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Decarbonising modern society has become a global priority to survive the
climate crisis. There is a general agreement that part of this process is tran-
sitioning to zero-emission energy, requiring the electrical grid to incorporate
such energy sources. Recent research directions inspect which opportunities
distributed ledgers could bring to this area. One of the main concepts resulting
from this is micro grids, and studies on their efficiency and security have shown
promising results. However, one of the recent issues receiving attention from the
research community is trading between multiple micro grids. Many approaches
have been proposed but suffer from impaired latency and throughput or com-
promised security.

In this thesis, I propose a design of a relay chain-based energy market plat-
form that utilises a distributed mediator to facilitate energy trading across
heterogeneous micro grids in Denmark, called PolkEM. Furthermore, I have
designed, implemented, and tested an accompanying testing environment for
future micro grid implementations. Due to implementation difficulties with
PolkEM, I only provide a theoretical design and discussion on its potential per-
formance.

However, I have implemented the testing environment through a Kubernetes
cluster and facilitated user configuration through Helm charts and related pa-
rameters. The testing environment can run on various hardware configurations
and infrastructures because of its Kubernetes foundation.

In addition to the testing environment, I have implemented microservices
for account management and logging and a trade matching algorithm for the
cross-grid trading process. These implementations have been tested with unit
tests and decoupled from each other and the testing environment.

I have also created numerous automation scripts to handle tedious tasks and
speed up the development time. These are especially useful due to Substrate’s
composition, requiring several files to be repeatedly generated and modified. By
automating these processes, I have accelerated them and decreased the potential
for errors.

PolkEM theoretically meets its associated requirements based on a detailed
discussion. Furthermore, its latency and throughput are highly competitive
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with the current Danish system and decentralised alternatives proposed in re-
lated studies. I form this conclusion based on the assumption that more mature
versions of Substrate and Polkadot will support the suggested micro grids and
still operate efficiently. I support this assumption by comparing the practical
size of the traded energy assets with the default block size used by Polkadot. I
also discuss the potential computational overhead added by the needed modifi-
cations, which I deem reasonable.

I also discuss PolkEM’s theoretical security properties and conclude that the
platform provides high attack resilience based on its detection probability and
firm punishments.

The testing environment also meets its requirements, except for malicious
node injection. I did not implement the features necessary to meet this require-
ment due to time constraints, but I outline one approach to do so based on how
I have implemented other features. I conducted an experiment illustrating how
to execute tests with the testing environment and extract data from the tested
micro grid’s nodes.

In conclusion, PolkEM constitutes a potential design for a future distributed
energy market. Whether the claims and assumptions on its performance and
security properties hold in a real-world scenario is unknown, but the theoretical
discussion provides promising potential for a similar system. Furthermore, the
testing environment offers a way to test micro grid implementations on the
platform during development and run extensive test scenarios on sophisticated
infrastructures.
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Preface

This report presents a platform supporting cross-grid energy trading between mi-
cro grids with an accompanying testing environment. It developed as part of my
Master’s Thesis in Software at AAU.

In Chapter 1, the problem is introduced. In Chapter 2, analyses of the context,
preliminaries, and problem definition are presented. In Chapter 3, the proposed
platform is specified with details of the used systems. In Chapter 4, the accom-
panying testing environment is outlined, described, and implemented. Chapter 5,
present two experiments, the first covering the execution time of the exemplary
trade matching algorithm and the second showing the capabilities of the testing
environment. In Chapter 6, a discussion on the different aspects of the platform
and testing environment are presented, concluding in whether they answer the
problem definition posed in Chapter 2. In Chapter 7, the project is concluded and
followed by recommendations for future development in Chapter 8. Links to the
source code developed during the project are provided in Appendix B.

I want to thank my supervisors, Daniele Dell’Aglio and Michele Albano, for
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Chapter 1

Introduction

Blockchains and distributed ledger technologies have received increased attention
in the last decade. Their most prominent application, in terms of publicity, has
been cryptocurrencies, which have created new financial markets. Recent crashes
of these markets have resulted in scepticism towards the technology as a whole [1],
demanding that new applications sufficiently prove that they overcome the widely
acknowledged shortcomings, such as robustness, security, and efficiency [2, 3].
Alleviating these shortcomings is paramount when developing solutions for vital
infrastructures, such as those in the energy sector. This sector has received addi-
tional attention from researchers and developers of distributed systems due to its
transition towards more distributed and intermittent energy generation [4]. One of
the main areas where this focus has offered new contributions is energy trading [5–
7]. Studies on better facilitation and support for smaller producers have given rise
to the concept of micro grids [8, 9] (MG). However, general issues persist, including
scalability regarding users and security against adversaries [7, 10].
One recent development to address scalability has been the interconnectivity of
multiple MGs, dividing communities into smaller groups, each with its own in-
dividual MG responsible for the limited number of users [11–13]. A promising
development to support this approach is the reliance on a relay chain, facilitating
parallel operation and communication between smaller chains [14]. This approach
has recently been used with energy trading by Zhang [15] but achieved limited
scalability, as all cross-chain transactions were facilitated and administrated di-
rectly on the relay chain.

In this study, I explore using a mediator chain to efficiently and securely fa-
cilitate energy trading between multiple MGs with heterogeneous internal logic.
Supporting diverse MGs enables future developers to implement specialised fea-
tures for varying communities based on the individual community’s needs and
capabilities, such as consumption and production volume. I provide a detailed
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2 Chapter 1. Introduction

description of a platform called PolkEM, connecting this mediator to a relay chain
highly inspired by Polkadot [16]. The relay chain acts as an interface for MGs to
join the platform and ensure correctness. An exemplary MG is used throughout
the study, as PolkEM encourages heterogeneous MG implementations and includ-
ing all possible configurations would be infeasible.

Due to implementation difficulties, the project did not extend to a full imple-
mentation of PolkEM. Instead, I provide a detailed description of PolkEM and
its constituents and a theoretical discussion on its applicability. Additionally, I
present a testing environment capable of evaluating future MG implementations
on the platform.

1.1 Motivation

The global climate crisis requires solutions for supporting the rapidly expand-
ing global production of goods, which currently results in increased carbon emis-
sions [17]. One aspect that could create a de-carbonising domino effect for pro-
cesses is a transition to zero-emission energy. Carbon-free energy would allow
other sectors to develop energy-intensive processes to replace fossil fuel-based
ones, consequently allowing the zero-emission energy sector to mitigate a large
part of their emissions [17]. Research enabling this transition of the energy sector
is therefore highly impactful. Better facilitating energy trading for distributed, in-
termittent, and small-scale energy producers could increase investments in these
technologies. Consequently, this would accelerate the transition, and the distribu-
tion of energy producers could enhance the infrastructure’s robustness.

Blockchain technology still faces scepticism despite its public recognition re-
garding its application in an industrial context [2, 3, 18]. Proving that the technol-
ogy can overcome the shortcomings of efficiency, scalability, and security identified
in its early implementations remains a focus in the research community [10, 14].
The advancements in cryptographic systems, privacy-preserving protocols, Proof-
of-Stake consensus algorithms, and multi-chain architectures show great promise,
but applying these to real-world issues and proving superiority over current alter-
natives still constitute the frontier of the general blockchain adaptation [7, 9, 18, 19].

In this project, I aim to advance the field of decentralised energy systems. I
do this by discussing the applicability of recently developed blockchain techniques
and tools within the energy market and the competitiveness against the system
currently used in Denmark. To back the claims made in the discussion, I have
developed a testing environment for evaluating MGs on the platform. This testing
environment supports various implementations, making it practical for developing
and testing MG implementations for PolkEM.
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The remainder of this report is separated as follows. In Chapter 2, I focus on en-
ergy trading as conducted today, the associated challenges and research directions,
and will conclude with a list of requirements for PolkEM and the testing envi-
ronment. I present a detailed description of PolkEM and its design in Chapter 3
and use this in Chapter 4 to describe the test environment and its implementa-
tion. I present two experiments to demonstrate the execution time of an exemplary
trade matching algorithm, the test environment’s capabilities, and the internals
of PolkEM in Chapter 5. In Chapter 6, I discuss PolkEM’s performance and the
testing environment’s completeness, leading to a conclusion on the project pre-
sented in Chapter 7. Chapter 8 gives an overview of future features and research
directions.

In Appendix A, I present an overview of the development process, including
several difficulties encountered while working with the Substrate framework [20].





Chapter 2

Problem Analysis

This project addresses challenges from energy trading in the current market, in
addition to distributed ledger technologies, and I, therefore, provide an overview
of the energy trading dynamics and some of the research directions within these
fields.

2.1 Energy Trading

This section illustrates the responsibilities assigned to energy trading mechanisms
and how the system currently operating in Denmark handles them. The section
is based primarily on Christian Dahl Winther’s detailed work and descriptions,
presented in his book Visual Guide to the Power Grid [21]. Understanding these con-
cepts is important for designing a system accommodating the growing demand for
more energy and electrical grid features.

Electricity has become a vital commodity to everyday life across the planet,
used, for instance, for heating, cooling, and industrial processes. [22]. Energy trad-
ing ensures availability, facilitates payments to energy producers, and balances the
grid frequency to prevent white- and black-outs. These responsibilities are critical
for the grid’s continued operation and to meet the constantly fluctuating demand
from consumers. In recent years there has also been an increasing interest in incor-
porating renewable energy sources into the market and improving the conditions
for prosumers, who consume and produce electricity on a small scale.

2.1.1 Current Danish Model

The current system applied in Denmark utilises a highly centralised market to
facilitate energy trading. The process conducts trades across two markets, the
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6 Chapter 2. Problem Analysis

day-ahead and the intra-day. A rough estimate is achieved through the day-ahead
market and then fine-tuned based on the actual consumption and production us-
ing the intra-day market, allowing for better forecasting and proactive frequency
adjustments. The day-ahead market relies on predictions from participants, while
the intra-day market is mainly in place to handle the inevitable deviations of these
predictions from actual consumption and production.

The frequency is balanced using information and communication technologies,
but grid operators are still needed to verify results and react to unforeseen events.
Any deviations from these predictions result in fines for the participants, which
incentivises accuracy and precision. Parts of these fines compensate those who
help stabilise the frequency. Participants can do this by increasing consumption
during spikes or production during dips.

Computing the trades in either market is facilitated at a centralised point. This
centralisation ensures a single source of truth, limits market participation to well-
known actors, and achieves disputeless data validation. However, it also introduces
a single point of failure, as attacking the trading system can bring down the entire
grid. Applying redundancy to the system through backup instances only mitigate
this risk partially, as the price of each instance likely limits the number of backups
to a few.

Furthermore, as prosumers cannot participate directly in the market, their
prices are controlled solely by large retailers operating as intermediaries. This
separation results in unfavourable selling and purchasing prices for prosumers,
who have no other way of market participation.

Despite energy retailers operating under laws and regulations, violations and
abuse of power still occur. One example is the recent price spikes during the Euro-
pean energy crisis, where Danish energy companies had record high profits [23],
suggesting an abuse of their position. Furthermore, multiple energy retailers are
now suspected of cartel formation, collaborating to raise market prices [24].

Centralising the balancing makes its associated computations quick, as there is
only one source of truth, alleviating the need to achieve consensus across entities.
During the day-ahead market, the balancing algorithm is limited to 10 minutes,
during which it must compute the optimal match of trades and share these with
the participating actors. Each actor has 20 minutes to accept those that involve
them before they become binding. During the intra-day market, trades are con-
structed continuously to fine-tune the balancing. The time between bid submission
and trading varies across Denmark but is between five and 60 minutes. Hence, in
the best-case scenario, a bid is traded within five minutes of its submission.

The points presented above illustrate prominent issues of the current market
but also highlight qualities to incorporate into alternative systems. Centralisation
introduces a single point of failure and trust-based trading, among other things,
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to consider during the design. The main qualities inherited from centralisation
are data validation, low trading delays, and the combination of rough estimates
and fine-tuned balancing through the two-market model. A good balance between
solving the issues and preserving the advantages should be the aim of an alterna-
tive system.

2.2 Related Work

The possibility of decarbonising large parts of our industrial processes through
electricity from renewable sources has created interest from academics and prac-
titioners. This interest has resulted in studies of both theoretical approaches and
the practical applicability of decentralised market structures that have proven to
improve the facilitation of distributed and intermittent production.

One study revolving around the applicability of a blockchain-based energy
market conducted in Switzerland is Quartierstrom [19]. In the study, a Swiss com-
munity of 37 households participated in decentralised energy trading to determine
how well local production could cover their consumption. Quartierstrom is built
on the BFT engine Tendermint [25]. Even though the results were promising, receiv-
ing outstandingly positive feedback from the participants, the team abandoned the
blockchain technology in the following study due to poor scalability [18]. The ar-
gument was that the platform did not scale sufficiently and encountered issues
when reaching 500 participants.

For PolkEM, I utilise a Nominated Proof-of-Stake (NPoS) consensus approach
to overcome these scalability limitations.

Scalability has been one of the main concerns regarding blockchain technolo-
gies and has resulted in numerous studies aiming to implement more efficient
consensus approaches and better energy trading systems [7, 10]. One presented
by Zhang [15] proposes utilising a relay chain to decrease latency and increase
throughput while ensuring correctness for trades between participating MGs. The
relay chain acts as a validation mechanism for the MGs and as a facilitator of cross-
grid trading as part of its block authoring. Despite satisfactory latency, throughput,
and security results for the tested networks, the study concludes that depending
on the relay chain to facilitate cross-grid trading is not scalable in a real-world
scenario.

I propose only using the relay chain for validation and incorporating a dis-
tributed mediator to facilitate cross-grid trading, alleviating the presented con-
cerns.

Blockchain systems and microservice architectures share commonalities regard-



8 Chapter 2. Problem Analysis

ing testing, as they both have autonomous processes likely distributed across mul-
tiple devices. The autonomy and distribution increase the testing difficulty due to
the introduction of decentralised communication and the associated error sources.
These include networking failures and non-responsive devices. Testing each node
or service through unit-, component-, and integration tests still play a role for these
architectures, but they cannot detect faults introduced by deploying the system on
a distributing infrastructure. Therefore, explorative and scenario-based system
tests are crucial for evaluating these systems, as these can identify potentially over-
loaded services and architectural bottlenecks. [26]

I present a testing environment for evaluating MG implementations on PolkEM,
providing a general way to evaluate different designs and approaches with support
for diverse and intricate test scenarios.

2.3 Preliminaries

This project builds on the research I conducted during my ninth semester. In
the following, I re-introduce the main aspects to make this project self-contained.
I advance the presented contribution by offering a more detailed description of
PolkEM, in-depth arguments for its performance, and a testing environment.

2.3.1 Polkadot Terminology

I incorporate a relay chain, highly inspired by Polkadot, as part of PolkEM and
therefore inherit some of its terminologies. I here list these with short descriptions.

• Relay Chain: An aggregating blockchain used to validate state transitions
and, in turn, blocks of connected parachains.

• Parachain: A blockchain connected to a relay chain, depending on it for
validation and interconnectivity with other parachains.

• Validator: A relay chain node participating in the validation process by join-
ing a validator set, authoring relay chain blocks, executing approval proto-
cols, and voting on the finality of relay chain blocks.

• Validator Set: A set of validators associated with a specific parachain for
a limited time, responsible for initial validation of state transitions received
from the associated parachain.

• Collator: A parachain node responsible for collating relevant block data and
state transitions to the associated validator set.
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• Voting Set: The set of validators responsible for voting on the validity of
parachain blocks before they are accepted by the relay chain and on the final-
ity of relay chain blocks.

• Nominator: A blockchain node that stakes tokens to help a collator or a
validator reach the required stake, receiving part of the fees collected by their
nominated collators and validators in return.

A validator can be part of a validator set and the voting set concurrently.
To increase readability and cohesion, I explain the remaining terminology, such

as the specific approval protocols, as they become relevant throughout the report,
continuously providing more details.

