
Digital Twin for Latency Prediction
in Communication Networks

Master’s Thesis

Adham Taha, Linette Anil, Magnus Melgaard

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg Ø

Department of Electronic
Systems
Fredrik Bajers Vej 7B
9220 Aalborg Ø
www.es.aau.dk

S
T

U

D
E

N
T R E P O R T

Title

Digital Twin for
Latency Prediction
in Communication
Networks

Project type

Master’s Thesis

Project period

Spring 2023

Participants

Adham Taha
Linette Anil
Magnus Melgaard

Supervisors

Andreas Casparsen
Fabio Saggese
Petar Popovski

Number of pages: 84
Date of completion: May 31, 2023

Abstract
This report investigates the problem of
latency in a wireless network scenario, and
proposes the idea of using Neural Network
models in a Digital Twin in order to predict
the latency in real-time.

Different Digital Twin structures were pro-
posed, including different amount of Neural
Network models as well as different inputs.
To accompany the Digital Twin, a Physical
Twin with a client-server file transmission
use case was developed, in order to obtain
values of latency. Based on data available
before a transmission, such as the physical
location of the server and file size used, the
Digital Twin was trained to predict.

It was found that the Digital Twin was
capable of making predictions in under
a millisecond by implementing the Neural
Network model as TensorFLow Lite models.
This was significantly faster than Physical
Twin in all scenarios, including when the
observed latency was the lowest. The
latency prediction itself was successful, and
a number of future considerations for more
accurate predictions were proposed. These
considerations include how to accommodate
for temporal characteristics in the observed
latency.

Nomenclature

Abbreviations

AAU Aalborg University
AI Artificial Intelligence
AMC Adaptive Modulation and Coding
AWS Amazon Web Services
CDF Cumulative Distribution Function
DT Digital Twin
E2E End-to-end
GUI Graphical User Interface
IQR Interquartile Range
LSTMs Long Short-Term Memory Networks
MAE Mean Absolute Error
MCS Modulation and Coding Scheme
ML Machine Learning
MSE Mean Squared Error
MSS Maximum Segment Size
MTU Maximum Transmission Unit
NN Neural Network
OFDM Orthogonal Frequency Division Multiplexing
PDF Probability Density Function
PT Physical Twin
QAM Quadrature Amplitude Modulation
QoE Quality of Experience
QPSK Quadrature Phase Shift Keying
LEO Low Earth Orbit
ReLU Rectified Linear Unit
RSSI Received Signal Strength Indicator
VIF Variance Inflation Factor

iii

Preface

References follow the Harvard standard, where author name and year of creation are used.
Further reference information can be found in the bibliography provided in the end. The
bibliography is sorted alphabetically by author. However, if the author is unknown, the
publisher is used instead. If the reference is a website, the latest visiting date is also
included. An reference example is: [author’s last name, year of creation]. Figures and
tables are sorted according to the chapters. This means that the first figure in chapter 2
is numbered 2.1, and the next figure in the chapter is numbered 2.2. Every figure found
externally will have a source reference. Figures without a reference are created by the
group itself.

Numbers are written using periods as decimal separators and spaces as thousand
separators.

The authors of this thesis is:

Adham Taha Linette Anil Magnus Melgaard
<ataha18@student.aau.dk> <lanil21@student.aau.dk> <mmelga16@student.aau.dk>

v

mailto:ataha18@student.aau.dk
mailto:lanil21@student.aau.dk
mailto:mmelga16@student.aau.dk

Contents

Nomenclature iii

Preface v

Chapter 1 Introduction 1
1.1 Initial Problem Formulation . 2

Chapter 2 Analysis 3
2.1 State of the Art . 3

2.1.1 Latency and potential sources . 3
2.1.2 Measuring latency . 5
2.1.3 Latency prediction . 5
2.1.4 Addressing the predicted latency . 6

2.2 Digital Twins and Physical Twins . 6
2.3 Machine Learning . 9

2.3.1 The data processing phase . 9
2.3.2 Neural Networks . 10
2.3.3 The training phase . 15
2.3.4 Summary . 20

2.4 Final Problem Statement . 20

Chapter 3 Design and Implementation 21
3.1 Initial System Proposal . 21

3.1.1 The Physical Twin . 22
3.1.2 Creating the Physical Twin . 24
3.1.3 The Digital Twin . 25
3.1.4 Creating the Digital Twin . 26

3.2 System Inputs . 28
3.2.1 Summary . 41

3.3 Processing the model inputs . 42
3.3.1 Numerical preprocessing . 42
3.3.2 Categorical preprocessing . 43
3.3.3 Outlier Analysis . 46

Chapter 4 Performance Evaluation and Optimisation 51
4.1 Model Tuning and Performance . 51

4.1.1 Hyperparameter tuning . 53
4.2 Analysis of Input Data Behavior . 55

4.2.1 Multicollinearity . 55
4.2.2 Data sparsity . 57

4.3 Evaluation of the preprocessing techniques for different models 58

vi

Contents

4.4 Validation . 59
4.4.1 Amount of inputs used . 61

4.5 Summary . 63

Chapter 5 Validation and Performance Testing 65
5.1 Test Overview . 65
5.2 Model Loss Performance . 66

5.2.1 Model prediction performance . 67
5.3 Isolating the impact of inputs on performance 69

5.3.1 Distance . 69
5.3.2 Technology . 70
5.3.3 File size . 71
5.3.4 Protocol . 71
5.3.5 Combining inputs . 72

5.4 Live Latency Prediction . 73
5.4.1 Improving the NN implementation 74
5.4.2 Temporal Variance Observations . 76

Chapter 6 Conclusion and Reflection 79
6.1 Conclusion . 79
6.2 Reflections . 80

Bibliography 81

vii

Introduction 1
When interacting with applications or using digital services, it can often be observed that
there is a small period of wait between the cause and the effect. This phenomenon is called
latency, and is ever-present even when something seemingly appears to be instantaneous.

Latency manifests through the many different small delays that occur between a request,
e.g., pressing a button or waiting for a video stream, and the end result. These sources
of delays include the physical components, the transmission medium, routing, queuing,
processing time, geographic distance, and more [Cisco, 2023]. Even using optic fiber cables
induces a delay as low as 5 µs per kilometer [Coffey, 2023].

How each type of service or scenario is affected by latency is not the same either. For
something like remotely opening a garage door, the small delay would not be problematic,
but a video call where the voice and video do not sync up would be noticeable, and in the
worst case make it difficult to keep a conversation going. These different requirements for
latency, often categorised as soft, firm, or hard real-time, can help define to what extend
latency is accepted or not. A system with a soft real-time requirement may continue to work
and prove useful even if some deadlines are not met, whereas hard and firm requirements
will have the result of a process discarded if the latency is too large. In addition, hard
real-time will result in a failure of the system as well. A summary of how the results
of a system, and the system itself, are vulnerable to latency depending on the different
real-time constraints, is included on figure 1.1.

System
continues

System
continues

System
breaks

Results
kept

Results
discarded

Results
discarded

Soft Firm Hard
Real-time

Results

System

Latency
acceptance

Figure 1.1. Confusion matrix showing three types of real-time constraints and how latency may
affect the system and its results. The green cells show when the system or results will not be
discarded by latency, and red cells when they will.

1

1. Introduction

However, even if a soft real-time task is not discarded by delays, the value of the results
may increase if they are timely. For example, a common soft real-time problem is delay
in online games or even controller response times, affecting how well the user can play the
game, especially if cloud gaming is used. If for example the game servers are hosted in
another part of the world, the latency or "ping" would result in noticeable competitive
disadvantage, and degradation of the experience [Liu et al., 2022].

Latency may even have unpredictable patterns of rising and falling, referred to as jitter.
Jitter can be particularly disruptive for applications like video calls and streaming, where
having a stable, live experience is important.

Reducing latency can be as simple as upgrading a CPU, lowering media quality, increasing
bandwidth, and reducing the geographical distance. However, as there are many factors
as to what causes a high or unpredictable latency, it can be difficult to identify the ones
causing the most delay. This may be problematic, as if the source itself cannot be identified,
the latency would likely not be able to be addressed, which as a consequence could be
problematic for systems with firm or hard real-time requirements.

A possible method to isolate the sources of delay is the use of Digital Twins, an emerging
and increasingly popular technology in the Machine Learning fields. By simulating a
system, the Digital Twin will simulate the same process, and thus give an insight into what
the expected result or behavior should be. This can be used to figure out at which step of
the process it goes wrong, resulting in unexpected latency. Additionally, by implementing
a Neural Network, a specific architecture of Machine Learning, the Digital Twin can be
achieved, and used to also predict the expected values. By predicting the expected latency
in advance, it may even be possible to address the cause of latency in real-time.

1.1 Initial Problem Formulation

In summary, latency is an unavoidable problem when working with either software or
physical hardware, where many small contributing factors will add up. These factors can
be either deterministic or random, with varying levels of impact. Based on the real-time
constraints of the system, this can potentially be disruptive or even damaging for the usage
and results. The idea of implementing a Neural Network (NN) in a Digital Twin (DT) to
predict the latency based on prior data is proposed. This requires that the latency can be
isolated in the first place, which raises an initial problem formulation:

How can the individual contributors of latency be identified, and how can the information
be used for the purpose of predicting the end-to-end latency?

2

Analysis 2
This chapter goes into detail about the State of the Art in latency, including measurement,
prediction, and compensation for said latency. In addition, the concept of Digital Twins
and how a Neural Network may be used as one is explored. To accomplish this, it is
necessary to investigate specific implementations of Neural Networks and how they work.

2.1 State of the Art

With the initial problem statement in mind, the current State of the Art approaches to
predicting, measuring, and handling latency are investigated.

2.1.1 Latency and potential sources

Briscoe et al. [2014] describes latency as the measure of responsiveness in a system, i.e.
how instantaneous an application feels. It is defined as the time it takes starting from a
single critical task being required until the last bit of critical information is received at
the destination. Latency is considered to be one of the biggest hindrances in achieving a
seamless experience for many applications, and the author classifies the sources for these
delays experienced during a communication session into multiple categories. The three
main categories are structural delay, endpoint interaction delay, and transmission path
delay. The nature of delays is such that it is additive over the communication session,
i.e. even slight delays experienced in any of these categories per transfer adds up in the
overall delay, where numerous small tasks can quickly ramp up to a lot of latency. Below,
different sources of delay are explained further.

Structural delay

These delays occur due to suboptimal paths or routes in the network structure. In addition,
the distance between client and server also plays an important role in the amount of latency
experienced. The physical placement of components such as servers, databases, and caches
with respect to the client’s endpoint, also have an impact on the latency at the client’s
end.

3

2. Analysis

Endpoint delay

These delays occur due to the end-to-end (E2E) protocol setup. These protocols can
include transport protocols that are used for various control interactions before the data is
sent. In addition, these E2E protocols are also used during data communication in order to
recover lost packets for reliable transfer. It can also be used for optimisation, for example,
to assess new paths to avoid congestion, or merge packets to reduce the number of packets
on the link. These protocol interactions can introduce additional latency to the system.

In addition to these delays, there are also some general delays that are encountered when
transmitting a packet over a network. These delays are elaborated below.

Transmission delay

The transmission delay is the time taken to push all the packet bits from the host onto
the transmission medium or link. It depends mainly on the size of the packet and the
bandwidth of the channel. This delay is also influenced by the number of devices using the
link. More specifically, when a large number of users are competing for channel access, the
latency can become unpredictable even though the transmission error is low. Furthermore,
the number of collisions may also increase as the number of users increase, which results
in more retransmissions, thus introducing more overhead, and as a result, more latency.

Propagation delay

The time taken for the last bit of the packet to reach the destination after the packet is
transmitted on to the medium is known as the propagation delay. Distance between the
sender and receiver, and the transmission speed are the main factors affecting propagation
delay.

Queueing delay

Once the packet is received at the destination, the packet has to wait in a queue, also
known as a buffer, for an amount of time before the packet is processed. This type of
delay depends on the size of the queue, i.e., if there are not many packets in the queue,
the queueing delay will be small and vice versa. It also depends on the hardware of the
queue such as which server is used, relating to how fast the queue may be emptied.

Processing delay

Processing delay is the time it takes a router to process a packet header. A major factor
that can affect this type of delay is fragmentation. This is when a packet needs to
be split into smaller packets due to its original size being greater than the Maximum
Transmission Unit (MTU) supported by the intermediate node (e.g. router). Apart
from that, reassembling these fragments also consumes more processing time, which is
aggregated to the overall latency.

4

2.1. State of the Art

2.1.2 Measuring latency

A general method of measuring latency is through the use of a timer, either through
hardware or software. However, this comes at the cost of having to time the individual
components or actions, as well as the potential overhead provided by a software timer
function.

Some more precise methods have been proposed to measure latency, one of which is Mine’s
technique, where the time between the activation of two photo-diodes is quantified
utilising an oscilloscope [Mine, 1993]. This is done by positioning the first diode on a
pendulum, in order to traverse a dim light while the other diode registers it. In order to
ensure consistency between the measured position on the swinging pendulum and its visual
depiction, precise adjustment is required, since this technique takes measurements at fixed
physical positions. A more advanced technique is presented by Ellis et al. [1999], where
a driven pendulum is used in order to quantify latency among various tracker devices.
However, both techniques necessitate the establishment of specialised infrastructure and
hardware. Another method by He et al. [2000] is proposed, involving the utilisation of a
camera to count the frames between observable points of change of an object in motion.
Nevertheless, this method is susceptible to inaccuracies in recognition of the turning points
in the motions, in addition to being time-consuming [Steed, 2008].

However, precisely quantifying the latency is challenging due to a number of factors.
These include network complexity, clock synchronisation, dynamic variables, the addition
of overhead, and hardware limitations. Taking these factors into account, it is worthwhile
to consider the concept of latency prediction.

2.1.3 Latency prediction

Predicting the E2E latency can have a significant importance for many real-time
applications, especially for enhancing the end user’s Quality of Experience (QoE). However,
despite its implications, methods to predict latency in a system are still in the nascent
stages, and there are only a few approaches that have previously been considered to predict
the latency in wireless communication.

Khatouni et al. [2019] studies and predicts latency in an operational 4G network using
a Machine Learning (ML) approach. This is done by exploiting a large data set with
more than 200 million latency measurements taken from three different mobile operators.
Next, the authors use the data set to characterise different features, showing the latency
distributions. Then, the Random Forest algorithm is applied to select only the most
important features in latency prediction among all features. Finally, it uses three different
classifiers to see which suits the data set best, and which produces better results in order
to predict latency between device and a server.

5

2. Analysis

Yang et al. [2004] discusses the different kinds of latency prediction mechanisms that can
be used theoretically such as queueing theory and time series analysis. However, these
approaches are only model-based, and can only provide theoretical upper-bounds. Many
applications do not have enough knowledge upon which scientific models can be built,
and therefore, these mechanisms have their limitations. The author also states that in
such cases, ML methods such as Artificial NNs can be used for prediction, and can be
substituted for the other methods that alleviate their limitations.

2.1.4 Addressing the predicted latency

Addressing the predicted latency depends on how critical it is to the considered use case. In
the case of firm or hard real-time, an application should be able to take action proactively.
This can be achieved by identifying the source that contributes to high latency and then
reduce its impact.

Another approach of addressing the predicted latency is using latency compensation
techniques, which are widely applied in the gaming industry. Liu et al. [2022] carried
out a survey on the different latency compensation techniques used for online computer
games. These techniques are software algorithms that are used on either the game server
or client side, in order to minimise the negative impacts of network latency on the players.
It classifies the effect of latency into two main categories: the time for the client to
get a response from the server, and the difference between game states for one or more
clients. Latency concealment is one of the latency compensation technique surveyed in the
paper, which masks latency between the server and client by reducing the perception of
unresponsiveness. An example of this scenario is when the player does an action which
is reflected on their screen, but has yet to cause any changes on the actual server and for
other players.

The author, however, only discusses latency and compensation techniques for video games
and does not consider other use cases.

2.2 Digital Twins and Physical Twins

The concept of using NNs as a predictor, and therefore as a model of the system, prompts
an analysis of a relevant concept known as a DT. DTs are a dynamic virtual copy of a
physical object, a system, or even a process within a system [Khan et al., 2022]. This
technology aims to mirror and examine a physical entity in all of its complexity. Using a
DT allows for monitoring, control, and even optimisation of the physical entity. Depending
on the implementation of the DT, it may even be capable of running in real-time alongside
an ongoing physical process.

The idea of DTs was initially applied by NASA in 1970 for the Apollo 13 mission [Liu
et al., 2021]. During this mission, NASA replicated and simulated the spacecraft as well as
its environment, where a number of potential issues with the mission could be identified.
This aided the engineers in resolving a number of problems, including finding the most
optimal procedures for getting the Apollo 13 astronauts back to Earth safely [Barricelli
et al., 2019].

6

2.2. Digital Twins and Physical Twins

Since then, DTs have evolved while going through many different names, such as mirrored
spaces, virtual spaces, digital copies, and digital mirrors. It was first in 2002 that the name
Digital Twin was properly introduced for the concept, by professor Michael Grieves [Zhang
et al., 2021]. Later, Grieves [2014] standardised the use of a DT as a system encompassing
three components, as illustrated in figure 2.1; the physical, the virtual, and the link parts.
The physical part is denoted as the Physical Twin (PT). This part is the physical system
that is under consideration, and typically, it is equipped with sensors that collect data and
send it, in real-time or near real-time, to its digital counterpart. The digital counterpart
is the DT which hosts and processes PT data, and performs a number of tasks e.g data
visualisation, system troubleshooting, and simulation. The link part allows for bridging
data between the PT and DT components, and additionally lets the output of the DT
influence the states and control of the PT, based on the type of implementation.

