
Benchmarking Resource Usage of
Blockchain Clients

Master Thesis

Aalborg University
Software, 10 Semester

Software
Aalborg University

http://www.aau.dk

Title:
Benchmarking Resource Usage of
Blockchain Clients

Theme:
Master Thesis

Project Period:
Spring Semester 2023

Project Group:
CS-23-DS-10-11

Participant(s):
Daniel Friis Holtebo
Jeppe Krogh Laursen

Supervisor(s):
Michele Albano, mialb@cs.aau.dk
Daniele Dell’Aglio, dade@cs.aau.dk

Copies: 1

Page Numbers: 94

Date of Completion:
June 8, 2023

Abstract:

Blockchain benchmarking is often
based on measuring the transaction
throughput of a blockchain. This
paper seeks to quantify blockchain
performance by focusing on compu-
tational resource usage. The same
problem has been addressed in the
authors’ prior work through custom
blockchain implementations. This pa-
per will focus on off-the-shelf compo-
nents and known blockchains like Bit-
coin and Ethereum. The proposed so-
lution to the problem of benchmark-
ing blockchain clients’ resource us-
age will use industry standard soft-
ware, like Docker, combined with
other off-the-shelf software to create
private networks. The implementa-
tion and benchmarking of blockchain
clients conducted in this work creates a
proof-of-concept for using off-the-shelf
software for benchmarking blockchain
clients, with more work to be done in
the future.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Project Summary

Since the launch of Ethereum in 2015, interest in blockchain has grown, particularly
with the cryptocurrency market reaching its peak in 2021. Energy consumption is
a crucial factor to consider in blockchain networks, and it is influenced by both
the consensus mechanisms and the specific implementation of blockchain clients.
This paper builds upon previous research that aimed to benchmark custom im-
plementations of blockchain consensus mechanisms, whereas this work focuses on
benchmarking existing software for real-world blockchain clients and off-the-shelf
solutions for orchestration and monitoring.

A stakeholder analysis is conducted to identify potential individuals and com-
panies with an interest in a product for benchmarking blockchains. It is deter-
mined that such a product would be interesting for existing blockchain users for
them to identify optimal blockchain clients. Furthermore, it is useful for blockchain
developers to assist in pinpointing potential areas of improvement for their im-
plementation. Following the stakeholder analysis is an overview of blockchains
as a distributed ledger technology, often associated with cryptocurrencies. The
overview provides a description of how the distributed ledger functions and dis-
cusses some areas of interest for blockchains. After this, consensus mechanisms
are explained in more detail, with examples for Proof of Work, Proof of Stake,
Proof of Elapsed Time, and Practical Byzantine Fault Tolerance. An analysis of
the nodes of a blockchain network is presented, where the relationship between
blockchain clients and the blockchain’s consensus mechanism is covered. Follow-
ing this, a detailed description of different types of blockchain network nodes is
provided for full nodes, archival nodes, light nodes, authority nodes, miner nodes,
and staking nodes. These node types are typically present in blockchain networks,
with some types being exclusively used in certain blockchains depending on their
consensus mechanism. Related work is discussed next, where it is found that most
related work in this area of research centers around the transaction throughput
of blockchains and not the computational resources used by different blockchain
clients. As such, the focus for the paper is narrowed with the following problem
statement: How can we benchmark resource usage in popular blockchain clients
inside a private network?

After narrowing the scope, design of a system to satisfy the problem state-
ment begins. First, several blockchains are considered as potential candidates
for benchmarking. These are blockchains from popular cryptocurrencies, based
on their market cap and blockchains used in the development of distributed ap-
plications. This discussion is rounded out with selecting three blockchains with
available clients. Orchestration tools are then discussed, where containerization

is chosen to maintain the nodes used in the private network, with Docker as the
container manager. Following this, resource monitoring is discussed. The concept
of monitoring resource usage is first introduced, after which existing solutions are
presented. Here, Glances is chosen as it provides a container mode, specifically for
monitoring Docker containers. After picking a resource monitoring solution, the
system’s overall architecture is presented. The system will consist of some contain-
ers acting as network nodes for the private blockchain network, with Glances as
an external agent to monitor the resource consumption of the containers.

Having completed the system design, an example implementation is presented.
It starts with setting up Glances and ensuring the monitoring data is logged prop-
erly, where a sorting step is introduced to assist in processing the data. Then
the three blockchain networks are configured for testing. Some networks failed
to reach a working state, which meant that these blockchain networks were not
benchmarked as intended. The Ethereum networks are, however, fully functional
and are used in the system test, to provide proof-of-concept data to show the
viability of the solution. To test the system, a server is provided by Aalborg Uni-
versity with enough processing power to maintain a Proof of Work network with
25 nodes. The chosen Ethereum client, Geth, provides two different blockchain
networks with their own consensus mechanism in each. One is the Proof of Work
algorithm Ethash and the other is the Proof of Authority algorithm Clique. Both
algorithms are benchmarked, and their respective data is compiled into a pair of
tables, with accompanying graphs. Comparing the results, shows that Proof of
Authority has a significantly lower CPU consumption, but with a memory con-
sumption that grows faster than the Proof of Work, while almost having the same
network usage throughout the benchmarking tests.

It is concluded that the designed system, with its example implementation,
achieves the goal of the problem statement. The system acts as a proof-of-concept
for a future solution for benchmarking blockchain clients resource usage and pro-
vides a more informed discussion surrounding the efficiency of blockchain clients
and blockchain networks.

Preface

Aalborg University, June 8, 2023

Daniel Friis Holtebo
<dholte18@student.aau.dk>

Jeppe Krogh Laursen
<jlau18@student.aau.dk>

vii

viii Preface

Foreword

During the spring semester of 2023, our team, CS-23-DS-10-11 from Aalborg Uni-
versity, dedicated our efforts to this project from February 1st to June 9th, 2023.
We would like to thank our project supervisors, Michele Albano and Daniele
Dell’Aglio, for their guidance and support throughout this project.

Reading Guide

This report follows the Vancouver citing and referencing method, utilizing square
brackets with a numbered citation system. The corresponding numbers in the text
reference entries listed sequentially towards the end of the report, on page 65,
where full citation information is provided [1]. Citations are generally placed in
proximity to the referenced information in the text, but if placed at the end of a
paragraph, they reference the entire paragraph.

Situated on the next page, page vii, is a table of contents of the report where an
overview is available.

Contents

Preface vii

1 Introduction 3
1.1 Initial problem statement . 4

2 Problem Analysis 5
2.1 Stakeholder Analysis . 6

2.1.1 Identification . 6
2.1.2 Prioritization . 7
2.1.3 Understanding . 7
2.1.4 Summary . 8

2.2 Blockchains . 8
2.3 Consensus Mechanisms . 9

2.3.1 Examples of Consensus Mechanisms 10
2.4 Blockchain Node . 11

2.4.1 Blockchain Clients and Consensus Mechanisms 11
2.4.2 Blockchain Node Types . 12

2.5 Related Work . 13
2.5.1 Summary . 15

3 Problem Statement 17
3.1 Problem statement . 17

4 Design 19
4.1 Choosing Blockchains . 20

4.1.1 Blockchains from Popular Cryptocurrencies 20
4.1.2 Blockchains for Developing Distributed Applications 22
4.1.3 Summary . 23

4.2 Orchestration . 24
4.2.1 Containerization . 24

4.3 Resource Monitoring . 25
4.3.1 Existing Resource Monitoring Solutions 26

ix

x Contents

4.3.2 Summary . 27
4.4 Architecture . 27

5 Implementation 31
5.1 Resource Monitoring . 32

5.1.1 Docker Container Monitoring with Glances 32
5.2 Bitcoin . 34
5.3 Ethereum . 35

5.3.1 Image creation script . 35
5.4 Hyperledger Sawtooth . 36

5.4.1 Configuring Hyperledger Sawtooth 36
5.4.2 Hyperledger Sawtooth PBFT 37
5.4.3 Hyperledger Sawtooth PoET 37

6 Results 39
6.1 Testing Method . 40
6.2 Clique Results . 40

6.2.1 Visualizing the Growth of Resource Consumption Data . . . 42
6.3 Ethash Results . 44

6.3.1 Visualizing the Growth of Resource Consumption Data . . . 47
6.4 Comparing Results . 48

6.4.1 CPU Usage . 49
6.4.2 Memory Usage . 50
6.4.3 Network Usage . 50
6.4.4 Summary . 51

7 Discussion 53
7.1 Failed Attempts with Selected Networks 54
7.2 Private Versus Public Blockchain Networks 55

7.2.1 Public Networks and Transactions 55
7.3 Limitations in the Server Specifications 56
7.4 Finding the Correct Ethash Mining Difficulties 56
7.5 Potential Project Pivot . 57
7.6 Ethereum Clients . 57

8 Conclusion 59

9 Future work 61
9.1 Generalize Network Setup . 62
9.2 Add a Graphical User Interface . 62
9.3 Automate Data Processing . 62
9.4 Get Bitcoin Core and Hyperledger Sawtooth to Work 62

Contents 1

9.5 Test Additional Blockchains . 63

Bibliography 65

A Test Results 71
A.1 Ethereum - Clique . 72
A.2 Ethereum - Ethash . 76

B Bitcoin Resources 81

C Ethereum Resources 83

D Hyperledger Sawtooth Resources 89

Chapter 1

Introduction

In research, interest in blockchain has increased since the launch of Ethereum in
2015 [2]. Further, during 2021 the cryptocurrency market reached its all-time high-
est global market cap [3, 4]. The popularity of cryptocurrencies, and their respec-5

tive blockchains, raises the question, what is the cost? The answer is energy. To
add data to a blockchain, a notion of consensus is required. This consensus is
known as a consensus mechanism. One such mechanism is called Proof-of-Work
(PoW). The PoW consensus mechanism, relies on miners solving a cryptographic
puzzle to trust new blocks. As such, PoW consumes a lot of energy to provide10

the security and reliability expected of a blockchain. For example, Bitcoin, which
utilizes PoW, is estimated at an annualized energy consumption of more than 130
terawatt hours [5]. Another popular consensus mechanism is Proof-of-Stake (PoS).
PoS uses a staking system, in which participants stake an amount of cryptocur-
rency for a chance to add a new block to the blockchain. Ethereum utilizes PoS15

and is estimated at 6 gigawatt hours in annualized consumption [5]. Annualized
consumptions are as per May 2023.

This small comparison, clearly shows the difference between using a PoW-
based blockchain and a PoS-based blockchain. However, a blockchain’s overall
energy consumption does not describe the blockchain clients’ resource consump-20

tion. An important aspect for some blockchain participants are the minimum spec-
ifications required to participate in a given blockchain. For example, Ethereum
recommends a quad-core CPU, minimum 16 GB of RAM, at least 2 TB of storage,
and a stable internet connection with at least 25 Mbps download speed [6].

This paper continues the work of our previous paper [7] in benchmarking25

blockchain clients and their respective consensus mechanism. In the previous
work, we set out to investigate the utility of blockchain technology in local energy
markets. Local energy markets are markets created by smaller communities of en-
ergy consumers and prosumers, consumers who also produce energy. We found
that these local markets could benefit from using blockchains to store transactional30

3

4 Chapter 1. Introduction

data, to remove the reliance on a trusted third party. However, while working on
the previous paper, we investigated tools for benchmarking blockchains and found
a lack in research. Most papers investigate the performance of blockchains either
by analytically analyzing their algorithms to describe a blockchain’s relative per-
formance, or focus entirely on how many transactions or blocks a blockchain can35

handle per time unit.
As a result, in our previous paper, we decided to investigate how to design

and implement our own solution. We achieved this by making an implementation
of a PoW and Raft blockchain client, which we then monitored to log data of its
computational resource usages.40

In retrospect, we noted the inefficiencies and inaccuracies compared to real-
world blockchain clients of implementing blockchain clients ourselves. Therefore,
in this paper we investigate existing software and off-the-shelf solutions for orches-
tration and monitoring, to improve on our concept of a blockchain client bench-
marking solution. This eliminates the result uncertainty compared to our previous45

work, as existing blockchains are actively used.

1.1 Initial problem statement

The introduction above leads to the following initial problem statement:

How can we identify what blockchains have high resource consumption?

Chapter 250

Problem Analysis

In the following chapter, Section 2.1, conducts a stakeholder analysis. Next, Sec-
tion 2.2 summarizes relevant topics from the problem analysis of our previous
paper[7], as this paper expands on the same analysis, and Section 2.5 investigates
related work to round out the chapter.55

5

6 Chapter 2. Problem Analysis

2.1 Stakeholder Analysis

This section covers the Stakeholder Analysis, identifying and categorizing individ-
uals and organizations that may have an interest in this project’s work. Stakehold-
ers are grouped based on their needs and wants, and their most pressing issues
are analyzed to determine which ones the product can address.60

The stakeholder analysis consists of three steps: identifying all stakeholders,
categorizing them according to their level of power and interest in the project,
and gaining an understanding of their needs to determine potential investment
opportunities [8].

Given that this project focuses on blockchains and on an analysis of their re-65

source consumption, the goal of this analysis is to try to understand stakeholders
and what they value, so the project’s work has the highest chance of success and
be as valuable as possible.

2.1.1 Identification

The first step is to identify possible stakeholders. The following list shows what70

possible stakeholders this project has, note that the list has already been refined,
and they are each clarified further below.

• New potential blockchain users

• Existing blockchain users

• Blockchain developers75

• Mining/Staking organizations

New potential blockchain users would have a big interest in this project, as
they are looking into joining a blockchain network, but not knowing what each
blockchain requires specifically in terms of hardware. If a potential new user has
expensive energy costs or bad internet, this project may help the user to choose the80

most optimal blockchain network to participate in.
Existing blockchain users would have a potential interest in the success of this
project, as they are typically already running one or several blockchain clients.
This project could help them realize hardware bottlenecks and how the resource
usages increase as more participants join the network in the future.85

Blockchain developers could have a special interest in knowing what kind of or-
dinary resource usages their blockchain clients and networks have, while also as-
sisting them in improving existing software or developing new software.
Mining/Staking organizations operate by creating large mining or validation farms
where they pool their resources together, as their primary revenue stream. These90

2.1. Stakeholder Analysis 7

organizations would have an interest in knowing which blockchain client they can
utilize to optimize their profit margin.

2.1.2 Prioritization

To assist in prioritizing the identified stakeholders, a Power/Interest grid is used.
This grid consists of four quadrants, as shown in Figure 2.1a. From left to right, top95

to bottom, the stakeholders are positioned as either high power and low interest,
high power and high interest, low power and low interest, and low power and high
interest. These classifications determine how much power the relative stakeholders
are given over the end product and how interested the stakeholder is in the success
of the project.100

(a) The Power Interest Grid. [8]. (b) The filled Power Interest Grid with stakeholders.

As shown in Figure 2.1b, none of the identified stakeholders are given high
power over the project. However, they are differentiated on their interest level.
New users are classified as being of low interest. This is due to their newcomer sta-
tus in providing resources to blockchain networks. The remaining stakeholders are
classified as low power and high interest: these stakeholders are already invested105

in blockchain networks, and as such, interested in comparing blockchains and
blockchain clients based on their relative resource usage. However, even though
they are highly interested, they do not hold much power over the product, as it is
created independently of any business or company and without economic incen-
tives from individuals.110

2.1.3 Understanding

Most blockchain participants, new and existing alike, are motivated by a financial
incentive to increase their profit margins and reduce operating expenses. Blockchain

8 Chapter 2. Problem Analysis

developers stand out from this, as they can be motivated by other factors, such as
the desire to improve particular aspects of blockchains. For example, developers115

could seek to make blockchain solutions more environmentally friendly. This goal
could be based on minimizing their blockchain’s CPU resource usage.

Since the stakeholders more likely are motivated by a financial incentive, the
project should set out to evaluate as many blockchains as possible, and perform
the evaluation using the actual software used by the stakeholders. Operating120

blockchains are mainly expensive in terms of electricity upkeep, so it would be
important for this project to successfully, and accurately, monitor CPU, memory,
disk storage, and network resource usages, seen from an “expenses only” perspec-
tive.

2.1.4 Summary125

After the Stakeholder Analysis has been conducted, a stakeholder communication
plan should be developed such that potential investments could be facilitated prop-
erly [8]. But as this is an academic project at Aalborg University, funding is not
needed. However, if this project was done in an ordinary business or startup,
potential investments are, typically, of great desire, and would be pursued further.130

This analysis provides insight, as the needs and expectations of all relevant
stakeholders should be considered, so the intended goal and objectives of the
project can be met as closely as possible. From the analysis, we can conclude
real-world software is important, as it is what the stakeholders use and provides
the foundation for getting realistic performance data from the blockchain clients.135

To satisfy as many stakeholders as possible, we should aim for benchmarking as
many blockchain systems as possible, to try to get as broad of an outreach as pos-
sible as well. Finally, resource usages such as CPU, memory, disk storage, and
network metrics are important to benchmark in those systems.

2.2 Blockchains140

A blockchain is a secure and transparent digital ledger that can record various
types of information. It can track physical items, commodities, and intellectual
properties. It is typically distributed across a network with multiple clients rang-
ing much in size, which makes it more secure and cost-effective. Members of a
blockchain share the same data view, and users can access stored data as long as145

they have an internet connection [7].
Blockchains provide all network participants access to the same immutable con-

tent. Each piece of data is registered only once, eliminating any duplication in the
chain. Additionally, once data is added to the blockchain, it cannot be altered or
tampered with by any participant. If any faulty data is added, new correct data150

2.3. Consensus Mechanisms 9

must be added to the blockchain to correct the error. Some blockchain make use
of smart contracts. Smart contracts are pieces of software, stored on the blockchain
and available to be executed upon request [7].

When new data is added to the blockchain, it is recorded as a new block con-
taining any type of information. Each block is directly linked to the previous155

one, forming a chain that describes the data over time. If the blockchain is used
to store digital currency, the blocks record how the currency moves and changes
ownership, along with the exact time and sequence of transactions. The blocks
are securely linked, making it impossible to insert new blocks in between existing
ones. As more blocks are added, the trust and verification of each block increases,160

ensuring the immutability of the blockchain. This makes it extremely difficult for
anyone to change any previously added blocks [7].

Centralized systems often require third-party validation and duplicate record-
keeping, making them vulnerable to malicious intent and cyberattacks. The advent
of the Internet of Things (IoT) has led to an explosion in transaction volumes, mak-165

ing blockchains an attractive solution. Blockchains offer greater trust, as network
participants can trust new blocks to accurately and timely record data. They also
provide greater security, as consensus on data accuracy is required from network
members, and the data is immutable. In addition, the blockchain’s distributed
ledger technology and shared network eliminate the need for record reconcilia-170

tion, except in the case of forks. Smart contracts can boost transaction speed by
being stored on the blockchain and automatically executed when a new block is
added [7].

