1, 2, . . . , N}, i ̸= j (3.37)

Consider a system with household users, the power company, and solar cell com-

panies as agents observing the same environment but with different state spaces.

Households manage electrical utilities by observing local power generation, con-

sumption, and costs. The power company tries to optimally distribute and balance

energy by observing power consumption for all households. Solar cell companies

has information about the power generation. The agents need to communicate

with each other to find to optimal policies, however all of the participant wants to

keep data private. Consider two types of agents in a peer-to-peer model scenario.

The first type is K decision-oriented agents {Fi}K
i=1 interacting with environment

E based on respective local states {Si}K
i=1 and actions {Ai}K

i=1. The other type is

the remaining N − K + 1 support-oriented agents {Fi}N
i=K+1, that only observes

the local state {Si}N
i=K+1 of the environment and takes no action. The following list

summarize the VFRL procedure [10].

1. Initialize: Each participant generates a local model.

2. Train: Agents observes states from the environment. Decision-oriented agents

perform an action, training local models in state-action-reward-state cycles.

3. Submit: The local model parameters achieved by training can be encrypted

and transmitted to the global model.

4. Aggregate: An agent aggregate the global model.

5. Send: The global model is encrypted and transmitted back to other agents.

6. Update: Agents improve their respective local models using the global model.

The system model benefits from agents that cannot generate rewards by exploiting
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the partial observation information to improve the efficiency of overall learning.

By inheriting ideas for privacy protection from FL, multiple agents can cooperate

with the same information without worrying about leakage of data [10].





Chapter 4

System Model & Problem Formu-

lation

This chapter presents a use case scenario for the 6G in-X subnetworks and describes

the simulation system model, including the network traffic, mobility, and channel

models. Based on this model, a set of optimization problems will be formulated to

mitigate interference effects and improve the system’s performance.

4.1 Use case

Characteristics of interference may rely on the specific environment in terms of ra-

dio technology, propagation media, terrain, and obstacles. Such characteristics may

be defined with a use case for 6G in-X subnetwork, which outlines the framework

of a simulation environment that can be used to prove the concept of interference

management methods. Current literature suggests a variety of 6G in-X subnetwork

use cases that individually can be generalized to a set of applications. Examples of

use cases with key requirements are presented in table 4.1 [5].

Realization of next generation networks is expected to unleash wire-free, smart

factories with revolutionizing ways to manufacture, improve, and distribute prod-

ucts. Integration of new technologies will transform the industry, with a plethora

of new scenarios able to deliver real-time decision making, enhanced productivity,

flexibility and agility [6].

47
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Use case In-robot In-vehicle In-body In-house

Example of
applications

Motion control,
force/torque control,
mobile
position/proximity

Engine control, electric
power steering, ABS,
electric park brakes,
suspension, ADAS
sensors

Heartbeat control,
vital signs
monitoring, insulin
pumping, muscle
haptic control

Entertainment,
gaming, training,
education, healthcare
(robotic-aided
surgery)

Number of devices
∼ 20 (control)
∼ 20− 40 (mobile)

∼ 50− 100 < 20 ∼ 10

Max range ∼ 5 m ∼ 10 m ∼ 2 m ∼ 10 m

Data rate per link < 10 Mbps
< 10 Mbps (Control)
< 10 Gbps (ADAS)

< 20 Mbps < 7 Gbps

Traffic type Periodic, event based
Periodic, event based,
uncompressed video

Periodic, event based
Event based,
compressed video

Min latency ∼ 100 µs ∼ 54 µs ∼ 20 ms ∼ 5 ms (VR)
∼ 2 ms (healthcare)

Communication
service availability

Six to eight nines Six to eight nines Nine nines
Six nines (VR), eight
nines (healthcare)

Max subnetwork
density ∼ 40000/km2 ∼ 150/lane-km (car)

∼ 15/aircraft
∼ 2/m2 1/room

Life-critical No Yes Yes
Yes (healthcare), no
otherwise

Criticality of power
consumption

Low Low High Low/medium

Table 4.1: Examples of requirements for different in-X subnetwork use cases [5].

Consider a possible industrial scenario where robots distributed in a factory hall

performs production operations. Table 4.1 present two types of applications for

in-robot subnetworks viz: stationary control applications such as unit assembling,

sorting, or packing lines, and mobile applications such as obstructed transporta-

tion, dynamic measuring, and sorting. In this project, subnetworks are deployed

inside autonomous robots as an uncoordinated scenario. Each subnetwork in the

factory consist of a single AP responsible for communication between deployed de-

vices, i.e., sensors and actuators. It is assumed that multiple in-robot subnetworks

may coexist within a factory building, with or without connection to a larger net-

work for coordination. This type of network framework may cover a wide indoor

area and is referred to as an in-factory network.
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4.2 System Model

Following in this section the system model composed of network traffic, communi-

cation channel effects, and subnetwork mobility models will be defined. The goal

is to establish a system framework inspired by the in-factory use case. Consider

N subnetworks each with M devices and a single AP, individually deployed in-

side robots of the factory. The subnetworks are indexed n ∈ N = {1, 2, . . . , N}

and all the devices in each subnetwork as m ∈ M = {1, 2, . . . , M}. The notation

(·)n,m is used to reference a link between nodes n and m device, e.g., subnetwork

to subnetwork or local devices.

4.2.1 Traffic Model

The 6G in-X subnetworks are expected to support varying applications in diverse

scenarios, and may therefore feature different types of traffic. As with other wire-

less systems, traffic for subnetworks can be categorized as: synchronous versus

asynchronous and periodic versus event based [3, 5]. This leads to the different

types of traffic depicted in figure 4.1 to be supported by subnetworks.

Downlink
Uplink

(a) Synchronous
periodic

(b) Aynchronous
periodic (c) Event based

Time Time Time

Su
bn

et
w
or
ks

2

1

Figure 4.1: Illustration synchronous versus asynchronous and periodic versus event based traffic
types.

In scenarios where data are communicated in fixed intervals, i.e., sensor mea-

surements or actuator control commands from a mobile in-robot subnetwork, it

is referred to as periodic traffic. Traffic among multiple subnetworks may be time-

synchronized, meaning the UL and DL frames across subnetworks respectively
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are aligned. This however imposes the requirement of coordination in terms of

time-synchronization accuracy across devices in subnetworks [5]. If there are no

coordination among subnetworks, time-synchronization may be neglected result-

ing in asynchronous traffic. A lack of synchronization among subnetworks may

result in a high probability for mutual interference over UL and DL frames [30].

Traffic can also be based on spontaneous events, e.g., either upon completion of

a specific task or emergency-stop alarms, where low-latency may be a require-

ment. The time of activation cannot be predicted, and packets must suddenly be

exchanged rapidly [5]. In terms of event based traffic, there is no coordination

among subnetworks.

4.2.2 Mobility Model

The mobility model describes how the in-robot subnetworks move around in the

factory environment. It is desired to achieve a degree of realism specific for the

factory use case, which may be achieved by basing the mobility model on a real

factory layout. The mobility model is based on an indoor industrial scenario, from

existing production facilities of manufacturing companies, identified by the indus-

try initiative, 5G alliance for connected industries and automation [31]. Such a

layout is depicted on figure 4.2, as a 180× 80 m hall containing several separate

areas for production, assembly, storage, and human work zones.