Sensors

Physical part Link part Digital part

Monitor

Data processing

Diagnosis

Simulation

Prediction

Commands
control

Data

Temp

Failure

Shape

Conditions

Figure 2.1. DT system parts with an example of usage.

DT systems come in a variety of sophistication levels [Wagg et al., 2020], from the most
basic level i.e. monitoring DT, up to autonomous DT, as illustrated in figure 2.2.

Level 1: Monitoring

Level 2: Operational

Level 3: Simulation

Level 4: Intelligent

Level 5:
Autonomous

D
ig

ita
l T

w
in

 e
vo

lu
tio

n

Figure 2.2. Levels of sophistication of DT.

7

2. Analysis

The most basic level of sophistication of DTs is as a monitoring DT, also named as a
supervisory DT. This type allows the user to monitor the condition of a PT. A slightly
more advanced type is an operational DT, which incorporates making operational decisions
at the PT based on the collected relevant information. As described by Tuegel et al. [2011],
a simulation DT, in addition to its ability to visualise the current state of a PT, can
perform predictions. These provide the user with quantitative evaluations for the purpose
of supporting the operational decisions. An increased level of support and scenario planning
is achieved through an intelligent DT, which learns from the collected data using Artificial
Intelligence (AI). The most sophisticated DT is the autonomous DT, which controls and
manages the PT with low-level human intervention.

A DT can be developed in different architectures, namely as an edge-based DT, cloud-based
DT, or collaborative DT [Khan et al., 2022], as shown in figure 2.3.

Network edge

Cloud

Edge
based twin

object

Tw
in

s
m

an
ag

er

Collaborative
twin

Digital-twin-interface

Twin-to-things interface

Physical Twin layer

Cloud
based twin

object

Cloud
based twin

object

Edge
based twin

object

Figure 2.3. Different DT architectures.

An edge-based DT is characterised by the close proximity of the DT object to the PT
object, making it suitable for applications that have strict requirement on latency. On the
other hand, a cloud-based DT is more suitable for delay-tolerant applications that demand
high computational resources, due to the presence of more powerful computers. In order
to address the trade-off between the latency, computational power, and storage capacity,
the collaborative DT can be deployed. This architecture is a distributed approach that
benefits from both edge-based and cloud-based architectures. For instance, a DT that
makes use of a ML model can be deployed as a cloud-based object in order to be trained
though heavy computational processes. Thereafter, the trained model can be deployed as
an edge-based DT to respond more quickly to its PT. In addition, the edge-based DT can
continuously retrieve updates from the cloud-based object.

As this project revolves around the concept of predicting a value, the intelligent DT
structure is used going forwards. This first requires an introduction to what ML is, and
how it can be used, as it is part of this type of DT.

8

2.3. Machine Learning

2.3 Machine Learning

In the last few years, ML has been extensively researched and used in various applications
including image/speech recognition, product recommendation, and fraud detection [IBM,
2023]. ML is a field in AI, where the objective is to build a model using data and algorithms,
for the purpose of making decisions with minimum human assistance. Primarily, ML can be
categorised into three types: reinforcement learning, unsupervised learning, and supervised
learning [IBM, 2021].

Reinforcement learning follows a feedback-based approach in which the model gets positive
feedback or a reward for every correct action, and a penalty or negative feedback for every
incorrect action. This trains the model to maximise its score obtained from the received
rewards through a process of trial and error. Applications of this type of learning can be
used in autonomous cars, image processing, robotics, etc.

The unsupervised learning refers to learning from unlabeled data sets (i.e. data which is
not tagged with labels or classification), where the output is unknown. It analyses hidden
patterns and groupings to discover similarities in the information. An example of a use
case for this type of learning is classifying student performances (pass or fail) based on
their grades.

Supervised training makes use of labeled data, meaning known inputs and their
corresponding output(s) in the learning process. It allows for assessing the discrepancy
between the actual and the predicted values, either for classification or regression problems.
A typical example of classification is image recognition, where labeled data is used to learn
the features of different objects. Regression problems, on the other hand, lets the model
learn the relationship between variables, and could for example be used for numerical
prediction i.e., revenue forecasting. Because this project revolves around generated data
with known inputs and outputs, which can be interpreted as a regression problem,
supervised learning is utilised.

In order to use ML for practical use cases such as prediction or classification, the model
trains or learns by leveraging large data sets, which helps the network in processing
unknown inputs more accurately [AWS, 2023b]. Training a ML algorithm encompasses
two phases; data processing and training.

2.3.1 The data processing phase

In the data processing phase, the data is commonly split into training and testing sets. The
model usually trains itself using the training set, which allows it to estimate parameters
and evaluate the model performance. The testing set is used only at the conclusion of
training, and it is imperative that the test data is not used before this point [Max Kuhn,
2019].

9

2. Analysis

There are multiple ways to split the data into training and testing sets. The way the
data is split can have a major influence on its performance. For example, if the training
data is too small or if the model trains itself on the same data set for too long, it may
run into a problem called overfitting. Overfitting is a modelling error that occurs when
the model gives very accurate predictions for training data but not for unseen or testing
data. In order to avoid overfitting, the model must be trained on enough data that are
representative of all of the inputs, but also not trained too long on the same data [AWS,
2023c].

2.3.2 Neural Networks

NNs are a subset of ML, which can have varying structures depending on the intended
usage. The general structure of a NN is described below.

Neural Network structures

A NN encompasses number of interconnected nodes which are processing units that hold
values. These units are classified into multiple layers, namely the input, hidden and output
layers. An example NN model can be seen in figure 2.4.

Input layer Hidden layers Output layer

Figure 2.4. Example of a four-layer NN with two hidden layers.

The input layer consists of nodes that feed the network with information from outside. This
information is then passed to the next layer, i.e., the hidden layer(s). This means that the
output of one node is the input for other nodes in the next layer. The NN may consist
of a single or multiple hidden layers which are located between the input and the output
layers. A NN with more than three different layers in total is classified as a Deep Learning
NN. These intermediate layers are responsible for extracting different hidden features and
patterns in the data. Finally, the output layer produces predictions or classifications based
on the inputs from the previous layers.

10

2.3. Machine Learning

Each of these nodes are connected to the next layer of nodes via edges. These edges are
assigned a certain weight w based on the feature’s significance. The higher the weight, the
more influence it has on a node in the next layer. The associated weight of the edge is
multiplied with the connection’s input value, and passed through an activation function.

The activation function decides whether a node should be activated or not, referring to
whether the output of the node is used, and thus whether it is significant or not. A node
that is not activated would simply give a 0. An activation function adds non-linearity
to the network by transforming the summed weighted inputs to the node into an output
value. Additionally, a special kind of weight called a bias is added to the product of weights
and inputs. The bias b is a constant value, usually set by default as 1. The bias is not
influenced by the previous layer, however it has an assigned weight due to which it has an
impact on the next layer. The bias ensures that even if all inputs are zero, there is still an
activation in the node.

There are different types of activation functions. Two main examples are the sigmoid and
the Rectified Linear Unit (ReLU) functions.

11

2. Analysis

Sigmoid

A sigmoid is a type of non-linear activation function that takes any real value as input
and provides an output which is in the range of 0 to 1. Larger values will be closer to 1,
whereas smaller values or negative values would be closer to 0. The sigmoid function is
suitable for binary classification for the purpose of obtaining a probability. The function
is represented in equation (2.3.1) along with its Probability Density Function (PDF) in
figure 2.5.

f(x) =
1

1 + e−x
(2.3.1)

Figure 2.5. The sigmoid function.

12

2.3. Machine Learning

ReLU

ReLU is another commonly used activation function which returns 0 if the input is negative
and, for any positive input value, returns the value itself back. This means that the range
of output is between 0 and infinity. The function is represented in equation (2.3.2) along
with its PDF in figure 2.6.

f(x) = max(0, x) (2.3.2)

Figure 2.6. The ReLU function.

Having established the general terms and features of a NN model, different types of NNs
are introduced.

Types of NN models

NN models can be categorised into different categories, where two common examples
are Recurrent NNs and Feedforward NNs. Recurrent networks - e.g. Long Short-Term
Memory Networks (LSTMs) - allow for feedback connections and loops in the network.
This means that the nodes become active for a defined period of time, before stimulating
the neighbouring nodes in the previous and next layers, which also become active for a
period of time. Consequently, the output will be affected by its input after a period of
time and not immediately. In addition, each node stores its current state in an internal
memory from which the info is later retrieved to be used in the next computation step.

13

2. Analysis

On the other hand, in feedforward NNs, the output from a layer serves as an input for
the next layer where the information is never fed back, but only forward. This makes
feedforward networks faster, compared to recurrent networks. Thus, for predicting latency
using DT technology, feedforward is more suitable, so Recurrent NNs are not considered
further.

Feedforward algorithm

Essentially, a feedforward NN aims to estimate the best predictor function for the
approximation G∗. To do so, the network applies an estimator ŷ = G(x; θ) which takes
input x, learns from parameter θ, and then provides an estimate ŷ.

Initially, each connection in the NN is given a weight w, which is a random small number.
Furthermore, at each node, the bias b is set to 1, with a corresponding small weight. At
every single layer, the inputs are multiplied by the w and summed together with b. Next,
the resulting sum is passed through an activation function f . This process is illustrated
in figure 2.7.

Sum of
weighted

inputs + bias,
with activation

function

Hidden layer(s) Output layerInput layer

Figure 2.7. Example of a NN with one hidden layer.

14

2.3. Machine Learning

The output at a particular node on the hidden layer can be represented with equation
2.3.3:

hj = f(xi · wij + bj) (2.3.3)

where hj is the outputs of the hidden layer nodes, wij is a vector holding w weight values
of the connections between the input layer and node j at the hidden layer, xi is the input
vector, bj is the bias in node j and f is the activation function.

Similarly, the output value on the output layer can be represented through the following
equation:

ŷ = f(h1 · w4 + h2 · w5 + b3) (2.3.4)

where y is the output value.

2.3.3 The training phase

This phase starts by quantifying the discrepancy between the predicted value obtained
through the feedforward algorithm and the true value. This is done using a loss function,
which are different for classification and regression problems.

In classification problems like binary classification, which categorises data into one of
two classes, cross-entropy is commonly used as a cost function. This is also known as
logarithmic loss.

The function is given by:

H(P ∗|P) = −
∑
i

P ∗(i)logP (i) (2.3.5)

where P ∗(i) is the true class distribution and P (i) is the predicted class distribution.

Regression-based NNs, on the other hand, are used to predict a real value quantity. Mean
Square Error (MSE) is a common loss function used for evaluating the performance of
linear regression, which is calculated using the average of the squared differences between
the predicted and actual values. The mathematical equation for MSE is as follows:

MSE =
1

N

N∑
i

(ŷi − yi)
2 (2.3.6)

where N is the number of data points, ŷi are the predicted values and yi are the actual
values.

15

2. Analysis

Backpropagation

Once the loss function is obtained, the goal is to minimise it. This is performed through
the backpropagation algorithm. As the name suggests, this algorithm back-propagates
from the output layer towards each node in the input layer. This is done in order to adjust
the weights and biases of the nodes based on the individual impact on the overall loss
function.

The following example shows how the backpropagation algorithm works. The model shown
in figure 2.7 is considered, where the sigmoid function is chosen to be the activation function
in all the nodes of the model. Initially, the loss function is computed through the following
equation:

L =
1

2
(ŷ − y)2 (2.3.7)

where ŷ is the predicted value and y is the actual output value. In order to reduce the
cost function and find the local minima, different optimisers can be used. An optimiser
is an algorithm or method that adapts the weights and biases, such that the overall
loss can be minimised. The stochastic gradient descent algorithm is a commonly used
optimiser. To adjust the weight and bias values of the system, the gradient descent of the
individual weight and bias is computed. This is done by finding the partial derivative of
the loss function with respect to each parameter (weights and biases). This indicates in
which direction the individual parameter should be updated in order to minimise the cost
function. Graphically, this is illustrated in figure 2.8, where the weights are updated until
it gets to the lowest value of the cost function where the gradient (slope) approaches zero.
The amount that the weights are amended during training is referred to as the step size
or the learning rate.

Weight

C
os
t

Initial
weight

Learning
rate

Minimum
Cost

Figure 2.8. Graph showing the cost function with respect to weight.

16

2.3. Machine Learning

Returning to the example in figure 2.7, for w4, the partial derivative of the loss function
in terms of w4 cannot be computed directly, since w4 is embedded deep inside the output
function, namely in ŷ. Thus, the gradient with respect to w4 is calculated by applying the
chain rule, as shown in equation 2.3.8:

∂L

∂w4
=

∂L

∂ŷ
· ∂ŷ

∂w4
(2.3.8)

It is important to mention that the equation of ŷ, as can be seen in equation 2.3.4, is
a result of a linear and a non-linear operation. The linear operation is represented by
the summation of the weighted inputs, h1 and h2 with b3. The non-linear operation is
the implementation of the activation function on the result obtained through the linear
operation. Consequently, to find the partial derivative of ŷ with respect to w4, the chain
rule is applied, so that it results in the following expression:

∂ŷ

∂w4
=

∂ŷ

∂z
· ∂z

∂w4
(2.3.9)

where

z = h1 · w4 + h2 · w5 + b3 (2.3.10)

and

ŷ = f(z) =
1

1 + e−z
(2.3.11)

The partial derivative of ŷ with respect to z is computed by finding the partial derivative
of the sigmoid function.

∂ŷ

∂z
=

1

1 + e−z
· (1− 1

1 + e−z
) (2.3.12)

Thus, equation 2.3.9 can be written as follows:

∂ŷ

∂w4
=

1

1 + e−z
· (1− 1

1 + e−z
) · ∂z

∂w4
=

1

1 + e−z
· (1− 1

1 + e−z
) · h1 (2.3.13)

Inserting equation 2.3.13 into equation 2.3.8 gives:

∂L

∂w4
= (ŷ − y) · 1

1 + e−z
· (1− 1

1 + e−z
) · h1 (2.3.14)

By computing equation 2.3.14, a numerical value is obtained and then used in equation
2.3.15 in order to find the new value of w4. Note that η is the learning rate. The value of
this rate is usually set to a small number such as 0.001 to avoid the weight being changed
drastically from one iteration to another.

17

2. Analysis

w4(update) → w4 − η · ∂L
∂w4

(2.3.15)

Similarly, the gradient with respect to b3 is computed, where the result obtained is as
follows:

∂L

∂b3
=

∂L

∂ŷ
· ∂ŷ
∂b3

(2.3.16)

∂L

∂b3
= (ŷ − y) · 1

1 + e−z
· (1− 1

1 + e−z
) · 1 (2.3.17)

Then, the update value of b3 can be found through:

b3(update) → b3 − η · ∂L
∂b3

(2.3.18)

The gradient with respect to w5 is calculated through the following equation:

∂L

∂w5
=

∂L

∂ŷ
· ∂ŷ

∂w5
(2.3.19)

∂L

∂w5
= (ŷ − y) · 1

1 + e−z
· (1− 1

1 + e−z
) · h2 (2.3.20)

Next, the updated value of w5 can be found through:

w5(update) → w5 − η · ∂L
∂w5

(2.3.21)

After updating the nearest weights (w4 and w5) to the output node, as well as the bias
(b3), all the other parameters should be updated while tracing back towards the input
layer, through the hidden layer. For w1,1, it can be observed, when propagating back, that
to reach this parameter, the following path is involved:

w1 ← h1 ← ŷ ← L (2.3.22)

Thus, the gradient descent of the loss function with respect to w1,1 can be computed
through the following equation:

∂L

∂w1,1
=

∂L

∂ŷ
· ∂ŷ
∂h1
· ∂h1
∂w1,1

(2.3.23)

where

∂L

∂ŷ
= ŷ − y (2.3.24)

18

2.3. Machine Learning

∂ŷ

∂h1
=

1

1 + e−z
· (1− 1

1 + e−z
) · w4 (2.3.25)

∂h1
∂w1,1

= x1 (2.3.26)

Thus equation 2.3.23 can be written as follows:

∂L

∂w1,1
= (ŷ − y) · 1

1 + e−z
· (1− 1

1 + e−z
) · w4 · x1 (2.3.27)

Then, the new value of w1,1 is computed through the following equation:

w1,1(update) → w1,1 − η · ∂L

∂w1,1
(2.3.28)

Afterwards, to update the values of the other parameters i.e., b1, b2, w1,2, w2,1, w2,2,
w3,1 and w3,2, the gradient descents of each of these parameters need to be computed.
This is done by tracing back the path from the loss function to each of these parameters,
then calculating the partial derivative of the loss function with respect to each of these
parameters. By doing so, the aforementioned parameters can be updated using the
following equations:

b1(update) → b1 − η · ∂L
∂b1

b2(update) → b2 − η · ∂L
∂b2

w1,2(update) → w1,2 − η · ∂L

∂w1,2

w2,1(update) → w2,1 − η · ∂L

∂w2,1

w2,2(update) → w2,2 − η · ∂L

∂w2,2

w3,1(update) → w3,1 − η · ∂L

∂w3,1

w3,2(update) → w3,2 − η · ∂L

∂w3,2

(2.3.29)

After all parameters of the model have been updated, another values of x1, x2, and x3 are
feedforwarded to the network. This results in a new prediction, thereby the loss function
is calculated. Next, through the backpropagation algorithm, the weights and biases are
updated. This is repeated until the entire data set (all values of x1, x2, x3) has been used
once. This is called an epoch and in order to fully train the model, many epochs can be
taken.