There are four commonly known types of blockchain networks: public, private,
permissioned/hybrid, and consortium. Public networks are open to anyone, while175

private networks have selected participants and are typically managed by an or-
ganization. Permissioned/hybrid networks place restrictions on participants, and
consortium networks are often shared by multiple organizations with no single
entity in control. Each type has its benefits and use cases, such as high transaction
speed for private networks and flexibility for consortium networks [7].180

2.3 Consensus Mechanisms

Consensus mechanisms ensure that all data on a decentralized blockchain net-
work is genuine by obtaining security, trust, and agreement across the system.
They are sets of rules that data contributions must go through to reach legitimacy.
Consensus Mechanisms should be fault-tolerant and continue operating without185

interruption even if they encounter errors or attacks. For example, the popular
cryptocurrency Bitcoin uses the PoW consensus mechanism [7].

In centralized systems, administrators typically have authority over system
maintenance and data, whereas ordinary users of the system cannot perform such

10 Chapter 2. Problem Analysis

tasks. In contrast, decentralized systems, such as blockchains, are self-regulating190

and rely on participants to contribute to data verification and authentication with-
out any single authority. This is made possible by consensus mechanisms [7].

2.3.1 Examples of Consensus Mechanisms

Many versions of consensus mechanisms exist. In our previous work [7], we ex-
plored several mechanisms. The following list highlights a few select consensus195

mechanisms and offers a short explanation of how they operate.

Proof of Work

Proof of Work (PoW) is a consensus mechanism used in Bitcoin, where clients
compete to solve complex cryptographic puzzles and append new blocks. The
puzzle difficulty adjusts based on solving speed, and winners earn rewards such200

as cryptocurrency. While PoW is considered secure, it poses challenges due to its
resource-intensive nature, including high participation costs, the potential for cen-
tralization through resource pooling, and significant environmental impact from
energy consumption.

Proof of Stake205

Compared to PoW, Proof of Stake (PoS) is an energy-efficient consensus mecha-
nism that relies on validators staking a specific amount of cryptocurrency as col-
lateral. Validators are chosen to create new blocks based on their stake, and their
staked currency can be destroyed if they misbehave. Ethereum is an example of
a blockchain that utilizes PoS, requiring a stake of 32 Ether to participate as a210

validator.

Proof of Elapsed Time

Proof of Elapsed Time (PoET) is a consensus mechanism where players wait a
random amount of time instead of using computational power. It consists of an
initialization phase, creating a genesis block, and a leader election phase where215

players compete to generate the next block. A Trusted Execution Environment
(TEE) is used to obfuscate block creation and manage the timer. Collisions are
resolved by comparing timeframes and chain lengths.

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is a consensus mechanism derived from220

the Byzantine Generals Problem. It achieves consensus by having nodes participate
in a voting process, with consensus reached when two-thirds agree on a new block.

2.4. Blockchain Node 11

PBFT does not require significant computational resources or staking. In a PBFT-
enabled system, nodes are sequentially ordered as primary or secondary nodes.
When a client makes a request, the primary node broadcasts it to secondary nodes,225

which respond to achieve success when enough non-faulty nodes provide the same
result. PBFT offers benefits like low computational overhead, low latency, and high
throughput, but it has high network overhead and scalability challenges.

2.4 Blockchain Node

In general, a client is a tool or piece of software that permits connection to a server230

in either a client-server setup or a peer-to-peer environment. This allows users to
remotely communicate with other entities over a network. In blockchain technol-
ogy, clients are utilized to join and interact with the blockchain network and other
clients. Blockchain wallets facilitate other tasks such as, receiving, sending, and
storing cryptocurrency coins and tokens. A blockchain node, however, is the com-235

bination of all three, meaning that a typical blockchain node has the capabilities of
a consensus mechanism, a blockchain client, and of a blockchain wallet. Blockchain
nodes serve various applications, one of which are miners, where the nodes han-
dle the mining operation and transfer mined hashes to the rest of the blockchain
network. Additionally, block explorers provide an easily readable format to access240

blockchain data, including block height, hash rate, transaction volume, and indi-
vidual transactions. Wallets, and some nodes, usually have user-friendly graphical
user interfaces (GUIs) that even inexperienced users can use to manage their crypto
funds with ease [9].

2.4.1 Blockchain Clients and Consensus Mechanisms245

Consensus mechanisms and blockchain clients, introduced in Section 2.3 and Sec-
tion 2.4 respectively, are two different concepts in the context of blockchain tech-
nology. They are connected in that a consensus mechanism dictates the rules for
how transactions and blocks are validated and added to the blockchain, while a
blockchain client is used to send and receive transactions and blocks that conform250

to those rules. For example, if a blockchain network is using the Proof-of-Work
consensus mechanism, nodes should respect the rules for solving cryptographic
puzzles to validate transactions and add them to the blockchain. Without a consen-
sus mechanism, blockchain nodes would have no way to ensure that transactions
are valid and agreed upon by all nodes in the network. In summary, blockchain255

clients rely on the consensus mechanism to ensure the validity of transactions and
maintain the integrity of the blockchain and its data.

12 Chapter 2. Problem Analysis

2.4.2 Blockchain Node Types

To ensure the correctness of the blockchain and prevent malicious activity, each
blockchain node typically stores its own copy of the blockchain, or parts of it, and260

tracks incoming transactions. However, the storage and computing requirements
can be a barrier for new users, which is why many node types exist to securely syn-
chronize with the blockchain. Some of the more well-known types are described
here.

• Full node - Full nodes are the most standard type of blockchain node, and265

as its name implies, store all the blockchain’s data. The node helps with
verifying network rules, such as validating blocks, receiving and verifying
transactions, and provides access to its complete collection of data to the rest
of the network. Full nodes store the blockchains latest state, which includes
all the network’s users and is often represented in a type of Merkle tree [10].270

Nodes adhere to a formal specification, but a network can be open to many
implementations. Full nodes keep track of a lot of data and use large amounts
of storage and bandwidth. An instance of this is that by early October 2020,
the Bitcoin blockchain measured approximately 300 GB, while the Ethereum
blockchain occupied around 500 GB. Nodes should always be available to the275

rest of the network, even though there generally isn’t any economic incentive
to run a full node, which is why many who do run them, are businesses like
exchanges. Full nodes play a crucial role in securing the network by verifying
all transactions and notifying other clients of invalid blocks. Some client
types rely on connecting with full nodes to access the blockchain as well.280

Additionally, running a full node can be incentivized in certain networks.
Celo [11] is an example of a blockchain that provides economic incentives for
running non-validating full nodes, allowing individuals to set gateway fees
for answering requests and forwarding transactions [12].

• Archive (or archival) node - Archival nodes store everything that a full node285

does, along with archives of historical states of the chain. While they do
not offer any additional validation or security compared to full nodes, they
require significantly more storage. As of October 2020, Ethereum’s archival
nodes measured over 5.3 TB of data usage and took around two weeks to syn-
chronize. Due to the high resource requirements, very few archival nodes are290

operated on networks, but are usually run by block explorers, data analytics
firms, and infrastructure providers [12].

• Light node - Running a full node requires significant storage and uptime,
which is why most users prefer not to run them. Instead, light clients are
used to provide high security and low computing power requirements, im-295

proving the accessibility of blockchain networks for resource-constrained de-

2.5. Related Work 13

vices. Light clients allow users to securely synchronize with a blockchain
without storing the entire blockchain. They can be used to check the state of
an account, confirm a transaction, or watch for events. Light clients down-
load and verify block headers and request other relevant information from300

full nodes as needed. While light clients do not require constant running,
they need to be connected to full nodes to request data and interact with
the blockchain. They are suitable for low-capacity users, such as those using
smartphones or browser extensions, providing high security assurance about
the state of a chain. Light clients do not write data to the network but make305

blockchains accessible to a wider range of users [12].

• Authority node - To participate in a public blockchain, a user downloads
a client and synchronizes with the network. In private and some partially
centralized blockchains, access can be restricted to a few authority nodes,
which then can control and limit access for other nodes [13].310

• Miner node - The Proof of Work consensus mechanism, used in blockchains
like Bitcoin, relies on miner nodes to validate transactions by solving a com-
plex mathematical puzzle. This process demands high computational power
and has significant energy consumption. Once the miner node solves a puz-
zle and adds a new block to the blockchain, it is rewarded with newly minted315

tokens as an incentive for its contribution to the network [13].

• Staking node - Staking nodes are used to verify transaction validity in blockchains
that use the Proof of Stake consensus mechanism. To establish a staking node,
users need to have an amount of native tokens and lock it on the blockchain.
The system then randomly selects a staking node to process transactions and320

records them on the ledger, based on some predefined rules. These rules
could be the amount of locked funds or time spent on the blockchain. Com-
pared to miner nodes, staking nodes require much less energy to validate
transactions and add blocks [13].

2.5 Related Work325

This section presents the related work, which focuses on measuring blockchains
and their clients’ resource usage. The goal is to identify existing solutions, and
gain a more in-depth understanding of the problem space as described in the initial
problem statement 1.1. Through a comprehensive review of the literature and
analysis of existing solutions, including their strengths, weaknesses, and gaps, it330

may also be possible to identify new innovative solutions to effectively address the
problem described in the initial problem statement.

14 Chapter 2. Problem Analysis

Gromit: Benchmarking the Performance and Scalability of Blockchain
Systems

Gromit is a generic framework for analyzing a blockchain solution, and has been335

proposed by Nasrulin et al. in [14]. The framework has been utilized to conduct
some of the biggest blockchain studies to date, according to the authors, when
it was published in 2022. Gromit can benchmark several performance metrics in
blockchain networks such as transaction throughput, scalability, and network us-
age. The work involved the testing of seven representative blockchain systems. The340

blockchain system is benchmarked by viewing them as a transactional processing
system, where an arbitrary number of clients consistently reach consensus on the
submitted transactions.

In addition to the performance metrics, Gromit can output CPU and network
utilization of every client in each blockchain system. The resource usages are how-345

ever in relation to the blockchain network’s processed transactions per second.

Hyperledger Caliper

Another existing framework which specializes in benchmarking blockchains is Hy-
perledger Caliper [15]. Hyperledger Caliper is presented as a “blockchain perfor-
mance benchmark framework” [15] and allows its user to benchmark a limited set350

of supported blockchain networks: Ethereum, Hyperledger Besu, FISCO BCOS,
and Hyperledger Fabric.

Hyperledger Caliper can track the following performance metrics of a blockchain,
“Transaction/read throughput, Transaction/read latency (minimum, maximum,
average, percentile), and Resource consumption (CPU, Memory, Network IO, . . .)” [16].355

Furthermore, the framework offers two types of monitoring, Resource and Transac-
tion monitoring, both collecting statistics during benchmarking of the System Un-
der Test (SUT). The Resource monitoring type can be further specified in the config-
uration files, where either the Process, Docker, or Prometheus monitoring modules
are available. The process module can monitor a specific named process on the360

host system, while the Docker module monitors a specific Docker container via the
Docker Remote API. The Prometheus module utilizes the open-source monitoring
framework, also called Prometheus [17], which scrapes and then stores monitor-
ing data in a time series database for future query. Configuration files must be
created for each blockchain network that the user wants to test. A blockchain is365

specified in the configuration files, and if that blockchain and its specific version is
supported, Caliper handles everything and runs the network while it performs the
benchmarking tests. Users can also use Caliper for non-supported blockchains, but
need to implement and specify their own Connector, which can be difficult [16].

2.5. Related Work 15

BCTMark: a framework for benchmarking blockchain technologies370

Saingre et al. proposes in [18] a generic framework for benchmarking blockchain
systems called BCTMark. Their work focuses on reproducibility and portability,
which is why the authors tested their framework on two different test beds, a clus-
ter of Dell PowerEdge R630 servers and a cluster of Raspberry Pi 3+’s. By focusing
on these two subjects, the authors argue that their framework, and thus blockchain375

testing, can be repeated in different environments as long as the test bed supports
the SSH protocol. Their tests were conducted with three different blockchain sys-
tems: Hyperledger Fabric, Ethereum Clique, and Ethereum Ethash. BCTMark can
generate performance data based on blockchain system’s energy footprint, latency,
throughput, and CPU usage while accommodating varying numbers of clients.380

All the tests that the authors conducted were in relation to a load generation of x
transactions per second on a constant number of clients [18].

BLOCKBENCH: A Framework for Analyzing Private Blockchains

In [19] Dinh et al. propose BLOCKBENCH, a framework for assessing private
blockchain systems. The authors state that any blockchain system can be in-385

tegrated with BLOCKBENCH, simply by connecting with its API. The frame-
work can monitor either component-wise or overall, focusing on monitoring fault-
tolerance, throughput, scalability, and latency. The framework has been based
and tested on some of the most popular blockchains, namely Hyperledger Fabric,
Ethereum, and Parity. These three blockchains are all able to be run in a private en-390

vironment, and all support smart contracts as well. The framework’s output is, as
with BCTMark, in relation to a workload, typically a transaction generation load,
and does not include detailed CPU, memory, or network usage data. By configur-
ing workloads, BLOCKBENCH allows for a thorough analysis of the SUT through
a range of macro and micro benchmarks. The authors conclude none of the three395

blockchains are suitable for processing large amounts of data at scale, as compared
to more traditional database systems [19].

2.5.1 Summary

All the mentioned related works in this section can benchmark blockchains and
monitor important metrics in a varying degree. The related works have all been400

tested on a limited set of blockchain systems, particularly Ethereum and Hyper-
ledger blockchains. Only BCTMark focuses on portability and claims that it works
with any blockchain, as long as the test bed supports the SSH protocol. Fur-
thermore, all the work focuses, more or less, on the same benchmarking metrics,
namely scalability, latency, and throughput. While these metrics are important,405

resource metrics such as CPU, memory, and network usages are not included, ex-

16 Chapter 2. Problem Analysis

cept for Hyperledger Caliper, which can monitor those metrics by configuring the
correct monitoring modules in their configuration files. The related works focus
heavily on transaction throughput, and the benchmarking data presented in these
are typically only in relation to the transaction throughput.410

This presents an opportunity to create an open framework, which enables re-
source metric benchmarking of blockchain clients. By focusing on the clients rather
than the blockchain as a system, it enables the possibility of comparing multiple
clients for a single blockchain. This can highlight differences in implementation
across clients and potentially allow developers to further improve their blockchain415

clients.

Chapter 3

Problem Statement

The initial problem formulation in Section 1.1 and the introduction explains how
we are building upon our last work in this paper. We introduce the notion of420

benchmarking real-world blockchain clients instead of custom implementations,
which led on to a further exploration of the problem space in the problem analysis
in Chapter 2.

In the problem analysis chapter, we started off by performing a Stakeholder
Analysis in Section 2.1, which helped us consider potential stakeholders for a425

system that benchmarks a blockchain client’s resource consumption. The analy-
sis showcased that four different stakeholders exist and to satisfy them as much
as possible, the project should concern itself with the benchmarking of as many
blockchain clients as possible, while benchmarking them regarding resource us-
ages. This was followed by exploring the main concepts of blockchains, blockchain430

nodes, and how these are structured in Section 2.2, Section 2.3, and Section 2.4.
Lastly, the chapter finished with an analysis of the related work in Section 2.5. In
this analysis, an opportunity for new development was uncovered, in that most
other research focuses on the transactional performance of blockchains.

Two concepts evolved from the problem analysis: First, the understanding of435

potential stakeholders shows that more resource consumption data is sought after
for as many blockchain clients as possible. Second, that the exploration of related
works illustrates a lack of frameworks and data regarding the benchmarking of
blockchain clients resource consumption.

3.1 Problem statement440

Based on the summarized problem analysis above, we can narrow down our focus
and propose a specific objective. Our objective revolves around benchmarking
the resource consumption of nodes in different blockchain networks. However, as
discussed in Section 2.2, various types of blockchain networks exist. To ensure

17

18 Chapter 3. Problem Statement

optimal benchmarking results, we choose to conduct our resource monitoring on445

private blockchain networks. Private networks offer the ideal environment for
benchmarking blockchain clients due to the complete control over network nodes,
blocks, and transactions. Still, further investigation could be required to scale our
results up to large public blockchain deployments.

With these insights, we can now present a more focused problem statement we450

will dedicate this project to achieve:

How can we benchmark resource usage in popular blockchain clients inside a
private network?

Chapter 4

Design455

This chapter will present the design considerations for creating a system which
satisfies our problem statement, as presented in Chapter 3. Section 4.1 will talk
about which blockchains should be compared, and Section 4.2 will talk about how
blockchain clients can be compared in a controlled network. Thereafter, Section 4.3
explores potential existing solutions that can monitor a system’s resource usage.460

Lastly, a general design of the system as a whole will be presented in Section 4.4.

19

20 Chapter 4. Design

4.1 Choosing Blockchains

As presented in Chapter 3, the goal of this solution is to benchmark blockchain
clients in a private network. Previously, in Section 2.4, we presented what blockchain
clients are and how they function in a blockchain network. In this section, we will465

discuss the blockchain clients we aim to benchmark.

4.1.1 Blockchains from Popular Cryptocurrencies

Looking into which clients we will benchmark, different aspects are considered.
Firstly, we want to consider the clients from popular cryptocurrencies. To determine
what blockchains are considered popular, we relied on the market caps of their470

different cryptocurrencies. Here, the following top ten list presents itself [20, 21,
22, 23]:

1. Bitcoin

2. Ethereum

3. Tether475

4. BNB

5. USD Coin

6. XRP

7. Cardano

8. Dogecoin480

9. Polygon

10. Solana

We are already familiar with Bitcoin and Ethereum, from our previous work
[7]. However, most other currencies on the list are unfamiliar. Hence, here is a
quick explainer of the rest:485

• Tether
A blockchain based token system, originally only on the Bitcoin blockchain,
now is an Ethereum compatible, ERC20 token [24], and tied one-to-one with
the US dollar. The primary functionality of Tether is “to facilitate the use of
fiat currencies in a digital manner” [25].490

4.1. Choosing Blockchains 21

• BNB
Used as the primary driving force behind the Binance ecosystem, the BNB
token fuels transactions on the BNB Chain similarly to the gas used on the
Ethereum blockchain [26].

• USD Coin495

Similar to Tether, in that it is a stable coin, creating opportunities for using
normal fiat currencies through blockchain networks [27]. USD Coin is backed
by reserves based in the US Dollar [28]. It has a Euro-based counterpart,
which is also created by Circle [29].

• XRP500

The token used in the XRP Ledger to settle transactions [30]. The XRP Ledger
in turn enables developers to develop and deploy Web3 [31] applications
ranging from crypto exchanges to XRP Ledger infrastructure and developer
tooling [32].

• Cardano505

A self-proclaimed third generation of blockchain technology, Cardano pro-
vides the ability to develop and deploy decentralized applications, similar to
XRP [33]. Cardano uses Ada as their currency of choice to fuel transactions
on the blockchain [34].

• Dogecoin510

An “accidental crypto-movement that makes people smile” [35], Dogecoin is
very close in functionality and operation to Bitcoin. The primary difference
lies in the proof-of-work algorithm used, where Bitcoin relies on SHA-256,
while Dogecoin uses the Scrypt algorithm [36].

• Polygon515

A Layer 2 scaling solution [37], Polygon operates with a number of side-
chains to allow developers to deploy smart-contracts and distributed appli-
cations. Polygon attempts to “solve the scalability and usability issues [. . . of]
public blockchains”, like Ethereum [38].

