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Abstract:

Grid-forming inverters are becoming
increasingly relevant due to an increase of
inverter based energy resources. The stability
of grids with high penetration of inverter
based resources is therefore of great interest.
This report aims to show stability of such grids
using passivity analysis. An approach that was
used to show passivity of grids dominated by
synchronous generators by Spanias et al. [1],
where the bus dynamics and interconnection
of buses are viewed as two separate systems in
an interconnection is investigated.

A time varying phasor model is used and
generators are replaced by inverters. It is
shown that such a system cannot be passive.
Viewing the complex power as the input to the
inverter dynamics and the voltage magnitude
and phase angle as the output, passivity of the
inverter dynamics can be shown. However, to
show stability of the interconnection of invert-
ers using the circle criterion, the interconnec-
tion needs to be strictly passive, which it is not.
However, using a feedback passivization could
in theory remedy this at the cost of accurate
time synchronization. Using the invariance
principle it is shown that the stability of the
system is guaranteed under the assumptions
that the system is lossless and the phase angle
differences between inverters are small. Simu-
lation models of the Two Area Network from
Kundur et al. [2] and the IEEE Reliability Test
System [3] are used to investigate the stability
of the system without the strict assumptions.
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1 Introduction

In recent years more ambitious climate goals and innovations in renewable energy resources have
changed the situation on the electric grid as more electricity is generated from renewable sources.
As shown in Figure 1.1 the capacity of solar and wind electricity in the European Union has almost
doubled in the last 10 years and it is expected to increase even further as member states attempt
to fulfill the goals stated in the climate legislation. That goal is a 55% reduction of greenhouse gas
emissions before the year 2030 as compared to the levels of the year 1990 [4].
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Figure 1.1: Electricity capacity by source (Standard International Energy product Classification) in the European Union
[5]. n.e.c. means not elsewhere classified.

The shift towards renewable energy resources has brought with it a reduction in classic synchronous
generator based power, since inverter-based power conversion is common in both wind turbines and
photovoltaics. However, depending on how these inverters are controlled they can both be a burden
and an asset to the electrical grid [6].

The power grid is divided into three layers: The transmission, distribution, and substation grid.
As the name suggests, the transmission grid is where most long range transmission of power takes
place. Big synchronous generators that produce the majority of the power that is needed by the
consumers are connected directly to the transmission grid. At the distribution grid, the power is
distributed to larger substations and also some larger consumers, like industrial and commercial
customers. The substation grids are typically small grids that are fed by a single substation and
consist of a few residential buildings [7]. The described structure of the electrical grid is shown in
simplified form in 1.2.
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CHAPTER 1. INTRODUCTION

Substation
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Photovoltaics

Figure 1.2: Simplified diagram of the electrical grid structure [8]. 1

Large synchronous generators like those found in coal, gas, or nuclear power plants, generate power
via an alternator that is driven by a engine shaft. This, combined with the fact that the rotation is
directly coupled to the synchronous frequency which forms the grid, means that the inertia of the
rotor assembly prohibits the frequency of the power grid to change too rapidly [2]. Most distributed
energy resources like photovoltaics and wind turbines are connected at the distribution or even
substation layer of the power grid. This has the effect of creating a lot of interconnected micro grids,
which is different from the structure of the classical power grid.

Wind turbines, which still use alternators to produce electrical power, benefit from not running at
synchronous speeds [9]. Other sources, like photovoltaics, do not use alternators and thus posses
no inherent inertia to stabilize the local grid. These renewable energy sources instead use inverters,
which produce a synchronous AC current by switching transistors and filtering the current. Because
semiconductor electronics typically do not tolerate much over current, these inverters are operated
like current sources that can easily be limited to protect the hardware from failing. They also need
to be synchronized with the power grid in some way. Typically, this is done via a Phase Locked Loop
(PLL) which can estimate the grids frequency and phase. These inverters are called Grid Following
Inverters (GFLIs).

For the devices connected to the electric grid to function correctly, the grid must run within
spec, which includes that the voltage and frequency must be correct. The guidelines for the
different areas of Europe are defined by the European Commission [10]. The grid is divided in
multiple synchronous areas where continental Europe is one of them. In this area the maximum
permitted instantaneous frequency deviation is 800 mHz and the maximum steady-state deviation
is 200 mHz. In order to facilitate the requirements of different synchronous areas, requirements
for different types of generators are defined as well [11]. Generating units must be able to change
their active and reactive power in response to frequency and voltage changes in order to keep the
frequency stable and share load variations. While grid following inverters are capable of meeting
these regulations, following the grid works best for strong grids with a lot of power coming from
synchronous machines. For weaker grids, which have few to no synchronous machines to guide
the grid frequency, the GFLIs amplify frequency oscillations [12] and for grids with only inverters
there would not be a frequency to follow. Therefore, GFLIs are potentially problematic for the grid
and the use of Grid Forming inverters (GFMIs) that can be made to behave more like generators is
becoming an interesting alternative for distributed energy resources. GFMIs are potentially capable
of functioning independently and have better stability properties in weaker grids [13].