19

2. Analysis

Typically, the data is set to be used in batches. For example, if there are 1000 data points
for training, a batch size could be set as 50, meaning that 50 of the data points are used at
a time. After every batch, the loss function and subsequently the weights are calculated,
allowing for finer tuning. After this has been done 20 times, meaning all 1000 data points
have been used, the epoch is completed.

2.3.4 Summary

Some of the State of the Art approaches to latency prediction were investigated, which
lead to the idea of using NNs as a type of DT. The math behind training and using a NN
was described, in order to understand how the nodes relate the inputs to the output. How
the NN is trained and subsequently used is detailed in the next chapter, starting with the
proposed PT structure to obtain the data needed for the DT.

2.4 Final Problem Statement

This chapter included a technical analysis of DTs and one of the possible implementations
of such with NNs. Given the problem of predicting E2E latency, the concept of training a
NN to predict such a latency is given with an initial proposal. To accomplish this, a PT
is created and run alongside a trained DT model, feeding the timestamps from the PT as
inputs. However, if the DT is to predict the E2E latency in real-time, it needs to be faster
than the PT. This raises a new and final problem statement:

How can end-to-end latency be predicted using a Digital Twin based on deep learning Neural
Networks with data from a Physical Twin, prior to the completion of the Physical Twin
process?

20

Design and
Implementation 3

This chapter contains the design considerations as well as the implementation of the
Physical Twin and Digital Twin used in the system.

The initial design sections introduce the idea of different Digital Twin models, with their
own set of data inputs related to the Physical Twin process. This leads into a section which
investigates some of the sources of these inputs and how they can be used to get an idea
of latency. Before this data can be used as an input for the Digital Twin, it needs to be
preprocessed, which is covered in the last section of this chapter.

The prediction results shown in figures and tables in this chapter are not representative of
the finalised Physical Twin and Digital Twin stages, and were obtained using preliminary
data and models. These data are included for the sake of comparison.

The code for the project is found on:

https://gitlab.com/adhamtaha/neural-networks-for-latency-prediction.git

3.1 Initial System Proposal

To predict using a NN DT, it requires a source of data both for training and for testing.
This chapter details what kind of PT could be created for this purpose, and how the DT
can be structured.

In chapter 2, latency was described as the effect of the many individual steps and processes
that take place for example during communication. As suggested in the final problem
statement, examining E2E latency would entail analysing the overall cumulative latency
in a process bridging multiple steps. Given that the purpose of this report following the
final problem statement is to consider E2E latency, there must also be an E2E latency that
can be observed. This is necessary both to compare the DT with data from a real scenario,
but also to train the prediction. To accomplish this, a PT is created to accompany a DT
and provide some manner of input and output.

Definition 3.1.1 (E2E Latency). In this report, the E2E latency, given by ttotal, is the
total time it takes from establishing the initial connection, to having the file decoded and
ready on local storage.

21

3. Design and Implementation

A diagram of the system encompassing the PT and DT is seen in figure 3.1, where the PT
has an output ttotal, which is the E2E latency measured by the difference between tinit and
tend. Meanwhile, the DT is supplied with a number of inputs i, and provides a predicted
output t̂total. The time each component takes to provide the outputs are given by tPT and
tDT accordingly.

Physical Twin

Output
(Predicted)

Digital Twin

Inputs Output
(E2E Latency)

Start Stop

... ...

Figure 3.1. Diagram encompassing both the PT and the DT.

The DT will have to be trained prior to usage, using both inputs and output from the PT.
The training methodology and types of inputs are found during the implementation of the
model, as the precision of the model depends not only on the input/output, but also the
structure and amount of training iterations.

3.1.1 The Physical Twin

In order to obtain the training data necessary for the DT, and to have a real process to
compare the results, a server-client architecture is proposed. This PT encompasses the
transmission of data between two distributed systems over a wireless connection. This
is a multi-step process which is suitable for accumulating different sources of latency. A
diagram representing this use case can be seen in figure 3.2.

Client

Save file

Server

Stored file DecodeEncode Transmit
over IP

Figure 3.2. A server-client architecture including the encoding/decoding of files before and after
transmission.

22

3.1. Initial System Proposal

Here, it can be seen that the server part of the PT has to send a file over IP to the client,
which requires encoding data prior to transmission, and decoding after receiving. Already
here there are a couple of steps that require some processing and reading/writing time,
on top of the latency from transmitting over IP. However, this proposal does not include
the act of establishing connection between the client and the server, which adds additional
latency.

To show the connection process from start to finish, a sequence chart is included on figure
3.3. Specifically, this shows when the client starts the process of communicating with the
server, to when the file is received and the connection is closed. This figure discounts the
elements of decoding the data.

SYN

SYN ACK

ACK

Data (file request)

ACK
Data (file)

Connect

Request
and
Receive

Close

FIN ACK

ACK
FIN ACK

ACK

Client Server

Figure 3.3. A sequence chart showing the process from establishing a connection, requesting and
receiving file, and finally closing the connection.

This figure includes the notion that the client will have to request a file before it can be
transmitted. As such, figure 3.2 is updated to include these additional steps, which can be
seen in figure 3.4.

Server

Encode

Decode

Client

Connect Get requestSend request

Transmit
over IP

Store file

Figure 3.4. An updated server-client architecture, where the client first sends a request.

23

3. Design and Implementation

3.1.2 Creating the Physical Twin

In order for the client and server components of the PT to give a realistic idea of the
latency, these will be created individually to be run on different machines. This also
allows for scenarios such as the server being deployed at different locations or the client
communicating far away from an access point, to see how it affects the observed latency.

Server

The server was created and then configured in the form of a virtual machine, using the
Strato [Strato, 2023] cloud environment hosted by Aalborg University (AAU). Strato is
managed with OpenStack, which is a cloud computing software that provides a range of
services for managing cloud-based resources such as storage, networking, and computing.
In addition, a public IP was assigned to the server in order to enable external access to it.

The server is run using a Python script. The script establishes sockets with the socket
module, and can simultaneously listen for incoming TCP and UDP traffic on two different
ports using the threading module. This required creating Firewall rules on OpenStack to
permit the server to receive and handle TCP and UDP traffic. In the event of an incoming
TCP request, the server accepts and establishes a TCP connection. Next, the file name
request from the client is parsed, and the targeted file is selected from the server database,
encoded, and sent using the socket.sendall() function.

For a UDP request, the server sends back the requested file in chunks to the client after
having encoded it, without having to establish a socket connection first.

Client

On a laptop, the client is set up using a Python script that supports both TCP and UDP.
The client downloading a file encompasses the following main processes; connection,
request and receive, store, and decode. The individual latencies of the aforementioned
processes are taken as timestamps denoted by t1, t2, t3, t4 respectively, and ttotal is the
sum of these processes corresponding to the E2E latency.

The script starts with a time.perf_counter() to initialise a start time, which will
be used to obtain the timestamps in the program. Every time a timestamp is taken,
all of the previous timestamps on top of the start time are subtracted from a new
time.perf_counter(). When TCP is selected, the client sends a connection establishment
request using the socket.connect(server-IP, PORT) method. After receiving a response
from the server indicating that the connection has been accepted, the connection timestamp
t1 is recorded. The client then encodes the file name to bytes using UTF-8 and sends it to
the server using the socket.send(File_Name.encode("utf-8")) method. When the file
is received from the socket through the socket.recv() method, the request and receive
timestamp t2 is recorded. Afterwards, the client decodes the received data and records the
decoding timestamp t3, followed by the decoded data being saved, while also recording the
corresponding timestamp t4.

24

3.1. Initial System Proposal

In case of UDP, the client creates a UDP socket and sends a request including the file
name to the server using the socket(socket.AF_INET, socket.SOCK_DGRAM) and
socket.sendto(file_name.encode("utf-8"), (IP, port)) methods respectively. Then,
the server sends the requested file encoded and in chunks. When the whole file is received,
the timestamp of this is recorded. Unlike TCP, UDP does not have a mechanism for indi-
cating that the end of a file has been transmitted. Therefore, it was crucial to implement
an approach that handles the situation. This was achieved by using the word ’END’ as a
delimiter, which indicates to the client that no further data will be received and to stop
waiting to receive any more.

In addition to that, a timeout feature was implemented to specify the maximum amount of
time the client should wait before assuming the packet will not arrive or is lost. Following
the arrival of the ’END’ delimiter, the client decodes and saves the file while taking the
timestamps for each of these separate operations.

3.1.3 The Digital Twin

Alongside this PT, a DT would be run. As the objective is to predict the output from the
PT, this DT will only have the limited capability of simulating the PT, with the goal of
providing an output before the PT is finished. This DT would utilise a model trained on
the output from the PT. However, it is not enough just to have the output ttotal in order
to train a model and use it alongside the PT as a DT. To actually predict, the DT should
also be given some kind of input data, that would be available prior to the output time.
Since the output of the proposal consists of the cumulative time that the process takes, it
would be ideal to consider using the time each individual step takes as an input for the
model, so t1 to t4.

However, this method of predicting using timpestamps as inputs is not feasible. Since the
DT would be waiting until each iteration is done to obtain all timestamps, it would not
actually predict the output in a timely manner, and would simply be a simulation. On
top of that, the DT itself will also introduce additional latency from the NN model. It is
important that the time to predict tDT remains smaller than the PT latency tPT , as this
is a live prediction and the DT should be able to finish before the PT. Otherwise it would
just count as an offline prediction. As such, it would be necessary to assess how many of
the timestamps would be required to include.

For this, the idea of not just using the timestamp data, but also using additional inputs
that would be known prior to transmission, is proposed. As an example, t1 in combination
with the size of the transmitted file could be used in order to try and compensate for not
having t2. This would be possible, as the time to transmit a file would depend both on the
connection and the amount of Bytes to transfer. This requires an investigation of which
exact inputs and factors affect the PT processes, which is included in section 3.2.

Another aspect is how these inputs are modelled in the DT. Five different models are
proposed in figure 3.5. Model 1 represents the PT, and how the timestamps are taken
and added up. Every subsequent model is a derivative of this, with Model 2 using the
timestamps from the PT fed into a NN as a proof of concept, and Models 3 through 5
using different information known prior to the transmission as inputs.

25

3. Design and Implementation

An important distinction between Models 3 through 5, is that while Model 3 only aims
to obtain t̂total, Models 4 and 5 also estimate the timestamps t̂1 through t̂4. Using these
estimated timestamps, Model 4 uses the sum like Model 1, and Model 5 uses a NN like
Model 2.

 Model 1: PT Model 2: PT timestamps with NN Model 3: Different inputs with NN

...

 Model 4: Estimate timestamps, then sum

...

 Model 5: Estimate timestamps, then use NN

...

Figure 3.5. Model 1 (PT) and different models proposed for the DT.

On top of analysing how each of these models would perform in terms of getting a t̂total close
to ttotal, the tDT that the different models take to get a prediction can also be investigated.

3.1.4 Creating the Digital Twin

In order to implement the DT, the NNs shown on figure 3.5 will have to be created.

Each model is created using the TensorFlow Keras module for Python. By initialising a
keras.Sequential() object or a so-called "model" with a sequential layer structure, the
various parameters such as the amount of input nodes, hidden layers, hidden layer nodes,
output nodes, as well as activation functions can be set. The model.compile method
is then used to set the loss and optimisation functions for the NN. Given that this is a
regression problem and not a classification problem, accuracy is not a possible metric, as
the result will be how close the predictions are to the ground truth, rather than a correct or
incorrect answer. Because of this, MSE is set as the loss function, and Stochastic Gradient
Descent as the optimisation function.

When the basic features of a NN are set, model.fit trains the model using a set of training
input(s), training output(s), and parameters such as batch size and the amount of epochs.
The training data does not include all of the given input and output data, as some of it
will be used for testing. This requires that it has not been used prior for training. The
train_test_split() Scikit method accomplishes this by randomly selecting 80% of each
input and output data for training and the remainder 20% for testing. In addition to
randomly selecting the data, it is also randomly shuffled in advance.

26

3.1. Initial System Proposal

As for the epochs and batch size, those may be chosen based on trial and error, while
taking in mind not to overfit or underfit the model. The exact parameters used in a NN
are tested and specified in chapter 4.

At this point, the model is trained, and can be given input values in order to predict an
output using model.predict(). This is the basis for the DT implementation. However,
it is important to mention that these models need to be trained using offline data. This
creates a need to obtain enough data before the model can learn the patterns and make
adequate predictions. A diagram that shows the relationship between offline training and
the DT can be seen in figure 3.6.

Data capture Data processing

Prediction

Offline training

Digital Twin

Comparison

Model trainingOffline
data

Live
data

Models

Figure 3.6. A diagram of the offline training procedure and the DT which requires the complete
trained models from the latter to function.

The offline training includes three different phases: data capture, data processing, and
model training. The resulting models are passed to the DT, which, using live data, will
provide predictions and show comparisons between the real E2E latency and timestamps,
and the predicted ones.

Data capture outlines not only how the different inputs are selected, but also what impact
they have on the latency. This comprises an analysis of what information can be extracted
from the PT outside of just the timestamps. When all of the data sources have been
detailed, the different methods of processing this data before training are outlined. This
is to ensure that the data is not only compatible with the models, but also to improve the
training results.

The model training builds on top of the TensorFlow basics described previously. This
includes how the parameters for the model training, also known as the hyperparameters,
affect the process, and can be found in the first place. Similar to the data processing, this
has the goal of getting as much use out of the data as possible.

27

3. Design and Implementation

3.2 System Inputs

Each of the four main processes in the PT may include multiple sub-processes, and
examining all of these is not the focus of this work. As such, the processes are mostly
treated as a black box. Rather, the factors that influence these processes are discovered
and analysed, in order to be used as inputs in the DT. These factors are listed in table 3.1,
which are later employed as inputs to the NNs in order to predict t̂1, t̂2, t̂3, t̂4, and t̂total,
according to the DT structure concepts included in section 3.1. These factors were found
to have an impact on the latency, and individual factors are analysed in the subsections
below. Note that in this section, the graphs display the average values of a number of
iterations corresponding to each test.

Table 3.1. Factors that have direct impact on the latency of the individual processes.

Factor t1 t2 t3 t4

Distance X X - -
Technology X X - -
Transmissions protocol X X - -
File size - X X X
Number of transmissions - X - -
Encoding algorithm - X X -
Maximum Transmission Unit (MTU) - X - -
Received Signal Strength (RSS) - X - -
Downlink rate - X - -

Distance

In order to evaluate the impact of the distance on connection, request and receive delays,
and eventually on ttotal, a number of tests have been performed. In these tests, the client
performs the following tasks: connect to the server, send a TCP request that includes the
file name to be downloaded, receive the file, store then decode it, and finally close the TCP
connection. Theses tasks are iterated 10,000 times at different distances between the client
and the server, while maintaining a constant file size of 10 kB. The server is physically
situated in Aalborg, Denmark, while the client is positioned at different locations for each
test. In addition, at each distance, the client communicates with the server via WiFi.

The graph in figure 3.7 shows a clear positive correlation between distance and ttotal, with
t1 and t2 increasing as the distance gets larger. The latencies do not appear significantly
different at small distances, which can be observed at 23 km and 42 km. This pattern
may be due to a range of factors, including the fact that the physical limitations of
data transmission at small distances have a reduced impact. Whereas other factors such
as hardware limitations, network congestion and processing time could contribute more
to latency. Correspondingly, conducting tests involving longer distances, such as intra-
continental or even inter-continental data transfer, would be worthwhile to more precisely
assess the effect of distance on latency. This may minimise the relative significance of the
other factors.

28

3.2. System Inputs

Figure 3.7. Graph showing the impact of the latency on ttotal and on t1 + t2, where the averages
of 10,000 iterations are computed for distances at 0, 7, 23, 43 and 45 km.

In order to test the aforementioned hypothesis, five virtual servers have been deployed
across multiple geographic locations including Stockholm, Frankfurt, London, Paris, and
Virginia, using Amazon Web Services (AWS) [AWS, 2023a]. AWS is a cloud computing
platform, which provides an array of services such as storage, computing, and networking.
In a similar manner as the previous test, this test involves measuring t1, t2, and ttotal of the
client to the server when located at different distances, as seen in table 3.2. The first two
cities listed in this table represent the client locations, with the server located in Aalborg.
However, the remaining cities in the table represent the locations of the servers with the
client located in Aalborg.

Table 3.2. Input information for cities and the corresponding distances and data transfer category.

Country City Distance to
Aalborg (km)

Data transfer category

Denmark Aalborg 0 Same network
Denmark Fjerritslev 43 Different network
Sweden Stockholm 571 Intra-continental
Germany Frankfurt 790 Intra-continental
England London 845 Intra-continental
France Paris 1025 Intra-continental
USA Virginia 6278 Inter-continental

29

3. Design and Implementation

As seen in the graph in figure 3.8, the total value of t1 and t2, and eventually ttotal,
increase alongside the distance between the client and server locations, particularly over
longer distances. This finding is consistent with the hypothesis that over greater distances,
the physical constraints of network communication becomes more apparent.

Figure 3.8. Graph showing the impact of the distance on ttotal and on t1 + t2, where the averages
of 10,000 iterations are computed for various cities arranged in ascending order of distance between
the client and the server.

It was decided that only Aalborg, Fjerritslev, Frankfurt, and Paris would be kept as input
data, as the change in latency over distance was more apparent than the others. As for
Virginia, it was not kept because it was significantly different, due to being in a different
continent, where other potential factors than distance may have factored in.