• Solana520

Operating as a “single global state machine” [39], Solana provides developers
with the ability to deploy smart contracts. This allows Solana to support any
number of use cases, such as “finance, NFTs, payments, and gaming”. [39]

Most of the respective blockchains for the cryptocurrencies mentioned above,
are based on a PoS consensus mechanism. Moreover, excluding the stable coins,525

they have smart contract support and about half act as a layer 2 scaling solution on
top of an existing blockchain. Only Bitcoin and Dogecoin’s blockchains are based

22 Chapter 4. Design

on a PoW consensus mechanism, and neither support smart contracts. While a
goal of our solution is to enable comparisons, we aim to target a variety of consen-
sus mechanisms, before comparing multiple blockchains with the same consensus530

mechanisms. As such, we will investigate blockchains from alternative sources.

What is a Layer 2 Scaling Solution?

To understand what a layer 2 scaling solution is, we first consider where scaling is
required. Blockchains, like Bitcoin and Ethereum, have a certain capacity limitation
built into their consensus mechanisms [37]. For example, Ethereum has a time gap535

of 12 seconds between adding new blocks to their blockchain [40]. This notion of a
block time, combined with an upper bound on the size of individual blocks, limits
the maximum throughput of transactions into a blockchain.

As a result of this, a solution for scaling the block throughput above the limita-
tions of the blockchain’s consensus mechanism is required when blockchains reach540

a certain level of usage. One approach is to introduce changes to the fundamental
protocol used in a blockchain. This is known as layer 1 scaling, where the layer de-
scribed is the primary blockchain. Layer 1 scaling can introduce many challenges
before the system is scaled up to the required capacity. Leveraging the strength
of smart contracts, it is possible to handle some transactions off layer 1. Scaling545

the blockchain in this fashion is called layer 2 scaling. An alternate approach uses
external systems to assist in scaling the blockchain [37]. An example would be
sidechains. A sidechain is an independent blockchain, running in parallel to the
main chain. The sidechain is connected to the main chain via a two-way bridge.
This bridge allows for the movement of assets, e.g., funds, between the main chain550

and the sidechain [41, 42]. As such, transactions handled on the sidechain are
equivalent to the transactions handled on the main chain.

4.1.2 Blockchains for Developing Distributed Applications

Besides blockchains with publicly traded cryptocurrencies, some blockchains exist
which are primary used for developing distributed applications. Distributed ap-555

plications (dApps) are applications deployed on a blockchain. They utilize smart
contracts to act as a back-end, while a distributed file storage can be used to host
the front-end [43]. This provides dApps with a functionality reminiscent of a clas-
sic client-server architecture.

One of the driving forces behind such solutions is the Hyperledger Foundation.560

They maintain and distribute a catalog of projects, ranging from enterprise-ready
blockchain clients to developer tools for working with distributed applications. In
Section 2.5, we discussed their project Hyperledger Caliper, which operates as a
benchmarking tool for blockchains. Another of their projects, namely Hyperledger
Sawtooth, allows end users to deploy a private blockchain network, using either565

4.1. Choosing Blockchains 23

Practical Byzantine Fault Tolerance(PBFT) or Proof of Elapsed Time(PoET) as the
consensus mechanism [15].

Another player in the market is the company R3, who owns and maintains the
Corda project. Corda is a blockchain platform designed for digital finances [44].
It can be deployed in both a fully scalable enterprise deployment, for usage in570

production environments, and for development purposes on a single computer.
The development setup allows for the configuration of a static network with pre-
defined nodes. With the network running, it is possible to develop and test de-
centralized applications, without relying on external parties in a test blockchain
network [45].575

4.1.3 Summary

This section presented a set of blockchains from popular cryptocurrencies, while
also highlighting a pair of blockchain solutions from the research world. In Sec-
tion 4.1.1, we found that most production-ready blockchains used in the cryp-
tocurrency market are based on a PoS solution, be it either directly as their own580

blockchain or as a scaling layer on top of a different blockchain. This conclusion
led us to look into blockchains that are used for development and research pur-
poses. Here we found a choice between a couple of projects. Our findings from
this chapter are compiled into the following table: Table 4.1

Blockchain/cryptocurrency name Used in benchmarking
Bitcoin Yes
Ethereum Yes
Tether No
BNB No
USD Coin No
XRP No
Dogecoin No
Polygon No
Cardano No
Solana No
Hyperledger Sawtooth Yes
Corda No

Table 4.1: Table presenting the blockchains slated for benchmarking in our solution.

As presented in Table 4.1, most of the blockchains from this section will not585

be benchmarked. The reason being that most of these blockchains have closed
source software with limited configuration options. These limitations remove the
possibility of setting up these blockchains in a private network, where we control

24 Chapter 4. Design

the nodes participating in the blockchain. Furthermore, in Section 4.1.2 we intro-
duced Hyperledger Foundation’s Sawtooth and R3’s Corda. After an inspection590

of their respective documentation, we discovered that Hyperledger Sawtooth pro-
vides ready-to-go Docker files, whereas Corda would require more configuration
to set up container orchestration. As such, we will be setting out to benchmark five
blockchains in total: Bitcoin, Ethereum PoW, Ethereum PoS, Hyperledger Sawtooth
PBFT, and Hyperledger Sawtooth PoET.595

4.2 Orchestration

An important part of the problem statement from Chapter 3 is the notion of the
blockchain network being benchmarked is a private network. To achieve this goal,
an orchestration tool is required. Orchestration, being the way in which several com-
puter systems, services, and applications are coordinated and managed to achieve600

some task [46]. This section will describe how we aim to orchestrate our system to
produce a testing environment for our solution.

4.2.1 Containerization

Blockchain networks are built by a set of nodes, as described in Section 2.4. To build
a network of nodes, using a minimal setup, we need a method for distributing605

software as a ready-to-go solution. One approach would be to compile a program
as a portable or standalone piece of software. Such a program would be able to
run without having to install it onto the system [47, 48]. Another approach, which
we will be using in our solution, is known as containerization.

Containers function similarly to virtual machines. A virtual machine consists610

of a full operating system, a file system, and applications which can be run on the
operating system. A host machine can assign a set of processors and an amount
of memory to a virtual machine, limited only by what the host machine has avail-
able. Virtual machines on the host system then share access to processing time and
memory with the host operating system and other virtual machines on the host615

system. Further, virtual machines can be bundled in packages which can be un-
packed, setup, and, with a single command, run a network node. However, due to
the virtual machines simulating an entire system, they create a large overhead for
executing processing tasks for each virtual machine added to the host system [7].

Containers, on the other hand, allow the same flexibility of a virtual machine,620

but with a smaller resource overhead. They are packaged with a minimal operating
system and only the applications required to execute a specific piece of software.
This bundling ensures that any container can run on any host, regardless of op-
erating system. As such, containers are more akin to portable software. For our
solution, we will be using Docker to handle the orchestration of containers to build625

4.3. Resource Monitoring 25

our blockchain testing network. This is in part due to our existing knowledge of
Docker, from our previous work [7], and also because alternative solutions, like
Kubernetes, often depend on clustering multiple systems together [49], whereas
we will be using a single system to test our solution.

Dockerfiles630

The first step in creating containers for Docker to orchestrate, is to make a Docker-
file. A Dockerfile is a file containing a set of instructions Docker uses to build an
image of the new container [50]. These instructions can complete numerous tasks,
like copying files and running initialization commands [51]. At the point of writing
a Dockerfile, it is important to distinguish between the different stages in the life635

of a container. Some instructions used in Dockerfiles only affect the container’s file
system before the image is built. As such, these changes will not be available in
the final container.

Docker Compose

Docker supports Docker Compose files as well, which is another possibility for640

configuring, creating, and starting containers. Furthermore, Docker Compose files
were specifically made for simplifying the act of defining and starting up multi
container applications, and does so by the help of YAML files where services,
volumes, and images can be specified. The YAML files collect all the configuration
needed in one place and enables users to spin everything up, or tear it all down,645

with a single command [52].

4.3 Resource Monitoring

The problem statement in Section 3.1 states that blockchain clients resource usage
is to be benchmarked inside a private network. And as mentioned previously in
Section 4.2, the blockchain clients that are to be benchmarked are containerized650

and deployed by Docker. This means that Docker containers must be taken into
consideration when the blockchain client’s resource consumption is monitored.
This section will therefore explore possible existing resource monitoring solutions
that can access Docker containers, instead of developing our own custom system
as we did in the previous paper [7].655

What is Resource Monitoring

Before continuing with the exploration of existing resource monitoring solutions,
it is important to fully specify what benchmarking means and how it is carried out
in computer science. Benchmarking is the act of comparing performance metrics

26 Chapter 4. Design

against an accepted standard or one, or more, other benchmarks. Benchmarking660

typically outputs a score for the test where the higher the score the better, or,
it simply outputs raw performance metrics, such as CPU, memory, or network
usages. An example of a home brew benchmark test for a piece of software, could
simply be running said software locally and looking at the task manager to gain
an insight into the computer’s performance [53].665

4.3.1 Existing Resource Monitoring Solutions

This project will aim to benchmark several docker containers performance met-
rics, which isn’t that different from the home brew benchmark example in prac-
tice. Here, the piece of software will be a blockchain network consisting of several
nodes, and the task manager will be a resource monitoring software that tracks670

and stores the performance metrics of those blockchain nodes. Several existing
downloadable solutions exist, and the rest of this section will first explore existing
resource monitoring solutions that are compatible with Docker, and then choose
what solution this project will utilize.

Docker Stats675

We don’t have to look far for an existing solution when it comes to resource mon-
itoring for Docker containers because docker has a command named docker stats
which displays a live stream of container(s) resource usage statistics. The stream
outputs the raw usage data to STDOUT and allows the user to format the out-
put data by using a custom template. Docker stats is, however, not able to log or680

store the resource usage data on its own, but would need an extension or another
program to log the data [54].

Glances: An Eye on Your System

Glances is an open source, cross-platform system monitoring tool and allows for
real-time performance monitoring of your system and is available to download via685

GitHub [55]. It supports the monitoring of various aspects, such as CPU, memory,
disk, and network usage, while also covering fan speeds, voltages, temperatures,
logged-in users, and Docker container monitoring. The framework presents the
data in an easy to overview dashboard in STDOUT and can also output its per-
formance data in Comma-Separated Values (CSV) or JavaScript Object Notation690

(JSON) file formats. Glances is written in Python and allows its users to customize
what specific performance data it should monitor [55, 56].

4.4. Architecture 27

Prometheus

Prometheus is an open-source system alerting and monitoring solution which
stores its data in a time-series database and can pass the data to its data visu-695

alizer, Grafana. Prometheus can collect performance metrics from user configured
targets, such as docker containers, at given intervals. Prometheus is written in the
Go programming language and has its own functional query language, PromQL,
that users can utilize to either show data as a graph, table, or use it with other
services [57].700

4.3.2 Summary

There are of course more solutions available than the three mentioned above, but a
choice can already be made. Docker stats is only lacking the ability to log and store
the benchmarking data on its own, and if it was able to do that, we would use the
Docker stats command to monitor the Docker containers. Prometheus, on the other705

hand, is a big and complex monitoring and alerting system, which would be able to
satisfy all of our Docker container monitoring needs, but extracting the data is not
transparent. Glances provide the same capabilities as the Docker stats command
with the option to log and store the data inside a CSV file, which is practical if the
data is to be processed in Excel manually. Glances would not require an extension710

either to store and monitoring data as the docker stats solution would. As Glances
provides the exact capabilities that we need without it being overly complex for this
project’s scope, Glances will be used to monitor and extract the relevant resource
data from the blockchain node’s Docker containers.

4.4 Architecture715

This section will discuss the overall architecture of how blockchain clients will be
benchmarked as stated in the problem statement in Section 3.1. The design chapter
has covered which blockchains are to be benchmarked in Section 4.1, how these
blockchain nodes are to be orchestrated with Docker in Section 4.2, and finally,
how the resource consumption data is to be monitored and logged with the Glances720

framework in Section 4.3. Combining the knowledge gained from these sections, a
simplified architecture overview can be created, which can be seen in Figure 4.1.

28 Chapter 4. Design

...

Blockchain Node Network

Node 1

Container Glances

Docker Container Daemon

Host

Node 2

Container

Node N

Container

Figure 4.1: Architecture overview of our benchmarking solution.

Host

The outermost layer in Figure 4.1 is the Host, which refers to the underlying system
that the benchmarking tests will be conducted on. The system will run the Docker725

Daemon software where the blockchain nodes are to be containerized. The host
system should aspire to have as many as possible hardware resources available,
such that several benchmarking tests can be conducted for each blockchain client
type with growing numbers of nodes, to get the best possible results.

Docker Container Daemon730

The Docker Container Daemon will be running on the host system as depicted in
Figure 4.1. Its main responsibilities are handling container lifecycle management,
networking, storage, and other essential tasks related to containerization.

Glances

Glances will operate on the same level as the Docker Container Daemon, as de-735

picted in Figure 4.1. Glances will start when the Blockchain Network has been
established and all Docker containers have been created and are running. Glances
is going to be monitoring and collecting resource consumption data on each of
the containers by contacting the Docker Daemon via the Docker Engine API, as
depicted in the figure. During active tests, Glances will be specified to log all the740

monitoring data to a CSV file on the host, which can be easily extracted and viewed
later in Excel.

4.4. Architecture 29

Blockchain Node Network

The Blockchain Node Network layer in Figure 4.1 is a logical grouping which
represents the blockchain node network and is shown in the figure by a dashed745

line surrounding the Docker containers. The Docker containers, regardless of the
quantity, will each encompass a blockchain node, collectively forming a blockchain
node network and utilizing Docker’s internal network for communication.

Chapter 5

Implementation750

This chapter will follow the architecture design in Section 4.4 and describe how
each of the blockchain systems is to be benchmarked, both successful and unsuc-
cessful implementations. In addition, this chapter will describe how our test cam-
paigns for each blockchain node network were carried out with Glances. Chapter 6
will explore the results of the blockchain node network’s resource monitoring.755

31

32 Chapter 5. Implementation

5.1 Resource Monitoring

In this section, we will delve into the setup and monitoring process of each blockchain
node network test using Glances. Additionally, we will address and explain some
obstacles encountered along the way.

5.1.1 Docker Container Monitoring with Glances760

Glances has, as mentioned in Section 4.3.2, been chosen to monitor the blockchain
node networks. Following Glances’ documentation [56], it is possible to run Glances
in container mode, where it only monitors the Docker containers on the host sys-
tem. During the monitoring of a blockchain node network, Glances is configured
to export its container resource data into a CSV file, continuously appending data765

every 2 seconds. This approach facilitates convenient viewing and analysis at a
later stage. Figure 5.1 displays an example of which Docker container resources
Glances can monitor and extract.

Figure 5.1: Possible Docker container resources that Glances can monitor [56].

Each resource metric that can be monitored from Docker containers using
Glances will be further explained here:770

• CPU - is shown as a percentage of a whole CPU core. Meaning that utilization
of a whole CPU core is displayed as 100%, or if two cores are utilized fully,
200%.

• Memory - is shown as the amount of used memory, specifically calculated by
subtracting the available memory from the total memory.775

• IO - is the disk input and output (IO) throughput in Bytes per second, split
into read and write throughput respectively.

• Network - is the network interface bit rate, displayed in bits per second (bps).
It is split into two, as the IO above, which are the received and sent rate
respectively.780

The IO Metric

When tests with Glances are conducted, it is unfortunately clear that the IO metric
isn’t a useful metric for us, as it is constantly outputting zero in both read and write

5.1. Resource Monitoring 33

columns. Our best guess is that the high amount of available RAM on the server,
as mentioned in Figure 5.1 above, neglects the need for the blockchain clients to785

store any of its data on disks.

Reordering Glances Data

The data columns that we are interested in, namely the CPU, memory, and network
read and write, are included once per blockchain node in each test run inside the
output file that Glances writes to. This happens as each node’s resource data790

is outputted by Glances every two seconds, which adds another row that must
encompass every node’s resource data. The problem, however, is that Glances
doesn’t order the new row’s columns according to the previous row’s columns. A
bit clearer example of this phenomenon can be seen in Figure 5.2, where a test run
with three nodes is conducted, where the columns have been simplified to CPU,795

memory, and network for the readability of the example. Notice here that the Node
1 data is changing position in each row, making the data unintelligible without
sorting it first.

Timestamp CPU Memory Network

00:00:00

00:00:02

00:00:04

00:00:06

00:00:08

Node 1

Node 1

Node 1

Node 1

Node 1

Node 2

Node 2

Node 2

Node 2

Node 2

Node 3

Node 3

Node 3

Node 3

Node 3

CPU Memory Network CPU Memory Network

Figure 5.2: Raw unordered Glances output data with 3 nodes participating.

To circumvent this problem, and sort the output data, making it intelligible and
enable processing of the resource metrics, a C# application named ThesisDataMan-800

ager was created. The ThesisDataManager, TDM for short, is needed to process the
files that Glances outputs, such that the data can be sorted. An example of the
expected output data, after the TDM has processed the data, can be seen in Fig-
ure 5.3. The TDM adds a new column to the data, which is the combination of the
network read and write throughput in bps, such that a combined network metric805

in bps is available.

34 Chapter 5. Implementation

Timestamp

00:00:00

00:00:02

00:00:04

00:00:06

00:00:08

Node 1

Node 1 Node 2

Node 2

Node 3

Node 3

Node 1

Node 1

Node 1

Node 2

Node 2

Node 2

Node 3

Node 3

Node 3

CPU Memory Network CPU Memory Network CPU Memory Network

Figure 5.3: Ordered Glances output data with 3 nodes participating.

5.2 Bitcoin

When searching for Bitcoin clients, we investigated Bitcoin’s official sources. Dur-
ing this, we discovered the Bitcoin Core client [58], which is developed and main-
tained by the developers of Bitcoin. We then set out to create a Dockerfile, to build810

container images for running a Bitcoin network. We started with a basic setup
with two nodes. To this end, we created two individual Dockerfiles, as presented
in Listing B.1 and Listing B.2. Bitcoin allows a minimal setup, with no initializa-
tion and minor changes to the configuration file, that enables the Bitcoin clients to
operate in a private network. However, in the process of connecting the clients, we815

found that the current version of the Bitcoin Core client no longer supports actively
mining Bitcoin. This change was brought about as a result of CPU mining being
“useless” [59]. As such, we worked with an old release of the Bitcoin Core client,
namely version 0.12 of the client. This is the last version of the client to still have
an integrated CPU miner. However, when setting the application flags for auto-820

matic mining, we noticed the clients did not mine on their own. It was possible to
manually request for new blocks to be mined, and after mining 100 blocks, we saw
the genesis block had matured and its block reward was paid out. Following this
setback, we attempted a similar setup with some previous releases of the client, but
these versions provided the same result. As such, given the time limitations of this825

project and the possibility that the Bitcoin Core client had never been functional
with our system, we decided to abandon using the Bitcoin Core client. In parallel
with the setbacks of the Bitcoin Core client, we investigated alternative clients to
use for a Bitcoin network, however the clients we uncovered were all implemented
with GPU or ASIC mining in mind. Requiring the usage of multiple GPUs or830

ASICs would impact the core of our system design, and as such, we arrived at the
conclusion that we were unable to implement a Bitcoin blockchain network.