2.3.2 9. Semester PolkEM Architecture

The architectural result of my ninth-semester project, see Figure 2.1, consists of a
relay chain that connects a set of MGs and an intermediary grid connection to a
distributed mediator. The hexagon in the middle is the relay chain, and the com-
ponents to the left are MGs. The two MGs depict two different implementations,
MGn containing a single type of node, the dots, and MG1 extending this with a sec-
ond type, the triangles. The dots between MG1 and MGn symbolise the inclusion
of an arbitrary number of additional MGs. The top-right component is a grid-
intermediary parachain to facilitate trading with the centralised grid. The bottom
right depicts the mediator chain, which acts as the cross-chain trading facilitator
for the remaining entities. The rectangles in each chain are relay chain validators
connected to the specific chain for state transition and block validation. Addition-
ally, these validators also facilitate the message passing between the parachains.

Figure 2.1: Architectural design presented in my ninth-semester project.
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2.3.3 Byzantine Fault Tolerance

One theoretical problem limiting the scalability and security of distributed systems
is the Byzantine Generals Problem, initially presented in 1982 [27]. I describe its
fundamental aspects here, as it affects PolkEM’s security and design. I have slightly
changed the formulation to fit the context of a blockchain system, but the technical
characteristics are maintained.

The problem depicts a set of nodes attempting to agree on a value, assumed to
be binary in this example. One or more nodes may be adversaries aiming to alter
the resulting agreement, either preventing it or deciding the agreed-upon value,
by sending inequivalent messages. All proposed values are stored locally for each
node as vi(1), ..., vi(n), where n is the number of nodes, i is the local node, and
vi(j) is the value received from node j.

Correctness can be ensured by meeting the conditions presented below.

1. vi(1), ..., vi(n) must end up being equivalent across all well-behaved node

2. Given that a well-behaved node k proposes the value m, each well-behaved
node, i, must end up with vi(k) = m

All messages are forwarded to ensure that each node sends the same message to
the other nodes. However, this introduces the main part of the Byzantine Generals
Problem. Having three nodes, two well-behaved, A and B, and one adversary, CA,
A and B cannot identify CA. For instance, assume that A receives two contradictory
messages for vA(CA), one directly from CA and one forwarded by B. Whether CA

sent two different messages or B forwarded an altered value, vB(CA)′, is impossible
for A to know.

(a) CA sends contradicting messages. (b) B alters the value received by CA, misbehaving.

Figure 2.2: Depiction of the two cases where A receives contradictory values for vA(CA). From the
perspective of A, the two cases are identical.

Introducing a third well-behaved node, D, allows A to identify CA as an adver-
sary because A receives messages as described in one of the three cases shown in
Equation 2.1, where

∀i∈{A,B,D}vA(i) ≡ vB(i) ≡ vD(i)
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vA(CA) ̸= vB(CA) ≡ vD(CA) A received a different value from CA

vA(CA) ≡ vD(CA) ̸= vB(CA) B received a different value from CA

vA(CA) ≡ vB(CA) ̸= vD(CA) D received a different value from CA

(2.1)

In either of these cases, A ignores all values vCA(1)...vCA(n) sent by CA. Fur-
thermore, a second adversary would increase the required number of well-behaved
nodes by two to maintain correctness and decisively identify all adversaries. Lam-
port describes this problem in more detail in the original paper [27], and I will not
provide further details here.

Based on the above, 2
3 n + 1 nodes in a network must be well-behaved to guar-

antee a consensus on a correct value. If a distributed algorithm can ensure the
two presented conditions, given 2

3 n + 1 well-behaving nodes, it is called Byzantine
Fault-Tolerant (BFT). The problem has become increasingly relevant in recent years
due to the growing demand for reliant and secure distributed systems, such as
those leveraging blockchains.

2.4 Problem Definition

The issues I have identified above include limited influence from prosumers, a
single point of failure, and purely trust-based trading. These issues could originate
from high centralisation and advocate for a more decentralised approach utilising
distributed ledger technologies is creditable. The paradigm shift to a distributed
market brings several concerns and technical challenges. The main problems I have
identified and tackled in this project concern the design details of PolkEM and a
testing environment to evaluate the MGs implemented for it.

The problem definition of this project is:

How can a relay chain-based energy market platform utilise a dis-
tributed mediator to facilitate energy trading across heterogeneous mi-
cro grids in Denmark, and how can a testing environment be imple-
mented to evaluate these heterogeneous implementations on the plat-
form?

2.4.1 PolkEM

The requirements for PolkEM are described in detail below and summed up in
Table 2.1, using three categories, scalability, security, and additional features.
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Latency: The time from bid submission to trade inclusion, referred to as ∆l , must
be competitive with the five minutes achieved in some parts by the current system.
Whether this limit is desirable can be debated, but I use it as a target as it is achiev-
able with the current system.

Throughput: In 2022, there where 2.788.291 households in Denmark [28]. Assum-
ing that each of these will trade individually, PolkEM must achieve a throughput
of 2.788.291 bids. Based on the latency requirement specified above, the time de-
lay ∆ti between bid submission, i, and its inclusion in a trade must be at most
300s. The required throughput can therefore be formalised as the set of delays
∆t1, ..., ∆tn, sorted in ascending order, where n = 2.788.291 and ∆tn ≤ 300s.

Privacy: Actors in the system must be unable to obtain any participant’s personal
data. Such data includes address and individual long-term consumption and pro-
duction data.

Transparency: Any action performed on the platform should be traceable to a spe-
cific account.

Attack Resilience: The platform must remain operational in the presence of ad-
versaries under the assumption that at least 2

3 n + 1 of the authority nodes remain
correct and well-behaved. One of the prominent attacks on MG-based energy mar-
kets is false data injection, as imbalances in frequency could have catastrophic
consequences [29]. Therefore, resilience against this specific type of attack is cru-
cial. I mention some additional attacks of concern and how PolkEM attempts to
prevent them throughout the report.

Direct Prosumer Trading: Prosumers should be able to participate in trades with-
out depending on a single third-party intermediary in control of pricing. Reliance
on single entities to perform parts of the trading process is acceptable, given that
prosumers can influence their pricing.

Heterogeneity: The platform must be able to support diverse communities only
based on a few assumptions about the requirements, such as relevant market in-
formation and local trade construction.

The requirements presented here are vague and must be specified further for
any meaningful implementation evaluation. However, these requirements will suf-
fice, as I only propose the overall design.
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Scalability

RP1 Latency ∆l ≤ 300s

RP2 Throughput ∀i∈[1,2.800.000]∆ti ≤ 300s

Security

RP3 Privacy Personal data stays hidden

RP4 Transparency Actions and actors are visible

RP5 Attack Resilience Continued operation despite adversaries

Additional Features

RP6 Prosumer Trading Independent of price-controlling inter-
mediaries

RP7 Heterogeneity Limited assumptions about communities

Table 2.1: Table of requirements for the PolkEM platform.

2.4.2 Testing Environment

The requirements of PolkEM outline a foundation for constructing and evaluating
a competitive platform. However, they demand a sophisticated testing environ-
ment to determine whether a given MG is compatible and can achieve acceptable
performance. Such an environment introduces additional technical challenges and
requirements to ensure the extraction of high-quality results. I present a set of
requirements for the testing environment below using three aspects, basic function-
ality, scalability, and security. Table 2.2 sums up these requirements. To limit the
scope, I have focused on Substrate-based implementations [20].

The testing environment must include the basic functionalities of instantiating
the MG under test, the mediator, and the relay chain that facilitates communication
between them. After successfully instantiating the chains, the testing environment
must also be able to connect these chains and include a mechanism for extracting
data from the nodes. It must also incorporate a way to run sidecar applications1

responsible for triggering relevant actions. Portability is another vital feature, en-
abling the testing environment to run on various setups. This feature allows the
testing environment to function as a development and evaluation tool by support-
ing local development environments and more sophisticated infrastructures.

1Sidecar applications in this context refer to applications connected to a blockchain node, respon-
sible for initiating its actions
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After implementing these basic functionalities, the environment must also meet
some requirements that allow it to test the scalability of the implementations. These
requirements include instantiating an arbitrary number of chains and nodes, as
well as the ability to determine the timing of events. Meeting these requirements
means the testing environment can support load- and stress-testing. Extraction
of event timings allows the user to reason about an implementation’s scalability
through the relation between latency or throughput and the number of MGs and
nodes.

The security category I present here is limited, as testing MGs and the plat-
form for security vulnerabilities using a quantitative methodology is insufficient
for proving attack resilience. Instead, I have implemented the testing environ-
ment as an extensible foundation to accommodate specialised user configurations.
Therefore, it must incorporate node accounts for testing against authorisation- and
access-related vulnerabilities. Furthermore, it must facilitate the injection of mod-
ified nodes to represent adversaries. These features enable the environment to
simulate attacks and demonstrate how the platform and the MGs under test react
to these. This level of abstraction leaves the attack specification to the user, increas-
ing the complexity of defining scenarios but expanding the range of supported
configurations.
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Basic Functionality

RT1 Support for blockchains with arbitrary logic

RT2 Instantiation of a relay chain for inter-chain communica-
tion

RT3 Connection between chains with arbitrary logic and the
relay chain

RT4 Extraction of data from nodes without relying on the im-
plementation details

RT5 Execution of sidecar applications interconnected with run-
ning nodes

RT6 Portability across setups and infrastructures

Scalability

RT7 Support for an arbitrary number of chains

RT8 Instantiation of an arbitrary number of nodes

RT9 Incorporation of event timings as part of extracted data

Security

RT10 Inclusion of valid accounts for participating nodes

RT11 Injection of adversary nodes

Table 2.2: Table of requirements for the testing environment.

In the following chapters, I present the design and implementation details of
PolkEM and the testing environment and how they meet the listed requirements.

The handling of energy offers and requests rarely differs. Therefore, the term
energy asset is introduced to refer to instances of either whenever PolkEM processes
them identically.
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PolkEM

In this chapter, I introduce the PolkEM energy trading platform that leverages
a relay chain and a distributed mediator. The relay chain and mediator enable
PolkEM to conduct trading across multiple MGs with heterogeneous internal logic.
The relay chain is based on Polkadot [30] and inherits its features. Furthermore,
I use the Substrate [20] framework for the mediator to leverage the framework’s
components and protocols.

In Section 3.1, I give an overview of the energy asset submission and trade
inclusion process from the prosumer perspective. Substrate and Polkadot’s block
creation and validation details are provided in Section 3.2 to form a foundation
for discussing PolkEM’s scalability and security. I finish the chapter by presenting
and describing the main novelty of PolkEM, the mediator facilitating cross-grid
trading, in Section 3.3. I discuss the presented concepts and details in Chapter 6.

PolkEM aims to support interconnectivity with the current grid operators through
an intermediary parachain. This chain conducts block authoring and achieves fi-
nality identically to the MGs. Therefore, I only mention the MGs in the following
sections, but the approach applies to the grid-intermediary chain as well.

A blockchain-based system’s performance and security are rooted in the block
creation and validation approach. PolkEM leverages the Substrate framework,
which separates block authoring and finalisation, and inherits this property. The
separation allows for increased chain growth and for multiple blocks to reach fi-
nality at a time.

3.1 Energy Asset Process Flow

Ensuring low latency, high throughput, and sound security in a blockchain-based
system requires a deep understanding of multiple computer science areas, includ-
ing networking and consensus. Before explaining the protocols PolkEM use to

17
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achieve these properties, I list some requirements for the MG implementations that
ensure their compatibility with the platform. After this, I provide an overview of
the process flow for submitting an energy asset from the perspective of a prosumer.

3.1.1 Micro Grid Trading

Most energy trading is assumed to conclude locally, as it will involve fewer par-
ticipants and less computational power, hence be cheaper. The internal logic for
each MG is undefined due to the goal of supporting heterogeneity. However, each
MG must communicate with the relay chain to participate in cross-grid trading,
which is possible in two ways. The MG can either meet a set of requirements and
connect directly to the relay chain or ignore these and connect to an intermediary
chain. Using an intermediary chain includes additional steps that could decrease
the performance and potentially introduce security risks. I provide an exemplary
MG that connects directly to the relay chain for illustrative purposes.

The requirements for MG implementations that wish to communicate directly
with the relay chain are listed below.

• The runtime must be representable as a Web Assembly (WASM) binary.

• The initial state of the MG blockchain, also known as the genesis state, must
be exportable to a format compatible with the relay chain.

• The chain’s internal logic must consist of a state machine using state-transition
functions.

• The chain must be able to collate its state to relay chain validators through a
node known and trusted by these validators.

Participants in the exemplary MG can submit energy assets through the follow-
ing steps, illustrated in Figure 3.1.

1. An MG node receives a call to submit an energy asset, e.g. from a smart
meter.

2. The node submits an energy asset storage transaction to the transaction queue
and propagates it through the network.

3. During the authoring of the next block, queued transactions are materialised
on the chain.

4. The collator forms trades, potentially accounting for surplus consumption or
production through the mediator.

5. Resulting trades are stored on the chain, transferring tokens from buyers to
sellers.
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Figure 3.1: Process flow of an energy asset from the perspective of an MG node.

During step four, all surplus energy assets are aggregated into one and included
in a message for the mediator.

The exemplary MG records all local energy assets included in the cross-grid
trading process. After a trade is constructed with the aggregated energy asset,
the following MG block author constructs transfers to all sellers based on the
kept records. The aggregated price is calculated based on the constituent assets’
amounts and prices. This approach allows each local seller and buyer to trade at
the price they set but could result in undesirably high or low aggregated pricing,
which would decrease the chances of being included in MG-to-MG trades. One
solution is to restrict local prices to a range.

Future MG implementations might leverage various trading mechanisms, such
as double auctions, to resolve most of their trades locally. More advanced trading
mechanisms could require more blocks between each mediator message, poten-
tially increasing the latency between bid submission and trade inclusion. How-
ever, parts of the existing system work on a 60-minute delay, allowing for ∼ 600
six-second blocks. The involved stakeholders should decide the approach most
suitable for a given MG.

3.1.2 Energy Assets

Implementation-specific transaction data influences the size of each transaction but
will include some fundamental elements that take up at most 200 bytes [31]. If each
energy asset consists of the amount of energy, encoded as a u16 integer, and the price
per kilowatt-hour, encoded as an f32 floating point, the total size will be at most 206
bytes. Assuming the buyer or seller is included separately from the origin account
submitting the asset as a Substrate MultiAddressAccount [32], another 16 bytes are
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added. For simplicity and to increase the space available to MG implementations’
additional data, I will use a transaction size of 512 bytes. This assumption enables
MGs to include miscellaneous data relevant to their needs and ensures that the
presented discussion account for this to some extent. As discussed in Chapter 6,
this overestimation does not considerably hurt the performance of PolkEM.

The default Substrate block length of 5.242.880 bytes [33] allows each block to
hold 10.240 of the energy assets defined above. The documented size of empty
and nearly empty blocks, i.e. blocks without transactions, is between 25.128 and
196.000 bytes. I will therefore use 9, 850 transactions per block as an estimate,
allowing for 199.680 bytes of miscellaneous data [34].

The figure in Figure 3.2 illustrates how long it would take to include the
2.788.291 million energy assets locally, not considering cross-grid trades and how
additional MGs affect this delay.
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Figure 3.2: Graph showing energy assets included in blocks. The two vertical lines show how long
it would take to include the target number of energy assets in local trades using 10 and 20 MGs.

3.1.3 Trade Finalisation

The local trades included in a parachain block must be materialised on a chain
through block finalisation on the relay chain, following the steps listed below.

1. A parachain collator collates the relevant parachain block data to a member
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of the associated validator set, Vi.

2. The receiving validator propagates the collated data through the set.

3. Vi decides the validity of the parachain block. If invalid, Vi ignores the block
and skips the remaining steps. If valid, Vi submits the collated data to the
relay chain queue for inclusion.

4. The submitted data is approved or denied through the process described later
in Section 3.2.

5. A validator authors a relay chain block referencing the collated data and
awaits finalisation.

6. The voting set casts votes on potential chains extending the relay chain to
finalise its associated blocks.

7. Assuming that the block reaches finality, all referenced parachain blocks do
too. Hence, materialising all trades in the associated MGs.

