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Chapter 1

Introduction
Initially, the purpose of smallsats, mostly CubeSats, was purely to perform in-orbit demon-
strations or for educational purposes [10]. However, with technology growing more advanced,
companies all over the world uses smallsats as a cheaper alternative with the hope of expanding
the possibilities for space exploration. Therefore, the type of mission is a satellite’s primary de-
sign determinant. If the satellite has to perform numerous in-orbit tasks, it may need additional
room for extra components and subsystems, thus becoming larger. Although, since the produc-
tion and launch costs increases with their size (in weight), large satellites are thus undesirable
and, as a result, smallsats become increasingly more popular. SmallSat satellites are classified
by their mass, with nanosatellites, cubesatellites and microsatellites being the most prominent
[11].

Figure 1.1: Image of the 16U CubeSat
“G-Space 1”, posted by Space
Inventor.

This thesis is made in collaboration with Space
Inventor, a Danish satellite company based in
Aalborg, manufacturing nano- and microsatellites.
Space Inventor’s recent endeavors in the satellite
industry are considered ground-breaking as they
recently, during the writing of this thesis, has been
the first satellite company to send a CubeSat made
for communication, into a Geostationary orbit [6].
Launched with SpaceX’s Falcon Heavy rocket, the
16U CubeSat “G-Space 1” was manufactured on
behalf of the company Gravity Space and has the
primary task of providing IoT (Internet of Things)
communication services. Additionally “G-Space
1” is equipped with an imaging system to capture
images of Earth and possibly other celestial ob-
jects [3].

Manufacturing satellites having to meet the demands of customers and deliver state-of-the-art
solutions with off-the-shelf components, is no easy task. Especially in terms of satellite point-
ing accuracy. In the words of Space Inventor, given the project proposal in Appendix A, today’s
standards on spacecraft pointing accuracy are exceedingly higher with the advancements in tech-
nology, bringing modern antennas, optical payloads etc. requiring ultra-fine pointing accuracy.

Numerous factors contribute to the challenge of achieving ultra-fine pointing, however, the no-
tion of inertia off-diagonality and non-homogeneous mass distribution, causing unwanted cross-
couplings of the satellite axes, is of special interest to Space Inventor.
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Cross-coupling is something that can never be avoided in a satellite’s inertia tensor, as it is
nearly impossible to achieve a fully symmetrical mass distribution, especially if the satellite is
carrying rather large fuel tanks. For example, a satellite’s inertia tensor could be designed with
either full or empty tanks. Regardless, as soon as that fact changes in orbit, the inertia either
becomes greater or smaller in the respective axes determined by the placement of the fuel tanks.
Additionally, as inertia changes so does the torque needed to rotate the satellite, and thus using
a space where the inertia tensor is diagonal, might be more beneficial, as suggested by Space
Inventor.
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Chapter 2

Preliminary Study
The preliminary study will be comprised of the theory and analyses needed to be able to proceed
with the control design of the spacecraft. First off, some relevant reference frames are presented,
next a walk-through of the fundamentals of spacecraft attitude dynamics and lastly a brief case
analysis describing the thesis problem stated in the introduction.

2.1 Reference Frames
Being a unit-length coordinate system in 3D Cartesian space, a reference frame is a mission
specific frame of reference related to the predefined tasks of the satellite [9][15]. These frames
can be satellite specific or Earth and celestial body specific. A few of the most common frames
are presented in the following.

Earth-Centered Inertial (ECI)

The Earth-centered inertial frame is as the name suggests, an inertial frame of reference. Inertial
frames are non-accelerating and non-rotating frames where Newton’s laws apply, making them
useful for (spacecraft) motion analysis. ECI has its origin in the Earth’s center of mass with
fixed axes, i.e., not rotating with Earth. Its Z-axis is aligned with Earth’s rotational axis, X-axis
pointing towards the vernal equinox, i.e., the point of intersection between the equatorial plane
and ecliptic plane, and lastly Y-axis completing the right-handed coordinate system. ECI is
commonly denoted fXà; Y; Zg, fXI ; YI ; ZIg or simply fIx; Iy; Izg.

Body Reference Frame (BRF)

The BRF is a coordinate frame located in the satellite center of mass, with its coordinate axes
representing the satellite’s actual orientation in space [15]. For instance, if the satellite was to
perform nadir pointing, the BRF axis equipped with the remote sensing component, would have
to align with the Z-axis of the ORF. For the BRF its axes are denoted fBx; By; Bzg.