5.3. Ethereum 35

5.3 Ethereum

Following our attempt at setting up the Bitcoin Core client, we transitioned to
setting up an Ethereum network. Again we started off with investigating an offi-835

cial client. Ethereum’s documentation presents several clients, with seemingly no
difference between the clients, apart from the programming language used to im-
plement the client. As such, we decided to go with the Geth client. Geth provides a
Docker image, which allows a quick deployment of the client. However, this image
does not allow the configuration which is needed to create a private network, and840

as such, we created a custom Dockerfile for our image.

5.3.1 Image creation script

Using Geth, requires a particular order of operations to initialize a network node.
Geth supports both the Clique and Ethash consensus algorithms, where Clique
uses Proof of Authority (PoA) and Ethash uses PoW, with minor changes between845

the steps for their initialization. PoA being an alternative approach to PoS, in which
the participant’s reputation is staked rather than staking a currency [60]. First, a
genesis block must be defined. This is done using a JSON file, describing a set of
hard forks, a starting difficulty in hexadecimal, a gas limit, and an initial allocation
of ether. For Clique, it should also define the target block time. Following the850

definition of the genesis block, the client’s database is initialized with the genesis
block. This initialization must be done for each client, and cannot be achieved by
synchronizing with other nodes. Moreover, the initialization is also used for adding
future changes to hard forks. The Geth network consists of a bootstrap node and
a set of participating nodes. When connecting the nodes to create the blockchain855

network, the bootstrap node maintains a list of the nodes in the network. New
nodes are required to know the address of the bootstrap node and will receive a
copy of the list of nodes. The bootstrap node is initiated by providing it with its
address, and it generates a node record based on the provided address. This node
record is then in turn provided to participating nodes for them to connect to the860

bootstrap node. To define a blockchain participant as either a miner or a signer,
depending on the network, different flags are passed to the application. These
flags can be seen in Listing 5.1 and Listing 5.2. An important flag for the miners
is --miner.threads=1, as this flag limits our miners to using a single processor for
mining and allows for more miners on the same host system. After this setup,865

the network is ready to create and validate blocks. At this point, it is possible to
add transactions, however transactions are not required for the clients to create
blocks [61].

Listing 5.1: The command executed to start a signer

36 Chapter 5. Implementation

1 geth --password password --networkid ${NETWORK_ID} --syncmode ’full’ --http870

--http.api eth,net,web3,admin,debug,clique,les,txpool --bootnodes $(cat
/eth-data/bootstrap-enode) --unlock $(cat ethereum-address) --mine
--miner.etherbase $(cat ethereum-address) --allow-insecure-unlock

Listing 5.2: The command executed to start a miner
875

1 geth --networkid ${NETWORK_ID} --syncmode ’full’ --http --http.api
eth,net,web3,admin,debug,clique,les,txpool --bootnodes $(cat
/eth-data/bootstrap-enode) --miner.threads=1 --mine --miner.etherbase
$(cat ethereum-address)

880

To facilitate the node initialization and subsequent creation of images, we cre-
ated a bash script. This bash script, available in full in Listing C.4, also handles the
building of images, creation of containers, and starting of nodes. The Dockerfiles,
as presented in Listing C.1, Listing C.2, and Listing C.3, copy the required files into
the container, install the Geth client, and start the client.885

5.4 Hyperledger Sawtooth

As previously mentioned in Section 4.1.3, Hyperledger Sawtooth was chosen as
one of the five blockchain networks that we set out to benchmark. Furthermore,
the Hyperledger Sawtooth official documentation [62] provides ready-to-go Docker
Compose files for each of the two available network configurations, which are890

the PoET and PBFT configuration. The rest of this section provides a description
of how the two Hyperledger Sawtooth network configurations were set up and
initialized.

5.4.1 Configuring Hyperledger Sawtooth

In a Sawtooth blockchain network, regardless of its consensus mechanism, each895

Sawtooth node encompasses a set of transaction processors, a validator, an op-
tional REST API, and a consensus engine. The first node that is initialized in a
Sawtooth network must specify the genesis block, which holds configurations for
the network’s initial on-chain settings. When other nodes join the network, they
must first access the on-chain settings inside the genesis block. The consensus en-900

gine can be custom implemented, but Hyperledger Sawtooth does provide their
implementation of PoET and PBFT. All nodes on the network must run the same
type of consensus engine, as well as the same types of transaction processors. It
should be stated that Sawtooth doesn’t have a master node or anything like that, the
first node in a network must simply have a specified genesis block, which is then905

shared with other nodes as they join the network [62].

5.4. Hyperledger Sawtooth 37

5.4.2 Hyperledger Sawtooth PBFT

The Sawtooth PBFT consensus provides a voting-based consensus algorithm with
Byzantine fault tolerance (BFT) that has finality, meaning it does not fork. Follow-
ing the official documentation for setting up a PBFT network, a Docker Compose910

YAML file can be downloaded, which handles all the required configuration to
start the network on Docker for us [62].

Docker Compose files have been explained previously, in Section 4.2.1, and a
shortened example of our Sawtooth PBFT YAML file can be seen in Appendix D.
It has been shortened to a network configuration containing two nodes for the pur-915

poses of showing it in this report, whereas our non-shortened YAML file specifies
a 5 node network. When spinning up the network with the Docker Compose file,
each node consists of several Docker containers, as each node’s validator, REST
API, consensus engine, and transaction processors, are run in each of their own
Docker containers. This does make it harder to process the monitoring data, as920

each node’s resource consumption is spread out over multiple containers. But it
is not a problem, however, as monitoring data can be combined for the respective
node’s containers. When starting our network, it does seem like the nodes in the
network are working as intended. The nodes are communicating, and when query-
ing each node about its known peers through the shell client, which is specified925

at the bottom of Listing D.1, it outputs the expected data. However, no blocks are
created on the network, and even though we create transactions and send them to a
node, they are not propagated through the network, regardless of what transaction
batch size is configured.

After consulting online forums and some of its users, such as Sawtooth’s official930

Discord server [63], we can conclude that we aren’t the only users of Hyperledger
Sawtooth PBFT that can’t make it work. After countless hours of reading and
problem-solving the PBFT network, we gave up on getting the network to run
properly. We could have monitored the nodes, as they were technically running,
but it would have been data monitoring of idle nodes, which wouldn’t yield any935

useful data.

5.4.3 Hyperledger Sawtooth PoET

The Sawtooth PoET consensus provides a leader-election lottery system which is
crash fault-tolerant [62]. Setting up a Sawtooth PoET network is similar to setting
up a PBFT network, and Listing D.1 is so similar that we won’t include an example940

of a PoET Docker Compose YAML file. The only changes in the PoET YAML
file is the addition of a PoET specific transaction processor. Additionally, there
are changes in the configuration of the genesis block, which is done inside the
validator-0 setup in the PBFT listing.

When spinning up the Sawtooth PoET network with our version of the Docker945

38 Chapter 5. Implementation

Compose file, it did again seem like nodes in the network were working as in-
tended. However, further inspection of the running nodes revealed that the gen-
esis block was not even validated, which of course means that the network could
not continue its operation. Consulting the same forums as previously mentioned,
especially the official Discord channel for Hyperledger Sawtooth [63], we found950

that nobody could help us, and some even declared the Sawtooth PoET network
as dead. We were unable to solve any of the errors of the PoET network, and, as
such, unable to gather any monitoring data.

Chapter 6

Results955

This chapter will present and clarify the findings derived from the benchmarks
conducted on the successfully implemented blockchain node networks. A detailed
explanation of the methodology employed for the resource monitoring of the net-
works on the server was described in Section 5.1. In Chapter 5, we elaborated on
our successful implementation of the Ethereum blockchain network in two distinct960

modes: Clique, utilizing Proof of Authority (PoA), and Ethash, employing Proof
of Work (PoW). The chapter will feature dedicated sections for each functional
blockchain node network, culminating in a comparison section that evaluates and
contrasts the performance of these blockchain node networks.

39

40 Chapter 6. Results

6.1 Testing Method965

To gain insight into the potentially increasing resource consumption over time as
the blockchain networks automatically generate blocks, we decided to monitor the
blockchain node networks for 60 minutes each. Furthermore, we determined that
each network would be characterized by a variety of network configurations. As
such, each blockchain node network was run with 5, 10, 15, 20, and 25 nodes,970

which enables us to follow the increased resource consumption as each network’s
size grows.

As mentioned in Section 4.4, we planned to contact Aalborg University and ac-
quire a cloud server instance where we could benchmark the blockchain node net-
works. We successfully acquired a powerful cloud Ubuntu server instance, which975

hardware specifications can be seen in Table 6.1. We could unfortunately not ob-
tain any other hardware specifications of the server or our specific server instance.
But as we also mentioned in our previous paper [7], we are only interested in com-
paring the benchmarking data with each other, and how they perform against each
other. This means that it does not matter what the particular hardware configura-980

tion is, as long as we conduct all of our tests on the same server instance.

CPU Cores Memory in GB Disk Space in GB
32 64 100

Table 6.1: Cloud server specifications.

6.2 Clique Results

This section will showcase and provide an explanation of the monitored results that
our Ethereum Clique PoA network yielded. The Clique network was successfully
run in five different configurations, where the number of participating nodes in985

each test was incremented by five. As mentioned in Section 5.3.1, it is possible to
control the target block creation time for a Clique network in seconds. We therefore
decided to set the target block creation time for our Clique networks to 12 seconds,
which is the same block creation time that the Ethereum main network is operating
with as well [64].990

The monitored resource metrics for one node in all the Clique network con-
figurations are displayed in Table 6.2. As mentioned in Section 6.1, all network
configurations were executed for a duration of 60 minutes. Therefore, the resource
metrics presented in Table 6.2 represent an average over the 60-minute period.
Later, a single benchmark run is examined in more detail.995

6.2. Clique Results 41

Nodes
Runtime

in minutes
Blocks
created

Blocks/min
Average

CPU usage
in percent

Average
memory

usage in GB

Average
combined

received and
send rate in bps

5 60 300 5 1.417 0.063 13054.4
10 60 300 5 1.581 0.078 17225.1
15 60 300 5 2.026 0.097 28348.6
20 60 300 5 2.240 0.112 60494.1
25 60 300 5 2.697 0.148 75164.2

Table 6.2: Results of the monitored resource consumption of the Clique network.

Table 6.2 presents the data gathered from our Clique benchmarks, where each
row is a different test case. The data in the three columns: Runtime in minutes, Blocks
created, and Blocks/min, is constant. This is expected as we have set the target block
creation time to 12 seconds, which corresponds with five blocks per minute. The
data in the three columns: Average CPU usage, Average memory usage, and Average1000

combined received and send rate in bps, grows with the number of participating nodes.
This trend is also presented in Figure 6.1, which plots the data from the last three
columns. The participation of additional nodes in Clique networks leads to an
increase in the network’s receive and send rate. This can be attributed to the
PoA consensus mechanism, which incentivizes nodes to become the next validator.1005

The CPU and memory usage increases because each node needs to process more
network communication as more nodes participate in the network.

The graphs in Figure 6.1 provide a trend line over the growing resource usage
data, where each resource metric’s graph shares the same x-axis, which is the
number of participating nodes in the corresponding test run of a Clique network.1010

In Figure 6.3, the top graph showing the average CPU usage has been fitted with a
linear tendency function, while the other two have been fitted with an exponential
tendency function. Furthermore, the R2 values exhibit a range across the metrics
measured. The combined network rate demonstrates the lowest R2 value, standing
at 95.08%. In comparison, the CPU usage shows a higher R2 value of 97.81%,1015

while the memory usage exhibits the highest R2 value of 99.02%. The R2 values
are a measure that tells you how well the data points fit the trend line or regression
line in the graph, with a higher value indicating a stronger fit [65].

42 Chapter 6. Results

1.417758
1.581402

2.026837
2.240193

2.697563y = 0.0644x + 1.0272
R² = 0.9781

0

1

2

3

4
Pe

rc
en

t

[Clique (5 blocks/min)]

Average CPU percent �me spent in user space

0.063662
0.078721

0.097571
0.112739

0.148409y = 0.0519e0.041x

R² = 0.9902

0.04

0.08

0.12

0.16

0.2

G
B

Average memory usage

13054.4 17225.14
28348.68

60494.19
75164.27

y = 7457.9e0.0951x

R² = 0.9508

0

30000

60000

90000

120000

150000

0 5 10 15 20 25 30

b
p

s

Nodes

Average combined received+sent rate (in bit per second)

Figure 6.1: The resource consumption data from Table 6.2 showed in a three in one graph.

6.2.1 Visualizing the Growth of Resource Consumption Data

Altering our scope to investigate a single benchmarking run, so we can observe the1020

monitoring data of a node from the Clique benchmark with a 5 node network as
time progresses, is presented in Figure 6.2. Similar graphs have been made from
the remaining four benchmark runs, which are available in Section A.1.

6.2. Clique Results 43

0

1

2

3

4

5

Pe
rc

en
t

[Clique 5 nodes (5 blocks/min)]

CPU percent �me spent in user space

0.06

0.061

0.062

0.063

0.064

0.065

G
B

 u
se

d

Memory used in GB

0

5000

10000

15000

20000

25000

30000

35000

0
0

:0
0

:0
0

0
0

:0
1

:3
4

0
0

:0
3

:0
8

0
0

:0
4

:4
2

0
0

:0
6

:1
6

0
0

:0
7

:5
0

0
0

:0
9

:2
4

0
0

:1
0

:5
8

0
0

:1
2

:3
2

0
0

:1
4

:0
6

0
0

:1
5

:4
0

0
0

:1
7

:1
4

0
0

:1
8

:4
8

0
0

:2
0

:2
2

0
0

:2
1

:5
6

0
0

:2
3

:3
0

0
0

:2
5

:0
4

0
0

:2
6

:3
8

0
0

:2
8

:1
2

0
0

:2
9

:4
6

0
0

:3
1

:2
0

0
0

:3
2

:5
4

0
0

:3
4

:2
8

0
0

:3
6

:0
2

0
0

:3
7

:3
6

0
0

:3
9

:1
0

0
0

:4
0

:4
4

0
0

:4
2

:1
8

0
0

:4
3

:5
2

0
0

:4
5

:2
6

0
0

:4
7

:0
0

0
0

:4
8

:3
4

0
0

:5
0

:0
8

0
0

:5
1

:4
2

0
0

:5
3

:1
6

0
0

:5
4

:5
0

0
0

:5
6

:2
4

0
0

:5
7

:5
8

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure 6.2: One node’s resource consumption when running the Clique network with 5 nodes for 60
minutes.

The graphs’ x-axis represent the elapsed time, starting from zero and up to the
benchmarks ending after 60 minutes has progressed. When looking at the CPU1025

percent time spent in user space, the top graph, the CPU usage is quite steady
as time progresses, albeit having some spikes. The CPU usage is as we expected
because the number of participating nodes is constant in each test run. This also
means that the amount of network communication, the bottom graph, is more or
less constant as well, with a few spikes. The memory usage, the middle graph,1030

is, however, growing as time progresses. It starts at a memory usage of 0̃.062 GB

44 Chapter 6. Results

before it grows to 0̃.0645 GB in the 60-minute benchmark duration. We do not
know what data each node specifically stores, which could be a range of items
such as blocks, transactions, and network states. However, we can conclude that
each node’s memory must increase in size as new blocks are created and added to1035

the blockchain every 12 seconds.

6.3 Ethash Results

This section will showcase and provide an explanation of the monitored results
that our Ethereum Ethash PoW network yielded. The Ethash network was suc-
cessfully run in five different configurations, where the number of participating1040

nodes in each test was incremented by five. It is not possible to set a block creation
time as in the Clique network; however, it is possible to set a starting difficulty in
hexadecimal for an Ethash network, as mentioned in Section 5.3.1. But regardless
of what the starting difficulty is, all Ethereum PoW clients adjust their mining dif-
ficulty each block, aiming for a block creation time of 12 seconds [66]. To account1045

for the dynamic difficulty adjustment in Ethash clients, our goal was to set the
initial difficulty at a level that closely aligns with a target block creation time of
12 seconds, similar to the approach used in the Clique network. The specific start-
ing difficulty would depend on the number of nodes participating in the Ethash
network configuration. The chosen mining difficulty for our Ethash network con-1050

figurations can be seen in Table 6.3. Having a block creation time of 12 seconds on
the Ethash networks also meant that the results of the Clique and Ethash networks
were as comparable as possible.

Nodes
Difficulty

Hexadecimal Decimal
5 0x3567E0 3,500,000

10 0x6ACFC0 7,000,000
15 0x90F560 9,500,000
20 0xB71B00 12,000,000
25 0xE4E1C0 15,000,000

Table 6.3: The mining difficulties for the Ethash network configurations.

The monitored resource metrics for one node in all the Ethash network con-
figurations are displayed in Table 6.4. As mentioned in Section 6.1, all network1055

configurations were executed for a duration of 60 minutes. Therefore, the resource
metrics presented in Table 6.4 represent an average over the 60-minute period. We
will be going through a single benchmark run later for the Ethash resource con-
sumption.

6.3. Ethash Results 45

Nodes
Runtime

in minutes
Blocks
created

Blocks/min
Average

CPU usage
in percent

Average
memory

usage in GB

Average
combined

receive and
send rate in bps

5 60 293 4.8 102.8 0.284 12966.5
10 60 318 5.3 102.4 0.285 17972.9
15 60 307 5.1 102.1 0.286 28707.2
20 60 308 5.1 101.6 0.287 44814.6
25 60 307 5.1 101.2 0.290 71332.48

Table 6.4: Results of the monitored resource consumption of the Ethash network.

Looking at Table 6.4 the data in the 3 columns: Runtime in minutes, Blocks created,1060

and Blocks/min, are not as consistent as the Clique results. The metrics in these
columns fluctuate a bit because of the randomness factor when using PoW and
our starting difficulty not being 100% perfect in regard to reaching a block creation
time of 12 seconds at the start of when the Ethash benchmark runs.

Examining the Average CPU usage in percent column and its data in Table 6.4, the1065

CPU usage in percent is above 100% and decreasing as more nodes participate in
the network. As mentioned in Section 5.1, Glances measures the Docker container
CPU usage as a percentage of a whole CPU core. Meaning that a CPU usage
of 102.8%, from the 5 nodes configuration, is above 100% because more than a
whole CPU core is used by this node. One CPU core is used completely because1070

of our choice in the configuration settings of the Ethash networks to limit each
node’s mining efforts to one CPU core, as mentioned in Section 5.3.1. Despite
being primarily engaged in its mining operation, each node still needs to process
additional data unrelated to mining. This additional processing requirement can
account for why the value may exceed 100%. As the network expands with more1075

participating nodes, there is a tendency for the CPU usage percentage to decrease.
One possible explanation for this behavior is that the CPU cores, as mentioned
in Section 6.1, are limited to 32. As the number of network nodes increases, the
number of available CPU cores decreases, resulting in more nodes having to share
a decreasing number of free CPU cores.1080

The last two columns: the Average memory usage in GB, and the Average combined
receive and send rate in bps increases quite evenly as the number of participating
nodes increases.

