
Computer Science
Aalborg University

aau.dk

Title:
Combining Learned and Handcrafted Features
for Injury Risk Estimation in Football

Theme:
Master Thesis

Project Period:
Spring Semester 2023

Project Group:
cs-23-mi-10-07

Participant(s):
Anders Knudsen Jensen
Kenneth Krogh Hansen
Marcus Kassow Rasmussen

Supervisor(s):
Thomas D. Nielsen
Christian S. Jensen

Copies: 1

Page Count: 81

Date of Completion:
June 8, 2023

Abstract:

In football, injuries are a key concern that lim-
its players’ ability to play, resulting in both per-
formance and financial consequences for clubs.
In this project, we develop Machine Learning
(ML) models for ranking football players based
on their risk of injury. This project is completed
in collaboration with the Danish football club
Aalborg Boldklub (AaB), using data collected
during training and match sessions. We fuse
four datasets into a single dataset consisting
of 4, 350 match and training sessions, with 89
of these sessions containing an injury. We cre-
ate a ML model that exclusively utilizes hand-
crafted features from domain knowledge, a ML
model that relies exclusively on learned fea-
tures, a ML model that combines handcrafted
and learned features, and a ML model that uti-
lizes learned representations based on player
ID classification to learn a player’s risk of in-
jury. For handling the dataset imbalance dur-
ing training, we utilize Cost-Sensitive Learn-
ing, combined with binary cross entropy as
the loss function. We are able to estimate the
player’s risk of injury to some extent, provid-
ing a recommendation tool for medical staff.
The best performing model exclusively utilizes
handcrafted features with a precision @ k of
56.66% ± 9.08 using k = 5, with a Discounted
Cumulative Gain score of 0.90± 0.08.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with
the author.

https://www.aau.dk

Summary
In this project, we implement different machine learning models for estimating a player’s risk of
injury in football using different forms of input, Learned features, handcrafted features and a
combination of both elements. Based on the risk estimation, we rank the player’s in a recommender
system for Aalborg Boldklub (AaB)s medical staff.

We use data provided by the Danish football club AaB. AaB provides us with four different data
sources, from the 5. January 2021 to 5. April 2023 and contains data from 24 players collected
using wearable sports devices during matches and training sessions. The different data sources
are raw GPS data, calculated features, injuries, and surveys. The expertise from the medical
staff at AaB is incorporated into our different models for estimating a player’s risk of injury. The
dataset used in this project exhibits significant class imbalance, both regarding the sessions with
injuries compared to those without injuries and furthermore variation in the number of recorded
sessions for each player.

The data needs to be preprocessed to ensure that it is usable for machine learning. The raw
GPS data contains inconsistencies arising from sensor errors, resulting in gaps within the data
where the tracker vests do not record any information. The first part of the preprocessing handles
these gaps by patching the data using synthetic data samples. The GPS data is cut based on
the length of the sessions as some players forget to turn off their equipment or start them by
accident. The final dataset contains session lengths between 2, 500 to 11, 000 seconds. The data
from the different datasets are mapped to match each other based on the dates of the sessions
from all the datasets, resulting in a dataset containing 4, 350 sessions covering 24 players and
89 injuries. The raw GPS data for sessions are split into sliding windows and sequences where
each sequence contains a series of sliding windows and each sliding window contains 40 statistical
features that are extracted directly from the session’s raw GPS data. The sliding windows serve as
the foundation for the learned features that are relevant to a player’s risk of injury in the machine
learning models. In addition to these features, we construct 12 handcrafted features based on
domain knowledge from the medical staff at AaB and related work. We use feature normalization
to ensure all the data is in the same ranges for the machine learning, with player-based z-score
normalization.

In this project, we are using Gated Recurrent Unit layers combined with fully connected layers,
multi-head attention layers, and dropout layers in order to construct the models we are using for
injury risk estimation while keeping the temporal properties and dependencies in the data.

We introduce four different models to encompass the risk estimation of injuries; a model using
solely handcrafted features from the knowledge gathered from the medical staff and previous
work; a model using exclusively learned features; an end-to-end model utilizing the combination
of learned and handcrafted features; a model using pre-learned features from another model. To
evaluate these four models we construct a random risk baseline, to ensure our models perform
better than random.

To evaluate our models, we use discounted cumulative gain (DCG) combined with precision @ k
(P@k). Our experiments show that we are able to learn a player’s risk of sustaining an injury
when only using learned features, using only handcrafted features from domain knowledge, and
finally when using a combination of both. The best-performing models in our initial experiments
are developed further in search of finding the optimal hyperparameters. Our best model is the
model that relies exclusively on handcrafted features with a P@k of 56.66%± 9.08 at k = 5 and a

DCG of 0.90± 0.08. In addition to these experiments, we also construct two ablation studies to
better understand the results of some experiments.

We conclude that we are, to some extent, able to correctly rank players based on their risk of
injury, and by doing so provide Aalborg Boldklub an additional tool to determine which players
are at the highest risk of injury. The tool is intended to be used in situations where the medical
staff does not have sufficient time to converse and evaluate all players.

Combining Learned and Handcrafted
Features for Injury Risk Estimation

in Football

Master Thesis
CS-23-MI-10-07

Aalborg University
Department of Computer Science

Acknowledgments
We would like to express our sincere gratitude to the following individuals and organizations for
their invaluable contributions to the completion of this project:

Firstly we extend our sincere gratitude to Aalborg Boldklub. Their data and cooperation have
been instrumental in enabling us to complete our project.

We would also like to extend our appreciation to the medical staff at Aalborg Boldklub, for their
collaboration throughout the duration of this project. We are grateful for the valuable insights into
injury risk estimation they have provided, and their responses to all of our clarifying questions.

Lastly, we would like to extend a special thanks to our supervisors Thomas Dyhre Nielsen and
Christian Søndergaard Jensen for their support and continuous guidance throughout this project.
Their feedback, constructive criticism, and guidance have significantly improved our work and
motivated us to deliver the best possible results.

Contents

1 Introduction 1

2 Related Work 5
2.1 Injury Prevention . 5

2.1.1 Contribution . 7
2.2 Learning Features from GPS data . 7

2.2.1 Contribution . 8
2.3 Combination of Learned and Handcrafted Features 9

2.3.1 Contribution . 9

3 Dataset Foundation 11
3.1 Data Collection . 11
3.2 Datasets . 12

3.2.1 Raw GPS data . 12
3.2.2 Calculated Features . 12
3.2.3 Injuries . 13
3.2.4 Surveys . 13

3.3 GPS Heatmap . 14
3.4 IMU Data . 14
3.5 Data Imbalance . 15

4 Data Preparation 17
4.1 Preprocessing . 17

4.1.1 Patching the GPS Data . 17
4.1.2 Session Cutting . 18

4.2 Feature Generation . 19
4.2.1 GPS Features . 19
4.2.2 Domain Features - Handcrafted Features . 20
4.2.3 Feature Normalization . 22

4.3 Data Mapping . 23

5 Theory 25
5.1 Neural Network . 25

5.1.1 Loss Functions . 26
5.1.2 Activation Functions . 27
5.1.3 Layers . 28

5.2 Recurrent Neural Network . 29

5.2.1 Gated Recurrent Unit . 30
5.3 Self-Attention . 31
5.4 Multi-Head Attention . 32
5.5 Evaluation Metrics . 33

5.5.1 Precision @ k . 33
5.5.2 Discounted Cumulative Gain . 34

5.6 t-Distributed Stochastic Neighbor Embedding . 34

6 Models 35
6.1 Handcrafted Features Model . 35

6.1.1 Model Architecture . 36
6.2 Learned Features Model . 37

6.2.1 Model Architecture . 37
6.3 End-to-End Week Encoding Risk Estimation Model 40

6.3.1 Model Architecture . 40
6.4 Player ID Classification Model . 42

6.4.1 Model Architecture . 43
6.5 Player ID Encoding Injury Risk Estimation Model 44

6.5.1 Model Architecture . 44

7 Experiments 47
7.1 Experiment Setup . 47
7.2 Random Risk . 49

7.2.1 Results . 50
7.3 Handcrafted Features Model . 50

7.3.1 Results . 50
7.4 Learned Features Model . 51

7.4.1 Results . 51
7.5 End-to-End Week Encoding Risk Estimation Model 54

7.5.1 Results . 54
7.6 Player ID Classification Model . 55

7.6.1 Loss Function . 56
7.6.2 Results . 56
7.6.3 Basis Feature Evaluation . 58
7.6.4 Statistical Feature Evaluation . 59

7.7 Player ID Encoding Injury Risk Estimation Model 60
7.7.1 Results . 60

7.8 Experiment Summary . 62
7.9 Parameter Optimization Experiment . 63

7.9.1 Optimizing the E2EWR Model . 63
7.9.2 Optimizing the HF Model . 65

7.10 Feature Evaluation . 68

8 Discussion 71
8.1 Evaluation Metrics . 71
8.2 10 runs . 72
8.3 Loss vs Precision . 72
8.4 Features . 72
8.5 Data . 73

8.5.1 Session Cutting . 73
8.5.2 GPS Patching . 73
8.5.3 Data Quality . 74

8.6 Results . 75
8.6.1 PID . 75
8.6.2 ACWR . 75
8.6.3 Optimization Experiment . 76
8.6.4 E2EWR vs HF . 76

9 Conclusion 77

10 Future Work 79
10.1 Increase Time Span . 79
10.2 Dynamic k . 79
10.3 Hyperparameter Optimization . 79
10.4 Cost-Sensitive Learning . 80
10.5 Data Preprocessing . 80

Appendices i

A Player-based Normalization i

B Variations of the E2EWR Model iii

C E2EWR Optimization Graphs v

D Variations of the HF Model ix

E HF model Optimization Graphs xi

Chapter 1

Introduction

Football is a multi-billion DKK industry where a single player can be worth upwards of DKK
1.65 billion [47]. Any harm to the player or any disruption keeping a player from playing can
be very costly for their club. The tournament with the highest prize money, "UEFA Champions
League" reaches almost DKK 9 billion [38]. At the highest level, clubs need to have their players
available to perform at their best at all times. Even for smaller clubs, such as those playing in
the top Danish league, "Superligaen", getting the best performance out of the players is very
important. In 2016, Superligaen had a tournament payout to the clubs between DKK 0.2 and DKK
5.9 million [3], based on the clubs’ performance. The best performing clubs also have a chance to
play internationally and earn even more prize money. Therefore, the performance and availability
of players are crucial for the financial aspect.

Teams always want their best players to play, however, this is not always possible. Players are
sometimes unable to attend matches or training due to injuries. Injuries are a key concern to
football clubs, as these can result in reduced performance and ultimately result in a lack of income.
Injuries are categorized into two major categories; contact and non-contact injuries. Contact
injuries occur when players collide and apply force on each other. Non-contact injuries occur to
the players individually, in solo settings without contact. Non-contact injuries often occur when
players have overworked muscles or when they play even though their bodies have not restituted
[25].

In recent years, there has been an increasing interest in using data analytics in areas relating to
football player performance. Data analytics requires data from the players, which has led to the
development of wearable devices, such as tracker vests designed by StatSports [45]. These devices
track and gather data from the players during training and matches. As non-contact injuries
occur mainly after a continuous strain on the muscles without proper restitution, it should be
possible to determine if a player is at risk of an injury using data collected from such devices.
In this project, we collaborate with Aalborg Boldklub (AaB) [2] and have access to the data on
their players. As of now, the medical staff at AaB manually evaluate the players based on the
collected data and conversations with the players. The medical staff, have years of experience
and substantial knowledge related to sports injuries. Based on the collected data, the medical
staff calculates deviations in the players’ data and uses these to determine whether a player is
overworking their muscles or performing at reduced intensity due to minor muscle strain. Given
the data from a team with 24 players, the amount of time used for evaluations and calculations is

1

substantial and can be reduced based on the number of players that need to be evaluated.

Based on the available data, and the desire to decrease the number of players to evaluate, we
implement different Machine Learning (ML) models, that can estimate the injury risk of individual
players. Simple ML models, such as Decision Tree (DT) and Random Forest (RF), are already
used in sports analytics. However, in the area of ML, the rising use of deep learning has enabled
feature/representation learning techniques that show promising results. Another approach in ML
that has shown promising results, is the integration of domain knowledge. The combination of
these two elements has also shown promising results [5; 31].

Therefore, in this project, we aim to implement ML models, incorporating representation learning,
the integration of domain knowledge, and a combination of both elements. The models are used
to estimate individual players’ risk of injury and rank the players accordingly. The models are
intended to aid the medical staff in prioritizing the players who are most susceptible to potential
injuries. These considerations lead to the following problem statement:

Using the data provided by AaB, how can we correctly rank football players based on
their risk of injury, using representation learning, the integration of domain

knowledge, and their combination?

To the best of our knowledge, this is the first study that applies the use of representation learning
to injury risk estimation and furthermore combines representation learning with the integration
of domain knowledge in order to estimate a player’s risk of injury. In summary, our contributions
are:

• We propose a machine learning model that combines learned and handcrafted features for
estimating a player’s risk of injury

• We conduct an evaluation to assess the importance of each handcrafted domain feature in
relation to injury risk estimation.

• We construct a machine learning model that relies exclusively on learned features to estimate
a player’s risk of injury.

• We develop a recommendation system for injury prevention at AaB, by utilizing a player’s
risk of injury as the ranking factor.

• We present a machine learning model for identifying players based on their performance
and tendencies.

• We present experimental results using a real-world dataset provided by AaB, comparing the
performance of models trained exclusively on learned features, exclusively on handcrafted
domain knowledge features and their combination.

Our contributions yielded a model based on the integration of domain knowledge which correctly
rank the player’s sustaining an injury in the upcoming session within the top 5 rankings, with a
precision @ k of 56.66%± 9.08, and a Discounted Cumulative Gain (DCG) of 0.90± 0.08.

The rest of the project is organized as follows: In Chapter 2, we cover related work in the area of
injury prediction, representation learning, and the integration of domain knowledge. Chapter 3

2

describes the data sources that serve as the foundation for the project. Data preparation is
described in Chapter 4. We introduce theory related to potential solutions and evaluation methods
in Chapter 5. Chapter 6 describe the different ML models we propose. Experimentation of the
models is covered in Chapter 7. Chapter 8 discuss the outcomes of the experiments. The conclusion
of the project is in Chapter 9 followed by future work in Chapter 10.

3

4

Chapter 2

Related Work

In this section, we describe related work on injury prevention in sports, representation learning
for constructing learned features and incorporating domain knowledge into ML models.

2.1 Injury Prevention

Effective Injury Forecasting in Soccer with GPS Training Data and Machine
Learning
In "Effective Injury Forecasting in Soccer with GPS Training Data and Machine Learning", Rossi
et al. [39] addresses the impact that injured football players have on the performance of the team
and the need for reliable injury forecasting. Historically academic work on injury forecasting has
been deterred because of limited data, but with the introduction of Internet of Things (IoT), this
scenario has changed as players wear equipment such as StatSports tracker vests that collect data
during training and matches. Rossi et al. [39] proposes a multi-dimensional, easy-to-interpret,
and fully data-driven approach that uses handcrafted features based on GPS data collected during
training and matches. The study contained data from 26 Italian male professionals and was
collected over a 23-week period, providing a total of 952 individual training sessions. During this
period a total of 23 non-contact injuries were recorded and 19 of these injuries occurred to a player
that had previously been injured. Based on the GPS data 12 features were extracted describing
the workload of a training session such as ’Total distance covered’ and ’Number of accelerations’,
together with six personal features such as ’Age’ and ’Previous injuries’. For the experiments, Rossi
et al. [39] constructs additional features based on the workload features using three methods:

1. Acute Chronic Workload Ratio (ACWR) which is the ratio between a player’s acute
workload which is defined as a player’s total load from the last week, and chronic workload
which is defined as a rolling average over 4–6 weeks.

2. Mean Standard Deviation Workload Ration (MSWR) which is the ratio between the
mean and standard deviation of the workload from the last week. This method is seen as
having predictive power equal to ACWR.

3. Exponential Weighted Moving Average (EWMA) which uses a moving window to make
the most recent sessions have a greater impact on injury forecasting compared to sessions

5

further in the past.

As the data is highly imbalanced with ≈ 2.3% of the sessions resulting in injuries, they apply the
oversampling method ADASYN to equalize this imbalance and hence reduce the learning bias.

The experiments were done using Decision Tree (DT) and Random Forest (RF) models, where the
two models performed almost equally as well with the DT model being better given the criteria of
fewer "false alarms". The DT model could predict 80% of the injuries (recall = 0.80) and correctly
label a training session as an injury 50% of the time (precision = 0.50). These results beat the
current state-of-the-art methods, such as several baseline models, and injury forecasters using
ACWR and MSWR. The DT model utilized 3 of 55 features to build the DT, with 2 of 3 features
being the EWMA features; ’Previous Injury’ and ’High-Speed Running’ and an MSWR feature
’Total Distance’.

At the end Rossi et al. [39] highlights that their model was still improving and that better results
could be possible with more data available.

Injury Prediction in Competitive Runners with Machine Learning
Just as Rossi et al. [39] addressed the impact injuries have on the performance of a player or
team, Lovdal et al. [27] also acknowledges this issue and studies injury prevention in "Injury
Prediction in Competitive Runners with Machine Learning". Lovdal et al. [27] highlights that
previous work, such as Rossi et al. [39], have relatively small datasets, with few injuries present.
With few occurring injuries the reliability and generalizability of the ML model could be affected.
To address this problem Lovdal et al. [27] uses a dataset collected from a Dutch running team with
74 athletes over a period of 7 years, with a total of 42, 183 non-injuries and 583 injuries. Lovdal
et al. [27] constructs two models, a day model that focuses on the training load data in the days
leading up to an injury and a week model where the focus is on the weeks leading up to an injury.
The goal of Lovdal et al. [27] is to develop a more generalizable model than previous work by using
a larger dataset. However, the imbalance in the used dataset remains significant, with injuries
accounting for only ∼ 1.4% of the dataset. The "day"-model uses a total of 10 workload features
pr. day, while the "week"-model uses 22 aggregated features pr. week and 3 features describing
the relative increase in workload volume during the weeks. To account for the imbalance in the
data, Lovdal et al. [27] uses a bagging approach to balance the data used to train their models, by
randomly selecting, with replacement, the same number of injury and non-injury instances. By
randomly selecting these instances from all the athletes, they avoid the risk of having high-risk
athletes dominating the training set. Lovdal et al. [27] uses Extreme Gradient Boosting (XGBoost)
as their machine learning algorithm and can predict 74.1% of the injuries (recall = 0.741) and
correctly label a training session 58.4% (precision = 0.584) of the time for the "day"-model. The
"week"-model’s performance is close with 74.6% of the injuries (recall = 0.746) being predicted and
correctly labeling the training sessions as an injury 50.4% of the time (precision = 0.504). Based
on the experiments Lovdal et al. [27] notes that based on the user’s requirements the decision
threshold can be changed, detecting more injuries but with a higher false positive rate. Ultimately,
Lovdal et al. [27] considers their data-driven approach to be generalizable, implying its potential
for adaptation to other sports.

6

Injury Prediction in Football Analytics using Player-Based Normalization and
Oversampling
In our previous paper "Injury Prediction in Football Analytics using Player-Based Normalization
and Oversampling"[21] we studied the importance of injury prevention just as Rossi et al. [39] and
Lovdal et al. [27]. In previous work, the difference between players was not taken into account,
which could produce worse results for the ML models. To address this problem, Jensen et al. [21]
proposed a player-based normalization technique and compared it with no form of normalization
and team-based normalization. This normalization technique was then used as part of a pipeline
that handles data mapping, data cleaning, and normalization as well as applying oversampling
techniques to handle the imbalance in the data. The dataset was provided by the Danish football
club AaB and was collected during a period of 1 year and 11 months, with 18 different players
providing a total of 4, 646 individual sessions with 41 injuries. Each session contains 184 features,
where 176 of these are workload features, seven are static player features such as ’Age’ and ’Height’,
and a session-type feature. Based on the work of Rossi et al. [39], Jensen et al. [21] implemented
the ’Previous injuries’ features and 176 EWMA features based on the workload features. The
dataset was highly imbalanced with only ≈ 1.08% of the sessions containing an injury, Jensen
et al. [21] conducts an empirical study of four different state-of-the-art oversampling techniques.
For the experiments three differentML models were used, DT, RF, and NN, the DT and RF models
were chosen based on the current state-of-the-art and the NN as it had little to no representation
in injury prediction. Jensen et al. [21] ended up being able to predict 33% of the injuries (recall
= 0.33) and labeling a training session as an injury 7% of the time (precision = 0.07). The model
that made the best predictions in the experiments was the DT model using the player-based
normalization method together with the ADASYN oversampling technique.

2.1.1 Contribution
Compared to previous work in the area of injury prevention, we contribute to the area by developing
different ML models which utilize learned features in order to estimate a player’s risk of injury.
Furthermore, we extend this contribution by implementing ML models which combine learned
features and handcrafted features to estimate a player’s risk of injury. Lastly, we differentiate our
contribution by ranking players based on their risk of injury rather than predicting injuries.