30

3.2. System Inputs

Technology

A number of tests have been conducted where the client repeatedly downloaded files of 10
kB at different distances using either WiFi or 4G. As seen in figure 3.9, the test results
show that WiFi has significantly lower latency compared to 4G. Compared to 4G, WiFi
provides a more reliable and stable connection, since it uses cables to transmit data, which
results in lower latency. On the other hand, a 4G connection is influenced by many factors
including the distance to the cell tower, the interference, and network congestion, which
may result in slower response times and eventually higher latency.

Figure 3.9. Graph showing the impact of the different technologies (WiFi and 4G) on ttotal and
on t1 + t2, where the averages of 10,000 iterations are computed for various cities arranged in
ascending order of distance between the client and the server.

From the results, one can also observe that the the difference in latency between WiFi
and 4G is the greatest in Aalborg, where the distance between the server and the receiver
is 0 km. This is because when WiFi is used, both the client and the server are on the
same network, resulting in a decreased number of packet hops for transmission, as can be
seen in figure 3.10. However, this was not the case for 4G. This is likely due to the fact
that the data must travel over a longer path which involves passing through the cell tower,
fronthaul, backhaul, core network, and then the target data network, which may comprise
multiple hops.

31

3. Design and Implementation

Figure 3.10. Tracert output displaying two different paths and latency of data packets through
various network nodes - from the top, one for WiFi and the other for 4G.

File size

The effect of the file size has been evaluated by conducting multiple tests using three
distinct file sizes, specifically 1, 10, and 30 kB. From the graph in figure 3.11, it can be
seen that as the file size increases, t2 and ttotal also increase, since larger files means more
data to be transmitted. Similarly, larger file sizes cause an increase in t3 and t4, since more
data need to be decoded and stored in the storage media. Additionally, the results show
that larger file sizes have a greater impact on t2 than t3 and t4. This can be explained by
the fact that the transmission delay of larger file sizes is mainly affected by bandwidth,
which may result in more latency. The decoding as well as the storing time however depend
on the speed of the CPU, the decoding algorithm, and storage medium, which may be less
significant depending on the size of the file.

32

3.2. System Inputs

Figure 3.11. Graph showing the impact of the file size on t2 and on ttotal, where the averages of
1,000 iterations are computed for the server located in Frankfurt.

Figure 3.12. Graph showing the impact of the file size on t3 and t4, where the averages of 1,000
iterations are computed for the server located in Frankfurt.

33

3. Design and Implementation

Received Signal Strength

To evaluate the quality as well as the performance of a network in wireless networking, the
Received Signal Strength Indicator (RSSI) is commonly used. RSSI is a metric of the signal
strength in decibels per milliwatt (dBm), between an access point and a wireless device.
In order to study the impact of RSSI on t2 and on ttotal, a number of experiments have
been conducted, where the client was positioned at various distances from the access point
using measuring tape. At each position, 200 iterations were performed, where the client
requested and downloaded a 10 kB file from the server located in Frankfurt. Furthermore,
the RSSI values was obtained at each iteration using netsh, a tool that can extract wireless
network information from a wireless device. As observed from the graph in figure 3.13,
the findings show a clear positive correlation between the distance and the latency (the
red line), as well as a negative correlation between the distance and the RSSI values (the
blue line).

Figure 3.13. Graphs showing the relationship between RSSI and the distance between the client
and the access points for both t2 and ttotal. This is done for 200 iterations, at each point, to the
server located in Frankfurt with a file size of 10 kB.

Furthermore, it was also noticed that when using a 4G hotspot, the RSSI decreased at a
faster rate compared to when using WiFi. This can be due to many reasons, one of which
is the difference in transmission power between a 4G hotspot and a WiFi router, with the
latter having a higher power output than the former.

34

3.2. System Inputs

To understand why different access point technologies may behave differently in the context
of latency, the downlink rate corresponding to each distance was obtained using the netsh
tool. The results show that the downlink rate for WiFi is much higher compared to 4G, as
can be seen in figure 3.14. It was anticipated that this trend would occur since a 4G hotspot
has smaller antennas compared to a WiFi router, which resulted in lower bandwidth as
well as a weaker signal, thereby leading to a lower transfer rate. The discrepancy in the
downlink rates between WiFi and 4G in addition to the factors mentioned in section 3.2
contribute to higher latency when using a 4G hotspot.

Figure 3.14. Graph showing the relationship between RSSI and the distance between the client
and access points at different downlink rates. This is done for 200 iterations, at each point, to the
server located in Frankfurt with a file size of 10 kB.

In wireless networking, an access point applies a technique called Adaptive Modulation
and Coding (AMC) which allows for bandwidth optimisation to achieve the best balance
of reliability and data transfer speed. This technique works by adjusting the data
transmission rate and the Modulation and Coding Scheme (MCS) based on channel
conditions, i.e., received signal strength and noise level. This can be observed in figure
3.14, where the downlink rate decreases as the distance between the wireless device and
the access point increases. The AMC algorithms may vary depending on the model and
manufacturer of the access point. For instance, the WiFi standard used in this test is
802.11ax (also known as WiFi 6), which uses Orthogonal Frequency Division Multiplexing
(OFDM) as a primary modulation scheme. For OFDM, the available bandwidth is split
into multiple sub-carriers which are orthogonal to each other.

35

3. Design and Implementation

This feature makes the wireless communication robust against intersymbol interference
caused due to multipath propagation [Bappy et al., 2010]. In addition, each sub-carrier
is modulated using the same or different modulation schemes depending on the channel
condition. For example, at larger distances where the channel conditions are worse, the
sub-carriers may be modulated with Quadrature Phase Shift Keying (QPSK), a more
robust scheme but with lower transmission rate (i.e., 2 bits per symbol). Whereas, at
smaller distances, the channel condition is better, and therefore the sub-carriers can be
modulated with higher modulation schemes up to 1024 Quadrature Amplitude Modulation
(1024-QAM), resulting in a higher data transmission rate (i.e., 10 bits per symbol). This
means that at smaller distances, there will also be lower latency. Therefore, the downlink
rate is relevant to include as an input, as it directly affects the file request process, that is
t2.

Transmission protocol

Both TCP and UDP have been tested in order to assess their impact on t1, t2 and ttotal. The
test results confirm the expected outcome that downloading via UDP is faster compared to
TCP, as can be seen in figure 3.15. The observed discrepancy in latency between UDP and
TCP might be explained by the fact that, unlike TCP, UDP is a connectionless protocol,
meaning that t1 is equal to 0. Furthermore, neither error correction nor retransmission is
required when using UDP.

Figure 3.15. Comparison of TCP and UDP latency for downloading a 30 kB file, where the
averages of 1,000 iterations are computed for the server located in Frankfurt.

36

3.2. System Inputs

Maximum Transmission Unit and Maximum Segment Size

Maximum Segment Size (MSS) refers to the largest amount of data that can be
accommodated within a single segment in a packet. The MSS is negotiated upon the
establishment of TCP connection between the communicating entities, namely, during the
TCP three-way handshake and prior to transmitting any data. This is done to ensure
that the payload of each packet is optimised with the intention of achieving a reliable and
efficient data transmission. The MSS is controlled indirectly through the MTU, which is
the maximum amount of data that can be transmitted within a single packet over the
network. As shown in figure 3.16, the MTU comprises the MSS in addition to 40 Bytes,
which are as the IP and TCP headers. For instance, to attain an MSS of 700 Bytes, the
MTU should be adjusted to 740 Bytes.

Ethernet
header

Ethernet
trailer

Ethernet
MTU

Payload TCP
header

IP header

IP MTU

IP MSS Transport layer

Network layer

Data link layer

OSI model layers PDU name

Segment

Packet

Frame

14 Bytes 20 Bytes 20 Bytes MSS 4 Bytes

Figure 3.16. Comparison of MSS and MTU for IP and Ethernet protocols in the context of the
OSI model layers and their corresponding Protocol Data Unit (PDU) names.

In order to assess the impact of the MSS on t2 and ttotal, three different MSSs have
been tested, namely 300, 700, and 1300 Bytes. During these tests, the client consistently
requested the same file size of 10 kB. As observed in the graph in figure 3.17, the findings
indicate that decreasing the MSS leads to an increase in the values of t2 and ttotal. This
can be attributed to the fact that when the file size exceeds the MSS, more transmissions
are required to send the entire file. Figure 3.18 shows a Wireshark screenshot capturing a
data transmission from the server to the client, providing clear evidence that the number
of packet transmissions increases when the MSS is smaller, which results in a higher ttotal.

37

3. Design and Implementation

Figure 3.17. Graph showing the impact of the MSS on t2 and eventually on ttotal, where the
averages of 1,000 iterations are computed for the server located in Frankfurt.

Connection
establishment

Connection
termination

Connection
establishment

Connection
termination

Figure 3.18. Comparing packet transmission count to complete a single 10 kB file download
using a MSS of 1,300 (top block) and 300 (bottom block).

38

3.2. System Inputs

When using UDP, the MSS does not apply, since no connection negotiation is applied
between the client and the server. Thus, to ensure a fair comparison between UDP and
TCP when selecting a MSS during the operations, the server will send the requested file
in chunks when UDP is used. These chunks will be equal in size to the selected MSS.

Encoding algorithm

Before transmitting a file over any network connection, it is crucial to encode it. This has
many purposes, including increasing the transmission efficiency and enhancing security.
There are many encoding techniques, each of which have their own advantages and
disadvantages. These include the data size and type, the purpose of encoding, whether the
hardware or software supports it, as well as the available resources. To assess how different
encoding schemes may affect t2, t3 and eventually ttotal, two encoding schemes have been
tested, namely Base64 and binary. As seen in figure 3.19, compared to Base64, the binary
scheme causes more delay in t2, t3 and ttotal. This is in line with the expectation, since
Base64 encoding increases the file size by 33%, while binary encoding increases the size by
a factor of eight. This is because each bit in the file is represented as a Byte when using
binary encoding. Whereas, when using base64, each 3 bytes of the data are represented
by 4 bytes. Overall, the binary scheme introduces more latency since more data should be
encoded at the transmitter, then transmitted and finally decoded at the receiver.

Figure 3.19. Comparison of t2, t3, and ttotal, using Base64 and binary encoding for file
transmissions of 30 kB.

39

3. Design and Implementation

Another technique that can be used on top of the encoded data is file compression. This
technique makes the transfer of a file faster by removing the redundant data and optimising
the encoding method, which leads to a decrease in the size of the file. However, since
the largest file size of 30 kB is still very small, compression does not have a notable
impact. Nevertheless, when applying the binary scheme to a 30 kB file, the file becomes
≈ 246 kB, where applying the file compression technique becomes more feasible. It was
however decided to not apply any compression scheme because it can only be applied to
one encoding scheme, which would result in an unfair comparison between the Base64 and
binary schemes.

The number of transmissions

In general, when downloading a file, the number of transmissions can affect the latency in
several ways. Each transmission has some manner of overhead, which enables features such
as error detection and correction, addressing, and flow control. The more transmissions,
the more times the overhead will be added, leading to longer total download time. In
addition, the performance of the network may be affected since the extra overhead can
contribute to network congestion. Consequently, the packets may be dropped or lost,
leading to retransmission of the lost packets, thereby causing additional delays. In figures
3.17 and 3.18 it was previously shown that t2 is affected by the MSS, in which a smaller
MSS would cause an increase in the number of segments required for the completion
of file transmission. Nevertheless, there are other inputs that can affect the number of
transmissions. These include the file size, the encoding algorithm, and the quality of the
connection, as poor connection may cause packet loss. However, quantifying the impact of
the connection quality on the number of transmissions may be challenging, since it requires
a deep analysis of the network topology as well as the environmental conditions.

The expected number of transmissions was derived by testing all of the possible
combinations of file sizes, the MTU, and the encoding algorithms. These tests involve
downloading the file under all input combinations, and observing how many transmissions
are needed to completely download a file. The results of theses tests can be seen on table
3.3.

40

3.2. System Inputs

Table 3.3. Number of transmissions for all possible combinations of file size, MTU, and encoding.

File size (kB) MTU (B) Encoding Transmission
1 3 30 340 740 1340 base64 binary #
X - - X - - X - 5
X - - X - - - X 28
X - - - X - X - 2
X - - - X - - X 12
X - - - - X X - 2
X - - - - X - X 7
- X - X - - X - 46
- X - X - - - X 274
- X - - X - X - 20
- X - - X - - X 118
- X - - - X X - 11
- X - - - X - X 64
- - X X - - X - 137
- - X X - - - X 820
- - X - X - X - 59
- - X - X - - X 352
- - X - - X X - 32
- - X - - X - X 190

3.2.1 Summary

As all of the factors included on table 3.1 now have been analysed, a new table 3.4 has
been created to include the type of input as well as what values are possible.

Table 3.4. Inputs that have direct impact on the latency of the individual processes.

Factor t1 t2 t3 t4 Input type Values
Distance (Location) X X - - Categorical AAU, Fjerritslev,

Frankfurt, Paris
Technology X X - - Categorical WiFi, 4G
Transmissions protocol X X - - Categorical TCP, UDP
File size (kB) - X X X Numerical 1, 3, 30
Number of transmissions - X - - Numerical 2 - 820
Encoding algorithm - X X - Categorical Base64, Binary
MTU (B) - X - - Numerical 340, 740, 1340
RSSI - X - - Numerical 0 - 1
Downlink rate (Mbps) - X - - Numerical 40 - 300

The table includes the concept of categorical inputs, which are inputs that are not
numerical. These require further processing to use with a model, which is investigated
in section 3.3, alongside how the inputs will be used in general.

41

3. Design and Implementation

3.3 Processing the model inputs

To get the most out of data given as input or output for a model, it is useful or sometimes
even required to preprocess it in advance, in order to make it compatible with the model.
This can range from making the values lower so that the activation functions are utilised
more, or simply making the value range of an input smaller. Depending on if the data is
numerical or categorical, e.g., if it is a number or a label, different approaches can be used.

3.3.1 Numerical preprocessing

Numerical preprocessing is the process of transforming raw numerical data into data that
is more suitable to build and train a ML model. It is often the first step when creating
a model, and the main objective of preprocessing data is to extract only the relevant
information.

Normalisation is one such widely used numerical preprocessing technique, which is used
for input features with a wide range or scale. This is because a large range in the input
features can make it more difficult for the model to recognise the underlying patterns or
correlation in a data set. It can also confuse the model by misjudging the influence of a
parameter, thus affecting the accuracy of the model. Normalising the data would ensure
that all the input features fall within a similar range and helps reduce any bias in the
model, by scaling the data to a fixed 0 to 1 range. An example of this normalisation can
be seen in table 3.5, and the equation for normalising inputs is given by:

xnorm =
x−min(x)

max(x)−min(x)
(3.3.1)

where xnorm is the normalised input data, x is the input data, and min(x) and max(x)

are the minimum and maximum values in the data set respectively.

Table 3.5. Example tables showing how different file sizes appear when normalised.

Default
Filesize (kB)

1
10
30

Normalised
Filesize (kB)

0
0.3103

1

While normalising data is the best suited preprocessing technique for data that does not
have a Gaussian distribution or when the scale is widely different, it also means that
the original scale of the data is lost. This can sometimes make it difficult to interpret
the results, especially in cases where the results need to be compared to other data sets
with different scales. Additionally, normalisation is also sensitive to outliers, as it may
compress the outlier value to either 0 or 1, making it indistinguishable from other values,
thus, skewing the distribution.

42

3.3. Processing the model inputs

Another preprocessing technique that is less sensitive to outliers than normalisation is
standardisation. Standardisation transforms the data to have zero mean and a standard
deviation of one, meaning that all inputs have the same scale, therefore making it easier
to compare and comprehend the influence of the different inputs on the final output.
It is especially helpful in statistical models such as linear regression, where the model
parameters such as weights and biases are evaluated using the mean and variance of the
input values. An example of applied standardisation is seen on table 3.6, and the equation
for standardising inputs is given by:

xstan =
x− X̄

s
(3.3.2)

where xstan is the standardised input data, X̄ is the estimated sampled mean of the input
data and s is the estimated sampled standard deviation of the input data.

Table 3.6. Example tables showing how different file sizes appear when standardised.

Default
File size (kB)

1
10
30

Standardised
File size (kB)

-0.8533
-0.2470
1.1004

In the event that the output values are the ones chosen to be numerically preprocessed,
such as during training to potentially obtain better results, the process would need to be
reverted to obtain the actual output. To revert the normalisation, the equation to obtain
the input x again is given by:

x = xnorm · (max(x)−min(x)) + min(x) (3.3.3)

Similarly, standardisation can be reverted with the following equation:

x = xstan · s+ X̄ (3.3.4)

While standardisation is less sensitive to outliers compared to normalisation, as it does not
directly use the minimum and maximum values of the input data, it can still be affected
by extreme outliers which influence the standard deviation of the data. Therefore, in order
to obtain a distribution that is not distorted, it is important to handle the outliers, and
this is further explained in subsection 3.3.3.

3.3.2 Categorical preprocessing

When dealing with categorical inputs, an example for this scenario is the location of the
server, it is ideal to transform the data into a numerical value instead. This is because the
model will not be able to parse labels such as locations.

43

3. Design and Implementation

Label encoding is the most straightforward way to approach this problem. Here, the label
itself is replaced with a numerical value, from 1 to n, where n is the amount of total
different labels. An example of this encoding applied can be seen on table 3.7.

Table 3.7. Example tables showing how categorical locations are encoded into labels.

Default
Location
AAU
Frankfurt
Paris

Label encoded
Location

1
2
3

However, label encoding on categorical data means that different categories that may not
be correlated will have some range of value instead. This would possibly be interpreted by
the model as a numerical range or order, thus skewing the data.

Instead of just giving the location any number, target encoding can be used to give a
category the mean value of the target output values, so AAU could become the mean of
all of the ttotal values that include this location. An example of this can be seen on table
3.8.