Principal Axis Reference Frame (Control Reference Frame, CRF)

When an object rotates about an axis that is not aligned with its principal axis of inertia, it will
experience wobbling or oscillations. In contrast, objects rotating about one of its principal axes
will perform pure rotations. The principal axis frame has its origin in the CoM of the satellite
opposite to the BRF, which in the case of non-uniformity, has its origin at the geometric center.
The principal axis frame is denoted fPx; Py; Pzg.
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2.1. REFERENCE FRAMES

Rounding off the section is an image of the frames used in the forthcoming when describing the
spacecraft dynamics:

Figure 2.1: Image showing the inertia, body and principal axis references frames.

4



2.2. SPACECRAFT ATTITUDE DYNAMICS FUNDAMENTALS

2.2 Spacecraft Attitude Dynamics Fundamentals
A spacecraft’s mission might require pointing of instruments or performing maneuvers. To
accomplish those, it is necessary to align its attitude, which is represented by a frame fixed
within the body, with a desired frame. The displacement between the spacecraft body frame and
the desired frame can be represented by a single rotation using quaternions. [2]

2.2.1 Quaternion Representation

A quaternion can be denoted by a four component vector q 2 H, where q1:3 is a three-vector
part, and q4 is a scalar [2]

q := vxi+ vyj + vzk + � = [vx vy vz �]> = [v> �]> (2.1)

and
v> = [sin(�=2)"x sin(�=2)"y sin(�=2)"z]

>

� = cos(�=2)
(2.2)

A unit quaternion defining a rotation from frame A to B can be defined as [2]

qAB := [v> �]> 2 H1 := fq 2 H : jvj2 + �2 = 1g: (2.3)

The product of two quaternions q and �q offer two alternatives [2]

q 
 �q = [q
] �q;

q � �q = [q�] �q;
(2.4)

which relation between the two definitions is

q 
 �q = �q � q: (2.5)

The product
 has proved to be more useful in attitude analysis [2]. The next 4� 4 matrices are
convenient to perform the product between quaternions

[q
] :=

"
�I3 � [v�] v

�v> �

#
= [	(q)q] (2.6)

[q�] :=

"
�I3 + [v�] v

�v> �

#
= [�(q)q] (2.7)
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2.2. SPACECRAFT ATTITUDE DYNAMICS FUNDAMENTALS

where[v� ] is the skew-symmetric matrix of a vectorv = [ vxvyvz]> [2]

[v � ] :=

2

6
4

0 � vz vy

vz 0 � vx

vy vx 0

3

7
5 ; [v � ]> = � [v � ]: (2.8)

2.2.2 Error quaternion

A helpful quantity to identify in quaternion-based attitude estimation and control is the error

quaternion� q. For a reference quaternion�q 2 H1 the relation reads as [2]

�q = � q 
 q;

� q = �q 
 q� 1
(2.9)

and by using the cross-product matrix this relation can be rewritten as

� q = [ �q
 ]q� 1 (2.10)

For small rotations, the following is a useful �rst-order approximation, thesmall-angle approx-

imation. The rotations occurring in an in�nitesimal portion of time are often expressed in this

terms

� q =

2

6
6
4

sin
k� � k

2
�

� �
k� � k

cos
k� � k

2

3

7
7
5 �

2

6
4

� �
2

1

3

7
5 (2.11)

and given that

! =
� �
�t

(2.12)

the small-angle approximation can be rewritten as

� q =

2

6
4

! �t
2

1

3

7
5 (2.13)

2.2.3 Attitude Dynamics and Kinematics

The satellite's equations of motion are separated into a kinematic and dynamic model. Kine-

matics is the study of the satellite time derivative orientation with respect to an inertial reference

frame, while the dynamics establish a relationship between the torques affecting the satellite and

its angular velocity [2]. One way of deriving the equations of motion for a satellite body is using

unit quaternions, since they provide an ef�cient and compact way for representing orientation

and rotations, and provide redundancy which avoid gimbal lock issues.
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2.2. SPACECRAFT ATTITUDE DYNAMICS FUNDAMENTALS

The quaternion rate of change is given by [2]

_q = lim
�t ! 0

q(t + � t) � q(t)
�t

(2.14)

with q(t + �t ) representing the spacecraft's orientation after a time increment�t . This can be

expressed as a quaternion product

_q = lim
�t ! 0

q 
 qr � q(t)
�t

(2.15)

whereqr represents a small rotation de�ned by the small-angle approximation described in 2.11.