2.2 Learning Features from GPS data

Characterizing Driving Styles with Deep Learning
In "Characterizing Driving Styles with Deep Learning" Dong et al. [10] conducted a study on
characterizing driving styles based on raw time series GPS data gathered from cars, sampled at a
rate of 1hz. The motivation and objective of the study were to identify how many individuals were
driving a given car, by analyzing the driving style characteristics, in order to detect fraudulent
insurance claims. Dong et al. [10] further more studies how to learn features based on the raw
GPS sensor data, instead of relying on handcrafted features. In the preliminary experiments
conducted by Dong et al. [10], it was concluded that learning features just based on the raw GPS
data did not work, and hence the GPS data would have to be transformed before using deep
learning to extract high-level features from the time series data. Based on this Dong et al. [10]
proposed a sliding window technique, where the time series was split up into sequences of 256
seconds. For each sequence, 5 basic features were calculated on a per-point basis on the raw
GPS data in the window, these were: the speed norm, difference speed norm, acceleration norm,

7

difference acceleration norm and angular speed. In order to handle outliers in the form of sensor
errors, Dong et al. [10] furthermore derived 7 statistical features for each basic feature, namely the
mean, min, max, 25% quarantile, 50% quarantile, 75% quarantile and standard deviation. These
statistical features were not calculated over the whole sequence but were calculated over smaller
windows of 4 seconds inside each sequence. In order to not lose too much of the information in
the data, when generating the statistical features on the smaller windows, windows were created
with an overlap of 2 seconds. By encoding the GPS time series data in this manner, Dong et al.
[10] were able to successfully capture the temporal dependencies in the GPS data. This enables
Dong et al. [10] to extract high-level features across the sliding windows and utilize them for
the identification of the number of unique drivers. Dong et al. [10] experimented with multiple
models including a Convolutional Neural Network (CNN) with temporal convolutions, a CNN with
temporal convolutions and pooling layers, and different architectures of an Identity Recurrent
Neural Network (IRNN). Dong et al. [10] used real-world datasets along with a dataset provided by
the Kaggle 2015 competition on Driver Telematics Analysis, in order to test their proposed models.
In the experiments, Dong et al. [10] concluded that an IRNN with stacked Recurrent Neural
Network (RNN) layers, with the last layer being a fully connected layer containing a softmax
activation function. Dong et al. [10] achieves 34.8% accuracy for classifying the number of drivers
for a given sequence and 52.3% accuracy for classifying the number of drivers over a whole trip.

Autoencoder Regularized Network for Driving Style Representation Learning
In "Autoencoder Regularized Network for Driving Style Representation Learning" Dong et al. [11]
furthered the work from "Characterizing Driving Styles with Deep Learning" [10], by studying
how to learn generalized driving style representations, based on a time series of raw GPS data.
Here the aim of these generalized driving style representations was to use them in order to
identify how many individual drivers were using an automobile. Dong et al. [11] propose a novel
method of producing Trip2Vec, which is a fixed-sized learned representation, that encodes the
driving style of a single trip of an automobile, directly learned by the GPS data using the same
concept of sequences and sliding windows described by Dong et al. [10] For learning the Trip2Vec
representation and identifying the number of unique drivers, given a series of trips for a given
car, where each trip encompasses a time series of raw GPS data sampled at a rate of 1Hz, Dong
et al. [11] propose the model Autoencoder Regularized Network (ARNet). This model uses the
reconstruction loss for an autoencoder as part of the loss function for classifying how many unique
drivers there are for a given sequence of trips. The main concept proposed by Dong et al. [11] is
that after completing the training of the ARNet model, a portion of the model can be utilized as
an autoencoder for generating Trip2Vec representations.
Dong et al. [11] conducts experiments on a large private dataset collected by an insurance company.
The dataset contains over 500, 000 trips from over 2, 500 unique drivers, where each driver has
200 recorded trips. Dong et al. [11] beat all previous models and studies for estimating the true
number of drivers for a given car, achieving a segment accuracy of 40.4% and a trip accuracy of
58.2%.

2.2.1 Contribution
Compared to previous work in the area of learning features from GPS data, we introduce the
method in the area of football analytics and more specifically injury prevention. Instead of using
the learned features for classification tasks, we utilize different approaches to estimate the risk of
injuries for football players. Lastly, we extend the contribution by constructing ML models, which
utilize a combination of learned and handcrafted features to estimate players’ risk of injury.

8

2.3 Combination of Learned and Handcrafted Features

Combination of Deep Learning-Based and Handcrafted Features for Blind Image
Quality Assessment
In "Combination of Deep Learning-Based and Handcrafted Features for Blind Image Quality
Assessment" Chetouani et al. [5] studied how to combine handcrafted features along with learned
features for assessing the quality of images. The motivation of Chetouani et al. [5] was to study if
it was feasible to combine the strength of both types of features, and how this could be done. In
Chetouani et al. [5] the learned features capture the local information patches learned through a
series of CNN layers, while the handcrafted features captured global attributes of the image [5].
In order to fuse the learned features together with the handcrafted features, a bilinear pooling
layer was used. Multiple fusion techniques to fuse the learned features and handcrafted features
together were compared. The fusion techniques Chetouani et al. [5] considered were concatenation,
multiplication, summation, and bilinear pooling. In experiments conducted by Chetouani et al.
[5] the datasets used were the LIVE - Phase 2 [43], TID 2008 [37], TID 2013 [36] and CSIQ
[26]. The used datasets contain degraded images obtained from pristine images with different
degradation types. The experiments showed that combining learned features and handcrafted
features outperformed models which were entirely based on either learned features or handcrafted
features.

Combining Deep Learning and Hand-crafted Features for Skin Lesion Classifi-
cation
In "Combining Deep Learning and Hand-crafted Features for Skin Lesion Classification" Majtner
et al. [31] presents a novel approach for classifying melanoma by incorporating both handcrafted
features and learned features from a CNN by combining two Support Vector Machine (SVM)
classifiers and was performed as part of the International Skin Imaging Collaboration (ISIC).
The first SVM is based on handcrafted features which are crafted based on RSurf [30] and Local
Binary patterns [34], specifically designed to capture the characteristics of images and have
proven useful in classifying melanoma. The second SVM utilizes learned features from a CNN,
specifically, AlexNet [24]. The output of the two SVM classifiers is a binary classification along
with a classification probability score. The experiments were performed on the publicly available
dataset supplied by ISIC. The experiments showed the novel approach of combining handcrafted
and learned features for classifying melanoma was comparable to state-of-the-art methods, with
an accuracy of 82.6% and an AUC of 0.78.

2.3.1 Contribution
Compared to previous work in the area of combining learned and handcrafted features, we
introduce the usage in a time series task. Furthermore, we introduce the approach of combining
learned and handcrafted features in the area of injury prevention. Finally, we use the approach to
estimate players’ risk of injury, instead of a classification problem.

9

10

Chapter 3

Dataset Foundation

In this section, we describe the data that is available for the project. The data creates the
foundation for the project and is therefore important to understand.

3.1 Data Collection
The data used in the project is collected by the Danish football team AaB from 5. January 2021
to 5. April 2023 and covers 24 players. The players are wearing equipment from the company
StatSports, that gathers GPS and Inertial Measurement Unit (IMU) data during match and
training sessions. No distinction is made between match and training sessions, as the metrics
used are identical, and are referred to and categorized simply as ’sessions’. In our data, sessions
have lengths varying between ∼ 2 minutes and ∼ 9 hours, where a session starts when the
players turn on the StatSports tracker vest and end when the tracker vest is turned off. The
varying session lengths reflect the different session types, training planned by the coaches, players
forgetting to turn off the tracker vests, or accidentally turning on the tracker vests [25]. Each
player has a different number of recorded sessions due to reasons such as different career lengths
at the club and being absent due to injuries. The number of sessions ranges from 31–384 per
player and can be seen in Figure 3.1.

Figure 3.1: Number of sessions per player in the dataset.

11

3.2 Datasets
AaB has provided four different types of datasets for this project. The first dataset contains the
raw GPS data from each session. The second dataset contains calculated features derived from
the GPS and IMU data. These features are calculated and provided by the company StatSports.
The third dataset contains the injuries logged by the medical staff and includes the dates and
types of injuries observed. The fourth and final dataset is surveys completed by the players. These
include scales of soreness and amount of sleep but are very ambiguous since they are completed
manually by the players.

3.2.1 Raw GPS data
For the dataset only containing the raw GPS data, the data is collected at a rate of 10Hz by the
tracker vests. The raw GPS dataset contains 5, 825 sessions collected from 24 players from 1 June
2021 to 5. April 2023. As sessions have varying durations, we get time series of different lengths.
The differences in lengths make the time series difficult to work with since we have to adjust the
model to work dynamically with the lengths of the time series. The raw GPS data contains the
features of ’Latitude’, ’Longitude’, ’Speed’, ’Instantaneous Acceleration Impulse’, and ’Timestamp’.
While the raw GPS data does include the feature ’Speed’, we visually inspected the data and found
instances where the speed was missing.

Time Latitude Longitude Speed (m/s)

10:01:51.5 56.99375283333333 10.0034495 0

10:01:51.6 56.993752666666666 10.0034495 0

10:01:51.7 56.9937525 10.003449166666668 0

Table 3.1: Three raw GPS data instances for a player. The instances exclude the measure
’Instantaneous Acceleration Impulse’

Table 3.1 shows an instance where the longitude and latitude change while the speed remains at
0, meaning the player moves, while no speed is calculated or recorded. Therefore, we recalculate
the speed for each session using Geopy [15] version 2.3.0

3.2.2 Calculated Features
The dataset containing calculated features derived from the GPS and IMU data is calculated by
StatSports and contains 275 different features. The StatSports dataset consists of 6, 631 individual
sessions distributed between 24 players over a duration from 5. January 2021 and 5. April 2023
and contains different types of features, which we categorize into three different categories. The
first category is static player features. In this category, we have features describing a player, such
as height, weight, position, name, and date of birth. The second category is dynamic workload
features. In this category, we have features, which are calculated from the gathered GPS and IMU
data. These features are both movements features from the GPS data such as ’Distance’, ’Number
of Sprints’, ’Number of Accelerations’, and impact features from the IMU data such as ’Number of
Impacts’, ’G-force Severity’ and ’Number of Jumps’. The third and last category of data is a single
feature ’Session Type’. This feature describes what session the player has been participating in.

12

3.2.3 Injuries
The third dataset contains the injuries logged by AaB over a duration from 21. April 2021 and 5.
April 2023, where an injury is reported to Kitman labs [23] by the medical staff when a player
is injured. Within the dataset, there are different injury categories, contact and non-contact
injuries, the type of injuries, and descriptions of all the injuries. We exclude contact injuries as
they are near impossible to predict, as they happen during a collision or tackle with other players.
Therefore the focus is on non-contact injuries, that occur due to continuous strain and/or extended
high workload. As non-contact injuries occur over time, it should be possible to predict these
injuries as the players would show signs of the strain in the sessions leading up to an injury [25].
The dataset contains 179 injuries and 98 of these injuries are logged for players that are present in
the raw GPS dataset and the StatSports dataset. The injury dataset contains youth players and
other players not present in any of the other provided datasets. 55 of the 98 injuries are non-contact
injuries. As the medical staff at AaB actively try to prevent injuries by reducing the workload of
players they determine are at risk of an injury, some of the data could show signs of an injury,
where none occur. Therefore all 48 sessions labeled as ’Rehab’ is counted as injuries in our final
dataset, as these sessions are used to prevent injuries by reducing the player’s workload. Since
there is a limited number of injuries we do not differentiate between different types of injuries
(e.g ’Hamstring Sprain’, ’Achilles Tendor Injury’, ’Muscle Tear’) as the specific injury would be
much harder to predict with a very limited amount of data. During an interview with AaB, we
learned that minor injuries that did not impact the player’s subsequent training session were not
recorded in Kitman labs.

3.2.4 Surveys
The last dataset is the surveys that are completed by the players before and after a session. These
surveys contain information about sleep, RPE (Rating of Perceived Exertion), muscle soreness,
and fatigue. RPE is reported after each session before the players leave the facilities, for training
sessions it is reported between 12:30–15:00, while match sessions differ based on the time of
the match. Additionally, certain metrics are reported before the players arrive at the facilities
around 9:00. The sleep information is divided into two numeric features describing the quality
and quantity of sleep. ’Sleep Quality’ is a numeric scale from 1–6 where 1 is the best, while ’Sleep
Duration’ is the number of hours slept with a range from 1–12. ’RPE’ [14] is the player’s own
evaluation of the exertion they sustained during a session, which they rate on a scale of 1–10,
where 10 indicates maximum exertion. The last two features ’Muscle Soreness’ and ’Fatigue’
describe how the player is feeling. The ’Fatigue’ feature describes how tired or exhausted a player
is on a scale from 1–7, with 1 being no fatigue. ’Muscle Soreness’ describes how sore a player’s
muscles are, also on a scale from 1–7 with 1 being no muscle soreness. Since the surveys are filled
manually, with no data to back up the claims, as well as having features describing how a player
is feeling, there is a possibility that the data is biased. Based on meetings with the medical staff
at AaB, this has been confirmed by them as well as backed up by the data. Some players always
report sleeping 8 hours with the best quality of sleep while never experiencing any form of fatigue
or muscle soreness, meaning they are always in their best condition.

13

3.3 GPS Heatmap
It is important to make sure our GPS data is not faulty and can be used in our representations.
Therefore, we create GPS heatmaps to make sure the data is either gathered from training in the
facilities available for the players or matches from stadiums. The raw GPS data for a session has
been plotted in Figure 3.2.

Figure 3.2: GPS heatmap based on a single player from a single session.

While plotting the GPS data, we encountered problems with the data. We encountered three
different types of instances where there are gaps in the data. The data can have gaps in the
middle, at the end, or at the start of the time series, which can have lengths of up to 10 minutes.
These gaps have longitude, latitude, and speed values of 0. There are multiple reasons for the
gaps, including errors in the measuring equipment, and problems with players not using the
devices properly [25]. Having gaps at the end or start of the time series is not a big problem as this
just cuts the data entry short and does not introduce irregularities. However, having gaps in the
middle of a time series can be quite a challenge and introduces what we describe as a teleportation
problem. The teleportation problem entails that a player is moving very rapidly from the last seen
to the next data point in the GPS data. With the gaps in the data, we have no way of knowing
where the player was during the time of the gap, which means when the time series continues
with values the player could both be close to or far away from the previously seen data point.

3.4 IMU Data
We had the availability of the raw IMU data which was recorded at 100Hz and used to calculate
the workload features provided by StatSports. We have opted to not use this data since the pure
size of it was too much for us to use in any model given memory constraints.

14

3.5 Data Imbalance
When training ML models, it is important that datasets are balanced, as utilizing an imbalanced
dataset can have a negative impact on the accuracy of the model[44]. Chawla [4] defines a dataset
as imbalanced in the following manner: "A dataset is imbalanced if the classification categories
are not approximately equally represented.". Negative impacts occur as a result of the loss function
achieving a low error if the output is always the majority class, as the probability of the majority
class being the correct output, is high, compared to the minority classes [44]. Having an imbalanced
dataset with an over-representation of non-injury sessions is a common issue in sports datasets
[21; 27; 39; 48].

The datasets used for this project are highly imbalanced as it contains 103 sessions counted as
injuries (55 non-contact injuries and 48 ’Rehab’ sessions) and a total of 6, 631 sessions. Therefore,
the imbalance between the labels in the given data is 1.55% injury sessions and 98.45% non-injury
sessions. As was highlighted in Section 3.1 and Figure 3.1, there is an imbalance in the number of
sessions for each player in the datasets, ranging from 31–384 often due to the player’s time spent
at the club.

15

16

Chapter 4

Data Preparation

In this section, we describe the data preparation process. The data preparation includes the
preprocessing of both the raw GPS data, the constructed features, feature normalization, and the
construction of the final dataset.

4.1 Preprocessing
Before conducting any of the experiments, we have to preprocess the data. The preprocessing
of the data is to avoid faulty and inaccurate data and prepare the data for use in the machine
learning models.

4.1.1 Patching the GPS Data
As mentioned in Section 3.3, we have gaps in the GPS data, and consider different approaches
to patch these gaps. The first approach is to simply delete the gaps, but through testing, it was
found that players could, based on the speed and distance, reach speeds of 840km/t as they travel
up to 20 meters in 1/10 of a second. The second approach is to fill the entire gap in the data by
generating synthetic samples for each 1/10 of a second. The synthetic samples would be based
on the player’s speed before (s1) and after (s2) the gap, by taking the difference in speed and
estimating the change in speed (∆s) for each missing data point nsamples as seen in Equation 4.1:

∆s =
s1 − s2
nsamples

(4.1)

After determining the change in speed for each sample, a method to determine where to plot the
synthetic samples is needed. The players could either move between the last point before the gap
and the first point after or they could run randomly. As this would introduce bias to the data and
make irregularities, by randomly introducing changes in direction and constant movement this
approach was not implemented and equation 4.1 was not used.

Instead, we construct synthetic linear samples to patch the GPS gaps without introducing bias, as
this method calculates the shortest route between the data point on either side of the gaps. The
calculations utilize speed and location from both data points and calculate the distance between
them using the GPS coordinates, this approach utilizes the minimum distance covered during the

17

gap instead of the time duration as Equation 4.1. The implemented GPS patching uses

nsamples =
d

s
· 10 (4.2)

where d is the distance in meters between the first data point prior to the gap and the data
point after the gap. s is the speed (m/s) calculated based on the two data points prior to the
gap. By patching the gaps in the GPS data this way, we assume that the player has a constant
speed through the gap. The number of dynamically generated synthetic data samples nsamples

is calculated using equation 4.2 where a sample is generated each 1/10 of a second with equal
spacing. This approach ensures that we do not add extra data and only get the bare minimum
movement needed to cover the distance of the gap.

4.1.2 Session Cutting
In addition to patching the GPS data, we remove some GPS sessions based on their length as
AaB ensured us that no training lasted as long as the longest data entries. As seen in Figure 4.1,
the number of sessions with a length of ≤ 150, 000 contains 5, 819 of the 5, 825 total sessions. The
sessions are more frequent in the range from 25, 000 to 110, 000, with an average session length
of 57, 848 and a standard deviation of 21, 113. A GPS session of length 25, 000 is equivalent to
41 minutes and 40 seconds, while the 110, 000 is equivalent to 3 hours and 5 minutes, while the
average session takes ∼ 96 minutes. Therefore, we decided to limit the sessions to have a length
of 25, 000 ≤ n ≤ 110, 000, as we classify other session lengths as outliers. The distribution of the
remaining sessions is illustrated in Figure 4.2. With the removal of sessions outside the limits, the
total number of sessions went from the original 5, 825 to 5, 596, removing 223 sessions or ∼ 3.83%
of the data. To ensure a uniform session length, we pad the raw GPS data of sessions with a
length < 110, 000 with rows of 0, until the desired length of 110, 000 is reached.

Figure 4.1: The various lengths of GPS ses-
sion. The range of the data shows all sessions
between 0 and 150, 000. The total number of
sessions in this window is 5, 819.

Figure 4.2: The various lengths of GPS session
after deciding the cut-off values for sessions.
The range of the data shows all sessions be-
tween 25, 000 and 110, 000. The total number of
sessions in this window is 5, 596.

18

4.2 Feature Generation
In this section, we describe our feature generation process. We generate two categories of features,
GPS features, and handcrafted features. GPS features are extracted from time series raw GPS
data. Handcrafted features are based on domain knowledge obtained from related work, interviews,
and correspondence with medical staff at AaB. The feature generation process aims to construct
features that capture temporal dependencies in the raw GPS data, the workload of players in a
given session, and a player’s medical history. The feature generation process is based on domain
knowledge and supported by existing state-of-the-art methods for preventing injuries and handling
time series data. The handcrafted features have shown to be crucial for accurate injury prevention
in sports [12; 27; 32; 39].

4.2.1 GPS Features
The first category of features is constructed from the raw GPS time series data in order to capture
the temporal dependencies and the workload for a given player, which is essential for injury
prevention [25]. The reason for creating the GPS derived features is based on Dong et al. [10],
where it is concluded that utilizing the raw GPS values is not feasible.

Sequences & Sliding Window
The encoding we construct of the GPS data, is inspired by Dong et al. [10] and employs the concept
of sequences (seq) and sliding windows (sw) under each sequence. A session is split into n number
of sequences with an overlap of Lseq

2 where Lseq represents the time span of the sequence in seconds.
Each seq contains n number of sw, where each sw covers a time span Lsw in seconds and overlaps
with a rate of Lsw

2 . The sliding windows and sequences overlap to limit the information loss when a
new sliding window or sequence is constructed. The first step of implementing the sliding window
technique on the GPS data, is to determine the length of the sequences Lseq and the length of the
sliding windows Lsw inside each sequence, hence Lsw < Lseq. If the length of the sequence is too
long, the data may be too abstract and some information can be lost. A too short sequence may
not contain enough data to be distinguishable. Because of this, it is important to find the optimal
size for sequences and sliding windows. The optimal size is a time period that captures enough
temporal information about a player’s actions, without introducing an excessive amount of noise
into the sequence.

Basis Features
We generate features based on the following factors which are inspired by Dong et al. [10]: ’Speed’,
’Speed difference’, ’Accelerations’, ’Accelerations difference’, ’Player-load’, ’Player-load-difference’,
’Distance-covered’, and ’Distance-covered-difference’, we refer to each of these pairs as basis
features. These features are selected based on their relevance to injury prevention, and their
use in existing literature on the topic. The basis features are constructed for each sequence and
sliding window.