Table 3.8. Example tables showing how categorical locations are target encoded.

Default
Location ttotal

AAU 26.02
AAU 23.84
AAU 25.41
Paris 48.53
Paris 56.23

Target encoded
Location ttotal

25.09 26.02
25.09 23.84
25.09 25.41
52.38 48.53
52.38 56.23

However, if a location is not represented enough in the data, the resulting mean value
might not be sufficient. To combat this, the target encoding can be smoothed by using
the following equation:

AAU = ω · µcategorical + (1− ω) · µoverall (3.3.5)

where µoverall is the estimated mean across the entire ttotal column, µcategorical is the
estimated mean for each location, and the weight ω, which is found by the following
equation:

ω =
n

n+m
(3.3.6)

where n is the amount of appearances for said location, and m is the smoothing factor.

44

3.3. Processing the model inputs

The smoothing factor m is best chosen based on how noisy the data is, the more noisy the
higher the smoothing factor [Kaggle, 2021]. As an example of smoothing, with m = 2 and
an µoverall = 32.52, the locations from table 3.8 and their subsequent appearances n and
categorical means µcategorical, would achieve the following values:

AAU =
3

3 + 2
· 25.09 + (1− 3

3 + 2
) · 32.52 = 28.06 (3.3.7)

Paris =
2

2 + 2
· 52.38 + (1− 2

2 + 2
) · 32.52 = 42.45

In essence, this weighs the frequency of appearance for locations. With the smoothing,
every other input in that category also influences the encoding.

Another approach is to instead give the categorical data a "1" or "0" if it is present or
active. This is called one-hot encoding, due to each category only having one active input
at a time. For example, on table 3.9, the location is turned from a location into a vector
of either 1 or 0, depending on which is active.

Table 3.9. Example tables showing how categorical locations are one-hot encoded.

Default
Location
AAU
Frankfurt
Paris

One-hot encoded
AAU Frankfurt Paris

1 0 0
0 1 0
0 0 1

An apparent effect of one-hot encoding is that a column such as "Location" would expand
into one column for AAU, Frankfurt, and Paris each. This could then result in a slower
training set, as more labels have to be processed. However, it does so without introducing
new information about the labels.

A disadvantage of one-hot is the risk of multicollinearity, meaning two or more of the
categorical inputs could be highly correlated. This can result in the model misinterpreting
the data, for example if two of the locations chosen are much closer than any other possible
inputs. Thus, it is ideal to analyse the data for correlation followed by manual removal of
one of highly correlating columns.

Even if a single column is removed, the information about it still exists. For example,
when Paris is removed, if both AAU and Frankfurt show 0, then it would mean that the
location is in fact Paris. This is shown on table 3.10. This removal of a column is also
sometimes known as dummy encoding, although it is also common to just drop the first
of the columns instead of checking for correlation first [Basanisi, 2019].

Table 3.10. Example tables showing how categorical locations are dummy encoded.

Default
Location
AAU
Frankfurt
Paris

Dummy encoded
AAU Frankfurt

1 0
0 1
0 0

45

3. Design and Implementation

Out of the three types of categorical encoding mentioned, it makes sense to include one-hot
encoding as it does not add new information to the model, and target encoding as it adds
information based on the ttotal for each location.

3.3.3 Outlier Analysis

Outliers are data points with values that are considerably different from the rest of the data
points. This could be due to a number of reasons, for example measurement errors, heavy-
tailed data or noise. However, outliers can significantly impact the accuracy of a model.
This is because a model trains itself to recognise patterns given a certain distribution, but
the presence of outliers can cause uncertainty or a larger degree of variance in the pattern,
causing it to make biased or incorrect predictions.

Figure 3.20 shows the occurrence of outliers for the ttotal at Frankfurt for 200 measurements
using a boxplot. A boxplot identifies outliers by visually depicting data points that fall
outside the central range of the data set, using the Interquantile Range (IQR) which is
further described below the figure. It can be assumed that the number of outliers in
the data set will only increase with more measurements. The same is observed in other
locations as well. Therefore, in order for the model to make dependable and precise
predictions, it is imperative to identify and remove outliers from the data set.

Figure 3.20. Boxplot showing outliers (red dots) in a distribution at Frankfurt.

Quantile intervals are one way of identifying potential outliers in a data set. These are a
range of values in a distribution that are attributed with a certain probability of occurring.
In order to use quantile intervals to find outliers, we can use the IQR. It is usually defined
by two quantiles: Q1 and Q3, which represent the 25th percentile and 75th percentile of
the data set, respectively. The range of the IQR which gives the spread of the distribution
is calculated as the difference between the 75th and 25th percentile i.e., Q3 - Q1. The IQR
represents the range of the middle 50% of the entire distribution.

46

3.3. Processing the model inputs

25% 25% 25%

Q1 Q2 Q3

IQR

25th
percentile

50th
percentile
(Median)

75th
percentile

25%

Figure 3.21. Quantile intervals.

To identify potential outliers using quantile intervals, a common practice in statistical
analysis is to consider any data points that fall outside of the range Q1 - 1.5 IQR to Q3
+ 1.5 IQR as potential outliers. Here, Q1 - 1.5 IQR is considered as the lower bound and
Q3 + 1.5 IQR as the upper bound. The value of the multiplier (i.e., 1.5) can be varied
depending on the distribution. As IQR considers only a range of values in the middle
50% of the data set, the other extreme values outside this range do not have an impact.
Standard deviation on the other hand is more sensitive to outliers than quantile intervals,
because it takes into account all of the data points in a data set when calculating the
variance in the data. This means that outliers, which are by definition extreme values that
are far from the other observations in the data set, can have a significant impact on the
value of the standard deviation. Thus, IQR is better suited for distributions that are not
normal.

The data that is collected to train the models are segregated based on the location,
technology, and MSS, and are saved into individual .csv files. These .csv files are merged
into a single data set during training. It is important to note that the outlier removal
techniques are applied on each file as well as the combined final data set. This is because
the outliers present in the individual files may not appear as outliers when merged together,
leading to inaccurate relationships between the data. When applying fixed quantiles
for outlier elimination, a 95% quantile range was applied for each of the files, with the
remaining 5% of the data potentially being classified as outliers. Then, on on merging
all files, a 99% quantile range was applied, with the rest of the 1% data being considered
outliers.

47

3. Design and Implementation

The figure 3.22 shows the results after applying a fixed quantile to the data set.

Figure 3.22. Data set after using fixed quantiles to eliminate outliers, with the red lines
representing the means of the individual .csv files

Next, the IQR method was applied both before and after combing the files, and the figure
3.23 shows the results for the same.

Figure 3.23. Data set after using IQR method to eliminate outliers, with the red lines
representing the means of the individual .csv files

48

3.3. Processing the model inputs

The figures show that the fixed quantile method is considering data points up to
approximately 250 ms as non-outliers, whereas the IQR method is only considering data
points up to 230 ms as non-outliers. This shows that the IQR method is more stringent
in removing outliers and is potentially removing some data points that are not considered
outliers by the fixed quantile method. Furthermore, the results on table 3.11 show
that model performs better when applying the IQR method as compared to using fixed
quantiles, with a reduction of 2.5 ms in the Mean Absolute Error (MAE). Therefore, this
project will be using the IQR method on the data set to detect and eliminate outliers.
Additionally, the data obtained for this project indicate that it is not normally distributed
based on the results from normality tests, it makes further sense to use IQR.

Table 3.11. MSE and MAE obtained for different outlier removal techniques.

Outlier removal tenhnique MSE MAE (ms)
Fixed quantile 0.640 26.50
IQR 0.631 24.01

49

Performance Evaluation
and Optimisation 4

This chapter expands on the design decisions described in chapter 3, and details how all
prior knowledge is used to create the final models. After this chapter, these models are
tested in order to see how they compare, both in time prediction accuracy and in execution
time.

The first section includes details on how a hyperparameter tuner was used to get the most
out of the model training. After that an optimisation section is included where additional
common methods to improve NN models and data are attempted, followed by a comparison
of how the choice of data preprocessing affects the model prediction. Finally, the impact of
the amount of inputs used is observed through some introductory tests.

At the end of the chapter is a summary section which briefly mentions all the discoveries
and how the final models are made.

Similar to chapter 3, the values given in results and tests for this chapter are based on
preliminary models and methods.

4.1 Model Tuning and Performance

Part of the keras training includes setting a number of so-called "hyperparameters", which
are parameters initialised prior to the actual training. These parameters include the
learning rate, quantity of nodes and hidden layers, loss functions, activation functions,
optimisation functions, batch size, and epochs. The choice of the hyperparameters have an
impact on not only the time it takes to train each model, but also how the model performs
during and after the training. These hyperparameters were introduced and explained in
section 2.3.2.

When fitting a model with TensorFlow, e.g. training it, the epochs and the batch size
hyperparameters are used. An example of the terminal during this procedure is included
in figure 4.1. This shows the process and results for the first 6 out of 25 epochs, including
how much time has elapsed, what the loss and metrics are for the training data, and
similarly for the testing data (referred to as validation, hence the val_ prefixes). The test
data results are not used for training itself. In addition, the "113/113" represents the 113
batches that had to be parsed for training, before the entire training set was used.

51

4. Performance Evaluation and Optimisation

Figure 4.1. Screenshot of the TensorFlow training process, showing the loss value change across
multiple epochs. The loss and test loss results are shown twice due to the setup with TensorFlow.

While it may seem obvious to have as many epochs as possible to keep training the model,
there may be a time during the training where the test loss value will stop improving,
and possibly get even worse than the training loss values. This phenomenon is called
overfitting, and occurs when the model gets too biased by being exposed to the same data
too much, meaning it will perform worse on new and different data. This also means
that it loses the ability to generalise. In order to mitigate overfitting, methods like early
stopping and Dropout layers are commonly utilised.

Dropout layers work by dropping random nodes in the layers, for the purpose of stabilising
the training [Holbrook, 2023]. Dropping in this case means that the contribution of a
node will become 0, meaning the output will be ignored. This also means that the nodes
and weights will be mitigated from converging, which could otherwise lead to overfitting.
Dropout layers can be implemented using tf.keras.layers.Dropout(), which randomly
sets a number of nodes in a layer to 0. However, when attempted on NN2 from Models
4 and 5, the addition of dropout layers with a drop rate of 50% resulted in worse results,
increasing the test MSE from 0.14 to 0.21, while 20% instead increased it to 0.16. However,
it did result in the training MSE never surpassing the test MSE, meaning that overfitting
and bias was eliminated. Because of this worsened performance, dropout layers are not
used going forward.

Early stopping, on the other hand, refers to having the method halt the training process
early, in order to prevent it from training too much on the same data, which could otherwise
cause overfitting. Early stopping may require some manual training and the expected
value, but can also be implemented with an early stopping callback from the Keras Python
module. If a patience = "" is specified in this callback, it will prompt the model training
to stop if no improvement was observed over a certain amount of epochs. Finer adjustments
can also be set, where it should reach a certain loss value before stopping, or even return
to previous weight values.

Another way to do early stopping is to know at which epoch the model starts to get worse
performance, and then stop the training at that point. This can be accomplished through
hyperparameter tuning, which is what was done in this implementation.

52

4.1. Model Tuning and Performance

4.1.1 Hyperparameter tuning

While it is common to manually choose the hyperparameters and then adjust them after
observing the model performance, it is also a possibility to automate the process. This is
called hyperparameter tuning or hyperparameter optimisation, which is a general concept
in NNs [Cloud, 2023].

A way to implement hyperparameter tuning is to simply train the model, then train a
second model with different hyperparameters, and see how they compare. It can also be
done using existing tools, for example the keras-tuner module for Python. The process
for initialising and getting the final model can be seen in figure 4.2.

Load CSV files Remove outliers Encode inputs Split data 80/20

3 - 40 layers
32 - 512 nodes

0.01 - 0.0001 learning rate
16 - 64 batch size

Find best
hyperparameters

Find best
epoch # Train and validate

Hyper-
Parameters

Epoch
#

Search
Model

Actual
model

Epoch
Model

Training data
Validation data

Figure 4.2. A diagram showing the process from preparing the test data to using it in model
tuning and training.

The keras-tuner training can be initiated by creating a Search Model with the RandomSearch()
tuner call, which randomly tries different combinations of hyperparameters defined during
creation, such as 0.01, 0.001 or 0.0001 for the learning rate. The amount of different unique
combinations of hyperparameters depends on the given trials argument, and each trial
can be tested X number of times using the executions argument. The best outcome of
any of these executions is then used to compare one trial with another, in order to find
the best random combination of hyperparameters. This outcome is based on the result of
a model evaluation using this set of hyperparameters. To prevent the previously discussed
overfitting, the evaluation is based on the testing data, which it has not been trained on
yet, and thus, should not be biased towards.

The code used for creating the hypertuning models is shown in snippet 4.1, which initialises
a tuner with 3 to 10 layers of 32 to 512 nodes, has a learning rate of 0.01, 0.001, or 0.0001,
and a batch size of 16 to 128.

53

4. Performance Evaluation and Optimisation

1 class MyHyperModel(kt.HyperModel):
2 def build(self, hp):
3 model = keras.Sequential()
4 model.add(Flatten())
5 for i in range(hp.Int('num_layers', 3, 10)):
6 model.add(Dense(units=hp.Int('units_' + str(i),
7 min_value=32,
8 max_value=512,
9 step=32),

10 activation='relu')
11)
12 model.add(Dense(1, activation="linear"))
13 model.compile(
14 optimizer=keras.optimizers.SGD(
15 hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
16 loss="mse",
17 metrics=["mean_squared_error"],
18)
19 return model
20

21 def fit(self, hp, model, *args, **kwargs):
22 return model.fit(
23 *args,
24 batch_size=hp.Choice("batch_size", [16, 32, 64, 128]),
25 **kwargs,
26)

Snippet 4.1. Python code for a Keras Tuner model

When a kt.RandomSearch() model is initiated given the above criteria, it can be set
to tuner.search() for the best parameters, by randomly training with the possible
parameters. Based on the best loss value observed, the hyperparameter set is chosen,
as seen in the example snippet 4.2.

1 Search: Running Trial #1
2

3 Value |Best Value So Far |Hyperparameter
4 6 |6 |num_layers
5 224 |224 |units_0
6 448 |448 |units_1
7 64 |64 |units_2
8 0.01 |0.01 |learning_rate
9

10 ...
11

12 Trial 1 Complete [00h 00m 37s]
13 val_mean_squared_error: 0.3339455723762512
14

15 Best val_mean_squared_error So Far: 0.3339455723762512
16 Total elapsed time: 00h 00m 37s

Snippet 4.2. Example of how the Keras Tuner finds the best hyperparameters.

54

4.2. Analysis of Input Data Behavior

When presented with a large amount of possible hyperparameter combinations, it makes
sense to set a suitably large amount of trials to increase the chances of finding the best
combination. However, due to the nature of the previously mentioned RandomSearch(), it
is not necessary to test every single combination, as more often than not, it may only find
combinations that reduce the loss by a very small margin. This was further observed when
testing 1,500 trials, which lead to a MSE result that was 0.05 higher than a MSE score
found with 50 trials. It was also found that the RandomSearch() may sometimes repeat
previously attempted parameter combinations, even if the search algorithm for Keras Tuner
supposedly should prevent this.

When doing searches with the data and models presented in this report, it was generally
found that the Tuner results would converge towards a number of hidden layers under 6,
with 256 nodes per layer, a learning rate of 0.01, and a batch size of 32. Attempts to
make the amount of layers larger resulted in progressively worse results, with 20+ layers
generally not progressing at all. Similarly, an amount of nodes per hidden layer that was
larger or smaller than 256 would result in slightly worse results, albeit with a much smaller
influence than the number of layers. The learning rate would only reach the seemingly
"best" performance when set to 0.01, where anything lower would result in significantly
slower changes that did not reach the minima loss even after 100 epochs at times. Finally,
the batch size gave best results of 32, but performed much faster at higher numbers.

The best hyperparameters are then used for the Epoch Model, which tries to fit the training
data with a number of epochs. Just like with regular model training, hyperparameter
tuning may also be subject to issues such as overfitting. Because of this, it is convenient
to include ways to either stop early, or save information on previous model epochs that
may perform best. In this case the result metric for each epoch is saved, so that the epoch
with the best result metric can be chosen. For example, the number of epochs with the
lowest MSE would be chosen. When both the hyperparameters, best number of epochs,
and training data is prepared, the actual model can be trained. This process is used for
every single individual model detailed in section 3.1.

4.2 Analysis of Input Data Behavior

Aside from the training of the models, how the inputs relate to each other should also be
considered.

4.2.1 Multicollinearity

Multicollinearity in this context is the occurrence of high correlation among input variables
of a predictor. In a regression model, multicollinearity is an issue which can affect the
performance as well as the accuracy of the model. This manifests when the optimiser (i.e.,
the gradient descent) checks the contribution of the individual input in order to evaluate
in which direction the weight of a particular node should be updated. To provide further
explanation, it is helpful to consider the example given in equation 4.2.1.

output = variable1 ·W1 + variable2 ·W2 (4.2.1)

55

4. Performance Evaluation and Optimisation

In the event that variable1 and variable2 are highly correlated, when one of these variables
change, the other would change as well. Consequently, their individual effect on output

cannot be isolated in order to be later assessed. Therefore, it is crucial to detect and
address multicollinearity.

Initially, a potential multicollinearity that may occur through encoding process can be
addressed by removing the first column with dummy encoding, as detailed in 3.3.2.
Next, after encoding the inputs, multicollinearity can be evaluated by measuring the
variance of the regression coefficient. This is done by calculating Variance Inflation
Factor (VIF), where a value of one signifies no multicollinearity, a value larger than one
shows increasing level of multicollinearity, and a value of five or greater indicates high
multicollinearity [Investopedia, 2023]. As can be seen in figure 4.3, the test shows a high
level of multicollinearity between RSSI and the other inputs.