46 Chapter 6. Results

102.8868

102.4533
102.1706

101.6749

101.2092

y = 103.33e-8E-04x

R² = 0.9926
100

101

102

103

104
Pe

rc
en

t

[Ethash (~5 blocks/min)]

Average CPU percent �me spent in user space

0.284911
0.285562

0.286995
0.287567

0.290528y = 0.0003x + 0.2831
R² = 0.9159

0.282

0.284

0.286

0.288

0.29

0.292

0.294

G
B

Average memory usage

12966.51 17972.93
28707.26

44814.69

71332.48y = 7993e0.0865x

R² = 0.9986

0

30000

60000

90000

120000

0 5 10 15 20 25 30

b
p

s

Nodes

Average combined received+sent rate (in bit per second)

Figure 6.3: The resource consumption data from Table 6.4 showed in a three in one graph.

The data tendencies from Table 6.4 can also be seen in Figure 6.3, where each
resource metric’s graph shares the same x-axis, which is the number of participat-1085

ing nodes in the corresponding test run of an Ethash network. In Figure 6.3, each
graph has been fitted with an exponential tendency function except for the mem-
ory’s graph, which has been fitted with a linear tendency function. Furthermore,
the R2 values exhibit a range across the metrics measured. The memory usage
demonstrates the lowest R2 value, standing at 91.59%. In comparison, the CPU us-1090

age shows a higher R2 value of 99.26%, while the combined network rate exhibits
the highest R2 value of 99.86%.

6.3. Ethash Results 47

6.3.1 Visualizing the Growth of Resource Consumption Data

94

96

98

100

102

104

106

108

Pe
rc

en
t

[Ethash 5 nodes (4.88 blocks/min)]

CPU percent �me spent in user space

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

G
B

 u
se

d

Memory used in GB

0

5000

10000

15000

20000

25000

30000

0
0

:0
0

:0
0

0
0

:0
1

:3
4

0
0

:0
3

:0
8

0
0

:0
4

:4
2

0
0

:0
6

:1
6

0
0

:0
7

:5
0

0
0

:0
9

:2
4

0
0

:1
0

:5
8

0
0

:1
2

:3
2

0
0

:1
4

:0
6

0
0

:1
5

:4
0

0
0

:1
7

:1
4

0
0

:1
8

:4
8

0
0

:2
0

:2
2

0
0

:2
1

:5
6

0
0

:2
3

:3
0

0
0

:2
5

:0
4

0
0

:2
6

:3
8

0
0

:2
8

:1
2

0
0

:2
9

:4
6

0
0

:3
1

:2
0

0
0

:3
2

:5
4

0
0

:3
4

:2
8

0
0

:3
6

:0
2

0
0

:3
7

:3
6

0
0

:3
9

:1
0

0
0

:4
0

:4
4

0
0

:4
2

:1
8

0
0

:4
3

:5
2

0
0

:4
5

:2
6

0
0

:4
7

:0
0

0
0

:4
8

:3
4

0
0

:5
0

:0
8

0
0

:5
1

:4
2

0
0

:5
3

:1
6

0
0

:5
4

:5
0

0
0

:5
6

:2
4

0
0

:5
7

:5
8

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure 6.4: One node’s resource consumption when running the Ethash network with 5 nodes for 60
minutes.

Altering our scope to investigate a single benchmarking run, so we can observe
the monitoring data of a single node from the Ethash benchmark with a 5 node1095

network as time progresses, as presented in Figure 6.4. Similar graphs have been
made from the remaining four benchmark runs, which are available in Section A.2.

The graphs’ x-axis represent the elapsed time, starting from zero and up to the

48 Chapter 6. Results

benchmarks ending after 60 minutes has progressed. When looking at the CPU
percent time spent in user space, the top graph, the CPU usage is in the range from1100

100 percent to 106 percent as time progresses. The CPU usage is as we expected
because the number of available CPU cores were set before the network nodes were
started, as mentioned in Section 5.3.1. The amount of network communication,
which can be seen on the bottom graph, is in the range of 10,000 bps to 20,000 with
few spikes because no changes are occurring to the network configuration while1105

it is running. The node’s memory usage starts at 0̃.27 GB before it grows to 0̃.29
GB in the 60-minute benchmark duration. We do not know what data each node
specifically stores, which could be a range of items such as blocks, transactions,
and network states. However, we can conclude that each node’s memory usage
grows as new blocks are created and added to the blockchain.1110

6.4 Comparing Results

In this section, we will analyze the resource consumption of the monitored Clique
and Ethash networks. While no new metrics will be introduced, we will compare
the results from Clique’s Table 6.2 and Ethash’s Table 6.4 together in Figure 6.5.
By comparing these findings, we can gain insights into the resource utilization1115

differences between the two networks. The top graph in Figure 6.5, Average CPU
percent time spent in user space, has its y-axis scaled logarithmically with a base
of four, while the other graphs are scaled normally. Each of the three graphs in
the figure are sharing the same x-axis as well, which represents the number of
participating nodes in the respective networks. The rest of the section will go1120

through each graph in Figure 6.5, delving into the differences and comparisons
between the two networks.

6.4. Comparing Results 49

1.417758
1.581402

2.026837 2.240193 2.697563

102.8868 102.4533 102.1706 101.6749 101.2092

1

4

16

64

256

5 10 15 20 25

Pe
rc

en
t

Average CPU percent �me spent in user space

Clique Ethash

0.063662
0.078721

0.097571
0.112739

0.148409

0.284911
0.285562 0.286995 0.287567 0.290528

0.05

0.15

0.25

0.35

G
B

Average memory usage

13054.4
17225.14

28348.68

60494.19

75164.27

12966.51 17972.93

28707.26

44814.69

71332.48

5000

15000

25000

35000

45000

55000

65000

75000

85000

5 10 15 20 25

b
p

s

Nodes

Average combined received+sent rate (in bit per second)

Figure 6.5: Resource monitoring results for the Clique and Ethash networks showed side by side.

6.4.1 CPU Usage

When comparing the CPU usage between the Clique and Ethash networks, we
observe the difference immediately. The CPU usage for the Ethash network config-1125

urations is a lot higher than that of the Clique network configurations, even though
the Ethash nodes were limited to one CPU core each for their mining operation.
As previously explained in Section 6.3, the CPU usage for the Ethash nodes is de-
creasing at around 0.33 percent on average each time the number of participating

50 Chapter 6. Results

nodes increases by five. If the host system that the resource monitoring tests were1130

conducted on had infinite CPU resources available, the Ethash CPU usage would
most likely be constant at just above 100% instead of slowly decreasing. The Clique
network node’s CPU usage is, however, only increasing by around 0.25 percent on
average each time the number of participating nodes increases by five.

6.4.2 Memory Usage1135

Comparing Clique and Ethash’s memory usage, we see a clear difference in the
benchmarks, where Ethash has a higher memory usage comparatively. From the
tables in Table 6.2 and Table 6.4, we show that the two networks created a similar
number of blocks through the runtime of their benchmarks. As such, a different ex-
planation is required for this difference in memory usage between the algorithms.1140

One major difference in their operation is that Ethash makes use of a Directed
Acyclic Graph (DAG) to store sets of random values used in creating a block hash.
This DAG can either be generated and stored before starting the mining process
or it can be generated as needed, however then the client is required to wait for
the generation to complete. The Geth client pre-generates the DAG before it starts1145

mining, meaning the DAG is stored by the client. Moreover, this means the DAG
needs to be moved partially into memory while the client mines blocks. To avoid
the DAG generation interfering with the benchmarking data, we let the clients
complete the generation before beginning the monitoring of resource usage data.

Another difference between Clique and Ethash, is that the memory usage for1150

Clique grows faster than Ethash’s usage. We are unsure as to the exact reasoning
behind this growth difference. However, the average growth difference between
the algorithms is 0.016 GB, where Clique grows with 0.017 GB on average per five
nodes added and Ethash grows with 0.001 GB on average.

6.4.3 Network Usage1155

In terms of network usage, we observe that Clique and Ethash have a similar usage
up to 15 nodes. Subsequently, in the observed data, Clique exhibits a noticeable
increase compared to Ethash when the number of nodes reaches 20. However,
towards the end, with 25 nodes, Clique’s values converge back towards Ethash’s
values once again. Disregarding the outlier, the network usage reflects our expec-1160

tations, as the nodes will most often be communicating blocks with the other nodes
in the network. It is unclear what resulted in the outlier for the benchmark with 20
nodes, as the only parameter that changed between the benchmarks is the number
of participating nodes in the network. On average, Clique grows by 12422 bits per
second per five nodes added, with Ethash growing by 11673 bits per second on av-1165

erage. This average skewed by the outlier, and with more thorough testing, could
reflect similar values for the two networks.

6.4. Comparing Results 51

6.4.4 Summary

In summary, we can conclude that Ethash has a high CPU usage, which was ex-
pected given its PoW consensus mechanism, with Clique having a comparatively1170

low CPU usage. Moreover, from our results, we gather that Clique grows more
in memory usage, whereas Ethash will have a more conservative growth. Lastly,
the algorithms have a similar network consumption, meaning the different net-
works provide little to no difference in terms of the amount of data required to
communicate the blockchain and changes to it.1175

Chapter 7

Discussion

Following the implementation of our solution and producing benchmarking re-
sults, we are going to discuss the aspects of our project we could see improvements
to or areas which worked against us in this chapter.1180

53

54 Chapter 7. Discussion

7.1 Failed Attempts with Selected Networks

As mentioned in Section 5.2 and Section 5.4, we tried and failed at setting up Bit-
coin and Hyperledger Sawtooth networks and benchmark their clients. All in all,
we spent nearly 3 weeks working with the Bitcoin Core client, and during that
time we went through 4 versions of the client. We noticed the nodes connected to1185

each other and when we tried sending transactions they were propagated from one
node to the others. However, having spent a lot of time on attempting, and fail-
ing, at getting Bitcoin to work properly, we were surprised by the ease with which
we succeeded in getting the Ethereum network up and running. This process
was helped by a direct guide provided by the Geth documentation, with an end-1190

to-end example for setting up a private network with the Geth Ethereum client.
However, the documentation was not without its flaws. Often the explanation for
application flags were lack luster and incomplete. Furthermore, the configuration
of the genesis block was described through examples, with no clarification as to
what the different parameters exactly do. Following Ethereum, we were excited1195

to work with another blockchain client. Looking through the documentation for
Hyperledger Sawtooth, we found it provided ready-to-go Docker Compose files
with official Docker Images. As such, we expected Hyperledger Sawtooth to run
with relative ease. However, we ran into similar issues with Hyperledger Saw-
tooth as we did with Bitcoin Core. The difference is that the current version of1200

Hyperledger Sawtooth is expected to be able to create blocks automatically. This
was however not an issue, as we figured that we could easily feed the network
with transactions which would prompt the creation of blocks via the shell client.
The problem was further exaggerated by the Hyperledger community pointing in
different directions, about which version of Hyperledger Sawtooth should be func-1205

tional. Further complicating the matter, is the issue of Sawtooth relying on a set of
containers for a single network node, as explained in Section 5.4.1. Each of these
containers uses their own Docker Images, with different version naming. As such,
we followed different leads from different community members for several weeks
with no luck. An issue we were unable to clear up, was using the wrong version of1210

Docker and Compose files. We gathered that the community members with func-
tioning networks were using a different version of Docker from the one we were
using. However, when we attempted to install the same version of Docker, we
found that it was only distributed for older versions of our server’s operating sys-
tem. Downgrading our server’s operating system version and installing a different1215

Docker and Compose version did not result in a properly functioning network.
This led us to drop work on the Hyperledger Sawtooth network, and we shortly
pursued alternate networks, but decided against starting work on a new network
as we were nearing the end of the project.

7.2. Private Versus Public Blockchain Networks 55

7.2 Private Versus Public Blockchain Networks1220

For our solution, we decided to conduct our benchmarking with a private net-
work. As already mentioned in Chapter 3, this provides us with control over the
components of the network. However, this provided some issues in setting up
these networks. In our previous work [7], we made our own implementations of
the blockchain clients. This granted us control over how the nodes communicate,1225

which made creating the private networks easier. Now, working with existing
software, we were limited to the configuration tools provided by the developers
of the clients. While these tools often provide a way to create a private network,
they are not guaranteed to be available. Moreover, often they require predeter-
mining fixed IP addresses for the nodes in the private network. As such, creating1230

private networks is tedious, though not impossible. But what could public net-
works offer instead? If we used a public network when benchmarking blockchain
clients, we would lose out on the total network control offered by private networks.
Moreover, for blockchains which test smart contracts before appending them to the
blockchain, it would introduce variations in the different nodes’ CPU and mem-1235

ory usages, making the monitoring data flawed. However, public networks would
remove the tedium work of setting up private networks, as they make use of seed
nodes to get new nodes set up in the blockchain network. Moreover, public net-
works are the most used type in real deployments, and measuring them would
have had a stronger impact. The seed nodes keep an up-to-date list of active nodes1240

in the network and provide new nodes with a list of nodes they should contact to
get a copy of the blockchain and get started with creating new blocks [67]. The
configuration step for private networks would benefit from utilizing seed nodes.
This is showcased with the Geth Ethereum client, where the bootstrap node acts
as a seed node, as explained in Section 5.3.1. It could eliminate some configura-1245

tion required for each blockchain network and make it easier to benchmark more
blockchain clients.

7.2.1 Public Networks and Transactions

The aim of this project was to produce more realistic results, compared to our pre-
vious work [7], by testing off-the-shelf solutions. But, the blockchain networks that1250

were benchmarked in this project did not take transactions into account. Public
networks do have transactions, and they are a big part of blockchains as they af-
fect the resource consumption of blockchain nodes even if the blockchain supports
smart-contracts or not. All transactions must undergo processing by a blockchain
node and have their relevant transaction data incorporated into blocks if their data1255

is to be included on the blockchain. Consequently, the inclusion of transaction
data also leads to the expansion of the block size. For example, on June 5th,
2023, the Ethereum blockchain recorded a significant daily volume of transactions,

56 Chapter 7. Discussion

reaching approximately 1.152 million transactions [68]. Instead of feeding our op-
erational networks with test or empty transactions, which could potentially yield1260

more precise benchmarking data, we primarily focused on benchmarking as many
blockchains as possible instead, keeping with the private networks.

7.3 Limitations in the Server Specifications

As mentioned in Section 6.1, we used a server provided by Aalborg University for
testing our solution. More specifically, this server was a virtual machine running1265

on a server owned by the university, and we requested its creation using a web
interface. As such, it was possible for us to scale the server’s specifications to
fit our requirements. Originally, we had a server with 16 processor cores and 32
GB of memory. This server was also used in our previous work to function as a
testing bed for our previous solution. Following our previous work, we decided1270

to investigate the possibility of getting more processing cores in our server and
reached out to IT services about this issue. After a bit of communication back and
forth, we arrived at having our instance limit increased to allow for the largest
server available through the web interface. This would have been a server with 64
processing cores and 128 GB of memory. However, after attempting several times1275

to have our server upgraded to the extent of our limits, we concluded that such
a server was unable to be hosted on the university’s servers. As such, we settled
for the next largest server, which provided us with 32 processing cores and 64
GB of memory, as previously specified in Table 6.1. If we had had access to the
requested server, it would have provided us the opportunity to extend our testing1280

to networks with up to 60 nodes, in 5 node increments, similar to how we already
structured testing our solution. The reason for limiting the size of our blockchain
network to, at most, 30 nodes, was to allow each node an entire processing core.
This is particularly important for our PoW testing, as the nodes would max out the
provided processing cores.1285

7.4 Finding the Correct Ethash Mining Difficulties

Determining the appropriate starting difficulty for each Ethash network configura-
tion turned out to be a time-consuming task. The lack of guidance or clues in the
official documentation regarding difficulty added to the challenge. The difficulty
had to be specified in hexadecimal format within the genesis block file before run-1290

ning the network. However, the most time-consuming aspect was the necessity to
wait for a specific duration to calculate the average block creation time. This was
due to the inherent randomness in block creation time caused by the PoW consen-
sus mechanism in Ethash. When looking at the tables in Table 6.3 and Table 6.4, it

7.5. Potential Project Pivot 57

can be seen that the difficulty, in our experience at least, doesn’t increase at a fixed1295

amount each time we add five more participating nodes in an Ethash network. As
an example, during the monitoring test with five participating nodes, an average
of 4.8 blocks per minute were mined. However, when the difficulty was doubled
for the monitoring test with ten participating nodes, the average increased to 5.3
blocks per minute. While the randomness factor in the PoW consensus mechanism1300

could partially account for the 0.5 increase, it is worth noting that each monitoring
test lasted for an entire hour. The long monitoring duration makes it challenging
to attribute the entire increase solely to the randomness factor. We could, of course,
have spent a bit more time to fine tune the difficulty, but at some point, after spend-
ing a lot of time on it, we decided to stop and go with the found difficulties for the1305

moment.

7.5 Potential Project Pivot

As the spring semester progressed, and we began to configure and test potential
private blockchain networks, we quickly realized just how difficult it actually was.
Halfway through the semester, we had realized that the Bitcoin Core network was1310

not viable anymore, and we were in the middle of getting the Ethereum networks
up and running. Meaning that halfway through the semester, we had no proof of
concept, or data to show for our work. It was at this point where we, in coordi-
nation with our supervisors, agreed on a hard deadline. If we were unable to suc-
cessfully establish any functioning networks before the upcoming deadline a week1315

later, we would pivot our focus and work on something else for our Masters, such
as extending our framework from last semester [7]. We did, fortunately enough,
get both of the Ethereum networks to work as intended before the deadline.

7.6 Ethereum Clients

There are more blockchain clients that can connect and operate on the Ethereum1320

blockchain than just the Geth client. The Geth client is only used by around
66% [69] of Ethereum’s users, while other clients cover the rest. Several other
Ethereum clients, such as Erigon, Go Quadrans, Bor, and Nethermind, are some of
the clients that fill out the rest of the gap according to [69]. We chose the Geth client
as it was the most popular, has good documentation, and can run in a private net-1325

work configuration, but some of these other clients could have been used as well.
In our project, we decided to prioritize benchmarking multiple blockchains with
a single client, rather than focusing on a single blockchain with multiple clients.
However, it would be highly intriguing to conduct benchmarking on various clients
operating within the same blockchain, observing and analyzing the variations in1330

58 Chapter 7. Discussion

their resource consumption.

Chapter 8

Conclusion

This project set out to accomplish the work described in the problem statement,
which was presented in Section 3.1. In short, we set out to find how we could1335

benchmark the resource consumption of popular blockchain clients inside private
networks.

In Chapter 4 we designed a system to achieve the goal of the problem state-
ment. This system uses Docker to orchestrate and manage a set of participating
nodes in a private blockchain network. Furthermore, it utilizes Glances to monitor1340

the resource usage of each Docker container running the network nodes. Hav-
ing defined this system design, we create an example implementation on a server
provided by Aalborg university. In this implementation, we successfully set up
two private blockchain networks. The first being the Ethereum Clique, and the
second being the Ethereum Ethash network, both utilizing the official Ethereum1345

client, Geth. The implementation and configuration of both networks can be seen
in Section 5.3 alongside the configuration of three other networks, namely, Bitcoin,
Hyperledger Sawtooth PoET, and Hyperledger Sawtooth PBFT, which we unfortu-
nately didn’t get to a completely working state. However, as specified in the design
chapter, resource consumption was monitored with the Glances framework, which1350

enabled us to compare and benchmark the results in Chapter 6. In this chapter,
we present and discuss our monitoring data, ending in a comparison between the
working blockchain networks.

