
Exploring the Impact of Open-Source Software

Documentation on Contributors’
Motivation and Participation

Péter Szatmáry

Maciej Karol Schweitzer

CS-IT

Aalborg Universitet

June 8th 2023

Computer Science

Selma Lagerløfs Vej 300

9220 Aalborg

http://www.aau.dk

Title:

Exploring the Impact of Open-Source Software Documen-

tation on Contributors’ Motivation and Participation

Project period:

2022.09.01 - 2023.06.09

Authors:

Peter Szatmary

Maciej Karol Schweitzer

Supervisor:

Adam Alami

Edition: 1

Number of pages: 55

Completed: 2023.06.08.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.

Preface

Everyone’s reputation is made on a daily basis. There are little
incremental things—worthwhile efforts, moments you were helpful
to others—and after a lifetime, they can add up to something. You
can feel as if you lived and it mattered.

Chesley B. Sullenberger,
Highest Duty: My Search for What Really Matters

Abstract

Background. We are all using free and open-source software even if we may not always be actively

aware of it. They are increasingly used in consumer software and hardware components as well,

therefore a healthy ecosystem of contributors is important for the continued prosperity of FOSS

projects. Previous work informed us about barriers that contributors to open-source project

may face. One of the hurdles newcomers encounter are various problems with the project’s

documentation. However, what none of them explores is what are the consequences of these

issues detected.

Aim. Here we show through a qualitative case study done on the FlyByWire1 community,

how contributors experience both inadequate and abundant quality as well as quantity of

documentation.

Findings. We find how community members coped with deficient documentation through asking

their fellow community members for help and making friends with them. Our findings also

unveiled, that following the FlyByWire team turning around the documentation’s state however,

certain members were still asking questions otherwise already answered in the documentation.

At the same time, these types of questions were started being answered using links to parts of

the documentation in lieu of standard responses.

Conclusion. Ultimately, whether a newcomer will persevere or drop out depends on many factors,

however the friendliness of the community, and the state of the project’s documentation are two

factors that might play a pivotal role in that matter.

1https://flybywiresim.com/

iii

https://flybywiresim.com/
https://flybywiresim.com/

Summary Aalborg University

Summary

Introduction. Our lives are increasingly dependent on open-source software even if we may

not realise it. Mobile phones, household appliances, and a considerable amount of servers are

running open-source software. For an open-source software community to prosper, it needs a

way to both attract as well as retain a continuous influx of newcomers.

Previous work have informed us about numerous hurdles that contributors to open-source

projects may face. One subset of these contribution barriers are related to various problems

with the project’s documentation. Software documentation can consist of numerous parts: user

and developer documentations, development environment setup guides, READMEs, contribution

guidelines, or notes about the codebase’s structure.

Aim. In turn, regarding potential issues with it, documentation can also be outdated,

fragmented, too little, or too much; neither of these are ideal serving as a source of knowledge

that contributors can rely on. No paper to our knowledge explores what are the consequences

of these issues detected, and how they affect the motivation of contributors. Therefore, to shed

light on them, we pose the following research question:

RQ: How does software documentation influence the motivation to contribute in FOSS

communities?

Methods. To answer our research question, we performed a qualitative case study on the

FlyByWire2 community. We think the FlyByWire A32NX project has a considerable research

appeal, as they as a community transformed from almost no, to exemplary documentation. To

investigate participant’s general thoughts and feelings of both states of the project, we conducted

seven interviews with community members, both with more senior contributors reminiscing

about the project’s early days, also comparing it to its current state. To supplement interviews,

we performed observations on the community’s communication and collaboration platforms. We

took a look both at cases of individual participants and through a holistic approach at the whole

community in its entirety. Afterwards, we carefully examined the data gathered using thematic

analysis.

Results. We found that community members have developed coping mechanisms to cope with

deficient documentation in the project’s infancy. They did so through making friends with their

fellow community members and asking others for help, for information that they could not find

on their own. Afterwards, significant efforts were made by the FlyByWire team to turn around

the state of the documentation, implementing and improving it. Although the efforts have

been made, some members still remain reluctant to do their homework and consult the written

materials available. Instead, they still ask questions, questions that have already been answered

as well as since been documented down as well. At the same time, these types of questions were
2https://flybywiresim.com/

iv

https://flybywiresim.com/
https://flybywiresim.com/

Summary Aalborg University

started getting answered with links to parts of the documentation in lieu of standard responses.

Conclusions. Writing and keeping documentation up-to-date takes tremendous efforts from

the development team, but so does repeatedly answering the selfsame questions. Initially not

finding the information however did not deter newcomer from further contributions. They had a

passion for the project, in addition to having good relationships with other community members.

Fueled by these, did they persevere in their endeavours. Lastly, based on our findings, we have

identified a set of recommendations, practical implications for newcomer as well as more senior

contributors. For example:

- Newcomer contributors should not feel discouraged when initially not finding written help.

Instead, they should let passion prevail, and try to find information through other means.

Also, they should do their research thoroughly, try to actually find said information, instead

of turning to their fellow contributors from the very start.

- Long-standing contributors should be responsible to bring about a friendly environment

encouraging asking for and receiving support.

v

Table of Contents

Preface iii

Abstract . iii

Summary . iv

Chapter 1 Introduction 1

1.1 Open-source software . 1

1.2 Scope of the topic . 2

Chapter 2 Motivation 4

2.1 Motivation . 4

2.2 Research question . 4

2.3 Documentation . 5

Chapter 3 Related work 9

3.1 Snowballing . 9

3.2 Snowball search process . 10

3.3 starting set . 11

3.4 Iterations . 12

3.4.1 First Iteration . 13

3.4.2 Second Iteration . 13

3.5 Final set . 13

3.6 Related work . 14

3.6.1 Non existing . 15

3.6.2 Outdated . 15

3.6.3 Unclear . 16

3.6.4 Fragmented or disjointed . 17

3.6.5 Further issues . 18

Chapter 4 Methods 19

4.1 Case studies . 19

4.2 Case description . 19

4.3 Data collection . 20

4.3.1 Interview . 20

4.3.2 Observation . 24

4.4 Data analysis . 25

vi

Table of Contents Aalborg University

4.4.1 Thematic analysis . 25

Chapter 5 Findings 29

5.1 Introductions . 29

5.1.1 Backgrounds . 29

5.1.2 The community . 29

5.1.3 Becoming contributors . 30

5.2 A look at the early days . 31

5.2.1 Guidelines and setting up . 33

5.2.2 Version control issues . 34

5.2.3 Understanding the project’s structure . 35

5.2.4 Contradictions . 35

5.2.5 Passion and persistence: overcoming challenges 35

5.2.6 Exploring the motivation of contributors 36

5.3 Recent days . 37

5.3.1 Intermission: evolution of documentation 37

5.3.2 Artist documentation . 40

5.3.3 New people, new documentation . 41

5.3.4 The road ahead . 41

5.3.5 Documentation matters . 41

Chapter 6 Threats to validity 44

6.1 Internal Validity . 44

6.2 External validity . 45

Chapter 7 Discussion 47

7.1 Discussion . 47

Chapter 8 Conclusion 49

8.1 Conclusion . 49

Bibliography 50

vii

Introduction 1
1.1 Open-source software

One way of classifying computer programs is by the availability of its source code that later on

gets interpreted or compiled to binary files running on devices. A program’s code this way can

be either closed- or open-source.

Closed-source or proprietary software, typically but not exclusively is made by firms and

corporations eventually selling them to customers either standalone or as part of a larger software

package. As their name implies, closed-source software reserve some or all rights regarding end

users being able to look, modify or resell works based on it.

In case of the latter, there are numerous similar but not identical definitions of it circulating

around; the common umbrella term used is Free and open-source software (FOSS) which

incorporates two related but far from equivalent concepts and definitions, namely free software

and open-source software [GNU, 2022]. At their core, both promote similar values, such as

granting users - anyone rights to freely use, study, modify, improve or even profit off of them,

commercialising and selling it, its modified versions or programs incorporating it under their

name or company. Various licenses clearly define the scopes of these, but we opt not to expand

upon them, as it is not the main focus of this thesis [OSI, 2022]. The main difference, according

to Richard M. Stallman [Stallman, 1998], the founder of the GNU1 project and the Free Software

Foundation (FSF)2 is that open-source is a development methodology simply about making the

source-code publicly available, while free software is a social movement. The GNU project further

explains it by saying "Thus, ’free software’ is a matter of liberty, not price. To understand the

concept, you should think of ’free’ as in ’free speech’, not as in ’free beer.’" [Stallman, 1998].

In the subsequent parts of our research as well as the report, we will focus on open-source software

as a development methodology based on open collaboration. A methodology that allows anyone,

from any country of the world to contribute to open-source projects asynchronously, without

being bound to standard workday hours. However, this does not mean that it is easy or that all

contributions will be blindly accepted.

Open-source software is important because it promotes the open development of powerful
1https://www.gnu.org/
2https://www.fsf.org/

1

https://www.gnu.org/
https://www.fsf.org/
https://www.fsf.org/
https://www.gnu.org/
https://www.fsf.org/

1.2. Scope of the topic Aalborg University

software tools on which we are increasingly depending if even inadvertently. Some great examples

of well-known open-source software are the Linux3 family of operating systems (including the

Android4 mobile operating system), the Mozilla Firefox5 or the Chromium6 web browser.

Access to open source projects are generally available through many different repositories, often

on self- or internet-hosted Git7 services like GitHub8 or GitLab9. These repositories usually

contain contribution guidelines, issue trackers, and other forms of documentation as well. A

contributor, including the project author or owner can expect feedback or suggestions from

others on development of new features, bug fixing or on writing documentation and know-how

guides.

1.2 Scope of the topic

Learning about new technologies on one’s own can be difficult. Contributing to an open-source

project can provide the opportunity to expand one’s knowledge by working on it while also

giving back to the community. This work makes it possible to learn from other, possibly more

experienced developers in a particular area. It is an important process for both parties, as

both gain and share new knowledge. In the context of open-source communities, the authors

of a project give other people an opportunity to view and modify its parts. Even though core

contributors manually review and accept these changes, they can not keep track and remember

all of them indefinitely. Consequently, documentation related to the project becomes important

in the process of knowledge transfer between developers coming and going.

Unfortunately, just as any software project, open source projects can include many obstacles

[Balali et al., 2018]. Ranging from abandonment, lack of documentation, missing issue trackers

and contribution guidelines and so much more. Another widespread problem is the quality of

knowledge transfer and the tools used to that end [Steinmacher et al., 2015].

As in the case with closed-source software made by enterprises for profit, an open-source software

project have to survive as well. It should have enough members to support it, fix bugs, develop

new features. In short it needs to have a healthy community of developers maintaining it.

However, while usually companies are paying for the developers’ time to write their software

making it easier to attract new developers to work for them, this is not typically the case with

open-source projects. Consequently, many have problems both with attracting newcomers as

well as with the retention of existing contributors.
3https://www.linux.org/
4https://www.android.com/
5https://www.mozilla.org/en-US/firefox/new/
6https://www.chromium.org/chromium-projects/
7https://git-scm.com/
8https://github.com/
9https://about.gitlab.com/

2

https://www.linux.org/
https://www.android.com/
https://www.mozilla.org/en-US/firefox/new/
https://www.chromium.org/chromium-projects/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://www.linux.org/
https://www.android.com/
https://www.mozilla.org/en-US/firefox/new/
https://www.chromium.org/chromium-projects/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/

1.2. Scope of the topic Aalborg University

This process becomes even more challenging as a project becomes bigger and older. As senior

developers leave a project, they may not always transfer their domain knowledge beforehand.

Also, due to globally distributed nature of open-source software, all communication has to

be done online compared to the usual in-office situatedness of enterprises entailing face-to-face

communication generally associated with better knowledge transfer. Working in a dispersed team

or community usually works asynchronously, it is extremely important to maintain common

and clear communication, and in case of open-source software (OSS), some form of shared

documentation [Ågren et al., 2022]. Knowledge being lost by not being documented and written

down somewhere can, and as we will see is a real problem in numerous open-source projects.

Inadequate documentation can also be considered as a form of technical debt [Li et al., 2015].

Technical debt in software refers to the cost associated with taking shortcuts, making "quick and

dirty" decisions during the development process making it easier to get the software working in

the short term, but on the other hand oftentimes creating problems or additional work for the

developers in the long term. This can entail the usage of bad coding practices, using sub-optimal

algorithms, not properly adhering to OOP standards or skipping on important supporting tasks

like documenting code being written. These decisions can save time and effort in the short term,

but they can create problems later on when the codebase needs to be maintained or updated.

Deficiencies in software documentation can make the code more difficult to understand and

work with, which in turn can increase the time and effort required to make changes or add new

features to it [Li et al., 2015].

3

Motivation 2
2.1 Motivation

Our motivation additionally also originates from our personal experiences trying to use and

contribute to open-source projects. In former semesters, we’ve been working extensively with

various open-source tools and frameworks to solve a given challenge. After the respective

deadlines, having finished and submitted the projects, we always made time to evaluate and

discuss on what should have been done better, what could have been improved and what could

be avoided in the future. One prominent common point repeatedly brought up was not properly

understanding the structure and the codebase of these open-source projects.

Some included detailed, well-rounded instructions, while others included a lot less. For

one specific semester we worked with an automated planning system using machine learning

techniques spanning over multiple associated repositories. Unfortunately that project took

significantly more time than originally anticipated as well. One of the major differences compared

to previous ones was the very limited amount of documentation in addition to the code itself

being hard to understand. The lack of useful in-code comments made it even harder to

comprehend it. The absence of proper documentation resulted in understanding it being an

extremely time-consuming process. Ultimately these experiences have led us to the conclusion

that a further examination of the state of documentation and a study of knowledge transfer

in general in open-source projects would be valuable. One of our goal is to try to shed light

on whether these were due to extraordinary circumstances with select projects, or we might

be uncovering a more wide-spread and potentially unaddressed issue plaguing open-source

communities.