Statistical Features
Given our sliding windows are based on the raw GPS data, they can contain outliers as a result of
sensor errors. Outliers are data points that significantly deviate from the other data points. If
left untreated, outliers can have a negative impact on machine learning models, as they can skew

19

the model’s predictions. To reduce the impact of outliers in the sliding windows, Dong et al. [10]
proposes calculating statistical variations of each feature in the sliding windows. The statistical
features that we calculate for each feature in the sliding window are the mean, standard deviation,
and 25%, 50%, and 75% quantiles. The 25%, 50%, and 75% quantiles are the data points in the
lowest 25%, 50%, and 75% of the data, respectively. We do not include the original non-statistical
features in the sliding windows, only the statistical variations of each feature are included in
the final sliding windows. The statistical features are a more stable representation of the basic
features in each sliding window, and will not fluctuate as much as the basic features, calculated
for each GPS point [10]. As a result, the final sliding windows are less sporadic and the impact of
outliers is mitigated [10].

4.2.2 Domain Features - Handcrafted Features
The next category of features is constructed based on the datasets described in Sections 3.2.2
to 3.2.4, where we aim to capture a player’s movement, impacts, previous injuries, RPE, sleep,
muscle soreness, and fatigue. These handcrafted features have been directly connected to injury
prediction, based on domain knowledge, and are supported by state-of-the-art methods for predict-
ing injuries [12; 25; 27; 32; 39]. These features are constructed based on player workload data,
player surveys, and a player’s injury history. All the handcrafted features are based on entire ses-
sions with one value for each feature for each session, except ’Previous Injuries’ as this feature
spans over a player’s total time at the club.

Survey Features
From the survey dataset described in Section 3.2.4, the features ’Fatigue’, ’Sleep Quality’, ’Sleep
Duration’, ’RPE’, and ’Muscle Soreness’ are used. These features are all based on the domain
knowledge from the medical staff at AaB and have been proven to be correlated with injury
prevention in related work[13; 17; 22; 33; 42]. The sleep features, namely ’Sleep Quality’ and
’Sleep Duration’, have been found to have a significant influence on injury risk in studies conducted
by [17; 33; 42]. Additionally, AaB categorizes these sleep features, along with the feature ’Muscle
Soreness’, into three distinct categories as shown in Equation 4.3.

Danger =

Red if std > 0.99

Orange if std ≥ 0.01

Green otherwise
(4.3)

where std is the standard deviation of the values the player reported over the last week, compared
to the last year. A player is categorized as Green if the standard deviation of the weekly values is
below the standard deviation of the values over the last year. By using standard deviation the
categorization accounts for both more sleep and less sleep equally. If all three features ’Sleep
Quality’, ’Sleep Duration’, and ’Muscle Soreness’ is categorized as red, AaB takes extra measures
such as reducing the player’s workload and taking them aside for an exploratory conversation [25].

We implement ’Sleep Quality’, ’Sleep Duration’, and ’Muscle Soreness’ as the standard deviation
between the value of the past week and the values available from the last year. This approach
helps avoid the need to perform one-hot encoding for each feature’s different zones. The ’RPE’ and
’Fatigue’ features are not subjected to these categorizations, therefore, these are implemented
using the values reported in the surveys without any transformations.

20

Acute Chronic Workload Ratio
As mentioned in Section 2.1, Acute Chronic Workload Ratio (ACWR) is defined as the ratio between
a player’s acute workload from the last week, and chronic workload which is defined as a rolling
average over 4–6 weeks. To determine the duration of the rolling average for the chronic workload,
we consulted with AaB. Based on their guidance, we utilize a rolling average of four weeks for the
chronic workload. ACWR was introduced by Hulin et al. [18] as a way to estimate an athlete’s
injury risk based on their workloads and has been used in state-of-the-art injury prevention [39].
The workload is calculated using the RPE, which the player report after each session. To calculate
the workload the following formula is used:

l = r · d (4.4)

where l is the workload, r is the RPE and d is the duration of the session. The formula for the
acute workload Alk is as follows:

Alk = l1 + l2 + l3 . . . lk (4.5)

where k denotes the number of days that the acute workload captures, for this project k = 7 based
on domain knowledge from interviews with AaB.

To calculate the chronic workload Cln the following formula is used:

Cln =
lw1 + lw2 + lw3 . . . lwn

n
(4.6)

where w encases a week (7 days) and n denotes the number of weeks included in the chronic
workload.

We calculate the ACWR used for this project using Equation 4.7.

ACWR =
Al7

Cl4

(4.7)

ACWR is using a moving average. When a new value is added, the last value in either workload is
discarded, constantly shifting the values contained in l [18].

Workload Features
The workload features describe the actions performed during a session and are part of the
calculated features dataset in Section 3.2.2. The medical staff at AaB relies on a subset of five
features from the StatSports dataset described in Section 3.2.2, to assess a player’s injury risk
[25]. Previous research has shown these five features to be some of the most informative features
when determining a player’s injury risk [21; 27; 39]. The five workload features are ’Number of
Sprints’, ’Number of Accelerations’, ’Number of Decelerations’ ’Time Spent High-Speed Running’,
and ’Sprint Distance’, and used without any additional transformations.

Previous Injuries
The ’Previous Injuries’ feature is a measurement used by the medical staff at AaB and shows a
strong correlation when predicting a player’s risk of injury [21; 39]. However, this feature is not

21

depending on a single session as most of the other features, given that the feature represents a
value related to all previously recorded sessions for a player.

We implement the ’Previous Injuries’ as a counter, and each time an individual player gets injured
the counter is increased by 1.

To summarize the handcrafted features we are using, there are five features from the survey
dataset, two features ’ACWR’ and ’Previous Injuries’ that we create ourselves based on the data from
the datasets, and five workload features from the calculated features dataset. All 12 handcrafted
features and their definitions are listed in Table 4.1.

Handcrafted Feature Definition

1 Number of Accelerations Accelerations above 0.5 m/s/s for a minimum of 0.5s

2 Number of Decelerations Decelerations above 0.5 m/s/s for a minimum of 0.5s

3 Number of Sprints Running above 5.5 m/s for a minimum of 1s

4 Time spent High-Speed Running Seconds spent running above 5.5 m/s

5 Sprint Distance Distance covered running above 5.5 m/s

6 ACWR The ratio between acute and chronic workload

7 Fatigue Reported value on a scale of 1–7

8 Sleep Quality Reported value on a scale of 1–6

9 Sleep Duration Reported value on a scale of 1–12

10 Muscle Soreness Reported value on a scale of 1–7

11 RPE Reported value on a scale of 1–10

12 Previous Injuries A counter of individual injuries

Table 4.1: All 12 handcrafted features

4.2.3 Feature Normalization
Based on results in Jensen et al. [21], we utilize z-score normalization for the handcrafted and
statisical features. In this project, we use Scikit-learn preprocessing version 1.2.2 for the z-score
normalization [35]. The z-score normalization standardizes the data by subtracting the mean of a
feature and then scaling it with unit variance. This is done using the formula:

Z =
x− u

s
(4.8)

where x is the feature that is being scaled, u is the mean of the training samples and s is the
standard deviation of the training samples [9]. The z-score normalization techniques are used
together with player-based normalization, as introduced in Jensen et al. [21]. For player-based
normalization, the dataset is split into n subsets, where n is the number of players in the data set.
Each of these n subsets is then normalized, to range the player’s values compared internally with
the player’s other values. The goal of this form of normalization is to incorporate each player’s

22

individual workload into the features, instead of it being based on the whole team’s workload [21].
An illustration of how player-based normalization is performed can be seen in Appendix A.

4.3 Data Mapping
To construct our dataset, we fuse the player surveys, raw GPS data, StatSports aggregated
features, and logged injuries into a single dataset. To illustrate how each dataset is related, we
develop an Entity Relationship diagram (ER diagram) displayed in Figure 4.3 that displays the
relationships between the different datasets.

StatSports Session

Kitman Surveys

Injuries

Session Raw GPS data

Number of
accelerations

Number of
decelerations

Time spent High-
Speed running

Sprint Distance Player name

Date

Lat

Long

Instantaneous
Acceleration Impulse

Player name DateSpeed (m/s)

Injury type Date Player name

Contact injury

Date

Player name

Sleep quality Sleep duration

Session RPE

Fatigue

is based upon

1

1

Happens
1 0..1

Player may
fill out

1

0..1

Session Type

Figure 4.3: ER diagram based on the four datasets.

The ER diagram covers the four datasets available for our project and visually represents the
links between them. The candidate keys we use for fusing the datasets into a single dataset are
represented by underlining in Figure 4.3 and displayed in Figure 4.4.

StatSports
Session

Date
Player name

Kitman Survey

Date
Player name

Date
Player name

Injuries

Date
Player name

Session Raw
GPS data

Date
Player name

Figure 4.4: Mapping diagram for fusing the surveys, StatSports features, raw GPS data, and
injury data into a single dataset.

For some data instances, the data is not present in all of the four individual datasets. Given
the aim of this project is to combine handcrafted features with learned features from the raw
GPS data, we exclusively use the sessions where the raw GPS data, and the StatSports features,
are both present. If the data from the player survey is not present for a given session, all of the
features generated based on the player survey for the session are set to 0. This has been decided

23

as if we exclude sessions where a player survey has not been completed, we would discard 645
sessions. In order to fuse the player surveys, raw GPS data, StatSports features, and injuries into
a combined dataset we map the datasets together based on the date of the session and the player
name. This data mapping process is illustrated in Figure 4.5

StatSports session

NoIs raw GPS
 data available? Discard

Yes

NoIs survey
data available?

Calculate features
based on survey

Set all survey
features to 0

Calculate sequences
and sliding windows

Yes

Calculate number of
previous injuries

Is the player
injured in next

session?

Yes

Is next session
type a 'Rehab'

session?

Set 'Next Session Injury' label to 0

Yes

No

No

Extract StatSports
features

Is the next
session within 7

days?

No

Yes
Set 'Next Session Injury' label to 1

Figure 4.5: Flowchart of the data mapping process.

For each StatSports session, we check if the raw GPS data is available based on the player id
and date of the session. If the raw GPS data for the given session is not available, we discard the
session. If the raw GPS data is available, we calculate the sequences and sliding windows and
extract features 1–5 listed in table 4.1. If the survey data is available, we calculate features 6–12
in table 4.1, otherwise, all survey features are set to zero. Finally, we calculate the ’Next Session
Injury’ label for the session. If an injury occurs in the following session and the following session is
within seven days of the current session, we set the ’Next Session Injury’ label to one. If an injury
does not occur in the next session, but the next session is of the type Rehab and is within seven
days, we set the ’Next Session Injury’ label to one. If no injury occurs in the following session and
the following session is not of type Rehab, we set the ’Next Session Injury’ label to zero.

We are able to map 4, 350 of the available sessions, and as a result, the final dataset used for
the experiments consists of 4, 350 unique sessions. If either the GPS or the StatSports data are
unavailable for a session, the session is discarded. Across all sessions which are not discarded,
we are able to map a total of 89 injuries, meaning the imbalance in the dataset is 2.05% injury
session and 97.95% non-injury sessions.

24

Chapter 5

Theory

This chapter highlights the different methods, model components, and techniques that we use in
our project.

5.1 Neural Network

A Neural Network (NN) is a function that maps an input matrix X ∈ Rm×n to an output matrix
Y ∈ Rk×j where m,n, k, j ∈ N. A NN maps X 7→ Y via a series of layers, where each layer consists
of a series of neurons, where each neuron is assigned a weight w, a bias b, and an activation
function f [41]. Each neuron z receives its input from the previous layer, applies its weight w, bias
b, and activation function f to the input, and forwards the output to the next layer [41].

This process is illustrated in Figure 5.1.

X1

X2

X3

b1

w1

w2

w3

w4

∑
Weighted sum

f

Activation Function

Neuron

w5

Layer 1 Layer 2

Neuron

Input

b2
w6

w7
Output

b3

w8

Figure 5.1: Simple neural network NN, with two layers. The NN receives an input vector with
three variables. The first and second layers is consisting of a single neuron. The neuron consists
of the weighted sum of the inputs and the activation function.

25

An activation function compresses the output of the neuron, in order to make the output more
generalized, as activation functions restrict the output range [41]. The value of a neuron z can be
calculated using Equation 5.1.

z = f(b+
n∑

i=0

wi · xi) (5.1)

where n is the number of neurons in the previous layer, b is the weighted bias term [41].

5.1.1 Loss Functions
In order for a NN to learn, the weight assigned to each neuron must be fine-tuned [41]. The
weights are updated iteratively during training, based on the calculated loss L, between the output
and the label [41]. This in turn makes minimizing L the learning objective LO of a NN, shown in
Equation 5.2:

LO =
n∑

i=0

L(o(Xi),Yi) (5.2)

where n denotes the number of training samples, each training sample i is represented by the
input Xi, the output of the for sample i is represented as o(Xi) and a label Yi. The loss for the ith
sample is denoted by L(o(Xi)Yi) [41].

Cross Entropy Loss
When the output of a model is a probability distribution over multiple classes, the goal is to
minimize the error between the output distribution, and the label. In order to minimize the
difference between the two distributions, the cross entropy loss function can be used when training
the model:

L(p,y) = −
k∑

n=0

yn · log(pn) (5.3)

where p is the softmax probability output from the model for a given sample, y is the corresponding
label and k is the number of classes [41]. As the output of a softmax probability always sums up to
1, the natural logarithm log function amplifies the loss when the predicted output deviates further
from the label yi. A problem is that the log of numbers between 0 and 1 produces a negative result
r ∈ [−∞, 0]. In order to fix this problem, the total loss is negated.

Cost-Sensitive Learning
Cost-Sensitive Learning (CSL) is used to penalize wrong predictions or classifications of some
classes heavier than others. A cost vector is used to store the cost for each instance [8]. This
cost vector is used as a multiplier in the loss function of the NN to amplify the cost of wrong
classifications or predictions, as shown in Equation 5.4.

L =

n∑
i=0

Wy · P (xi, yi), (5.4)

26

where the total loss is denoted as L, and is calculated by summing the losses of all individual
samples. The number of samples is represented by n. The cost vector for all classes is denoted
as W , where each element in the vector corresponds to the cost for a specific class. The cost for
the label yi is represented as Wy. Additionally, P (xi, yi) represents the loss for the i′th training
sample.
Using CSL forces the model into learning how to separate each instance and encompass instance
tendencies [8].

5.1.2 Activation Functions
In our project, we are using three different activation functions.

The Sigmoid activation function is one of the most commonly used activation functions. It
takes any real number as input and outputs a value between 0 and 1 [41]. The formula for the
Sigmoid activation function is defined as:

f(x) =
1

1 + ex
(5.5)

The Tanh activation function is similar to the Sigmoid activation function but outputs values
between −1 and 1 making it 0-centered [41]. The formula for Tanh is:

f(x) =
ex − e−x

ex + e−x
(5.6)

The Leaky ReLU activation function is a modified version of the ReLU activation function
and it has a small slope for negative values, which the ReLU activation function does not. The
formula for Leaky ReLU is as follows:

f(x) = max(α · x, x) (5.7)

Where α is the negative slope coefficient. The Sigmoid activation function and Tanh can encounter
the problem of a vanishing gradient, where the gradient becomes too small and thus prevents or
slows down learning. The ReLU activation function mitigates this vanishing gradient problem
and is therefore preferred over the sigmoid activation function [16]. An issue called "dying ReLU"
happens when the ReLU activation function is used and the network has a lot of neurons outputting
0 (i.e. are dead), which then doesn’t contribute to the output of the network [28]. Equation 5.7
also shows that for any positive value x Leaky ReLU returns the same output as ReLU does, but
for any negative value, ReLU only returns 0 while Leaky ReLU returns the negative value times
α ensuring that negative values still contribute to the output of the network [29].

27

Figure 5.2: The activation functions: Sigmoid, Tanh, ReLU, and Leaky ReLU plotted.

Figure 5.2 shows the activation functions plotted. ReLU and Leaky ReLU are on top of each other
with values above 0.

The Softmax function is often used for multi-class classification tasks [41]. The softmax function
represents the probability that the input belongs to a given class, given the scores in the input
vector. The softmax function can be seen in Equation 5.8

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . ,K and z = (z1, . . . , zK) ∈ RK (5.8)

where σ(z)i is the ith component of the output vector of the softmax function. ezi is Euler’s number
raised to the power of the ith element of the input vector z.

∑K
j=1 e

zj is the sum of the exponential
functions of all the elements in the input vector z. i = 1, . . . ,K is the range of values for the index
i, which represents the different classes that the input can belong to. z = (z1, . . . , zK) ∈ RK is the
input vector to the softmax function, consisting of K real-valued scores. We use the Tensorflow
implementation of the softmax function [1].

5.1.3 Layers
In Figure 5.1 the input nodes are the features used for the model, while the output node is the
generated output from the model. Between the input and output values, the hidden nodes in the
model are divided into layers. Each layer is constructed by a defined architecture and a layer size.
The layer size defines the number of nodes in the layer, while the architecture is defined by which
type of layer it is.

Masking Layer
The masking layer is utilized when working with variable-length data. The purpose of the masking
layer is to mask elements within the input, ensuring that a model’s weights are not updated based
on the masked elements [1].

28

Given two data entries represented as vectors of lengths 3 and 5. The data entry with length = 3
is padded using 0 values to ensure all data entries have a uniform length. The padding process is
illustrated below:

entry =
[
1 2 3

]
⇒

[
1 2 3 0 0

]
When initializing the masking layer a masking value vmask is chosen based on the value used for
padding. Updating model weights based on the vmask values can be catastrophic, as they have no
correlation or relevance to the label. The masking layer works by checking if Equation 5.9 holds
true for any entry t.

∀i(ti = vmask) (5.9)

where i refers to the ith position in the entry.
If Equation 5.9 holds true for a given entry, then this entry is skipped in the following layers, and
the weights are not updated [1].

Dropout Layer
The dropout layer aims to reduce overfitting and helps improve the model’s ability to generalize to
new unseen data [1]. Overfitting is a result of a ML model becoming too specific at predicting or
classifying the training data while being unable to generalize to new unseen data, hence resulting
in worse performance for the test set. Overfitting is often seen in ML models during training
when the model keeps reducing the training loss while increasing the validation loss. A dropout
layer aims to reduce this by randomly setting input neurons to 0, hence making them irrelevant.
This leads to the model not focusing on specific neurons, as these neurons are at some point set
to 0 during training, and hence the model has to generalize and utilize all of the neurons. The
probability of setting an input neuron to 0 is controlled by the dropout rate r ∈ [0, 1]. A dropout
rate of 1 sets all of the inputs to 0, hence making the learning impossible and a dropout of rate 0
has a 0% probability of setting an input neuron to 0, hence having no effect, thus the ideal r is in
the interval 0 < r < 1.

5.2 Recurrent Neural Network
Recurrent Neural Network (RNN) is a type of NN, that is specifically designed for handling
sequential inputs with temporal dependencies [40]. A traditional NN described in Section 5.1, is
not designed to handle sequential inputs, as the temporal order of the inputs is not maintained
throughout the network. A NN treats every input as being an independent data sequence, hence
discarding the temporal relationship to other sequences. RNNs utilize a series of hidden states
hi in order to process the input in sequential order. RNNs have connections between hi−1 and hi.
The RNN passes each input sequence through a series of hidden states. In each hidden state, the
weighted output of the previous hidden state hi−1 along with the next sequence in the input is
passed on to the next hidden state hi [40]. This process is illustrated in Figure 5.3.

29

Inputi-2 Hidden state Outputi-2

Inputi-1 Hidden state Outputi-1

Inputi Hidden state Outputi

w2

w2

w3

w3

w3w1

w1

w1

Figure 5.3: Simple RNN architecture with an input consisting of three sequences.

An important aspect of RNNs is that the weights across all hidden states are shared, as shared
weighs enables the RNN to extract patterns that are consistent throughout the input sequence
[40]. Furthermore, a byproduct of weight-sharing across hidden states is the number of weights
is invariant to the length of the input sequence.

5.2.1 Gated Recurrent Unit
Gated Recurrent Unit (GRU) is a powerful RNN architecture that uses gating mechanisms to
control the flow of information through the network [6]. The equations for the reset gate, update
gate, candidate activation, and new hidden state can be combined to model complex temporal
dependencies in sequential data.

The architecture of a GRU cell is illustrated on Figure 5.4.

Figure 5.4: Gated Recurrent Unit architecture, from Colah [7], where ht−1 is the previous hidden
state, xt is the current input, rt is the reset gate, zt is the update gate, h̃t is the candidate
activation, and ht is the current hidden state as the output.

The GRU network consists of a hidden state vector ht and an input vector xt at time step t. The
network has two gates: the reset gate rt and the update gate zt.

30

The reset gate determines how much of the previous hidden state should be ignored in computing
the candidate activation function. It takes the previous hidden state ht−1 and the input xt at time
step t as input and produces a reset vector rt that is used to control how much of the previous
hidden state should be reset.

The update gate determines how much of the previous hidden state should be kept and how much
of the new candidate state should be added to the new hidden state. It takes the previous hidden
state ht−1 and the input xt at time step t as input and produces an update vector zt that is used to
blend the previous hidden state and the candidate state.