_q = lim
�t ! 0

q 


2

6
4

! �t
2

1

3

7
5 �

2

6
6
6
6
4

0

0

0

1

3

7
7
7
7
5

�t
= lim

�t ! 0

q 


2

6
4

! �t
2

0

3

7
5

�t
(2.16)

Thus, the quaternion kinematics with respect to the IRF is de�ned as [2]

_qIS =
1
2

! 
 qIS =
1
2

�( q)! (2.17)

The attitude dynamics of a satellite are derived from itsangular momentum

L S = JS! S (2.18)

where

JS is the inertia tensor of the body

! S is the angular velocity of the body

The rate of change of the angular momentum as seen from an inertial reference is then given by

the transport theorem
dL S

dt

�
�
�
I

=
d
dt

�
�
�
I
(L x ŝx + L y ŝy + L zŝz) (2.19)

and by developing this equation we obtain

dL b

dt

�
�
�
I

=
dL S

dt

�
�
�
S

+ ~! S � JS~! S (2.20)

It is well known from Newton-Euler equations of motion that

dL
dt

�
�
�
I

= � (2.21)

where � represents the total external torques exerted on the spacecraft, e.g. torques from
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2.3. CASE ANALYSIS

thrusters, solar radiation pressure, air drag, etc. By combining equation 2.20 with 2.21 and

isolating the time derivative we obtain the angular acceleration expression as seen from the IRF

[2]
_~! S = � J � 1

S ~! S � ~! S + J � 1
S � S (2.22)

The equations derived above will be used to simulate and evaluate the controller performance in

the next chapters.

With the spacecraft kinematics and dynamics in place, a case analysis on its inertia is performed.

2.3 Case Analysis

When an object rotates about an axis not aligned with its principal axis of inertia, it will expe-

rience wobbling or oscillations. In contrast, objects rotating about one of its principal axes will

perform pure rotations. It is also known that objects with constant angular velocity about their

maximum or minimum principal moment of inertia axis will stay dynamically stable, and that

rotations about the maximum principal moment of inertia require the minimum kinetic energy

the system can have for a speci�c angular momentum.

The moment of inertia, or rotational inertia of a body, determines the amount of torque needed

for a desired angular acceleration about an axis of rotation. This quantity can be described by a

rank 2 tensor. The general inertia tensor form might contain off-diagonal elements.

By diagonalizing the general inertia tensor of a body, the resultant matrix yields the principal

axis of inertia with the diagonal elements representing the principal moments of inertia. From

linear algebra, a square symmetric matrixA , can be diagonalized using its eigendecomposition:

A = Q� Q> (2.23)

With the matricesQ and� denoting the eigenvectors and eigenvalues ofA , respectively. In the

case of the satellite inertia, the same decomposition can be applied to transform a non-diagonal

inertia tensor, to the body's principal axis of inertia:

J b = HJ pH > ) J p = H > J bH (2.24)

with J b denoting the non-diagonal inertia tensor of the satellite in the body frame,H its eigen-

vector matrix and lastly,J p the diagonal matrix of principal moments. Because of the orthog-

onality of the eigenvectorsH is norm preserving and can thus be considered a rotation in the

following way

H = R B
P ) H > = R P

B (2.25)

with R B
P andR P

B signifying a rotation from the principal axis frame to the body frame and vice

versa, respectively. The equalities in (2.25) will become a useful tool later on for the initial

control design.
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2.3. CASE ANALYSIS

2.3.1 Choosing an Appropriate Inertia Tensor

Inspired by [8] who uses an inertia tensor which is assumed to be a low-earth orbit microsatellite,

we have considered this an appropriate choice. However, it is chosen to scale it slightly, yielding

the following satellite inertia tensor

J b =

2

6
4

1:4200 0:0087 0:0136

0:0087 1:7300 0:0602

0:0136 0:0602 2:0300

3

7
5 (2.26)

along with its principal axis inertia tensor calculated according to (2.24)

J p =

2

6
4

1:4195 0 0

0 1:7185 0

0 0 2:0420

3

7
5 (2.27)

The inertia tensor in the principal axis is completely free of cross-couplings, hence yielding

simpler decoupled dynamics and in turn a simpler control design. For convenience, an open-

loop satellite response using both of the inertia tensors is shown below.

Figure 2.2: Response of the satellite attitude quaternion in open-loop, only ini-
tializing the angular velocity to investigate the o�-diagonal impact.
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2.3. CASE ANALYSIS

Figure 2.3: Response of the satellite angular velocity in open-loop, initializing the
x-axis angular velocity to investigate the o�-diagonal impact.