2.2 Research question

The prospect of working with open source code has many advantages for a potential contributor,

incentives for joining for example can be: for professional or personal portfolio improvement,

networking opportunities or simply just giving back to the community, contributing to something

fun [Nagle, 2016]. However, newcomers frequently encounter barriers and obstacles trying to

do so preventing them from effectively participating in these projects. One such barrier is

deficiencies in documentation [Aghajani et al., 2019] [Balali et al., 2018].

4

2.3. Documentation Aalborg University

This study aims to investigate the specific role that documentation plays in this process, how

inadequate documentation affect the incentive and motivation of open-source contributors. It

also intends to serve as a starting point for further research on identifying potential strategies

for improving documentation in order to increase contributor retention in open-source projects.

Therefore, the following research question will be addressed:

RQ: How does software documentation influence the motivation to contribute in

FOSS communities?

We consider this an important question as open source software is widely used and relies on the

contributions of a diverse community of developers. Understanding the factors that influence

a person’s motivation to contribute can help open-source projects better support and retain

new members, which is essential for the continued health and sustainability of the communites

[Hannebauer and Gruhn, 2017].

In order to get answers to our research questions, we will first offer an overview of the literature on

the state of open-source documentation and the barriers that contributors, especially newcomers

encounter. To identify pieces of literature, the snowballing search process will be used, then we

will finish up presenting of our findings.

2.3 Documentation

Documentation in OSS can be divided into two main categories: (i) user documentation helping

end-users installing and using the software and (ii) developer documentation that is aimed for

those interested in contributing to the software [Bianca M. Napoleão, 2020].

It is necessary to clarify the meaning of the word „software documentation”. Manuals,

instructions and other resources that facilitate the use of the software. Documentation should

guide and help people use the program, or understand the codebase. Poor quality or a complete

lack of documentation can result in numerous problems ranging from discouraging newcomers

from participation, to abandonment of the project.

In relation to other scientific papers, what constitutes "software documentation" does not

seem to have a standardised definition. It means that every single research is based on

unique understanding what documentation entails. In a research paper by Nicolas Anquetil

[Nicolas Anquetil, 2005] respondents were asked to vote on pre-prepared options. The options

were addressed to two different groups of software: structured analysis and object-orientation. In

case of the 1st group, they received 70 answers, and an additional 54 for the second. In another

paper made by Vikas Chomal, the authors compiled further types of software documentation

artifacts as well [Vikas Sitaram Chomal, 2014].

5

2.3. Documentation Aalborg University

The only common property between the aforementioned research papers is the disagreement of

what constitutes software documentation. Therefore in our research, we decided to create our

own definition, elaborating on what we will mean when using the word "software documentation"

during the course of the thesis. The aim for this is to give readers the same understanding

that we have while doing this project. Another important distinction that further reduces

potential research papers about software documentation is the difference between for-profit and

free software. We choose some of the most well-known open-source projects, and compared their

documentation to that of the FlyByWire A32NX: Firefox, Angular, the Linux kernel and the

VLC media player. To compare them, we have gathered all types of documentation present

in each of them followed by selecting the common types between them. If a given type of

documentation was found to be present in more than half of them, then we included it in our

list below.

User guide

This documentation artifact is not necessarily prepared for maintainers, but mainly to end-users.

It describes how to use program, like as a user’s manual. It usually contains a step-by-step guide

detailing how to get, download and setup the software, as well as teaching end-users how to use

it or interact with it.1

Developer documentation

The developer documentation is intended for people who would contribute to the program. It

contains a detailed description of the algorithms used in it, the arrangement and operation of

individual parts. Numerous documentation artifacts mentioned below constitute part of the

developer documentation.2

Readme

Readme files are very popularly included with software, especially in open-source project. It is

explaining a lot of the following artifacts in a concise, or abridged manner:

1. What does the project contain and what is its purpose

2. Information on how to install the software or library

3. Issues and bug reporting options

4. FAQ

5. License

Installation guide

Under installation or setup guide, there can be two different articles. One for end-users, and one

for contributors. They contain step-by-step instructions on how install the program, or setup

the development environment as well as how to install the development version of it. It can
1https://angular.io/docs
2https://docs.flybywiresim.com/dev-corner/

6

https://angular.io/docs
https://docs.flybywiresim.com/dev-corner/
https://angular.io/docs
https://docs.flybywiresim.com/dev-corner/

2.3. Documentation Aalborg University

also include description of the requirements that the target system must meet in order for the

project to be run.3

Contribution guidelines

This document explains how someone can help with developing or maintaining the software. It

contains codes of conduct, detailed instructions, dos and don’ts, as well as recommendations

and best practice.4

Licenses

Information about the licenses of the project’s or external libraries used by the project. A

license informs the user about the terms and conditions of how a product is allowed to be used

or modified in a legal way.5

Issue tracker

A platform or a single document to report and mark software problems, bugs or errors. Figure

2.1 showcases an example of such a system hosted on the GitHub platform.6

Figure 2.1. GitHub issue tracker

FAQ

It stands for "frequently asked questions". It is a collection of commonly asked questions with

answers to them. It is providing help to individuals without having to directly involve other
3https://support.mozilla.org/en-US/kb/how-install-firefox-windows
4https://angular.io/contribute
5https://www.mozilla.org/en-US/MPL/
6https://github.com/flybywiresim/a32nx/issues

7

https://support.mozilla.org/en-US/kb/how-install-firefox-windows
http://example.com
https://www.mozilla.org/en-US/MPL/
https://github.com/flybywiresim/a32nx/issues
https://support.mozilla.org/en-US/kb/how-install-firefox-windows
https://angular.io/contribute
https://www.mozilla.org/en-US/MPL/
https://github.com/flybywiresim/a32nx/issues

2.3. Documentation Aalborg University

people.7

Release notes

Notes containing all information about releases and their dates as well as details of what features

were added, changed, fixed or modified starting from the beginning of the software project.8

Structure documentation

Index overview of the project folder, as a list of links describing the structure of the codebase,

what files, or what parts of the software can be found and where. It organizes information about

documents.9

Localization process guide

A guide which the describes process of internalization and localization of the project. Supporting

multiple languages help the project reach wider audiences. The difference between various

localised version can range from just using different languages, changes in the text display mode,

for example different text orientation (left-to-right or right-to-left), or even accommodating a

different culture approach, like in some cases parts of a content can be offensive for some.10

Testing guide / quality assurance processes

This part of the documentation focuses on enforcing standards. The goal is to minimize the

occurrence of errors happening and be able to deliver a well-tested and high-quality product.

This artifact describes how to conduct tests and looking for elements inconsistent with the

project specifics, having unexpected behaviour or crashing the program in its entirety. The

testing guide describes how to go about this process, what, when and how to test.11

7https://support.mozilla.org/en-US/kb/frequently-asked-questions
8https://www.videolan.org/vlc/releases/
9https://github.com/flybywiresim/a32nx/tree/master/docs

10https://docs.flybywiresim.com/dev-corner/dev-guide/specific/flypad-translations/
11https://docs.flybywiresim.com/dev-corner/qa-process/

8

https://support.mozilla.org/en-US/kb/frequently-asked-questions
https://www.videolan.org/vlc/releases/
https://github.com/flybywiresim/a32nx/tree/master/docs
https://docs.flybywiresim.com/dev-corner/dev-guide/specific/flypad-translations/
https://docs.flybywiresim.com/dev-corner/qa-process/
https://support.mozilla.org/en-US/kb/frequently-asked-questions
https://www.videolan.org/vlc/releases/
https://github.com/flybywiresim/a32nx/tree/master/docs
https://docs.flybywiresim.com/dev-corner/dev-guide/specific/flypad-translations/
https://docs.flybywiresim.com/dev-corner/qa-process/

Related work 3
3.1 Snowballing

To gather relevant literature in support of our study, we settled on using the snowballing search

strategy. It is a literature search method in which an initial set of relevant papers is used to

identify additional relevant articles, which in turn are once again added to the working set to

find further relevant references and citations from[Wohlin, 2014]. This approach can be useful

in case there is a lack of existing research on the topic, or the topic being researched is relatively

new. By starting with a moderate set of relevant articles and expanding upon it iteratively, the

snowballing search method can help us by identifying a broader range of relevant literature and

gain a more comprehensive understanding of the topic at hand [Greenhalgh and Peacock, 2005].

After gathering a starting set of thematically relevant literature by using what is called a keyword

search, we conducted the snowballing search in both forward and backward directions.

During the backward iteration, we identified papers based on references from ones already in

our starting or working set, while as part of the forward iteration we gathered relevant articles

based on a reverse search looking for articles citing papers already in our working set. We then

repeated this cycle until no further papers could be found and added to this collection during

the course of an iteration [Wohlin, 2014].

We extended and modified the snowballing search technique at two distinct places: (1) while

gathering papers to be potentially included in the initial literature serving as the starting set,

(2) and throughout the snowball research process any time when we would add or remove papers

from our sets.

Regarding literature in fast-moving scientific fields, it is generally recommended to not include

or consider references to articles or publications that are more than approximately 10 years old.

While we agree with the overall sentiment for software topics in general, we also felt that it may

be too restrictive in our cases. We thought that using older literature during the first iteration

to procure additional potentially relevant papers in the form of forward references may prove to

be useful. Therefore we relaxed this rule in such a way such as to tentatively allow older papers

to be included in our starting and non-final working set in hopes of them helping us find and

identify further references through forward snowballing iterations.

9

3.2. Snowball search process Aalborg University

Second, we did both the initial search process as well as the iterations afterwards individually

followed by a "cross-check" phase. This cross-check phase looked like the following:

1. If we both identified a paper as a valuable and relevant source then we instantly added it

to our working set.
2. If it only appeared in one of our sets, then we discussed it trying to determine its relevance

until reaching a consensus whether to accept or discard it.
3. If such a state could not be reached then we included that article tentatively in our working

set until such a time when we could decide whether to include it or not.

3.2 Snowball search process

To initiate the literature review using the snowball approach, we first needed to identify a starting

set that would serve as the baseline for the actual iterations. This collection of literature serving

as the starting set should be both relevant in its contents, published within the last approximately

ten years, and preferably have a sufficient number of promising references as well as citations.

Compiling the starting set, we identified primary keywords related to our research question [2.2]

and compiled a list of synonyms for each to expand the scope of the search while maintaining

the original intent and potentially finding more relevant materials.

Table 3.1 presents the primary keywords on the left with their respective synonyms appearing

on the right row. Additionally, we also identified supplementary keywords, such as "retention",

"availability", "quality", "quantity" and "onboarding" that may prove useful.

Primary keywords List of synonyms
Open source software free and open-source software, open source,

open-source, OSS, FOSS, FLOSS
newcomer newcomers, beginner, novice, new contributor,

first timer, first time contributor
documentation software documentation, specification, code

documentation, docs, document, documents,
readme, information, comments, code com-
ments,

barrier fail, failure, hurdle, obstacle
retention attrition

Table 3.1. Keywords and synonyms

For the next phase of the snowballing process to identify relevant literature, we developed

a search expression using Table 3.1 through a process of iterative refinement. We regularly

evaluated the expression to ensure that it still produces an adequate number of relevant results

after being modified. The final search string is presented in Figure 3.1.

Using this search string in Google Scholar resulted in a list of roughly 13.800 results. Out of

these, we looked into and examined the papers from the first 20 pages, or 200 hits.

10

3.3. starting set Aalborg University

"open source" OR "free and open-source software" OR "open source" OR
"open-source" OR "OSS" OR "FOSS" OR "FLOSS")
AND
("contributor" OR "newcomer" OR "newcomers" OR "beginner" OR "novice"
OR "new contributor" OR "first timer" OR "first time contributor")
AND
("docs" OR "documentation" OR "software documentation" OR "code documentation" OR
"document" OR "documents" OR "readme" OR "information" OR "comments" OR
"code comments")
AND
("retention" OR "barrier" OR "fail" OR
"failure" OR "hurdle" OR "obstacle" OR "attrition" OR "availability" OR
"quality" OR "quantity" OR "onboarding")

Figure 3.1. Search string

3.3 starting set

We went through the hits of the Google Scholar keyword search as per the method previously

described as "individual then cross-check" that we also used extensively during every phase of

the research process.

While analyzing the presented results, we followed a systematic review process, starting with

an examination of their titles and then proceeding to the abstracts. Having read them, we then

moved on to the introduction, conclusion, and findings sections in that order, and if we were

still unable to determine the relevance of the paper at hand, we performed a full text read.

As previously discussed, we also applied relaxed time constraints here as well, allowing relevant

papers to be considered from outside the typical range of the past 10 years or so to be considered

if they were deemed to be a valuable source of forward snowballing references.

The final starting set can be seen in Table 3.2.