The equations for the reset and update gate, rt and zt respectively are:

rt = σ(Wr) · [ht−1,xt] + br (5.10)

zt = σ(Wz) · [ht−1,xt] + bz (5.11)
where σ is the sigmoid activation function, Wr and Wz are weight matrices, and br and bz are bias
vectors. The [ht−1,xt] notation represents the concatenation of the hidden state and input vectors.

The candidate activation function computes the new candidate hidden state ht, which is a weighted
sum of the previous hidden state ht−1 and a candidate activation h̃t that is computed from the
input xt at time step t and the reset gate rt.

The candidate activation h̃t is calculated using the current input and the reset gate as follows:

h̃t = tanh(W · [rt ⊙ ht−1, xt] + b) (5.12)

where ⊙ represents element-wise multiplication and W and b are weight matrix and bias vector,
respectively.

Finally, the new hidden state is computed by estimating a value linearly between the previous
hidden state and the candidate activation, controlled by the update gate:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5.13)

5.3 Self-Attention
Self-attention, also called scaled dot-product attention, is a mechanism used in ML models, which
allows a model to attend to different parts of an input, by calculating the importance or attention
score of each element in an input sequence [46; 51]. The attention score reflects the relevance
between each part of the input sequence, by considering all part’s relevance to each other. With
the implementation of self-attention, a model can learn the dependencies between each part of
the input regardless of the position in the sequence [46; 51].

For each sequence, xn in an input sequence X a query q, key k, and value v vectors are calculated
and stored in the matrices Q,K,V . The Q, K, V are constructed using Equations (5.14) to (5.16)
[51]:

Q = Wq ×X (5.14)

31

K = Wk ×X (5.15)
V = Wv ×X (5.16)

where X is the input sequences, Wq,Wk,Wv is the weight matrices for Q,K,V , respectively. The
attention matrix is calculated using Equation 5.17 [51].

A = Attention(Q,K,V) = softmax(QKT

√
dk

)V (5.17)

where dk is the dimensionality of k, and
√
dk is used as a scaling constant. As a result of calculating

the attention matrix A, each value in each sequence xn ∈ A is scaled in accordance with its
respective relevance to the query [51].

5.4 Multi-Head Attention
The idea behind multi-head attention is based on self-attention in Section 5.3. The difference
between the two methods is that multi-head attention utilizes multiple attention heads, enabling
the model to learn multiple dependencies instead of being limited to a single dependency. Multi-
head attention performs multiple self-attentions by using different learned linear projections for
each attention head using Equations (5.14) to (5.16), where Wq,Wk,Wv is randomly initialized
for each attention head.

Self-attention and multi-head attention is illustrated on Figures 5.5 and 5.6.

Figure 5.5: An illustration of scaled dot-product
attention, from Vaswani et al. [51]. The dot-
products is computed for all the queries Q with
all the keys K. These dot-products are then
scaled by dividing each by

√
dk and a softmax

function is applied to get the weights used for
the values V .

Figure 5.6: An illustration of multi-head at-
tention, from Vaswani et al. [51]. The value,
key, and query vectors are linearly transformed.
The attention head computes the weighted sum
of values. Then the output is concatenated and
lastly linear transformed to the final output.

32

The outputs of the attention heads are concatenated and linearly projected to produce the final
output. The advantage of using multi-head attention is the ability to capture different dependencies
in the input sequence [51]. The attention matrix for multi-head attention is computed using
Equation 5.18:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)Wo

where headi = Attention(QWi,Q,KWi,K , V Wi,V)
(5.18)

where Wo is the linear transformation for the output, Wi,Q,Wi,K ,Wi,V is the linear projection for
the ith Q,K,V respectively.

5.5 Evaluation Metrics
In this section, we describe the different metrics used to evaluate the models’ performance.

5.5.1 Precision @ k

We evaluate the models’ performance based on the Precision @ k (P@k) ranking system. This
evaluation metric is chosen in collaboration with AaBs data analysts and the medical staff, based
on the model’s practical application. The models rank the players in order of most likely to sustain
an injury to least likely. If a player sustains an injury in the next session while having the player’s
risk in the top k, where k ∈ N, we consider this as a correct prediction. However, if an injured
player was not ranked in the top k, we consider the prediction to be incorrect. In the experiments,
we evaluate the models with k ∈ {1, 3, 5} for more in-depth knowledge of the models’ performances.

P@k is calculated as follows:

P@k =
Injuries in the top k

All injuries · 100 (5.19)

where P@k is the percentage ratio between correctly predicted injuries in the top k recommenda-
tions and all injuries.

Figure 5.7 illustrates P@k:

Risk

Player 2

Player 7

0.41

0.32

Player 8 0.29

Player 5 0.23

Player 4 0.19

Player 6 0.17

Player 1 0.13

Player 3 0.11

Player 10 0.07

Player 9 0.02

Risk Rank

1

2

3

4

5

6

7

8

9

10

Injury

0

0

1

1

0

0

0

0

0

0

Player 1

Player 2

Player 3

Player 4

Player 5

Player 6

Player 7

Player 8

Player 9

Player 10

0.13

0.41

0.11

0.19

0.23

0.17

0.32

0.29

0.02

0.07

0

0

0

0

1

0

0

1

0

0

Injury

SORT

P@3

P@1

P@5

Figure 5.7: P@k, with k ∈ {1, 3, 5}.

33

A prediction is deemed correct if an injury occurs among the top k ranked players with the highest
injury risk. Additionally, a prediction is considered false if an injury occurs outside of the top k
ranked players with the highest risk of injury. P@k = 0% for k = 1 given both injuries happened
outside of top 1. P@k = 50% for k = 3 given one injury happened to a player inside the top 3, while
one injury happened outside the top 3. P@k = 100% for k = 5 given both injuries happened to a
player inside the top 5 highest ranked players.

5.5.2 Discounted Cumulative Gain
Discounted Cumulative Gain (DCG) is a measure used to evaluate the effectiveness of a ranking
algorithm for a set of items. It is commonly used in information retrieval, where the goal is to
rank search results in order of relevance to a query. DCG takes into account both the relevance of
each item and its position in the ranking. In this project, the relevance in consideration is the
injury label.

DCG is calculated by summing the relevance of each item in the ranking, weighted by a discount
factor that gives less weight to items that appear lower in the ranking. The discount factor
is typically a logarithmic function of the item’s position in the ranking, with the idea that the
relevance of an item decreases logarithmically as its position gets further from the top.

The DCG is then calculated as[20]:

DCG =
n∑

i=1

reli
log2(i+ 1)

(5.20)

where n is the number of items, reli is the relevance of the item at position i in the ranking. For
this project, DCG is used to evaluate the models’ ability to rank the players in order of most likely
to get injured in the next session to least likely. For example, if we have a list of true injury labels
IL = [0, 1, 1], in the order of the risk estimations [0.8, 0.6, 0.5]. The DCG score is calculated by:

DCG =
n∑

i=1

reli
log2(i+ 1)

=
0

log2(1 + 1)
+

1

log2(2 + 1)
+

1

log2(3 + 1)
≈ 1.1309 (5.21)

We use the SciKit-learn [35] version 1.2.2 implementation of DCG.

5.6 t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a ML algorithm used for data visualization
and reduction of dimensionality [50].

The goal of t-SNE is to model the high-dimensional data points as points in an easier interpretable
lower-dimensional space such that similar points are modeled as nearby points and points not
similar are modeled as distant points [50]. The algorithm works by constructing a probability
distribution over pairs of high-dimensional data points and a corresponding probability distribu-
tion over pairs of low-dimensional points. The algorithm then minimizes the Kullback-Leibler
divergence between these two distributions using gradient descent [50]. This means that the algo-
rithm tries to find a lower-dimensional representation of the data that preserves the structure of
the high-dimensional data as much as possible.

34

Chapter 6

Models

In this section, we construct ML models based on the problem statement in Chapter 1. The
architecture of the models and the intuition behind the chosen components is described.

The models include the utilization of handcrafted features, GPS derived statistical features, and
the combination of both. The handcrafted features are decided upon in collaboration with the
medical staff at AaB, and incorporate domain-specific knowledge as mentioned in Section 4.2.2.
The GPS derived statistical features are used to learn new features that capture information
regarding a player’s risk of injury directly from the player’s tendencies, movement patterns, and
fatigue throughout a session as mentioned in Section 4.2.1. The combination of handcrafted
features and learned features have shown better results than either of the approaches individually,
as described in Section 2.3.

The models are constructed as NNs described in Section 5.1, and implemented with TensorFlow
version 2.10.0 [1].

6.1 Handcrafted Features Model
For the Handcrafted Features (HF) model, we explore how accurately the model can estimate a
player’s risk of injury using exclusively the handcrafted features listed in Table 6.1:

Input Feature # Input Feature

1 Number of Accelerations 7 Fatigue

2 Number of Decelerations 8 Sleep Quality

3 Number of Sprints 9 Sleep Duration

4 Time spent High-Speed Running 10 Muscle Soreness

5 Sprint Distance 11 RPE

6 ACWR

Table 6.1: Handcrafted features used as input in the HF model.

35

The handcrafted features are calculated for each session and represent information that the medi-
cal staff at AaB are currently using to evaluate a player’s risk of injury. Moreover, prior research,
as detailed in Chapter 2, has demonstrated a direct correlation between these handcrafted fea-
tures and injury risk. In addition to the features in Table 6.1, we integrate the ’Previous Injuries’
feature at a later stage in the model, as it conveys information that is aggregated over all recorded
sessions for a specific player. The input dimension for the model is a matrix of dimensions 7× 11,
with 7 being the number of sessions, 11 being the number of features, and the ’Previous Injuries’
feature being represented as a scalar.

The model should possess the capability to capture temporal dependencies across seven sessions.
As a result, we incorporate two components in the model, one to capture temporal dependencies
across seven sessions and another to manage the inclusion of the ’Previous Injuries’ feature at a
late stage in the model.

6.1.1 Model Architecture
The handcrafted features model architecture can be seen in Figure 6.1:

1x32 1x33

1x1

1x20
1x10

1x1
Fully Connected

Concatenate

GRU

'Previous Injuries'

7x11

Handcrafted Features

Figure 6.1: HF model architecture.

For capturing temporal dependencies across seven sessions, we implement a GRU architecture
utilizing the Tanh activation function. The reset gate of the GRU cell, helps keep the information
from previously learned data while enabling the model to continue to learn on new data as
described in Section 5.2.1. For adding the ’Previous Injuries’ feature in the model, we concatenate
it, with the output of the GRU layer.

Chetouani et al. [5] has completed a study on fusing features, described in Chapter 2 and found
that one approach to accomplish this fusion is to utilize concatenation. Therefore, to fuse the
’Previous Injuries’ feature with the output of the GRU layer we utilize a concatenation layer.

For the model to learn the relationships between the output of the GRU layer and the ’Previous
Injuries’ feature after they have been combined using the concatenation layer, we introduce two
fully connected layers with the Leaky ReLU activation function. We use the Leaky ReLU activation
function with α = 0.3 to circumvent the problem of "Dying ReLU", described in Section 5.1.2. The
final layer is a fully connected layer of size 1 with the Sigmoid activation function and outputs the
player’s injury risk estimation.

36

6.2 Learned Features Model
In this approach, we construct a Learned Features (LF) model that exclusively utilizes learned
features based on the sliding windows, to estimate a player’s risk of injury.

The motivation for this model is to explore whether learned features are more informative for
injury risk estimation than handcrafted features. Majtner et al. [31] found that learned features
were more informative than handcrafted features. Our setting is different as we are utilizing
time series data with the goal of preventing injuries whereas Majtner et al. [31] studies image
recognition with the goal of classifying Melanoma as cancerous or benign. Given our problem
statement, we explore if learned features are more informative than handcrafted features in an
injury prevention setting. The GPS derived statistical features that are used as input to this model
and handcrafted features used as input to the HF model have different structures. Therefore,
we are unable to compare learned and handcrafted features using the same model. Because of
this, we evaluate the learned features and handcrafted features based on the models’ ability to
estimate players’ injury risk. By assessing the model’s effectiveness at estimating a player’s risk
of injury, we are able to gain insights into whether the learned features are more informative
than handcrafted features.

Sliding Windows
In this model, we are utilizing the sequences seq and sliding windows sw mentioned in Section 4.2.1.
Each session is represented by a single sequence that covers the whole session. The sequence is
consisting of sliding windows as described in Section 4.2.1. Each sliding window is based on the
statistical features calculated on the raw GPS data described in Section 4.2.1 and reflect a player’s
performance and workload, as they capture a player’s physical exertion and movement patterns.
Given the sliding windows, the model should be able to capture the player’s performance and
fatigue over the duration of one or more sessions, and furthermore learn features that relate to a
player’s risk of injury

6.2.1 Model Architecture
The input to the model is seven sessions, where each session is represented by a time series of
sliding windows with an overlap of 50% as described in Section 4.2.1. In order for the model to
capture information such as a player’s fatigue throughout a session, the temporal ordering of the
sliding windows must be maintained throughout the model. Furthermore, the temporal order
of the seven sessions, that the injury risk estimation is based upon, must be maintained, as the
newest sessions have a greater impact on a player’s risk of injury compared to sessions further
back in time [25].

The LF model is illustrated in Figure 6.2:

37

1x64
1x48

1x32
1x1

SEB

WEB

Fully Connected

1x32Nx40

Sliding Windows

Figure 6.2: Architecture of the LF model.

The input to a Session Encoding Block (SEB) is a single session, and the output is a vector
representation of length 32. To combine the seven learned session representations into a single
representation we utilize a Week Encoding Block (WEB).

After the WEB, we implement two fully connected layers, with the Leaky ReLU activation function
where α = 0.3, to compress the learned week encoding and eliminate feature characteristics that
do not have a direct correlation to a player’s risk of sustaining an injury. This optimization process
iteratively reduces the importance of redundant features, and only the most informative features
are utilized in the final representation. Features that lack information relating to a player’s
risk of sustaining an injury are either optimized or have their weight gradually adjusted based
on the loss as mentioned in Section 5.1, and, as a result, have less influence on the compressed
representation.

The output layer is a fully connected layer using the Sigmoid activation function, in order to
compress the outputs into the range [0, 1]. By compressing the outputs of the model to be between
zero and one, the value reflects a player’s risk of injury. An output close to one indicates a player
is at high risk of injury whereas an output close to zero indicates a player is at lower risk of injury.

The architecture of a SEB is illustrated in Figure 6.3:

Nx40 Nx40

Sliding Windows

Masking

GRU

Batch Normalization
Nx32

1x32 1x32

Figure 6.3: The architecture of a SEB.

The first layer of an SEB is a masking layer, which serves to protect the model from updating its
weights based on the masking values of the sliding windows. A SEB consists of two GRU layers
using the Tanh activation function. The GRU layers are employed in order to learn features based
on the sliding windows while maintaining the temporal order. The first GRU layer produces a

38

sequence for each sliding window and is utilized to learn a series of features for each window.
The reason behind having the first GRU layer return the sequences, is because internally in the
GRU layer, each sequence depends on previously hidden states and not just the current hidden
state. By making the model learn features for each window, we help the model to capture more
complex patterns. The second GRU layer compresses the learned representations into a single
representation.

We utilize a unique SEB for each session in the input and employ a batch normalization layer as
the last layer of a SEB. The batch normalization layer is implemented in order to standardize all
learned session representations around a mean of 0 and a standard deviation of 1, and furthermore
using a batch normalization layer is proven to lead to more stable gradients and faster convergence
during training [19].

A SEB is limited to learning features relating to a specific session, and to learn features that cover
all seven input sessions, we define a WEB as illustrated in Figure 6.4:

7x32 7x64

SEB

Concatenate

GRU

Multi-Head Attention

1x32

7x64

1x64

Nx40

Sliding Windows

Figure 6.4: The architecture of a WEB.

The WEB compresses the representations generated for the seven input sessions into a single
representation of size 64. The WEB starts by concatenating the output of the SEBs while main-
taining the temporal order of the sessions. This is done by creating a new feature matrix of size
7× 32, where the first row represents the session furthest in the past, and the last row represents
the most recent session. By creating this feature matrix of session encodings, we construct a new
time series. To keep the temporal dependency in the new time series, we utilize two GRU layers
using the Tanh activation function.

To enhance the model’s focus on sessions that have a higher correlation with a player’s risk of
injury, we incorporate a multi-head attention layer with 8 attention heads and a key dimension of
64 between the two GRU layers.

The multi-head attention layer serves to scale the learned features for each session according to
how relevant they are to a player’s risk of injury. By scaling the features based on their importance,
features that are more informative are represented by higher values, and as a result, have more
influence on the final representation.

We choose to use 8 attention heads in the multi-head attention layer to enable the model to capture
diverse patterns and relationships across the sessions. Each attention head learns different
dependencies across the sessions, allowing the model to gain a deeper understanding of the factors
contributing to a player’s risk of sustaining an injury.

39

We choose a key dimension of 64 for the multi-head attention, to create a balance between capturing
information and potentially overfitting the model. By using a key dimension of 64, we capture the
most expressive patterns across the seven sessions related to a player’s risk of injury.

6.3 End-to-End Week Encoding Risk Estimation Model
In the two previous sections, we have implemented models which rely exclusively on learned
features or handcrafted features.

Based on Chetouani et al. [5] and Majtner et al. [31], described in chapter 2, the combination
of both approaches yields better results. Both studies apply the combination of the learned and
handcrafted features for image classification. However, we have not seen the combination utilized
in either injury prevention or time series data. Therefore, we explore whether this combination
has a positive influence on injury risk estimation.

The motivation for this model is to learn features based on the sliding windows while incorporating
the handcrafted features. To assess the effectiveness of combining learned and handcrafted
features, we implement an End-to-End Week Encoding Risk Estimation model (E2EWR), which
utilizes both learned and handcrafted features. By combining learned and handcrafted features,
we allow the model to capture dependencies across the learned and handcrafted features which
relate to a player’s risk of injury.

6.3.1 Model Architecture
The input to the model is seven sessions, where each session consists of a time series of sliding
windows and 11 handcrafted features that are calculated on a per-session basis, displayed in
table 6.1. An additional input to the model is the ’Previous Injuries’ feature which represents
the number of times a player has been injured at the time of the most recent session. The model
architecture is illustrated on Figure 6.5:

40

1x65

1x1

1x64
1x48

1x32
1x1

SEB

WEB

Fully Connected

1x43

Concatenate

'Previous Injuries'

Sliding Windows

1x11
Nx40

Handcrafted Features

Figure 6.5: The architecture of the E2EWR model.

To learn features for the sliding windows in a given session, we modify the SEB described in
Section 6.2.1, to incorporate the additional handcrafted features that convey information regarding
a whole session. When a representation for each session has been constructed by the SEBs, we
utilize a WEB to generate a fixed-sized representation that encompasses all the data from all
seven sessions. After the WEB, we concatenate the ’Previous Injuries’ feature into the model, as
mentioned in Section 6.1, this feature spans across all previously recorded sessions for the player
and hence is not part of the time series data. Finally, to make the model learn the dependencies
among the week encoding and the ’Previous Injuries’ feature, we utilize two fully connected layers
with the Leaky ReLU activation function using α = 0.3. The last layer is a fully connected layer
of size 1, with the Sigmoid activation function in order to predict a player’s risk of injury. The
modified SEB architecture is illustrated in Figure 6.6:

Nx40 Nx40 Nx32

1x32 1x32

Handcrafted Features

Masking

GRU

Batch Normalization

1x11

Concatenate

Sliding Windows

1x43

Figure 6.6: The architecture of the modified SEB for the E2EWR model.

41

The input to a modified SEB is a single session represented by a time series of sliding windows,
as well as 11 handcrafted features displayed in Table 4.1 covering the whole session. To learn
features based on the sliding windows we use the same architecture as described in Section 6.2.1.

We concatenate the ’Previous Injuries’ feature to the learned week encoding, based on the same
argument as described for the HF model in section 6.1. To avoid discrepancies caused by unequal
scaling between the learned and handcrafted features and furthermore speed up the training
convergence, we utilize a batch normalization layer.

To generate a fixed size representation covering all of the seven sessions, we implement a modified
WEB from section 6.2.1. The architecture for the modified WEB is illustrated in Figure 6.7:

7x43 7x64

SEB

Concatenate

GRU

Multi-Head Attention

1x43

7x64

1x64 1x64

Batch Normalization

1x11
Nx40

Sliding Windows

Handcrafted Features

Figure 6.7: Architecture of the modified WEB for the E2EWR model.

When combining the learned session representations, we keep the temporal order of the sessions
as previously mentioned. To combine the learned session representations, we utilize the WEB
described in Section 6.2.1, with the addition of a batch normalization layer as the last layer. The
GRU layers are able to keep the temporal order of the SEBs and extract new features relating
to a player’s risk of sustaining an injury. The batch normalization layer is used as the ’Previous
Injuries’ feature is concatenated onto the representation after the WEB, and we want to ensure
that the representation covering all seven sessions remains consistent across different batches of
data during training.

6.4 Player ID Classification Model
In this section, we delve into the development of a classification model for player identification
(PID) as we have the following hypothesis:

We hypothesize that the PID model is able to learn representations that encompass features related
to a player’s tendencies and performance, making them more suitable for estimating a player’s risk

of injury compared to sliding windows.