Multiple in-robot subnetworks can be deployed with the task to transport materials

or tools around in the facility. The alleys separating laboring areas are 5 m wide

taking up ∼ 1600 m2 of the factory area, and are outlined as two-lane roads in a

right-handed traffic setting. An example random deployment of N = 20 subnet-

works in the factory area is depicted in figure 4.2. It is worth mentioning that this

translates to a density of 12,500 subnetworks/km2. In the deployment the in-robot

subnetworks are separated with a minimum distance of dmin = 1 m and move with
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Figure 4.2: Example deployment of in-robots (scattered points) on lanes (black lines) in a indoor
factory map.

a speed of 3 m/s. The in-robot subnetworks are modeled by a circular coverage

area with a radius of dr = 1 m, making it possible for robots to pass each other

in the alleys. The minimum distance between two subnetworks is visualized on

figure 4.3.

AP AP

Device

Device
Figure 4.3: Visualization of

two subnetworks with
radius dr and one device

each, separated by the
minimum accepted distance

dmin.

Collisions are avoided by prioritizing robots with shortest distances to a common

intersection, slowing down any other robot that is within minimum separation

distance. Visualization of road lanes and an initialization instance of subnetworks

are illustrated in figure 4.2. Designated task destinations may be added to the map,

and each robot could be given the purpose of determining an effective route with

genetic algorithms. However modeling the mobility in such detail is considered

out of scope for this project.
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4.2.3 Channel Model

The channel model is based on three main propagation loss components, which

will be defined with focus on the industrial scenario. The received signal power

gn,m on the link between the nodes, n and m is expressed as

gn,m(t) = pn · Γn,m · ψn,m · |hn,m(t)|2 (4.1)

where pn, Γn,m, ψn,m, and hk
n,m(t) are transmit power, path loss, correlated shadow-

ing, and complex small-scale fading.

Path Loss

Signals naturally decay in power density as it propagates through space. The

clutter in an active factory environment may obstruct the LoS between a transmitter

and receiver, resulting in additional attenuation of the signal. A probability for a

clear LoS from n to m can be expressed from the distance dn,m, size of typical clutter

elements dclutter, and the clutter density r [32].

PrLoS
n,m = exp

(
dn,m ln (1− r)

dclutter

)
(4.2)

The clutter parameters are based on the surrounding environment, and may be

generalized with scenario-based constants given in table 4.2. The probability for

no clear LoS is denoted PrNLoS
n,m = (1− PrLoS

n,m), where calculation of loss in a factory

with varying clutter can be based on the following conditions [32].

Γn,m =


ΓLoS

n,m for PrLoS
n,m > PrNLoS

n,m

ΓNLoS,S
n,m for PrLoS

n,m ≤ PrNLoS
n,m in sparse clutter

ΓNLoS,D
n,m for PrLoS

n,m ≤ PrNLoS
n,m in dense clutter

(4.3)
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where losses are calculated from the carrier frequency fc and the following [32],

ΓLoS
n,m = 31.84 + 21.5 log10 (dn,m) + 19 log10 ( fc) (4.4)

ΓNLoS,S
n,m = max

{
ΓLoS

n,m, 33 + 25.5 log10 (dn,m) + 20 log10 ( fc)
}

(4.5)

ΓNLoS,D
n,m = max

{
ΓNLoS,S

n,m , 18.6 + 35.7 log10 (dn,m) + 20 log10 ( fc)
}

(4.6)

Correlated Shadowing

Obstacles between a transmitter and receiver may cause shadowing phenomena,

where fluctuations in the received power mean can be observed over time. Sub-

network links are assumed to have correlated impairments, meaning a source of

shadowing will affect several links simultaneously. Shadowing in the deployment

area can be mapped in a grid with a stationary and isotropic Gaussian random

field with zero-mean and exponentially decaying spatial correlation, with the co-

variance defined as

cov (SSSn, SSSn,m) = σ2
S exp

(
−dn,m

dδ

)
, (4.7)

where SSS(·) is the value of a two-dimensional Gaussian at the location of the device

or AP, σ2
S is the variance of the shadowing map defined in table 4.2, and dδ is the

decorrelation distance [33]. Using the random field SSS, the link shadowing between

nodes n and m is calculated using

ψn,m = ln


1− exp

(
− dn,m

dδ

)
√

2
√

1 + exp
(
− dn,m

dδ

) (SSSn + SSSn,m)

 (4.8)
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Small-scale Fading

The environment and clutter repeatedly reflects propagating signals in different

directions, resulting in receivers observing multiple faded replicas of the signal

with a temporal and spectral difference. Due to the nature of propagating signals,

relative velocities between transmitters and receivers may result in a frequency

shift known as the Doppler shift [34]. Multi-path fading may be represented with

h ∼ Rayleigh(σ2
S) random variables. Temporal correlation can be modeled by

utilizing Jake’s Doppler model [34].

hn,m(t) = ρhn,m(t− 1) +
√

1− ρ2ϵn,m (4.9)

where ρ = J0(2π fdTs) is the temporal autocorrelation coefficient and ϵn,m is an

IID complex Gaussian variable. The temporal autocorrelation can be found with

a zeroth order Bessel function J0 based on maximum Doppler frequency fd, and

time slot duration Ts [34].

Different settings in factories lead to varying types of clutter in terms of machinery,

assembly lines, and storage shelves. For the factory scenario it is assumed that the

clutter height is greater than the height of in-robot subnetworks. The clutter vary in

density, size, surface, and structure, which may be generalized to a sparse clutter

and a dense clutter scenario. The industrial environment is expected to have a

characteristic influence on the channel model, where the examples shown in table

4.2 from the 3rd Generation Partnership Project (3GPP) may be utilized [32].

4.3 Problem Formulation

A system model for in-robot subnetworks in a indoor factory scenario has been

established. It is intended to apply interference management methods discussed in



4.3. Problem Formulation 55

Parameter Sparse clutter Dense clutter

Clutter type
Big objects such as
machinery with regular
metallic surfaces

Small and medium object
such as machinery with
regular metallic surfaces

Clutter size dclutter 10 m 2 m
Clutter density r < 40% ≥ 40%

Shadowing σ2
S

LoS 4
NLoS 5.7 7.2

Table 4.2: Evaluation of in-factory parameters for sparse and dense clutter scenarios. It is assumed
that the height of the AP is below the average clutter height [32].

section 2.2, to optimize the use of radio resources. A presentation and explanation

of the problem formulation in terms of radio resource optimization follows in this

section.

4.3.1 Optimization Problem

This project address the problem of mitigating the adverse effect of interference,

with the goal of optimizing three key requirements for subnetworks: latency, reli-

ability and data rate.

Links in a network serving a large number of users may become saturated with

traffic, where storing data is required for later processing. Also, a complex net-

work structure may require additional routing and switching for a signal to reach

its destination. If a link suffers from significant interference, packet losses may be

inevitable, but may however be accommodated with re-transmissions or error cor-

rection methods. Along with the former mentioned effects, the signal propagation

path are contributing factors for a higher latency in the network. Shannon’s for-

mula provide fundamental insight for a channel subject to Additive White Gaus-

sian noise (AWGN), which shows that the maximum achievable channel rate is

proportional to the bandwidth penalized by the amount of interference. Hence,

latency is a trade-off between network complexity, distance, and bandwidth.
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It is assumed that the short-range in-robot factory scenario network density is

controlled, and that the bandwidth and processing capabilities is sufficient, such

minimum latency requirement of ∼ 100 µs has already been met. According to

findings in section 2.2, power and channel allocation are promising interference

management techniques. The problems formulated in this section therefore con-

sider the transmit power and frequency channels as the optimization variables.