11

3.4. Iterations Aalborg University

Date Title of paper
2022 "Understanding community participation and engagement in open source

software Projects: A systematic mapping study" [Kaur et al., 2022]
2014 "The hard life of open source software project newcomers"

[Steinmacher et al., 2014c]
2014 "Barriers Faced by Newcomers to Open Source Projects: A Systematic

Review" [Steinmacher et al., 2014b]
2015 "Supporting newcomers to overcome the barriers to contribute to open source

software projects" [Steinmacher, 2015]
2015 "A systematic literature review on the barriers faced by newcomers to open

source software projects" [Steinmacher et al., 2015]
2014 "DMOSS: Open source software documentation assessment"

[Carvalho et al., 2014]
2019 "Software Documentation Issues Unveiled" [Aghajani et al., 2019]
2021 "Understanding Emotions of Developer Community Towards Software

Documentation" [Venigalla and Chimalakonda, 2021]
2001 "Open-source documentation: in search of user-driven, just-in-time writing"

[Berglund and Priestley, 2001]
2009 "Measuring Open Source Documentation Availability"

[Matuleviçius et al., 2009]
2010 "Creating and evolving developer documentation: understanding the

decisions of open source contributors" [Dagenais and Robillard, 2010a]
2017 "Evaluating the Quality of the Documentation of Open Source Software"

[Aversano et al., 2017]
2013 "Why do newcomers abandon open source software projects?"

[Steinmacher et al., 2013]
2018 "Newcomers’ Barriers. . . Is That All? An Analysis of Mentors’ and

Newcomers’ Barriers in OSS Projects" [Balali et al., 2018]
2014 "How to Support Newcomers Onboarding to Open Source Software Projects"

[Steinmacher and Gerosa, 2014]
2018 "Understanding Newcomers Success in Open Source Community"

[Bayati, 2018]
2015 "Supporting newcomers in software development projects" [Panichella, 2015]
2017 "Why modern open source projects fail" [Coelho and Valente, 2017]

Table 3.2. Starting set

3.4 Iterations

After finalizing the starting set, we conducted the snowballing by performing the search

iterations. Similarly to the process of assembling the starting set, we performed the iterations

individually then cross-checked and discussed each other’s work. Each of these iterations

consisted of a backward and a forward search. During the backward snowball search we examined

the papers and tried to identify relevant articles in the references section of a paper going through

newfound ones by reading the title, abstract, introduction, conclusion and findings followed by a

full read if needed. For the forward snowball search we applied the selfsame selection principles

but searched for the papers from our list on Google Scholar and attempted to find relevant ones

12

3.5. Final set Aalborg University

through a reverse search showing the list of articles citing one of the previously included papers.

3.4.1 First Iteration

Over the course of the first backward iteration, using the 18 papers already in the starter set,

we gathered 33 additional papers to be tentatively included in our final set based on their titles

after excluding duplicate founds (meaning the same papers being referenced to from multiple

items of our starter set) as well as filtering them by their creation dates to only get papers from

the last approximately 10 years. The references were tightly interwoven, with over half of the

tentatively included set coming from the first three papers inspected after removing them from

the lists of all but one - meaning if we were to redo the backward iteration in arbitrary order,

the last few papers would barely have additional candidates to be added.

After having gathered the promising references, we reviewed and discussed them removing

unrelated papers. In the end, 8 of the original 18 tentative papers were actually included in

the newly created working set for the next iteration.

During the first forward iteration, we collected another 13 tentative papers following

deduplication and applying date constraints. After reviewing their contents, we included a

total of 5 additional papers in the next iteration.

Lastly, we went through the papers of the starting set one more time and removed those that

we had only included as potential sources of forward references.

3.4.2 Second Iteration

Repeating the process described above, we began the second and final iteration using the papers

identified during the first iteration in search of references. This round proved to be much less

fruitful, with only 3 backward and 3 forward candidates identified. After having reviewed them,

none were added to our final list. Therefore, the iterative process of identifying relevant literature

concluded and we have arrived at the final set.

3.5 Final set

Our final set of related works consists of the 18 papers showcased in Table 3.3. While all these

papers identified contain relevant parts related to our research question [2.2], none of them

can be considered an exact match as neither of them focuses on the very same topics as ours,

indicating the need for further research in this area.

13

3.6. Related work Aalborg University

Date Title of paper
2014 "The hard life of open source software project newcomers"

[Steinmacher et al., 2014c]
2015 "Supporting newcomers to overcome the barriers to contribute to open source

software projects" [Steinmacher, 2015]
2015 "A systematic literature review on the barriers faced by newcomers to open

source software projects" [Steinmacher et al., 2015]
2019 "Software Documentation Issues Unveiled" [Aghajani et al., 2019]
2017 "Why modern open source projects fail" [Coelho and Valente, 2017]
2017 "Understanding the Impressions, Motivations, and Barriers of One Time

Code Contributors to FLOSS Projects: A Survey" [Lee et al., 2017]
2018 "Determining Newcomers Barrier in Software Development: An IT Industry

Based Investigation" [Showkat, 2018]
2014 "Preliminary Empirical Identification of Barriers Faced by Newcomers to

Open Source Software Projects" [Steinmacher et al., 2014a]
2019 "Ten simple rules for helping newcomers become contributors to open

projects" [Sholler et al., 2019]
2017 "Difficulties of Newcomers Joining Software Projects Already in Execution"

[Matturro et al., 2017]
2014 "Older Adults and Free/Open Source Software: A Diary Study of First-Time

Contributors" [Davidson et al., 2014]
2017 "Exploring Knowledge Loss in Open Source Software (OSS) Projects"

[Rashid et al., 2017]
2022 "Managing Episodic Volunteers in Free/Libre/Open Source Software Com-

munities" [Barcomb et al., 2020]
2011 "A field study of API learning obstacles" [Robillard and DeLine, 2011]
2015 "How API Documentation Fails" [Uddin and Robillard, 2015]
2016 "Understanding the Factors That Impact the Popularity of GitHub

Repositories" [Borges et al., 2016]
2014 "Co-evolution of project documentation and popularity within github"

[Aggarwal et al., 2014]
2018 "Open source barriers to entry, revisited: a sociotechnical perspective"

[Mendez et al., 2018]

Table 3.3. Final set papers

3.6 Related work

There has been numerous ongoing studies using various research methods on the topic of open-

source software including but not limited to documentation issues in addition to works identifying

frequently occurring barriers newcomers and contributors face when trying to join an open-source

project.

Previous works generally pointed out four main types of barriers hindering contributors’ progress.

In this section, we highlight a few of those most commonly occurring ones in open-source projects.

In addition, we also going into more detail trying to understand the reasons for their occurences,

how they are relevant to our project, and what can be done to counteract the negative effects

of them.

14

3.6. Related work Aalborg University

3.6.1 Non existing

One of the most glaring issues is if a given project does not have any kind of documentation

or documentational artifacts at all; including general description of the software and

architecture, a documentation landing page, READMEs, setup guides, licenses and others

[Coelho and Valente, 2017]. Software projects can be incredibly large and of complex structures

- understanding them just from trying to read the code would be an immense overtaking that

not everyone has the time or willingness for, especially if there are alternatives present.

Numerous researchers have, over the last decade identified lack of documentation as a barrier to

newcomers. More so than a single barrier among others, non-existing documentation is thought

to be the biggest problem out of all issues related to documentation as certain studies point it

out [Showkat, 2018].

Furthermore, Coelho and Valente [Coelho and Valente, 2017] found that the absence of

documentation pieces can correlate with the project being eventually abandoned. Steinmacher

et al. [Steinmacher et al., 2014a] argued that deficiency in terms of documentations describing

the overall working of the code and the project especially hurts newcomers that are also relatively

new to software development in general, like under- or new graduates. It is easy to see why:

more senior developers with decades of experience know how to look out for general patterns

occurring in software projects and can a lot more easily identify key parts of the code guessing

what and how they do then their more junior counterparts. In a later research of his, Steinmacher

[Steinmacher, 2015] further confirmed these findings through using various research methods

including interviews with contributors and graduate "would-be" contributors.

Matturro et al. [Matturro et al., 2017] also researched the topic of difficulties newcomers

encounter when joining software projects already in execution. They too identified the lack of

planning and documenting as a hurdle to be overcome as more than one third of their respondents

cited the aforementioned two points as real issues.

3.6.2 Outdated

It has been demonstrated through other studies that the presence of documentation in an open-

source project does not necessarily guarantee the usefulness or relevance of its contents. We

consider a document out-of-date if it is not in sync with the systems, with the program or

program code that it is attempting to describe. Aghajani et al. [Aghajani et al., 2019] in their

investigation have found that up-to-dateness problems account for almost forty percent of all

documentation issues in software. In some ways, outdated documentation can be tantamount to

a complete absence of documentation if the majority of the codebase has undergone significant

revisions since its original creation. Oftentimes, documentation is made by a few core or

even a single contributor, which then can quickly become outdated as a few key persons

stops contributing to the software, or starts focusing on other parts of the project instead

15

3.6. Related work Aalborg University

[Aghajani et al., 2019].

Steinmacher [Steinmacher, 2015] found that finding documentation that is no longer relevant

can eventually lead to demotivation of users. They found older repositories to be more prone to

these kind of hindrances with older projects tending to also be larger doubling down on making

the effective lack of proper documentation even more distressing for contributors. They suggest

that at the very least, marking documents as outdated should be done to prevent newcomers

to the given project from wasting their time with it, while also setting their expectations

[Steinmacher, 2015], [Sholler et al., 2019].

Steinmacher et al. [Steinmacher et al., 2015] further argues the importance of up to date

documentation stating that even if there are existing documentation artifacts, in case they

are outdated they can prove to be barriers impeding knowledge rather than being a useful

tool for the developers [Uddin and Robillard, 2015], [Showkat, 2018]. Related to this family of

issues are also cases where the users simply do not have any meaningful ways to determine

the creation or latest update time of one, therefore the validity of document fragments that

they find. Conversely, overzealous attempts at fixing the aforementioned issues can in turn lead

to a situation where there is way too much and overly verbose information available leading to

information overload for newcomers, therefore a balance have to be struck between the two ends.

In spite of this all, Forward and Lethbridge [Forward and Lethbridge, 2002] argues that some

developers can simply learn how to deal with this, lessening the importance of this particular

obstacle.

3.6.3 Unclear

The concept of clear documentation encompasses various subtopics related to the content of

software documentation and has been explored in literature on documentation issues. Quality

documentation is very useful for developers to understand the codebase, especially so during their

entry into a project [Lee et al., 2017]. In "A Field study for API learning obstacles" Robillard

et al. [Robillard and DeLine, 2011] mentioned examples from participants like "it was not clear

how to instantiate an object, there were too many abstract classes, the names did not make

sense" and "If it’s not clear how I match APIs with their scenarios, if I need to draw a circle on

the screen, and I don’t see something that clearly says, ’this is how you draw’, I will say that’s

complex".

In the same study of Robillard et al. [Robillard and DeLine, 2011], the researchers also

mentioned content-wise incompleteness and ambiguity as other important issues. Both

of these can occur either in the form of in-code comments or in standalone documents.

According to Steinmacher et al., [Steinmacher et al., 2015] unclear documentation can hinder

the understanding of the codebase, rather than serving as a helpful resource, much like it was

the case with outdated documentation parts. By definition, an incomplete work lacks a few or

16

3.6. Related work Aalborg University

all of the necessary parts for people to make proper sense of it. Incomplete documentation can

take on many forms: there are cases where simply certain parts of the software documentation

are missing entirely, many other times major parts of a documentation are auto-generated from

inline comments, using trivial information not adding anything useful to the discussion that can

be otherwise gathered by parsing through the code, e.g. basic signature of a method consisting

of it’s name, return type, and possible parameters it can take. However, the more complex of

a functionality a method has, the more the developers would need clear documentation on do’s

and don’ts, what side effects and possible limitations it may have and where or how is it used.

Ambiguity is another form of incompleteness, where the missing piece of the puzzle is the most

important one: documentation leaving out in depth explanation of key parts or components

therefore making different explanations possible for a piece of functionality. It can leave readers

confused about the purpose of a class, method or possible side-effects. The most common issue

reported under the scope of this topic was missing examples or inadequate explanation of an

example [Robillard and DeLine, 2011].

Steinmacher et al. [Steinmacher et al., 2014c] [Steinmacher et al., 2014a] as well as Mendez et al.

[Mendez et al., 2018] also found examples not being present in addition to unclear terminology

and terms or abbreviations not being explained as issues. Furthermore, they also noted that in

general, these types of issues are more prevalent among newcomers.

3.6.4 Fragmented or disjointed

These issues are related to the documentation of a software being inadequately presented

[Aghajani et al., 2019]. This can surface in the forms of like the documentational artifacts

being fragmented between multiple platforms, or although being in the same place having a

bad flow making it harder to understand. In their multi-phased study about API learning

obstacles, Robillard et al. [Robillard and DeLine, 2011] found that many participants thought

that documentation can also severely lack in the department of presentation format and

overall quality. They mentioned boilerplate documentation, one-liner explanations that are

usually just the rephrased names of methods, as well as overly trivial examples. They

concluded that developers vastly prefer a relatively continuous, long and single document

to a lot of smaller snippets residing at various places or multiple pages. Furthermore,

they also cited that documentation being fragmented makes the information less discoverable

[Robillard and DeLine, 2011]. Having arrived to similar results in their respective qualitative

studies, Steinmacher et al. [Steinmacher et al., 2014c] and Showkat [Showkat, 2018] mentioned

spread-out documentation being a barrier as well. Lastly, Sholler et al. [Sholler et al., 2019]

extends this concept by suggesting putting documentations in few but easy-to-find places, as

according to them, newcomers getting lost between them is a real concern.

Robiliard et al.’s [Robillard and DeLine, 2011] participants were similarly on a consensus

17

3.6. Related work Aalborg University

regarding the flow of the documentation. It should follow the flow of the computer program,

preferably continuously instead of having to open ten to twenty additional pages to get an

overarching idea of a single function call chain, they summarised. They also expanded upon

what is considered a proper, nice flow. The majority of their participants concurred that it

can be equally overwhelming to be presented with a large amount of raw, overly formal, precise

and long-worded documentation, as it can be disorienting to encounter poorly structured and

segmented documentation. What can alleviate these concerns they found, is the documentation

having a story-like flow from its beginning to the end expanding upon the concepts in detail as it

encounters them while going through the whole program flow. Though they focused on general

API learning obstacles, their findings can also be applied in the case of open-source software

learning barriers [Robillard and DeLine, 2011].