In Chapter 1, we describe how this project is an extension of our previous work,
where we benchmarked our own implementations of consensus mechanisms. As1355

mentioned in the introduction, we wanted to benchmark real blockchain clients
in this work, instead of our own custom implementations. This achieves more
realistic results as the more off-the-shelf solutions, that we utilized in this project,
are actively used by the current blockchain community.

As a result of the work done in this project, we can conclude our solution1360

achieves the goal as described in our problem statement. It presents the feasibility

59

60 Chapter 8. Conclusion

of testing blockchain clients and compare them against each other, with a focus
on the computational resource consumption of the different clients. The solution
presented in this report acts as a proof-of-concept for using off-the-shelf software
for benchmarking blockchain clients, and is not finished in its current state. The1365

next chapter, Chapter 9, describes steps to improve the solution.

Chapter 9

Future work

Having concluded our project and a successful proof-of-concept, we would like to
peer to the future of the solution proposed in this paper. As such, this chapter will1370

present some tasks we could see as the next steps towards improving our solution.

61

62 Chapter 9. Future work

9.1 Generalize Network Setup

As presented in Section 7.2, seed nodes in blockchain networks make it easy to
connect new nodes to the blockchain network. One issue with the solution in its
current state is the need to manually configure the network through the limited1375

configuration tools made available by the developers of each blockchain client. If
we could incorporate a seed node into the private network used to benchmark
the blockchain clients, it could remove the manual configuration requirement for
setting up the private networks. This would allow us to provide a simple Dockerfile
and have the network sort itself out with the seed node.1380

9.2 Add a Graphical User Interface

A graphical user interface (GUI) would improve the overall usability of the solu-
tion. It would ease the process of starting a benchmark test, by allowing users to
input a Dockerfile which builds a Docker image of the blockchain client and then
start a network with some number of nodes. The GUI could then be given a way1385

to extract the blockchain length from the network and provide feedback as to the
progress of the benchmark. Once the benchmark is completed, it can present the
user with the results of the benchmark by outputting a CSV file and making graphs
from the data.

9.3 Automate Data Processing1390

Throughout our resource consumption monitoring in this project, we have utilized
the Glances framework to monitor the containers. After a benchmarking test was
finished, we would reorder the data with the ThesisDataManager, as described in
Section 5.1.1, and do a lot of manual work in Excel to produce the graphs and tables
that are shown throughout this report. This process could be simplified with the1395

use of another monitoring tool, such as Prometheus, as mentioned in Section 4.3,
which includes the data processing and visualization add-on Grafana. We chose
Glances as it seemed like the simpler monitoring tool, which it is, but we could not
have predicted the need for reordering the data, and the amount of manual work to
get our respective figures. We thence expect that implementing Prometheus could1400

lighten the manual work burden for the data processing and visualization.

9.4 Get Bitcoin Core and Hyperledger Sawtooth to Work

We did, in the end, not succeed in getting either the Bitcoin, Hyperledger Sawtooth
PoET, or Hyperledger Sawtooth PBFT networks to function properly. But if more

9.5. Test Additional Blockchains 63

time was allocated, both networks could perhaps get to a working state.1405

There were several Bitcoin Core versions that we didn’t try, there are a total
of 65 versions [58], and we were perhaps close to picking a version which actually
worked, we do not know. As described in Section 5.2, the newer versions of Bitcoin
clients rely on either GPU or ASIC mining, which means that adding GPU com-
putation to our server could potentially result in a working Bitcoin client. Another1410

direction would be to try another Bitcoin client, instead of the Bitcoin Core client.
As previously mentioned in Section 5.4, we communicated with Hyperledger

Sawtooth users, who successfully configured a PBFT network on Hyperledger’s
official Discord server [63]. This does point towards it being possible to get a Hy-
perledger Sawtooth PBFT network to function properly that can create and propa-1415

gate transactions and blocks among its network nodes. Given more time, we could
perhaps get the PBFT network to work, even though we are of the belief that we
have tried everything already.

Moreover, even though Hyperledger Sawtooth has a PoET implementation
available, it has been deemed as “dead” by the community. We are unsure as1420

to why exactly PoET is nonfunctional, but after reading this on the Hyperledger
Discord, we promptly decided not to proceed with the PoET network. If the PoET
is functional at a point in the future, it would be quick to benchmark, following
success with setting up Hyperledger Sawtooth with PBFT.

9.5 Test Additional Blockchains1425

We have successfully proven that our solution acts as a proof-of-concept for using
off-the-shelf software for benchmarking blockchain clients. But we can strengthen
our proof by benchmarking several blockchain clients instead of only two. A fu-
ture work task would be to continue the work of testing blockchain clients and
gather more data. Potential blockchain clients that could be benchmarked next1430

are for example: EOS [70], Hyperledger Caliper [15], Hyperledger Fabric [71], and
Hyperledger Besu [72].

Bibliography

[1] Monash University. Citing and referencing: Vancouver. url: https://guides.
lib.monash.edu/citing-referencing/vancouver. (accessed: 07.06.2023).

[2] Sergi López-Sorribes, Josep Rius-Torrentó, and Francesc Solsona-Tehàs. “A
Bibliometric Review of the Evolution of Blockchain Technologies”. In: Sensors
23.6 (2023). issn: 1424-8220. doi: 10.3390/s23063167. url: https://www.
mdpi.com/1424-8220/23/6/3167. (accessed: 10.05.2023).

[3] CoinGecko. Global Cryptocurrency Market Cap Charts. url: https : / / www .
coingecko.com/en/global-charts. (accessed: 10.05.2023).

[4] Statista. Overall cryptocurrency market capitalization per week from July 2010 to
April 2023 (in billion U.S. dollars). url: https://www-statista-com.zorac.
aub.aau.dk/statistics/730876/cryptocurrency-maket-value/. (accessed:
10.05.2023).

[5] University of Cambridge Cambridge Judge Business School. Cambridge Bit-
coin Electricity Consumption Index. url: https://ccaf.io/cbnsi/cbeci. (ac-
cessed: 10.05.2023).

[6] The go-ethereum Authors. Hardware requirements. url: https://geth.ethereum.
org/docs/getting-started/hardware-requirements. (accessed: 10.05.2023).

[7] Jeppe Krogh Laursen and Daniel Friis Holtebo. “Consensus mechanisms for
a local energy market: A benchmark”. In: Aalborg University Project Library,
UUID: d7b702db-56ef-4a74-8752-d4f74c588fe2. (accessed: 23.02.2023).

[8] productplan. Stakeholder Analysis. url: https : / / www . productplan . com /
glossary/stakeholder-analysis/. (accessed: 11.05.2023).

[9] coinmarketcap.com. Client. url: https://coinmarketcap.com/alexandria/
glossary/client. (accessed: 15.03.2023).

[10] Jake FrankenField. Merkle Tree in Blockchain: What it is and How it Works. url:
https://www.investopedia.com/terms/m/merkle- tree.asp. (accessed:
22.03.2023).

[11] celo.org. Build together and prosper. url: https : / / celo . org/. (accessed:
22.03.2023).

65

https://guides.lib.monash.edu/citing-referencing/vancouver
https://guides.lib.monash.edu/citing-referencing/vancouver
https://doi.org/10.3390/s23063167
https://www.mdpi.com/1424-8220/23/6/3167
https://www.mdpi.com/1424-8220/23/6/3167
https://www.coingecko.com/en/global-charts
https://www.coingecko.com/en/global-charts
https://www-statista-com.zorac.aub.aau.dk/statistics/730876/cryptocurrency-maket-value/
https://www-statista-com.zorac.aub.aau.dk/statistics/730876/cryptocurrency-maket-value/
https://ccaf.io/cbnsi/cbeci
https://geth.ethereum.org/docs/getting-started/hardware-requirements
https://geth.ethereum.org/docs/getting-started/hardware-requirements
https://www.productplan.com/glossary/stakeholder-analysis/
https://www.productplan.com/glossary/stakeholder-analysis/
https://coinmarketcap.com/alexandria/glossary/client
https://coinmarketcap.com/alexandria/glossary/client
https://www.investopedia.com/terms/m/merkle-tree.asp
https://celo.org/

66 Bibliography

[12] coinbase.com. Blockchain client types. url: https : / / www . coinbase . com /
cloud/discover/dev-foundations/blockchain-client-types. (accessed:
22.03.2023).

[13] originstamp.com. The 10 Different Types of Blockchain Nodes and How They
Work. url: https://originstamp.com/blog/the-10-different-types-
of-blockchain-nodes-and-how-they-work/. (accessed: 23.03.2023).

[14] Bulat Nasrulin et al. “Gromit: Benchmarking the Performance and Scalability
of Blockchain Systems”. In: 2022 IEEE International Conference on Decentral-
ized Applications and Infrastructures (DAPPS). 2022, pp. 56–63. doi: 10.1109/
DAPPS55202.2022.00015.

[15] Hyperledger. Hyperledger Caliper. url: https://hyperledger.github.io/
caliper/. (accessed: 31.03.2023).

[16] Hyperledger. Getting Started. url: https://hyperledger.github.io/caliper/
v0.5.0/getting-started/. (accessed: 31.03.2023).

[17] prometheus.io. Prometheus. url: https://prometheus.io/. (accessed: 16.05.2023).

[18] Dimitri Saingre, Thomas Ledoux, and Jean-Marc Menaud. “BCTMark: a Frame-
work for Benchmarking Blockchain Technologies”. In: 2020 IEEE/ACS 17th
International Conference on Computer Systems and Applications (AICCSA). 2020,
pp. 1–8. doi: 10.1109/AICCSA50499.2020.9316536. (accessed: 10.05.2023).

[19] Tien Tuan Anh Dinh et al. “BLOCKBENCH: A Framework for Analyzing
Private Blockchains”. In: Proceedings of the 2017 ACM International Conference
on Management of Data. SIGMOD ’17. Chicago, Illinois, USA: Association for
Computing Machinery, 2017, 1085–1100. isbn: 9781450341974. doi: 10.1145/
3035918.3064033. url: https://doi.org/10.1145/3035918.3064033. (ac-
cessed: 10.05.2023).

[20] Binance. Markets Overview. url: https://www.binance.com/en/markets/
overview. (accessed: 31.03.2023).

[21] Crypto.com. Today’s Cryptocurrency Prices. url: https://crypto.com/price.
(accessed: 31.03.2023).

[22] CoinGecko. Cryptocurrency Prices by Market Cap. url: https://www.coingecko.
com/. (accessed: 31.03.2023).

[23] CoinMarketCap. Today’s Cryptocurrency Prices by Market Cap. url: https://
coinmarketcap.com/. (accessed: 31.03.2023).

[24] Ethereum Community. ERC-20 Token Standard. url: https://ethereum.org/
en/developers/docs/standards/tokens/erc-20/. (accessed: 31.03.2023).

[25] Tether Operations Limited. FAQ. url: https://tether.to/en/. (accessed:
31.03.2023).

https://www.coinbase.com/cloud/discover/dev-foundations/blockchain-client-types
https://www.coinbase.com/cloud/discover/dev-foundations/blockchain-client-types
https://originstamp.com/blog/the-10-different-types-of-blockchain-nodes-and-how-they-work/
https://originstamp.com/blog/the-10-different-types-of-blockchain-nodes-and-how-they-work/
https://doi.org/10.1109/DAPPS55202.2022.00015
https://doi.org/10.1109/DAPPS55202.2022.00015
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/v0.5.0/getting-started/
https://hyperledger.github.io/caliper/v0.5.0/getting-started/
https://prometheus.io/
https://doi.org/10.1109/AICCSA50499.2020.9316536
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3035918.3064033
https://www.binance.com/en/markets/overview
https://www.binance.com/en/markets/overview
https://crypto.com/price
https://www.coingecko.com/
https://www.coingecko.com/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://tether.to/en/

Bibliography 67

[26] Build N Build. BNB Chain: An Ecosystem of Blockchains. url: https://docs.
bnbchain.org/docs/overview. (accessed: 10.04.2023).

[27] Circle Internet Financial Limited. USD Coin. url: https://www.circle.com/
en/usdc. (accessed: 10.04.2023).

[28] CENTRE. Introducing USD Coin. url: https://www.centre.io/usdc. (ac-
cessed: 10.04.2023).

[29] Circle Internet Financial Limited. Euro Coin. url: https://www.circle.com/
en/euro-coin. (accessed: 10.04.2023).

[30] XRP Ledger. Your Questions About XRP, Answered. url: https://xrpl.org/
xrp-overview.html. (accessed: 11.04.2023).

[31] Ethereum Foundation. Introduction to Web3. url: https://ethereum.org/en/
web3/#what-is-web3. (accessed: 11.04.2023).

[32] XRP Ledger. XRPL Use Cases. url: https://xrpl.org/uses.html. (accessed:
11.04.2023).

[33] IOHK. Why use Cardano? url: https://docs.cardano.org/new-to-cardano/
why-use-cardano. (accessed: 12.04.2023).

[34] Cardano. What is Ada? url: https://cardano.org/what-is-ada/. (accessed:
12.04.2023)).

[35] Dogecoin Foundation. The Dogecoin Manifesto. url: https://foundation.
dogecoin.com/manifesto/. (accessed: 12.04.2023).

[36] The Dogecoin Foundation & Dogecoin Project. What is a miner? url: https:
/ / dogecoin . com / dogepedia / articles / what - is - a - miner/. (accessed:
12.04.2023).

[37] Ethereum Community. Scaling. url: https://ethereum.org/en/developers/
docs/scaling/#layer-2-scaling. (accessed: 17.04.2023).

[38] Polygon Community. What is Polygon? url: https://wiki.polygon.technology/
docs/home/polygon-basics/what-is-polygon. (accessed: 17.04.2023).

[39] Solana Foundation. Solana Documentaion. url: https://docs.solana.com/.
(accessed: 17.04.2023).

[40] Ethereum Community. Blocks. url: https://ethereum.org/en/developers/
docs/blocks/#block-time. (accessed: 17.05.2023).

[41] Ethereum Community. Sidechains. url: https://ethereum.org/en/developers/
docs/scaling/sidechains/. (accessed: 17.05.2023).

[42] Ethereum Community. Bridges. url: https://ethereum.org/en/developers/
docs/bridges/#how-do-bridges-work. (accessed: 17.05.2023).

[43] Ethereum Community. Introduction to dapps. url: https://ethereum.org/
en/developers/docs/dapps/. (accessed: 25.05.2023).

https://docs.bnbchain.org/docs/overview
https://docs.bnbchain.org/docs/overview
https://www.circle.com/en/usdc
https://www.circle.com/en/usdc
https://www.centre.io/usdc
https://www.circle.com/en/euro-coin
https://www.circle.com/en/euro-coin
https://xrpl.org/xrp-overview.html
https://xrpl.org/xrp-overview.html
https://ethereum.org/en/web3/#what-is-web3
https://ethereum.org/en/web3/#what-is-web3
https://xrpl.org/uses.html
https://docs.cardano.org/new-to-cardano/why-use-cardano
https://docs.cardano.org/new-to-cardano/why-use-cardano
https://cardano.org/what-is-ada/
https://foundation.dogecoin.com/manifesto/
https://foundation.dogecoin.com/manifesto/
https://dogecoin.com/dogepedia/articles/what-is-a-miner/
https://dogecoin.com/dogepedia/articles/what-is-a-miner/
https://ethereum.org/en/developers/docs/scaling/#layer-2-scaling
https://ethereum.org/en/developers/docs/scaling/#layer-2-scaling
https://wiki.polygon.technology/docs/home/polygon-basics/what-is-polygon
https://wiki.polygon.technology/docs/home/polygon-basics/what-is-polygon
https://docs.solana.com/
https://ethereum.org/en/developers/docs/blocks/#block-time
https://ethereum.org/en/developers/docs/blocks/#block-time
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/bridges/#how-do-bridges-work
https://ethereum.org/en/developers/docs/bridges/#how-do-bridges-work
https://ethereum.org/en/developers/docs/dapps/
https://ethereum.org/en/developers/docs/dapps/

68 Bibliography

[44] R3. Corda Permissioned Distributed Ledger Technology. url: https://r3.com/
products/corda. (accessed: 17.05.2023).

[45] R3. Configuring the Network Participants. url: https://docs.r3.com/en/
platform/corda/5.0-beta/developing/getting-started/configure-the-
network-participants/network-participants.html. (accessed: 17.05.2023).

[46] Databricks. What is Orchestration? url: https : / / www . databricks . com /
glossary/orchestration. (accessed: 21.05.2023).

[47] Walter Glenn. What Is a “Portable” App, and Why Does It Matter? url: https:
//www.howtogeek.com/290358/what-is-a-portable-app-and-why-does-
it-matter/. (accessed: 21.05.2023).

[48] Wikipedia. Portable Application. url: https://en.wikipedia.org/wiki/
Portable_application. (accessed: 21.05.2023).

[49] The Kubernetes Authors. Overview. url: https://kubernetes.io/docs/
concepts/overview/#why-you-need-kubernetes-and-what-can-it-do.
(accessed: 21.05.2023).

[50] Docker. Containerize an application. url: https://docs.docker.com/get-
started / 02 _ our _ app / #build - the - apps - container - image. (accessed:
29.05.2023).

[51] Docker. Dockerfile reference. url: https://docs.docker.com/engine/reference/
builder. (accessed: 29.05.2023).

[52] Docker.com. Use Docker Compose. url: https://docs.docker.com/get-
started/08_using_compose/. (accessed: 29.05.2023).

[53] Tim Fisher. What Is a Benchmark? url: https://www.lifewire.com/what-is-
a-benchmark-2625811. (accessed: 17.05.2023).

[54] docker. docker stats. url: https://docs.docker.com/engine/reference/
commandline/stats/. (accessed: 17.05.2023).

[55] Nicolas Hennion. Glances. url: https://github.com/nicolargo/glances.
(accessed: 17.05.2023).

[56] Nicolas Hennion. Glances. url: https : / / glances . readthedocs . io / en /
latest/. (accessed: 17.05.2023).

[57] prometheus.io. From metrics to insight. url: https://prometheus.io/. (ac-
cessed: 17.05.2023).

[58] Bitcoin. Bitcoin Core. url: https://bitcoin.org/en/bitcoin-core/. (ac-
cessed: 31.05.2023).