Figure 4.3. Results of VIF test conducted on the encoded inputs, for NN2 from Model 4 and 5.

One approach to address this issue is by dropping RSSI, however dropping an input may be
problematic since the model loses information, which may affect the model performance.
Therefore, it must be observed whether this has a positive or negative impact on the
model performance. To carefully address multicollinearity and take into consideration
the model performance, an evaluation test should be performed with and without the
variable RSSI. It should be noted that after dropping RSSI, the hyperparameter tuning is
re-performed before evaluating the change in the model. It can be seen from table 4.1 that
dropping RSSI, which was causing multicollinearity, improves system performance with an
approximate of a 0.66 ms reduction in MAE.

Table 4.1. MSE and MAE obtained for NN2 from models 4 and 5 before and after dropping
RSSI.

RSSI MSE MAE
(ms)

With 0.139 11.01
Without 0.137 10.35

56

4.2. Analysis of Input Data Behavior

4.2.2 Data sparsity

One of the most crucial challenges in data science is sparsity in the data [Nasiri et al.,
2017]. This occurs when a data set includes a large number of unique combinations with
a low occurrence rate, or no occurrences altogether. This can result in an increased risk of
overfitting, since the model may be fitted according to these rare occurrences rather than
learning from the underlying features [Prakash, 2022]. To quantify how sparse the data is in
the training data set, an analysis of the number of all the unique combination occurrences
was performed. Since there is no strict rule regarding how many times a combination of
features should occur in the data set in order to be considered useful, a sparsity threshold
of ten is used as a baseline for a number of tests.

As a result of the analysis, it appeared that 92.7% of unique input combinations appeared
less than ten times in the data set used for training. One of the many approaches to
mitigate the sparsity is to decrease the number of unique combinations, which was done
to the two inputs with the largest amount of distinct values. These inputs include the
number of transmissions with 17 possible values, and the downlink rate with 44 possible
values.

Initially, the values of these two inputs are mapped into 10 different equidistant intervals,
each spanning between the minimum and maximum of their respective values. It should
be noted that the choice of 10 intervals was arbitrary and selected beforehand, where its
effectiveness and impact in capturing the characteristics of the data was later evaluated.
Next, each interval is represented by a bin value from 1 to 10. By performing this process,
downlink rate values were discretised into 10 bins, whereas the number of transmissions
values were discretised into 6 bins. This deviation is due to the distribution of the the
transmission values, which led to fewer bins representing the data. As a result, the number
of unique combinations in the data set dropped from 1870 to 1184. Furthermore, the
proportions of combinations with less than ten appearances decreased to 81.5%.

To assess whether this method resulted in an improvement to the model, the model
accuracy was tested before and after reducing the sparsity in the data set. As can be
seen on table 4.2, an improvement has been achieved where the MSE as well as MAE are
reduced by 0.012 and 1.59 ms respectively. However, an attempt to decrease the inputs into
even fewer bins is made by selecting the number of intervals to 5. Here the downlink and
transmissions values were mapped into 5 and 4 bins respectively, resulting in a decrease of
combinations with fewer than ten occurrences to 61.48%. Reducing the sparsity to a small
value led to smoothing or removal of features in the data, as can be seen from the higher
MSE and MAE in the same table. Therefore, it was decided to keep the discretised values
for downlink rate and transmission numbers to 10 and 6 respectively.

Table 4.2. MSE and MAE performance for NN2 from Models 4 and 5 before and after reducing
the number of unique combinations.

Downlink
values

Transmission
values

% of infrequent
combinations MSE MAE

(ms)
44 17 92.78 0.1372 10.35
10 6 81.50 0.1243 8.84
5 4 61.48 0.1396 11.14

57

4. Performance Evaluation and Optimisation

4.3 Evaluation of the preprocessing techniques for different
models

In this section, the performance of the five different models discussed in 3.1.3 is evaluated
with respect to the implementation of the various preprocessing techniques outlined in
section 3.3. Since Model 1 represents the true output and does not rely on a NN to
generate predictions, it is excluded. As for the rest of the models, because the same type
of inputs are used, only Models 2 and 3 are tested as it is assumed that Models 4 and 5
would behave similarly.

This evaluation aims to determine the effectiveness of each model when coupled with
different preprocessing techniques. These techniques are intended to enhance the quality
of the data, and ultimately improve the accuracy of the models. The results from this
evaluation is crucial in selecting the best preprocessing strategy for the final tests.

Model 2

Model 2 requires four inputs, namely t1, t2, t3, and t4, which are represented as numerical
values. Consequently, only numerical preprocessing techniques can be applied to these
inputs.

In this evaluation, the performance of Model 2 is assessed using both normalised and
standardised inputs, as described in chapter 3.3. The results of these evaluations are
presented below on table 4.3, where the MSE and MAE are used as metrics to evaluate
the performance of the different preprocessing techniques.

Table 4.3. Model 2 performance with different numerical preprocessing techniques.

Preprocessing
technique MSE MAE

(ms)
Normalisation 0.0015 7.11
Standardisation 0.0010 1.18

Based on the analysis of the results obtained for Model 2, it can be seen that the use of
standardised inputs lead to a better performance in terms of MSE as compared to the
normalised inputs. As a result, it has been decided to use standardisation as the preferred
preprocessing technique for the final tests of Model 2.

Model 3

Model 3 differs from Model 2 such that it incorporates additional inputs beyond just
timestamps. These inputs include numerical and categorical data, meaning that both
numerical and categorical preprocessing techniques should be used. For numerical
preprocessing, both standardisation and normalisation are tested once again, and for
categorical preprocessing, one-hot encoding and target encoding are tested. As a result,
Model 3 is evaluated using the four different combinations of preprocessing methods. The
results for each of these four combinations are presented below on table 4.4.

58

4.4. Validation

Table 4.4. Model 3 performance with different preprocessing techniques.

Numerical Categorical
encoding encoding

Standardisation Normalisation One-hot Target Results

X - X - MSE: 0.1111
MAE: 11.07 ms

- X X - MSE: 0.0067
MAE: 12.25 ms

X - - X MSE: 0.1242
MAE: 11.78 ms

- X - X MSE: 0.0069
MAE: 12.93 ms

Based on the results presented on table 4.4, it appears that there is a contradiction between
the MSE and the MAE values. Specifically, the combination of variables that produces
the better MSE, which includes normalised values, has a lower MAE. Conversely, the
combination that produces the better MAE, which includes standardised values, has a
lower MSE. This discrepancy could potentially be explained by the fact that the range of
the normalised values is between 0 and 1, while the standardised values range from -1 to
1.

Given that the purpose of this project is to provide accurate predictions of latency, it is
important to select an appropriate metric for evaluating the performance of the model.
While both MSE and MAE are commonly used metrics, for this project, the MAE will
be used as the primary metric for the final predictions. This is because MAE provides a
clearer insight into how close the predictions are to the actual values, which is crucial for
determining the model’s overall performance. Therefore, on using MAE as the metric, it
is observed that the combination with standardised numerical inputs and one-hot encoded
categorical inputs performed the best with a MAE of 11.07 ms. This indicates that for
models that involve mixed inputs, this combination of preprocessing technique may be
preferred. Similarly, Models 4 and 5 also have both numerical and categorical inputs,
and the same preprocessing technique of standardisation for numerical data and one hot
encoding for categorical data can be concluded to be the preferred choice based on the
results.

4.4 Validation

When a model has been tuned and later trained, it is ready to be tested. During the
training, the model can be given the test data set in order to see how it performs on
data that it was not previously trained on. This is particularly useful to see if the model
has become biased towards the training data, as bias would cause significantly different
training and test results. To reiterate, using the test data during training does not modify
the models or affect the calculations of the weights.

59

4. Performance Evaluation and Optimisation

However, it is also relevant to see exactly how the model would perform when given the
task of predicting the latency. To do this, the model.predict() method can be used,
which given an input x with the same shape and types as it was trained on, will provide
the desired outputs. The same preprocessing that took place during training should also be
done during prediction. In the event that the preprocessing was applied on the outputs,
as is the case in this project where all of the outputs are numerical and standardised,
the preprocessing must also be reverted. This is necessary to compare each t with the
predicted t̂ outputs. The same estimated means and standard deviation values obtained
during training can be applied for the real test, provided the circumstances the data were
obtained under are the same.

As an example of a prediction, the NN1 from Models 4 and 5 as explained in section
3.1 has been tested. This NN gives an output t̂1, and when compared to the true time
t1, it gives a result shown in figure 4.4 alongside the absolute error. Only the first 100
points from the test are included for clarity. Here it can be seen that as NN1 only has
the location and technology as inputs, meaning eight different possible combinations (four
locations, two technologies), very few values of predictions are possible. Therefore, it does
not give a good representation of how much t1 actually varies. The transmission protocol
is also considered an input, as seen on table 3.4, but when UDP is used, there will be no
connection process, and t1 would as a result be 0.

0 20 40 60 80 100
Measurment index

-10

0

10

20

30

40

50

60

70

80

90

m
s

True t1
NN1 prediction

0 20 40 60 80 100
Measurment index

0

10

20

30

40

50

60

A
bs

ol
ut

e
er

ro
r

(m
s)

Figure 4.4. (Left) Graph showcasing the real t1 measurements and predictions t̂1. (Right) The
absolute error observed for NN1 in Models 4 and 5.

60

4.4. Validation

4.4.1 Amount of inputs used

The initial tests of the NN1 from Models 4 and 5 performance showed that the small
amount of categorical inputs led to only eight possible prediction times, resulting in poor
predictions. However, with NN2 from Models 4 and 5 in section 3.1.3, there are nine
different input categories as shown in table 3.4. This is because NN2 is the most significant
part of the PT, encompassing both the request and receive processes. Therefore, owing
to the larger number of inputs involved, the NN2 from Models 4 and 5 is deemed the
most appropriate to demonstrate the effect of input quantity on the loss function and the
predictive ability.

Below, an example of t2 and the predicted t̂2 is shown for NN2. Here, only the distance,
technology, file size, and MTU are included as inputs. The first for 100 points of these
results can be seen in figure 4.5 with the corresponding absolute error.

0 20 40 60 80 100
Measurment index

0

20

40

60

80

100

120

140

160

180

200

m
s

True t2
NN2 prediction

0 20 40 60 80 100
Measurment index

0

10

20

30

40

50

60

70

80

90

100

A
bs

ol
ut

e
er

ro
r

(m
s)

Figure 4.5. (Left) Graph showcasing the real t2 measurements and predictions t̂2 when four
inputs are chosen. (Right) Absolute error observed for NN2 in Model 4 and 5 when trained on
four inputs.

The MSE obtained for the model along with the MAE in ms is also provided in table 4.5.

61

4. Performance Evaluation and Optimisation

Table 4.5. MSE and MAE obtained for NN2 from Models 4 and 5 with four inputs for 1,918
predictions.

No. of inputs
considered MSE MAE

(ms)
4 0.5130 23.32

Next, the same model is tested on all the inputs available for NN2: distance, technology,
file size, MTU, protocol, encoding, downlink rate, and number of transmissions. The
addition of these four inputs brings the total number of inputs to eight, compared to the
previous number of four. While RSSI was also one of the inputs present in table 3.4, it
was shown to introduce multicollinearity in section 4.2, and therefore not included in this
test and onwards. The first 100 points of these results are shown below in figure 4.6 with
the corresponding absolute error.

0 20 40 60 80 100
Measurment index

0

20

40

60

80

100

120

140

160

180

200

m
s

True t2
NN2 prediction

0 20 40 60 80 100
Measurment index

0

20

40

60

80

100

120
A

bs
ol

ut
e

er
ro

r
(m

s)

Figure 4.6. (Left) Graph showcasing the real t2 measurements and predictions t̂2 when all eight
inputs are chosen. (Right) Absolute error observed for NN2 in Model 4 and 5 when trained on
eight inputs.

The MSE obtained for the model along with the MAE in ms is also provided in table 4.6.

62

4.5. Summary

Table 4.6. MSE and MAE obtained for NN2 from models 4 and 5 with eight inputs for 1,918
predictions.

No. of inputs
considered MSE MAE

(ms)
8 0.131 10.71

The aforementioned findings indicate a positive correlation between the number of inputs
and the model performance of the NN. The absolute error has decreased from 23.32 ms
to 10.71 ms, indicating a significant decrease of 54% in the absolute error on adding more
inputs. This gives the impression that having more inputs would provide the model with
more information to detect patterns or relationships within the data, leading to more
precise predictions.

However, it is crucial to ensure that the inputs provided to the NN are pertinent to the
problem being solved, and not added arbitrarily for the purpose of increasing the number
of inputs. In the case of the project, the inputs should be relevant to the factors that
influence the overall latency. Including irrelevant inputs can potentially confuse the model
and hinder its ability to establish meaningful relationships between the inputs and the
output.

Over the course of predicting t̂2, one potential input option that was considered was t1,
given that it would already be available and could offer insights into the connection latency.
However, subsequent testing revealed that incorporating t1 as an input did not yield any
noticeable improvements, with the results largely mirroring those obtained with the eight
input variables. Consequently, it was decided to exclude t1 as an input from further
analysis. While this did not result in worse performance or generalisation for the model,
it helped prove that not all information added is beneficial to the model.

4.5 Summary

In this chapter, it was found through hyperparameter tuning that the models would
perform best with a range of 1-6 hidden layers with an average of 256 nodes, a batch size of
32, and a learning rate of 0.01. It was also found that RSSI should be dropped as an input
as it had a high multicollinearity, and the input ranges for amount of transmissions and the
downlink rate should be reduced. Categorical inputs performed best when preprocessed
with one-hot encoding, and numerical inputs with standardisation. Lastly, it was found
that generally more inputs gave more information, leading to better prediction capabilities.

Thus, all of the models should be trained with these qualities in mind.

63

Validation and
Performance Testing 5

The previous chapters cover the difficulties of latency, the proposal of using Neural Network
models to predict, and how these models are built and trained.

The next step is to set up different categories of tests in order to get the most out of the
parameters found and the model training phase. This is followed by thorough performance
tests, where the predicted data are compared to the ground truth. In addition to prediction,
the time it takes to predict is also considered, as it is relevant to know how feasibly the
models can be run in real-time alongside the PT.

After each test phase is a brief summary of what was found and if the results were as
expected. Based on the results found in this chapter, the next and final chapter draws
conclusions as to whether the proposed solution was a success, and how the findings may
be applied to other real use cases.

5.1 Test Overview

The models to be used for the tests are the same as described in section 3.1, however
Model 5 is implemented with two different variants: A and B. In Model 5A, the NN5 used
is trained with the real timestamps t1 to t4 as inputs. In Model 5B, the NN5 is instead
trained on estimated timestamps t̂1 to t̂4 from NN1 to NN4. This is to give an idea of
whether training on true or estimated data will give better performance, when during the
real test, the estimated timestamps are used.

For reference, a list of the models used and the output values can be found on table 5.1.
These models have been tuned, trained, and had data optimised based on the discoveries
made in chapters 3 and 4.

Table 5.1. The models used in the test.

Model Description
Model 2 Real timestamps run through a NN.
Model 3 All inputs run through a NN.
Model 4 Predict the four different timestamps, then sum them up.
Model 5A Same as model 4, but with a NN instead of sum.

NN5 trained on real timestamps as inputs.
Model 5B Same as model 4, but with a NN instead of sum.

NN5 trained on estimated timestamps as inputs.

65

5. Validation and Performance Testing

Each model generates a corresponding t̂total, which is to be compared with the ttotal
obtained from the PT per iteration of the process. Additionally, Models 4 and 5 generate
and use estimated timestamps t̂1 - t̂4.

The data capture follows the same procedure as during the training phase, meaning the
client only communicates with one server at a time, with different technologies, protocols,
file sizes, and more. For the prediction part of the test, a large number of data are
collected at once to be used for offline predictions. This allows for outliers and timeouts to
be filtered using the same IQR values as during training. To test the time to predict, all
of the models are run alongside the PT as a real-time DT, and the time it takes to predict
tDT are compared with the tPT .

5.2 Model Loss Performance

Each model’s performance is evaluated in this section based on the MAE of the predicted
t̂total. To conduct this evaluation, a new data set has been specifically generated for offline
testing. Data collection for this data set is based on location, technology, and MTU.
For each location, there are six files - one for each of the three MTU values (340, 740,
and 1340) utilising both 4G and WiFi technologies. For instance, data for the Frankfurt
location would be separately collected for each of the three MTU values using both 4G
and WiFi technologies, resulting in six files for Frankfurt alone. The same is applied for
other locations. Considering that there are four locations in total, there are a total of 24
files or combinations. To conduct this evaluation, 100 measurements have been taken for
each combination, thereby resulting in 600 measurements for each location.

After collecting the data for offline testing, the IQR method is applied to remove outliers.
This process is similar to what was done during the test in Chapter 4, i.e., the IQR method
is applied individually on each file and also once on the entire data set after merging all
24 files. Once the IQR method is applied to remove the outliers, the performance of each
model is evaluated based on the modified data set. The absolute error is assessed both as
the MAE and based on the variance. The results for each model are presented on table
5.2. The performance of each of these models is then compared to each other in order to
determine which model performs the best.

Table 5.2. Models and their respective MAE and variance for the offline tests.