3.6.5 Further issues

Lastly, there are several other important considerations to be noted regarding documentation

in open-source software projects. As an initial point, documentation quality in regards to its

contents can be wildly inconsistent [Robillard and DeLine, 2011]. The lack of contributing guide-

lines [Davidson et al., 2014], READMEs, licenses, workplace setup guidelines [Davidson et al., 2014],

[Steinmacher et al., 2014a], [Coelho and Valente, 2017], are also mentioned by multiple authors

just as an overwhelming amount of documentation [Steinmacher, 2015] as a stark contrast to

lack of documentation already detailed above.

However, even if the documentation is present, it has a nice flow, has just the right size

and presentation as well it can still has issues like ambiguity, contradicting information and

incompleteness, that contributors only realise once they themselves encounter problems trying

to rely on it [Uddin and Robillard, 2015], [Aghajani et al., 2019].

Another documentation-like artifact is the topic of in-code comments mentioned by various

authors. They can prove to be a helpful resource as well in helping contributors understand

classes and methods. However, just as in the case of outdated or ambiguous documentation

among others, if they are not clear enough, they can prove to be more of a hindrance than

helpful resource as well [Steinmacher et al., 2015], [Showkat, 2018].

Lastly, participants of Sholler et al.’s [Sholler et al., 2019] study mentioned a lack of "how to

contribute" walkthroughs for newcomers as well. This would also be able to help alleviating

fears of newcomers on whether to contribute to the project or not.

These papers all mentioned parts related to our research, as they discussed a fair amount of

issues in software documentation, however they failed to mention why these issues are present

in the first place together with how do actually these problems affect newcomers’ retention in

open-source projects. Whether they lead to eventual abandonment, or will new contributors

persevere and learn to deal with them through other methods.

18

Methods 4
4.1 Case studies

For our research methodology, we opted to use case studies. We aim to acquire a more in-

depth understanding of the influence that the existence and quality of open-source software

documentation can have on contributors to a specific project. Through case studies, we can

perform accurate and comprehensive study of our case.

The subject is an emerging open-source software project: FlyByWire Simulations A32NX1.

4.2 Case description

A32NX

The A32NX Project is an up-and-coming open-source project aiming to develop a high-quality,

fully functional, and free A320neo aircraft for Microsoft Flight Simulator 20202. Their aim is to

make it as close as possible to the real-life aircraft with the selfsame name produced by Airbus

SE3. Initially starting out at 2020 august as an enhancement to the default A320neo released with

the base game, more than two years later it is now an independent add-on project maintained and

developed by the FlyByWire Simulations community of more than 200 individual contributors.

Since then, almost all parts of the original codebase was either massively overhauled or rewritten

from the grounds-up.

During its 2 years of active development, the A32NX project has grown to be one of the most

popular extensions of the simulator, receiving several thousand individual modifications and

add-ins. Furthermore, being hosted on GitHub, the main aircraft project has amassed 4680

stars, 928 forks, and 4074 commits in addition to 2296 approved and merged pull requests

Besides the main repository, since its inception the community has spawned various related sub-

projects shared by the FlyByWire Simulations umbrella, including one separate project for the

documentation, one for integration with third-party data sources and services, and one for the

installer and updater functionalities.
1https://flybywiresim.com/a32nx/
2https://www.flightsimulator.com/
3https://www.airbus.com/en

19

https://flybywiresim.com/a32nx/
https://www.flightsimulator.com/
https://www.airbus.com/en
https://www.airbus.com/en
https://flybywiresim.com/a32nx/
https://www.flightsimulator.com/
https://www.airbus.com/en

4.3. Data collection Aalborg University

The community as of today (2023.06.06) is in very good health. The project has developer

as well as thorough end-user documentation detailing how to fly the aircraft in the simulator

based on real procedures. It also has clear contribution guidelines, including a code of conduct,

an introduction to their version control and pull request systems, review and QA processes,

help for newcomers to find tasks and issues to work on, and development setup guides. For

additional questions and quick discussions, the community uses the Discord4 instant messaging

social platform. The average response times can be considered quick; developers who have a

question or are stuck with a problem can usually expect answers in minutes to hours.

On average, on GitHub alone, their issue tracker sees 4-5 reports in addition to 10-15 pull

requests being made by contributors each week.

4.3 Data collection

Qualitative data collection entails obtaining non-numerical data. It is about understanding

the feelings, beliefs, values as well as behaviours of people. We have considered qualitative

data collection methods including interviews, observations, focus groups, and surveys.

[Sutton and Austin, 2015] In order to be able to adhere our time constraints and the globally

located contributors of our case, but still get less biased interpretations of our cases, out of those

considered, we chose two collection methods: interviews and observations.

4.3.1 Interview

Interviews are a widely used method of collecting qualitative data performed by asking

respondents questions and having them provide immediate responses. Interviews can be

conducted in-person, over the phone, or online over video and voice chat. Participants of open

source projects projects like the FlyByWire A32NX are not limited to certain countries or regions

as it is the case with many enterprises. Considering this, physical interviews are not feasible,

and conducting group interviews or focus group interviews would prove to be difficult as well

due to the inherent problem of different locations and time-zones. Therefore, we settled on using

online video interviews with individual participants.

We recruited participants on the FlyByWire Discord server that serves as the main

communication platform for the project. The message posted on the developer team’s channel

to recruit participants can be seen on Figure 4.1.
4https://discord.com/

20

https://discord.com/
https://discord.com/

4.3. Data collection Aalborg University

Figure 4.1. Recruitment message posted on the FBW discord

We conducted a series of "semi-structured interviews" popular in case studies, containing both

structured and unstructured elements [Runeson and Höst, 2009]. That means that the questions

were open-ended, allowing the respondent to answer in their own words, rather than providing

them with a list of predetermined responses to choose from. Also, while we had a list of questions

to be asked, they were not strictly asked in order, and the respondent was also allowed to provide

additional information or to elaborate on their answers [Runeson and Höst, 2009]. To that end,

the set of questions we have composed were serving as loose guidelines, rather than something

we had to strictly and methodically adhere to.

The set of questions asked started with introductory ones so as to obtain basic information about

the participating community members. The next section of questions were about getting insight

into the interviewees early days into the project. The third section is the most extensive as it

deals with questions related to contribution and documentation problems. Lastly, the questions

at the end are to ask about general thoughts and feelings, also asking participants about other

experiences that they may have had with open-source software projects.

The preliminary list of questions we have gathered to that end can be seen below, in the interview

guide.

21

4.3. Data collection Aalborg University

Interview guide

Introductory questions

The introductory questions are about asking about their education and potential previous

professional experiences.

• Can you tell a bit about your professional experiences?

• How many years of experience do you have as a software developer?

• What is the highest level of education that you have finished?

• Have you contributed to open-source projects before, and if so, which ones and for how

long?

Newcomerness

The second set of question is about recalling their experiences of joining the project, the

steps they took to get started, the onboarding process, and their initial interactions with the

community and the codebase.

• What motivated you to start contributing to this specific open-source project?

• How did you learn about the project and what steps did you take to get started?

• How did you start your interactions with the community? (mailing list, IRC chats, forums,

PRs)? (if applicable)

• Can you describe your initial impressions of the project when you first started or tried to

start contributing?

• Does the project has an onboarding process, are there documents to help onboarding?

– If yes, did you find it helpful or valuable?
– Were there any challenges or barriers that you encountered during the onboarding

process, and if so, how were they resolved?
– Can you take me through the onboarding process and how it helped you to contribute?

Contribution barriers and documentation problems

This part is about problems, mainly problems related to the project’s documentation that the

participants might have encountered while trying to contribute.

• Did you face problems trying to contribute?

• Have you successfully submitted a PR? How was the experiences and the challenges?

• How easy or difficult was it to find the information you needed to start contributing?

• Does the project has documentation? Did you find written information helping you?

• How did you find the documentation available in the community?

• Has anyone from the community helped to solve a problem you have faced? From what

source did you get help?

• Did you consult the documentation as part of you trying to contribute? Have you looked

into it?

22

4.3. Data collection Aalborg University

– Did you find the answers you sought in the docs?
– How much time did you spend looking at docs?
– Is there any part of it that is lacking? Contribution guidelines, user documentation,

developer documentation, how-to guides, READMEs?
– In what way is it lacking? Too much, too little, out of date, etc.
– How severe were the documentation problems you encountered?
– How frequently (if ever) did you encounter problems with the documentation?

• Which part of the documentation do you think is the most important?

• Can you show us an example of documentation and tell how it helped you to contribute?

• Was there any part of the documentation that you were looking for, wanted to see, but

could not find?

• Do you have any specific ideas for improving the documentation that could help newcomers

out?

• Do you even think it is needed?

General thoughts and feelings

These are general concluding questions summarizing and concluding their experiences. Also

acting as a double-check re-confirming their answers.

• What other difficulties did you face while trying to contribute to this open-source project?

• What do you think other newcomers find the most difficult if they want to start

contributing to this project?

• Are there anything that you thought would be completely different?

– What surprised you?
– What did you like?
– What did you not like about working on this project?

• All in all, was your experience with the project positive?

• Would you continue contributing to this specific project?

Comparative questions

Finally some optional questions comparing their experiences with FlyByWire to other open-

source project they are contributing to or may have contributed to before.

• Was your experience at this project different to other communities? (like succeeding here,

but not in others)

• Which community or project was it, and why did you not succeed, or continue working on

that?

The interviews were conducted between 2023.02.25 and 2023.04.10. The participants were from

all across the globe, so the interviews were conducted on two platforms having online voice chat

functionality: Google Meet and Discord. All the interviews took between 30 and 80 minutes. Two

online transcription tools were used to transcribe the interviews: otter.ai and tl;dv. Following

the automatic transcription process, the interviews were manually checked and corrected when

23

4.3. Data collection Aalborg University

it was deemed necessary for clarity’s sake. Lastly, all the interviews, as well as their participants

were anonymised, henceforth we will be referring to the participants by their code names listed

in Table 4.1.

Code Project joining time Experience Age bracket
P1 2020 Computer Science Student <25
P2 2020 SW professional 50+
P3 2021 Unrelated education 50+
P4 2020 Self-learned 25-50
P5 2022 SW professional 25-50
P6 2022 SW graduate <25
P7 2023 Unrelated education 25-50

Table 4.1. Interview participants

4.3.2 Observation

The technique of observation involves monitoring a person or a group of people as they are going

about their activities, trying to or contributing to the FlyByWire A32NX project in our case.

Observation is an indirect data collection method - we gather data without interacting with the

subjects or manipulating the environment [Lethbridge et al., 2005]. It gives the opportunity to

observe behaviors or events that may be difficult to capture through verbal communication.

Precisely because interaction is eliminated from the process, observations can extend data

gathered through interviews providing a more objective and less biased data source. Interviews

can be subject to the interviewer’s bias or influence, but observations allow for a more impartial

collection of data. They remove a little bit of the subjective, often subconscious human factor,

the inability or unwillingness to disclose specific details about personal problems or failures

[Lethbridge et al., 2005] [Espedal et al., 2022].

In this case, we will be conducting direct online observations of a specific open-source contributor

or would-be contributor, including their interactions with the community, preferably across

different platforms that the FlyByWire community use. The focus of our observations will be

the online activities of a contributor, trying to follow and trace them as well as utilize field notes

to document their participation.

Field notes of our findings would be taken during the observations. They will help us accurately

recording the details of our observations, including the behavior and actions of the subjects

being observed. This can be particularly important in case a specific observation takes longer

or has a bigger scope than previously anticipated. Additionally, writing field notes will also help

us develop a deeper understanding of the case, by forcing us to pay close attention to the little

details and reflect on the significance of what we are seeing, as well as being helpful when it

comes time to analyze and interpret the data.

Potential further things we looked out for:

24

4.4. Data analysis Aalborg University

• The quality and frequency of the participant’s contributions indicate the level of

engagement and commitment the contributor has to the project.

• The level of communication with other developers.

• The amount of support and guidance the contributor seeks from other members of the

community.

• Involvement in community events and activities.

During the research process, we also performed a second type of observation. More overarching,

holistic ones compared to the direct observations following a specific contributor’s activity.

Through them we were not tracing back the activities of select community members, rather

we were gathering data on the community as a whole, trying to find trends in their GitHub and

Discord chat activities.

The observations were performed between 2023.02.01 and 2023.04.10 with the observed period

of activities starting from the project’s inception to 2023.03.03 when offline full-text exports

were made from the online conversation histories and git logs.

4.4 Data analysis

4.4.1 Thematic analysis

Thematic analysis is a qualitative data analysis method that is both accessible and flexible as

it can be conducted in different ways. It provides a way to systematically identify, organize

and explain key concepts of select themes across the analysed data set. As thematic analysis

focuses on the meaning of themes in parts of the data set, it allows us to fill in the holes; to

relate the stories of individual open-source contributors and find commonalities between them

based on their circumstances and experiences. The final task and the overall outcome of the

thematic analysis process is to identify the themes relevant to answering our research question

[Braun and Clarke, 2006].

As our research question is exploratory, the thematic analysis is experimental as well as inductive,

as the data used is based on the interview and observation participant’ experiences, and we are

not trying to fit the codes gathered into already existing themes.