42

Compared to previous models in Sections 6.2 and 6.3, this model captures the smallest nuances in
the player’s tendencies and performance.

The input to the PID model is a single sequence consisting of sliding windows. We split every
session into multiple sequences consisting of sliding windows, inspired by Dong et al. [10, 11],
and mentioned in Section 4.2.1. In a later subsequent experiment, we extract the learned player
representations for each sequence and use them as a substitute for the sliding windows.

6.4.1 Model Architecture
The input to the PID model is a sequence of size n × 40, representing n sliding windows each
containing 40 statistical features. The model architecture is illustrated on Figure 6.8:

Nx40 Nx128 1x128

1x50
1x24

Masking

GRU

Dropout

Fully Connected

1x128

Sliding windows

Nx40

Figure 6.8: The player ID prediction model architecture.

The first layer in the model is a masking layer. This layer is implemented to ensure the weights
in the subsequent layers are not updated based on the padded values contained in the sliding
windows. To learn a fixed-sized representation from the sliding windows, we utilize two GRU
layers using the Tanh activation function. The first GRU layer generates 128 features for each
sliding window and the second GRU layer compresses the learned sliding window representations
into a single vector representation of size 128. The reason behind having the first GRU layer
return the sequences, is because internally in the GRU layer, each sequence depends on previously
hidden states and not just the current hidden state. By making the model learn 128 features for
each window, we allow the model to capture more complex patterns, as more features are learned
per window.

Following the fixed-size representation, we utilize a dropout layer with a rate of 0.2. The dropout
layer is implemented in order to avoid potential overfitting and furthermore forces the model to
generalize the output across all features, instead of relying exclusively on certain features. We
choose a dropout rate of 0.2 in order to balance the generalizability of the model and preserve the
model’s capability to capture dependencies.

Following the dropout layer is a fully connected layer of size 50 with Leaky ReLU as the activation
function, with α = 0.3. We choose a layer size of 50 to gradually reduce the dimensionality of
the feature space and generate a compressed representation. This layer furthermore serves as

43

our player ID representation layer. Given the input sequence consists of sliding windows which
each contain 40 features, we believe a representation of size 50 encompasses enough features to
correctly identify a player based on his tendencies and physical exertion. Furthermore, by making
the model learn a representation of size 50, the sequence input is compressed and as a result, only
contains the most relevant features for player ID classification.

We extract the output of this layer and use it as a substitute for sliding windows in a subsequent
experiment.

To obtain the labels for each input, we one-hot encode the player IDs. Given the dataset consists
of 24 unique players, this results in a fully connected layer of size 24, using the softmax activation
function, to generate a probability distribution across all player IDs as the output of the model.

6.5 Player ID Encoding Injury Risk Estimation Model
In this section, we describe the Player ID Encoding Injury Risk Estimation (PIDIR) model for
estimating a player’s risk of injury using the learned player ID representations from the PID
model described in Section 6.4 as a replacement for the sliding windows. This model is designed
to confirm or reject the hypothesis mentioned in Section 6.4.

6.5.1 Model Architecture
This model is identical to the E2EWR model described in Section 6.3.1, with modified SEBs which
utilizes player ID representations used as input instead of sliding windows. The input to the
PIDIR model is seven sessions with each session consisting of a series of player ID representations
and 11 handcrafted features, displayed in Table 6.1, covering the whole session. The ’Previous
Injuries’ feature is used as an input to the model, the same way as the HF model in Section 6.1.

The modified SEB is illustrated in Figure 6.9:

Nx50 Nx32

1x32 1x32

Player ID encodings

GRU

Batch Normalization

1x43

Concatenate

Handcrafted features1x11

Nx50

Masking

Figure 6.9: The player ID injury prediction SEB architecture.

The modified SEB displayed in Figure 6.9 differs from the original SEB illustrated in Figure 6.3
in terms of input representation. The modified SEB utilizes a time series of player ID encodings

44

consisting of 50 learned features each and covering a time span of 5 minutes. The masking layer
is utilized to ignore the masking values when updating the model. In order to achieve a uniform
input length, the input matrix is padded by appending rows filled with the masking value 0.

The temporal order of the player encodings for a given session must be maintained in the model,
to avoid losing potentially valuable information. In the SEBs, the temporal order is kept using
GRU layers to generate a compressed representation of the entire session.

45

46

Chapter 7

Experiments

In this section, we conduct experiments to evaluate the effectiveness of the models presented in
Chapter 6 based on their ability to evaluate a player’s risk of injury, which is then used to rank the
players based on their risk of injury. The models are evaluated based on the evaluation metrics
P@k and DCG described in section 5.5.

7.1 Experiment Setup

The dataset is split into 50% training, 20% validation, and 30% test. This split is chosen as our
dataset contains 89 injuries, and by using 30% of these as our test set, we ensure a thorough
representation of injuries in our test set while having 70% of the injuries reserved for training
and validation.

The injury estimation models described in Sections 6.1 to 6.3 and 6.5 are trained for 1, 000 epochs
with a batch size of 64 using the Adam optimizer with a learning rate of 0.001.

The Adam optimizer with a learning rate of 0.001 is chosen based on our previous expertise with
ML, and to balance the convergence and stability of our models during training.

The batch size of 64 is chosen as our dataset contains 4, 350 samples, hence a batch size of 64
each mini-batch should be representative of the dataset. A larger batch size would furthermore
introduce memory problems, given the sequences and sliding windows are very memory intensive.

We use 1, 000 epochs, to ensure that the model is able to train until the validation loss stops
decreasing. If the validation loss does not decrease for 5 epochs, the learning rate is reduced by a
factor of 0.4. To avoid overfitting the model, early stopping is employed based on validation loss
with a patience value of 20 epochs.

For ensuring unbiased results and obtaining a more comprehensive understanding of each model’s
performance, every experiment is run 10 times, with random weight initialization for the models
and random dataset shuffling to avoid potential bias in the splitting. The results of the models
are the average score for all 10 runs and the standard deviation.

We recall the learning objective LO, from Equation 5.2 in Section 5.1.1, which minimizes the loss

47

across all samples:

LO =

n∑
i=0

L(pi, yi)

where L(pi, yi) is the loss for the sample i, n is the number of samples in the training set, pi is the
predicted output and yi is the label.

Given the imbalanced dataset, we utilize CSL described in Section 5.1.1 to amplify the loss for
false negative predictions.

For calculating the CSL weights, Equation 7.1 is used to determine the relation between the
number of non-injury and injury instances and calculate a cost that imposes additional penalties
for false negative predictions.

c =
a

b
≫ 0 (7.1)

where c is the ratio between non-injury and injury sessions, a is the number of non-injury sessions,
and b is the number of injury sessions.

The loss function used for the experiments is cross entropy combined with a multiplicative weight
c. The loss for a single sample is displayed in Equation 7.2:

L(pi, yi) = −(yi · log(pi) + (1− yi) · log(1− pi) · c) (7.2)

where the cross entropy loss is multiplied by c, and we define L(pi, yi) as the weighted cross entropy
loss. The weighted binary cross entropy loss is referred to as the loss.

Test Set
The test set is comprised of 30% of the sessions with reported injuries in the following session. For
each session containing an injury, all sessions occurring on the same date are included in the test
set and form a single test entry. By focusing on the date leading up to an injury, we can utilize
evaluation metrics such as P@k and DCG. If no injury happens in any of the subsequent sessions
for a given test entry, the P@k and DCG metric becomes irrelevant, as no meaningful insight can
be made.

P@k Evaluation
For evaluating our injury risk estimation experiments, we use the P@k evaluation metric described
in Section 5.5 and implemented in Algorithm 1:

48

Algorithm 1: Precision @ k

1 Function PrecisionAtK(k, t, m):
2 input: Top k k, Test set t, Model m
3 output: Precision @ k
4 posTests←− 0
5 negTests←− 0
6 foreach ti ∈ t do
7 p←− m.predict(ti)
8 p←− sortDesc(p)
9 c←− 0

10 foreach pi ∈ p do
11 if c ≥ k then
12 negTests←− negTests+ 1
13 break

14 end
15 if injury ∈ pi then
16 posTests←− posTests+ 1
17 break

18 end
19 c←− c+ 1

20 end
21 end
22 return posTests / (posTests+ negTests)

The algorithm takes three inputs, a variable top k, the test set t and a desired model m and outputs
a P@k. On line 4–5, posTests and negTests are initialized to 0, afterwards, each test entry ti ∈ t is
evaluated separately. Each ti represents all sessions on a given date where the injury label holds
true for a session. The model m is then utilized to make a prediction for each individual player’s
risk of injury. The player’s risk of injury is then sorted in descending order using the sortDesc(p)
while maintaining the labels for each session. On lines 9–18 we check if the next session injury is
included among the top k rankings, and increment either posTests or negTests. Finally, on line
20, we return the ratio between the sessions that were correctly ranked and the total number of
injuries.

7.2 Random Risk
For a baseline, we randomly estimate the injury risk for a given player, by generating a random
number between 0 and 1. We refer to this as the ’Random Risk’.

Implementing a random estimation baseline helps establish a point of reference, from which we
can evaluate the performance and effectiveness of more advanced models. This technique allows
us to evaluate the significance of improvements achieved through domain knowledge and GPS
representations while showcasing the relative gains obtained from more advanced models.

We expect the random risk to perform at average and be linear in the increasing P@k evaluation
due to the pure randomness.

49

7.2.1 Results
The results of the experiment can be seen in Table 7.1

Model P@1 P@3 P@5 DCG

Random Risk 7.30%± 5.01 23.11%± 7.86 36.75%± 9.14 0.65± 0.07

Table 7.1: The P@k and DCG evaluations for the Random Risk.

By utilizing the Random Risk, we can predict 7.30%, 23.11%, and 36.75% for the P@1, P@3, and
P@5, respectively, and a DCG score of 0.65. These results are better than expected and a good
baseline for further experiments. Given the average test size of 17 players, the results are better
than the expected results of the P@k evaluations, since 1

17 ≈ 6%, 3
17 ≈ 18%, 5

17 ≈ 30%.

7.3 Handcrafted Features Model
This experiment is based on the model introduced in Section 6.1.

7.3.1 Results
The training and validation loss over the epochs is illustrated in Figure 7.1.

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

-5 0 5 10 15 20 25 30 35 40 45 50 55

Figure 7.1: The training graph for the HF model. The line is representative of 10 runs. The
x-axis illustrates the number of epochs trained. The y-axis illustrates the loss. The orange line
represents the loss for the validation set and the blue line represents the loss for the training set.

The training curve illustrates the model tends to overfit the training data, given the widened
margin between the validation and training loss with increasing epochs.

50

The widened margin between the training and validation loss indicates that the model struggles
to generalize. Based on the learning graph we can see the training loss decreases with the epochs
but the validation loss starts to increase with the epochs after ∼ 30 epochs, which furthers the
argument that the model is not able to generalize to new unseen data.

The model’s experimental results based on the evaluation metrics from Section 5.5, P@k, and DCG
are shown in Table 7.2.

P@1 P@3 P@5 DCG

21.85%± 5.84 42.22%± 9.83 56.66%± 9.08 0.90± 0.08

Table 7.2: Experimentation results of the HF model using P@k and DCG evaluations.

The HF model outperforms the Random Risk, which indicates the use of handcrafted features
has a positive influence on injury risk estimation. The results indicate that if we use the HF
model to choose which player the medical staff should focus on, we correctly rank the players with
the highest risk of injury, 21.85%± 5.84, 42.22%± 9.83, 56.66%± 9.08 for the P@1, P@3, and P@5,
respectively. However, given the standard deviations, the experiments show that the model is not
stable.

7.4 Learned Features Model
This experiment is based on the LF model introduced in Section 6.2 and uses sliding windows as
input. For determining the time span of the sliding windows, we decided upon Lsw = 20, 30, 60, 300
based on interviews with the medical staff and data analysts at AaB. The different sliding window
sizes cover a wide range of time spans and provide an indication of the importance of the window
size. This in turn allows us to gain an insight into which sliding window time span is more suitable
for capturing a player’s fatigue, tendencies, and physical exertion throughout a match, which in
turn can be used for injury risk estimation.

7.4.1 Results
The training and validation loss graphs for this experiment can be seen in Figure 7.2.

51

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

-2 0 2 4 6 8 10 12 14 16 18 20 22 24

(a) L20

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21

-2 0 2 4 6 8 10 12 14 16 18 20 22 24

(b) L30

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21

-2 0 2 4 6 8 10 12 14 16 18 20 22

(c) L60

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23
0.24

-5 0 5 10 15 20 25 30 35 40

(d) L300

Figure 7.2: Experimental results for the LF model. The x-axis illustrates the number of epochs
trained. The y-axis illustrates the loss. The orange lines represent the loss for the validation set
and the blue lines represent the loss for the training set.

The training and validation loss for all sliding window sizes have similar tendencies, and only
one run out of the 10 runs has been plotted on the graphs. Every window size, has a validation
loss of ∼ 0.18, while the validation loss for the L300 experiment decreases down to ∼ 0.16. The
L300 experiment trains for ∼ 10 epochs more than the other L20, L30 and L60 experiments, which
indicates that using a window size covering 300 seconds seems to capture the most information.

The performance of the models based on the evaluation metrics from Section 5.5, P@k, and DCG
are shown in Table 7.3.

52

Lsw P@1 P@3 P@5 DCG

20 7.04%± 3.49 25.19%± 6.99 36.67%± 8.68 0.65± 0.06

30 10.74%± 4.81 28.52%± 9.38 49.26%± 9.08 0.71± 0.05

60 10.37%± 5.19 24.81%± 6.84 35.93%± 7.42 0.69± 0.07

300 8.52%± 6.21 23.70%± 4.74 34.81%± 3.39 0.64± 0.07

Table 7.3: Learned Features experiment using P@k and DCG evaluations for four different window
sizes (L20, L30, L60, L300).

We see that some of the experiments perform better than the Random Risk baseline in Section 7.2,
which indicates the sliding window size has an impact on the model’s ability to estimate injury
risk. The experiment with L30 performs best in the evaluation metrics with a DCG of 0.71± 0.05
and 10.74%± 4.81, 28.52%± 9.38, 49.26%± 9.08 for the P@1, P@3, and P@5, respectively.

Furthermore, we see a tendency that the model becomes more stable in P@3 and P@5 as the time
span of the sliding windows increases, however, the P@1 stability decreases as the time span of
the sliding windows increases.

The increased stability in the P@3 and P@5 suggests that the model becomes more consistent in
identifying a player’s risk of injury as the time span of the windows increases. Given a larger time
span for each window seems to increase the stability of the model, we attribute this to the model
being able to capture more patterns given a larger window for each sliding window.

On the other hand, the stability decreases for the P@1 prediction as the time span of the sliding
windows increases, this suggests that the model is not able to correctly rank the player with the
highest risk of injury in the P@1 when using larger time spans of the sliding windows, however,
the P@1 are not far from the Random Risk baseline.

Compared to the HF model experiment in Section 7.3, the loss is higher by∼ 0.08 for all experiments
using the LF model, as seen in Figure 7.2 compared to Figure 7.1. The experiments with the LF
model seem less prone to overfitting as the training loss does not decrease, while the validation
loss increases. We see that the model is not able to learn much after the first couple of epochs, with
the exception of L300. This suggests that the model gets stuck in a plateau in terms of learning,
which it is not able to escape. This furthermore indicates that the model has captured the patterns
it is able to in the data, as we see the same trend across all 10 runs.

The best performing experiment L30 for the LF model has a lower P@k value than the best
performing HF experiment. The differences are 11.11, 13.70, and 7.40 for P@1, P@3, and P@5,
respectively, while 0.19 for the DCG score. If we compare the standard deviation of the different
experiments, we see the LF model is more stable with a std of 4.81 compared to 5.84 for the HF
model for P@1. The LF model is however less stable than the HF model for P@3 with a std of
9.38 vs 9.83. For P@5 the LF model and HF model are equally stable with a std of 9.08. When
looking at the DCG score, the LF model is more stable with a std of 0.05 compared to 0.08 for the
HF experiment.

Despite the LF experiment being comparatively more stable than the HF experiment, both
experiments exhibit high stds in their results. This observation suggests that the models lack

53

stability in general.

7.5 End-to-End Week Encoding Risk Estimation Model
This experiment is based on the model introduced in Section 6.3.

The time spans for the sliding windows, are identical to the time spans mentioned in Section 7.4.
By utilizing the same sliding window sizes, we gain a broader insight into what influence the
combination of learned and handcrafted features has.

7.5.1 Results
The training and validation loss is illustrated in Figure 7.3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

-10 0 10 20 30 40 50 60 70 80

(a) Loss plotted for L20.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

-5 0 5 10 15 20 25 30 35 40 45 50 55

(b) Loss plotted for L30.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

-10 0 10 20 30 40 50 60 70 80 90

(c) Loss plotted for L60.

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-5 0 5 10 15 20 25 30 35 40 45 50 55 60

(d) Loss plotted for L300.

Figure 7.3: Training and validation loss for experiments with different sliding window sizes. (a)
is L20. (b) is L30. (c) is L60. (d) is L300. The orange lines represent the loss for the validation set
and the blue lines represent the loss for the training set. The lines are representative of all 10
runs for each experiment.

Overall we see the same trend for the validation loss among the different Lsw sizes, as it converges
to ∼ 0.18, without regard for the time span of the sliding windows. The training graphs display
a trend that stability increased as the time span of the sliding windows increases. This could

54

indicate that by utilizing larger time spans the model is able to generalize and converge at a faster
rate than when using small time spans.

Furthermore, we do not see any signs of overfitting as was the case with the HF model, given the
validation and training plots keep decreasing while maintaining a small margin. This is a positive
indication of the model’s robustness and its ability to capture patterns that are generalizable to
new unseen data. Moreover, the combination of handcrafted and learned features suggests the
potential for achieving a more stable training process and developing a model that has a greater
ability to generalize to new unseen data.

The evaluation metrics from Section 5.5, P@k, and DCG are shown in Table 7.4.

Lsw P@1 P@3 P@5 DCG

20 15.93%± 3.72 32.22%± 8.93 48.78%± 11.69 0.78± 0.14

30 15.19%± 5.09 35.56%± 7.63 52.59%± 5.93 0.80± 0.11

60 11.85%± 3.99 30.00%± 10.14 45.93%± 10.76 0.73± 0.12

300 17.41%± 8.45 34.67%± 9.44 47.41%± 9.66 0.72± 0.09

Table 7.4: E2EWR P@k and DCG evaluations.

The implementation of the sliding windows for the session encoding has proven to yield better
results than the Random Risk. Compared to the HF models, the combination of handcrafted
features and learned features yields worse P@k by 11.11, 13.70, 7.40 for k = 1, 3, and 5, respectively.
However, the E2EWR model is more stable given the lower stds of 0.75, 1.75, 3.15 for k = 1, 3, 5,
respectively. In contrast to the LF model in Section 7.4.1, the E2EWR model performs better than
the LF model for P@k by 4.35, 7.04, and 3.33 for k = 1, 3, 5, respectively. Furthermore, the model is
more stable than the LF model based on the stds, where the E2EWR has a lower std of 1.75, 3.15
for k = 3, 5, respectively. Based on the learning curves in Figures 7.2 and 7.3, we see the E2EWR
model does not overfit as the HF model did, and compared to the LF model it is more sporadic for
the first epochs and needs more epochs to learn, before reaching convergence.

7.6 Player ID Classification Model
This experiment is based on the model introduced in Section 6.4. In this experiment, we construct
an encoding based on player ID classification, that is used to answer our hypothesis from Section 6.4

For this experiment, each session is split into n sequences where each sequence consists of a series
of sliding windows. Each sequence is assigned the label of the player for the given session. If a
sequence only contains 0-values as a result of being created within the padding of a session, the
sequence is discarded. To determine the optimal size of the sequences, the medical staff at AaB
were consulted, regarding the duration of a player’s involvement in active play, which encompasses
activities such as defending, attacking, and dribbling. The medical staff are not able to specify the
sizes of the sequence and sliding window, however, they told us the duration of different activities
could differ from ∼ 10 seconds to ∼ 5 minutes. We use this range as the sizes for the sequences and
the sliding windows. The input for the model consists of sequences with Lseq = 300 and utilizes
sliding windows of Lsw = 10.

55

7.6.1 Loss Function
The loss function used for this experiment is a combination of categorical cross entropy with
CSL weights applied, which we refer to as the weighted categorical cross entropy. The reason for
implementing CSL in this experiment, is that the number of recorded sessions differs from player
to player as displayed in Section 3.1 and Figure 3.1 causing an imbalance in the data.

The CSL vector is calculated as follows:

wn =
cn

min(c)
for all player IDs n (7.3)

where w is the cost vector, cn is the number of sessions for player n, and min(c) is the number of
sessions for the player with the lowest session. The loss function is then defined as follows:

L(pi, yi) = −
n∑

k=1

wk · yi,k · log(pi,k)) (7.4)

where n is the number of unique players, L(pi, yi) is the loss for sample i, pi is the predicted
probability distribution over n, yi is the label, pi,k is the predicted probability for the kth class,
and yi,k is the label for the kth class.