Model MAE (ms) Var
Model 2 4.71 15.09
Model 3 26.41 451.66
Model 4 26.74 496.13
Model 5A 25.77 445.51
Model 5B 23.92 360.91

The results show that Model 2 outperforms the other models in terms of both MAE and the
variance of the absolute error. For the rest of this chapter, this is referred to as the MAE
and variance. However, Model 2’s performance was expected, as it utilises the timestamps
t1 through t4 as inputs. This implies that the model does not predict the actual values
but rather estimates the total latency after receiving all the true times as inputs.

66

5.2. Model Loss Performance

This means that while it has a lower MAE and variance, it may not be the most efficient or
practical model in real world applications, as it defeats the purpose of predicting the latency
before it actually happens. On the other hand, Models 3, 4, 5A and 5B predict the latency
based on the available information at the time, instead of waiting for the timestamps.
Therefore, although these models have a higher MAE, they are more practical in real life
applications and thus, Model 2 is not tested further.

On comparing the performance of Models 3, 4, 5A, and 5B, it is evident from the results
that Model 5B exhibits the best performance in terms of MAE and variance. It can also
be observed on table 5.2 that as the number of NNs in a model increases, its prediction
accuracy tends to improve. This can also be observed in the Cumulative Distribution
Function (CDF) graphed in figure 5.1, where Model 5B has the highest cumulative
probability compared to other models. Furthermore, in the case of Models 5A and 5B,
where both comprise five NNs, Model 5B outperforms Model 5A. This can be attributed to
the fact that NN5 in Model 5B is trained on the predicted timestamps t̂1 through t̂4 from
NN1 to NN4 which are the same inputs it receives during training. This is as opposed to
Model 5A, where NN5 is trained on true timestamps t1 through t4 as inputs.

Figure 5.1. CDF of the error between the predictions t̂total and true time ttotal for Models 3, 4,
5A, and 5B.

5.2.1 Model prediction performance

Although the predictions show to have MAEs of around 25 ms, this may not reflect the
individual absolute error values. For this, the t̂total absolute error values for Models 3, 4,
5A, and 5B were saved and graphed on figure 5.2.

67

5. Validation and Performance Testing

Figure 5.2. The error between the predictions t̂total and true time ttotal in different measurement
instances for Models 3, 4, 5A, and 5B.

As can be seen, the error values frequently reach 50 ms, and sometimes up to 200 ms.
Despite these much larger error observations, there are still enough accurate predictions
to obtain a lower MAE. It also helps visualise the large variance values observed in table
5.2.

Table 5.3 takes ttotal from the measurement indices with the largest spikes of error from
figure 5.2, and shows the t̂total for each model with the same set of inputs. Ten new data
samples were taken with the same conditions and inputs as these indices, and the means
of these ten ttotal were computed.

Table 5.3. Models and their respective MAE for the offline tests.

Index ttotal
(ms) Model 3 Model 4 Model 5A Model 5B Mean

ttotal

9 232.90 44.67 47.87 48.73 51.65 63.67
12 280.34 124.50 136.50 144.74 130.14 128.18
624 221.93 49.98 50.87 53.00 51.68 64.12
985 153.02 54.02 49.15 50.17 53.30 43.96
1154 279 65.07 67.49 70.29 72.39 74.88
1203 223.29 55.48 57.11 59.60 59.87 69.41
1544 200.69 80.67 80.81 84.33 80.37 82.54
1864 222.48 118.17 111.68 117.81 111.16 120.15

68

5.3. Isolating the impact of inputs on performance

The results show that even with the same inputs, there are large spikes of error that did
not get removed by the IQR. That means that the inputs provided to the models are not
representative of the entire transmission process, which is a consequence of only having
access to data available as a client. Conversely, if there was a way to obtain information
about the rest of the link, e.g. congestion, retransmission, load balancing, and queues, it
may make the predictions more accurate.

5.3 Isolating the impact of inputs on performance

Following up on the previous observation of variation in ttotal, the different inputs are
isolated to see exactly where the models have trouble predicting a close t̂total. This means
for all of the test data, all combinations with the different inputs from distance, technology,
file size, and protocol are compared to each other.

5.3.1 Distance

These tests single out all of the input combinations with the four different distance
parameters, so AAU, Fjerritslev, Frankfurt, and Paris, and predictions are compared.

Table 5.4. Model performances on data from different locations, measured by MAE and variance.

AAU Fjerritslev Frankfurt Paris
Model MAE Var MAE Var MAE Var MAE Var

Model 3 23.10 466.67 25.34 449.95 30.18 452.86 41.19 891.13
Model 4 21.69 391.92 26.44 413.33 29.63 488.23 50.83 1,431.2
Model 5A 21.03 327.31 26.77 421.93 27.91 418.81 50.50 1,139.5
Model 5B 21.82 403.09 24.34 344.07 26.44 383.71 44.18 873.04

As can be seen on table 5.4, the MAE and variance increase as the distance gets larger,
and increase more significantly once the input combinations from Paris are used. It can
be assumed that this is due to a variety of factors that cannot easily be quantified via
client-side observations, such as the conditions of the radio access network, load balancing,
congestion, and different routes used compared to when the training data was captured.
While it is true that latency increases over distance, as documented in section 3.2, the
jump in error between Frankfurt and Paris was not expected. Another observation is that
inputs captured for AAU used on Model 3 and 5A gave a worse variance than that of
Fjerritslev. While not a significant difference, it may be caused by AAU being a university
with potentially many students and employees connecting to the network at the same time.

As the Paris inputs performed worst for all of the models, we thought to be relevant to
include a small test with a model trained only on the set of inputs from Paris. This was
done in order to see if having a specialised model would perform better than the generalised
ones. The results of this test can be seen on table 5.5, which shows the MAE and variance
for each, as well as the observed percentage improvement for the MAE.

69

5. Validation and Performance Testing

Table 5.5. Comparison between the generalised models versus the specialised Paris model.

Generalised models Specialised models Improvement
Model MAE Var MAE Var MAE

Model 3 41.19 891.13 33.16 755.73 21.60%
Model 4 50.83 1,431.2 40.56 1,418.4 22.48%
Model 5A 50.50 1,139.5 40.79 1,439.7 21.27%
Model 5B 44.18 873.04 38.30 1,015.9 14.25%

A trend for all of the models is the reduction in MAE by almost 10 ms, showing that using
a specialised model is beneficial compared to only using a single generalised model. The
variance on the other hand does not always increase with as consistent of a magnitude,
and in the case of Model 5A, actually worsens. However, this increased variance could
potentially spur from the smaller data given, as only the input sets with Paris are
included. As a result, the trained model may have been subject to either overfitting or
underfitting. To address this, future work could include attempts to analyse this behavior,
and potentially accommodate and overcome the variation seen with more relevant data.

5.3.2 Technology

In this test, the measurements with the WiFi and 4G inputs are tested individually.

Table 5.6. Model performances measured by MAE and variance for WiFi and 4G.

WiFi 4G
Model MAE Var MAE Var

Model 3 17.46 393.95 30.99 619.37
Model 4 13.97 308.80 33.40 931.0
Model 5A 14.87 307.42 34.20 606.17
Model 5B 14.10 331.72 29.98 469.35

The test results show that the models make better predictions when given input data from
WiFi compared to 4G, as seen on table 5.6. This could be due to several reasons, one of
which being that when test data set was collected, the 4G network was more congested.
Consequently, the packets take additional time to travel to their destination, leading to
a higher level of jitter, thereby the models encountered increased difficulty in making
accurate predictions. On the other hand, WiFi networks are less likely to experience
congestion since it has shorter transmission distances, which can result in more stable
and faster data transmission, making it less challenging for the models to make accurate
predictions.

70

5.3. Isolating the impact of inputs on performance

5.3.3 File size

This test isolates only the file size as an input and compares the model predictions for the
1 kB and the 30 kB files.

Table 5.7. Model performances measured by MAE and variance for 1 kB and 30 kB files.

1 kB 30 kB
Model MAE Var MAE Var

Model 3 16.37 264.06 32.69 471.89
Model 4 20.40 271.18 42.82 620.87
Model 5A 15.75 235.14 44.90 634.29
Model 5B 16.54 261.23 38.93 557.79

The results on table 5.7 show that as the file size increases from 1 kB to 30 kB, the MAE
and the variance increase by more than double. This suggests that the models predict
more accurately for smaller file sizes. This could potentially be because larger files can
take longer to transmit as it requires more packets to be transmitted, which increases the
probability of packet loss and retransmissions, making it difficult for the model to make
close predictions. In addition, larger files can have different characteristics and behavior
compared to smaller files, such as different variations in network traffic behaviour. This
can make it more challenging for the model to accurately predict the transfer time as this
information is not available at the client-side.

5.3.4 Protocol

The following test provides the MAE and the variance for all models when only the protocol
is isolated as an input. This is done in order to evaluate the individual performances of
both UDP and TCP.

Table 5.8. Model performances measured by MAE and variance for 1 kB and 30 kB files.

UDP TCP
Model MAE Var MAE Var

Model 3 23.69 615.26 55.44 770.61
Model 4 17.97 315.26 58.59 744.85
Model 5A 19.97 429.59 60.09 810.51
Model 5B 21.60 489.39 53.72 651.54

The results presented on table 5.8 suggest that the models perform significantly better
when predicting the latency for UDP as compared to TCP. Across all the models, the
predictions for UDP are on average closer to the true value by 32 ms. This difference in
performance could be attributed to a higher variance in latencies present in the test data
set, that may be a result of a high number of retransmission. This mechanism is a feature in
TCP, which occurs when the transmitter has to retransmit the packets in case the receiver
does not receive them correctly or does not receive them at all within a certain timeout
period. Whereas, for UDP, the packet is simply dropped in case of a timeout, and these
cases are removed from the data set. As a result, when there is a retransmission in TCP,
the model does not anticipate this increase in latency, leading to inaccurate predictions.

71

5. Validation and Performance Testing

However, although UDP gives a much lower MAE, the variance is still high, which may be
attributed to UDP being unreliable in general.

5.3.5 Combining inputs

After analysing the model performance on the individual inputs i.e., distance, technology,
file size and protocol, these inputs are now combined to analyse the overall model
performances. The combined inputs are divided into two categories: the best case
combination and the worst case combination. The best case combination consists of only
the inputs from each category on which the models performed the best i.e., AAU for
location, WiFi for technology, 1 kB for file size, and UDP for protocol. Similarly, the worst
case combination consists of only inputs from each category on which the models had the
least impressive performance i.e., Paris for location, 4G for technology, 30 kB for file size,
and TCP for protocol. Examining these extreme cases can provide the bounds or thresholds
of how well the model performs. Note that these best and worst case combinations are
assuming each input is independent. The results for this analysis is presented in a heatmap
table in figure 5.3.

Figure 5.3. MAE in ms for the best and worst case combinations of the technology, protocol,
file size, and location inputs.

The results show expected behavior, revealing that all models demonstrate better
performance when presented with the best case combinations. This establishes a threshold
of the prediction performance based on both the best and the worst case scenarios.

72

5.4. Live Latency Prediction

5.4 Live Latency Prediction

In this test, the live performance of the DT is measured by taking tDT for each model.
This is done in order to assess the feasibility of the DT in real life applications in real-time.
As stated in chapter 3, in order to consider the predictions by the DT useful, tDT should
be less than tPT .

This test is initiated by looking at the worst case location scenario, namely Paris. Each
time the PT downloads a file from the server, the DT has to make a prediction, which
is considered as an iteration. At each iteration, the input data corresponding to the PT
transmission are passed to the DT. Models 3, 4, 5A, and 5B are loaded in advance, meaning
that the DT can make the predictions immediately. To show the real-time tPT alongside
the time to predict tDT , an interactive Graphical User Interface (GUI) was developed. A
snapshot of this GUI is provided in figure 5.4 for the test on Paris.

Figure 5.4. A snapshot of the DT making live predictions along with the average time to predict,
tDT and the MAE for each model with the server located in Paris.

As can be seen on the GUI, the predictions follow the patterns of the ttotal observations,
however, they are shown to either underestimate or overestimate at each point.

Above the left segment of the figure is a comparison of the tDT observations, and as can
be seen, all but Model 3 take at least three times as long to predict the time for Paris at
the time of the capture. This already showed that the idea of a live DT using these models
and methods may not be feasible. To get a better idea of the feasibility, the mean tDT

were taken for all DT models, and the mean tPT for AAU and Paris were found. This can
be seen on table 5.9, and gives an idea of the best and worst case scenarios.

73

5. Validation and Performance Testing

Table 5.9. Models and their mean tDT taken over 100 iterations alongside the mean true latency
tPT with the server located in Paris.

Model tDT (ms) tPT (ms) tPT (ms)
AAU Paris

Model 3 46.65
Model 4 187.69 84.11 134.46
Model 5A 234.60
Model 5B 234.80

These data show on average that only Model 3 would be useful for online prediction, as
Models 4, 5A, and 5B are all slower to predict than the mean of a PT execution. However,
this table only accounts for the mean time taken, and therefore it is also relevant to consider
the best and worst tPT that can be expected. This is included on table 5.10.

Table 5.10. Lowest and highest tPT observed for each location.

AAU Fjerritslev Frankfurt Paris
Lowest 8.12 24.37 29.43 37.95
Highest 220.42 279.00 281.87 311.68

As it was found on table 5.9 that each NN on average contributes with 45 - 50 ms, it
appears as though not even Model 3 with a single NN would be able to do live predictions
for any of the best case tPT scenarios. This means that the DT is generally not feasible for
live predictions in the current state. Additionally, this makes the models with more than
one NN even less feasible, as Models 4, 5A, and 5B had a worse tDT than the mean tPT for
Paris. This however sparks the question of whether the use of an NN to predict was the
problem, or if it was a result of the implementation. As such, brief tests were conducted
with different prediction methods.

5.4.1 Improving the NN implementation

Investigation of different TensorFlow Github issue threads showed that not only were there
issues with newer versions of TensorFlow GitHub [2019b], but there were also issues with
the predict() method [GitHub, 2020]. One of the possible solutions was to try and import
an early version of TensorFlow in compatibility mode, however, this did not prove to make
the NN execute any faster.

Other solutions included using model(x) calls instead of predict(), where the input data
is directly given to the model as x. Another method brought up on some Github issues
is predict_on_batch(), which supposedly does the same as predict(), but only on one
batch at a time [GitHub, 2019a]. It appears to still be capable of predicting a larger
batch, and returned the same output as the previous method. A final option considered is
the conversion of the models to tflite, a lightweight TensorFlow implementation meant for
mobile and edge devices.

74

5.4. Live Latency Prediction

When the model has been converted, it cannot use the usual TensorFlow methods, and
instead has to do an inference by setting up an interpreter [TensorFlow, 2023a]. This
process infers the relation between the input and output data, although it is still classified
as a prediction in the documentation, and returned the same results as the regular
TensorFlow model predictions, given the same inputs.

The execution times of Model 3 with predict(), predict_on_batch(), tflite, and the
model() call are seen on figure 5.5.

Figure 5.5. Time to predict for Model 3 for number of iterations inside a while loop using
predict(), predict_on_batch(), model calls, and the tflite conversion.

As can be seen, the model() call provided a better tDT than predict() for the first
number of iterations, but it quickly rose in prediction time. This appears to be caused
by a memory leak when the call is used within a loop, as it consistently performed better
outside of a loop when doing a quick comparison. However, as the DT relies on the loop,
the call method simply is inadequate.

With predict_on_batch() on the other hand, not only were the resulting tDT always
lower than the previous two methods, it was also consistent despite being executed in a
loop. It appeared on average to perform five times faster than predict(). Reasons for this
difference in performance appears to be due to less overhead, where predict() splits the
input data given, checks the dimensions of the shape, and supports additional arguments
[Stackoverflow, 2018].

75

5. Validation and Performance Testing

Finally, the model conversion to tflite proved significantly faster than all of the other
methods. Aside from the significantly smaller size of the model and the difference in
method used, the way Tensor memory is allocated and reused could further explain this
reduction in prediction time [TensorFlow, 2023b]. A comparison of the mean prediction
time for the stable methods can be seen in table 5.11.

Table 5.11. Models and their respective mean tDT for 100 iterations.

Model tDT (ms) tDT (ms) tDT (ms)
predict predict on batch tflite

Model 3 46.65 9.14 0.24
Model 4 187.69 34.02 0.59
Model 5A 234.60 42.68 0.70
Model 5B 234.80 42.64 0.70

The results of predict_on_batch() show that tDT for a single NN goes from roughly 45
- 50 ms to 8.5 to 9.14 ms. While this is a significant improvement, and shows that every
model falls under the mean tPT for AAU, the lowest tPT observed in table 5.10 is still
faster than a single NN implemented with this method.

The improvements had with tflite, however, saw that every model, even Models 5A and
5B with five NNs, can predict with a tDT under one ms. This means that every single
model is feasible for live prediction, even for the lowest tPT observed from AAU. At the
same time, this method provided the same accuracy as the previous methods. While there
are a number of ways listed by TensorFlow on how to improve the performance further
[TensorFlow, 2023b], the current models are deemed adequate.

5.4.2 Temporal Variance Observations

During the online execution of the DT, it was observed that the prediction accuracy of the
models varied from time to time, as can be seen in figures 5.6, 5.7 and 5.8.

Figure 5.6. A snapshot of the DT making live predictions along with the average time to predict,
tDT and the MAE for each model with the server located in Paris on May 18th, 2023 at 11:00.

76

5.4. Live Latency Prediction

Figure 5.7. A snapshot of the DT making live predictions along with the average time to predict,
tDT and the MAE for each model with the server located in Paris on May 19th, 2023 at 9:00.

Figure 5.8. A snapshot of the DT making live predictions along with the average time to predict,
tDT and the MAE for each model with the server located in Paris on May 19th, 2023 at 10:30.