We combined the six-phased thematic analysis approach developed by Braun and Clarke

[Braun and Clarke, 2006] and extended with using specific coding styles from the two cycle

coding methods of Miles et al. [Miles et al., 2013]. The process begins with immersion in the

data set, followed by labeling or coding of it, and then grouping codes together and shifting

to themes that captures and represents some key concepts relevant to the research question.

Finally, a report of the findings can be made using the themes identified this way.

The approach used is as follows:

25

4.4. Data analysis Aalborg University

Phase 1: Familiarization

The first phase is to get immersed in the data becoming thoroughly familiar with it. This

can be achieved by going through the raw data multiple times, listening to audio or watching

video recordings, reading and re-reading the recording transcripts and the field notes repeatedly.

However, merely reading is inadequate by itself. One has to think about the meaning behind the

words. Now is a good time to also make jottings about relevant aspects related to the research

question. [Miles et al., 2013]

Phase 2: Generating initial codes

After getting intimately familiar with the data set, the next phase deals with labelling or coding

it. In Miles et al.’s [Miles et al., 2013] approach this is the first cycle of coding. Here we make

note of parts of the data that can potentially be relevant to the research question. This code is

typically a one to few word summary or description of a data point, usually the most important

part from a data chunk. Labels can be applied at a granular level, such as to individual lines

or paragraphs, to provide a more precise level of coding for the data. Keeping a code short is

of paramount importance here. Longer descriptions, or full-blown summaries of data segments

can make it harder to group them together in the following phases.

During the first cycle, there are many different ways to code a piece of data. Miles et al.

[Miles et al., 2013] defined twenty-five different first-cycle coding methods or styles, based on

which one can code the data. We opted to use four of them:

Descriptive coding

Probably the simplest and easiest form of coding. Descriptive coding summarizes chunks of data

into short phrase, rarely more than one or two words long. Codes created this way are usually

simple nouns. "newfound passion" and "convoluted documentation structure" are examples of

descriptive codes from our transcripts

Value coding

This methods focuses on the values: feelings or beliefes of the participants. This type of coding

allows us to take insight into the participant’s "perspective or worldview" as defined by Miles

et al. [Miles et al., 2013]. Examples of value codes are "enjoying development" and "loves

supporting others".

In Vivo coding

In Vivo coding is based on the use of short words or combined phrases in the data, directly

quoting what the participants said. "started as a mess" or "became friends"

Process coding

This method use gerunds to showcase changes, actions or activities happening in the data. Like

"asking a lot" and "struggling"

26

4.4. Data analysis Aalborg University

Phase 3: Searching for themes

With the pre-processing steps out of the way and having performed the first cycle coding on

all the interview transcriptions, we make a shift from raw data to coded data, and from coded

data and codes to themes finally. The codes already included an initial level of interpretation in

the previous phase, but more as a side product of creating summaries for labels, of summarising

blocks of data to a few words. This is the phase where we really focus on the interpretation

of the data. The upcoming three sections encompass Miles et al.’s [Miles et al., 2013] second

cycle coding. A theme captures an important part of the data that is related to the research

question and attaches some kind of explanation and interpretation to it. Basically it identifies

and explains the main topics of interest; grouping together and summarizing them. In this phase

we can also start considering the connections and relationships between themes as well.

Figure 4.2. Results of cycle 2

Phase 4: Reviewing potential themes

We can consider this a quality assurance phase. The themes gathered so far are compared against

the data set, checking whether they are indeed supporting their points. In order to ensure that

the themes are of good quality, we need to consider several factors, including whether they are

well-defined with clear boundaries and a singular focus, whether they are backed by a sufficient

amount of data points, and whether they directly address at least one aspects of the research

27

4.4. Data analysis Aalborg University

question.

Phase 5: Defining and naming themes

It is like a second follow-up quality assurance phase. The goal is to improve upon the themes we

settled on using. This is also the place where we interpret the themes’ data, draw conclusions

from them, and start preparing the overarching narrative of the story; how and when to include

the themes and how to connect them together. Figure 4.2 showcases an abridged excerpt of

the results of thematic analysis showing similar themes grouped together in addition to similar

codes combined under named parent themes.

Phase 6: Producing the report

Lastly, a detailed report is made in the form of a compelling story telling our findings in a clear

and straightforward manner. The result of this phase is Section 5 about our overall findings.

28

Findings 5
5.1 Introductions

In this first sub-chapter of our findings, we first introduce the community as well as its members

with special focus on the interview participant’s backgrounds: What motivated them to join the

project and the community, what steps did they took to get started and what are their overall

feelings about the project.

5.1.1 Backgrounds

The FlyByWire community includes over two hundred members with diverse backgrounds; they

are either part of the core development team, or just be in the periphery helping out once in a

while. Their experience levels varies from non-experienced contributors, hobby developers who

are just starting out in the world of programming with no prior coding experience all the way

to professionals working in the field of software development for decades. In addition, there

are also students taking courses in computer science having some programming knowledge, and

there are also self-learned developers with no or unrelated formal education having acquired the

necessary knowledge by themselves through online learning resources or by participating in OSS

development projects. Some of them are first time OSS contributors, while others are long-time

regular contributors in other open-source projects.

The community also has a broad range of contributors of different ages spanning from university

student young adults, to middle-aged and more elderly contributors nearing retirement. Lastly,

the geographical location of the contributors are also varied having contributors from Europe,

America, and Australia even.

5.1.2 The community

Likewise, their motivations also varied ranging from the desire to learn new skills, learning new

technologies or getting more professional experience to just "doing it for fun" or giving back

to the community. What is common in all of these people however is a collective passion for

aviation as a hobby, their shared love to get involved and contribute to a project that they

all use, which in this case is the FBW A32NX aircraft within the Microsoft Flight Simulator

environment, "kind of a little bit addictive, I would say in a positive sense, obviously." as P2

stated.

29

5.1. Introductions Aalborg University

What is also common across the interviewees, how they all mention that overall how friendly

the community is to new members, citing the immense amount of help and support they got

when starting out, trying to answer any and all questions, providing support and helping out

wherever they can, quickly making friends in the end. "I quickly made friends with a few of

these guys, probably this, that is the main reason I am still here and doing what I can" as P0

said. As a counterpoint, two participants mentioned personal issues and conflicts with others,

as well as controversies erupting between members. In addition it was repeatedly pointed out,

that non-contributor end-users can be seriously toxic, requesting status updates, new releases

and bug fixes in an entitled and demanding manner. It was later verbalized to us as well, that

that the stress caused by this behaviour one potential cause of contributors leaving the project.

Oddly enough, one point being brought up by a member that how bureaucratic the whole

contributing process is. Another member on the contrary refuted it by saying how much

they love the degree of freedom, and equality between members. In their own words: "I’m

actually surprised how much inherent dynamic there is to such a project and how little actual

management" (P2), and "there’s very little leadership or playing, we don’t need that we actually

work on consensus." (P2). This was characterised later on by him saying that the community

is operating on "chaotic order".

5.1.3 Becoming contributors

As previously discussed, the original incentive beside the inner passion for joining in the

development of the project oftentimes stemmed from a personal desire for involvement, like

through finding about a bug or incorrect behaviour and setting out to fix it.

The main platform of communication and collaboration of the FlyByWire project aside from

GitHub 1GitHub is Discord 2. Discord is a social platform where people can communicate on

text, voice or video channels on servers, share images or send files to each other, as well as share

their screens to groups. Originally it was created especially for online gaming communities,

however it quickly got adopted by other online communities including open-source projects, and

even by classrooms during the COVID-19 pandemic due to its rich feature set and ease of use.

[Mock, 2019] [Vladoiu and Constantinescu, 2020] [Kruglyk et al., 2020]

This Discord server was present right from the very beginning, serving as the go-to platform

for users and contributors alike, naturally also serving as a starting point for all newcomers

to the project, be them just end-users looking for a community of like-minded individuals,

contributors, or would-be contributors looking for help with starting contributing or having an

issue with development.

All of our interview participants started their contributing careers in Discord one way or another.
1https://github.com/
2https://discord.com/

30

https://github.com/
https://discord.com/
https://github.com/
https://discord.com/

5.2. A look at the early days Aalborg University

As discussed above, certain members joined the community to correct some issue with the

software that they encountered:

P3 encountered some unexpected behaviour with the software, then went on the Discord server,

and asked whether they can fix it. Also saying that he thinks it would be a very easy fix. The

respond he got was "Why don’t you do it yourself?", and so that is what he did, setting up to

fix the issue himself. Later on both this, and multiple other pull requests of his were accepted.

P4, who worked as a model and texture artist for the FlyByWire project joined under similar

circumstances, not being satisfied with how parts of the aircraft model behaved, joined the

Discord, and noticed that the project was actually looking for knowledgeable modellers as well.

Other team members in the meanwhile have started their initial involvement by offering help to

community members regarding the use of the software (i.e. how to use the various functions of

the airplane in the simulator).

P7 joined the team at a much later stage, by what time most of the early issues of the project

has been already fixed. His process was not that different either, originally started interacting

with the community, asking and engaging in discussions as a user, then started out helping out

his fellow users more and more himself, followed up by trying to fix bugs in the codebase.

There was an unanimity between them agreeing that without it or a comparable platform, the

community would be nowhere now, as P2 stated "I’m totally, totally convinced that without

discord or something similar, this project would never have happened.".

We can see that in the vast majority of the cases, the progression from peripheral involvement

to being an integral part of the core contributing team was typically a fluid transition, a "fluid

thing" as we have saw a Discord community put it during our observations. It was not based on

recruitment, by previous achievement or passing some arbitrary test. To become a core member

of the team, the things a newcomer needs is passion and persistence in making contributions to

the project. However as we discussed, this road to becoming a contributor was never without

hurdles.

5.2 A look at the early days

Here, in the second sub-chapter we take a look at how the FlyByWire A32NX project looked like

in its infancy. We explore what was the general state of the codebase and the documentation in

addition to taking a look at what types of issues participants encountered trying to contribute

to the project and how did they try to overcome them.

31

5.2. A look at the early days Aalborg University

Figure 5.1. A days worth of commits during the early days of the project

In the very beginnings of the project, development quickly picked up with breakneck speed as

lots of people were joining the project. This can be seen on Figure 5.1 showing a single day’s

worth of commits during the second month of the project. Of course, there were a lot more

tasks easily being done by newcomers, more low-hanging fruits, and a great number of people

did lots of works on various parts of the system. This is not to stay, that the project did not

have issues.

In communities, people naturally have conflicts; conflicts about which way to implement certain

things, what to implement or not implement, and so on. People also voiced their frustration

regarding their lack of knowledge of how to contribute, what or how to do in the project. Younger

newcomers also expressed their that starting out is or was much more difficult than they had

initially anticipated. "I didn’t expect it to be that difficult" (P1) and "To tell you the truth I

thought it would be easier" (P6). Challenges the newcomers faced were ranging from having no

clue where and how to start contributing and what to do to having lack of platform or project-

specific expertise, or insufficient general programming-related knowledge in the select languages,

platforms and systems used.

Their feelings regarding the project’s (the codebase’s) state were described as "frustrating" (P7),

"hard" (P6), "pretty difficult" (P1). Quite a few contributors expressed their frustration with

the codebase saying it is complex, hard to understand, navigate, it’s structure is convoluted,

and could use a restructuring. At this time, the community was still figuring out how the

simulator platform itself, or the originally provided software development kit (SDK) works.

The documentation landscape was in comparable shape, knowledge regarding the project and

32

5.2. A look at the early days Aalborg University

platform was not yet widespread or written down with P3 saying it was "extremely minimal".

Not knowing the project’s philosophy was another issue that was brought up during our research.

Newcomers started passionately developing and adding made-up features to the A32NX aircraft

that were not in line with the project’s philosophy of "if you create a feature, you need a real

life reference" (P2) meaning if it’s not in the real A320neo aircraft done by Airbus SE, it will

not be in the FBW A32NX aircraft.

There were several obstacles newcomers had to overcome. We gathered a few of the most

prominent ones below, a few of which we will also explain in greater detail:

• Problems with how to start

• Troubles setting up the project locally

• Problems understanding the base platform

• Not knowing how to use the VCS

• Contradicting parts

At that stage, the main source of obtaining information was getting it through personal, word

of mouth communication from their fellow developers. People asking questions were sometimes

suggested lacking other options to find out how the general development workflow is done by

looking through commits, PRs and issues. One contributor asked "Any guides on how to get up

to speed with developing systems etc? I can’t seem to find good information on anything" and

the answer they received was "I would suggest looking through the commits, PRs and issues to

get familiar with how development is done." On another occasion, someone answered another’s

question in a similar manner "I basically learned by looking at existing XML. And copying and

modifying it. You can look at my old PR’s to see how I did it". Likewise, P3’s experience was

alike as well when asked about how he familiarized himself with the codebase and the general

way of doing things. He said "So I looked at other people’s PRs and what they did to achieve this

and that, describe what they’ve done, you can see the old code and the new code and compare it

to something. That was how I learned really".

5.2.1 Guidelines and setting up

Supported by both issues reported by our interview participants as well as by our general

observations, the most glaring issues were lack of proper guidelines for project initiation and

setup as well as about the general development workflow. This topic encompasses a whole host

or family of issues which were raised both on the various development related channels of the

Discord as well as the interviewees:

• Setting up the development environment itself, including runtime platforms and IDEs, like

Visual Studio, Docker and Virtualization in the operating system. "Docker was the biggest

issue I think"(P3).

33

5.2. A look at the early days Aalborg University

• Downloading, configuring and building the software locally. "Is there any guide for new

developers on how to get started and get a compiled version of the aircraft going?" Discord

users asked multiple times.