The performance and security of these steps are impossible to reason about at
this level of abstraction. Therefore, I present detailed descriptions of block author-
ing, validation, and finalisation below.

3.2 Block Process Flow

As mentioned in the introduction of this chapter, the authoring and finalisation of
blocks are separate parts of the process. Furthermore, additional protocols ensure
the validity of collated parachain blocks and further improve performance and
security. The seven steps listed below describe the process of conducting cross-
grid trading and are depicted in Figure 3.3.

1. An MG collator collates a block, A, containing a message for the mediator to
Vi.

2. Vi decides whether or not to back the received block. If they do, the data is
forwarded to a queue on the relay chain, making the members of Vi liable for
its validity.

3. Several protocols, described in Section 3.2.3, are executed to validate the
block. If it is deemed valid, it is finalised on the relay chain and the con-
tained message is forwarded to the mediator.
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4. A collator on the mediator chain processes the received MG messages and
forms cross-grid trades during block authoring. The trades are then validated
through a voting process involving all mediator nodes. If approved, a new
block, B, is authored with signatures from all supporting mediator nodes and
messages for each MG involved in a trade.

5. A collator collates the relevant data from both blocks to the associated val-
idator set, Vj.

6. Both blocks go through the procedure described in steps two and three and
is finalised.

7. The messages for the MGs are forwarded to the recipients and their associ-
ated cross-grid trades are materialised on the MG chain.

Figure 3.3: Process flow of blocks containing aggregated energy assets across the PolkEM system.

Before describing the authoring, validation, and finalisation processes, I present
how Substrate and Polkadot reason about time.

3.2.1 Time

Executing logic across distributed entities, such as nodes in a blockchain, intro-
duces challenges due to their separation. One such challenge is consistently keep-
ing track of time. Substrate aims to overcome this by using delays from block
observations. Time zero differs between nodes but is based on the time each node
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observed its first block. Any future measure of time originates from this and uses
fixed delays to reason about future points in time. The delays are set in the genesis
state and are therefore agreed upon by all participating nodes. Substrate achieves
loosely kept time through this ’synchronised’ time zero and locally applied delays.
Polkadot defines the units listed below. I use the presented values, as these are the
current configuration of Polkadot.

• Slot [6s]: Only one block can be produced in each slot1. Due to the link
between blocks and slots, the name block time is also used.

• Tick [0.5s]: Ticks further divide slots. This granularity allows the validators
to reason about the state of a block throughout a slot.

• Epoch [4h or 24.000 slots]: Epochs are used to split up the assignment of
authors. At the start of each epoch, participating nodes reach a consensus on
a new epoch random seed used for the pseudo-random assignments described
in Section 3.2.4.

• Era [24h or 6 epochs]: A given set of validators is active for an era at a time.
The system selects this set for a given era during the last epoch of the previ-
ous one.

I use these delays in the following sections to describe the timings of different
protocols and events.

3.2.2 Micro Grid Block Authoring

The exemplary MG uses the Authority Round (Aura) [35] consensus mechanism
for block authoring and relies on the relay chain for finalisation. A single node
authors the block for a given slot and is selected through a simple round-robin-
based author-assignment approach. The nodes propagate the submitted transac-
tions through the network as described in Section 3.1. Each node keeps track of
the received transactions using a local transaction queue. The designated author
constructs a new block with as many queued transactions as possible. The author
then adds this block to the chain and waits on a collator to collate it for finalisa-
tion. The relay chain validators finalise the parachain block by referencing it in a
finalised relay chain block.

Before referencing any parachain block on the relay chain, the validators com-
plete an approval process of the parachain block.

1Due to the randomness in the assignment of authors, it is possible that no author assignment
exists for a given slot. Furthermore, the system will discard additional blocks when encountering
multiple author assignments in one slot.
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3.2.3 Approval of Parachain Blocks

Multiple validators must approve a parachain block before referencing it on the re-
lay chain. This section presents several protocols, described in a white paper from
the Substrate team [36], that ensure the availability and validity of each referenced
parachain block.

The most impactful efficiency and security improvements offered by PolkEM,
compared to other blockchain-based cross-chain trading architectures [6, 19], comes
from its Polkadot-inspired relay chain. Conducting block validation with a smaller
set of trusted nodes instead of the given MG is more efficient due to fewer nodes
required to reach consensus. All validators must put out a substantial stake, in-
centivising well-behaviour and improving security, further discussed in Section 6.3.
However, an incentive is not equivalent to assurance and trusting these nodes with-
out additional measures would not be advisable. Instead, the validation process
includes five protocols to ensure correctness and well-behaviour. Validators exe-
cute these in sequence for each collated parachain block but can participate in their
execution for multiple blocks concurrently. The protocols are Collation, Backing,
Availability, Approval Checking, and Disputes.

Collation is the process of a collator submitting a block to be finalised on the re-
lay chain, as described in Section 3.2.2. The collated data consists of the parachain
block header and a Proof-of-Validity (PoV), used to validate the proposed state tran-
sition. The PoV ensures that the state transition is valid, and the header ensures
that the exact transition results in the proposed state.

Backing is performed by the validator set assigned to the given parachain.
These validators check the collated data to determine its validity and, if it is valid,
register it on the relay chain for further approval. By backing a parachain block,
the validators risk punishment if the block is proven invalid during one of the later
protocols.

Availability ensures that the data needed to perform the validation check for a
parachain block remains available. Relay chain blocks reference the collated head-
ers but not the PoVs. Instead, the PoV is split into chunks and distributed between
the backing validators. Other validators can then retrieve these at a later time. Any
subset of these with a given size can reconstruct the PoV. By only requiring a sub-
set and distributing them to multiple nodes, reconstruction of the PoV becomes
resilient to node failures and denial of possession from malicious or faulty nodes.
The protocol ensures that validators can perform checks later, decoupling the dif-
ferent processes.
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Approval Checking requires non-backing validators to decide the validity of a
parachain block through the execution of the state-transition function. The check is
started by fetching a large enough subset of the PoV chunks and reconstructing the
PoV. Then the checker retrieves the block header and the previous parachain state
from the relay chain. After gathering all this data, each checker verifies the PoV, ex-
ecutes the state transition, and verifies that the output matches the fetched header.
The checkers either approve the block and place it in a queue to be referenced in a
future relay chain block or denies it, initiating a dispute. If the checkers disagree
on the validity, even with a single opposing checker, they initiate a dispute as well.

This overview of the process is further detailed and discussed in Section 6.2.2
and subsubsection 6.3.2.

Disputes are used to handle conflicting opinions. They function as a fail-safe in
the rare cases where validators disagree on the validity of a parachain block. Due
to the rarity of these cases, disputes are very infrequent. When one is triggered,
the entire set of validators must vote either for or against the subjected parachain
block. All backers and approving checkers vote for automatically. When 2

3 + 1 of
the validators have reached an agreement, all opposing validators, and their nom-
inators, are fined a considerable amount of their staked tokens. The process of
fining a participant is also called slashing and can result in a deduction equivalent
to the stake of the fined participants.

3.2.4 Relay Chain Authoring

In this section, I describe the authoring process on Polkadot, which use the Blind
Assignment for Blockchain Extension (BABE) protocol [37]. BABE builds on Ouroboros
Praos [38], differentiating itself by not depending on a network time protocol for
tracking time. The details of Ouroboros Praos [38] are superfluous in the context
of this project, as the explanation of BABE will cover the essential aspects.

The author assignment of BABE uses a Verifiable Random Function (VRF), for
which each participant, i, holds a keypair (ski, pki). All public keys are stored on
the chain to facilitate checks of VRF results. At the start of each epoch, em, each
participant executes the VRF locally for each slot, slk, in em to determine when to
author blocks.

VRFski(rm||slk)→ (d, π) (3.1)

Equation 3.1 shows the VRF’s signature, which takes a concatenation of an
epoch random seed (ERS), referenced as rm, and slk as input. The private VRF key,
ski, is used locally to generate values specific to the given validator. The output
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consists of a numeric value, d, and a proof of correctness, π. The numeric value
determines whether the validator should author a block for slot slk by comparing
it to a threshold, τ. τ is deterministically recalculated at each epoch and stored on
the relay chain to be consistent for all participants. Other participants can verify
the result using pki and π.

τ = 2ℓVRF(1− (1− c)
1
n ) (3.2)

In Equation 3.2, ℓVRF is the bit size of d, c is a constant, and n is the number
of participants. τ ensures that each validator has the same probability of being
assigned for each slot. When authoring a block, the author includes the associated
VRF output to allow future checks.

The ERS for epoch em is generated from the ERS of em−2, namely rm−2, as well
as the epoch number, m, and a concatenation, ρ, of all authoring VRF outputs
from that epoch. em uses em−2 and not em−1 to ensure that the verification keys of
validators wanting to participate as authors have been included on the chain before
including them in an epoch. Without this shift, the keys of a validator that joined
at the end of em−1 might not be available. Hence, the threshold would be incorrect
and affect the set size n, resulting in skewed VRF results.

The genesis state includes the ERS values for the first two epochs.

The author of a given slot constructs a block by retrieving queued parachain
block headers. The associated blocks have already been approved at this phase,
making the headers safe to reference in the relay chain block. The authored block
is then added to the chain and awaits finalisation.

3.2.5 Relay Chain Finalisation

I here describe how Polkadot achieves absolute finality through GRANDPA [39].

The process of approval checking and authoring described above ensures the
validity of every parachain block referenced on the relay chain and the steady
growth of the chain. However, it only achieves probabilistic finality. The main draw-
backs are the risk of invalidating forks and added latency from requiring each
block to reach sufficient depth in the chain. To alleviate these issues, Polkadot use
the GHOST-based Recursive Ancestor Deriving Prefix Agreement (GRANDPA) finality
gadget [39], which allows chains of blocks to reach absolute finality.

GRANDPA uses rounds with an associated primary and a voting set, G. At the
start of round ri, the primary broadcasts the block, Bi−1, determined as finalisable
during round ri−1.

After a predefined networking delay, each voter broadcasts a pre-vote on a
block Bi. All honest voters should vote on a block that extends Bi−1. However, Bi
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can be multiple blocks ahead of Bi−1. If Bi gets finalised, all blocks in the chain
between Bi−1 and Bi are too.

Each voter determines the highest block that can be finalised based on the pre-
votes and broadcasts a pre-commit to this block. This block has either received
the most pre-votes or part of chains connecting Bi−1 to proposed blocks that collec-
tively have the most pre-votes. After 2

3 |G|+ 1 pre-commits for Bi has been received,
the voters broadcast a commit to that block.

The first step of round ri+1 requires the new primary to broadcast Bi as finalised
to G. The members can identify a broadcast of any other block B′ as invalid due to
the previously received commits to Bi. The broadcast ensures that all voters agree
on the latest finalised block, Bi, from which to extend the chain during ri+1.

By essentially voting on chains rather than blocks, GRANDPA achieves higher
throughput compared to other Byzantine fault-tolerant consensus algorithms.

As soon as a block reaches absolute finality, the weight of the relay chain is
behind it, making the process of invalidating it infeasible.

3.3 Cross-Grid Trading

The sections above describe the process flow of PolkEM, which builds on a con-
figuration of Substrate and Polkadot. In this section, I discuss the mediator chain,
which is the primary novelty of the PolkEM system and is responsible for orches-
trating cross-grid trading. The process includes energy assets forwarded from MGs
through the Cross-Chain Messaging Protocol (XCMP) [40] offered by Polkadot. The
cross-grid trading has considerable implications for the performance and security
of PolkEM, making its design paramount to the platform’s value. I use XCMP, a
consortium chain approach, considerate selection of participants, and consensus
on matched trades to achieve both qualities.

When an MG is unable to reach a local equilibrium between consumption and
production, it can forward the surplus to the mediator using XCMP through the
construction of a cross-chain message (XCM) [41]. XCMP requires parachain block
authors to construct outgoing messages as part of block authoring, after which
they are placed in an egress queue by the associated validator set. After finalis-
ing the parachain block, the validator set processes the egress queue and moves
the messages to an ingress queue associated with the receiving parachain. Block
authoring at the recipient chain includes processing any ingress queue messages.
Hence, the authoring of parachain blocks involves both constructions of outgo-
ing messages and processes of incoming ones. Message processing is part of the
chains’ state-transition functions and therefore inherits its verifiability.
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The mediator encompasses multiple participants, each staking a considerable
amount of tokens. The large stake requirement increases security on the mediator
in the same way as on the relay chain. However, in contrast to the relay chain,
the mediator is introduced as a consortium chain. Such a chain contains a smaller
set of meticulously selected nodes, inhibiting adversaries from joining the network
and members from adding additional nodes to achieve a majority. Hence, this dras-
tically decreases the risk of Sybil attacks where adversaries join the network with
numerous proximity accounts to gain the majority [42]. Furthermore, selecting
participants with conflicting goals, such as energy retailers that wish to trade their
assets, introduces natural market dynamics and further incentivises inspection of
the resulting trades. This assumption is backed by research on Nash Equilibria
within non-cooperative energy markets [43], assuming one exists for the proposed
model.

Figure 3.4 depicts the mediator’s process flow, which consists of the steps listed
below.

1. Messages sent by other parachains are forwarded from the relay chain to the
mediator through its validator set and placed in an ingress queue.

2. A collator authors a new block, A, by processing the messages in the ingress
queue and conducting trade matching of the received energy assets.

3. The resulting block is propagated through the chain, ensuring backing from
at least 2

3 + 1 of the nodes. A node backs the trades by submitting a signature
on the set.

4. Assuming that 2
3 n+ 1 signatures on the trades, a collator authors a new block,

B, with outgoing messages for the trade constituents, meaning MGs and the
grid-intermediary parachain. Each message contains any potential payment.
The relevant data is collated to the associated validator set, forwarding the
outgoing messages on finalisation.

The block authoring is based on Aura and incorporates the trade matching
process, which follows an algorithm defined within the state-transition function.
Because of this, the execution of this algorithm becomes part of the verification
process, ensuring any deviations are usable as proof of misbehaviour. The algo-
rithm is deterministic and verifiable through the blocks PoV, block header, and the
previous state.

The mediator forwards any energy assets not matched between MGs to the
grid-intermediary parachain by constructing trades with the grid’s current selling
and purchasing prices. These trades are similar to the ones between MGs, except
the grid-intermediary chain controls the price. The pricing between assets in a
single round of trading is assumed to fluctuate inconsiderably, as matching other
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Figure 3.4: Process flow of the cross-grid trade matching on the mediator.

participants’ pricing increases each MG’s chances of being included in an MG-to-
MG trade. This claim is further supported by the Nash Equilibrium theory [44],
assuming that one exists, as sellers can only change their strategy.

I propose a simple algorithm, but a more sophisticated one might be required,
incorporating other market dynamics. I present a simplified algorithm outline in
Algorithm 3.1. The simplification is specifically the deviation between requested
and offered amounts. For the actual implementation, any surplus amount is stored
in a new energy asset and matched during the following iteration of the while loop
on lines 3-11. I have developed the algorithm to maximise the trades between MGs,
neglecting price optimisation.
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Algorithm 3.1 Match received energy assets to create a set of trades T.

Input: Requests, ER, Offers, EO, and Grid Equivalents, (GR, GO)

Output: Set of trades, T
1: sort(ER) and sort(EO); ▷ Ascending order on price
2: let ri← 0, oi← 0, and T ← ∅;
3: while ri < |ER| ∧ oi < |EO| do
4: if ER[ri].price >= EO[oi].price then
5: let t← (ER[ri], EO[oi]);
6: ri← ri + 1;
7: oi← oi + 1;
8: else
9: let t← (ER[ri], GO);

10: ri← ri + 1;
11: push(T, t); ▷ Append t to T

12: while ri < |ER| do ▷ Handle remaining requests
13: let t← (ER[ri], GO);
14: push(T, t);
15: ri← ri + 1;
16: while oi < |EO| do ▷ Handle remaining offers
17: let t← (GR, EO[oi]);
18: push(T, t);
19: oi← oi + 1;
20: return T;

The algorithm can sort the two energy asset sets, ER and EO, in O(n× log(n))
by using Quick Sort. The three while loops, line 3-19, adds O(n) as each iteration
processes at least one element. I have implemented and benchmarked the algo-
rithm in Chapter 5. This implementation includes the logic for processing matches
between assets with deviating amounts. Any trade involving the grid is priced
purely by the grid, as done in the current Danish system.