[59] Bitcoin Core developers. Bitcoin Core 0.13 release notes. url: https://github.
com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-
0.13.0.md#removal-of-internal-miner. (accessed: 26.05.2023).

https://r3.com/products/corda
https://r3.com/products/corda
https://docs.r3.com/en/platform/corda/5.0-beta/developing/getting-started/configure-the-network-participants/network-participants.html
https://docs.r3.com/en/platform/corda/5.0-beta/developing/getting-started/configure-the-network-participants/network-participants.html
https://docs.r3.com/en/platform/corda/5.0-beta/developing/getting-started/configure-the-network-participants/network-participants.html
https://www.databricks.com/glossary/orchestration
https://www.databricks.com/glossary/orchestration
https://www.howtogeek.com/290358/what-is-a-portable-app-and-why-does-it-matter/
https://www.howtogeek.com/290358/what-is-a-portable-app-and-why-does-it-matter/
https://www.howtogeek.com/290358/what-is-a-portable-app-and-why-does-it-matter/
https://en.wikipedia.org/wiki/Portable_application
https://en.wikipedia.org/wiki/Portable_application
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://docs.docker.com/get-started/02_our_app/#build-the-apps-container-image
https://docs.docker.com/get-started/02_our_app/#build-the-apps-container-image
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/get-started/08_using_compose/
https://docs.docker.com/get-started/08_using_compose/
https://www.lifewire.com/what-is-a-benchmark-2625811
https://www.lifewire.com/what-is-a-benchmark-2625811
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://github.com/nicolargo/glances
https://glances.readthedocs.io/en/latest/
https://glances.readthedocs.io/en/latest/
https://prometheus.io/
https://bitcoin.org/en/bitcoin-core/
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.13.0.md#removal-of-internal-miner
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.13.0.md#removal-of-internal-miner
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.13.0.md#removal-of-internal-miner

Bibliography 69

[60] Binance Acedemy. Proof of Authority Explained. url: https://academy.binance.
com/en/articles/proof-of-authority-explained. (accessed: 31.05.2023).

[61] The go-ethereum Authors. Private Networks. url: https://geth.ethereum.
org/docs/fundamentals/private-network. (accessed: 26.05.2023).

[62] Sawtooth.org. Introduction. url: https://sawtooth.hyperledger.org/docs/
1.2/. (accessed: 19.05.2023).

[63] Discord. Hyperledger Foundation. url: https://discord.com/servers/hyperledger-
foundation-905194001349627914. (accessed: 29.05.2023).

[64] Bhaskar Kashyap. PROOF-OF-STAKE (POS). url: https://ethereum.org/
en/developers/docs/consensus-mechanisms/pos/. (accessed: 31.05.2023).

[65] investopedia.com. How Do You Calculate R-Squared in Excel? url: https://
www.investopedia.com/ask/answers/012615/how- do- you- calculate-
rsquared-excel.asp. (accessed: 05.06.2023).

[66] Donald McIntyre. The Ethereum Classic Mining Difficulty Adjustment Explained.
url: https://ethereumclassic.org/blog/2023-03-15-the-ethereum-
classic-mining-difficulty-adjustment-explained. (accessed: 02.06.2023).

[67] Paul Valencourt Brenn Hill Samanyu Chopra and Narayan Prusty. DNS seeds.
url: https://www.oreilly.com/library/view/blockchain-developers-
guide/9781789954722/ccb46585-403e-44dd-a0a9-253bb48f2736.xhtml.
(accessed: 06.06.2023).

[68] ycharts.com. Ethereum Transactions Per Day. url: https://ycharts.com/
indicators/ethereum_transactions_per_day. (accessed: 06.06.2023).

[69] etherscan.io. Ethereum Node Tracker. url: https://etherscan.io/nodetracker.
(accessed: 06.06.2023).

[70] eos.io. eosio. url: https://eos.io/. (accessed: 06.06.2023).

[71] hyperledger.org. Hyperledger Fabric. url: https://www.hyperledger.org/
use/fabric. (accessed: 06.06.2023).

[72] hyperledger.org. Hyperledger Besu. url: https://www.hyperledger.org/use/
besu. (accessed: 06.06.2023).

https://academy.binance.com/en/articles/proof-of-authority-explained
https://academy.binance.com/en/articles/proof-of-authority-explained
https://geth.ethereum.org/docs/fundamentals/private-network
https://geth.ethereum.org/docs/fundamentals/private-network
https://sawtooth.hyperledger.org/docs/1.2/
https://sawtooth.hyperledger.org/docs/1.2/
https://discord.com/servers/hyperledger-foundation-905194001349627914
https://discord.com/servers/hyperledger-foundation-905194001349627914
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://www.investopedia.com/ask/answers/012615/how-do-you-calculate-rsquared-excel.asp
https://www.investopedia.com/ask/answers/012615/how-do-you-calculate-rsquared-excel.asp
https://www.investopedia.com/ask/answers/012615/how-do-you-calculate-rsquared-excel.asp
https://ethereumclassic.org/blog/2023-03-15-the-ethereum-classic-mining-difficulty-adjustment-explained
https://ethereumclassic.org/blog/2023-03-15-the-ethereum-classic-mining-difficulty-adjustment-explained
https://www.oreilly.com/library/view/blockchain-developers-guide/9781789954722/ccb46585-403e-44dd-a0a9-253bb48f2736.xhtml
https://www.oreilly.com/library/view/blockchain-developers-guide/9781789954722/ccb46585-403e-44dd-a0a9-253bb48f2736.xhtml
https://ycharts.com/indicators/ethereum_transactions_per_day
https://ycharts.com/indicators/ethereum_transactions_per_day
https://etherscan.io/nodetracker
https://eos.io/
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/besu
https://www.hyperledger.org/use/besu

Appendix A

Test Results

This chapter showcases the resource monitoring graphs of all functional blockchain
node networks, excluding those presented in Chapter 6, Results. The first graph is
located on the next page.

71

72 Appendix A. Test Results

A.1 Ethereum - Clique

0

1

2

3

4

5

Pe
rc

en
t

[Clique 10 nodes (5 blocks/min)]

CPU percent �me spent in user space

0.072

0.074

0.076

0.078

0.08

0.082

G
B

 u
se

d

Memory used in GB

0

5000

10000

15000

20000

25000

30000

35000

0
0

:0
0

:0
0

0
0

:0
1

:3
2

0
0

:0
3

:0
4

0
0

:0
4

:3
6

0
0

:0
6

:0
8

0
0

:0
7

:4
0

0
0

:0
9

:1
2

0
0

:1
0

:4
4

0
0

:1
2

:1
6

0
0

:1
3

:4
8

0
0

:1
5

:2
0

0
0

:1
6

:5
2

0
0

:1
8

:2
4

0
0

:1
9

:5
6

0
0

:2
1

:2
8

0
0

:2
3

:0
0

0
0

:2
4

:3
2

0
0

:2
6

:0
4

0
0

:2
7

:3
6

0
0

:2
9

:0
8

0
0

:3
0

:4
0

0
0

:3
2

:1
2

0
0

:3
3

:4
4

0
0

:3
5

:1
6

0
0

:3
6

:4
8

0
0

:3
8

:2
0

0
0

:3
9

:5
2

0
0

:4
1

:2
4

0
0

:4
2

:5
6

0
0

:4
4

:2
8

0
0

:4
6

:0
0

0
0

:4
7

:3
2

0
0

:4
9

:0
4

0
0

:5
0

:3
6

0
0

:5
2

:0
8

0
0

:5
3

:4
0

0
0

:5
5

:1
2

0
0

:5
6

:4
4

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.1: One node’s resource consumption when running the Clique network with 10 nodes for
60 minutes.

A.1. Ethereum - Clique 73

0

1

2

3

4

5

6

Pe
rc

en
t

[Clique 15 nodes (5 blocks/min)]

CPU percent �me spent in user space

0.088

0.09

0.092

0.094

0.096

0.098

0.1

G
B

 u
se

d

Memory used in GB

0

10000

20000

30000

40000

50000

60000

70000

80000

0
0

:0
0

:0
0

0
0

:0
1

:3
2

0
0

:0
3

:0
4

0
0

:0
4

:3
6

0
0

:0
6

:0
8

0
0

:0
7

:4
0

0
0

:0
9

:1
2

0
0

:1
0

:4
4

0
0

:1
2

:1
6

0
0

:1
3

:4
8

0
0

:1
5

:2
0

0
0

:1
6

:5
2

0
0

:1
8

:2
4

0
0

:1
9

:5
6

0
0

:2
1

:2
8

0
0

:2
3

:0
0

0
0

:2
4

:3
2

0
0

:2
6

:0
4

0
0

:2
7

:3
6

0
0

:2
9

:0
8

0
0

:3
0

:4
0

0
0

:3
2

:1
2

0
0

:3
3

:4
4

0
0

:3
5

:1
6

0
0

:3
6

:4
8

0
0

:3
8

:2
0

0
0

:3
9

:5
2

0
0

:4
1

:2
4

0
0

:4
2

:5
6

0
0

:4
4

:2
8

0
0

:4
6

:0
0

0
0

:4
7

:3
2

0
0

:4
9

:0
4

0
0

:5
0

:3
6

0
0

:5
2

:0
8

0
0

:5
3

:4
0

0
0

:5
5

:1
2

0
0

:5
6

:4
4

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.2: One node’s resource consumption when running the Clique network with 15 nodes for
60 minutes.

74 Appendix A. Test Results

0

1

2

3

4

5

6

7
Pe

rc
en

t

[Clique 20 nodes (5 blocks/min)]

CPU percent �me spent in user space

0.104

0.106

0.108

0.11

0.112

0.114

0.116

G
B

 u
se

d

Memory used in GB

0

20000

40000

60000

80000

100000

120000

0
0

:0
0

:0
0

0
0

:0
1

:3
8

0
0

:0
3

:1
6

0
0

:0
4

:5
4

0
0

:0
6

:3
2

0
0

:0
8

:1
0

0
0

:0
9

:4
8

0
0

:1
1

:2
6

0
0

:1
3

:0
4

0
0

:1
4

:4
2

0
0

:1
6

:2
0

0
0

:1
7

:5
8

0
0

:1
9

:3
6

0
0

:2
1

:1
4

0
0

:2
2

:5
2

0
0

:2
4

:3
0

0
0

:2
6

:0
8

0
0

:2
7

:4
6

0
0

:2
9

:2
4

0
0

:3
1

:0
2

0
0

:3
2

:4
0

0
0

:3
4

:1
8

0
0

:3
5

:5
6

0
0

:3
7

:3
4

0
0

:3
9

:1
2

0
0

:4
0

:5
0

0
0

:4
2

:2
8

0
0

:4
4

:0
6

0
0

:4
5

:4
4

0
0

:4
7

:2
2

0
0

:4
9

:0
0

0
0

:5
0

:3
8

0
0

:5
2

:1
6

0
0

:5
3

:5
4

0
0

:5
5

:3
2

0
0

:5
7

:1
0

0
0

:5
8

:4
8

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.3: One node’s resource consumption when running the Clique network with 20 nodes for
60 minutes.

A.1. Ethereum - Clique 75

0

1

2

3

4

5

6

7

Pe
rc

en
t

[Clique 25 nodes (5 blocks/min)]

CPU percent �me spent in user space

0.13

0.135

0.14

0.145

0.15

0.155

G
B

 u
se

d

Memory used in GB

20000

40000

60000

80000

100000

120000

140000

160000

0
0

:0
0

:0
0

0
0

:0
1

:3
6

0
0

:0
3

:1
2

0
0

:0
4

:4
8

0
0

:0
6

:2
4

0
0

:0
8

:0
0

0
0

:0
9

:3
6

0
0

:1
1

:1
2

0
0

:1
2

:4
8

0
0

:1
4

:2
4

0
0

:1
6

:0
0

0
0

:1
7

:3
6

0
0

:1
9

:1
2

0
0

:2
0

:4
8

0
0

:2
2

:2
4

0
0

:2
4

:0
0

0
0

:2
5

:3
6

0
0

:2
7

:1
2

0
0

:2
8

:4
8

0
0

:3
0

:2
4

0
0

:3
2

:0
0

0
0

:3
3

:3
6

0
0

:3
5

:1
2

0
0

:3
6

:4
8

0
0

:3
8

:2
4

0
0

:4
0

:0
0

0
0

:4
1

:3
6

0
0

:4
3

:1
2

0
0

:4
4

:4
8

0
0

:4
6

:2
4

0
0

:4
8

:0
0

0
0

:4
9

:3
6

0
0

:5
1

:1
2

0
0

:5
2

:4
8

0
0

:5
4

:2
4

0
0

:5
6

:0
0

0
0

:5
7

:3
6

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.4: One node’s resource consumption when running the Clique network with 25 nodes for
60 minutes.

76 Appendix A. Test Results

A.2 Ethereum - Ethash

92

94

96

98

100

102

104

106

108

Pe
rc

en
t

[Ethash 10 nodes (5.3 blocks/min)]

CPU percent �me spent in user space

0.26

0.265

0.27

0.275

0.28

0.285

0.29

G
B

 u
se

d

Memory used in GB

0

5000

10000

15000

20000

25000

30000

35000

40000

0
0

:0
0

:0
0

0
0

:0
1

:3
2

0
0

:0
3

:0
4

0
0

:0
4

:3
6

0
0

:0
6

:0
8

0
0

:0
7

:4
0

0
0

:0
9

:1
2

0
0

:1
0

:4
4

0
0

:1
2

:1
6

0
0

:1
3

:4
8

0
0

:1
5

:2
0

0
0

:1
6

:5
2

0
0

:1
8

:2
4

0
0

:1
9

:5
6

0
0

:2
1

:2
8

0
0

:2
3

:0
0

0
0

:2
4

:3
2

0
0

:2
6

:0
4

0
0

:2
7

:3
6

0
0

:2
9

:0
8

0
0

:3
0

:4
0

0
0

:3
2

:1
2

0
0

:3
3

:4
4

0
0

:3
5

:1
6

0
0

:3
6

:4
8

0
0

:3
8

:2
0

0
0

:3
9

:5
2

0
0

:4
1

:2
4

0
0

:4
2

:5
6

0
0

:4
4

:2
8

0
0

:4
6

:0
0

0
0

:4
7

:3
2

0
0

:4
9

:0
4

0
0

:5
0

:3
6

0
0

:5
2

:0
8

0
0

:5
3

:4
0

0
0

:5
5

:1
2

0
0

:5
6

:4
4

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.5: One node’s resource consumption when running the Ethash network with 10 nodes for
60 minutes.

A.2. Ethereum - Ethash 77

90

95

100

105

110

Pe
rc

en
t

[Ethash 15 nodes (5.1 blocks/min)]

CPU percent �me spent in user space

0.27

0.275

0.28

0.285

0.29

0.295

G
B

 u
se

d

Memory used in GB

0

10000

20000

30000

40000

50000

60000

70000

0
0

:0
0

:0
0

0
0

:0
1

:3
2

0
0

:0
3

:0
4

0
0

:0
4

:3
6

0
0

:0
6

:0
8

0
0

:0
7

:4
0

0
0

:0
9

:1
2

0
0

:1
0

:4
4

0
0

:1
2

:1
6

0
0

:1
3

:4
8

0
0

:1
5

:2
0

0
0

:1
6

:5
2

0
0

:1
8

:2
4

0
0

:1
9

:5
6

0
0

:2
1

:2
8

0
0

:2
3

:0
0

0
0

:2
4

:3
2

0
0

:2
6

:0
4

0
0

:2
7

:3
6

0
0

:2
9

:0
8

0
0

:3
0

:4
0

0
0

:3
2

:1
2

0
0

:3
3

:4
4

0
0

:3
5

:1
6

0
0

:3
6

:4
8

0
0

:3
8

:2
0

0
0

:3
9

:5
2

0
0

:4
1

:2
4

0
0

:4
2

:5
6

0
0

:4
4

:2
8

0
0

:4
6

:0
0

0
0

:4
7

:3
2

0
0

:4
9

:0
4

0
0

:5
0

:3
6

0
0

:5
2

:0
8

0
0

:5
3

:4
0

0
0

:5
5

:1
2

0
0

:5
6

:4
4

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.6: One node’s resource consumption when running the Ethash network with 15 nodes for
60 minutes.

78 Appendix A. Test Results

90

95

100

105

110
Pe

rc
en

t

[Ethash 20 nodes (5.1 blocks/min)]

CPU percent �me spent in user space

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

G
B

 u
se

d

Memory used in GB

0

20000

40000

60000

80000

100000

120000

0
0

:0
0

:0
0

0
0

:0
1

:3
6

0
0

:0
3

:1
2

0
0

:0
4

:4
8

0
0

:0
6

:2
4

0
0

:0
8

:0
0

0
0

:0
9

:3
6

0
0

:1
1

:1
2

0
0

:1
2

:4
8

0
0

:1
4

:2
4

0
0

:1
6

:0
0

0
0

:1
7

:3
6

0
0

:1
9

:1
2

0
0

:2
0

:4
8

0
0

:2
2

:2
4

0
0

:2
4

:0
0

0
0

:2
5

:3
6

0
0

:2
7

:1
2

0
0

:2
8

:4
8

0
0

:3
0

:2
4

0
0

:3
2

:0
0

0
0

:3
3

:3
6

0
0

:3
5

:1
2

0
0

:3
6

:4
8

0
0

:3
8

:2
4

0
0

:4
0

:0
0

0
0

:4
1

:3
6

0
0

:4
3

:1
2

0
0

:4
4

:4
8

0
0

:4
6

:2
4

0
0

:4
8

:0
0

0
0

:4
9

:3
6

0
0

:5
1

:1
2

0
0

:5
2

:4
8

0
0

:5
4

:2
4

0
0

:5
6

:0
0

0
0

:5
7

:3
6

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.7: One node’s resource consumption when running the Ethash network with 20 nodes for
60 minutes.

A.2. Ethereum - Ethash 79

90

95

100

105

110

Pe
rc

en
t

[Ethash 25 nodes (5.1 blocks/min)]

CPU percent �me spent in user space

0.286

0.287

0.288

0.289

0.29

0.291

0.292

0.293

0.294

G
B

 u
se

d

Memory used in GB

20000

40000

60000

80000

100000

120000

140000

0
0

:0
0

:0
0

0
0

:0
1

:3
8

0
0

:0
3

:1
6

0
0

:0
4

:5
4

0
0

:0
6

:3
2

0
0

:0
8

:1
0

0
0

:0
9

:4
8

0
0

:1
1

:2
6

0
0

:1
3

:0
4

0
0

:1
4

:4
2

0
0

:1
6

:2
0

0
0

:1
7

:5
8

0
0

:1
9

:3
6

0
0

:2
1

:1
4

0
0

:2
2

:5
2

0
0

:2
4

:3
0

0
0

:2
6

:0
8

0
0

:2
7

:4
6

0
0

:2
9

:2
4

0
0

:3
1

:0
2

0
0

:3
2

:4
0

0
0

:3
4

:1
8

0
0

:3
5

:5
6

0
0

:3
7

:3
4

0
0

:3
9

:1
2

0
0

:4
0

:5
0

0
0

:4
2

:2
8

0
0

:4
4

:0
6

0
0

:4
5

:4
4

0
0

:4
7

:2
2

0
0

:4
9

:0
0

0
0

:5
0

:3
8

0
0

:5
2

:1
6

0
0

:5
3

:5
4

0
0

:5
5

:3
2

0
0

:5
7

:1
0

0
0

:5
8

:4
8

b
p

s

Time

The combined received+sent rate (in bit per second)

Figure A.8: One node’s resource consumption when running the Ethash network with 25 nodes for
60 minutes.

Appendix B

Bitcoin Resources

This appendix chapter will showcase the Dockerfile which was used for the Bitcoin
Core client.

Listing B.1: This Dockerfile shows the first Bitcoin Core Dockerfile.