Performance Metrics

The received SINR, denoted γn,m, on a link between the nth AP and mth device is

based on the aggregate interference as

γn,m(t) =
gn,m(t)

∑i∈Ik
gn,i(t) + σ2 (4.10)

where Ik denotes the APs or devices transmitting on channel k. The receiver noise

power is expressed as σ2 = 10(−174+NF+10 log10(BW))/10, where NF denotes the noise

figure and BW is the bandwidth of the channel. Assuming transmissions with

large data packet such that the infinite block-length approximation holds [35], the

channel capacity can be estimated using the Shannon’s formula as

rn,m(t) = B · log2 (1 + γn,m(t)) (4.11)

However in practical 6G in-X subnetworks short packets (in the order of tens of

bytes) are expected to be transmitted, making the infinite block-length and usage

of Shannon approximation unrealistic. To compute the capacity, a penalty term is

typically added to (4.11), to accommodate the finite block-length assumption [35].
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The capacity is therefore expressed as

rn,m = BW

log2 (1 + γn,m(t))−
√

Vn,m(t)
l

Q−1(ϵ) log e︸ ︷︷ ︸
Penalty term

 (4.12)

where Q is the complementary Gaussian cumulative distribution function based on

the code-word decoding error probability ϵ, log e ≈ 0.434 is a constant constraint

of the loss, and V is the channel dispersion defined by the following [35].

Vn,m(t) = 1− 1

(1 + γn,m(t))
2 (4.13)

When the length of the code-word block l tends toward infinity, the achieved rate

approach Shannon’s approximation. If the code-word decoding error probability ϵ

is constant, the channel rate loss is inversely proportional to
√

l [35].

In this project, subnetworks with requirement of high data rates, with or without

minimum SINR constraints based on desired common channel capacity is consid-

ered. The optimization problem must be approached as a joint problem, as it is

desired to optimize radio resources for all N subnetworks simultaneously. As the

optimization variable, the sum of throughput over devices can be weighted, but

tends to favor channels with the best quality. Instead the minimum throughput of

devices may introduce fairness, where the worst performance is considered [36].
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Problem 1: Channel Allocation

The goal is to allocate channels for all subnetworks ccc to maximize the long-term

averaged minimum throughput rn,m of devices in each subnetwork.

P1:

{
max

ccc
lim

T→∞

1
T ∑

t∈T
min

(
{rn,m(cn; t)}M

m=1

)}N

n=1

(4.14)

s.t. γn,m(t) ≥ γ
req
n,m, ∀n ∈ N , ∀m ∈ M, ∀t ∈ T (4.15)

cn(t) ∈ K, ∀n ∈ N , ∀t ∈ T (4.16)

The constraint in (4.15) relates the minimum required SINR, where communication

is considered reliable. (4.16) constraints the allocation of channels to the available

set of channels {cn ∈ K|n = 1, . . . , N}.

Problem 2: Joint Power and Channel Allocation

This problem is a modified version of the channel allocation problem, extended to

the concept of transmit power optimization. The goal is to jointly allocate transmit

powers ppp and channels ccc for all subnetworks to maximize the long-term averaged

minimum throughput rn,m of devices in each subnetwork.

P2:

{
max

ppp, ccc
lim

T→∞

1
T ∑

t∈T
min

(
{rn,m(pn, cn; t)}M

m=1

)}N

n=1

(4.17)

s.t. (4.15) and (4.16)

pn(t) ≥ 0, ∀n ∈ N , ∀t ∈ T (4.18)
N

∑
n=1

pn(t) ≤ Pmax, ∀t ∈ T (4.19)

The constraints (4.18) and (4.19) respectively relates subnetworks to transmit with

positive continuous powers, and not to exceed a maximum tolerated power level.



Chapter 5

Federated Learning for Radio Re-

source Allocation

This chapter presents the proposed MARL solutions for radio resource optimiza-

tion of autonomous 6G subnetworks, densely deployed in a indoor-factory envi-

ronment. A training approach using FRL will be presented, followed by a more

in-depth description in combination with MARL methods.

5.1 Federated Learning Based Resource Allocation Method

Recall centralized and distributed MARL frameworks presented in section 3.1.5.

Respectively, compromised data security and potential convergence problems were

identified as challenges, limiting the potential for practical applications. The con-

cept of FL, presented in section 3.2, is expected to overcome these drawbacks, by

introducing new concepts for sharing knowledge implicitly. Hence, an adaptation

of FRL may potentially make realization of such systems viable.

Consider agents distributed in the subnetworks, collecting and processing local

sensitive data. Through local training, information featured in the data is embed-

ded into the weights of the local model. Assuming training is based on a feder-

ated model with global weights containing knowledge from all participants, the

embedded sensitive data becomes masked. Hence, the weights can convey infor-

mation learned from sensitive data, without compromising security. The federated

model is periodically updated with local weights from all agents with aggregation

59
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methods, and the updated global weights are then utilized by agents to continue

training.

To handle aggregation, it is assumed a central coordinator is equipped with hard-

ware resources to process weights from all agents in a client-to-server model. Com-

munication is sufficient to relay weights perfectly without introducing additional

latency. Furthermore, encryption of transmitted weights and decryption of re-

ceived weights has already been performed correctly without any additional la-

tency or error. Agents share the same problem and train similar models, that is ra-

dio resource allocation based on the same set of actions, and similar observations

from a local perspective. Hence, data is partitioned horizontally where training

is based on local samples with identical features. At a synchronized aggregation

interval, all agents upload local weights to the central coordinator. When all the

weights have been collected, the total average is used as the weights for the feder-

ated model. The global weights are then returned to each agent, overwriting local

weights and distributed training continues. An illustration of the nth agent in the

proposed client-to-server HFRL framework is illustrated in figure 5.1.

Central coordinator

Average
all local
weights

Forward
global

weights

Set
weights

Get
weights

Local model

Train

Buffer

Agent n

Get
weights

Set
weights

Agent 1 Agent N Agent 1 Agent N

Figure 5.1: Illustration of the proposed
HFRL framework for 6G in-robot

subnetworks in a client-to-server model
architecture.
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With aggregation of distributed trained weights it is expected to share knowledge

similar to the centralized approach. Here it is remarked, if the aggregation in-

terval goes towards infinity, the framework will eventually become equivalent to

the distributed learning scenario. However, if agents consistently receive averaged

weights independent learning behaviors may be canceled out, resulting in slow

or no convergence. Furthermore, performing aggregation temporally demands ra-

dio and processing resources from all participants, where the central coordinator

potentially can become a bottleneck in dense scenarios with low intervals. This

suggest a challenge on selecting a suitable aggregation interval.

5.2 Multi-Agent Reinforcement Learning Solutions

The optimization problems described in 4.3.1 indicate high complexity, where get-

ting stuck on a local optimum imposes a challenge. In section 3.1.5, different MARL

solution methods were discussed. A benefit of RL is the approach to exploration,

which forces the optimizer to look for a global optimum. However the design of

RL solutions requires correct definition of state observation and action spaces, the

reward signal, and the policy. Different approaches for designing reward signals

will be investigated, to motivate certain learning behaviors. Two policies from

earlier RL discussions, DDQN and PPO, will be presented in the context of MARL.

5.2.1 Observation Space

For each in-robot subnetwork to perform an observation of the environment, is

is assumed that each subnetwork is equipped with sensing capabilities to obtain

measurements of the aggregate interference power on all used channels at time t.

ooot
n =

[
It
n,1, . . . , It

n,K
]T ∈ RK×1 (5.1)
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Where interference power In,k observed by the nth agent, is based on other agents

actively transmitting on channel k, given by the denominator in (4.10). Hence, the

lowest observable interference level is the noise floor.

In order to achieve faster learning convergence, it is beneficial to ensure that the

feature representations fall within a small range, to avoid certain features dom-

inating the learning process. To achieve this, normalization techniques such as

min-max or z-score may be used for feature scaling. The interference range can

span from the noise floor to an unknown high value, which needs to be deter-

mined through analyzing simulation results.