The mediator achieves the consensus on the resulting set of trades through a
voting process that requires backing from 2

3 n + 1 of the nodes. Hence, the process
is tolerant to Byzantine faults. Furthermore, any node attempting to construct a
set of trades in a way that diverges from the defined algorithm will face slash-
ing, disincentivising misbehaviour. The consensus process initiates when the block
containing the trade set is proposed and concludes before the authoring of the next
block. Doing this gives the nodes a few seconds to reach a consensus on the trades’
validity. During this time, each node executes the algorithm, compares the result
with the set in the proposed block, and submits a signed approval, assuming the
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two results are equivalent. This design requires every mediator node to perform
the trade matching while the block authoring and associated computations are con-
ducted once at the assigned author. Furthermore, the results shown in Chapter 5
indicate that the computational load of running the trade matching algorithm is
negligible.

I further discuss the latency and throughput aspects of the mediator in Sec-
tion 6.2 and its security properties in Section 6.3.





Chapter 4

Testing Environment

In this chapter, I describe the design and implementation of the testing environ-
ment, intended as a development and verification tool for MG implementations
operating on PolkEM. I base it on a Kubernetes cluster, which I outline with its
constituents in Section 4.1. I then present automation scripts and configuration
options available to the user in Section 4.2.

Basing the testing environment on a Kubernetes cluster allows it to run on var-
ious infrastructures and hardware configurations. I use Helm charts [45] to enable
user configuration of various parameters, such as the number of nodes in each
chain and their specifications. I expect users to download the testing environment
repository before using it. In the repository’s root directory, I have defined two
Helm charts, a parachain chart configurable to support the given MG implemen-
tation and a PolkEM chart responsible for launching the environment itself. The
PolkEM chart consists of configuration files for the microservices and two sub-
charts, one for the relay chain and one for the mediator. As the mediator connects
to the relay chain like any other parachain, the mediator sub-chart is a symbolic
link to the parachain chart, ensuring the two remain interchangeable. I define any
mediator-specific configurations within the parent chart. The charts’ content is
depicted partially in Figure 4.1.

I have included separate deployments for the boot nodes to instantiate specific
services for these. These services allow the remaining nodes to communicate with
their associated boot node and are critical for instantiating the chain networks. The
relay-chain-chart directory has an identical structure. However, the content of
each chart file differs between them.

The user can provide parameters to each Helm chart to configure the testing
environment during instantiation. Hence, the user can supply their chain specifi-
cations, Docker images, and similar.
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Figure 4.1: Screenshot of the PolkEM repository’s Helm charts with the parachain Helm chart ex-
panded.

I have structured the code for each microservice and node in separate reposi-
tories to decrease coupling and facilitate the interchangeability of the components.
The testing environment uses Docker images constructed within the repositories
and supplied to the Helm charts to instantiate each component. This way, they can
be replaced or extended without extensive modifications to the testing environ-
ment. Each repository includes automated scripts to perform repetitive tasks, such
as building and uploading Docker images and generating chain specifications. The
primary repository is called PolkEM and contains the Helm charts, the testing en-
vironment code and configurations, scripts to increase ease of use, and the chain
specifications. I expect users to modify the chain specifications to test their MG
chains.

I provide a list of the repositories below. They are all publicly available and
open source.

• PolkEM: The main repository containing the testing environment.

• PolkEM Relay: The relay chain, based on Polkadot.

• PolkEM Mediator: The mediator, based on the Substrate parachain template.

• PolkEM AM: The account manager.

• PolkEM Logger: The logging agent.

• PolkEM MG: The exemplary MG, based on the Substrate parachain template.

• PolkEM Runner: The sidecar application developed to communicate with
the exemplary MG nodes.

https://github.com/Nielswps/PolkEM
https://github.com/Nielswps/polkem-relay
https://github.com/Nielswps/polkem-mediator
https://github.com/Nielswps/polkem-am
https://github.com/Nielswps/polkem-logger
https://github.com/Nielswps/polkem-mg
https://github.com/Nielswps/polkem-runner
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Neither the mediator nor the MG is functioning, and their produced blocks con-
tain no energy assets. Hence, they do not conduct energy trading. Furthermore,
cross-chain communication is not set up. However, the environment does show
how the chains produce blocks and receive updates on their finalisation from the
relay chain. Furthermore, the microservices and sidecar applications are all func-
tioning as intended.

4.1 Kubernetes Cluster

As mentioned, I build the environment on a Kubernetes cluster, allowing tests to
be executed on various infrastructures and making it highly portable. Figure 4.2
depicts the environment’s architecture. The dotted lines illustrate communication
between different services in the cluster.

Figure 4.2: Architectural overview of the testing environment.

The cluster contains three blockchain networks, the relay chain, the mediator,
and the MG under test. However, it does support multiple MGs running concur-



36 Chapter 4. Testing Environment

rently on PolkEM. The pods within a given network are all interconnected and
have read-only access to the chain specification for the associated chain. A pod
is the smallest deployable unit in Kubernetes and can contain multiple containers.
Each pod in the testing environment also connects to an account manager service
to retrieve its private key, used for connecting to the blockchain network with the
correct account.

The two pods running outside the chains are the account manager, marked
with a key, and the logging agent, marked with a file. They are used to provide
the nodes with private keys and for logging any relevant data, respectively.

The testing environment stores the chain specifications, generated keys, and
logs in volumes outside the pods. It requires the user to define persistent volumes
before launching it. For local development, these volumes can be linked to direc-
tories on the local machine through the create-kind-cluster.sh script and refer-
ences to these, also called claims, can be created by executing the polkem-launch.sh
script. The chain specifications are loaded within each node from the persistent vol-
ume, while generated keys and logs can be extracted during tests or afterwards.
Kubernetes offers ConfigMaps, which allows the user to inject data into each pod.
However, this was not a viable option for the chain specifications because of their
size.

Each pod within the MG blockchain contains two containers, a node and a
runner. The node container is the blockchain node participating on the chain,
while the runner is a separate sidecar application that triggers actions in the node
container. These two containers run in the same pod to prevent runners from
interfering with one another and connecting to the wrong nodes. Each pod also
contains a volume to facilitate shared data between the two containers, such as the
account information.

In addition to the elements in Figure 4.2, I have included an ingress control,
which opens an external connection to the account manager and MG boot node. I
used this for debugging purposes but it could also be useful during test execution.

4.1.1 Microservices

One of the main goals of creating the testing environment is to facilitate the testing
and validation of MG implementations. Therefore, I introduce the account manager
and logging microservices. Both services are written in Rust to avoid using a new
language.

The account manager serves a single endpoint providing a GET method with
a URL parameter, ID. The account manager uses the ID to generate a 64-character
hex-decimal string. The string is returned to the client and saved in its local keys-
directory. Any generated string is compatible with Substrate-based chains and
used as the private key for the requesting node. The account manager also writes
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all generated strings to a file, keys/{ID}, for future inspection and reference. Ac-
cess to these is critical, as they must be known when constructing and debugging
the chain specifications.

The testing environment uses the logging service to output data from the clus-
ter nodes. Its endpoint provides a POST method with two URL parameters, log
and ID. It uses these to specify which log to extend and the originating node, re-
spectively. It expects the body of each POST request to be a string and inserts it
into a log entry. Each entry is of the form "{ID} {BODY} {DATE}@{TIME}" and the
entries are separated by the line-breaks. This way, the logger becomes a single
source of truth regarding the time for the logged events.

4.1.2 Pod Initialisation

In addition to the components presented above, each blockchain pod includes a
set of initialisation containers. These containers are responsible for configuring the
given pod, ensuring it is ready for the node before initiating its container.

I use three initialisation containers for each pod containing a node. The first
one waits for services that the node depends on, such as the account manager
or associated boot node. The second requests the node’s private key from the
account manager. The third enables the node to take part in protocols on the
chain by creating a keystore with seven public keys generated from the private key.
Without these initialisation containers, the nodes would be unable to communicate
or construct blocks.

The third initialisation container is likely to be different for some MG imple-
mentations and is therefore specified by the user through a Helm chart parameter,
specifying the Docker image to use.

I present a snippet of the blockchain pod definition in Listing 4.1.

...

initContainers:
- name: {{ .Values.name }}-wait -for -boot -node -init

image: busybox :1.28
command: [ "sh", "-c", "until (nc -nvw1

{{ .Values.name }}-boot -node -service 9933 2>&1 |
grep -q open); do echo Waiting for boot node ...;
sleep 5; done"

]

- name: {{ .Values.name }}-node -key -init
image: busybox :1.28
...
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- name: {{ .Values.name }}-keystore -init
image: {{ .Values.parachainInitImage }}
...

containers:
- name: {{ .Values.name }}-node

image: {{ .Values.parachainImage }}
...
args: [ "--collator", "--force -authoring",

"--name=$(NAME)", ...
]
...

{{ if ne .Values.runnerImage "" }}
- name: runner

image: {{ .Values.runnerImage }}
...

{{ end }}
...

Listing 4.1: Snippet from the stateful set defined in the nodes.yaml file included in the parachain
chart. "..." is inserted where I have excluded lines from the snippet.

After all three initialisation containers have exited successfully, the pod initiates
the node and runner containers, beginning the block authoring process.

4.2 Automation & Configuration

I have developed numerous automation scripts and configuration options to in-
crease the usability and applicability of the testing environment. The user can
launch the testing environment through a Bash file named polkem-launch.sh,
which starts the microservices, relay chain, and mediator. The script requires that a
Kubernetes cluster is running, is addressable through the Command Line Interface
(CLI) tool kubectl, and contains an ingress configuration.

The PolkEM repository also contains a configuration file for Kind [46], used
for running local Kubernetes clusters. Furthermore, it includes a pre-configured
ingress controller and a script for setting up the Kind cluster. The Kind configu-
ration file, the ingress controller, and the script can instantiate a local version of
the testing environment with a single command, only requiring the installation of
kubectl, Kind, and Helm.

I have also created scripts for handling repetitive tasks related to modifying the
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microservices and nodes. A build.sh script is included in all application reposito-
ries and is used to generate the associated Docker image with all the required arte-
facts. I have also included a build_init.sh script in the chain-related repositories
for generating the configurable initialisation container. Furthermore, these reposi-
tories also included a generate_chain-spec_and_genesis.sh script that generates
the chain specification and extracts the chain’s genesis state and WASM. The user
must update the chain specification and genesis files every time the code is mod-
ified and included in the relay chain’s specification. Hence, keeping them up to
date can become repetitive.

In the next chapter, I present two experiments I conducted to test the trade
matching algorithm and the testing environment.





Chapter 5

Experiments

I present two experiments. Firstly, I evaluate the implemented mediator trade
matching algorithm’s performance by executing a set of benchmarks. Secondly, I
use the testing environment to extract proposed and finalised blocks from a run-
ning MG implementation. The MG implementation does not include any energy
asset logic.

I conducted both experiments using a Lenovo YOGA 730-15IWL laptop with the
hardware specification shown in Table 5.1.

Hardware Specification

CPU Intel i7-8565U - 4 cores (8 threads) at 4.6 GHz

GPU NVIDIA GeForce GTX 1050 Mobile

Memory 16 GB - Dual-channel at 2400 MHz

Storage 512 GB NVMe SSD

OS Ubuntu 22.04.2 - x86_64

Table 5.1: Table with the hardware specification of the laptop used for the experiments.

5.1 Mediator Trading Benchmarks

I have designed the mediator with a trade matching algorithm intended to be
executed at every mediator node for each trading round to ensure the correctness
of and consensus on the resulting trades. Because of the multiple executions in
each round, the algorithm’s performance could impact the time between each set
of trades.

41
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The presented implementation is simple and focuses on balancing requests and
offers with as little dependence on the grid as possible. I have implemented it as
a Rust library, allowing reusability across projects through Rust’s crate system.
I present the implementation in Appendix C.2, which slightly deviates from the
outlined algorithm to be more idiomatic. I conducted a series of benchmarks based
on different energy asset sets to provide an idea of the algorithm’s execution time.

I based the benchmarks on the values proposed in Section 6.2, listed below.

1. One asset for each of the 1,888 proposed MGs

2. Ten assets for each of the 1,888 proposed MGs

3. Block transaction limit (9,850 energy assets)

4. Large over-approximation (4,000,00 energy assets)

Benchmarks one, two, and three are reasonable cases under the assumptions
presented in Section 6.2, while the fourth benchmark pushes the algorithm perfor-
mance.

5.1.1 Setup

The benchmarks were conducted using the criterion.rs Rust crate [47] and with
randomly generated energy assets. I provide the code executed during the first
benchmark in Listing 5.1. I used similar methods for the remaining benchmarks.

fn one_asset_per_mg(c: &mut Criterion) {
let (mut requests, mut offers) =

generate_requests_and_offers(944, 944);

let (grid_request, grid_offer) =
generate_grid_request_and_offer();

c.bench_function("One asset for each of the 1,888 proposed MG",
|b| {

b.iter(|| {
generate_trades(

black_box(&mut requests),
black_box(&mut offers),
black_box(&grid_request),
black_box(&grid_offer)

)
})
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}
);

let reqs_json = serde_json::to_string(&requests).unwrap();
let mut file = std::fs::File::create(format!(

"requests-{}.json",
Local::now().format("%Y-%m-%d@%H:%M:%S").to_string()

)).unwrap();

file.write_all(reqs_json.as_bytes()).unwrap();

let offs_json = serde_json::to_string(&offers).unwrap();
let mut file = std::fs::File::create(format!(

"offers-{}.json",
Local::now().format("%Y-%m-%d@%H:%M:%S").to_string()

)).unwrap();

file.write_all(offs_json.as_bytes()).unwrap();
}

Listing 5.1: The code executed for the first benchmark.

The requests and offers are serialised and exported after the benchmark to
evaluate the properties of the input. I only did this for the first benchmark to avoid
generating the large files needed for the succeeding benchmarks’ inputs.

5.1.2 Execution

I executed the benchmarks through a terminal using the cargo bench command,
with no other active processes running on the machine.

As seen in Listing 5.1, the energy assets are randomly generated. I used ranges
to generate the values for both the amount and price. I used the values 200 and
1,000 as the range for the requests’ and offers’ amounts, while the price ranges
were 1.8 - 3.5 and 2.0 - 4.0 for the requests and offers, respectively. The values
are superfluous in the results, as the benchmarks focus on the execution time.
Furthermore, the algorithm runs with the aggregated assets from each MG, making
the possible amount range immense. I illustrate the distribution of the generated
assets in Figure 5.1.

The criterion.rs crate provides configuration options to tailor the bench-
marks. I used the configuration seen below, where measurement time is the least
number of seconds spent on each benchmark, sample size is the least number of
executions for each benchmark, and the confidence level is the target for how con-
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Figure 5.1: Scatter plot depicting the distribution of the randomly gen-
erated requests, grey, and offers, pink, used for the first benchmark. The
units for amount and price are superfluous for the benchmarks, as the
focus is on execution time.

clusive each benchmark result should be.

Criterion::default()
.measurement_time(Duration::new(60,0))
.sample_size(30)
.confidence_level(0.98);

Criterion runs additional iterations automatically if the specified time limit al-
lows it. A target confidence level of 0.98 means that the benchmark aims to have
at most a 2% probability of not covering edge cases. It is important to point out
that the confidence level relates to the execution environment and is unrelated to
the inputs and execution paths of the function itself.