1 FROM debian:bullseye-slim
2

3 RUN useradd -r bitcoin \
4 && apt-get update -y \
5 && apt-get install -y curl \
6 && apt-get clean \
7 && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
8

9 ENV BITCOIN_VERSION=0.12.1
10 ENV BITCOIN_DATA=/home/bitcoin/.bitcoin
11 ENV PATH=/opt/bitcoin-${BITCOIN_VERSION}/bin:$PATH
12

13 RUN curl -SLO https://bitcoincore.org/bin/bitcoin-core-${BITCOIN_VERSION}/
14 bitcoin-${BITCOIN_VERSION}-linux64.tar.gz \
15 && tar -xzf *.tar.gz -C /opt \
16 && rm *.tar.gz \
17 && rm -rf /opt/bitcoin-${BITCOIN_VERSION}/bin/bitcoin-qt
18

19 COPY bitcoin-conf1.conf /root/.bitcoin/bitcoin.conf
20

21 EXPOSE 8332 8333 18332 18333 18443 18444 38333 38332
22

23 CMD ["bitcoind"]

Listing B.2: This Dockerfile shows the second Bitcoin Core Dockerfile.

81

82 Appendix B. Bitcoin Resources

1 FROM debian:bullseye-slim
2

3 RUN useradd -r bitcoin \
4 && apt-get update -y \
5 && apt-get install -y curl \
6 && apt-get clean \
7 && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
8

9 ENV BITCOIN_VERSION=0.12.1
10 ENV BITCOIN_DATA=/home/bitcoin/.bitcoin
11 ENV PATH=/opt/bitcoin-${BITCOIN_VERSION}/bin:$PATH
12

13 RUN curl -SLO
https://bitcoincore.org/bin/bitcoin-core-${BITCOIN_VERSION}/bitcoin-

14 ${BITCOIN_VERSION}-linux64.tar.gz \
15 && tar -xzf *.tar.gz -C /opt \
16 && rm *.tar.gz \
17 && rm -rf /opt/bitcoin-${BITCOIN_VERSION}/bin/bitcoin-qt
18

19 COPY bitcoin-conf2.conf /root/.bitcoin/bitcoin.conf
20

21 EXPOSE 8332 8333 18332 18333 18443 18444 38333 38332
22

23 CMD ["bitcoind"]

Appendix C

Ethereum Resources

This appendix chapter will showcase the Ethereum Dockerfiles for the bootstrap
node in addition to both a signer and a miner node, as well as the bash script that
can start and set up an Ethereum network.

Listing C.1: This Dockerfile shows the BootstrapDockerfile.

1 FROM debian:bullseye
2

3 ARG GETH_VERSION
4

5 ENV PATH=/opt/geth-linux-amd64-${GETH_VERSION}:$PATH
6 ENV NETWORK_ID=12345
7

8 RUN mkdir /eth-data
9 RUN mkdir /download-data

10

11 COPY ./download/ /download-data/
12 COPY genesis.json /eth-data/genesis.json
13 COPY password password
14 COPY bootstrap.sh /bootstrap.sh
15 COPY node-0 /root/.ethereum
16

17 RUN chmod +x /bootstrap.sh
18

19 RUN tar -xzf /download-data/*.tar.gz -C /opt \
20 && rm /download-data/*.tar.gz \
21 && geth init /eth-data/genesis.json \
22 && ls /root/.ethereum/keystore | grep -Eo ’Z--.*’ | cut -d’-’ -f 3 >>

ethereum-address
23

24 EXPOSE 8551 8545 30303

83

84 Appendix C. Ethereum Resources

25

26 CMD ["sh", "-c", "/bootstrap.sh"]

Listing C.2: This Dockerfile shows the SignerDockerfile.

1 FROM debian:bullseye
2

3 ARG INDEX
4 ARG GETH_VERSION
5

6 ENV PATH=/opt/geth-linux-amd64-${GETH_VERSION}:$PATH
7 ENV NETWORK_ID=12345
8

9 RUN mkdir /eth-data
10 RUN mkdir /download-data
11

12 COPY ./download/ /download-data/
13 COPY genesis.json /eth-data/genesis.json
14 COPY password password
15 COPY signer.sh /signer.sh
16 COPY node-${INDEX} /root/.ethereum
17 COPY bootstrap-enode /eth-data/bootstrap-enode
18

19 RUN chmod +x /signer.sh
20

21 RUN tar -xzf /download-data/*.tar.gz -C /opt \
22 && rm /download-data/*.tar.gz \
23 && geth init /eth-data/genesis.json \
24 && ls /root/.ethereum/keystore | grep -Eo ’Z--.*’ | cut -d’-’ -f 3 >>

ethereum-address
25

26 EXPOSE 8551 30303
27

28 CMD ["sh", "-c", "/signer.sh"]

Listing C.3: This Dockerfile shows the MinerDockerfile.

1 FROM debian:bullseye
2

3 ARG INDEX
4 ARG GETH_VERSION
5

6 ENV PATH=/opt/geth-linux-amd64-${GETH_VERSION}:$PATH
7 ENV NETWORK_ID=12345

85

8

9 RUN mkdir /eth-data
10 RUN mkdir /download-data
11

12 COPY ./download/ /download-data/
13 COPY genesis.json /eth-data/genesis.json
14 COPY password password
15 COPY miner.sh /miner.sh
16 COPY node-${INDEX} /root/.ethereum
17 COPY bootstrap-enode /eth-data/bootstrap-enode
18

19 RUN chmod +x /miner.sh
20

21 RUN tar -xzf /download-data/*.tar.gz -C /opt \
22 && rm /download-data/*.tar.gz \
23 && geth init /eth-data/genesis.json \
24 && ls /root/.ethereum/keystore | grep -Eo ’Z--.*’ | cut -d’-’ -f 3 >>

ethereum-address
25

26 EXPOSE 8551 30303
27

28 CMD ["sh", "-c", "/miner.sh"]

Listing C.4: Bash script which starts an Ethereum Clique network with a custom amount of nodes.

1 GETH_VERSION=1.11.5-a38f4108
2

3 docker ps --filter name=bootstrap -aq | xargs docker stop | xargs docker rm
4 docker ps --filter name=node-* -aq | xargs docker stop | xargs docker rm
5

6 echo -----Input number of nodes:
7 read nodes
8

9 cd
10 cd thesis/blockchainClientStorage/Ethereum/Clique
11 mkdir -p data
12 cd
13 rm -rf thesis/blockchainClientStorage/Ethereum/Clique/data/*
14 cd
15 cd thesis/blockchainClientStorage/Ethereum/Clique/data
16 echo password > password
17

18 echo -----Cleaned and setup data folder
19

86 Appendix C. Ethereum Resources

20 mkdir -p download
21 cd download
22

23 curl -SLO https://gethstore.blob.core.windows.net/builds/geth-linux-
24 amd64-$GETH_VERSION.tar.gz
25

26 cd ..
27 echo -----Downloaded blockchain client
28

29 for index in $(seq 0 $nodes)
30 do
31 mkdir -p node-$index
32 geth --datadir node-$index account new --password password | grep -Eo

’0x.*’ | cut -d’x’ -f 2 >> ethereum-addresses
33 done
34

35 cp ../clique-genesis.json genesis.json
36 sed -i "s/ETH_ADDR/$(cat ethereum-addresses | tr -d ’\n’)/g" genesis.json
37

38 echo -----Added addresses to genesis file
39

40 cd ..
41 cp bootstrap.sh data/bootstrap.sh
42 docker build --build-arg GETH_VERSION=$GETH_VERSION -t bootstrap-image -f

BootstrapDockerfile data
43 docker create --network p10network --ip 192.168.0.2 --name bootstrap

bootstrap-image
44 docker start bootstrap
45

46 echo -----Finished building, creating, and starting the bootstrap node
47

48 sleep 3
49 docker exec bootstrap geth attach --exec admin.nodeInfo.enr | cut -d’"’ -f

2 > data/bootstrap-enode
50

51 echo -----Finished retrieving the bootstrap nodes enode info
52

53 cp signer.sh data/signer.sh
54 for index in $(seq 1 $nodes)
55 do
56 docker build --build-arg INDEX=$index --build-arg

GETH_VERSION=$GETH_VERSION -t node-$index-image -f SignerDockerfile data
57 docker create --network p10network --name node-$index node-$index-image

87

58 docker start node-$index
59 echo -----Started node-$index
60 done
61

62 echo -----Finished

Appendix D

Hyperledger Sawtooth Resources

This appendix chapter will showcase the Hyperledger Sawtooth PBFT docker-
compose YAML file.

Listing D.1: This YAML file showcases the docker-compose yaml file for starting a two node Hyper-
ledger Sawtooth PBFT network.

1 version: ’3’
2

3 volumes:
4 pbft-shared:
5

6 services:
7

8 # -------------=== rest api ===-------------
9 rest-api-0:

10 image: hyperledger/sawtooth-rest-api:chime
11 container_name: sawtooth-rest-api-default-0
12 expose:
13 - 8008
14 ports:
15 - ’8008:8008’
16 depends_on:
17 - validator-0
18 entrypoint: |
19 sawtooth-rest-api -vvv
20 --connect tcp://validator-0:4004
21 --bind rest-api-0:8008
22 stop_signal: SIGKILL
23

24 rest-api-1:
25 image: hyperledger/sawtooth-rest-api:chime

89

90 Appendix D. Hyperledger Sawtooth Resources

26 container_name: sawtooth-rest-api-default-1
27 expose:
28 - 8009
29 ports:
30 - ’8009:8009’
31 depends_on:
32 - validator-1
33 entrypoint: |
34 sawtooth-rest-api -vvv
35 --connect tcp://validator-1:4005
36 --bind rest-api-1:8009
37 stop_signal: SIGKILL
38

39 # -------------=== validators ===-------------
40

41 validator-0:
42 image: hyperledger/sawtooth-validator:chime
43 container_name: sawtooth-validator-default-0
44 expose:
45 - 4004
46 - 5050
47 - 8800
48 volumes:
49 - pbft-shared:/pbft-shared
50 command: |
51 bash -c "
52 if [-e /pbft-shared/validators/validator-0.priv]; then
53 cp /pbft-shared/validators/validator-0.pub

/etc/sawtooth/keys/validator.pub
54 cp /pbft-shared/validators/validator-0.priv

/etc/sawtooth/keys/validator.priv
55 fi &&
56 if [! -e /etc/sawtooth/keys/validator.priv]; then
57 sawadm keygen
58 mkdir -p /pbft-shared/validators || true
59 cp /etc/sawtooth/keys/validator.pub

/pbft-shared/validators/validator-0.pub
60 cp /etc/sawtooth/keys/validator.priv

/pbft-shared/validators/validator-0.priv
61 fi &&
62 if [! -e config-genesis.batch]; then
63 sawset genesis -k /etc/sawtooth/keys/validator.priv -o

config-genesis.batch

91

64 fi &&
65 while [[! -f /pbft-shared/validators/validator-1.pub]];
66 do sleep 1; done
67 echo sawtooth.consensus.pbft.members=\\[’\"’$$(cat

/pbft-shared/validators/validator-0.pub)’\"’,’\"’$$(cat
/pbft-shared/validators/validator-1.pub)’\"’\\] &&

68 if [! -e config.batch]; then
69 sawset proposal create \
70 -k /etc/sawtooth/keys/validator.priv \
71 sawtooth.consensus.algorithm.name=pbft \
72 sawtooth.consensus.algorithm.version=chime \
73 sawtooth.consensus.pbft.members=\\[’\"’$$(cat

/pbft-shared/validators/validator-0.pub)’\"’,’\"’$$(cat
/pbft-shared/validators/validator-1.pub)’\"’\\] \

74 sawtooth.publisher.max_batches_per_block=1200 \
75 -o config.batch
76 fi &&
77 if [! -e /var/lib/sawtooth/genesis.batch]; then
78 sawadm genesis config-genesis.batch config.batch
79 fi &&
80 if [! -e /root/.sawtooth/keys/my_key.priv]; then
81 sawtooth keygen my_key
82 fi &&
83 sawtooth-validator -vvv \
84 --endpoint tcp://validator-0:8800 \
85 --bind component:tcp://eth0:4004 \
86 --bind consensus:tcp://eth0:5050 \
87 --bind network:tcp://eth0:8800 \
88 --scheduler parallel \
89 --peering static \
90 --maximum-peer-connectivity 10000
91 "
92 validator-1:
93 image: hyperledger/sawtooth-validator:chime
94 container_name: sawtooth-validator-default-1
95 expose:
96 - 4005
97 - 5051
98 - 8801
99 volumes:

100 - pbft-shared:/pbft-shared
101 command: |
102 bash -c "

92 Appendix D. Hyperledger Sawtooth Resources

103 if [-e /pbft-shared/validators/validator-1.priv]; then
104 cp /pbft-shared/validators/validator-1.pub

/etc/sawtooth/keys/validator.pub
105 cp /pbft-shared/validators/validator-1.priv

/etc/sawtooth/keys/validator.priv
106 fi &&
107 if [! -e /etc/sawtooth/keys/validator.priv]; then
108 sawadm keygen
109 sawtooth keygen my_key
110 mkdir -p /pbft-shared/validators || true
111 cp /etc/sawtooth/keys/validator.pub

/pbft-shared/validators/validator-1.pub
112 cp /etc/sawtooth/keys/validator.priv

/pbft-shared/validators/validator-1.priv
113 fi &&
114 sawtooth-validator -vvv \
115 --endpoint tcp://validator-1:8801 \
116 --bind component:tcp://eth0:4005 \
117 --bind consensus:tcp://eth0:5051 \
118 --bind network:tcp://eth0:8801 \
119 --scheduler parallel \
120 --peering static \
121 --maximum-peer-connectivity 10000 \
122 --peers tcp://validator-0:8800
123 "
124

125 # -------------=== pbft engines ===-------------
126

127 pbft-0:
128 image: hyperledger/sawtooth-pbft-engine:chime
129 container_name: sawtooth-pbft-engine-default-0
130 depends_on:
131 - validator-0
132 entrypoint: |
133 pbft-engine -vvv --connect tcp://validator-0:5050
134 stop_signal: SIGKILL
135

136 pbft-1:
137 image: hyperledger/sawtooth-pbft-engine:chime
138 container_name: sawtooth-pbft-engine-default-1
139 depends_on:
140 - validator-1
141 entrypoint: |

93

142 pbft-engine -vvv --connect tcp://validator-1:5051
143 stop_signal: SIGKILL
144

145 # -------------=== settings tp ===-------------
146

147 settings-tp-0:
148 image: hyperledger/sawtooth-settings-tp:chime
149 depends_on:
150 - validator-0
151 command: settings-tp -vv --connect tcp://validator-0:4004
152

153 settings-tp-1:
154 image: hyperledger/sawtooth-settings-tp:chime
155 depends_on:
156 - validator-1
157 command: settings-tp -vv --connect tcp://validator-1:4005
158

159 # -------------=== xo tp ===-------------
160

161 xo-tp-0:
162 image: hyperledger/sawtooth-xo-tp-python:chime
163 container_name: sawtooth-xo-tp-python-default-0
164 expose:
165 - 4010
166 depends_on:
167 - validator-0
168 command: xo-tp-python -vv -C tcp://validator-0:4004
169 stop_signal: SIGKILL
170

171 xo-tp-1:
172 image: hyperledger/sawtooth-xo-tp-python:chime
173 container_name: sawtooth-xo-tp-python-default-1
174 expose:
175 - 4010
176 depends_on:
177 - validator-1
178 command: xo-tp-python -vv -C tcp://validator-1:4005
179 stop_signal: SIGKILL
180

181 # -------------=== intkey tp ===-------------
182

183 intkey-tp-0:
184 image: hyperledger/sawtooth-intkey-tp-python:chime

94 Appendix D. Hyperledger Sawtooth Resources

185 container_name: sawtooth-intkey-tp-python-default-0
186 expose:
187 - 4004
188 command: intkey-tp-python -C tcp://validator-0:4004
189 stop_signal: SIGKILL
190

191 intkey-tp-1:
192 image: hyperledger/sawtooth-intkey-tp-python:chime
193 container_name: sawtooth-intkey-tp-python-default-1
194 expose:
195 - 4004
196 command: intkey-tp-python -C tcp://validator-1:4005
197 stop_signal: SIGKILL
198

199 # -------------=== shell ===-------------
200

201 shell:
202 image: hyperledger/sawtooth-shell:chime
203 container_name: sawtooth-shell-default
204 entrypoint: "bash -c \"\
205 sawtooth keygen && \
206 tail -f /dev/null \
207 \""

	Front page
	English title page
	Preface
	Contents
	1 Introduction
	1.1 Initial problem statement

	2 Problem Analysis
	2.1 Stakeholder Analysis
	2.1.1 Identification
	2.1.2 Prioritization
	2.1.3 Understanding
	2.1.4 Summary

	2.2 Blockchains
	2.3 Consensus Mechanisms
	2.3.1 Examples of Consensus Mechanisms

	2.4 Blockchain Node
	2.4.1 Blockchain Clients and Consensus Mechanisms
	2.4.2 Blockchain Node Types

	2.5 Related Work
	2.5.1 Summary

	3 Problem Statement
	3.1 Problem statement

	4 Design
	4.1 Choosing Blockchains
	4.1.1 Blockchains from Popular Cryptocurrencies
	4.1.2 Blockchains for Developing Distributed Applications
	4.1.3 Summary

	4.2 Orchestration
	4.2.1 Containerization

	4.3 Resource Monitoring
	4.3.1 Existing Resource Monitoring Solutions
	4.3.2 Summary

	4.4 Architecture

	5 Implementation
	5.1 Resource Monitoring
	5.1.1 Docker Container Monitoring with Glances

	5.2 Bitcoin
	5.3 Ethereum
	5.3.1 Image creation script

	5.4 Hyperledger Sawtooth
	5.4.1 Configuring Hyperledger Sawtooth
	5.4.2 Hyperledger Sawtooth PBFT
	5.4.3 Hyperledger Sawtooth PoET

	6 Results
	6.1 Testing Method
	6.2 Clique Results
	6.2.1 Visualizing the Growth of Resource Consumption Data

	6.3 Ethash Results
	6.3.1 Visualizing the Growth of Resource Consumption Data

	6.4 Comparing Results
	6.4.1 CPU Usage
	6.4.2 Memory Usage
	6.4.3 Network Usage
	6.4.4 Summary

	7 Discussion
	7.1 Failed Attempts with Selected Networks
	7.2 Private Versus Public Blockchain Networks
	7.2.1 Public Networks and Transactions

	7.3 Limitations in the Server Specifications
	7.4 Finding the Correct Ethash Mining Difficulties
	7.5 Potential Project Pivot
	7.6 Ethereum Clients

	8 Conclusion
	9 Future work
	9.1 Generalize Network Setup
	9.2 Add a Graphical User Interface
	9.3 Automate Data Processing
	9.4 Get Bitcoin Core and Hyperledger Sawtooth to Work
	9.5 Test Additional Blockchains

	Bibliography
	A Test Results
	A.1 Ethereum - Clique
	A.2 Ethereum - Ethash

	B Bitcoin Resources
	C Ethereum Resources
	D Hyperledger Sawtooth Resources