5.2.2 Action Space

In the case of channel selection, subnetworks transmit with predefined power Pmax.

The available frequency band is divided into a set of K equally sized channel band-

widths. This leads to a discrete action space, where the agent selects one of the K

channels to use for communication.

Achannel = {c1, . . . , cK} (5.2)

For joint power and channel allocation, another aspect is to control the transmit

powers of subnetworks in order to avoid unnecessary interference generation. The

discrete action space can be obtained by dividing the continuous transmit power

range into U equally spaced quantization levels.

Apower = {p1, . . . , pU} (5.3)

The action spaces Achannel and Apower can be merged to formulate the action space

for the joint resource allocation problem. For every action taken, a channel and

power level is selected. This does however increase the size of the action space, as
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the discrete case requires all possible permutations of channels and power levels.

Thus, the action space for the joint allocation problem is formulated as:

Ajoint = {{c1, p1}, {c1, p2}, . . . , {cK, pU}} (5.4)

5.2.3 Reward Signal

The reward signal must be based on a metric representing how good an action was

in a given state. The optimization problems, (4.14) and (4.17), support applications

in requirement of high data rates with or without minimum rate constraints. To

capture the penalty of the SINR constraint in (4.15), a binary reward signal is

introduced

Rn =


+α if γn,m ≥ γ

req
n,m, ∀n, m

−α otherwise
(5.5)

where α is a constant reward value and γ
req
n,m is the minimum required SINR. Fur-

thermore, the agent can be motivated to achieve learning behavior towards higher

data rates, by maximizing the achieved rate

Rn =


rn if γn,m ≥ γ

req
n,m, ∀n, m

rn − λ∆rn otherwise
(5.6)

where the tuning parameter λ can be adjusted for training, and the penalty can be

based on ∆rn = min
{

rreq
n,m − rn,m

}M
m=1.

5.2.4 Multi-Agent Double Deep Q-Network

In the case for value-based DDQN, the Q-networks are structured with DNNs.

Observation of the state ooot
n ∈ RK×1 is mapped to the radio resource action space

A ∈ Ri×1 with a total of i actions [29]. The output is a probability distribution
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vector for decision making, which by taking the greatest probability is limited

to discrete action spaces. However, the continuous power action space can be

approximated as a discrete action space with (5.3) [29]. The method is extended

to the context of Multi-Agent Double Deep Q-Network (MADDQN), where each

subnetwork is deployed with an agent for distributed execution without changing

the architecture of the Q-networks. Agents may be trained independent or joint

with cooperative techniques, based on the used training framework.

A benefit with Q-learning, is the ability to control the degree of exploration, allow-

ing to learn more complex behaviors in the communication system. The ϵ-greedy

strategy tackles the trade-off between exploration and exploitation, where the ex-

ploration probability ϵ is decayed from ϵmax to ϵmin over ϵsteps time steps.

ϵ(t) = max
(
ϵmin , ϵmax − t · (ϵmax − ϵmin)/ϵsteps

)
(5.7)

Hence, the degree of exploration is decayed as training progress. The target net-

work used for training evaluation is similar to the main Q-networks. Information

collected for training is the prior observation that lead to a certain action, from

which a new observation and reward is obtained.

5.2.5 Multi-Agent Proximal Policy optimization

The approach for PPO is categorized as a policy-based method [22], where radio

resource optimization is explored and exploited with stochastic methods. The PPO

relies on the policy to determine the quality of actions, which cannot be performed

if the actions are sampled uniformly at random with ϵ-greedy. The method is

extended to the context of Multi-Agent Proximal Policy Optimization (MAPPO),

where each subnetwork is deployed with an agent for distributed execution.

To stabilize training, the policy network for each agent is structured in an actor-
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critic architecture. During a forward pass, the network generate action probabilities

for radio resource management, and the critic value. The actor is a policy-based

DNN in control of the agent behavior, where the output layer is a vector with same

shape as the action space, used to generate a probability distribution for decision-

making. For discrete action spaces, the observations are mapped to a categorical

distribution over actions, where a discrete action can be sampled [37]. Here it

is also remarked, that a benefit for MAPPO is the ability to use the mean and

standard deviation of the observation vectors to produce a multivariate Gaussian

distribution, from which an continuous action can be sampled [37]. The critic is

a DNN similar to the actor, however the output layer is reduced to a single state-

dependent value. Together, the actor action decision and log-probability, and the

critic value-prediction, is collected in the replay-buffer during execution and later

used for training.

5.2.6 Training Frameworks

Learned policies are distributed over agents in each subnetwork. How the agents

learn, are determined by the deployed training framework. In this section, three

approaches to training will be considered and presented in context of in-robot

subnetworks: centralized, distributed and the proposed HFRL method. The former

centralized and distributed methods are introduced to the discussion to provide a

more in-depth understanding of the conventional training frameworks, and insight

to the key differences that will be introduced in the presented approach.

The three training methods are illustrated in figure 5.2, where the agents are de-

ployed in each subnetwork and are able to access the local sensing information.

Training is divided into episodes, where the environment is randomly initial-

ized at the beginning of every episode. During a training episode, each agent

N = [1, . . . , N] interacts with the environment for T timesteps and collects experi-
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ences for a replay buffer.

Subnetwork
Access point
Device
Coordinator

(a) Centralized (b) Distributed (c) Federated

Figure 5.2: Illustration of training frameworks, (a) centralized where the model is trained in a
central coordinator, (b) distributed models are trained locally, and (c) federated where local weights

are updated with a central coordinator.

In centralized training, agents are cooperating to train a shared model, where every

experience is stored in a shared buffer B. A central coordinator collects observa-

tions from all agents, executes training, and provide the agents with new actions.

For distributed training, each agent is training a local model from a private buffer

Bn, where no knowledge is being shared across subnetworks. The federated ap-

proach is based on distributed training, however a global agent to handle aggre-

gation is introduced. The global agent is periodically updated every TAgg steps,

where all local model weights are collected, and the average of weights are aggre-

gated to the federated model. Every subnetwork then receives the updated global

weights, and continues training.

Distributed execution may result in greedy behavior. If a channel is observed to

be very noisy it is likely that no subnetwork will use it for communication. In the

next time step, the unused channel will have close to no interference resulting in

all subnetworks jumping back to that specific channel. As long as subnetworks are

allowed to update actions simultaneously this pattern will repeat, where all subnet-

works jumps between the same two channels, resulting in very poor performance.

Inspired by the work in [18, 21], simultaneously action updates can be prevented by

introducing a random action transition step delay for each subnetwork τn, where
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subnetworks only are allowed to update actions and store experiences on specific

random time intervals. The random delay is based on the value for maximum

allowed delay τmax, and all delays are generated in the beginning of every episode.

The two policies MADDQN and MAPPO were earlier introduced as different ap-

proaches to the same problem. In combination with the training approaches pre-

sented in this section, a total of six algorithms will be presented. The centralized,

distributed, and federated learning approaches for MADDQN are respectively de-

noted as C-MADDQN, D-MADDQN, and F-MADDQN in algorithms 4, 5, and 6.