5.1.3 Results

I present each benchmark’s result with additional execution details in Listing 5.2.
Furthermore, I show their associated distribution graphs in Figure 5.2.
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Benchmarking: One asset for each of the 1,888 proposed MG
Warming up for 3.0000 s
Collecting 30 samples in estimated 60.070 s (371k

iterations)

time: [158.40 µs 159.51 µs 161.01 µs]

Benchmarking: Ten assets for each of the 1,888 proposed MG
Warming up for 3.0000 s
Collecting 30 samples in estimated 60.940 s (28k

iterations)

time: [2.1602 ms 2.1672 ms 2.1759 ms]

Found 1 outliers among 30 measurements (3.33%)
1 (3.33\%) high mild

Benchmarking: Block transaction limit (9,850 energy assets)
Warming up for 3.0000 s
Collecting 30 samples in estimated 60.225 s (50k

iterations)

time: [1.1994 ms 1.2018 ms 1.2046 ms]

Benchmarking: Large over-approximation (4,000,00 energy assets)
Warming up for 3.0000 s
Collecting 30 samples in estimated 72.168 s (60

iterations)

time: [1.0059 s 1.0077 s 1.0097 s]

Listing 5.2: Benchmarks results for the trade matching algorithm. I have modified the output to
increase readability.
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(a) Execution time distribution for benchmark one (b) Execution time distribution for benchmark two

(c) Execution time distribution for benchmark three (d) Execution time distribution for benchmark four

Figure 5.2: Distribution of execution times for the four trade matching algorithm benchmarks.

As seen in the results above, running 30 samples of the trade matching al-
gorithm using 1,888 energy assets give an upper bound execution time of 161.01
microseconds. For trading with 18,880 and 9,850 assets, this increases to 2.1602
and 1.1994 milliseconds, respectively. I also ran a benchmark using a large over-
approximation of 4,000,000 energy assets, equivalent to more than one energy asset
from each of the 2,788,291 individual households in Denmark. This benchmark re-
sulted in an upper bound execution time of 1.0097 seconds.

5.2 Micro Grid Data Extraction

For this experiment, I ran the cluster depicted in Figure 5.3, containing an MG that
constructs empty blocks and perform no energy trading. Due to the lack of energy
assets, the experiment shows how the testing environment can extract data from
MG implementations but not PolkEM’s correctness and performance.

I used the logging agent to extract proposed and finalised blocks with times-
tamps. I then calculated the delay between a block’s proposal and finalisation and
the throughput within a fixed time window with these.



5.2. Micro Grid Data Extraction 47

Figure 5.3: Overview of the Kubernetes cluster during the experiment’s execution.

5.2.1 Setup

I started the experiment by executing the create_kind_cluster.sh script men-
tioned in Section 4.2. The script instantiated a local Kind cluster with the required
persistent volume references and ingress controller objects. The volume references
pointed to directories within the /tmp/ directory on the physical machine, auto-
matically removing the data when no longer needed.

The user must follow the five steps below to test an MG implementation in the
environment.

1. Generate the MG chain specification and reference it in PolkEM.

2. Generate the MG genesis state and WASM.

3. Inject the content of the genesis files into the specification of the relay chain
as a parachain.

4. Recompile the specification for the relay chain.
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5. Create a Docker image of the MG node and install a release of the parachain
Helm chart with the desired configuration.

After following these steps, I launched the blockchain nodes by executing the
polkem-launch.sh-script. The script launched the relay chain with seven nodes,
the mediator with four nodes, and instances of the account manager, logger agent,
and ingress. Additionally, I included instantiation of the exemplary MG with five
nodes, one of them being the boot node.

After several minutes, the entire cluster was up and running, authoring and
finalising blocks in the chains.

5.2.2 Execution

I calculated the desired metrics by inspecting the log file generated by the logging
agent after the cluster had been running for roughly 45 minutes. The log contained
entries for each MG node’s observation of proposed and finalised blocks. To obtain
latency and throughput data, I removed entries logged before all five MG nodes
were connected and after the 30-minute mark.

The execution itself was automated and required no manual interference. How-
ever, I connected K9s, a CLI tool for observing Kubernetes clusters [48], to verify
that all nodes were running correctly and included in their associated chains.

5.2.3 Results

The extracted data included 45 initial lines preceding the fully launched MG net-
work. These lines are present because Kubernetes sequentially starts each pod in
the stateful set, waiting for pod i to be ready before initiating pod i + 1. The re-
sults presented here will exclude these 45 lines, where only a subset of the desired
nodes were connected. Additionally, I have removed 305 trailing entries to limit
the experiment to 30 minutes. Finally, I excluded two blocks only logged as pro-
posed or finalised. With the excluded lines, the result contained 1,440 log entries. I
show a snippet of the log file in Appendix C.1.1. All processing and analysis of the
logs were conducted using a set of CLI commands and scripts, shown in Appendix
C.1.2.

All five MG nodes logged their observations, meaning each proposal and fi-
nalisation appeared five times. Hence, 288 entries are unique block proposals or
finalisations, resulting in 144 blocks.

Latency

Comparing the delay between the first proposal and finalisation for each observed
block gives an average delay of ∼15.85 seconds, with a lower and upper bound of
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14 and 20 seconds, respectively. I depict the delays’ distribution in Figure 5.4.
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Figure 5.4: Plot of the delays recorded during the experiment and the
occurrences of each delay.

Throughput

Based on the experiment, the MG produced 144 blocks during the 30-minute win-
dow. However, I excluded one block proposal and one block finalisation due to
their associated finalisation and proposal not being included in the cleaned log.
Therefore, the MG effectively produced 145 blocks during the experiment. I present
the deduced throughput in Equation 5.1.

145 blocks
30 minutes

≈ 4.833 blocks/minute (5.1)

In the next chapter, I discuss these results and the project as a whole.





Chapter 6

Discussion

In this chapter, I discuss whether PolkEM and the testing environment answer the
problem definition posed in Section 2.4. The first section focuses on the overall
aspects and builds on the succeeding sections that cover each aspect in more de-
tail. I first discuss PolkEM’s theoretical latency, throughput, and security based on
the presented architecture and proposed implementation details. After this, I dis-
cuss the testing environment’s features and performance. I conclude the chapter
with a discussion on using Substrate and Polkadot, followed by a discussion of the
project’s scope.

6.1 Overall Viability

In this section, I discuss whether PolkEM and the testing environment answer the
problem definition presented in Section 2.4. The claims and arguments made in
this section are further detailed and discussed in Section 6.2, Section 6.3, and Sec-
tion 6.4.

I have designed PolkEM to support direct prosumer trading and heterogeneity
of MGs. The platform can support any MG built as, or connected to, a Substrate-
based parachain with a viable state-transition function. Under the assumption that
the MGs support prosumers, PolkEM alleviates the need to depend on a single
centralised entity for buying and selling prosumer energy. I, therefore, conclude
that the presented architecture ensures that PolkEM meets the two associated re-
quirements, RP6 and RP7, presented in Section 2.4.1.

PolkEM allows every household in Denmark to participate in trades within a
few minutes. However, most prosumers in the current system have their consump-
tion and production settled on an hourly basis [21]. Based on this, PolkEM is capa-
ble of supporting the Danish energy market. If, for instance, cross-grid trading was
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conducted every 15 minutes, the first ten could be used for local trades within each
MG, allowing for more advanced trading mechanisms that, for instance, incorpo-
rate privacy and real-time traceability, such as the one presented by Hossain [49].
The ideal interval for cross-chain trading should be concluded based on real-world
tests and could change as new technologies are developed and adopted.

To prevent the injection of false data, smart storage systems able to provide
cryptographic signatures with proof of supply could be used. These could ensure
the existence of any local supply, before submitting it. Such details must be spec-
ified within each MG, but studies on privacy-preserving and real-time traceable
algorithms for MG trading have shown promising results [49, 50]. One platform-
level measure useful in the prevention of false data is forecasting. By including
relevant metrics, such as weather conditions, and previous consumption and pro-
duction from each MG, the validators on the relay chain could check whether
deviations in the submitted surplus from a given MG are within an acceptable
range. Forecasts would require extensive experimentation and possibly depend on
artificial intelligence to identify these ranges and deviations. However, it could be
one way of protecting the platform against false data.

Comparing PolkEM to the Quarterstorm pilot project [18, 19], scalability is
improved. Even if using the current Polkadot version for the relay chain, the plat-
form would still be able to support well over 900,000 users, based on using 100
parachains and accounting for the mediator and grid-intermediary using a slot
each. Hence, vastly more than the 500 users of the pilot project. To be competitive,
PolkEM would need a user interface and to be evaluated in a similar real-world
study. These aspects are outside this project’s scope, but Substrate does provide
templates for setting up web interfaces compatible with the nodes and accounts
running in each chain [51].

The system presented by Wang [12], which also utilised a relay chain similar
to Polkadot but without a mediator, faced scalability issues too. PolkEM resolves
these by not depending on the relay chain for conducting the cross-grid trades.
The authors of the referenced study presented this as their main congestion point.
Based on the aspects discussed here, the mediator is assumed to alleviate the issue
and improve the platform’s scalability.

Establishing PolkEM in Denmark as an alternative to the current centralised
system in its current state would not be feasible. The limitations come from us-
ing Polkadot as the relay chain, limiting the number of MGs to 98. One way to
bypass this limitation is to introduce a multi-tier architecture. For this, I propose
an additional layer of relay chains, each aggregating up to 100 MGs. These relay
chains could then connect to an overarching relay chain, identical to the one pre-
sented in this project. The intermediary layer of relay chains adds another step in
cross-grid trading, equivalent to a round of finalisation and authoring, increasing
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the latency by 15-20 seconds based on the conducted experiments. This increase
in latency would still allow cross-grid trading every 15 minutes but could also
increase the computational load for tracing any misbehaviour in the system for
future iterations.

PolkEM also improves the conditions for prosumers, as prices are assumed to
be higher than those offered by the current retailers. The price of one kilo-watt-
hour produced by a prosumer and sold to a retailer is roughly 0.25 DKK [52]. The
retailer sells the same kilo-watt-hour priced at 2-3 DKK [53]. This large gap be-
tween buying and selling prices cover the retailer’s operational cost, but the gap
could be assumed to decrease in a more open market. Due to this, prosumers have
more incentive to invest in energy generation equipment, as they can faster recoup
initial costs and expect high future earnings. Increased private investment would
speed up the transition to full reliance on zero-carbon electricity. Furthermore, it
could also make the grid more resilient to failures, as communities become more
self-sufficient at a finely-granulated level. For instance, a failure that divides a
community’s energy network in two is less catastrophic if both halves are partially
self-sufficient. The impact is not necessarily negligible but smaller than if one of
the halves was left without electricity.

I have shown that the testing environment can run a network with the required
chains and provides the user with configuration options. Due to its Kubernetes
foundation, it is highly portable and usable for conducting large-scale tests, given
a sufficiently configured infrastructure.

Furthermore, it meets the requirements presented in Section 2.4.2, except for
RT11. How to extend it to meet this requirement is discussed in Section 6.4. The
proposed approach builds on the presented implementation of the well-behaved
nodes, making the necessary features’ implementation straightforward.

I deem the testing environment sufficient for conducting tests of PolkEM-compatible
MG implementations, based on the discussion in Section 6.4.

Based on the presented arguments, I deem PolkEM applicable to the Danish
energy market under the assumption that it can be sufficiently implemented and
tested. Furthermore, the testing environment is deemed sufficient as a tool for
evaluating MG implementations for the platform, despite not meeting requirement
RT11. Hence, PolkEM and the testing environment answer the problem definition
presented in Section 2.4.

In the following sections, I discuss the project’s different aspects in further
detail to support the claims made in this section.
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6.2 Latency and Throughput

The performance evaluation of PolkEM is highly affected by the number of con-
stituent MGs. Therefore, I estimate the number of MGs suitable to instantiate
across Denmark. I disregard the division of the physical grid between Funen and
Zealand, as well as connections to neighbouring countries in this estimate. How-
ever, running two instances of PolkEM can resolve the division, while several inter-
mediary parachains could facilitate trading with each neighbouring country. These
parachains would submit energy assets representing import and export. Based on
this and the heterogeneity of the MGs, I present several assumptions and estima-
tions that allow for a theoretical discussion of the overall performance. At the end
of this section, I discuss how loosening these assumptions affects the presented
arguments.

6.2.1 Assumptions and Estimations

The discussion of PolkEM’s latency and throughput builds on the assumption that
all MGs, the mediator, and the relay chain are implemented using the Substrate
framework and configured with the default values for block times, block lengths,
and similar. The team behind Polkadot has expressed on multiple occasions that
these could be modified to better suit different use cases. For instance, they have
mentioned that the six-second block time might be lowered to two or three sec-
onds, affecting the latency and throughput discussed in this section [54]. However,
determining the optimal configuration for each MG is outside this project’s scope,
and I use the default values as a balance between efficiency and security.

Furthermore, I use the scenario with the highest mediator load, where all MGs
forward an aggregated energy asset to the mediator for every block they produce.
In the real world, it is likely that each MG only gets involved with cross-grid trad-
ing at fixed intervals, as this would increase the chances of resolving consumption
and production locally. However, the MGs are heterogeneous, placing their inter-
nal logic out of PolkEM’s control.

I present the assumptions and estimations under the assumption that the re-
lay chain uses a more mature version of Polkadot. Furthermore, I use concrete
data sizes of the included elements and public statements from the Substrate and
Polkadot teams.

Number of Micro Grids

To better reason about the scalability of PolkEM, I here provide an estimate on
the number of MGs needed. I base this on the mentioned 2,788,291 Danish house-
holds and the division of Aalborg municipality, which includes 69 districts [55].
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Some of these districts are small suburban towns, while others are parts of Aal-
borg city, meaning their energy consumption and production profiles vary. Due to
this variety, I propose a separate MG for each district.

There are 101,888 households in Aalborg municipality [56], resulting in an av-
erage of ∼1,477 across the 69 districts. Applying a similar division across Denmark
would result in 1,888 MGs, as shown in Equation 6.1.⌈

2, 788, 291 households
1, 477 households/MG

⌉
= 1, 888 MGs (6.1)

Limitation on Parachains

The mediator can support the 1,888 MGs proposed above, assuming that each MG
forwards at most five aggregated energy assets in each cross-grid trading round.
I derive this from the 9,850energy assets per block presented in Section 3.1.2.
However, the relay chain is based on Polkadot, which currently limits the num-
ber of parachains to 100[57, 58]. This is a temporary limit used while Polkadot
reaches a more mature state. No specific details on the future number of sup-
ported parachains have been published, but the Polkadot team is confident that it
can be pushed far beyond 100, based on recent advancements[57, 58].

One of the limiting factors is the data stored on the relay chain for each refer-
enced parachain block. The data is listed below with their associated bit sizes [59]
and takes up 1664 bits or 208 bytes.

• The parachain ID (32-bit).

• The collator’s ID and signature (32-bit and 64-bit).

• A hash of the parent block’s candidate receipt (256-bit).

• A Merkle root of the block’s erasure-coded pieces (256-bit).

• A Merkle root of any outgoing messages (256-bit).

• A hash of the block (256-bit).

• The state root of the parachain before block execution (256-bit).

• The state root of the parachain after block execution (256-bit).

The size of each relay chain block is 5 MB [33], allowing for a little over 25,200
referenced parachain blocks in each relay chain block. However, each relay chain
block also contains data on recent disputes, active validators, members of the vot-
ing, and other state data. With 1,888 MGs, the mediator, and the grid-intermediary
parachain, 7.5% of the block size would be parachain block references, assuming
one reference to each parachain in every relay chain block.
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Limitation on Validators

Another limitation is the number of validators, as each parachain requires its own
validator set. The suggested ratio is five validators for every parachain, requiring
9,450 validators to support 1,888 MGs, the mediator, and the grid-intermediary.
The conservative estimate for the current Polkadot implementation is 1,000 [57].
Hence, the proposed platform would require a 10-fold increase, likely impairing
the performance. However, most of the protocols executed by the validators only
utilise a subset to decrease latency.