Evaluation Metrics
For this experiment, as a result of choosing the Lseq = 300, the sessions in the dataset are split
into 72 sequences each. For evaluating the experiment, we use accuracy as the evaluation metric,
while using t-SNE for visual representation. For the t-SNE we aim to observe clear decision
boundaries and separability among the players, as this would indicate the model is able to classify
the players given their movement patterns and physical exertion.

The accuracy indicates the overall performance of the model in its ability to classify sequences
to the correct player. t-SNE is used to illustrate the models’ separability of the players. The
combination of accuracy and t-SNE should give us a more robust evaluation of the models’ overall
performance, and whether or not we find it suitable to use the encoding for injury risk estimation
purposes.

7.6.2 Results
A plot of the classification accuracy of the training and validation set can be seen in Figure 7.4.

56

0.984
0.986
0.988
0.99

0.992
0.994
0.996
0.998

1

0 20 40 60 80 100120140160180200220240260

Figure 7.4: The plot illustrates the training and validation set categorical accuracy. The blue line
represents categorical accuracy on the training set and the orange line represents the categorical
accuracy on the validation set.

Given the results of the training and validation accuracy in Figure 7.4, it is prominent that the
model is able to separate the players in training almost perfectly, with accuracies of ∼ 100%. The
classification accuracy of the test set is 99.21%. This indicates that the model is able to generalize
well to new, unseen data. Furthermore, a test accuracy of 99.21% indicates that the model has
been able to separate the players and is able to capture the temporal dependencies and patterns
in the data, and is able to use these dependencies and patterns to accurately classify a player ID
based on tendencies.

Model Accuracy

Player ID Prediction 99.21%

Table 7.5: The accuracy of the player ID predictive model.

t-SNE
To evaluate the model based on the t-SNE, we select 5 unique players, where each player is playing
a different position. We choose both the LB and RB as they should be similar in play style just
on the other side of the pitch. For the perplexity parameter, we experimented with different
parameters in the range of 10 to 75, in order to inspect the clusterability. However, clusterability is
best at a perplexity = 15. Using this perplexity setting, 5 clusters are formed, one for each player.
The t-SNE plot is illustrated in Figure 7.5.

57

Figure 7.5: Data t-SNE plot with perplexity = 15, using 5 unique players, where each player is
playing a unique position.

Based on the clusterability in Figure 7.5, we find the clusterability of the sequences to be satis-
factory, given that each cluster is almost perfectly distinguishable from other clusters. We see
that each player ID has clear separations with a few outliers from each cluster but with almost
non on top of another class. The presence of the outliers in the plot indicates that there exist se-
quences for each player which can be considered abnormalities, as the model is unable to place
these sequences in the main cluster for the player. These outliers can be an indication of a player
behaving abnormally due to a minor injury strain.

7.6.3 Basis Feature Evaluation
Due to the remarkable 99.21% accuracy observed in the player ID experiment, we conduct additional
experiments to gain insight into how the basis features are correlated with player IDs.

In the first experiment, we remove each individual basis feature from the sliding windows and
utilize the remaining three basis features. This approach allows us to examine the impact of
each basis feature on the overall classification. By systematically excluding one basis feature at a
time, we can assess the contribution and influence of each feature. The results are displayed in
Table 7.6.

58

Accelerations Distance Covered Player Load Speed Test Categorical Accuracy

✓ ✓ ✓ 99.93%

✓ ✓ ✓ 99.97%

✓ ✓ ✓ 99.91%

✓ ✓ ✓ 99.94%

Table 7.6: The accuracy of the player ID predictive model while excluding a single basis feature
from the sliding windows.

Based on the results from the first experiment in Table 7.6, we see that the accuracy does not
drop by more than ∼ 0.1% if any of the basis features are excluded in the sliding windows. Based
on these results, we can conclude that it is not a single basis feature that is directly correlated
to player identification, while the other basis features are not. However, based on the results in
Table 7.6, we want to further experiment with using one basis feature for the sliding windows,
while excluding the remaining three basis features. The experiment is conducted to see how
correlated each of the basis features is in regard to player IDs. The results of the experiment are
displayed in Table 7.7.

Used Basis Feature Accuracy

Accelerations 99.87%

Distance Covered 99.94%

Player Load 98.83%

Speed 99.78%

Table 7.7: The accuracy of the player ID predictive model while using only a single basis feature
in the sliding windows and excluding the remaining 3 basis features.

The results displayed in Table 7.7 show that a basis features alone while excluding the other basis
features, still has an accuracy of ∼ 99%. This raises further speculations given each basis feature
is able to accurately determine a player given a sequence of sliding windows. We are not satisfied
with the insight into how the model is able to distinguish between players this well.

7.6.4 Statistical Feature Evaluation
Based on the results in Table 7.7, we delve into the effect of each statistical feature, to gain a
deeper understanding of their contribution and significance in relation to player ID classification.
As the correlation with player ID classification is consistent across all basis features, we assume
that the findings from analyzing the statistical features for ’Accelerations’ is representative of the
contributions of each statistical feature for other basis features as well. The results of using a
single statistical feature in each sliding window for each sequence, are displayed in Table 7.8:

59

Statistical Feature Accuracy

Accelerations mean 68.71%

Accelerations std 60.96%

Accelerations first quantile 88.76%

Accelerations second quantile 95.14%

Accelerations third quantile 77.74%

Acceleration difference mean 62.60%

Acceleration difference std 59.67%

Acceleration difference first quantile 72.25%

Acceleration difference second quantile 91.63%

Acceleration difference third quantile 72.26%

Table 7.8: The test set categorical accuracy of the player ID predictive model while each sliding
window contains only one statistical feature for the ’Accelerations’ basis feature, without any other
basis features.

The results presented in Table 7.8 reveal a substantial correlation between the second quantile
feature and player ID classification with an accuracy of 95.14%. This proves that the second
quantile feature carries substantial information for determining player IDs.

Furthermore, the first quantile feature for ’Accelerations’ exhibits a significant correlation with
player ID classification with an accuracy of 88.76%. The first quantile statistical feature does not
convey as much information when considering the ’Accelerations difference’ feature. This also
holds true for the second quantile feature, which suggests that the raw values of ’Accelerations’
are more informative in predicting player IDs than the differences in acceleration values.

7.7 Player ID Encoding Injury Risk Estimation Model
This experiment is based on the model introduced in Section 6.5. The encoding extracted in
Section 7.6 is used as input in this experiment together with the handcrafted features. As the
model is almost identical to the E2EWR model used in Section 7.5, we compare the results of these
two to test our hypothesis from Section 6.4. However, given that the input to the model is the
learned features from the PID experiment, we have no insight into what the features encompass.
We know that they are reliable to predict the player ID given the results in Section 7.6.2, but we
do not know whether these learned features are relevant for injury risk estimation.

7.7.1 Results
The training and validation loss is illustrated in Figure 7.6.

60

0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

-2 0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 7.6: Loss plotted for the PIDIR experiment. The line is representative of all 10 runs. The
orange line represents the loss for the validation set and the blue line represents the loss for the
training set.

The training and validation loss illustrates that the model is not able to learn after the initial 2−3
epochs. This suggests that using the player ID encodings as substitutions for the sliding windows
has a negative effect on the model’s ability to learn which features are related to a player’s risk
of injury. However, we see that the validation loss is lower by ∼ 0.08 after the first 2− 3 epochs
compared to the lowest validation loss of the E2EWR. This could indicate that by utilizing the
player ID encodings as a substitute for the sliding windows, the encodings are correlated to a
certain extent with a player’s risk of injury, but the model is unable to capture the dependencies.
This indication is furthered by the training loss increasing across the epochs, instead of gradually
lowering, compared to the E2EWR model where we see both the validation and training loss
steadily decreasing across the epochs.

The evaluation of the model’s performance using the evaluation metrics from Section 5.5, P@k,
and DCG are shown in Table 7.9.

P@1 P@3 P@5 DCG

5.55%± 5.30 24.82%± 6.84 41.11%± 7.30 0.65± 0.07

Table 7.9: PIDIR experiment P@k and DCG evaluations.

Based on the results displayed in Table 7.9, we reject the hypothesis presented in Section 6.4, that
the learned features from the player ID encodings are more suitable for injury risk estimation
compared to sliding windows. As this experiment uses a model identical to the E2EWR model
in Section 6.3, but with a different input in the form of encodings instead of sliding windows

61

these are comparable. The PIDIR model performs worse than the E2EWR model for any window
size, with the best performing E2EWR performing 9.64, 10.74, 11.48 better for P@1, P@3, and P@5,
respectively. The PIDIR model has similar stds to the E2EWR, but also a 0.15 lower DCG. This
indicates that the learned features from the PID experiment are less informative for injury risk
estimation than using sliding windows in an end-to-end model, thus rejecting our hypothesis in
Section 6.4.

7.8 Experiment Summary
In this section, we provide an overall comparison of the different models based on the results of
the experiments. Table 7.10 shows the best results from the experiments in Sections 7.3 to 7.5
and 7.7.

Model P@1 P@3 P@5 DCG

Random Risk 7.30%± 5.01 23.11%± 7.86 36.75%± 9.14 0.65± 0.07

HF 21.85%± 5.84 42.22%± 9.83 56.66%± 9.08 0.90± 0.08

LF 10.74%± 4.81 28.52%± 9.38 49.26%± 9.08 0.71± 0.05

E2EWR 15.19%± 5.09 35.56%± 7.63 52.59%± 5.93 0.80± 0.11

PIDIR 5.55%± 5.30 24.82%± 6.84 41.11%± 7.30 0.65± 0.07

Table 7.10: The best-performing variation of each model, with their respective performance in the
P@k, and DCG evaluation metrics.

As seen in Table 7.10, the model with the highest P@k is the HF model, which is able to rank
21.85%, 42.22%, and 56.66% in the P@1, P@3, P@5, respectively, while having a DCG score of
0.90± 0.08 indicating the injuries that do not occur in top k, are in close proximity to top k. The
E2EWR model performs second best, with comparable performance to the HF model, with the
E2EWR model having 6.66, 6.66, and 4.07 lower P@1, P@3, and P@5 respectively. The PIDIR model
is the worst performing model of the four and shows that learned features based on player IDs
can be used, but other approaches achieve better results. All of the models incorporating either
learned features or handcrafted features perform better than the random risk baseline. This
indicates that implementing learned features and/or handcrafted features helps estimate the
player’s injury risk. An unexpected result is that the HF model outperforms the models which
use learned features correlated to injury risk, as research has shown learned features to be more
informative, described in Chapter 2. Even though the HF model has the highest precision, it also
has the highest std of all the models, indicating that the model is not stable. Based on the std the
most stable model is the E2EWR model as it has the lowest std of all models overall.

Given our goal is to rank the players based on their risk of injury as accurately as possible, using
the provided data. Therefore, we use the DCG score as it is influenced by all injuries, and not
solely the ones in top k. The HF model has the highest DCG score of 0.90± 0.08. Combined with
the P@k, we evaluate the HF model to be the best performing, as AaB can change k based on the
medical staff’s availability.

62

7.9 Parameter Optimization Experiment
Given the results of the experiments, we optimize the best performing model to further improve
the results. The HF model was the best performing model, as highlighted in Section 7.8. However,
considering that previous research has demonstrated the combination of learned and handcrafted
features leads to an increased accuracy [5; 31], we also include the E2EWR model for further
optimizations. By incorporating a combination of learned and handcrafted features, we anticipate
that the E2EWR model can be fine-tuned to potentially beat the HF model in P@k and DCG.

7.9.1 Optimizing the E2EWR Model
We aim to improve the overall performance of the E2EWR model with a sliding window size of L30,
which based on results in Table 7.4 performs best. To improve the E2EWR model, we implement
different variations of the model.

We change the usage of the multi-head attention layer, to assess its influence on the model’s
ability to estimate a player’s risk of injury. This is done by removing the multi-head attention
layer in some cases while enabling the layer in other cases. This allows us to assess if the multi-
head attention layer helps the model capture patterns relating to injury risk, and has a positive
influence on the model.

We introduce a dropout layer to further the generalizability of the model, as we force the model to
utilize more features during training, hence potentially increasing its ability to capture dependen-
cies relating to a player’s risk of injury.

We reduce and increase the number of learned features for the WEB, to see if the number of
features has an impact on the model’s ability to estimate the risk of injury. Furthermore, by
increasing and decreasing the number of learned features for the WEB, we gain insight into if the
model is able to capture more complex dependencies as the size of the WEB increases.

We reduce and increase the layer sizes of the fully connected layers (FC1, FC2), for the same
reasons as the different sizes for the learned features in the WEB.

All parameter configurations can be seen in Table 7.11 and the model variations are illustrated in
Appendix B.

63

Variation Attention Dropout Learned Features FC 1 FC 2

v1 (Original) True False 64 48 32

v2 True True 64 48 32

v3 False True 64 48 32

v4 False False 64 48 32

v5 True True 32 24 16

v6 True True 32 16 8

v7 True True 128 32 16

v8 True True 128 64 32

Table 7.11: Optimization parameters for the E2EWR model.

The evaluation metrics from Section 5.5, P@k, and DCG are shown in Table 7.12.

Model P@1 P@3 P@5 DCG

v1 (Original) 15.19%± 5.09 35.56%± 7.63 52.59%± 5.93 0.80± 0.11

v2 11.85%± 5.44 32.22%± 10.87 47.04%± 10.48 0.78± 0.14

v3 15.19%± 4.52 33.33%± 9.07 48.15%± 7.94 0.78± 0.09

v4 15.56%± 8.25 35.93%± 11.48 50.37%± 9.83 0.79± 0.01

v5 20.00%± 8.80 37.04%± 10.73 50.37%± 11.97 0.81± 0.08

v6 14.81%± 6.20 32.22%± 9.09 51.85%± 10.34 0.75± 0.10

v7 14.81%± 6.42 35.56%± 4.44 48.89%± 8.08 0.78± 0.09

v8 12.96%± 7.81 28.52%± 8.29 42.59%± 8.80 0.77± 0.12

Table 7.12: P@k and DCG results for the models in Table 7.11.

The training plots for the E2EWR variations are visualized in Appendix C. All the variations of the
E2EWR model have the same tendencies. However, we see that the v3 and v5 have an increased
loss of ∼ 0.42 which is significantly higher, given the other variations’ loss is in the range ∼ 0.18 to
∼ 0.3. We see no overfitting in the different variations as they all stabilize with the small margin
between the training and validation loss.

Learned Features & Layer Size
In order to evaluate the influence of the number of learned features and the layer size of the fully
connected layers, we compare v5 with v6, v7, and v8. Some of the variations perform well in some
evaluation metrics while performing worse in others, and at the same time, some variations have
smaller deviations compared to others. Given these results, there is not a standout, which performs

64

better overall than the rest of the variations. However, v6 in comparison with v5, performs a little
worse with smaller layers in the fully connected layers. For v7 and v8, v8 performs worse with a
higher number of nodes in the fully connected layer.

This suggests that the layer size of FC1 should be between 16 to 64 and the layer size of FC2 should
be between 8 to 32. Considering the outcome of the experiments, there still exists uncertainty
regarding the optimal layer sizes for each layer. The results of the experiments however did narrow
the remaining search space for the optimal parameters for each layer size, but to attain more
precise layer sizes, additional experiments must be conducted.

Attention
To evaluate the influence of incorporating the multi-head attention layer in the model, we can
compare v1 with v4. In this comparison, we can see that the implementation of the multi-head
attention layer only seems to improve the models by a small margin. This suggests that the
multi-head attention layer may not have a substantial influence on the overall performance of
the model. We see that the standard deviations for the P@k are ∼ 3 higher for the v4 variation
compared to the v1 variation. This indicates that by using the multi-head attention layer, the
results of the model become more unstable, hence furthers the indication that the multi-head
attention layer does not provide a substantial influence on the model.

A limitation of our testing is that we did not increase or decrease the key dimension or number
of attention heads. The reason for not increasing the size of the key dimension and number of
attention heads is a result of memory and time constraints.

Dropout
To evaluate the influence of incorporating the dropout layer in the model, we can compare v3 with
v4, and v1 with v2. In the comparison of v3 with v4, we can see that the implementation of the
dropout layer seems to improve the performance and stability of the model.

In the comparison of v1 with v2, we see the opposite, where the implementation of the dropout
layer seems to decrease the models’ performance and stability.

When looking at the P@k standard deviations for the v3 and v4, we observe that the v4 exhibits
higher deviations. By the comparison of the different variations, we see that the implementation of
the dropout layer is influenced by the attention layer as well. If the attention layer is implemented,
we see the dropout layer having a negative effect on the P@k and stability. However, if there is
no implementation of an attention layer, the dropout layer has a positive effect on the P@k and
stability. In the DCG score, we can see that in both comparisons the implementation of the dropout
layer increases the deviation.

7.9.2 Optimizing the HF Model
In a similar manner to Section 7.9.1, we aim to improve the overall performance of the HF model,
which based on the results in Section 7.3 performs best. To improve the HF model, we implement
different variations of the HF model. We introduce a multi-head attention layer to capture different
dependencies of the input. This layer furthermore serves to scale the learned features of the GRU
layer, in order to make the features with the most relevance to a player’s risk of injury have more
influence in the compressed representation.

65

We implement a dropout layer to generalize the model and to avoid overfitting, as the model is
prone to overfitting as seen on the training curve illustrated in Figure 7.1.

We introduce a 2nd GRU layer. By stacking two GRU layers, and making the first GRU layer
return the sequence generated for each input, the second GRU layer can utilize the learned input
representations for each time step in the input and hence may help the model to capture more
complex dependencies relating to a players risk of injury.

We reduce and increase the layer sizes of the fully connected layers (FC1, FC2), using the same
reasoning as for the E2EWR optimization described in section 7.9.1.

All model configurations can be seen in Table 7.13 and the model variations are illustrated in
Appendix E.

Variation Attention Dropout 1st GRU 2nd GRU FC 1 FC 2

v1 (Original) False False 32 False 20 10

v2 False False 32 32 20 10

v3 True False 32 32 20 10

v4 True True 32 32 20 10

v5 False True 32 32 20 10

v6 True True 16 16 10 5

v7 True True 64 64 40 20

v8 False False 16 16 10 5

v9 False False 64 64 40 20

v10 False True 16 16 10 5

v11 False True 16 False 10 5

v12 False True 32 False 20 10

Table 7.13: Optimization parameters for the HF model.

The training plots for the HF variations are visualized in Appendix E. All the variations of the HF
model are very similar in tendencies and overall have roughly the same loss.

The evaluation metrics from Section 5.5, P@k, and DCG are shown in Table 7.12.

66

Model P@1 P@3 P@5 DCG

v1 (Original) 21.85%± 5.84 42.22%± 9.83 56.66%± 9.08 0.90± 0.08

v2 17.04%± 5.79 41.48%± 5.69 55.93%± 8.19 0.85± 0.12

v3 17.41%± 8.12 37.78%± 8.89 50.74%± 11.36 0.79± 0.08

v4 14.07%± 4.91 34.44%± 8.29 48.15%± 8.45 0.74± 0.13

v5 24.07%± 6.47 42.59%± 9.11 56.30%± 9.63 0.85± 0.10

v6 8.52%± 8.45 24.07%± 10.77 43.33%± 12.84 0.77± 0.14

v7 15.56%± 5.93 38.15%± 8.29 53.70%± 6.88 0.82± 0.09

v8 15.93%± 7.23 34.07%± 10.96 52.22%± 9.44 0.76± 0.11

v9 18.89%± 7.30 38.52%± 9.25 50.37%± 9.10 0.85± 0.08

v10 13.33%± 8.64 35.19%± 10.77 45.19%± 9.34 0.73± 0.07

v11 16.67%± 8.32 41.11%± 10.27 51.85%± 12.06 0.82± 0.12

v12 18.15%± 7.11 39.26%± 7.07 56.67%± 7.23 0.80± 0.10

Table 7.14: P@k and DCG results for the models in Table 7.13.

Overall the best performing models were v1, v2, v5, and v12.

Layer Size
To evaluate the influence of the layer sizes in the experiment, we compare the results of v2 with
v8 and v9. v2 has layer sizes of 32, 32, 20, and 10 for the 1st GRU, 2nd GRU, 1st FC layer, and
2nd FC layer, respectively. v8 has smaller layer sizes, while v9 has larger layer sizes. Out of the
three variations, v2 and v9 had the overall best performances across the four different evaluation
metrics, by topping two each. However, there exists significant variation in the results in the
different P@1, P@3, and P@5, thus the results lack a direct answer to what influence the layer
sizes have.

Therefore, we can further compare v5 with v10 and v11. v5 has the same layer sizes as v2 while
having a dropout layer. v10 and v11 have smaller layer sizes, while v11 does not have the second
GRU layer. Out of the three variations, v5 with the larger layer size had the overall best per-
formance across the four different evaluation metrics, while v11 performs better than v10. This
result indicates that the smaller layer size of 16 performs worse than the layer size of 32.

To further evaluate the influence of the layer sizes we can compare v4 with v6 and v7. v4 has
the same layer sizes as v2 while having a dropout layer and an attention layer. v6 has smaller
layer sizes, while v7 has larger layer sizes. Out of the three variations, v7 performs best, while v6
performs worst. So in this comparison, the larger layer sizes perform better. However, considering
the comparison of v2, v8, and v9, to conclude which layer size is best, there is a need for further
experimentation.