Similarly, the approaches with MAPPO are respectively denoted and presented as

C-MAPPO, D-MAPPO, and F-MAPPO in algorithms 7, 8, and 9. The centralized

and distributed frameworks may also provide useful benchmarks for evaluation of

the training performance.
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Algorithm 4 C-MADDQN (Centralized training)

1: Initialize: N , Qmain, Qtarget, B, factory environment
2: for each episode do
3: Deploy all subnetworks with random delay index {τn}N

n=1 from τmax
4: for each timestep, t, . . . , T do
5: if t modulo τn == 0, n ∈ N then
6: Subnetwork n update action at

n with ϵ-greedy and Qmain

7: end if
8: Execute actions aaa in environment and decay of ϵ with (5.7)
9: if t modulo τn == 0, n ∈ N then

10: Store transition
(
ooot

n, at
n, rt

n, ooot+1
n
)

in replay buffer B
11: end if
12: if t modulo Tmain == 0 then
13: Train network Qmain with minibatch from B
14: end if
15: if t modulo Ttarget == 0 then
16: Update network Qtarget with weights from Qmain

17: end if
18: end for
19: end for

Algorithm 5 D-MADDQN (Distributed training)

1: Initialize: N , Qmain
n , Qtarget

n , Bn, ∀n. Factory environment
2: for each episode do
3: Deploy all subnetworks with random delay index {τn}N

n=1 from τmax
4: for each timestep, t, . . . , T do
5: if t modulo τn == 0, n ∈ N then
6: Subnetwork n update action at

n with ϵ-greedy and Qmain
n

7: end if
8: Execute actions aaa in environment and decay of ϵ with (5.7)
9: if t modulo τn == 0, n ∈ N then

10: Store transition
(
ooot

n, at
n, rt

n, ooot+1
n
)

in replay buffer Bn
11: end if
12: if t modulo Tmain == 0 then
13: Train networks Qmain

n with minibatch from Bn, n ∈ N
14: end if
15: if t modulo Ttarget == 0 then
16: Update networks Qtarget

n with weights from Qmain
n , n ∈ N

17: end if
18: end for
19: end for
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Algorithm 6 F-MADDQN (FRL approach)

1: Initialize: N , Qmain
n , Qtarget

n , Bn, ∀n. Factory environment and QAgg

2: for each episode do
3: Deploy all subnetworks with random delay index {τn}N

n=1 from τmax
4: for each timestep, t, . . . , T do
5: if t modulo τn == 0 then
6: Subnetwork n update action at

n with ϵ-greedy and Qmain
n

7: end if
8: Execute actions aaa in environment and decay of ϵ with (5.7)
9: if t modulo τn == 0, n ∈ N then

10: Store transition
(
ooot

n, at
n, rt

n, ooot+1
n
)

in replay buffer Bn
11: end if
12: if t modulo Tmain == 0, n ∈ N then
13: Train networks Qmain

n with minibatch from Bn, n ∈ N
14: end if
15: if t modulo Ttarget == 0 then
16: Update networks Qtarget

n with weights from Qmain
n , n ∈ N

17: end if
18: if t modulo TAgg == 0 then
19: Aggregate averaged weights Qmain

n , n ∈ N to network QAgg

20: Update networks Qmain
n with weights from QAgg, n ∈ N

21: Update networks Qtarget
n with weights from Qmain

n , n ∈ N
22: end if
23: end for
24: end for

Algorithm 7 C-MAPPO (Centralized training)

1: Initialize: N , πθ , πθ,old, B, factory environment
2: for each episode do
3: Deploy all subnetworks with random delay index {τn}N

n=1 from τmax
4: for each timestep, t, . . . , T do
5: if t modulo τn == 0, n ∈ N then
6: Subnetwork n update action at

n with πθ,old

7: end if
8: Execute actions aaa in environment
9: if t modulo τn == 0, n ∈ N then

10: Store transition
(
ooot

n, at
n, rt

n, ooot+1
n
)

in replay buffer B
11: end if
12: if t modulo Tmain == 0 then
13: Train network πθ with minibatch from B for K epochs
14: Update network πθ,old with weights from πθ

15: end if
16: end for
17: end for
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Algorithm 8 D-MAPPO (Distributed training)

1: Initialize: N , πθ
n, πθ,old

n , Bn, ∀n ∈ N . Factory environment
2: for each episode do
3: Deploy all subnetworks with random delay index {τn}N

n=1 from τmax
4: for each timestep, t, . . . , T do
5: if t modulo τn == 0, n ∈ N then
6: Subnetwork n update action at

n with πθ,old
n

7: end if
8: Execute actions aaa in environment
9: if t modulo τn == 0, n ∈ N then

10: Store transition
(
ooot

n, at
n, rt

n, ooot+1
n
)

in replay buffer Bn
11: end if
12: if t modulo Tmain == 0 then
13: Train network πθ

n with minibatch from Bn for K epochs, n ∈ N
14: Update network πθ,old

n with weights from πθ
n, n ∈ N

15: end if
16: end for
17: end for

Algorithm 9 F-MAPPO (FRL approach)

1: Initialize: N , πθ
n, πθ,old

n , Bn, ∀n ∈ N . Factory environment and πθ,Agg

2: for each episode do
3: Deploy all subnetworks with random delay index {τn}N

n=1 from τmax
4: for each timestep, t, . . . , T do
5: if t modulo τn == 0, n ∈ N then
6: Subnetwork n update action at

n with πθ,old
n

7: end if
8: Execute actions aaa in environment
9: if t modulo τn == 0, n ∈ N then

10: Store transition
(
ooot

n, at
n, rt

n, ooot+1
n
)

in replay buffer Bn
11: end if
12: if t modulo Tmain == 0 then
13: Train network πθ

n with minibatch from Bn for K epochs, n ∈ N
14: Update network πθ,old

n with weights from πθ
n, n ∈ N

15: end if
16: if t modulo TAgg == 0 then
17: Aggregate averaged weights πθ

n, n ∈ N to network πθ,Agg

18: Update networks πθ
n with weights from πθ,Agg, n ∈ N

19: end if
20: end for
21: end for
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Performance Evaluation

An overview of the simulation procedure and used parameters will be presented,

followed by an introduction of the benchmark algorithms used for testing. This

leads to a presentation and discussion of the simulation results.

6.1 Simulation Overview

The simulation is based on the system described in chapter 5, implemented with

object oriented programming in Python 3.10.4. This section provides an overview

of the simulation procedure and the used simulation parameters.

6.1.1 Procedure

Simulations are executed on two different machines. The computationally de-

manding training simulations are executed on a Ucloud-server with 16 vCPU (Intel

Xeon Gold 6130) and 96 GB RAM. Further testing of models and any other devel-

opment, has been performed on a quad-core laptop with 12 GB RAM.

It was ealier mentioned in section 5.2.6, training is executed in episodes with T

timesteps. In conventional episodic tasks, e.g., a sports game or a puzzle, the ter-

minal state is determined by the environment when a goal is scored or the puzzle

is solved. The subnetworks however, do not have a terminal state, hence every

action transition generated with the maximum delay mechanism is perceived as a

terminal state. Additionally, the same states are being stored in the replay buffer

71
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and used for training. Algorithms used for resource allocation are MADDQN and

MAPPO. These methods share the discrete resource allocation objective, but ap-

proaches the problem differently which was discussed in section 3.1.4. Results

focus primarily on the channel allocation problem, with the action space in (5.2).

6.1.2 Simulation Parameters

The subnetworks are deployed in the indoor factory, earlier described with the

mobility model in section 4.2.2, where each subnetwork contains an AP and a

single device, M = 1. During training, N = 20 subnetworks are deployed in a

factory with sparse clutter. Investigations of model robustness may be evaluated

with various number of subnetwork in sparse and dense clutter. Radio resources

are assumed to be sparse, hence the number of frequency channels is set to K =

4, forcing subnetworks to share the very limited resources. Radio propagation

parameters are inspired by the works [25, 30]: the lowest frequency fc = 6 GHz,

channel bandwidth BW = 10 MHz, transmit powers pn(t) = −10 dBm, noise

figure NF = 10 dB, and a decorrelation distance dδ = 10 m. Insight to the impact

of the maximum action transition delay can be found in appendix A.1, where the

final value for simulations is τmax = 10. The process of observation normalization

are discussed in appendix A.2. All parameters for the environment are fixed for

all simulation results, and presented in table 6.1.