The current voting set used for running the approval checking protocol contains
30 validators. Hence, PolkEM would use 284 if scaled proportionally to the number
of validators. Message passing in a peer-to-peer network using robust multicast
requires O(n2) messages, as all n nodes need to send a message to the n− 1 other
nodes [60]. With this protocol, the required number of messages increases from 900
to 80,656, increasing the block time considerably. Based on this, the ratio between
the active validators and the size of the voting set would have to be modified
to achieve sufficient latency and throughput. A decrease in the voting set size
hurts PolkEM’s attack resilience, as its size directly affects the number of malicious
or faulty nodes PolkEM can tolerate. Alternatively, a more efficient messaging
protocol could be used, such as Pastry, using O(logB(n)) messages [61]. Pastry
uses prefix routing and a typical B value of 16, resulting in a negligible increase of
messages when using 284 validators instead of 30.

The relay chain could be implemented as a consortium chain to mitigate the
risk of faulty or malicious nodes, but this would require an intricate screening and
validation process for validator candidates. However, the process could reintro-
duce the issue regarding a small set of entities controlling the system.

The number of parachains and validators supported by Polkadot in the future is
unpredictable. However, for the remainder of this chapter, I assume that the latency
and throughput from the experiment conducted in Section 5.2 can be achieved with
a more mature and potentially further modified Polkadot-based relay chain.

Most Impactful Protocols

Some of the mentioned processes and protocols have a higher impact on latency
and throughput than others. For instance, block authoring is negligible compared
to approval checking. Furthermore, the experiment conducted in Section 5.2 pro-
vides estimates for the authoring and finalisation. Additionally, the protocols for
collation, backing, and availability, presented in Section 3.2.3, are included in these
estimates. They have a minor impact on performance due to only relying on a
small subset of nodes. I detach the approval checking and dispute protocols from
the estimates because they were derived from a controlled environment and are
not representative of the execution time of the approval checking in an uncertain
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environment. Furthermore, they bypass the dispute protocol completely. These
protocols are also affected by the number of validators and voters, making them a
central point in the discussion of PolkEM scalability.

The protocol for cross-chain messaging was also excluded from the conducted
experiment, as the experiment did not establish the required connections. There-
fore, I also discuss this protocol in more detail.

6.2.2 Approval Checking

During approval checking, each validator in the voting set keeps a local represen-
tation of the given parachain block’s state. This state has an overview of when each
validator in the voting set is assigned to cast their vote, the tick at which the block
was first observed, and the current number of approvals.

The assignments are calculated at each validator using the VRF, which takes
the parachain ID and the relay chain’s BABE credentials as input, see Section 3.2.4.
Each assignment is associated with a delay tranche, each with multiple valida-
tors associated, used to determine when a given validator should perform ap-
proval checking. Spreading out these checks ensures that only the needed num-
ber of delay tranches and, in turn, validators are involved. After a check has
passed, a signed approval message is propagated through the network, updating
the parachain block’s local state at each validator. In the case of a failed check,
meaning that the validator determines that the block is invalid, a dispute is initi-
ated.

The configuration of the delay tranches influences the process’s efficiency based
on the parameters listed below. The Polkadot community is still discussing the best
values for these parameters, as seen on GitHub [62]. I present the values used in
the v0.9.37 release.

• MAX_TRANCHES: The maximum number of delay tranches that indirectly
dictates the time it takes to check each parachain block when the entire voting
set is involved. The default value is 89, meaning the last validator would
check the block 44.5 seconds after observing its availability. During normal
execution, this tranche will not become relevant.

• MIN_CHECKERS: The minimum number of passed checks required for a
parachain block to be approved. The default value is 30. Delay tranche zero,
starting at tick zero, is designed to have this number of validators, ensuring
that, in the best case, only very few delay tranches are reached.

• NO_SHOW_SLOTS: The number of slots available for each validator to con-
duct the approval check before casting their vote. The default value is two,
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meaning each validator has 12 seconds to perform the check. This is equiv-
alent to an entire relay chain block and is unlikely to become necessary. It
is important to note that the approval checking and the block time are not
connected. Successful execution of the approval checking protocol places the
checked parachain block in the inclusion queue, waiting for authoring of the
next relay chain block. The two timings are unrelated, but both increase the
finalisation time for parachain blocks.

The delay tranches (t1, ..., tMAX_TRANCHES) are only used if needed, for instance,
if a checker disappears or does not submit an approval in time. The approval
checks in each delay tranche are only triggered if the minimum number approvals
are still missing at the start of that delay tranche.

Using delay tranches results in a best-case approval time close to the checking
time and propagating the result. Under poor network conditions, such as a large
set of malicious nodes or high networking delays, the protocol will compromise on
latency to ensure correctness by utilising more delay tranches. Figure 6.1 depicts
three scenarios, each reaching a different number of delay tranches.

(a) Legend for the following three subfigures. (b) All checking validators respond with a vote.

(c) One checking validator becomes non-responsive. (d) Multiple checking validators become non-responsive,
requiring five delay tranches.

Figure 6.1: Depiction of reached delay tranches in three scenarios, requiring a minimum of four
checkers. [63]

The three presented scenarios illustrate how few delay tranches are used during
approval checking, only requiring additional tranches in rare cases where multiple
checkers become non-responsive.

As mentioned, the approval checking protocol can take up to 44.5 seconds if,
for instance, a large subset of the voting set disappears. However, this is not a reg-
ular event because tranche zero already assigns the minimum number of checkers,
and using each delay tranche is only necessary if enough validators disappeared
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during the previous one. Due to this, the latency of the approval checking is not
very high. I include an additional ten delay tranches to the experiment, account-
ing for a less controlled environment. This results in an additional latency of five
seconds. I retrieved the results from a controlled environment, and the five-second
extension is assumed to account for minor deviations expected from a real-world
execution.

Needing to rely on the last delay tranche, triggered at tick 89, is very improb-
able, and I spend no further time discussing its effect on latency and throughput.
Suffice it to say that it would increase the time to conduct approval checking to
44.5 seconds, still keeping the trading time presented in Section 6.2.5 within the
target of five minutes.

6.2.3 Disputes

The frequency of disputes is expectedly low, and their impact on latency and
throughput is not critical to the general latency and throughput of PolkEM. How-
ever, they are not infeasible. They compromise latency and throughput, primarily
through delayed finality for parachain blocks. Disputes stall finality because they
mean that validators disagree on the parachain states, making it impossible to de-
termine which state to extend the chain from.

Triggering a dispute means that at least one validator, either backing the parachain
block or participating in the voting set, disagrees with another validator regarding
the block’s validity. A dispute requires at least 2

3 n + 1 validators to agree on the
block’s validity by casting votes. The process consists of the following steps.

1. Collect all statements about the associated parachain block, including those
for backing, approval checking, and disputes.

• If a statement from validator vi is collected, they do not participate in
the remaining steps.

2. Fetch data using the availability protocol.

3. Extract relevant information from any recent relay chain blocks.

4. Perform the validation check using all fetched data.

5. Issue a statement of dispute participation, containing the result of this check.

Step four is expected to have no considerable impact on the delay, as it can
be performed at each validator in parallel, starting when each validator has col-
lected all necessary data. Therefore, the execution time primarily depends on time
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needed to fetch all previous statements on the block’s validity, step one, and re-
quired data for the check, steps two and three. I cannot provide a concrete execu-
tion time for these steps, but I can deduce an estimate from a recent event on the
Polkadot main chain [64].

The event occurred when a validator started disputing valid parachain blocks,
initiating 60,614 disputes in 20 hours. The event increased the block time on the
relay chain to 18 seconds, 50%, and stalled the finality of all parachain blocks. The
increase in the block time came from the need to include all disputes in every block.
Despite the high number of disputes and increased block sizes, the validators were
able to resolve each dispute quickly. The disputes’ distribution was not uniform
across the 20 hours, but assuming this, ∼50 disputes were resolved every minute,
see Equation 6.2. [64]⌊

60, 614 disputes
20 hours× 60 minutes/hour

⌋
= 50 disputes/minute (6.2)

These number give an average resolution time of ∼1.19 seconds. The 20 hours
included a window during which no disputes were initiated, further decreasing
this delay.

Based on the presented arguments and real-world event, PolkEM’s theoretical
overall latency and throughput estimates do not include disputes. However, it
could be interesting to conduct experiments on their frequency and impact on
PolkEM at a large scale.

6.2.4 Cross-Chain Message Passing

As I introduce a mediator parachain to facilitate cross-grid trading, the latency
and throughput of message passing between connected MGs and this mediator
becomes one of the main latency and throughput concerns of PolkEM.

As I mentioned in Section 3.3, the message parsing process involves the con-
struction of a message during block authoring on the sending chain, collating the
block, having it finalised, and then processing the messages during block author-
ing on the receiving chain. I use the upperbound block delay encountered in the
conducted experiment, presented in Section 5.2.3, and assume that the approval
process will require an additional ten delay tranches, as mentioned in Section 6.2.2.
Hence, the messaging delay, ∆XCMP, is 50 seconds, as shown in Equation 6.3. The
50 seconds cover passing a single message from an MG to the mediator.

∆XCMP = 20s + 5s + 20s + 5s = 50s (6.3)

The equation includes the two timings twice because both an MG block and
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a mediator block must reach finality to ensure correctness of the process. Based
on this, each round of cross-grid trading would take 100 seconds, as the process
includes one message from each MG to the mediator and a response containing
the cross-grid trades from the mediator to each MG.

It is important to note that I assume the mediator block containing the cal-
culated trades gets finalised before authoring of the block with mediator node
signatures starts. The authoring of the second block could begin while the first
block is going through finalisation. The experiment in Section C.1 supports this
assertion, containing logging proposed blocks before the previous one reaches fi-
nality. If authoring of the second block occurs before the first block reaches finality,
the presented delay is decreased.

Basing this value on the results of an experiment conducted in a local Kuber-
netes cluster without any transactions makes it unlikely to match the real-world
performance. However, the live Polkadot chain consistently achieves a 12-second
block time, except during extraordinary events or attacks, while aggregating 100
parachains [65] and using 297 validators [66]. A 12-second block time would re-
sult in ∆XCMP decreasing to 36 seconds, as the authoring would take six seconds
for each of the two blocks, while finalisation would require an additional 12 sec-
onds. The overall latency of cross-grid trading would then be 76 seconds. I use the
calculated 100 for the remainder of this section.

6.2.5 Summary

Based on the latencies of approval checking, disputes, and message passing, I
present an overview of PolkEM’s overall latency and throughput.

The latency of trading an energy asset on PolkEM is highest when depending
on cross-chain trades from the mediator, giving a latency equivalent to 100 sec-
onds, as shown in Equation 6.4. This calculation is based on the highest delay
encountered during the test environment experiment, accounting for an additional
ten delay tranches during approval checking.

∆l = 2∆XCMP = 100s (6.4)

The average finalisation delay of the experiment was ∼15.85 seconds, which
would result in a latency of 83.4 seconds, still accounting for ten additional delay
tranches.

Based on the above calculation, PolkEM theoretically meets the latency require-
ment, RP1, presented in Section 2.4.1.
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The throughput of PolkEM is lowest in the case where all MGs submit an
energy asset for each block, as it increases the number of assets passed to and
processed by the mediator. This case forwards 1,889 messages to the mediator,
including the grid-intermediary parachain. Each passed message aggregates the
surplus energy assets of the sending MG, processed on the mediator during the
authoring of the following mediator block. Using the energy asset and block sizes
presented in Section 3.1.2, the mediator can process 9,850 energy assets within
a single block. Matching these assets and constructing trades can be performed
during block authoring without significant overhead, as shown in Section 5.1.

Based on these arguments, the theoretical throughput of PolkEM is 18,596,800
transactions per 100 seconds, as seen in Equation 6.5.

9, 850t× 1, 888 = 18, 596, 800t (6.5)

Based on this calculation, PolkEM theoretically meets the throughput require-
ment, RP2, presented in Section 2.4.1. Furthermore, a configuration using half as
many MGs would still meet this requirement, and so would one with twice as
many MGs. I have depicted these hypothetical situations in Figure 6.2, together
with the proposed 1,888 MGs.
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Figure 6.2: Graph showing the number of energy assets included in
trades per second for PolkEM, utilising different numbers of MGs. The
dotted pink line represents the target number.
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The numbers presented here assume that MGs cannot forward energy assets
to the mediator during the consensus process. However, this could be possible, as
the processed message size is far below the maximum size of the block. Hence,
constructing trades and agreeing on them could be done during a single block.

6.3 Security

The relay chain and the Substrate framework highly influence the security of
PolkEM because of its dependence on these for most of the functionality. Ad-
ditionally, PolkEM cannot assume the secureness of each MG, and the relay chain
will therefore be the platform’s only protection from malicious MG nodes. In the
following sections, I present discussions on PolkEM’s privacy and traceability, fol-
lowed by one on its attack resilience.

6.3.1 Privacy and Traceability

PolkEM is only responsible for validating the state transitions of MGs and cross-
grid trades. Therefore the privacy of each prosumer is ensured, from the relay
chain’s perspective, by aggregating energy assets into a single MG level one. Trace-
ability at this level only includes validation checks for each parachain block and
can only trace the actions of the MGs. Hence, each MG must incorporate suffi-
cient mechanisms to ensure these properties at the prosumer level. Based on this,
PolkEM meets requirements RP3 and RP4 but not at the prosumer level.

In my ninth-semester project, I argued that any misbehaviour detected during
the validation of its blocks could result in a fine of the MG, which would incen-
tivise improved mechanisms to avoid collating invalid blocks. Studies on different
privacy-preserving trading mechanisms that ensure traceability in the case of mis-
behaviour have been conducted [49, 67]. One approach is to use reputation scores,
which affect how trades include each participant. The relay chain could implement
similar scores. These would be modified based on the validity checks conducted
on each MG’s collated blocks. Each MG would then be liable for all its participants
and have to incorporate traceability mechanisms to trace the actions of each node.

It could also be desirable to conduct screenings of MGs wanting to participate
on the platform. During this screening, validators could inspect each MG’s source
code, checking for the implementation of traceability, attack detection, and attack
mitigation features. However, this is outside the scope of this project.

One way for MGs to incorporate traceability in the current system would be to
store all energy assets aggregated in each collated block while it awaits finality, as
mentioned in Section 3.3. If the validity check fails, the MG would have a record
of all involved accounts and could start running checks on their recorded actions.
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Assuming that PolkEM should enforce traceability from the relay chain down
to the individual MG nodes, a more sophisticated communication protocol be-
tween the relay chain and MGs is needed. One example would be the cross-grid
trading mechanism presented by Wang [12], which utilises smart contracts and a
verification subgroup in each MG. Implementing a slightly modified version that
communicates with the relay chain instead of other MGs would force each MG
to incorporate the mechanism into its internal logic. Each collated energy asset,
and its constituents, would be traceable due to the inclusion of signatures from the
originating account. However, it would compromise PolkEM’s support for hetero-
geneity, increase the size of collated energy assets, and extend the collation process
with several steps.

The increase in energy asset size could be acceptable, as a minor decrease in
the theoretical throughput of PolkEM would not harm its viability. Furthermore,
if each MG does not participate in cross-grid trades for every block they produce,
a slightly higher latency would not be an issue. This approach could therefore be
further investigated and compared to other alternatives.

Based on the presented options, I suggest implementing different approaches
and conducting a comparative analysis based on their latency and throughput.
Furthermore, I propose evaluating these results in the context of each approach’s
effect on heterogeneity.

6.3.2 Attack Resilience

The relay chain uses NPoS, demanding that each validator has placed a stake and
is backed by several nominators, each with an additional stake. On Polkadot, each
validator has a combined stake of 2 billion DOT behind them, ∼12 million US$
at the time of writing [68]1. Each detected attempt to attack the platform would
result in the slashing of 10 - 20 validators2. The percentage deducted from each
validator’s account dependens on the severity of their misconduct, but approving
a block later determined invalid results in 100%, equivalent to a total of 120 - 240
million US$ across the slashed validators.