67

2nd GRU layer
To evaluate the influence of the 2nd GRU layer, we can compare v1 with v2 and v10 with v11.
For v1 and v2, we see the average in the P@k evaluation is marginally larger in v1, while the
deviation is marginally smaller in v2. The DCG is better for both the average and deviation in v1.
Given these results, the influence of a 2nd GRU layer, does not have a large influence. Therefore,
comparing v10 and v11, v11 with one GRU layer actually performs better across all the evaluation
metrics, with the exception of the deviation in DCG and P@5. Therefore, using one GRU performs
better than using two layers.

Attention Layer
To evaluate the influence of implementing the multi-head attention layer, we evaluate v2 and v3,
where v3 has the multi-head attention layer implemented. Other than the average in the P@1
evaluation, v3 seems to perform worse with the implementation of attention. v2 also seems to
be more stable than v3, given the lower deviation in all evaluation metrics, besides DCG. Given
v2 is more stable and performs better at P@3 and P@5, this suggests that the use of multi-head
attention is not influencing to model in a positive manner.

Dropout Layer
To evaluate the influence of the dropout layer, we compare v2 and v5, and v1 and v12. v2 has
no dropout layer, while v5 has a dropout layer. The performance is most significant in the P@1
evaluation, where v5 outperforms v2 with 7.03% accuracy. Other than that there are only small
differences in the results of the two variations. v1 has no dropout layer, while v12 has a dropout
layer. Again the difference between the performance of the models is not significant, however, in
the P@1 evaluation, the results are reversed compared to v2 and v5. The results obtained from the
experiments suggest that the influence of the dropout layer is inconclusive and requires further
experimentation to reach a definitive conclusion.

7.10 Feature Evaluation
Given that the HF model has performed best in the experiments, we have decided to evaluate the
features used in the model. To evaluate the features individually, we run the experiments again,
but remove a single feature while utilizing the remaining features. We use this to understand
the influence of a given feature on the output. The results of the experiments can be seen in
Table 7.15.

68

Feature P@1 P@3 P@5 DCG

All features 21.85%± 5.84 42.22%± 9.83 56.66%± 9.08 0.90± 0.08

No Accelerations 18.89%± 12.33 40.0%± 9.19 51.11%± 8.73 0.85± 0.13

No ACWR 21.85%± 7.49 44.81%± 5.84 61.48%± 7.98 0.83± 0.09

No Decelerations 17.04%± 9.10 35.56%± 10.76 48.52%± 9.86 0.84± 0.11

No Fatigue 15.19%± 7.67 34.07%± 9.77 50.74%± 7.42 0.83± 0.13

No High Speed Running 19.26%± 5.19 38.52%± 7.44 49.63%± 4.12 0.81± 0.09

No Muscle Soreness 12.96%± 5.04 32.22%± 7.23 43.33%± 7.23 0.76± 0.10

No Previous Injury 21.85%± 6.92 39.63%± 10.08 56.30%± 12.04 0.89± 0.12

No RPE 14.44%± 7.67 38.15%± 4.70 50.37%± 5.54 0.82± 0.08

No Sleep Duration 20.0%± 7.80 38.15%± 6.84 54.81%± 9.34 0.81± 0.07

No Sleep Quality 15.56%± 7.55 36.3%± 7.37 51.11%± 7.18 0.77± 0.08

No Sprint Distance 16.3%± 6.46 35.19%± 9.41 48.52%± 10.79 0.84± 0.11

No Sprints 21.48%± 3.63 38.52%± 8.15 49.26%± 9.23 0.87± 0.10

No ACWR or Previous Injury 16.30%± 7.07 32.96%± 6.30 52.22%± 7.30 0.82± 0.09

Table 7.15: Results for the experiments using one less feature than the HF experiment in Table 7.2.

The results show that the ’ACWR’ and ’Previous Injury’ features influence the model most neg-
atively. Therefore, we conducted another experiment eliminating both of them. However, that
result did not improve the model compared to the experiments with one of them eliminated. If we
use the results in Table 7.15, to evaluate which features are the most important, we can look at
which experiment performs the worst, excluding a given feature. We see an indication that ’Mus-
cle Soreness’ is the most important feature based on the four evaluation metrics, compared to the
other features. As ’Muscle Soreness’ is one of the survey features described in Section 3.2.4 which
we set to 0 in Section 4.3 if the surveys are not completed, this may have had a negative impact on
the models’ accuracy. By assigning this feature a value of 0, in cases where a survey has not been
completed, valuable information related to a player’s risk of injury was lost.

We see the performance in some of the metrics perform better than the best models in Table 7.14.
The model with no ’ACWR’ performs better in the P@3 and P@5 evaluations, with P@1 having an
identical accuracy but a 1.65 higher deviation, however, the DCG is still performing better with
all of the features included. This could indicate that the feature ’ACWR’ is obsolete and should
not be included in the model. The ’ACWR’ feature has been proven in related work to have a
correlation with injury, while the medical staff at AaB also confirms this, meaning our findings
are contradicting current state-of-the-art beliefs.

69

70

Chapter 8

Discussion

In this chapter, we discuss the data available, the decisions made during the project, the experi-
ments, and the results.

8.1 Evaluation Metrics
The evaluation metrics for this project have not been seen before in related work. The ranking
metrics we have used in this project have been decided upon due to the deployment and use in
practice. The ranking metrics are often used in other applications such as recommender systems,
however, we believe that they translate well to the ranking of injury risk. Given that no related
work has used this form of evaluation metric, we can not directly compare the results of this project
with related work.

Another aspect of using the evaluation metrics is that the P@k metric only uses a constant for
the evaluation. This is potentially problematic as the number of players in a session varies. For
example, using a k value of 5, in a session with five players, always makes a correct prediction if an
injury occurs. Furthermore, the k value does not consider the values or the closeness in proximity.
For example, if the k value is 3, and the 3rd and 4th values are separated by 0.01 the instances
should probably be classified in the same category. In continuation, as of now, we do not consider
what the actual value of the output from the model is. Therefore, it could be an opportunity to
look for another way to adapt the utilization of the P@k to work dynamically with the output of
the model. Having a constant k value means that we have sessions where players are ranked high
even though they may not be close to an injury but just have a higher risk than the rest of the
team.

However, the inclusion of the DCG score should be able to give a more complete and robust
evaluation of the model’s performance. This is the case, since injuries ranked higher, improves the
DCG score. Given that we have two injuries on a single date in very few instances, the usage of
the proximity and constant k value can be neglected by the usage of the DCG score. Furthermore,
we have some concerns about the usage of the DCG, since there is a small possibility that the
split of the data has varying double injury dates in the test set, which could influence the DCG
score. The maximum DCG score of a date with a single injury is DCG = 1

log2(1+1) = 1, whereas
the maximum DCG score for a date with double injury is DCG = 1

log2(1+1) +
1

log2(2+1) = 1.6309.
Therefore, one double injury date has a larger impact on the DCG score, and an unfortunate split

71

of data could give biased results. Another, way to address this is to rank each injury on the date
individually. This can be done by calculating the DCG for each injury while setting the other ’Next
Session Injury’ labels to 0. When this has been done, we would take the average of the DCG scores
instead of taking the sum of the DCG scores.

The DCG score does not encompass the proximity of the risk values but encompasses the ranking of
the risks. Therefore, the DCG is a valued evaluation metric and together with the P@k evaluation
gives a robust and reliable evaluation of the model’s performances.

8.2 10 runs
During the experimental process of the project, we decided to run each experiment 10 times, with
random initialization to encompass potential luck and bias in the model’s performance. The 10
runs were used and the results were shown as the average ± the standard deviation, to give
a more insightful and robust view of the model’s performance. Running experiments 10 times
introduces some reliability and robustness of the model, one run could potentially influence the
model’s average performance and the standard deviation far more than if the experiments were
run 100 times.

The 10 runs were chosen given the time frame of the project. Ideally, the experiments would
contain more runs or take advantage of cross-validation for more robustness and reliability of the
results of the models. However, the 10 runs did indicate the deviation in the model and give some
reliable results in the average of the four different evaluation metrics.

8.3 Loss vs Precision
In our experiments, we evaluated both the learning graphs for the experiments with the use
of our loss and the P@k and DCG score of the model’s injury risk estimation. However, in the
experiments, we do not see a direct correlation between the loss and the P@k and the DCG score.
The experiments with a lower loss can be outperformed by other experiments with a higher loss.
Given the results of the experiments in Chapter 7, we are not able to conclude the correlation
between the loss and the performance of P@k and the DCG score.

8.4 Features
The fact that we are only using 12 handcrafted features, may be too few as we have 275 available
from the calculated features dataset. The 12 handcrafted features are chosen based on interviews
with the medical staff at AaB but more could have been added. Rossi et al. [39] uses 55 features,
but only three of these are shown to be decisive for injury prevention. Therefore, we decided to
only use the most informative features to introduce less noise to the data. These features where
were decided upon during interviews with AaB and based on related work [21; 25; 32; 39; 49].
This meant that some features, that intuitively have a high correlation with injuries have been
left out, one such feature is the age of the players. Given the HF model is not using all potentially
informative features from the calculated StatSports dataset, the HF model still outperformed the
E2EWR model. An interesting study could be to add more features and conduct an exploratory
experiment to find the most informative subset of features.

72

8.5 Data

8.5.1 Session Cutting
When deciding the cut-off values for our sessions described in Section 4.1.2, we removed sessions
with a length of under 40 minutes and sessions with a length of over 3 hours, as AaB informed
us that there were no training sessions or matches of under 40 minutes or over 3 hours. This
limitation was furthermore chosen in order to limit the length of the sliding windows and sequences,
henceforth speeding up the model training process. By removing sessions over 3 hours we may
potentially have removed useful sessions, and as a way to mitigate the loss of information, we could
have used the sessions over 3 hours but cut away any data that was over 3 hours into the session.
This would lead to us having a small increase in available sessions as we remove 223 of the 5, 825
original raw GPS sessions, which is a reduction of ∼ 3.83%. The removal of the reduction could
have resulted in better accuracy of our models. We evaluated the sessions’ considered outliers,
and we found no injuries in them. However, if any of them would have contained injuries, we
would reevaluate the number of outliers we remove, given the limited number of injury sessions
we have. The session cut was done before mapping the datasets, so the 223 may not even have
been included in the dataset after all. A potential problem with this implementation is that if
the device has been turned on before usage, then the sessions used with the first 3 hours could
contain invalid and non-indicating data.

8.5.2 GPS Patching
As we show in Section 4.1.1 the data contains some gaps that we patch. As we mentioned there
are multiple ways to patch the data and we chose to patch the data in a way that required the
least possible movement of the players. By patching the GPS data using Equation 4.2, we are still
missing large amounts of data that may have contained important information about the player’s
health and performance. This approach was chosen to minimize the chance of adding bias to the
gaps, but we could have taken the average of the domain features from the rest of the session and
padded the gap to mimic the other data. For this project, we have not removed any outliers in the
GPS data, and as we can see in Figures 8.1 and 8.2 there is a chance that we are patching gaps to
an outlier, intuitively introducing more outliers as synthetic samples.

As the synthetic samples are based on previous speeds, the introduced outliers should not have
any significant impact on the data, that the statistical features can not handle. The problem with
just removing the gaps and having one entry with an inhuman speed could in theory have been
handled by using statistical features or we could have handled those entries by assigning a more
reasonable speed, such as the average speed of the session.

Another idea we had for the patching of the GPS data was to identify the larger gaps in the session,
such as gaps over two minutes. With the larger gaps, we could remove the gaps completely and
use this as the endpoint of the current session, and use the remaining data from the session
as another session. However, implementing this would increase the difficulty of mapping the
remaining datasets to the session, as we have no way to split up the calculated features from
StatSports. Furthermore, the ’Next Session Injury’ label would be misleading if the sessions with
larger gaps were split since it would probably be the last session part that would have the label
as true. This could also be a positive introduction as we would have a session very close to the
last session where a player was injured, and therefore could better identify the deviation in the
player’s tendencies, performance, movement, and workload.

73

Figure 8.1: The raw GPS data for a player about
a training session, before creating synthetic
data samples.

Figure 8.2: The GPS data for a player about a
training session, after creating synthetic data
samples.

2, 426 of the 5, 825 GPS sessions, which is ∼ 41.65% have been evaluated to have gaps in them.
Therefore, the need for a technique to handle the gaps instead of removing them, is quite nec-
essary. We implemented the technique mentioned in Section 4.1.1. However, if the method has
implemented some bias while patching the GPS gaps, it affects almost half of all our sessions.
Given some of the StatSports features mentioned in Section 3.2.2 are calculated based on GPS
data, these gaps raise further questions about the quality of the dataset from StatSports. An ex-
ample is the ’Number of Sprints’ feature. If a player starts to run above 5.5m/s for more than
1 second, the ’Number of Sprints’ feature is increased by 1. However, if a gap arises during the
sprint, we don’t know if StatSports counts this as one sprint, two sprints, or multiple sprints, as
there is no way of knowing how many sprints the player has performed during the duration of the
gap. We even contacted StatSports about the gaps in the data, however, they have not responded.

8.5.3 Data Quality
For this project, we fused four different datasets into a single dataset. The four datasets we
utilized were very inconsistent. For the raw GPS data, there exist gaps in ∼ 41.65% of the total
sessions, with durations from ∼ 1 second to over 10 minutes. For the StatSports sessions, the raw
GPS data was not always available, hence limiting the number of sessions we were able to use in
our dataset. This limitation may have had a substantial impact on the results of our experiments,
as many sessions have been excluded due to the raw GPS data not being available, hence the most
recent sessions are not always utilized for the injury risk estimations, given they were discarded.
The survey dataset contained biased values given the players completed the surveys based on how
they were feeling, and further under the knowledge that they may not play in a given match if
they report having a bad sleep the night before, increased muscle soreness, or feeling fatigued.
Furthermore, 645 of our 4, 350 sessions did not contain survey entries. If we excluded sessions that
did not contain a survey, we would potentially lose some of our injury labels, as they would happen
in cases where there was no survey data available. Given we set the survey features to zero in

74

case a session does not have a completed survey, we potentially hindered our models in estimating
a player’s risk of injury. Features based on sleep and muscle soreness have been proven to be
informative regarding a player’s risk of injury as described in Chapter 2, thus limiting the models’
ability to estimate a player’s risk of injury when these are logged as zero. For the injury dataset,
the medical staff at AaB are not logging small injuries which prevent a player from attending
a single session, only injuries that prevent players from attending sessions over a duration of
several days are logged. The patterns leading up to these small injuries may be captured by the
model, but the model is punished for capturing these patterns, as the ’Next Session Injury’ label
is set to zero, given AaB has not logged these types of injuries.

8.6 Results

8.6.1 PID
Through our PID experimentation in Section 7.6, we have delved into the results as the original
experiment had an accuracy ∼ 99%. An accuracy that high seemed unlikely, which inspired our
feature evaluation. Firstly, we tried removing one of the basis features at a time from the input to
the model. The experiment showed us that no matter what basis feature was removed we would
still get a high accuracy ∼ 99%. Therefore, we tried only having one basis feature as input to see
if it was the combination of certain features that had this much influence on the classification
of player IDs. Just as in the first experiment in the feature evaluation, we did not see much
change in the accuracy of the model and it stayed at ∼ 99%. Based on these results, we could
either conclude that all the basis features were highly correlated with player ID classification or
that the data contained some form of error. We then decided to delve deeper into the experiment
and look at the statistical features, described in Section 4.2.1, that are generated based on the
basis features. The feature evaluation of the statistical features was conducted based on the
’Acceleration’ basis feature as all the basis features performed almost identically, and due to time
constraints. This experiment showed that the quantile features had the biggest influence on the
player ID classifications. Especially the second quantile, which had above 90% accuracy, seemed
to perform better than could be expected.

Another aspect of the PID model, is that we could have conducted more experiments without the
most influential features, to generalize the model more. However, due to time constraints, we
could not test further with the statistical features and by doing so create a new encoding that
could be used for the PIDIR experiment.

8.6.2 ACWR
Given our experiment in Section 7.10, we see the ’ACWR’ feature does not provide useful information
for injury prediction and may be obsolete even though it is considered a state-of-the-art method.
ACWR has been proven to have a high correlation with injury prevention in related work and
research. Hulin et al. [18] notes the optimal value for the acute and chronic workload is not
universal and should be experimented with based on the data. Therefore, it could mean that we
are simply not using the ’ACWR’ feature with the correct duration of the two workloads. Hulin
et al. [18] mentions that the value is determined based on the data, so there is also a chance
that the data we are using is not ideal for ACWR. The RPE used to calculate the workload, and
indirectly the ACWR, are part of the survey features, which contain zero values if the survey is not
filled out, as mentioned Section 8.5.3. As 645 of our 4, 350 session or 14.83% of the data contains

75

zero values, the ACWR can not be calculated and will have a value of zero, which could be why it
appears obsolete in the feature evaluation.

8.6.3 Optimization Experiment
For our optimization experiments, we could have taken a more systematic approach instead of just
making a bunch of variations that we could think of. An example of this is our E2EWR and HF
model where we introduced 8 and 12 model variations, as one experiment. The more systematic
approach would have been to test only one parameter or layer change at a time, and then only use
the best result for further variation. This way it would have been easier to evaluate the variations,
as now we are changing multiple parameters, making it difficult to compare the results, and
decreasing readability. By testing only one parameter at a time, the intention and outcome of the
variations would have been more clear.

Based on the E2EWR optimizations in Section 7.9.1 we evaluate the best performing variation to
be either v1 the original or v5 based on the preference of AaB. v1 is more stable and has a better
P@5 while v5 shows better P@1, P@3 and a slightly better DCG. Hence if AaB prefers a more
reliable model v1 is the best, while a model with higher average precision as a preference will
result in v5.

For the HF optimization experiment in Section 7.9.2, the best performance in our metrics is split
between three variations, v5 for P@1 and P@3, v12 for P@5 and v1 wins at the DCG score. As v1
has the highest DCG score, which we weigh high in our evaluations, and the average precision is
close to v5 and v12, we evaluate v1 to be our best performing HF variation.

Given v1 of the HF model has higher precision compared to v5 of the E2EWR model, we decide to
perceive v1 of the E2EWR model to be the best performing E2EWR model based on its stability.

8.6.4 E2EWR vs HF
Based on the results in Table 7.10 Section 7.8, the HF model’s average precision and DCG are
better than the E2EWR model, but the E2EWR model is more stable. As described in Section 8.5.3
sometimes the survey features are set to zero, and 6 of the 12 handcrafted features used in the HF
model are either survey features or a feature based on the survey. Therefore, the HF model is
more influenced by an unreliable data source compared to the E2EWR model which also has the
sliding windows as input. As the E2EWR model is more stable it might be the preferred model
compared to the HF model, but as we weigh the DCG score higher we evaluate the HF model to be
the best performing.

76

Chapter 9

Conclusion

In this section, we conclude the project and our findings. In Chapter 1, we introduce the problems
related to injuries in football and construct the following problem statement:

Using the data provided by AaB how can we correctly rank football players based on
their risk of injury, using representation learning, the inclusion of domain knowledge,

and a combination of both?

We have implemented machine learning models which incorporate representation learning, domain
knowledge, and a combination of both. We have implemented the HF model, which exclusively
uses handcrafted features specifically crafted based on domain knowledge from medical staff and
previous work. Furthermore, we have implemented the LF model, which uses representation
learning to learn features related to injuries. Lastly, we have implemented the E2EWR and PIDIR
models which combine the approaches of learning features and using handcrafted features. The
E2EWR model is an end-to-end model, whereas the PIDIR model uses learned representations
transferred from the PID model. We evaluate the models using precision @ k (P@k) and Discounted
Cumulative Gain (DCG).

In Section 6.4, we hypothesized that the PID model was able to learn representations that
encompassed features related to a player’s tendencies and performance, making them more
suitable for estimating a player’s risk of injury compared to sliding windows. Based on the results
of the experiments in Chapter 7, we rejected the hypothesis, as both the P@k and the DCG scored
lower than when using sliding windows.

Overall, the models perform better than randomly estimating the risk of injuries, indicating
that by using learned features and domain knowledge we can, to some extent, correctly rank
football players based on their estimated risk of injury. Based on these results, we conclude that
by using data provided by AaB, we can correctly rank football players based on their risk of injury
using representation learning with a P@1, P@3, P@5 of 10.74%± 4.81, 28.52%± 9.38, 49.26%± 9.08
respectively, with a DCG score of 0.71± 0.05. We can correctly rank football players based on their
risk of injury using domain knowledge to craft handcrafted features with a P@1, P@3, P@5 of
21.85% ± 5.84 42.22% ± 9.83 56.66% ± 9.08 respectively, with a DCG score of 0.90 ± 0.08. We can
correctly rank football players based on their risk of injury using a combination of representation
learning and handcrafted features with a P@1, P@3, P@5 of 15.19%± 5.09 35.56%± 7.63 52.59%±

77

5.93 respectively, with a DCG score of 0.80 ± 0.11. Therefore, we can further conclude that by
implementing different machine learning models, trained on the data provided by AaB we can, to
some extent, correctly rank football players based on their estimated injury risk.

Given the results of the different models, we conclude that the HF model is the overall best
performing model.

78

Chapter 10

Future Work

In this chapter, we introduce possible future work that would have been done given a longer time
frame.