Noting that the satellite has been initialized with spin around its x-axis, namely! x = 0 :1rad=s.

With the preliminary study concluded, the next chapter will feature an initial attempt on a control

design.
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Chapter 3

Conventional Attitude Control

In this chapter, the application of a PD controller in two distinct scenarios is examined. The �rst

scenario involves a change of basis from the body frame to the principal axis of inertia, where

the control inputs are calculated, and then transformed back to the body frame where the torques

are physically applied to the actuators. In the second scenario, the control inputs are calculated

directly in the body frame. Finally, the performance of both implementations is compared to

assess their effectiveness.

3.1 Controller with Principal Axis of Inertia

In the case of microsatellites with large fuel tanks the mass distribution can be non-homogeneous,

which will create cross-coupling dynamics between the satellite body frame axes. In this sec-

tion, a hypothesis is formulated and tested, where it assumes that by determining the control

input in the principal axis �rst, and then transform it back to the body frame, an improvement of

the control performance is achieved. This setup is illustrated in the block diagram of �gure 3.1.

To that end, it is important to state the relationship between the frame where the control input

is determined and the frame where the control input is applied. These frames are the spacecraft

body frame and the principal axis frame respectively, denoted asB andP.

Figure 3.1: Block Diagram of the closed-loop system including the transforma-
tions between frames.

A linear transformation de�ning a rotation from frameB to P is given by

J p = R > J bR (3.1)

whereR is a change of basis matrix from frameP to B, formed by the eigenvectors ofJ b, and

J p is a diagonal matrix formed with the eigenvalues ofJ b in its diagonal. The desired control

inputs are calculated in frameP and then converted back to frameB where they will be applied

to the reaction wheels.

11



3.1. CONTROLLER WITH PRINCIPAL AXIS OF INERTIA

The control inputs, here represented as external torques� , satisfy the following relation

� B = R � P (3.2)

which can be used to transform the torques from one basis to the other.

While working with quaternions it is convenient to express the rotation de�ned byR in quater-

nion form. The conversion between a rotation matrix and a unitary quaternion expressing the

same rotation is described in Chapter 2. The resultant quaternion is denoted asqP
B , which can

be used to change between body and principal axis frames as follows

qP =
h
qB 


i
qP

B (3.3)

with

qB := qB
I and qP := qP

I (3.4)

Similarly, the spacecraft angular velocity can also be converted from the body frame to the

principal axis frame by

! P = R > ! B (3.5)

with ! 1 being the angular velocity expressed in the body frame and! 2 being the angular velocity

expressed in the principal axis.

3.1.1 Control Law

The control law allows determining the poles locations in a closed-loop system to obtain a

desired dynamic response. The control law used in the controller design is given by

u = K xe (3.6)

WhereK is the design parameter,xe is a vector of state errors, andu is the vector of inputs to

the system.

The error state vectorxe gives the difference between a given reference and the current estimated

state. For the attitude quaternion this difference is given by the relation [2]

q2 = qref 
 qe (3.7)

and by isolating theqe we obtain

qe = qref 
 q� 1
2 (3.8)

for the angular velocity, the! e vector is obtained by

! e = ! ref � ! 2 (3.9)

12



3.1. CONTROLLER WITH PRINCIPAL AXIS OF INERTIA

The control inputs are �rst calculated in the principal axis frame

uP = K xeP (3.10)

and then by the relation given in equation 3.2, they are transformed back to the body frame

where they will be applied to the reaction wheels.

We propose to design parameterK based on two different approaches, a Linear Quadratic Reg-

ulator (LQR) and a Pole Placement approach. Both are linear control strategies, thus requires

the model of the system to be linearized.

3.1.2 Linearization

The nonlinear kinematics and dynamics equations governing the behavior of the satellite repre-

sented by

_x = f (x; u) (3.11)

can be approximated by a Taylor expansion to the �rst order, which is valid for small deviations

from an operating point. For operating pointsx0 andu0, we de�ne the deviations of the system

as�x = x � x0 and�u = u � u0. The linearized system is then given by [1]

f (x; u) � T [f (x; u)] = f (x0; u0) + A �x + B �u (3.12)

where

A =
@f
@x

�
�
�
�
x0 ;u0

and B =
@f
@u

�
�
�
�
x0 ;u0

(3.13)

which yields the following linear model around an operating point [1]

@
@t

"
�q1:3

�!

#

=

"
03

1
2 I 3

03 03

#

| {z }
A

"
�q1:3

�!