The main security argument of NPoS consensus algorithms, including Polka-
dot, is the Gambler’s Ruin [69]. The idea is that by requiring each participant’s
stake to exceed the potential profit of an attack and ensuring a high probability

1Fluctuations in the actual value of a DOT affects this value and a potential crash would dissipate
any security implications of the stake. However, based on the all time low, ∼ 2.69 US$ [68], and all
time high, ∼ 55.00 US$ [68], evaluations, the staking behind each validator has stayed between ∼5.38
million and ∼110 million US$. A required stake equivalent to any value within this bound would
make the feasibility of an attack low.

2This is based on Polkadot with 900 validators. The number of slashed validators is affected by
multiple factors, including the size of the active validator set and the number of checkers
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of being detected, attackers will never be able to make a profit, regardless of their
strategy.

Requiring high stakes behind each validator disincentivises profit-based at-
tacks. However, this is only true if the probability of detection is high. Further-
more, it will not necessarily prevent attacks that aim to bring down the grid. Such
profitless attacks conducted by foreign states are a considerable concern for vital
infrastructure, such as the energy sector, as documented in the Danish National
Risk Profile of 2022 [70].

Based on the importance of detection, I focus on the mechanisms and mitiga-
tion techniques used by PolkEM to increase the detection probability. The main
protocols for this are approval checking and disputes.

Approval Checking

In addition to what I describe in Section 3.2.5, the approval checking increases
the security of block finalisation and detection of malicious behaviour through the
properties listed below.

1. Assignments are kept secret until each checker reveals itself, which makes
it impossible to initiate targeted Denial-of-Service attacks faster than these
reveals are received. Alternatively, the attack must target all validators in the
set, increasing its cost and overhead.

2. Assignments are deterministically generated to increase the chances of in-
cluding an honest nodes as checkers in the set and make assignments verifi-
able.

3. A checker broadcasts their intention to check a block before recovering the
necessary data. Other nodes are alarmed if the checker disappears after this
broadcast, which triggers additional checks.

4. Disappearance of a checker triggers an assignment of multiple new checkers
for the block. Resulting in an increased number of checkers for each disap-
peared node.

These properties ensure that a potential attacker needs to control all selected
checkers or silence every other validator for an attack to succeed. If any well-
behaved node performs a check, it will conclude that the block is invalid, initiating
a dispute. Hence, the approval checking process is highly secure, assuming that at
least 2

3 n + 1 checkers are correct and well-behaved. Due to this, the configuration
for the voting set and the minimum number of checkers hugely impacts PolkEM’s
security.
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Disputes

Initiation of disputes trigger a vote to determine the validity of a parachain block.
This vote requires at least 2

3 n + 1 validators to agree on its validity, based on
BFT [27]. When a subset of this size is well-behaved and correct, all opposing
nodes are slashed. These nodes have either voted an invalid block valid or a valid
block invalid. These two cases constitute the majority of attacks that alter the
chain’s progress and state. Under the presented assumption, disputes are able to
ensure the validity of all referenced parachain blocks and correctness of the relay
chain.

Based on the presented security properties, PolkEM meets the attack resilience
requirement RP5, assuming that the number of faulty or malicious nodes is below
the number of checkers required for the approval checking process.

6.4 Testing Environment

The intentional use of the testing environment extends beyond the experiment
conducted in Section 5.2. Therefore, I evaluate how well it supports the intended
use cases. I discuss its features, design, performance, and whether it meets the
requirements presented in Section 2.4.2.

6.4.1 Features and Requirements

I have implemented the testing environment to form a solid foundation for con-
ducting tests of PolkEM-compatible MG implementations. As shown in Section 5.2,
I can launch the testing environment with an instance of the relay chain and me-
diator. Furthermore, these chains are connected, collating and finalising blocks. I
also instantiated and connected an exemplary MG with a different internal logic.
Based on this, the testing environment meets the requirements RT1, RT2, and RT3.

The experiment also represents how the testing environment facilitates data
extraction through the logging agent and provides a general way to instantiate
sidecar applications that trigger node actions. Even though the presented applica-
tion only subscribed to blocks, the user can similarly trigger actions on the node.
Furthermore, the logging agent incorporates timestamps for logged events to en-
able the user to reason about the timing of these, as done in Section 5.2.3. The
testing environment, therefore, meets requirements RT4, RT5, and RT9.

I built the testing environment as a Kubernetes cluster, allowing it to run on any
infrastructure and hardware configuration supporting Kubernetes. Furthermore, I
introduce configurability through Helm charts to fit these infrastructures. Utilising
Helm charts also enables the user to configure the number of nodes and instantiate
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multiple MGs based on a generic chart specification. These design choices ensure
that the testing environment meets requirements RT6, RT7, and RT8.

I introduced an account manager that deterministically provides each node
with a private key, allowing each node to have a specific account to use for con-
necting to it. Based on this, the testing environment meets requirement RT10.

This leaves requirement RT11, "Inject nodes with different definitions into each
chain". I presented this requirement to support malicious node injection to test
the security aspects of MG implementations. Unfortunately, I was unable to imple-
ment this feature during the course of this project. However, it could be a separate
stateful set and use the chain specification of the MG. Given the time, I would
extend this stateful set with additional configuration parameters in the parachain
Helm chart. These would be malicious_node_image, for specifying the Docker
image of the malicious node, malicious_node_count, to configure the number of
malicious nodes to instantiate, and malicious_node_runner_image, allowing the
user to specify the sidecar application to run alongside malicious nodes. How to
construct the Docker image to join the chain and also misbehave is too intricate for
this discussion and could be an interesting study in its own right.

6.4.2 Usability

One of the crucial aspects of a testing environment is its usability. I did not conduct
any usability tests during the project. Therefore, I discuss this aspect based on the
number of steps and configurable parameters instead. In addition to this, I also
consider the complexity of understanding these steps.

To set up a working instance of the testing environment, I followed the steps
outlined in Section 5.2.1. I consider the generation of the chain specification and
referencing it as a parameter for the parachain Helm chart an easy step. The same
goes for the genesis state and WASM strings’ generation, as the exemplary MG
repository contains a script for performing this. Building a Docker image of the
MG node and referencing it when using the parachain Helm chart is considered a
reasonably straightforward step, as a script for this is also available. Hence, the step
of injecting the genesis strings into the relay chain specification and recompiling it
remains.

This injection and compilation step is tedious, as the WASM string is roughly
1.2 megabytes and must be copied into the right line in the relay chain specifi-
cation. During the project, I had to modify the allowed memory usage of the
integrated development environment before the file could be analysed, making the
step highly cumbersome.
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Given the time, I would propose automating all five setup steps by requesting
the MG node binary as input for the testing environment and programmatically
generating the chain specification, genesis state, and WASM. As I already devel-
oped most of the necessary scripts, this could be achieved by triggering these from
a combined entry point. The only step not already automated is injecting the con-
tent of these files into the relay chain specification. However, the specification is a
JSON file, easily deserialisable into an object. The object could then be modified
through its fields and re-serialised. This way, the user would not have to un-
derstand the underlying coupling between the chains’ specifications and genesis
states.

Automating these steps would increase usability by only requiring the user to
provide the MG binary and set a few parameters when triggering the parachain
Helm chart.

6.5 Depending on Substrate and Polkadot

I have based all the blockchain implementations on the Substrate framework and
the relay chain on Polkadot. This dependence has resulted in several issues, as both
these systems are actively under development. I discuss the development process
and how working with these technologies has impacted the project in more detail
in Appendix A. However, I will discuss whether a solution based on these could
form a viable platform for the energy market.

One of the main advantages of Substrate is its modularity, as it enables devel-
opers to base their implementations on pre-built components and swap them out
as needed, making the framework highly extensible and flexible. However, due
to its immaturity, there is limited documentation on configuring complex systems.
Furthermore, the number of modules and components can seem overwhelming
due to the philosophy of complete decoupling. Decoupling is generally seen as a
quality characteristic but can cause a lack of cohesion and decreased usability, as it
increases complexity and steepens the learning curve.

Substrate achieves modularity and low coupling through several libraries using
generic parameters. Each library contains a set of primitives, instantiated based on
the provided generic type. However, these primitives are introduced in multiple
libraries to avoid coupling between them, such as the AccountId. The definitions
are incompatible by default, despite often being identical. Hence, the user must
manually specify conversion logic when multiple libraries need to process the same
primitive. Keeping track of used definitions and defining conversion logic are
tedious, worsened by the following factors.

First, the framework’s size results in very slow indexing for development envi-
ronments, which prevents jumping between references and their definitions, mak-
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ing it very difficult to locate a given reference’s definition.
Secondly, many of these libraries utilise re-exportation of the primitives, which

means that the underlying implementations are identical, but because each library
defines them, they are incompatible.

Thirdly, the lack of documentation makes it difficult to understand the expected
use of each module. The use of more complex structures composed of multiple
primitives increases the difficulty further.

One of Substrate’s founders, Gavin Wood, has mentioned that the lack of doc-
umentation is by design. The intention is to foster more innovation and spark
conversations in the community [71]. He made the following statements during a
talk at the Polkadot Decoded 2022 conference [71]. I have removed repeated words
and half-finished sentences to increase the readability.

"[...] all opinions, ultimately, are going to be design errors. We do it when it’s
necessary."

- Gavin Wood, Polkadot Decoded 2022 [71]

"We build reference implementations but stay away from official implementa-
tions. As soon as you label something official, you’re putting a limitation on
where your ecosystem can go."

- Gavin Wood, Polkadot Decoded 2022 [71]

"We are not going to give everybody a manual in the ecosystem, ‘this is how
you do x, this is how you do y, this is what happens if you need to do z’, no
we’re not. [...] Therefore, we have to have a much more open approach."

- Gavin Wood, Polkadot Decoded 2022 [71]

He follows up the last quote with a statement on how anyone that provides a di-
rect description of how to do something is "probably giving you a flawed design" [71].
I will not discuss whether the assumption that fixed opinions inevitably result in
errors here, but the decision to avoid official implementations and actively avoid
the creation of manuals does increase the learning curve drastically.

A more open approach to developing solutions necessitates a well-structured
and responsive community. Substrate aims to achieve this through its stack ex-
change forum, but as no official documentation is available, most answers are peo-
ple’s own approaches or source code references. How much this helps solve the
posed issues is questionable.

Substrate and Polkadot are both currently under active development, which
means that changes are continuously released to improve the systems and fix er-
rors. The releases can contain breaking changes, resulting in tools developed by
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the community breaking too and becoming obsolete. For instance, a new Substrate
release might break one or more tools, requiring the user to deduce which version
is compatible across all the tools they intend to use during development. The cur-
rent state also means that critical bugs and vulnerabilities are still present.

Based on these points, one could argue that Substrate is unsuitable for the de-
velopment of PolkEM. However, one of the primary selling points of using the
framework for this project is its fundamental integration with Polkadot. The in-
tegration allows the mediator and future MG implementations to connect to the
relay chain by basing them on the parachain template provided by the framework.

If I were to redo this project with the gained knowledge, I would reconsider re-
lying on Substrate. I could have implemented the essential features of PolkEM us-
ing general Rust libraries and research articles on the Polkadot protocols. I would
have set up a simple peer-to-peer network using the libp2p library, developed by
Parity Technologies [72], and then extended it with the relevant protocols. This ap-
proach could have resulted in a bare-bones prototype but would not have included
all the features available in Substrate and Polkadot, such as Aura and BABE. It
would also have taken time away from the testing environment implementation.

Whether Substrate and Polkadot will mature and foster a community able to
support new developers, as Gavin Wood envisioned, remain to be seen. These
aspects are critical for the viability of this more open development approach, as it
necessitates a mature community and ecosystem. If enough competent developers
are engaged, the number of good answers to general questions on the forum will
increase and could eventually become unofficial documentation.

6.6 Scope of The Project

My initial goal for the project was to develop a primitive prototype of PolkEM. I en-
visioned a relay chain, the mediator, a grid-intermediary parachain, and numerous
exemplary MGs. Such a system is an ambitious goal for a Master’s thesis project,
especially considering I would implement it alone. I assumed that Substrate and
Polkadot would facilitate quick implementations of each chain with some simpli-
fications, allowing the project to focus on analysing different configurations and
comparing the system’s performance with and without the mediator.

Unfortunately, the state of an ecosystem around Substrate were not as expected,
and I had to pivot multiple times during the process. The project presented in this
report is still quite ambitious, but I hope the results spark new research ideas for
decentralised energy markets.

In terms of the project’s scope, I am satisfied with the parts presented here,
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given the circumstances. I argue that the original prototype would have been
achievable with more mature versions of Substrate and Polkadot. The project might
have benefited from a narrower scope, but I argue that a combined platform, lever-
aging recent technological advancements, is the next step for distributed energy
market research.





Chapter 7

Conclusion

In this project, I aimed to propose an energy trading platform that leverages a
distributed mediator to facilitate cross-grid trading and an accompanying testing
environment. I have presented both, demonstrated some of their capabilities, and
discussed whether they answer the problem definition. Based on the listed require-
ments and discussion, both contributions are, in general, satisfactory.

The platform requires Substrate and Polkadot to reach a more mature state be-
fore being an appropriate replacement for the centralised system currently used in
Denmark. However, the points in the discussion provide potential modifications
and improvements that would make PolkEM a competitive system.

The testing environment supports the intended scenarios with the ability to
configure numerous parameters to fit each one. I cannot determine the overhead
of running extensive simulations on sophisticated infrastructures through the ex-
periments presented in this project. However, many commercial systems build
and run on Kubernetes, and I expect the testing environment to scale sufficiently.
Furthermore, I did not implement malicious node injection during the project but
described a potential approach to do so.

Based on the above, I deem PolkEM constitutes a solution to the problem of
distributed energy trading, assuming that the underlying systems reach the re-
quired maturity. Additionally, I conclude that the testing environment sufficiently
provides a way to evaluate MG implementations intended to run on the platform.
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Chapter 8

Future Work

I present some selected features and considerations for extending the contribu-
tions in future iterations. I start by briefly discussing general research directions,
followed by feature suggestions to help evaluate PolkEM as a platform and im-
prove the testing environment. I have excluded the features necessary to meet
requirement RT11, as I included these in Section 6.4.

8.1 Future Research Directions

The main focus of future iterations should be the implementation of PolkEM. A
prototype is necessary to conclusively answer the questions I have only answered
under limiting assumptions and theoretical estimates in this project. The prototype
should include a modified version of Polkadot as the relay chain, the mediator, and
the grid-intermediary parachain. These can be connected using the testing environ-
ment and evaluated by instantiating and connecting various MG implementations.

Following this, I would get input from researchers and practitioners in game
theory and commodity trading markets to improve PolkEM’s market dynamics.
The platform might benefit from using a more elaborate algorithm on the mediator
or restructuring the way MGs forward their assets to optimise different metrics.

Finally, I would vouch for conducting a real-world pilot project similar to the
one in Quarterstorm [19] to collect real-world data on PolkEM’s performance and
security. Such a project would require a user interface to be available for the par-
ticipants, achievable with the Substrate frontend template [51].

In the following sections, I will propose implementation details of concrete
features for both PolkEM and the testing environment.
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8.2 Modified Relay Chain

The relay chain presented in this project uses the default configuration of Polkadot.
However, changing the various parameters and underlying mechanisms would be
highly advisable to tailor them to PolkEM. I suggest conducting several experi-
ments using a prototype of PolkEM and the developed testing environment with
various configurations to determine which parameters could improve the perfor-
mance and security of the platform.

More specifically, I suggest comparing different values for the voting set size,
the total number of validators, the parachain validator set size, and the block times.
These four metrics constitute the main factors potentially inhibiting the scalability
of PolkEM based on the current Polkadot implementation. Therefore, it is criti-
cal to determine the optimal scalability configuration that maintains a high attack
detection rate and punishment of detected malicious nodes.

In addition to these four parameters, a large set of MGs should be instantiated
on the platform to conduct load- and stress tests. Due to Polkadot limiting the
number of connected parachains to 100, the relay chain will likely need further
modifications to allow such tests.