10.1 Increase Time Span
In our project, we used a time span of seven sessions in order to predict a player’s risk of sustaining
an injury in the next session. An interesting project could be to increase the time span that we
were using to predict a player’s risk of injury. Expanding the time span could provide several
benefits, such as allowing for a better understanding of how injury risk evolves over a time span
of more than seven sessions. This would in turn allow the model to capture more long-term
dependencies, and could potentially lead to an increase in accuracy.

10.2 Dynamic k

Another experiment, or design that could have been implemented for the project is a dynamic k
value. As mentioned in Section 8.1 we do not actually look at the values we get from the models,
we only rank them. By investigating the values a dynamic k could be implemented, where the k
value is decided by the number of players with a value above a certain threshold. This threshold
could be decided using the mean value for the players when an injury occurs and then subtracting
a standard deviation. By further examining the injury risk estimation, color coding could be added
to achieve a more interpretive ranking for the medical staff. An example of this would be coloring
players above a certain value red, if their values are above a threshold at which an injury almost
always occurs, green if the player is just above the threshold used to determine the dynamic k
value, and orange if the player is above the average score when an injury occurs and below the
threshold used to rank player in the red zone. Introducing dynamic k and a color scheme could
also help the medical staff determine to what degree they need to attend to the players.

10.3 Hyperparameter Optimization
The extent of our experiments narrowed down the search space for the optimal hyperparameters, to
fine-tune the hyperparameters additional experiments are needed. Even though we experimented

79

with different variations of the models presented in Chapter 6, the desired way to find the optimal
parameters of the model would have been to implement multiple grid searches. By using grid
search, all possible hyperparameter combinations in the search grid would have been explored
and tested, hence a more systematic and comprehensive hyperparameter optimization would be
possible.

10.4 Cost-Sensitive Learning
We have implemented the CSL to handle the imbalance of the dataset in multiple ways. However,
we have not evaluated this implementation, which is desired to do in the future. The area of
handling an imbalanced dataset has a lot of attraction. Experimenting with the implementation
of CSL could provide further knowledge into whether or not the implementation has provided the
desired influence on the experiments. Furthermore, the parameters in our CSL implementation
have not been experimented with either. It would give more insight into what effect CSL have if
we experimented with different parameters to see if we could find an optimal or close to optimal
implementation.

10.5 Data Preprocessing
For this project, we use different techniques and approaches for processing the data used in the
experiments. However, as mentioned in Section 8.5.2, we patch some data that looks like outliers,
and by patching to the outlier we added additional outliers. Therefore, it would be beneficial to
determine a way to check if the data contains outliers. We also need to ensure that the data is
useful, as Figure 8.2 in Section 8.5.2, also show that the data is recorded inside AaBs clubhouse
and on their parking lot. So we need to ensure that the data we are using is actually from a
session, there is also the chance that the equipment is not calibrated and the heatmap is shifted.
This could be done by checking the speed of the player, as it is not logical for him to run at high
speeds inside, or checking if the time stamps match the rest of the team, as they are training
together. A way to handle the outliers could be creating a virtual map of the training facilities
and ignoring data points outside this map. For a match, the map could be created based on the
GPS location of some of the players or the ball.

80

Bibliography

[1] Mart’in Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Man’e, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Vi’egas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] AaB A/S. [n. d.]. Aalborg Boldklub. https://aabsport.dk/

[3] Børsen. 2016. Fakta: Så meget henter superliga klub-
berne i præmie penge. https://borsen.dk/nyheder/generelt/
fakta-saa-meget-henter-superligaklubberne-i-praemiepenge-3g5vj

[4] Nitesh V Chawla. 2010. Data mining for imbalanced datasets: An overview. Data mining
and knowledge discovery handbook (2010), 875–886.

[5] Aladine Chetouani, Maurice Quach, Giuseppe Valenzise, and Frédéric Dufaux. 2021. Combi-
nation of Deep Learning-Based and Handcrafted Features for Blind Image Quality Assess-
ment. In 2021 9th European Workshop on Visual Information Processing (EUVIP). ., ., 1–6.
https://doi.org/10.1109/EUVIP50544.2021.9484013

[6] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, 1724–1734. https://doi.org/10.3115/v1/D14-1179

[7] Christopher Colah. 2015. Understanding LSTM Networks. https://colah.github.io/
posts/2015-08-Understanding-LSTMs/

[8] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-balanced
loss based on effective number of samples. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 9268–9277.

[9] Scikit-Learn developers. 2023. Sklearn preprocessing. Scikit Learn. https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

81

https://www.tensorflow.org/
https://aabsport.dk/
https://borsen.dk/nyheder/generelt/fakta-saa-meget-henter-superligaklubberne-i-praemiepenge-3g5vj
https://borsen.dk/nyheder/generelt/fakta-saa-meget-henter-superligaklubberne-i-praemiepenge-3g5vj
https://doi.org/10.1109/EUVIP50544.2021.9484013
https://doi.org/10.3115/v1/D14-1179
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

[10] Weishan Dong, Jian Li, Renjie Yao, Changsheng Li, Ting Yuan, and Lanjun Wang. 2016.
Characterizing driving styles with deep learning. arXiv preprint arXiv:1607.03611 ., . (2016),
.

[11] Weishan Dong, Ting Yuan, Kai Yang, Changsheng Li, and Shilei Zhang. 2017. Au-
toencoder regularized network for driving style representation learning. arXiv preprint
arXiv:1701.01272 ., . (2017), .

[12] Calham Dower, Abdul Rahefi, Jason Weber, and Razali Mohamad. 2018. An enhanced
metric of injury risk utilizing Artificial Intelligence. MIT SLOAN Sports Analyt-
ics Conference ., . (2018), . https://www.alerteds.com/wp-content/uploads/2016/02/
MITSSAC2018-An-enhanced-metric-of-injury-risk-utilizing-Artificial-Intelligence.
pdf

[13] Sheila A Dugan and Walter R Frontera. 2000. Muscle fatigue and muscle injury. Physical
medicine and rehabilitation clinics of North America 11, 2 (2000), 385–403.

[14] Laura Garcia, Antoni Planas, and Xavier Peirau. 2022. Analysis of the injuries and workload
evolution using the RPE and s-RPE method in basketball. Apunts Sports Medicine 57, 213
(2022), 100372.

[15] Geopy. [n. d.]. Geopy. https://geopy.readthedocs.io/en/stable/#module-geopy.distance

[16] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings, 315–323.

[17] Kevin Huang and Joseph Ihm. 2021. Sleep and injury risk. Current sports medicine reports
20, 6 (2021), 286–290.

[18] Billy T Hulin, Tim J Gabbett, Peter Blanch, Paul Chapman, David Bailey, and John W
Orchard. 2014. Spikes in acute workload are associated with increased injury risk in elite
cricket fast bowlers. British Journal of Sports Medicine 48, 8 (2014), 708–712. https://doi.
org/10.1136/bjsports-2013-092524 arXiv:https://bjsm.bmj.com/content/48/8/708.full.pdf

[19] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine learning.
pmlr, 448–456.

[20] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002), 422–446.

[21] Anders. K. Jensen, Kenneth. K. Hansen, and Marcus. K. Rasmussen. 2023. Injury Prediction
in Football Analytics using Player-Based Normalization and Oversampling. https://bit.
ly/41FHNvE

[22] Christopher M Jones, Peter C Griffiths, and Stephen D Mellalieu. 2017. Training load and
fatigue marker associations with injury and illness: a systematic review of longitudinal
studies. Sports medicine 47 (2017), 943–974.

[23] KitmanLabs. [n. d.]. KitmanLabs. https://www.kitmanlabs.com/

82

https://www.alerteds.com/wp-content/uploads/2016/02/MITSSAC2018-An-enhanced-metric-of-injury-risk-utilizing-Artificial-Intelligence.pdf
https://www.alerteds.com/wp-content/uploads/2016/02/MITSSAC2018-An-enhanced-metric-of-injury-risk-utilizing-Artificial-Intelligence.pdf
https://www.alerteds.com/wp-content/uploads/2016/02/MITSSAC2018-An-enhanced-metric-of-injury-risk-utilizing-Artificial-Intelligence.pdf
https://geopy.readthedocs.io/en/stable/#module-geopy.distance
https://doi.org/10.1136/bjsports-2013-092524
https://doi.org/10.1136/bjsports-2013-092524
https://bit.ly/41FHNvE
https://bit.ly/41FHNvE
https://www.kitmanlabs.com/

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classification with
deep convolutional neural networks. Commun. ACM 60, 6 (2017), 84–90.

[25] Jim Holm Larsen. 2022. Correnspondence with Jim Holm Larsen, Sport Analytic at AaB
Football Club.

[26] Eric Larson and Damon Chandler. 2010. Most apparent distortion: Full-reference image
quality assessment and the role of strategy. J. Electronic Imaging 19 (01 2010), 011006.
https://doi.org/10.1117/1.3267105

[27] Sofie Lovdal, Ruud den Hartigh, and George Azzopardi. 2020. Injury Prediction in Competitive
Runners with Machine Learning. International journal of sports physiology and performance
., . (2020), . https://doi.org/10.1123/ijspp.2020-0518

[28] Lu Lu. 2020. Dying ReLU and Initialization: Theory and Numerical Examples. Communi-
cations in Computational Physics 28, 5 (jun 2020), 1671–1706. https://doi.org/10.4208/
cicp.oa-2020-0165

[29] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, Vol. 30. Atlanta, Georgia, USA, 3.

[30] Tomas Majtner, Roman Stoklasa, and David Svoboda. 2014. RSurf: The Efficient Texture-
Based Descriptor for Fluorescence Microscopy Images of HEp-2 Cells. In . ., . https://doi.
org/10.1109/ICPR.2014.215

[31] Tomas Majtner, Sule Yildirim-Yayilgan, and Jon Yngve Hardeberg. 2016. Combining deep
learning and hand-crafted features for skin lesion classification. In 2016 Sixth International
Conference on Image Processing Theory, Tools and Applications (IPTA). ., ., 1–6. https:
//doi.org/10.1109/IPTA.2016.7821017

[32] Aritra Majumdar, Rashid Bakirov, Dan Hodges, Suzanne Scott, and Tim Rees. 2022. Machine
Learning for Understanding and Predicting Injuries in Football. Sports Medicine - Open 8
(12 2022). https://doi.org/10.1186/s40798-022-00465-4

[33] Matthew D Milewski, David L Skaggs, Gregory A Bishop, J Lee Pace, David A Ibrahim,
Tishya AL Wren, and Audrius Barzdukas. 2014. Chronic lack of sleep is associated with
increased sports injuries in adolescent athletes. Journal of Pediatric Orthopaedics 34, 2
(2014), 129–133.

[34] Timo Ojala, Matti Pietikäinen, and David Harwood. 1994. Performance evaluation of texture
measures with classification based on Kullback discrimination of distributions. Proceedings
of 12th International Conference on Pattern Recognition 1 (1994), 582–585 vol.1.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825–2830.

[36] Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian, Jaakko
Astola, Benoit Vozel, Kacem Chehdi, Marco Carli, Federica Battisti, et al. 2015. Image

83

https://doi.org/10.1117/1.3267105
https://doi.org/10.1123/ijspp.2020-0518
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.1109/ICPR.2014.215
https://doi.org/10.1109/ICPR.2014.215
https://doi.org/10.1109/IPTA.2016.7821017
https://doi.org/10.1109/IPTA.2016.7821017
https://doi.org/10.1186/s40798-022-00465-4

database TID2013: Peculiarities, results and perspectives. Signal processing: Image commu-
nication 30 (2015), 57–77.

[37] Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelensky, Karen Egiazarian, Marco Carli,
and Federica Battisti. 2009. TID2008-a database for evaluation of full-reference visual quality
assessment metrics. . 10, 4 (2009), 30–45.

[38] Mirror Review. 2023. Football Competitions With The Highest Prize Money. https://www.
mirrorreview.com/football-competitions-prize-money/

[39] Alessio Rossi, Luca Pappalardo, Paolo Cintia, F. Marcello Iaia, Javier Fernàndez, and Daniel
Medina. 2018. Effective injury forecasting in soccer with GPS training data and machine learn-
ing. PLOS ONE 13, 7 (07 2018), 1–15. https://doi.org/10.1371/journal.pone.0201264

[40] Robin M. Schmidt. 2019. Recurrent Neural Networks (RNNs): A gentle Introduction and
Overview. arXiv:1912.05911 [cs.LG]

[41] Yuxi (Hayden) Liu Sebastian Raschka, Vahid Mirjalili. 2022. Machine Learning with PyTorch
and Scikit-Learn. Packt Publishing.

[42] Samah Senbel, Srishti Sharma, Mehul S Raval, Chris Taber, Julie Nolan, N Sertac Artan,
Diala Ezzeddine, and Tolga Kaya. 2022. Impact of sleep and training on game performance
and injury in division-1 women’s Basketball Amidst the Pandemic. Ieee Access 10 (2022),
15516–15527.

[43] H.R. Sheikh, Z. Wang, L. Cormack, and A.C. Bovik. 2007. LIVE Image Quality Assessment
Database Release 2. http://live.ece.utexas.edu/research/quality.

[44] Vimalraj S Spelmen and R Porkodi. 2018. A Review on Handling Imbalanced Data. In 2018
International Conference on Current Trends towards Converging Technologies (ICCTCT).
1–11. https://doi.org/10.1109/ICCTCT.2018.8551020

[45] StatSports. [n. d.]. StatSports. https://statsports.com/

[46] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2022. Efficient Transformers: A
Survey. ACM Comput. Surv. 55, 6, Article 109 (dec 2022), 28 pages. https://doi.org/10.
1145/3530811

[47] TransferMarkt. 2023. TRANSFER RECORDS. https://www.transfermarkt.com/
transfers/transferrekorde/statistik/top/plus/0/galerie/0?saison_id=alle&land_id=
&ausrichtung=&spielerposition_id=&altersklasse=&leihe=&w_s=

[48] Shivani Tyagi and Sangeeta Mittal. 2020. Sampling approaches for imbalanced data classifi-
cation problem in machine learning. In Proceedings of ICRIC 2019. Springer, 209–221.

[49] Emmanuel Vallance, Nicolas Sutton-Charani, Abdelhak Imoussaten, Jacky Montmain, and
Stephane Perrey. 2020. Combining Internal- and External-Training-Loads to Predict Non-
Contact Injuries in Soccer. Applied Sciences 10 (07 2020), 5261. https://doi.org/10.3390/
app10155261

[50] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal
of machine learning research 9, 11 (2008).

84

https://www.mirrorreview.com/football-competitions-prize-money/
https://www.mirrorreview.com/football-competitions-prize-money/
https://doi.org/10.1371/journal.pone.0201264
http://live.ece.utexas.edu/research/quality
https://doi.org/10.1109/ICCTCT.2018.8551020
https://statsports.com/
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://www.transfermarkt.com/transfers/transferrekorde/statistik/top/plus/0/galerie/0?saison_id=alle&land_id=&ausrichtung=&spielerposition_id=&altersklasse=&leihe=&w_s=
https://www.transfermarkt.com/transfers/transferrekorde/statistik/top/plus/0/galerie/0?saison_id=alle&land_id=&ausrichtung=&spielerposition_id=&altersklasse=&leihe=&w_s=
https://www.transfermarkt.com/transfers/transferrekorde/statistik/top/plus/0/galerie/0?saison_id=alle&land_id=&ausrichtung=&spielerposition_id=&altersklasse=&leihe=&w_s=
https://doi.org/10.3390/app10155261
https://doi.org/10.3390/app10155261

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural
information processing systems 30 (2017), .

85

Appendix A

Player-based Normalization

Figure A.1: An illustration of how the player-based normalization is performed

i

ii

Appendix B

Variations of the E2EWR Model

1xN+1

1x1

1xN 1xFC1
1xFC2

1x1 WEB

Fully Connected

Concatenate

'Previous Injuries'

1xN+1

Dropout

SEB

1x43

Sliding Windows

1x11
Nx40

Handcrafted Features

Fully Connected

1x1

Figure B.1: Variational E2EWR model. The dotted lines indicates that the layer is used in some
of the variation and N, FC1 and FC2 are variable sizes shown in Table 7.11.

iii

7x43 7xN

SEB

Concatenate

GRU

Multi-Head Attention

7xN

1xN 1xN
Batch Normalization

1x431x11
Nx40

Sliding Windows

Handcrafted Features

Figure B.2: Variational E2EWR WEB. The dotted lines indicates that the layer is used in some of
the variation and N shown in Table 7.11.

iv

Appendix C

E2EWR Optimization Graphs

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

-5 0 5 10 15 20 25 30 35 40

Figure C.1: Loss for E2EWR v2. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs.

v

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

-5 0 5 10 15 20 25 30 35 40

Figure C.2: Loss for E2EWR v3. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs..

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

-5 0 5 10 15 20 25 30 35

Figure C.3: Loss for E2EWR v4. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs.

vi

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

-5 0 5 10 15 20 25 30 35 40

Figure C.4: Loss for E2EWR v5. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs.

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

-5 0 5 10 15 20 25 30 35 40 45

Figure C.5: Loss for E2EWR v6. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs..

vii

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

-10 0 10 20 30 40 50 60 70 80

Figure C.6: Loss for E2EWR v7. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs..

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-5 0 5 10 15 20 25 30 35 40 45 50 55

Figure C.7: Loss for E2EWR v8. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs..

viii

Appendix D

Variations of the HF Model

1xN 1xN+1

1x1

1xFC1
1xFC2

1x1

Fully Connected Concatenate GRU

1xN 1xN

Multi-head Attention

1xN+1

Dropout 'Previous Injuries'

7x11

Handcrafted Features

Figure D.1: Variational HF model. The dotted lines indicate that the layer is used in some of the
variations and N, FC1, and FC2 are variable sizes shown in Table 7.13.

ix

x

Appendix E

HF model Optimization Graphs

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-5 0 5 10 15 20 25 30 35 40 45 50 55

Figure E.1: Loss for HF v2. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

xi

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10 15 20 25 30 35

Figure E.2: Loss for HF v3. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

-2 0 2 4 6 8 10 12 14 16 18 20 22 24

Figure E.3: Loss for HF v4. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

xii

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-5 0 5 10 15 20 25 30 35 40 45 50 55

Figure E.4: Loss for HF v5. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45

-5 0 5 10 15 20 25 30 35 40 45 50

Figure E.5: Loss for HF v6. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

xiii

0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

-2 0 2 4 6 8 10 12 14 16 18 20 22 24

Figure E.6: Loss for HF v7. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure E.7: Loss for HF v8. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

xiv

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure E.8: Loss for HF v9. The orange line represents the loss for the validation set and the blue
line represents the loss for the training set. The lines are representative of 10 runs.

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

-5 0 5 10 15 20 25 30

Figure E.9: Loss for HF v10. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs.

xv

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

-5 0 5 10 15 20 25 30 35

Figure E.10: Loss for HF v11. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs.

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

-5 0 5 10 15 20 25 30

Figure E.11: Loss for HF v12. The orange line represents the loss for the validation set and the
blue line represents the loss for the training set. The lines are representative of 10 runs.

xvi

	English title page
	Front page
	Contents
	Introduction
	Related Work
	Injury Prevention
	Contribution

	Learning Features from GPS data
	Contribution

	Combination of Learned and Handcrafted Features
	Contribution

	Dataset Foundation
	Data Collection
	Datasets
	Raw GPS data
	Calculated Features
	Injuries
	Surveys

	GPS Heatmap
	IMU Data
	Data Imbalance

	Data Preparation
	Preprocessing
	Patching the GPS Data
	Session Cutting

	Feature Generation
	GPS Features
	Domain Features - Handcrafted Features
	Feature Normalization

	Data Mapping

	Theory
	Neural Network
	Loss Functions
	Activation Functions
	Layers

	Recurrent Neural Network
	Gated Recurrent Unit

	Self-Attention
	Multi-Head Attention
	Evaluation Metrics
	Precision @ k
	Discounted Cumulative Gain

	t-Distributed Stochastic Neighbor Embedding

	Models
	Handcrafted Features Model
	Model Architecture

	Learned Features Model
	Model Architecture

	End-to-End Week Encoding Risk Estimation Model
	Model Architecture

	Player ID Classification Model
	Model Architecture

	Player ID Encoding Injury Risk Estimation Model
	Model Architecture

	Experiments
	Experiment Setup
	Random Risk
	Results

	Handcrafted Features Model
	Results

	Learned Features Model
	Results

	End-to-End Week Encoding Risk Estimation Model
	Results

	Player ID Classification Model
	Loss Function
	Results
	Basis Feature Evaluation
	Statistical Feature Evaluation

	Player ID Encoding Injury Risk Estimation Model
	Results

	Experiment Summary
	Parameter Optimization Experiment
	Optimizing the E2EWR Model
	Optimizing the HF Model

	Feature Evaluation

	Discussion
	Evaluation Metrics
	10 runs
	Loss vs Precision
	Features
	Data
	Session Cutting
	GPS Patching
	Data Quality

	Results
	PID
	ACWR
	Optimization Experiment
	E2EWR vs HF

	Conclusion
	Future Work
	Increase Time Span
	Dynamic k
	Hyperparameter Optimization
	csl
	Data Preprocessing

	Appendices
	Player-based Normalization
	Variations of the E2EWR Model
	E2EWR Optimization Graphs
	Variations of the HF Model
	HF model Optimization Graphs