A similar MARL problem with MADDQN was solved in [25] with distributed

learning, which is used as a inspirational source for parameters, i.e., ϵ-greedy,

discount factor γ = 0.99, learning rate α = 0.001. However, for deployment in

the factory environment described in table 6.2, a batch size of B = 256 indicated

best initial signs of convergence. Vanilla and modified approaches of the PPO is

discussed in the works [27, 38], where the default clipping parameter ϵclip = 0.2

has been suggested. The MAPPO presented in this project is a low-effort vanilla
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Parameter Value
Total factory area R [180, 80] [m]
Clutter type table 4.2 Sparse
Number of subnetworks N 20 [·]
Timestep t 0.005 [s]
Number of episode 2000 [·]
Number of steps per episode T 200 [·]
Subnetwork separation distance dmin 1 [m]
Subnetwork radius dr 1 [m]
Subnetwork velocity 3 [m/s]
Transmit power pn(t) -10 [dBm]
Number of frequency channels K 4 [·]
Carrier frequency fc 6 [GHz]
Bandwidth per subnetwork BW 10 [MHz]
Noise figure NF 10 [dB]
Shadowing decorrelation distance dδ 10 [m]
Max action switch delay τmax 10 [·]

Table 6.1: Simulation parameters for the environment and in-robot subnetworks.

implementation, where the number of epochs κ = 2 and model update interval

Tmain = 8 was chosen as convergence was indicated in early episodes. MADDQN

and MAPPO parameters are presented in table 6.2. Both methods share the same

network structure |S| − 100− 100− |A|, however MADDQN use ReLu for hidden-

layer activation whereas PPO use hyperbolic tangent with softmax as output. In

both cases, Adam is utilized, respectively with Huber and MSE loss for MADDQN

and MAPPO.

No value for the optimal aggregation interval is known for this problem, hence

a good interval is to be determined through analyzing training results. Episodes

are rather short, consisting of T = 200 steps equivalent to 1 second, where mod-

els learn from experiences on every timestep. Hence, based on the discussion in

section 5.1, it is deemed reasonable to span the aggregation intervals over multiple

episodes, in order to avoid cancellation of independent features captured within

successive episodes.
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Parameter Value
Multi-Agent Double Deep Q-Network (MADDQN)

Learning rate α 0.001
Batch size B 256
Reward discount rate γ 0.99
Initial epsilon greedy ϵ 1.0
Epsilon greedy max ϵmax 1.0
Epsilon greedy min ϵmin 0.001
Number of epsilon greedy episodes ϵepisodes 1500
Main model update interval Tmain 1
Target model update interval Ttarget 10

Multi-Agent Proximal Policy Optimization (MAPPO)
Learning rate α 0.001
Batch size B 256
PPO epochs κ 2
Clipping parameter ϵ 0.2
Model update interval Tmain 8

Table 6.2: Training parameters for MADDQN, and MAPPO.

6.2 Benchmark Algorithms

To establish a fair baseline for a training comparison, it is reasonable to benchmark

the convergence of the proposed FRL method with centralized and distributed

learning frameworks, both with distributed execution. A simple random resource

selection algorithm is presented as baseline for the worst-case performance for

selecting actions, the distributed heuristic greedy selection and Centralized Graph

Coloring (CGC) as benchmark algorithms.

6.2.1 Centralized Training with Distributed Execution

Centralized training of a single model, where all observations from subnetworks

are shared. The model learned is executed distributed over all subnetworks. By

sharing experience, it is expected that the agent will learn more complex behaviors

at a faster rate, and provide a good baseline for insight to the benefits of sharing.
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The methods presented with centralized learning, is C-MADDQN in algorithm 4

and C-MAPPO in algorithm 7.

6.2.2 Distributed Training and Execution

Distributed training performed locally at each subnetwork, learning only from in-

dependent experiences. This approach will provide a good baseline for training,

with more insight to scenarios where no experience is shared. The methods pre-

sented with distributed learning, is D-MADDQN in algorithm 5 and D-MAPPO in

algorithm 8.

6.2.3 Random Action Selection

Selection of actions may simply be based on random allocation. At the beginning

of every episode, a random action is allocated to each subnetwork based on a

uniformly distributed random variable that spans over the action space. Actions

across subnetworks are IID, which corresponds to a completely uncoordinated and

distributed scenario.

6.2.4 Greedy Action Selection

The greedy allocation algorithm observes hidden SINR values based on each avail-

able action. For each subnetwork, the action with the greatest corresponding SINR

value from previous time step is then chosen. The greedy channel allocation algo-

rithm can then be formulated as the following.

cn = max
{

SINRk
n

}K

k=1
(6.1)
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The greedy allocation method does not consider other subnetworks and is uncoor-

dinated and distributed. However as a greedy method, a random transition delay

must be introduced to constraint simultaneously action decisions across subnet-

works.

6.2.5 Centralized Graph Coloring Algorithm

The CGC algorithm utilize improper coloring to assign colors equivalent to chan-

nels for all subnetworks [30]. At each timestep t, the pair-wise interference power

relationships among subnetworks, III(t) ∈ RN×N , are collected, and mapped to a

mutual coupling graph Gt. Each vertex corresponds to a subnetwork, and edges

are created by connecting each vertex to its K − 1 nearest neighbors, where the

weights of edges are equivalent to the interference power between the interfer-

ing subnetworks. Greedy coloring yields a reasonable channel assignment, and

K-colorability of Gt is guaranteed with successive elimination of edges with lowest

weight until the graph is colored with up to K colors [19].

As a result of the uncoordinated deployment of subnetworks, a centralized algo-

rithm based on a global view of the network cannot be realized in practice. How-

ever, this will provide insights to how much improvement can be achieved over the

greedy selection baseline.

6.3 Simulation Results

Simulations are presented in three result stages viz: Analysis of the training conver-

gence, performance comparison with benchmarks, and sensitivity analysis based

on the deployment and the factory clutter type.
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6.3.1 Training Convergence

The channel allocation problem is approached with MADDQN and MAPPO, where

different aggregation intervals TAgg = [128, 256, 512, 1024] are investigated. The

aggregation intervals spans from two updates every episode, to an update every

fifth episode. Furthermore, aggregation intervals are not performed on the same

timestep every episode, but shifts as the episodes progresses. Results for training

are presented as the change in average reward over successive training episodes.

The average is obtained from all in-robot subnetworks, for all steps within each

episode. Two reward signals will be investigated, i.e., the binary reward in (5.5)

with α = 10, and the rate reward in (5.6) with λ = 0. The SINR threshold is set to

γ
req
n,m ≈ 33 dB for all subnetworks, equivalent to a data rate of 11 bps/Hz.

Figure 6.1 shows the average data rate reward signal for the MADDQN. At con-

vergence approximately after 1500 episodes, the MARL methods approach the dis-

tributed greedy selection baseline. However, a marginal advantage is not obtained

due to ϵ-greedy has decayed to the minimum value, suggesting more exploration

would likely result in surpassing the greedy baseline. At convergence, the FRL

methods with greater aggregation intervals approach a marginally better perfor-

mance than the centralized and distributed baselines. It is also shown that ag-

gregation intervals can become too low, where features are overwritten before the

agent has learned everything from local and shared information. However, this

does in fact result in a discount on the problem, where performance is increased

by using fewer resources in terms of update frequency.