• Project specific git workflow questions, like what branches to work on, when to submit a

PR, a draft PR, how to format it, and where to list features or bugs one has started to

work on. "the percentage of people who don’t actually know how to use Git and GitHub is

higher" (P2)

• How to use and list references for features being implemented. "Guys, I need a reference

document for the PDF and ND for the A320" (Discord member)

• How and when to do tests. P4 retrospectively praised the importance of documenting the

testing process the following way: "In the beginning, we didn’t even have that many QA

testers. And at some point, when we did have QA testers, we did include how they should

do QA tests. And I think that’s actually one of the best things that fly by wire did".

5.2.2 Version control issues

Another frequently observed and reported issues however were one way or another related to

either Git and GitHub. Specifically pertaining to general Git knowledge that could be attributed

to inadequate Git education. In contrast, project-specific Git workflow issues were relatively

infrequent, but still present as we discussed above. This phenomenon is a lot more prevalent

among those without software-related backgrounds, as well as computer science students and

fresh graduates. As P2 mentioned, "I knew how to work with GitHub. This is, for example, a

very important skill, a lot of newcomers have issues with like, what’s a PR how to do a PR?".

P3 having no programming experience before also recalled as such: "I must have tried to clone

it or fork it maybe five or six times until I were successful. Just for some reason, it would just be

some some mismatch and it wouldn’t run and I’d try again". Finally, newcomers from the dev-

support channel of the FlyByWire Discord echoed similar sentiments: "how do draft PRs work?

I want to open a draft PR", "lol github is hard to understand - I’ve tried a few times, watched

like 30 min youtube videos on it, and STILL don’t really understand", and "How do I update my

fork for making a PR? I have ’This branch is 574 commits behind flybywiresim:master’", lastly

a contributor experiencing some degree of success in the end "alright, a bit of rebase hell, merge

master chaos, manual copy pasta from old changes ... the one that should work :)".

Even though these types of issues are outside the scope of both this work and the FBW project

documentation; as of 2023 spring the documentation maintainers of the project are actively

contemplating adding a Git and Git workflow guide to the project documentation as part of the

contribution guidelines to help with the seemingly endless flow of git related questions on the

support channels.

34

5.2. A look at the early days Aalborg University

5.2.3 Understanding the project’s structure

As development continues on at great speeds, it can prove to be very hard to keep up with

changes on the documentation side of things. It also goes without saying that as the size of

the project grows, it gets harder to keep track of the structure; both of the codebase and the

documentation, or even keeping it in check enforcing best practices. This in turn makes it

increasingly harder for newcomers to join a select project. This claim was further supported by

P1 saying "the structure the entire thing is convoluted. Even the main, so that it’s very hard

to navigate. But I guess that was the one main piece of documentation I was looking for", and

also by observations of ours where community members were asking for locations of certain files

or functionalities such as "Does anyone happen to know where the code lives that specifies what

livery is used for the default/thumbnail livery in the aircraft selector", and as "do you have any

manuals or instructions for the code? Or do you sit up at night looking for variable names? did

not understand what is responsible for what and where".

5.2.4 Contradictions

Contradictions are another types of issues that can be attributed to the speed the project was

developed with. At great speeds, it gets almost impossible keeping up with the changes, and

information regarding select parts can be outdated even before being fully developed. If there

is no communication between developers and/or between documentation maintainers, it might

result in outdated or contradicting parts present, or the same thing being written down at

multiple places making people even more confused than without. In early 2021, several different

documentations sites were set up as well as linked on the newly created documentation channel

until the community settled on the one still being used. Illustratively a contributor also said "to

get back to the docs, i feel like simbridge docs are kinda hard to navigate. i don’t know how to fix

it right now but i feel like one issue is the fact that certain pages are simply very long. most pages

are pretty concise but ’Remote MCDU Display’ and ’Troubleshooting’ are just super long." and

another one got confused by outdated documentation parts not marked as such expressing their

findings as such: "Seems I was using an outdated document (https://docs.flybywiresim.com/fbw-

a32nx/a32nx-api/a32nx-flightdeck-api/) but found this one now searching for that variable:

https://github.com/flybywiresim/a32nx/blob/master/docs/a320-simvars.md, Guess the latter

one is the most current one?".

5.2.5 Passion and persistence: overcoming challenges

Even developers do not necessarily care for writing documentation, "developers don’t like to write

documentation" as P2 phrased, or even reading it. On top of that, manpower was also lacking

- members wanted to contribute to the actual code base, implementing new features, or fixing

bugs that they found - instead of writing down how the code works. Others has stated, it is due

to a rate of turnover, and lack of dedicated team responsible for maintaining it. In our case, all

35

5.2. A look at the early days Aalborg University

of our participants agreed that reading documentation can be very useful, whether it being the

overall faster way of obtaining information, or just simply being the more independent way of

doing things, not being dependent on others. Our respondents agreed, that they would all try to

get the necessary information on their own first, followed by asking fellow community members

if needs be. "I hate being one of those people who are asked a question that’s already been asked.

So what I would do is either touch up with Discord’s search function, like my question or like,

something along the lines of my question and see if it’s already been answered. And if it has,

then that’s great. I’ll just use that answer. And if that answer didn’t work for me, then I’ll ask

it again." stated by P1.

However as we perceived it, during the early days of the project, the documentation was not yet

very well developed, leading to a lot more asking more senior contributors for information that

what would have been necessary otherwise.

In conclusion and in spite of all of the aforementioned problems with the documentation, we

could not see a direct trend between newcomers leaving or dropping off contributing entirely

and documentational issues.

5.2.6 Exploring the motivation of contributors

What can be the potential underlying factors explaining this?

Unsurprisingly, more experienced developers with decades of prior experiences reported

documentation issues as less of a priority, citing going without documentation comparatively

less of an issue. Their accumulated experience made them understand the codebase much more

quickly on their own. They too are asking questions whenever something pops up, but are far

less prevalent on others help to being able to navigate and comprehend the project structure

with ease.

Younger and inexperienced newcomers have however developed coping mechanisms. [Kelly, 2004]

Coping mechanisms that helps them through the undeniably hard days that is the state of

being new to a given software project. Their solution was all about overcoming challenges by

finding help from others. As we previously discussed, making friends with community members

was a phrase mentioned by all of our interview participants, "Interacting with some of the

developers there became good friends with a lot of the team" (P1), "positive spiral" (P2), "positive

attitude" (P5) and "good community" (P6) and similar thoughts were brought up repeatedly. P6

mentioned "i’d much rather find the infos on my own, but hey if i couldn’t, what else can i do?"

in regards to repeatedly asking questions "pestering" the development team. To get information

that they could not find out on their own, they had to ask questions, a lot of questions from their

fellow community members, from their fellow friends. And questions they asked, both in private

chat channels as well as we learned it from the interviews and in public channels encouraged

by the FBW team members, to make the questions and answers also as a source of information

36

5.3. Recent days Aalborg University

for future members potentially asking the same question later down the road. And more often

than not, answers they received in turn. This is greatly supported by our overall observations as

well, that less than approximately 10 percent of the questions asked on the development support

chats goes unanswered. Response time also varies greatly, from minutes ranging up to a day

- obviously due to the global reach of the project, and time zone differences. P7 very nicely

summed this phenomena up as "using others as human documentation".

At its core, even though most participants would liked to have more written documentation to

help them start with the project and struggled, their passion for the project and community was

bigger than the demotivation caused by not knowing how to start, and through their passion

and repeatedly using the collective knowledge of the community, they managed to onboard

themselves, start contributing and joining the development team later on.

5.3 Recent days

Last, we are turning our focus on the project’s near past, present and future. How the

development and documentation team turned around and improved the documentation’s state,

how do contributors who have only joined the team recently experience its current state, finishing

up with discussing what the future has in store.

5.3.1 Intermission: evolution of documentation

The main documentation repository of the project what we can see currently here 3 from which

the documentation site4 is automatically generated was created at early 2021. This is not to say,

that the project was without any kind of documentation beforehand. Rather, it was minimal,

present at multiple sites, and a great deal of it was .docx files shared around and pinned in

Discord channels. Even until recently a big chunk of the documentation lived in a folder inside the

main A32NX repository 5, which have been now replaced with a single markdown file detailing

the repository structure - a feature that was asked recurrently, and even was mentioned above.
3https://github.com/flybywiresim/docs
4https://docs.flybywiresim.com/
5https://github.com/flybywiresim/a32nx/tree/82f9ad7e2802172d706fa08ac051597f1a9b8e11/docs

37

https://github.com/flybywiresim/docs
https://docs.flybywiresim.com/
https://github.com/flybywiresim/a32nx/tree/82f9ad7e2802172d706fa08ac051597f1a9b8e11/docs
https://github.com/flybywiresim/docs
https://docs.flybywiresim.com/
https://github.com/flybywiresim/a32nx/tree/82f9ad7e2802172d706fa08ac051597f1a9b8e11/docs

5.3. Recent days Aalborg University

Figure 5.2. Documentation website

Coming in after the initial few months of development on the project, some community members

were spearheading the documentation develepment effort. In certain cases, members took the

lead themselves. In other cases, members started on their own volition, simply noting down

their own experiences setting up, or documenting parts of the API to help themselves, and

potentially others with the development process later down the road. The core development

team having noticed this approached them and asked whether they would be interested in

helping out the documentation efforts. Thus a relatively small but dedicated team quickly grew

around this initiative in creating a dedicated documentation repository that should serve as

an integrated knowledge center for both users and developers replacing the disorganized and

decentralized documentation fragments that were present before. In the subsequent link, one

can see the "docs" subfolder of the main repository on 31.12.2020 representing its early state

before measures has been taken to create a separate documentation repository). 6

6https://github.com/flybywiresim/a32nx/tree/ad7146122e7852052e39a4a6bd510a9f5c101043/docs

38

https://github.com/flybywiresim/a32nx/tree/ad7146122e7852052e39a4a6bd510a9f5c101043/docs
https://github.com/flybywiresim/a32nx/tree/ad7146122e7852052e39a4a6bd510a9f5c101043/docs

5.3. Recent days Aalborg University

Figure 5.3. Documentation repository

The team created more detailed guidelines for contributing to the project, including tips for

developers, specific subsystem development guides, and written down the established testing

and quality assurance protocols. In addition, they created a separate web page that dynamically

tracks changes in the documentation, displaying them in a visually appealing manner. The new

"docs" repository can be seen on Figure 5.3 and the documentation website being automatically

built from it is presented on Figure 5.2.

39

5.3. Recent days Aalborg University

Figure 5.4. Number of documentation commits by week

Figure 5.4 showcases the number of documentation repository commits done by week, equalizing

the outliers by capping them at 3 times the standard deviation value of the data. The outlier days

diminished that way were individually inspected by the authors, and were found to be always

just a quick burst of testing, or typo or spacing fixing commits done by the same developers.

We can see that after the initial start, the commit frequency slowly ramped up and stayed

consistently very high for almost a year having reached its nigh-current form during that time

frame, but activities also stayed relatively consistent ever since.

5.3.2 Artist documentation

During our research, it also came to our attention, that the FlyByWire team comprises not only

of software developers, but also texture and model artists contributing to the development of

the product. Model artists are creating the 3D objects, the frames of the airplane like its shell,

the engines, and the various screens and buttons in the cockpit. Textures artists create "skins"

that are applied on the aforementioned objects surfaces making them detailed and feel realistic.

Unlike software developers however, they do not necessarily require documentation as their work

is standardized by the tools they use in their respective industries. P3 answered when asked

about specific knowledge required or potential documentation that would be welcome in this

area that "You don’t really need because you can, you can technically just like modelling in every

game is always the same. It doesn’t really change", as well as "take the same one that you just

did for FlyByWire and import it somewhere else. So yeah, it’s, it’s the model itself does not

change".

In their case the FBW project currently contains only supplementary information in the form

of useful tidbits for these artists, available as part of the development guide section of the

documentation.

40

5.3. Recent days Aalborg University

5.3.3 New people, new documentation

Overall, people have expressed their satisfaction towards the changes continuously being done

during the years. Long-time contributors have agreed, that the changes and the ongoing

development is definitely welcome, however this is not to say, that overall newcomers have

an easier time to contribute nowadays. On one hand, due to the accumulated knowledge over

the last three years or so undoubtedly makes it easier for them to start up, help them knowing

how or where to add new features, or make sense of the project files on the whole. On the other

hand, these measures only mitigate the additional complexity the codebase have accrued during

that time. Now more of the complexity lies in actually planning and implementing one’s own

contributions, understanding line by line code of subsystems, rather than in getting started.

Newcomers P5 and P6 who have joined the development more recently has especially expressed

their positive feeling when asked by saying "i think it’s alright. i mean i found everything i

wanted i was looking for" (P5) and "better than elsewhere" (P6).

Good documentation makes contributors’ lives easier. First, it helps newer contributors to the

project by them not having to discover all the elaborate inner workings of the codebase by

themselves, and also by not having to wait for substantial periods of time for answers for their

questions asked on a discussion board. More knowledgeable members may be busy for extending

periods of time, or live in very far timezones from them. Likewise it also helps well-experienced

long-time contributors of the project by them not having to spend their precious time answering

the same questions allowing them to focus more on planning and development of the project.

5.3.4 The road ahead

In line with our prior discourse, though the documentation has improved a lot during the years,

there is still much work to be done. The issue tracker is ever not empty and the documentation

team is ever thinking about creating new, improved or more in-depth guide for the users as well,

or just trying to make the whole structure ever more logical. "This is completely recent, when I

did the repo restructure. I said I started with that project in December, restructuring the repo.