8.3 Optimised Mediator

PolkEM’s main novelty is the mediator, and how it could be optimised is therefore
of interest. I propose merging the two blocks authored for each round of cross-grid
trading. Authoring of the first block includes processes of incoming MG messages
and execution of the trade matching algorithm. Authoring of the second block
mainly consists of collecting the signatures from all mediator nodes, either backing
or disputing the set of trades.

Merging these two blocks would mean that only one round of authoring and
finalisation would be necessary for one cross-grid trading round. Furthermore, the
relay chain would not have to finalise blocks that might include erroneous trades.
The finalisation of such blocks could be a potential risk with the current setup, as
the first block does not require any backing from the remaining mediator nodes.
The first block does not share the unsupported trades with the MGs but does add
unnecessary computations to the process.

One drawback of merging the two blocks is achieving consensus on the set of
trades during the authoring process. However, because the mediator uses a single
author for each block, a leader-based consensus algorithm can be used without the
additional overhead of selecting a leader separately. One such algorithm is Raft, a
simplified and modern version of Paxos [73], which could achieve this consensus.
As shown in Section 5.1.3, the trade matching can be conducted within one second,
leaving several seconds for the consensus.
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Based on the above, I highly suggest experimenting with Raft to achieve single-
block cross-grid trade matching and backing. If consensus is unachievable using
six-second slots, it might be valuable to extend these, considering merging the two
blocks might still decrease the overall delay.

8.4 Automated Chain Specification Creation

The final feature I suggest is the automation of all chain specification-related tasks.
I have already automated the generation of the chain specifications and the genesis
states, but injecting these into the relay chain’s specification remains tedious.

By automating these tasks, I alleviated the need for the user to construct and
inject chain specifications for all chains after each modification. Additionally, the
user will not have to run multiple automation scripts in a specific sequence to
ensure up-to-date versions.

I propose to develop an application to handle this. As Substrate uses JSON files
for the chain specifications, most programming languages could easily deserialise
them and allow rigid modification of the resulting objects through named fields.
Wanting to represent the specifications as objects makes simple scripts less enticing
than a programming language built to handle such abstractions. Furthermore,
using Rust, the struct defined by Substrate to represent these specifications can be
directly used, decreasing the associated workload.

I suggest that the application takes an MG node binary as input, from which
it can then generate the MG chain specification and genesis state files. After this,
it can deserialise the relay chain’s specification and modify its fields to include the
MG chain’s genesis state data. After this, the relay chain’s specification can be
re-serialised and used in the testing environment.

A further addition to this application could be to generate the Docker image
for the MG node binary.
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Appendix A

Development Process

In this appendix, I describe the project’s development process. I present different
techniques and tools I have used to ensure quality and stay on schedule.

A.1 Planning and Task Management

Working on the project alone has meant that most organisational techniques and
tools have been superfluous. Due to this, I have not used Kanban boards or Gantt
charts but instead kept task lists of varying abstraction levels. Section A.4 present
an example of a high abstraction level list, while Figure A.1 consists of two more
concrete lists. I also used sticky notes to provide a visual overview and allow me
to re-prioritise tasks.

Figure A.1: Pictures of handwritten lists used during the project.
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I decided to use handwritten lists and sticky notes as they give a more tactile
feel when created and finshed, either crossing them out or taking down a sticky
note. As I was the only one who needed to be aware of the current tasks and
their progress, I decided that more elaborate, software-based tools would provide
negligible advantages and additional overhead.

To ensure I was on track, I revised my current task list every morning and
ended every week with a look at the overall plan. These revisions helped me carry
out relevant tasks first and allowed me to adapt the overarching schedule if one
week’s items exceeded their estimated duration or if I completed them quicker
than planned.

A.2 Substrate Issues and Pivoting

Another advantage of having disposable lists is easy pivoting. This attribute was
useful due to the several hurdles encountered while using Substrate to develop
PolkEM’s chains.

As no official documentation is available for Substrate, I encountered numerous
issues that impacted the overall schedule. I initially had an overview similar to the
one in Section A.4 with the features I wanted to implement and the project-related
tasks. I assigned each to one of the project’s weeks to ensure I could reach the
set goals. I did not expect to follow the original plan perfectly, but I intended to
use it as an overview of milestones and then continuously evaluate whether I was
keeping up or had to adapt my plan.

Table A.1 lists several of these issues with their solutions. Each one increased
the implementation time of the chains, as I derived their solutions from reading
source code, reverse-engineering Substrate, or waiting for answers from forum
users.
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Issue Solution

Deprecated guides Read through source code

Missing setjmp.h header file Remove jsonrpsee library from the run-
time

Double implementation of panic! Remove sp_io library from the node

Keys generate different addresses Modify the chain specification code in
the node

No authoring Manually add the seven public keys to
the keystore

Deviating genesis states Forces each node to wait for their associ-
ated boot node

Code error in validate_transaction -

Table A.1: Table showing several issues encountered while connecting a parachain to the relay chain.
I did not resolve the last issue, and is the main reason for the lack of traded energy assets during the
experiments.

Issues such as the ones listed above meant that I had to revise the overall plan
multiple times during the project. My original problem definition only mentioned
PolkEM but was rewritten to include the testing environment. I spent two months
mainly working on solutions to Substrate-related issues, while waiting for answers
to questions I had posted on the Substrate forum. These attempts highly impaired
the extent of the presented implementations.

A.3 Quality Assurance

Because I was responsible for planning, producing, and reviewing every aspect of
the project, I applied processes to enforce multiple iterations for each item. I sepa-
rated these iterations using other tasks to divide the given item’s production and
review processes.

I used a trunk-based branching approach and pull-requests for the code to en-
sure I reviewed changes before merging them into the main branch. Pull-requests
generally enforce reviews by multiple team members before changes reach pro-
duction. However, by preserving this process while working alone, I considered
changes from both the perspective of a developer and a reviewer. For this to work
sufficiently, the development and review processes should be conducted at differ-
ent times, allowing for a sufficient context switch and fresh perspective.
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I used a similar approach for this report, writing one day and reviewing an-
other. I also used Grammarly [74] to get additional feedback on my writing, man-
ually rewriting sections highlighted as unclear or too passive.

I further increased the code’s quality by conducting experimental and unit tests.
The prior consisted of executing the different components with various inputs and
verifying the results manually, while I used the unit tests to validate the compo-
nents’ units and their behaviour. I have included one of the unit tests used for
the trade matching algorithm in Listing A.1. All unit tests follow the Assign, Act,
Assert pattern.
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#[test]
fn cheap_request_is_sold_to_the_grid_and_
everything_else_is_peer_to_peer() {

let mut requests = Vec::<EnergyRequest>::from([
EnergyRequest { amount: 10, price: 1.9, buyer: "buyer_1".into

() },
EnergyRequest { amount: 10, price: 2.0, buyer: "buyer_2".into

() },
...,

EnergyRequest { amount: 10, price: 2.8, buyer: "buyer_5".into
() }

]);
let mut offers = Vec::<EnergyOffer>::from([
EnergyOffer { amount: 10, price: 2.0, seller: "seller_1".into

() },
...,

EnergyOffer { amount: 5, price: 2.7, seller: "seller_5".into()
}

]);

let grid_request = EnergyRequest { amount: 10, price: 2.0,
buyer: "grid".into() };

let grid_offer = EnergyOffer { amount: 10, price: 2.0, seller:
"grid".into() };

let trades = generate_trades(&mut requests, &mut offers, &
grid_request, &grid_offer);

// Assert that six trades are formed, only one involving the
grid, and the grid is the seller

assert_eq!(trades.len(), 6);
assert_eq!(trades.iter().filter(|&t| t.buyer.eq("grid")).count

(), 0);
assert_eq!(trades.iter().filter(|&t| t.seller.eq("grid")).

count(), 1);
}

Listing A.1: One of the unit tests used to test the trade matching algorithm. This test verifies that
the algorithm matches a request with a price lower than the cheapest offer with the grid’s offer.
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I have not conducted automated module or system tests, as the size of each
tested application is limited. Furthermore, I performed tests covering the blockchain
nodes using the testing environment, which one could classify as automated sys-
tem tests without an assertion phase. Substrate offers ways to unit test parts of the
nodes’ logic. However, I did use this feature due to my limited node implementa-
tions.

A.4 Abstract Task List

A task list showing my intentions for PolkEM and its evaluation at one point dur-
ing the project.

1. Submit offers and requests

2. Retrieve finalised block containing offers and requests

3. Implement mediator

(a) Accept incoming XCMP

(b) Implement democratic voting on blocks, possibly by rewriting the au-
thoring

(c) Forward results using XCMP

4. Connect Mediator to relay chain

(a) Add para id, genesis wasm, and genesis state

(b) Setup XCMP (or HRMP) channel between MG and Mediator, both ways

5. Update MG

(a) Add XCMP forwarding (at specific intervals or simply for all offers and
requests)

(b) Accept incoming XCMP messages and include them on the chain

6. Connect a second MG

(a) Generate second chain specification (possibly within chain_spec.rs)
with para ID and accounts

7. Connect the second MG to the relay chain

(a) Add para id, genesis wasm, and genesis state

(b) Setup XCMP (or HRMP) channel between second MG and Mediator,
both ways



8. Perform evaluation tests

(a) Run polkem-runner in all MG pod

(b) Use a JSON file to illustrate consumption/production data

(c) Load JSON file and use entries as offer and request submissions

(d) Verify finalisation in the transaction for each submitted offer/request

Appendix B

Source Code Links

The following list contains links to each repository developed during this project.

• The main repository containing the testing environment:
https://github.com/Nielswps/PolkEM.

• The relay chain, based on Polkadot:
https://github.com/Nielswps/polkem-relay.

• The mediator, based on the Substrate parachain template:
https://github.com/Nielswps/polkem-mediator.

• The account manager:
https://github.com/Nielswps/polkem-am.

• The logging agent:
https://github.com/Nielswps/polkem-logger.

• The exemplary MG, based on the Substrate parachain template:
https://github.com/Nielswps/polkem-mg.

• The sidecar application for the exemplary MG nodes:
https://github.com/Nielswps/polkem-runner.
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Appendix C

Experiments

This appendix contains code snippets and commands I have used to conduct the
experiments in Chapter 5.

C.1 Log Processing

This section contains snippets of the log and the commands and scripts used to
process the entries.

C.1.1 Log Snippet

energy-node-2 "Block 0x2b66...28bd was observed as proposed" 2023-05-25@09:57:48
energy-node-1 "Block 0x2b66...28bd was observed as proposed" 2023-05-25@09:57:48
energy-boot-node "Block 0x2b66...28bd was observed as proposed" 2023-05-25@09:57:48
energy-node-0 "Block 0x2b66...28bd was observed as proposed" 2023-05-25@09:57:48
energy-node-3 "Block 0x2b66...28bd was observed as proposed" 2023-05-25@09:57:48
energy-boot-node "Block 0xf3a2...ba8f was observed as finalized" 2023-05-25@09:57:50
energy-node-2 "Block 0xf3a2...ba8f was observed as finalized" 2023-05-25@09:57:50
energy-node-0 "Block 0xf3a2...ba8f was observed as finalized" 2023-05-25@09:57:50
energy-node-3 "Block 0xf3a2...ba8f was observed as finalized" 2023-05-25@09:57:50
energy-node-1 "Block 0xf3a2...ba8f was observed as finalized" 2023-05-25@09:57:50
energy-node-1 "Block 0x2b66...28bd was observed as finalized" 2023-05-25@09:58:02
energy-node-3 "Block 0x2b66...28bd was observed as finalized" 2023-05-25@09:58:02
energy-boot-node "Block 0x2b66...28bd was observed as finalized" 2023-05-25@09:58:02
energy-node-0 "Block 0x2b66...28bd was observed as finalized" 2023-05-25@09:58:02
energy-node-2 "Block 0x2b66...28bd was observed as finalized" 2023-05-25@09:58:02
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C.1.2 Log Processing Commands and Scripts

# Exclude all nodes but the boot node
sed -n ’/energy -boot/p’ > boot_node_only

# Filter entries to only include block hash and
timestamp

grep -Po ’"Block \K[^ ].*’ boot_node_only |
sed ’s/ .*"//’ |
sort > sorted_hashes_with_timestamp

# Exclude block hashes and get timestamps in UNIX time
grep -Po ’.* \K.*’ sorted_hashes_with_timestamp |
grep -Po ’.*’ |
xargs -I {} date -d ’{}’ +%s > timestamps

# Calculate delays
#!/bin/bash
while read -r p; do
read -r f;
echo "$((f-p))"
done

# Calculate average
#!/bin/bash
let a=0;
let len=0;
while read -r i; do
a=\$((a+i));
len=\$((len+1))
done
echo "\$((a/len))"

# Get delay occurrences
sort averages | uniq -c | sort -rn

C.2 Mediator Trade Matching

This section contains a snippet depicting the Rust implementation of the trade
matching algorithm. It differs from the outline in Algorithm 3.1 by handling the
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potential surplus amount remaining after matching a request and an offer. Fur-
thermore, it utilises iterators instead of looping over array indices, as this is more
idiomatic to Rust.

pub fn generate_trades(energy_requests: &mut Vec<EnergyRequest>,
energy_offers: &mut Vec<EnergyOffer>,
grid_request: &EnergyRequest,
grid_offer: &EnergyOffer) -> Vec<Trade> {

let mut trades = Vec::<Trade>::new();

// Sort requests and offers and turn two iters
energy_requests.sort_by(|e1, e2| e1.price.partial_cmp(&e2.price)
.unwrap());

energy_offers.sort_by(|e1, e2| e1.price.partial_cmp(&e2.price)
.unwrap());

let mut request_iter = energy_requests.iter();
let mut offer_iter = energy_offers.iter();

// Get first request and offer
let mut req = request_iter.next();
let mut off = offer_iter.next();

// Create variables to store temporary surplus requests and offers
let mut surplus_req: EnergyRequest;
let mut surplus_off: EnergyOffer;

// Match trades
while req.is_some() && off.is_some() {

match (req, off) {
(Some(r), Some(o)) => {

let t;

if r.price >= o.price {
let average_price = r.price.add(o.price).div(2.0);

// Create a match for the request and offer,
// and handle potential surplus
match r.amount.partial_cmp(&o.amount)
.expect("Both values are numbers") {
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Ordering::Less => {
// The offered amount exceeds whats requested

t = Trade {
amount: r.amount,
price: average_price,
buyer: r.buyer.clone(),
seller: o.seller.clone()

};
req = request_iter.next();

surplus_off = EnergyOffer {
amount: o.amount.clone() -

r.amount.clone(),
price: o.price.clone(),
seller: o.seller.clone()

};
off = Some(&surplus_off);

}
Ordering::Equal => {
// The same amount is requested and offered

t = Trade {
amount: o.amount,
price: average_price,
buyer: r.buyer.clone(),
seller: o.seller.clone()

};
req = request_iter.next();
off = offer_iter.next();

}
Ordering::Greater => {
// The requested amount exceeds the offered

t = Trade {
amount: o.amount,
price: average_price,
buyer: r.buyer.clone(),
seller: o.seller.clone()

};
off = offer_iter.next();

surplus_req = EnergyRequest {
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amount: r.amount.clone()
- o.amount.clone(),
price: r.price.clone(),
buyer: r.buyer.clone()

};
req = Some(&surplus_req);

}
}

} else {
t = Trade {

amount: r.amount,
price: grid_offer.price,
buyer: r.buyer.clone(),
seller: grid_offer.seller.clone()

};
req = request_iter.next();

}
trades.push(t);

}
_ => break

}
}

// Match remaining requests with the grid
while req.is_some() {

let t = Trade {
amount: req.unwrap().amount,
price: grid_offer.price,
buyer: req.unwrap().buyer.clone(),
seller: grid_offer.seller.clone()

};
req = request_iter.next();
trades.push(t);

}

// Match remaining offers with the grid
while off.is_some() {

let t = Trade {
amount: off.unwrap().amount,
price: grid_request.price,
buyer: grid_request.buyer.clone(),
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seller: off.unwrap().seller.clone()
};
off = offer_iter.next();
trades.push(t);

}

trades
}
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