#

+

"
03

J � 1

#

| {z }
B

�u (3.14)

where03 is a3 � 3 zeros matrix,I 3 is a3 � 3 identity matrix, andJ � 1 is the inverse of the

inertia matrix.

This model will be used in the controller design.

3.1.3 PD

The Proportional-Derivative (PD) controller is the most common feedback control used in in-

dustry, since a trial-and-error design can be more convenient than advanced control techniques

in many applications.Thus, we develop a PD controller to control the 3-axis of the spacecraft

for precise pointing. The PD control can be expressed in a state space structure as [14]

13



3.1. CONTROLLER WITH PRINCIPAL AXIS OF INERTIA

u(t) = K p(qref (t) � q(t)) + K d(! ref (t) � ! (t)) (3.15)

which can be rewritten as

u(t) = K (xref (t) � x(t)) (3.16)

wherex(t) =
h
q(t)1:3 w(t)

i T
, andK =

h
K p K d

i

The proportional gainK p determines the speed of the system response. A higherK d will cause

the response of the control loop will to reach the reference faster, which might cause overshoot

or even make the system go unstable. While the differential termK d acts on the rate of change

of the error state variable, and increasing it will cause the control system to react faster to

changes in the error term. The derivative response is sensitive to noise in the state variables,

therefore it is common practice to use a small differential term. [1]

The controller gainsK p andK d are designed by trial-and-error usingPole Placement. This

design method consists in choosing control gains such that the poles of the closed-loop system

are placed on the left half-plane. In state space form, the closed-loop system becomes [1]

_x = ( A + BK )x (3.17)

with the poles being equivalent to the eigenvalues of the matrixA cl = A + BK , which should

be negative to make the system stable.

The tuning of the PD controller will be explained in *future section*.

3.1.4 Linear Quadratic Regulator

The LQR control problem consists is in minimizing a cost functionJ , which is expressed as the

integral of the square of the statesx plus the square of the control inputsu; i.e., [1]

J =
Z t f

t0

[x> (t)Qx(t) + u> (t)H u(t)]dt (3.18)

with Q = Q> � 0 andH = H > � 0.

The main question to the control design is the selection of the weights of the matricesQ and

H . The quadratic form ofx> Qx impose a penalty or cost associated with deviations of the

statex from the origin, and similarly the termu> H u represents a cost associated with the

control inputs, intended to limit its magnitude so the control signals generated are achievable by

the actuators and the control signal saturation occurs at the maximum signal the actuators can

produce. Saturation can cause a system to become unstable, thus the control signal weighting

matrix should be selected to avoid saturation under normal operation conditions. [1]
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3.2. CONTROLLER WITH FULL INERTIA MATRIX

TheH andQ matrices are designed according to the worse values that the inputs and deviations

of the states can achieve, this is known as the Bryson's Rule in literature. The maximum attain-

able input is given by� max = 0 :1Nm, according to the Space Inventors momentum wheels

speci�cation for microsatellites. The matrix penalizing the inputs is then multiplied by some

constant� according to the system performance to avoid saturation of the actuators. The max-

imum value of any components of a unitary quaternion isqmax = j1j. Thus theH and Q

matrices are given by [1]

H = �� � 2
max I 3 ; Q =

"
I 3 03

03 I 3

#

(3.19)

The K matrix can be then obtained by solving the algebraic Riccati equation with the linearised

model.

3.2 Controller with Full Inertia Matrix

In order to test the hypothesis proposed in section 3.1, it is necessary to conduct a comparison to

determine whether applying the Body Frame/Principal Axis transformation leads to enhanced

performance compared to directly applying the controller to the Body Frame. Thus, a PD and

LQR controller were implemented directly with the full inertia matrix.

Figure 3.2: Block Diagram of the closed-loop system.

The control inputs are then directly calculated in the Body Frame

uB = K xeB (3.20)

wherexeB is the state vector given by

xeB =

"
qe(1:3)

! e

#

(3.21)

andqe represents the attitude quaternion difference between the current estimated attitude and a

referenceq1, and! e represents the angular velocity error between the current angular velocity

and a given reference! 1.
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3.2. CONTROLLER WITH FULL INERTIA MATRIX

qe = [ qref 
 ]q� 1
1

! e = ! ref � ! 1

(3.22)

The method used to �nd the gainsK for the PD and LQR controllers follows as the description

given in section 3.1. Thus, the main difference between the Principal Axis of Inertia controllers

and Body Frame controllers is the inertia matrix used in each case, referring back to Section 2.3

for value of these.

In the next section, the results obtained from both the Principal Axis and Body Frame imple-

mentations are presented and examined.
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