And when I did that, I also did this documentation." (P2). The fact had not changed either, that

many developers simply do not like writing documentation, the codebase is continuously growing

as well, so documentation maintainers have to always keep an eye on the project, looking for

changes therein.

5.3.5 Documentation matters

From an outsider perspective it seems not much has changed overall, but it could not be further

from the truth. Even though the project’s users have persisted despite sub-optimal or non-

existing documentation, having high-quality documentation is crucial for the long-term success

and growth of the project. A great chunk of then commonly asked questions are answered in

the FAQ section as well as the documentation containing many previously requested parts. For

41

5.3. Recent days Aalborg University

example in multiple cases community members on Discord were asking for guidelines on how to

start Where should I start if I would like to explore the development work. what is the next step?,

Does someone need some kind of dev support? I am searching for a way to start contributing.

and also a lot of questions about from end-users ranging from how to install the software to how

certain parts of the aircraft work, many of which are now answered in the common questions7

section as well.

Figure 5.5. Questions answered with documentation

7https://docs.flybywiresim.com/fbw-a32nx/faq/#aircraft

42

https://docs.flybywiresim.com/fbw-a32nx/faq/#aircraft
https://docs.flybywiresim.com/fbw-a32nx/faq/#aircraft

5.3. Recent days Aalborg University

Recalling the Research Question we sought to understand how does software documentation

influence contributors motivation to participate in open-source communities.

Although the community invested significant effort in developing a comprehensive documen-

tation, contributors remain reluctant to do their homework and consult the documentation

materials available. Instead, they prefer to ask questions in the forums, questions that already

have been asked as well as answered numerous times, and since have been documented down as

well.

This is evidenced in the way questions are answered, using links to documentation instead of

just being answered regularly. One member of the documentation team expressed their feelings

on the docs channel as follows: "So many questions in #a32nx-support we could easily answer

with the beginner guide!! I’m tempted to send the preview link". To further support this claim,

Figure 5.5 showcases a collection of chat fragments, question on the development channels that

were answered with a link to the appropriate section of the project’s documentation.

While documentation helps and make a difference, maintaining it is a tedious effort, especially

as the codebase is ever growing and becoming more complex. Not finding accurate information

however did not seem to deter the community developers from contributing. They managed

to cope with the difficulties during the project’s infancy, when the documentation was

underdeveloped. They persevered driven by their passion for the product, and its community.

They had good relationships with other community members, even forming friendships with a

few of them. Through that, they could lay assured in a friendly atmosphere that they can ask

for, as well as receive help and support whenever needed.

Overall, documentation matters! In the case of FlyByWire, it increased contributors’ satisfaction

and productivity not having to wait for answers. We have not noticed any uptick of popularity

or correlation between the project’s prevalence and the state of its documentation, however if

nothing else, it helped trough freeing up more of the core contributors’ time that they would

otherwise have spent on writing up the selfsame answers that their fellow contributors asked for

over and over again.

43

Threats to validity 6
In this section, we will discuss and address the various threats to validity in a systematic way that

may have influenced the results of the study, and describe the steps we will take to minimize these

threats. This aids our readers in assessing the trustworthiness of the research and determining

whether the conclusions are supported by the data and helps increasing the trustworthiness of

the research findings so it they do not reflect subjective views or biases [Lethbridge et al., 2005]

[Runeson and Höst, 2009].

To ensure the reliability of our findings, we thoroughly document all parts of the research process.

What research methods did we settle on using, as well as the justification of it and the various

decisions made throughout the procedure. How, and based on what criteria, did we find the

cases and participants. What data analysis tools did we use to arrive at our interpretation from

the raw data.

Both the first and the second cycle coding were done by the authors independently, then

the codes and themes identified were compared and discussed until reaching consensus. The

observations were done in the same manner with the added change of only comparing the field

notes summarizing them.

Here, we opted to classify and address them based on the way suggested and used by Yin

[Yin, 2003] and Wohlin et al. [Wohlin et al., 2012] using internal and external validity:

6.1 Internal Validity

Internal validity is a way to ensure that the case design holds true, that the results of our study

show a clear cause and effect relationship. The aim is to guarantee that the effect did not happen

due to some unknown, unobserved or unexplained extraneous variables.

A key part of our research design was a single case study. One would argue that the scope

was not broad enough or it did not have quantitative additions and in that regard they would

be correct. On the other hand, we specifically used multiple qualitative research strategies and

data collection methods combined such as interviews and observations striving for more in-depth

understanding of this specific case strengthening it more instead of seeking generabilizity.

The number of interviews performed as per our research with the FlyByWire community

44

6.2. External validity Aalborg University

members was relatively small with seven (7) interviews performed total along the time span

of two months, making our sample smaller than originally desired. However in regard to the

data set, we still reached what we believe to be the point of saturation as defined by Saunders

et al. [Saunders et al., 2018], as the thoughts and feelings reported by the participants as well

as what we have discovered while observing the communities were consistent and in-line with

each other. This in turn made repeatedly our repeatedly observed findings statistically more

significant.

A large part of our findings are originating from what the interviewees said. It can be argued, that

participants may have been reluctant to share their emotions. We found that this was not the

case in the FlyByWire community. Interview participants shared their negative experiences as

well on more than one occasions, telling us about more heated debates, or what they disdained

with either the community or specific members, especially after their anonymity was being

reassured.

Even though we had a single case in our study, it came to our attention very early during the

gata gathering process that the the data presents a quite different state between the A32NX’s

documentation’s early and current situation. While we considered its documentation as a

positive example of how documentation should be done serving as a positive case, this discovery

of deficient documentation being prevalent during the past of our case study inspired us to divide

our single to serve as two cases to an extent: one negative and one positive. The negative case

refers to the inadequate documentation present in the past, while the positive case highlights

the current state of documentation.

Thus by incorporating both negative and positive cases or states serving as a base for comparisons

between them, it strengthens our case study, overcoming the limitations of the initial plan of

going with a single positive case. [Espedal et al., 2022] [Miles et al., 2013] I also reduces bias in

the result while also helping us to understand and explain the original case better [Emigh, 1997]

[Hanson, 2017].

6.2 External validity

External validity is the extent to which the findings and the conclusion from our study can

be used or applied to other situations, cases and conditions, for example to other open-source

projects. It answers the questions of generalizability and transferability. [Miles et al., 2013]

The findings of this study are about one select community, that is FlyByWire Simulations.

Open-source communities however have inherently similar characteristics, generally focused on

a specific or a set of specific projects as well as operate using a decentralized development

model with contributors from all around the world at different timezones cooperating together

to develop the software. In addition, as previously discussed, the motivation behind individuals

45

6.2. External validity Aalborg University

joining open-source projects showcases recurrent themes with the most prominent one being a

shared passion for a hobby, topic or area of interest. Thus we believe that due to these inherent

similarities, our findings would likely be applicable to other, similar open-source communities as

well.

46

Discussion 7
7.1 Discussion

We have seen several research papers talking about contribution barriers that open-source

contributors, especially newcomers face. Both Mendez et al. [Mendez et al., 2018] and

Steinmacher et al. [Steinmacher et al., 2014a] identified general contribution barriers to

newcomers, like social interaction issues, lack of technical knowledge, or problems with finding

a way to start, a suitable first issue to try tackling.

We have also seen articles talking about some of them, mainly one specific family of these

barriers that are various software documentation related issues, which we have also thoroughly

categorized in Section 3.6. Aghajani et al. [Aghajani et al., 2019] enumerated and categorized

an astonishing 162 different types of documentation issues, a few of which are: certain types of

documentation artifacts like contribution guidelines, FAQ or build guide missing, documentation

being fragmented into multiple platforms, or simply not being available.

Although while these studies exist, what none of them expands upon is the consequences of these

issues. Will contributors drop out after being demoralised from these obstacles, or specifically

documentation problems encountered, or will they persevere through finding out other ways to

obtain the information that they sought? Our work shows that in certain communities new

contributors may very well do the latter. In case of the FlyByWire community, during the

earlier days of the project where the documentation was "extremely minimal" (P3), they still

persisted through by coping mechanism such as making friends with the community, and help

from their fellow members (see Section 5.2.5). These coping mechanism are different than the

ones identified in other studies like the one done by Lee et al. [Lee et al., 2006]. Their research

was performed in a corporate environment, they identified and were discussing factors like on-site

labour organization, were focusing on costs as well as identified a centralised knowledge base and

writing documentation itself a coping mechanism. The first two points are mostly extraneous

in case of open-source projects, and writing documentation is inapplicable in our scenario, as

we are focusing on the effects of inadequate documentation on new contributors, not having the

domain knowledge to contribute to the knowledge base of a project. Overall, these points made

it a worthwhile endeavour to look into these mechanism in open-source communities as well, in

an antithetical situation where proper documentation was not existing before.

47

7.1. Discussion Aalborg University

Practical implications for newcomer contributors is to not feel discouraged when initially not

finding written help regarding an open-source project. Instead let passion prevail, and try to find

information through other means. At the same time, we would suggest long-standing community

members to try to build a community based on friendliness, warmth and sharing that encourages

helping out their comrades when they ask for help.

Moreover, our research also explored something new, a phenomenon not yet documented. While

there are existing studies on the evolution of open-source documentation like one done by

Dagenais and Robillard [Dagenais and Robillard, 2010b]. They explored what kind of efforts and

decisions go into writing documentation for open-source, how does the process look like as well as

what parts of documentation do open-source contributors find the most useful. Their data source

however consisted of interviews with developers from multiple popular open-source projects. In

comparison, our focus is a single community, the FlyByWire A32nx team its transformation

going from almost no documentation to excellent documentation. To the best of our knowledge,

no previous study has investigated this transformation process in-depth. Nowadays, A32nx’s

documentation is there, and the documentation team is continuously trying to keep up with

the changes. However, even though the documentation is present, we have noticed numerous

new contributors asking questions, more specifically asking questions that have already been

answered either in the "FAQ" page or the general documentation site of the project

Here, we would suggest new contributors to try to spend a little time exploring the project’s

documentation for potential answers for their questions first, before asking their fellow

community members for help.

Another finding of ours was how prevalent issues relating to version control systems, mainly

with Git and Github are, especially among those without formal software-related backgrounds,

or students and fresh graduates from a relevant mayor. These findings are in line with

the works of Isomöttönen and Cochez [Isomöttönen and Cochez, 2014], and Feliciano et al.

[Feliciano et al., 2016] discussing that at many universities, Git is not part of the curricula,

and even if it is, oftentimes it is not taught in a sufficient manner, hence students having

problems with even easier concepts therein. To counter this issue, in the case of the FlyByWire

community, documentation maintainers are actively discussing adding a general git introduction

session to the core project documentation to help counter this issue. Even though we feel that

the sentiment is nice, well needed and also welcome, but we would also argue that it is outside

the scope of a specific project’s documentation.

These findings hold implications for educators suggesting a need for inclusion as well as better

incorporation of version control themes into university curricula as it is an invaluable skill both at

open-source project and in software enterprises that many newcomers struggle with. Furthermore

this in turn also have implications for students. The need for them to try to acquire git knowledge

on their own, not neglect and sideline it in favour of core programming skills.

48

Conclusion 8
8.1 Conclusion

In conclusion, in this thesis we have explored how a projects’ documentation and its quality

can affect motivation of contributors to continue participating. First we presented relevant

theories and literature, expanding upon problems frequently plaguing documentation. Then

we showcased how open-source software plays a significant role in the modern technological

landscape and how documentation can help with knowledge transfer within developer

communities. However, related works have shown that barriers exist that can prevent

contributors from effectively participating in open-source projects. A subset of these issues

are related to documentation: Be it outdated, fragmented, too little, or too much; neither of

them are as helpful as we would otherwise want them to be. Afterwards, we also detailed the

methodologies to be used as part of our qualitative case study.

This prelude was followed by a presentation of our findings including taking threats to validity

into account and the discussion of the project’s contribution to the field.

As part of the findings it became evident that just as other factors, documentation and its state

does not make or break whether a newcomer will continue contributing or not. In the FlyByWire

community, we have seen how community members coped with deficient documentation in the

project’s infancy through making friends with their fellow community members and asking others

for help. Future works could be about how different the results would be in other, less welcoming

communities. There are multiple factors at play, but it is conceivable that in certain cases, it

will be the project documentation’s weight that might tip the scales in one direction or another.

We have illustrated, how following the FlyByWire documentation team turning around the

documentation’s state, certain members were still asking questions already answered in the

documentation. On the other hand, more and more of these questions are being answered using

links to parts of the documentation in lieu of standard responses.

49

Bibliography

[Aggarwal et al., 2014] Aggarwal, K., Hindle, A., and Stroulia, E. (2014). Co-evolution of

project documentation and popularity within github. In Proceedings of the 11th working

conference on mining software repositories, pages 360–363.

[Aghajani et al., 2019] Aghajani, E., Nagy, C., Vega-Márquez, O. L., Linares-Vásquez, M.,

Moreno, L., Bavota, G., and Lanza, M. (2019). Software documentation issues unveiled. In

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages

1199–1210.

[Aversano et al., 2017] Aversano, L., Guardabascio, D., and Tortorella, M. (2017). Evaluating

the quality of the documentation of open source software. In ENASE, pages 308–313.

[Balali et al., 2018] Balali, S., Steinmacher, I., Annamalai, U., Sarma, A., and Gerosa, M. A.

(2018). Newcomers’ barriers... is that all? an analysis of mentors’ and newcomers’ barriers

in oss projects. Computer Supported Cooperative Work (CSCW), 27(3):679–714.

[Barcomb et al., 2020] Barcomb, A., Stol, K.-J., Fitzgerald, B., and Riehle, D. (2020).

Managing episodic volunteers in free/libre/open source software communities. IEEE

Transactions on Software Engineering.