Figure 6.2 shows the average binary reward signal for the MADDQN. Similar to

the rate reward signal, convergence is achieved approximately after 1500 episodes

where ϵ-greedy has decayed completely. A greater difference is observed between

the centralized and distributed baselines, showing that the best features associ-

ated with binary rewards can be learned quicker through sharing knowledge. All
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Figure 6.1: Training evaluation of agents, trained with MADDQN and data rate as the reward
signal.

aggregation intervals for the FRL have marginally faster convergence than the cen-

tralized baseline, where the change in intervals does not have a significant im-

pact on the training performance. In opposition to the rate reward signal, all fea-

tures embedded in the binary reward signal can be learned over a low number of

timesteps. Hence, any of the used aggregation intervals allows individual agents

to learn everything from the shared knowledge, before a new aggregation update

is performed. This suggest a potential for designing reward signals, for very high

aggregation intervals to achieve a similar performance as to lower intervals in de-

mand of more resources.

Figure 6.3 shows the average data rate reward signal for the MAPPO approach.

At convergence, achieved approximately after 750 episodes, all of the used ag-

gregation intervals for FRL approach the greedy selection baseline. Furthermore,

greater aggregation intervals in the tested sequence tends to show marginal better

performance. A benefit of the MAPPO, is to base learning over multiple epochs for

the same minibatch. The number of epochs however, is a hyper-parameter specific
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Figure 6.2: Training evaluation of agents, trained with MADDQN and the binary reward signal.

for the problem. The centralized baseline tends to converge slower than the dis-

tributed baseline, indicating that the number of epochs is sufficient to learn simple

greedy behavior, but complex cooperative behavior may require even more epochs.
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Figure 6.3: Training evaluation of agents, trained with MAPPO and data rate as the reward signal.
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Figure 6.4 shows the average binary reward signal for the MAPPO. Similar to

the rate reward signal, convergence is achieved approximately after 750 episodes,

where performance does not exceed the greedy selection baseline. The centralized

baseline indicates slow convergence in the start, but in opposition, it manages to

approach the greedy selection baseline. At convergence, the FRL approach main-

tain a significant improvement over the distributed baseline.
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Figure 6.4: Training evaluation of agents, trained with MAPPO and the binary reward signal.

Training time required for convergence, that is 1500 episodes for MADDQN and

750 episodes for MAPPO, are illustrated in figure 6.5. For the MAPPO, a simplified

sequential syntax for the actor-critic structure was used for experimentation. The

MADDQN was implemented in an objective programming syntax, where the gen-

eration of unnecessary overhead is avoided. The MADDQN does however require

longer training time, which possibly may be reduced by optimizing execution in

the implementation. The time required for training may vary with the configura-

tion of hyper parameters.
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Figure 6.5: Measured convergence time for all methods.

6.3.2 Comparison with Benchmarks

The trained models are deployed in each in-robot subnetwork for distributed chan-

nel allocation, and the performance is compared with random, greedy, CGC, and

the centralized and distributed training frameworks. Remark that no new models

are trained in this section. A comparison of all methods are based on running the

pre-trained models for 1000 episodes, and keeping record of all achieved channel

rates. The training results indicated best convergence for larger aggregation inter-

vals, however this observation was not consistent. To evaluate the trained models,

and to keep fairness across methods, the aggregation interval is set to TAgg = 512

during the performance evaluation.

Figure 6.6 shows the Cumulative Distribution Function (CDF) of achieved channel

rate per in-robot subnetwork, for models trained with data rate as the reward sig-
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nal. The proposed F-MADDQN performs marginally better than the distributed

baseline, and significantly better than the centralized baseline below the 30th per-

centile. Furthermore, this performance is significantly better than the distributed

greedy baseline. F-MAPPO similarly achieve marginally greater performance than

the distributed baseline, and approaches the centralized baseline below the 30th

percentile. Results for CGC illustrates the superior performance achieved by im-

practical centralized approaches in contrast to the remaining benchmarks.
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Figure 6.6: Performance evaluation of agents trained with data rate as the reward signal.

Figure 6.7 shows the CDF of achieved channel rate per in-robot subnetwork, for

models trained with a binary reward signal. For F-MADDQN, a significant in-

creased performance is observed below the 30th percentile, achieving better per-

formance than the centralized, distributed, and greedy selection baselines. The

performance of MAPPO however, differs where the distributed baseline manage to

perform better than the FRL approach and the centralized baseline. This may have

been caused by instability during training, where a great decrease in the central-

ized baseline was observed in comparison to the distributed baseline. F-MAPPO
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does however perform marginally better than the centralized baseline, above the

6th percentile.
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Figure 6.7: Performance evaluation of agents trained with the binary reward signal.

During the performance evaluation the average execution time was measured. A

comparison of the execution times can be found in figure 6.8. No significant

change in execution time is observed for different training frameworks, as to be

expected since the output of each framework is identical models, where only the

model weights are the key difference. The significant difference in MADDQN and

MAPPO, is caused by variations of the implemented architectures.

6.3.3 Sensitivity Analyzes

Results for the sensitivity analysis with previous trained models are presented in

this section, remark that no new models are trained for this investigation. The

models trained in the factory with N = 20 subnetworks, are now deployed in sce-

narios with different number of subnetworks. In figure 6.9, the models trained with
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Figure 6.8: Average model execution time comparison of benchmarks and trained models.

the data rate reward signal are deployed in scenarios with N ∈ [10, 20, 30, 40, 50]

subnetworks. When the number of subnetworks increase, an overall decrease in

performance with similar proportions across all methods are observed. This out-

come was expected, as the optimal solution becomes constrained to more sparse

radio resources. The MAPPO solution does not show great signs of robustness

against a increasing number of subnetworks, as it converge towards the random

baseline. In opposition, it is observed that the MADDQN solution maintains per-

formance close to the greedy selection baseline and approaches the CGC baseline.

For both MARL solution methods, the FRL approach maintains performance with

a marginal improvement over their relatives.

In figure 6.9, the models trained with the binary reward signal are similarly de-

ployed in scenarios with different number of subnetworks. The benchmarks al-

gorithms maintain a performance decrease with signs of an exponential change,

similar to the scenario with data rate as reward signal. The approaches with FRL
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Figure 6.9: Sensitivity analysis of agents trained with the data rate reward signal (N = 20), versus
the number of subnetworks.

however, does have a decrease in performance which is closer to linear. When the

number of subnetworks exceeds N = 20, which was used for training, all solu-

tions converge towards the random baseline. Careful consideration should then be

taken when designing the reward signal in an environment with various numbers

of subnetworks. Benefits may depend on the reward type and configuration of the

trained model, however, the FRL approach does indicate the potential to obtain a

marginal performance increase.

The models was trained in a factory environment with sparse clutter, that is an

average clutter element size of dclutter = 10 m with a density of rclutter = 20%. The

models will now be introduced to environments with different types of clutter,

presented with six different cases in table 4.2.

Figure 6.11 shows results for models trained with the data rate reward signal,

tested in different types of clutter in the factory scenario presented in table 6.3.
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Figure 6.10: Sensitivity analysis of agents trained with the binary reward signal (N = 20), versus
the number of subnetworks.

Parameter Sparse clutter Dense clutter
Clutter size
dclutter

10 m 2 m

Clutter density
rclutter

10% 20% 35% 45% 60% 80%

Table 6.3: Evaluation parameters for sparse and dense clutter scenarios, based on table 4.2.