Later, it was discovered that this significant discrepancy was a result of the link’s instability,
which changes over time due to a number of factors. Network congestion could be one of
these factors, which can be caused by high data traffic resulting from the increasing amount
of users and their activities. In addition, suboptimal routing could also be a factor for
latency variations, as it can occur due network issues or inefficient routing configurations.

While there is no direct control over such factors, it is still possible to continuously monitor
the state of the link using network tools like pathping or traceroute. By doing so, more
information can be gathered, providing insight into routing path and latency-contributing
points or likely bottlenecks along the path. This information can then be employed by the
models as inputs, in order to alleviate the effect of latency variations on the prediction
accuracy.

77

5. Validation and Performance Testing

Based on the observed temporal variations, it is evident that time should be regarded as
an important factor, with potential to be employed as an input to the models. This would
provide deeper insight into temporal patterns that may influence the latency such as the
number of active users, varying user behaviour, network maintenance times, peak hour
usage, and more. This may allow the models to take the fluctuation in ttotal into account,
however, it would require a large amount of data to represent the patterns over a large
span of time. Another possibility is training the models specifically based on the times of
the day, rather than have time as an input.

78

Conclusion and Reflection 6
6.1 Conclusion

This project examined the possibility of using a Digital Twin in order to predict end-to-end
latency as detailed by the final problem statement:

How can end-to-end latency be predicted using a Digital Twin based on deep learning Neural
Networks with data from a Physical Twin, prior to the completion of the Physical Twin
process?

During the course of this project, a use case involving a client downloading a file from a
server was proposed. The end-to-end latency of this operation was split into the latencies
for the individual parts of the process, which allows for analysis of the contribution of each
part. A number of factors like the distance between server and client, transmitted file size,
and protocol used were investigated in order assess their impact on these latencies. These
factors were employed as inputs to a number of models, involving one or multiple Neural
Network components, in order to predict the the end-to-end latency. To get the most out
of these models, the data used was preprocessed.

Two types of tests were conducted: an offline test to evaluate the prediction accuracy, and
an online test to see if it was viable to run the Digital Twin predictor in real-time. This
required that the predictions should be faster than the Physical Twin could finish the task.

It can be concluded that by using a number of inputs which are available prior to the
file downloading process, the end-to-end latency can be predicted. To obtain closer
predictions, several techniques can be applied such as reducing data sparsity and addressing
multicollinearity in the data set.

As a result of this project, it was found that it is possible to have a Digital Twin latency
predictor based on Neural Networks run alongside a Physical Twin in real-time. This is
provided that the Neural Network implementation is lightweight and fast enough for the
task, such as with the TensorFlow Lite library.

It was also found that the accuracy of the predictions varied during the time of the day,
which indicated that the actual end-to-end latency changed throughout the day. This
could be based on a number of factors such as usage patterns, and means that if a model
is trained for one hour of the day, it may not be suitable for the next. A possible solution
for this would be to look into including time, which day, or even it is a holiday as inputs
for the models, or to have specialised models for each scenario.

79

6. Conclusion and Reflection

Finally, it was found that the composition of the Digital Twin and the amount of Neural
Network components used had an impact on the accuracy of the prediction. At the cost
of having a higher time to predict, having more Neural Networks did in some scenarios
prove to make more accurate predictions. However, in other scenarios, the Digital Twin
with just a single Neural Network had the best performance.

In short, the objective of this project was accomplished, and opens up possibilities for
future work and implementation.

6.2 Reflections

One of the major findings in this project was the significant improvements achieved by
converting the TensorFlow models to tflite. As this was found late in the project, there
was not adequate time to do a more thorough investigation of how to get the most out of
tflite. For future iterations, if necessary, some of the many optimisation methods listed by
TensorFlow could be tested.

Another discovery made during testing was how much variation in the results was found
when captured at different times during the day. This means that if training data was
obtained in the morning, it may not be representative of test data captured during the
afternoon. While it may not be possible to easily obtain information about the state of the
link, the latency trends over hours, days, and even months could be relevant to investigate
further. If the latency observed during the day is significantly different than during the
night, it would make sense to have individual models trained for these circumstances
instead of just a generalised model.

Future application of these latency-detecting Digital Twins could potentially be with video
games, which have time-critical tasks and a number of existing methods to accommodate
for latency [Liu et al., 2022]. For example, if a client is known to have a high latency
due to the inputs given, something like Attribute Scaling could be applied in advance. A
second potential application is evaluation of the connections chosen based on distances to,
e.g., different carriers or even Low Earth Orbit (LEO) satellites, to select the option with
the lower of the latencies.

Another case that could be interesting to apply these latency-detecting Digital Twins to is
autonomous delivery drones. During their operation, these drones generate large amounts
of data which may encompass location updates, sensor reading, videos, images etc. These
data require real-time processing in order to ensure secure and seamless operations. To
do so, edge computing is applied in which a number of edge points are distributed across
the areas where drones frequently operate. Here, the Digital Twin can help adapt the
offloading of computation tasks across multiple edge points, in order to ensure a more
efficient and balanced real-time data processing. Furthermore, the Digital Twin can play
a major role in reducing the network congestion, as well as latency, by optimising the
trajectory of the drone paths to areas with better coverage.

80

Bibliography

AWS, 2023a. AWS. Start Building on AWS Today. Online Service, 2023a. URL
https://aws.amazon.com/.

AWS, 2023b. AWS. What Is A Neural Network?, 2023b. URL
https://aws.amazon.com/what-is/neural-network/. Last visited on 07/02/2023.

AWS, 2023c. AWS. What Is Overfitting?, 2023c. URL
https://aws.amazon.com/what-is/overfitting. Last visited on 13/02/2023.

Bappy et al., 2010. DM Bappy, Ajoy Kumar Dey, Susmita Saha, Avijit Saha and
Shibani Ghosh. OFDM system analysis for reduction of inter symbol interference using
the AWGN channel platform. International Journal of Advanced Computer Science
and Applications, 1(5), 2010.

Barricelli et al., 2019. Barbara Rita Barricelli, Elena Casiraghi and Daniela Fogli. A
Survey on Digital Twin: Definitions, Characteristics, Applications, and Design
Implications. IEEE Access, 7, 167653–167671, 2019. doi:
10.1109/ACCESS.2019.2953499.

Basanisi, 2019. Luca Basanisi. How to deal with categorical features, 2019. URL https:
//www.kaggle.com/code/lucabasa/how-to-deal-with-categorical-features.
Last visited on 04/05/2023.

Briscoe et al., 2014. Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes,
David Ros, Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz and Michael
Welzl. Reducing internet latency: A survey of techniques and their merits. IEEE
Communications Surveys & Tutorials, 18(3), 2149–2196, 2014.

Cisco, 2023. Cisco. What is Low Latency?, 2023. URL
https://www.cisco.com/c/en/us/solutions/data-center/
data-center-networking/what-is-low-latency.html#~q-a. Last visited on
03/02/2023.

Cloud, 2023. Google Cloud. Overview of hyperparameter tuning, 2023. URL
https://cloud.google.com/ai-platform/training/docs/
hyperparameter-tuning-overview. Last visited on 04/05/2023.

Coffey, 2023. Joseph Coffey. Latency in optical fiber systems, 2023. URL
https://www.commscope.com/globalassets/digizuite/
2799-latency-in-optical-fiber-systems-wp-111432-en.pdf?r=1. Last visited on
03/02/2023.

Stephen R Ellis, Bernard D Adelstein, S Baumeler, GJ Jense and Richard H Jacoby,
1999. Stephen R Ellis, Bernard D Adelstein, S Baumeler, GJ Jense and Richard H

81

https://aws.amazon.com/
https://aws.amazon.com/what-is/neural-network/
https://aws.amazon.com/what-is/overfitting
https://www.kaggle.com/code/lucabasa/how-to-deal-with-categorical-features
https://www.kaggle.com/code/lucabasa/how-to-deal-with-categorical-features
https://www.cisco.com/c/en/us/solutions/data-center/data-center-networking/what-is-low-latency.html#~q-a
https://www.cisco.com/c/en/us/solutions/data-center/data-center-networking/what-is-low-latency.html#~q-a
https://cloud.google.com/ai-platform/training/docs/hyperparameter-tuning-overview
https://cloud.google.com/ai-platform/training/docs/hyperparameter-tuning-overview
https://www.commscope.com/globalassets/digizuite/2799-latency-in-optical-fiber-systems-wp-111432-en.pdf?r=1
https://www.commscope.com/globalassets/digizuite/2799-latency-in-optical-fiber-systems-wp-111432-en.pdf?r=1

Bibliography

Jacoby. Sensor spatial distortion, visual latency, and update rate effects on 3D
tracking in virtual environments. In Proceedings IEEE Virtual Reality (Cat. No.
99CB36316), pages 218–221. IEEE, 1999.

GitHub, 2019a. Keras GitHub. Repeatedly calling model.predict(...) results in memory
leak #13118, 2019a. URL https://github.com/keras-team/keras/issues/13118.
Last visited on 04/05/2023.

GitHub, 2020. Tensorflow GitHub. model.predict is much slower on TF 2.1+ #40261,
2020. URL https://github.com/tensorflow/tensorflow/issues/40261. Last
visited on 04/05/2023.

GitHub, 2019b. Tensorflow GitHub. Why is TensorFlow 2 much slower than
TensorFlow 1? #33487, 2019b. URL
https://github.com/tensorflow/tensorflow/issues/33487. Last visited on
04/05/2023.

Grieves, 2014. Michael Grieves. Digital twin: manufacturing excellence through virtual
factory replication. White paper, 1(2014), 1–7, 2014.

He et al., 2000. Ding He, Fuhu Liu, Dave Pape, Greg Dawe and Dan Sandin.
Video-Based Measurement of System Latency. International Immersive Projection
Technology Workshop 111 (July 2000), 6, 2000.

Holbrook, 2023. Ryan Holbrook. Dropout and Batch Normalization, 2023. URL
https://www.kaggle.com/code/ryanholbrook/dropout-and-batch-normalization.
Last visited on 04/05/2023.

IBM, 2021. IBM. Supervised vs Unsupervised Learning, 2021. URL
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning. Last
visited on 04/05/2023.

IBM, 2023. IBM. What Is machine learning?, 2023. URL
https://www.ibm.com/topics/machine-learning. Last visited on 27/02/2023.

Investopedia, 2023. Investopedia. Variance Inflation Factor (VIF). Online Service,
2023. URL
https://www.investopedia.com/terms/v/variance-inflation-factor.asp.

Kaggle, 2021. Kaggle. Target Encoding, 2021. URL
https://www.kaggle.com/code/ryanholbrook/target-encoding. Last visited on
21/03/2023.

Khan et al., 2022. Latif U Khan, Walid Saad, Dusit Niyato, Zhu Han and
Choong Seon Hong. Digital-twin-enabled 6G: Vision, architectural trends, and future
directions. IEEE Communications Magazine, 60(1), 74–80, 2022.

Ali Safari Khatouni, Francesca Soro and Danilo Giordano, 2019. Ali Safari Khatouni,
Francesca Soro and Danilo Giordano. A Machine Learning Application for Latency
Prediction in Operational 4G Networks. In 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pages 71–74, 2019.

82

https://github.com/keras-team/keras/issues/13118
https://github.com/tensorflow/tensorflow/issues/40261
https://github.com/tensorflow/tensorflow/issues/33487
https://www.kaggle.com/code/ryanholbrook/dropout-and-batch-normalization
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/topics/machine-learning
https://www.investopedia.com/terms/v/variance-inflation-factor.asp
https://www.kaggle.com/code/ryanholbrook/target-encoding

Bibliography

Liu et al., 2021. Mengnan Liu, Shuiliang Fang, Huiyue Dong and Cunzhi Xu. Review
of digital twin about concepts, technologies, and industrial applications. Journal of
Manufacturing Systems, 58, 346–361, 2021.

Liu et al., 02 2022. Shengmei Liu, Xiaokun Xu and Mark Claypool. A Survey and
Taxonomy of Latency Compensation Techniques for Network Computer Games. ACM
Computing Surveys, 54, 2022. doi: 10.1145/3519023.

Max Kuhn, 2019. Kjell Johnson Max Kuhn. Feature Engineering and Selection: A
Practical Approach for Predictive Models, volume 25. Chapman and Hall/CRC Data
Science, 2019.

Mine, 1993. Mark R Mine. Characterization of end-to-end delays in head-mounted
display systems. The University of North Carolina at Chapel Hill, TR93-001, 1993.

Nasiri et al., 2017. Mahdi Nasiri, Behrouz Minaei and Zeinab Sharifi. Adjusting data
sparsity problem using linear algebra and machine learning algorithm. Applied Soft
Computing, 61, 1153–1159, 2017.

Prakash, 2022. Arushi Prakash. Working With Sparse Features In Machine Learning
Models. Online Service, 2022. URL https:
//www.kdnuggets.com/2021/01/sparse-features-machine-learning-models.html.

Stackoverflow, 2018. Stackoverflow. What is the difference between the predict and
predict_on_batch meth-
ods of a Keras model?, 2018. URL https://stackoverflow.com/questions/44972565/
what-is-the-difference-between-the-predict-and-predict-on-batch-methods-of-a-ker.
Last visited on 04/05/2023.

Anthony Steed, 2008. Anthony Steed. A simple method for estimating the latency of
interactive, real-time graphics simulations. In Proceedings of the 2008 ACM symposium
on Virtual reality software and technology, 2008.

Strato, 2023. Strato. CLAAUDIA research data services. Online Service, 2023. URL
https://www.strato-docs.claaudia.aau.dk/.

TensorFlow, 2023a. TensorFlow. TensorFlow Lite inference, 2023a. URL
https://www.tensorflow.org/lite/guide/inference. Last visited on 022/05/2023.

TensorFlow, 2023b. TensorFlow. Optimizing TensorFlow Lite Runtime Memory,
2023b. URL https:
//blog.tensorflow.org/2020/10/optimizing-tensorflow-lite-runtime.html.
Last visited on 022/05/2023.

Tuegel et al., 2011. Eric J Tuegel, Anthony R Ingraffea, Thomas G Eason and
S Michael Spottswood. Reengineering aircraft structural life prediction using a digital
twin. International Journal of Aerospace Engineering, 2011, 2011.

Wagg et al., 2020. DJ Wagg, Keith Worden, RJ Barthorpe and Paul Gardner. Digital
twins: state-of-the-art and future directions for modeling and simulation in engineering
dynamics applications. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech
Engrg, 6(3), 2020.

83

https://www.kdnuggets.com/2021/01/sparse-features-machine-learning-models.html
https://www.kdnuggets.com/2021/01/sparse-features-machine-learning-models.html
https://stackoverflow.com/questions/44972565/what-is-the-difference-between-the-predict-and-predict-on-batch-methods-of-a-ker
https://stackoverflow.com/questions/44972565/what-is-the-difference-between-the-predict-and-predict-on-batch-methods-of-a-ker
https://www.strato-docs.claaudia.aau.dk/
https://www.tensorflow.org/lite/guide/inference
https://blog.tensorflow.org/2020/10/optimizing-tensorflow-lite-runtime.html
https://blog.tensorflow.org/2020/10/optimizing-tensorflow-lite-runtime.html

Bibliography

Yang et al., 02 2004. Ming Yang, X.R. Li, Huimin Chen and Nageswara Rao.
Predicting Internet End-to-End Delay: An Overview. Proceedings of the Annual
Southeastern Symposium on System Theory, 36, 210 – 214, 2004. doi:
10.1109/SSST.2004.1295650.

Zhang et al., 2021. Lin Zhang, Longfei Zhou and Berthold KP Horn. Building a right
digital twin with model engineering. Journal of Manufacturing Systems, 59, 151–164,
2021.

84

	Front page
	Nomenclature
	Preface
	1 Introduction
	1.1 Initial Problem Formulation

	2 Analysis
	2.1 State of the Art
	2.1.1 Latency and potential sources
	2.1.2 Measuring latency
	2.1.3 Latency prediction
	2.1.4 Addressing the predicted latency

	2.2 Digital Twins and Physical Twins
	2.3 Machine Learning
	2.3.1 The data processing phase
	2.3.2 Neural Networks
	2.3.3 The training phase
	2.3.4 Summary

	2.4 Final Problem Statement

	3 Design and Implementation
	3.1 Initial System Proposal
	3.1.1 The Physical Twin
	3.1.2 Creating the Physical Twin
	3.1.3 The Digital Twin
	3.1.4 Creating the Digital Twin

	3.2 System Inputs
	3.2.1 Summary

	3.3 Processing the model inputs
	3.3.1 Numerical preprocessing
	3.3.2 Categorical preprocessing
	3.3.3 Outlier Analysis

	4 Performance Evaluation and Optimisation
	4.1 Model Tuning and Performance
	4.1.1 Hyperparameter tuning

	4.2 Analysis of Input Data Behavior
	4.2.1 Multicollinearity
	4.2.2 Data sparsity

	4.3 Evaluation of the preprocessing techniques for different models
	4.4 Validation
	4.4.1 Amount of inputs used

	4.5 Summary

	5 Validation and Performance Testing
	5.1 Test Overview
	5.2 Model Loss Performance
	5.2.1 Model prediction performance

	5.3 Isolating the impact of inputs on performance
	5.3.1 Distance
	5.3.2 Technology
	5.3.3 File size
	5.3.4 Protocol
	5.3.5 Combining inputs

	5.4 Live Latency Prediction
	5.4.1 Improving the NN implementation
	5.4.2 Temporal Variance Observations

	6 Conclusion and Reflection
	6.1 Conclusion
	6.2 Reflections

	Bibliography