[Bayati, 2018] Bayati, S. (2018). Poster: Understanding newcomers success in open source

community. In 2018 IEEE/ACM 40th International Conference on Software Engineering:

Companion (ICSE-Companion), pages 224–225. IEEE.

[Berglund and Priestley, 2001] Berglund, E. and Priestley, M. (2001). Open-source

documentation: In search of user-driven, just-in-time writing. In Proceedings of the 19th

Annual International Conference on Computer Documentation, SIGDOC ’01, page 132–141,

New York, NY, USA. Association for Computing Machinery.

[Bianca M. Napoleão, 2020] Bianca M. Napoleão, Fabio Petrillo, S. H. (2020). Open source

software development process: A systematic review. Empirical Software Engineering, pages

1–14.

[Borges et al., 2016] Borges, H., Hora, A., and Valente, M. T. (2016). Understanding the

factors that impact the popularity of github repositories. In 2016 IEEE international

conference on software maintenance and evolution (ICSME), pages 334–344. IEEE.

[Braun and Clarke, 2006] Braun, V. and Clarke, V. (2006). Using thematic analysis in

psychology. Qualitative Research in Psychology, 3:77–101.

50

Bibliography Aalborg University

[Carvalho et al., 2014] Carvalho, N., Simões, A., and Almeida, J. (2014). Dmoss: Open source

software documentation assessment. Computer Science and Information Systems,

11:1197–1207.

[Coelho and Valente, 2017] Coelho, J. and Valente, M. T. (2017). Why modern open source

projects fail. In Proceedings of the 2017 11th Joint meeting on foundations of software

engineering, pages 186–196.

[Dagenais and Robillard, 2010a] Dagenais, B. and Robillard, M. P. (2010a). Creating and

evolving developer documentation: understanding the decisions of open source contributors.

In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, pages 127–136.

[Dagenais and Robillard, 2010b] Dagenais, B. and Robillard, M. P. (2010b). Creating and

evolving developer documentation: Understanding the decisions of open source contributors.

In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE ’10, page 127–136, New York, NY, USA. Association for

Computing Machinery.

[Davidson et al., 2014] Davidson, J. L., Mannan, U. A., Naik, R., Dua, I., and Jensen, C.

(2014). Older adults and free/open source software: A diary study of first-time contributors.

In Proceedings of the international symposium on open collaboration, pages 1–10.

[Emigh, 1997] Emigh, R. J. (1997). The power of negative thinking: The use of negative case

methodology in the development of sociological theory. Theory and Society, 26:649–684.

[Espedal et al., 2022] Espedal, G., Løvaas, B., Sirris, S., and Wæraas, A. (2022). Researching

Values. Methodological Approaches for Understanding Values Work in Organisations and

Leadership.

[Feliciano et al., 2016] Feliciano, J., Storey, M.-A., and Zagalsky, A. (2016). Student

experiences using github in software engineering courses: A case study. In Proceedings of the

38th International Conference on Software Engineering Companion, ICSE ’16, page 422–431,

New York, NY, USA. Association for Computing Machinery.

[Forward and Lethbridge, 2002] Forward, A. and Lethbridge, T. C. (2002). The relevance of

software documentation, tools and technologies: A survey. In Proceedings of the 2002 ACM

Symposium on Document Engineering, DocEng ’02, page 26–33, New York, NY, USA.

Association for Computing Machinery.

[GNU, 2022] GNU (2022). What is free software?

[Greenhalgh and Peacock, 2005] Greenhalgh, T. and Peacock, R. (2005). Effectiveness and

efficiency of search methods in systematic reviews of complex evidence: audit of primary

sources. BMJ, 331(7524):1064–1065.

51

Bibliography Aalborg University

[Hannebauer and Gruhn, 2017] Hannebauer, C. and Gruhn, V. (2017). On the relationship

between newcomer motivations and contribution barriers in open source projects. In

Proceedings of the 13th International Symposium on Open Collaboration, OpenSym ’17, New

York, NY, USA. Association for Computing Machinery.

[Hanson, 2017] Hanson, A. (2017). Negative Case Analysis, pages 1–2. John Wiley Sons, Ltd.

[Isomöttönen and Cochez, 2014] Isomöttönen, V. and Cochez, M. (2014). Challenges and

confusions in learning version control with git. In Ermolayev, V., Mayr, H. C., Nikitchenko,

M., Spivakovsky, A., and Zholtkevych, G., editors, Information and Communication

Technologies in Education, Research, and Industrial Applications, pages 178–193, Cham.

Springer International Publishing.

[Kaur et al., 2022] Kaur, R., Kaur Chahal, K., and Saini, M. (2022). Understanding

community participation and engagement in open source software projects: A systematic

mapping study. J. King Saud Univ. Comput. Inf. Sci., 34(7):4607–4625.

[Kelly, 2004] Kelly, J. (2004). Spirituality as a coping mechanism. Dimensions of Critical Care

Nursing, 23(4):162–168.

[Kruglyk et al., 2020] Kruglyk, V., Bukreiev, D., Chornyi, P., Kupchak, E., and Sender, A.

(2020). Discord platform as an online learning environment for emergencies. Ukrainian

Journal of Educational Studies and Information Technology, 8(2):13–28.

[Lee et al., 2017] Lee, A., Carver, J. C., and Bosu, A. (2017). Understanding the impressions,

motivations, and barriers of one time code contributors to floss projects: a survey. In 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages 187–197.

IEEE.

[Lee et al., 2006] Lee, G., DeLone, W., and Espinosa, J. A. (2006). Ambidextrous coping

strategies in globally distributed software development projects. Communications of the

ACM, 49(10):35–40.

[Lethbridge et al., 2005] Lethbridge, T., Sim, S., and Singer, J. (2005). Studying software

engineers: Data collection techniques for software field studies. Empirical Software

Engineering, 10:311–341.

[Li et al., 2015] Li, Z., Avgeriou, P., and Liang, P. (2015). A systematic mapping study on

technical debt and its management. Journal of Systems and Software, 101:193–220.

[Matturro et al., 2017] Matturro, G., Barrella, K., and Benitez, P. (2017). Difficulties of

newcomers joining software projects already in execution. In 2017 International Conference

on Computational Science and Computational Intelligence (CSCI), pages 993–998. IEEE.

52

Bibliography Aalborg University

[Matuleviçius et al., 2009] Matuleviçius, R., Kamseu, F., and Habra, N. (2009). Measuring

open source documentation availability. In Proceedings of the international Conference on

Quality Engineering in Software Technology.[cited at p. 23, 193, 197].

[Mendez et al., 2018] Mendez, C., Padala, H. S., Steine-Hanson, Z., Hilderbrand, C., Horvath,

A., Hill, C., Simpson, L., Patil, N., Sarma, A., and Burnett, M. (2018). Open source barriers

to entry, revisited: A sociotechnical perspective. In Proceedings of the 40th International

conference on software engineering, pages 1004–1015.

[Miles et al., 2013] Miles, M. B., Huberman, A. M., and Saldaña, J. (2013). Qualitative Data

Analysis: A Methods Sourcebook. SAGE Publications, Inc, 3rd edition.

[Mock, 2019] Mock, K. (2019). Experiences using discord as platform for online tutoring and

building a cs community. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education, SIGCSE ’19, page 1284, New York, NY, USA. Association for

Computing Machinery.

[Nagle, 2016] Nagle, F. (2016). Learning by contributing: Gaining competitive advantage

through contribution to open source software. Academy of Management Proceedings,

2016(1):10856.

[Nicolas Anquetil, 2005] Nicolas Anquetil, K. M. d. O. (2005). A study of the documentation

essential to software maintenance. Empirical Software Engineering, pages 1–9.

[OSI, 2022] OSI (2022). Licenses standards | open source licenses.

[Panichella, 2015] Panichella, S. (2015). Supporting newcomers in software development

projects. In 2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 586–589. IEEE.

[Ågren et al., 2022] Ågren, P., Knoph, E., and Berntsson Svensson, R. (2022). Agile software

development one year into the covid-19 pandemic. 27(6).

[Rashid et al., 2017] Rashid, M., Clarke, P. M., and O’Connor, R. V. (2017). Exploring

knowledge loss in open source software (oss) projects. In International conference on

software process improvement and capability determination, pages 481–495. Springer.

[Robillard and DeLine, 2011] Robillard, M. P. and DeLine, R. (2011). A field study of api

learning obstacles. Empirical Software Engineering, 16(6):703–732.

[Runeson and Höst, 2009] Runeson, P. and Höst, M. (2009). Guidelines for conducting and

reporting case study research in software engineering. Empirical Softw. Engg., 14(2):131–164.

[Saunders et al., 2018] Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bartlam,

B., Burroughs, H., and Jinks, C. (2018). Saturation in qualitative research: exploring its

conceptualization and operationalization. Quality Quantity, 52.

53

Bibliography Aalborg University

[Sholler et al., 2019] Sholler, D., Steinmacher, I., Ford, D., Averick, M., Hoye, M., and Wilson,

G. (2019). Ten simple rules for helping newcomers become contributors to open projects.

PLoS computational biology, 15(9):e1007296.

[Showkat, 2018] Showkat, D. (2018). Determining newcomers barrier in software development:

An it industry based investigation. In Companion of the 2018 ACM Conference on

Computer Supported Cooperative Work and Social Computing, pages 165–168.

[Stallman, 1998] Stallman, R. (1998). Why free software is better than open source.

[Steinmacher et al., 2014a] Steinmacher, I., Chaves, A. P., Conte, T. U., and Gerosa, M. A.

(2014a). Preliminary empirical identification of barriers faced by newcomers to open source

software projects. In 2014 Brazilian Symposium on Software Engineering, pages 51–60.

IEEE.

[Steinmacher and Gerosa, 2014] Steinmacher, I. and Gerosa, M. A. (2014). How to support

newcomers onboarding to open source software projects. In IFIP International Conference

on Open Source Systems, pages 199–201. Springer.

[Steinmacher et al., 2014b] Steinmacher, I., Graciotto Silva, M. A., and Gerosa, M. A. (2014b).

Barriers faced by newcomers to open source projects: A systematic review. volume 427.

[Steinmacher et al., 2015] Steinmacher, I., Graciotto Silva, M. A., Gerosa, M. A., and

Redmiles, D. F. (2015). A systematic literature review on the barriers faced by newcomers

to open source software projects. Information and Software Technology, 59:67–85.

[Steinmacher et al., 2013] Steinmacher, I., Wiese, I., Chaves, A. P., and Gerosa, M. A. (2013).

Why do newcomers abandon open source software projects? In 2013 6th International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), pages

25–32. IEEE.

[Steinmacher et al., 2014c] Steinmacher, I., Wiese, I. S., Conte, T., Gerosa, M. A., and

Redmiles, D. (2014c). The hard life of open source software project newcomers. In

Proceedings of the 7th International Workshop on Cooperative and Human Aspects of

Software Engineering, CHASE 2014, page 72–78, New York, NY, USA. Association for

Computing Machinery.

[Steinmacher, 2015] Steinmacher, I. F. (2015). Supporting newcomers to overcome the barriers

to contribute to open source software projects. PhD thesis, Universidade de São Paulo.

[Sutton and Austin, 2015] Sutton, J. and Austin, Z. (2015). Qualitative research: Data

collection, analysis, and management. The Canadian journal of hospital pharmacy,

68(3):226.

54

Bibliography Aalborg University

[Uddin and Robillard, 2015] Uddin, G. and Robillard, M. P. (2015). How api documentation

fails. Ieee software, 32(4):68–75.

[Venigalla and Chimalakonda, 2021] Venigalla, A. S. M. and Chimalakonda, S. (2021).

Understanding emotions of developer community towards software documentation. In 2021

IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering

in Society (ICSE-SEIS), pages 87–91.

[Vikas Sitaram Chomal, 2014] Vikas Sitaram Chomal, J. R. S. (2014). Significance of software

documentation in software development process. International Journal of Engineering

Innovation Research, 3(8):8.

[Vladoiu and Constantinescu, 2020] Vladoiu, M. and Constantinescu, Z. (2020). Learning

during covid-19 pandemic: Online education community, based on discord. In 2020 19th

RoEduNet Conference: Networking in Education and Research (RoEduNet), pages 1–6.

[Wohlin, 2014] Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, EASE ’14, New York,

NY, USA. Association for Computing Machinery.

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and

Wessln, A. (2012). Experimentation in Software Engineering. Springer Publishing Company,

Incorporated.

[Yin, 2003] Yin, R. (2003). Case Study Research: Design and Methods. Applied Social

Research Methods. SAGE Publications.

55

	Title page
	Preface
	Abstract
	Summary

	Table of Contents
	Introduction
	Open-source software
	Scope of the topic

	Motivation
	Motivation
	Research question
	Documentation

	Related work
	Snowballing
	Snowball search process
	starting set
	Iterations
	First Iteration
	Second Iteration

	Final set
	Related work
	Non existing
	Outdated
	Unclear
	Fragmented or disjointed
	Further issues

	Methods
	Case studies
	Case description
	Data collection
	Interview
	Observation

	Data analysis
	Thematic analysis

	Findings
	Introductions
	Backgrounds
	The community
	Becoming contributors

	A look at the early days
	Guidelines and setting up
	Version control issues
	Understanding the project's structure
	Contradictions
	Passion and persistence: overcoming challenges
	Exploring the motivation of contributors

	Recent days
	Intermission: evolution of documentation
	Artist documentation
	New people, new documentation
	The road ahead
	Documentation matters

	Threats to validity
	Internal Validity
	External validity

	Discussion
	Discussion

	Conclusion
	Conclusion

	Bibliography