The results are presented as error-bars, where the minimum, average, and max-

imum of all values obtained through simulation are presented. This shows that

the FRL approach for both MARL methods are able to maintain its performance

in comparison to the centralized and distributed baselines. Furthermore, similar

to the sensitivity test against the number of subnetworks, the MADDQN is more

robust changes in the environment, and maintains performance close to the greedy

selection baseline. Remark that normalization of observations, were respectively

based on sparse clutter with rclutter = 20% and dense clutter with rclutter = 60%.

Figure 6.12 shows results for models trained with the binary reward signal, tested

in different types of clutter in the factory scenario, earlier presented in table 6.3. In
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Figure 6.11: Sensitivity analysis of agents trained with the data rate reward signal in a sparse clutter
environment with density rclutter = 20%, versus various scenarios of clutter.

opposition to the models trained with data rates as reward, a better performance

for MAPPO is observed. The F-MAPPO does however suffer from different types

of clutter, except for the dense scenario with rclutter = 60%. This indicates most

resemblance between the sparse and dense scenarios respectively with rclutter =

20% and rclutter = 60%. The F-MADDQN does however indicate similar signs of

robustness to the scenario with data rate as reward type.

Note that although the results presented in this chapter is based on 3GPP models

for industrial environments with different types of clutter [32], the FRL approach

may be useful in different scenarios or other wireless systems.



88 Chapter 6. Performance Evaluation

Sparse
10%

Sparse
20%

Sparse
35%

Dense
45%

Dense
60%

Dense
80%

Factory clutter type

0

2

4

6

8

10

12

14

Ra
te

 [b
ps

/H
z]

Reward type: Binary
Random
Greedy
CGC

C-MADDQN               
D-MADDQN               
F-MADDQN: TAgg = 512

C-MAPPO                
D-MAPPO                
F-MAPPO: TAgg = 512 

Figure 6.12: Sensitivity analysis of agents trained with the data rate reward signal in a dense clutter
environment with density rclutter = 60%, versus various scenarios of clutter.
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Conclusion & Future Work

This thesis has explored the applications of combining MARL and FL for radio re-

source optimization in densely deployed 6G in-X industrial subnetworks. The fo-

cus of this research was on addressing concerns related to viable interference man-

agement and data privacy. The subnetworks were deployed within autonomous

robots performing uncoordinated logistical tasks in a real production factory set-

ting. The channel model utilized in this study was inspired by 3GPP standards and

included different types of clutter, such as sparse and dense. Centralized and dis-

tributed training frameworks were evaluated in this context, revealing challenges

including compromised data security in the centralized approach and potential

convergence problems in the distributed approach. To overcome these challenges,

a client-to-server HFRL framework was proposed, leveraging implicit data sharing

through model weights on aggregation intervals.

Simulation results demonstrated that the proposed HFRL framework improves

convergence and achieves performance that surpasses the centralized and dis-

tributed frameworks. Importantly, this improvement is achieved without compro-

mising data security and without significantly increasing computational complex-

ity for the agents. Longer aggregation intervals discounts the problem, enabling

agents to fully capture both local and global features, leading to enhanced per-

formance while utilizing fewer resources. Additionally, by carefully designing the

reward signal to capture more abstract features, the update frequency can be re-

duced. Moreover, robustness against drastic changes in the environment, such as

variations in the number of subnetworks and clutter types, allows to maintain a

marginal advantage over prior frameworks.

89
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In conclusion, by addressing issues of data security and convergence, the proposed

client-to-server HFRL framework demonstrates potential for improving the perfor-

mance and efficiency of radio resource management for densely deployed 6G in-X

subnetworks in an industrial setting.

7.1 Future Work

Simulation of the federated framework was based on two assumptions, i.e., perfect

time synchronized aggregation updates and flawless processing and communica-

tion. Scenarios with asynchronous aggregation updates, and robustness against

errors in the system is proposed for future work. The method used to aver-

age weights proved to be effective for aggregation, however the same approach

would require modification for asynchronous intervals. Benefits of other aggrega-

tion methods may be explored, i.g., weighted average [39] and soft average [40],

or algorithms allowing only to submit important parts of the local weights. This

would include investigations of the frequency of aggregation.

The distributed peer-to-peer model may improve learning for non-stationary envi-

ronments, by letting two neighboring agents exchange model weights directly. That

is, two adjacent in-robot subnetworks sharing experience about the local environ-

ment. This research should include an agent selection method for the federated

model and mechanisms for triggering exchange.

FRL shows potential for privacy protection, however vulnerability concerns asso-

ciated with attacks has not been addressed. An inside attacker may tamper with

agent rewards, causing errors in the federated model. Outside attackers, i.e., in-

truders and eavesdroppers, may manipulate data or infer sensitive information

from differences in gradient updates. Therefore, investigation of methods to pro-

tect against attacks are needed.
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Appendix A

Additional Simulation Results

This appendix presents additional simulation results for the problem addresses

throughout the master thesis. This includes insight to deciding on a maximum ac-

tion transition delay, collecting statistics for normalization through an interference

analysis, and an example for the joint channel and power allocation problem.

A.1 Maximum Action Transition Delay

In the beginning of every episode, each subnetwork is granted a random action

transition delay based on a maximum tolerable delay τmax. It is remarked that in

the case of τmax = 1, all subnetworks update actions simultaneously, resulting in

poor performance. Insight to the effect of using the maximum delay is illustrated

for a distributed greedy selection algorithm in figure A.1. Parameters used are

summarized in table 6.1. It is observed that the maximum delay indeed improve

performance significantly.

It is remarked that for greater τmax values, no significant improvement is observed.

It is expected to beneficial to set τmax = 10, allowing agents to interact with the

environment as frequent as possible.
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Figure A.1: Illustration of
introducing an action

transition delay from τmax to
subnetworks, based on the

distributed greedy selection
method.

A.2 Interference Statistics Analyzes

The numerical range of the observation space may be controlled for more stable

learning. For range control, min-max normalization is used to scale the aggregated

interference power I, to the scale [0, 1] with

Inorm =
I − Imin

Imax − Imin
(A.1)

where Imax and Imin, respectively are the statistical maximum and minimum ob-

servable interference powers. To obtain the parameters for min-max normalization

and more insight of the environment behavior, an analysis of the possible observ-

able interference powers is performed. Results for a sparse clutter factory scenario

with clutter density rclutter = 20% are illustrated in figure A.3. Parameters used are

summarized in table 6.1.

A similar analysis is performed for a dense clutter factory scenario with clutter

density rclutter = 60%. Results are illustrated in figure A.3



A.2. Interference Statistics Analyzes 99

Figure A.2: Simulation
results of observed

aggregate interference
powers in a sparse clutter

scenario.

Figure A.3: Simulation
results of observed

aggregate interference
powers in a dense clutter

scenario.

The results are use to perform min-max normalization for the implementation.

Statistics respectively from sparse and dense clutter are based all the represented

results, and are not divided into number of subnetworks.
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A.3 Joint Channel and Power Allocation

The joint channel and power allocation problem was presented in section 4.3.1,

however this problem was not evaluated further. Here, an example of the joint

allocation problem is presented. The power levels are represented with (5.3), using

U = 4 power levels from Pmin = −10 dBm to Pmin = 0 dBm. Hence the joint

action space, represented by (5.4), has a dimension of K · U = 16 actions. The

observation space remains unchanged, any other parameters used are presented

in tables 6.1 and 6.2. An example training scenario with C-MAPPO based on the

data rate reward signal is presented on figure A.4. The figure illustrates that the

average reward are increased relative to the scenarios presented in figures 6.1 and

6.3, showing that a power control can improve radio resource optimization.
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Figure A.4: Example of
training joint channel and

power allocation with
C-MAPPO.
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