1This image is derivative of [8] and is under the Creative-Commons license. The assets used in the figure are provided
by Diagrams.net.
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CHAPTER 1. INTRODUCTION

GFMIs differ from GFLIs in the way they are controlled. GFLIs are controlled as current sources
that can deliver active power by injecting in-phase current to the grid, while GFMIs function as
voltage sources where the phase and amplitude is controlled. More generally GFMIs are capable
of independently forming a frequency and voltage on a grid. Another type of grid forming device
is the synchronous generator, which is very well understood and has been in use for well over a
century now. Since inverters have the potential to emulate the behaviors of these, many of the
same control methods can be used for GFMIs. However, the distributed nature of many inverter
based resources means that the amount of units that needs to be controlled increases. Especially
important is the concept of power sharing between distributed units, which is achieved by changing
the frequency of the generator based on the generated power. This can be emulated in the control
of inverters, giving them the opportunity to produce virtual inertia, as long as current limitations
and energy storage capabilities allow it. A major advantage of the GFMI is that it does not measure
the frequency and phase of the grid via a PLL. Rather, it changes its own frequency based on power
measurements according to the given droop characteristics, allowing for power based frequency
synchronization. The delay associated with this mechanism is much smaller than first having to
estimate the frequency of the grid via a PLL and respond to it [13]. This eliminates the need for
a strong grid to follow and can even be used to start or maintain a grid without any synchronous
generators.

One method of dealing with the increased complexity when investigating the stability of the grid
is the use of the concept of passivity, which can be viewed as an extension to stability. Broadly
speaking, a system is passive if the energy absorbed by the system is always greater than or equal
to the change in energy stored in the system. Note that energy in this context is not necessarily
physical energy but rather defined from input-output relationships of components [14]. The idea
is that interconnections of passive systems yield passive systems which means they are at least
Lyapunov stable. Furthermore, when interconnecting systems with excess of passivity they can
compensate for a lack of passivity in other parts of the system [15]. Some authors have proposed
the use of passivity as a tool for tuning generators. Spanias et al. [1] has shown that the electrical
grid under a central phasor approximation is a passive system, and that if the busses are designed
to be input strictly passive the entire electrical grid is asymptotically stable given a set of criteria.
Passivity of the entire grid is not a necessary condition for stability and they show using simulation
models that even though they only passivate a selection of busses on a grid it still improves the
transient performance. It therefore seems that passivity is a promising tool for alleviating unwanted
instability in an increasingly complex electrical grid. Especially their use in inverter based systems
is of interest with the current increase in inverter based power and the growing concerns for the
stability of the grid. This leads to the initial problem statement:

What is the working principle of droop-based grid forming inverter control? Can the stability of
the power grid be guaranteed using passivity analysis and how do the control parameters affect
the passivity of the system?
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2 The power grid and passivity

As mentioned in the introduction the passivity properties have previously been investigated by
dividing the electrical grid into transmission lines and buses [1]. This chapter aims to define which
parts of the grid constitute the buses, and how these can be viewed as interconnected systems for
the purpose of ensuring passivity of the frequency and voltage control.

In general terms, a bus is a point of connection for which the voltage of all connected devices is the
same and for which can be associated reactive and active power [2]. Buses are points in which the
generators, inverters, transmission lines etc. intersect. The dynamics of a bus itself is independent
of all other buses. They can therefore be viewed as a block diagonal system consisting of all buses. It
is important to note that not all nodes in the network are buses. Only the nodes where the voltage is
given from a dynamic system. Thus, nodes where inverters, generators, and/or motors are directly
connected are considered buses in this report. The buses are connected through the network, which
consists of transmission lines and transformers. The network forms an interconnection between the
inputs and outputs of the buses. Each inverter on the grid is connected to a bus in the network.
Given all bus voltages, the current out of the inverter into the bus node can be calculated. Figure 2.1
shows an example of a grid with three voltage source inverters and two loads, connected through
transmission lines and transformers. The buses in this case are the node between the inverters
and the transformers, since the voltage at these nodes is given from the dynamics of the inverters.
Everything in between the inverters is considered the network.

−
+V1 −

+ V2Load 1

−
+ V3Load 2

Figure 2.1: Interconnection of three voltage source inverters and two loads. The transmission lines are shown as
inductances and the transformers are shown as two overlapping circles.

In some cases, the loads can also be considered buses, since they might have dynamics. An example
of such a load would be an electrical motor. Note that, while the grid is a three phase system, for
many purposes it can be viewed as a balanced system, meaning that the behavior of each phase is
the same, but separated by an angle 120◦. In these cases single phase diagrams are used. In the
following, the typical components found on the grid are described.
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CHAPTER 2. THE POWER GRID AND PASSIVITY 2.1. TRANSMISSION LINES

2.1 Transmission lines

Transmission lines allow power transfer between the different buses. The behavior of voltage and
current across the length of the transmission line takes the form of a wave equation [2]. For
many purposes only the terminal behavior is of interest and these are usually modeled using an
equivalent π-model consisting of series impedance and shunt admittance, depending on the length
and properties of the transmission line. An illustration of this model is shown in Figure 2.2.

Ye
2

Ze

Ye
2

Figure 2.2: Equivalent π-model of a transmission line [2]. Ze is the equivalent impedance and Ye is the equivalent
admittance

The equivalent π-model only works for short transmission lines, usually up to between 80 and 200
km. This model does not include any fast transients of the inductance or capacitance as it is a
phasor model. However, if the transients of the transmission lines happen much faster than those of
the voltage and frequency control employed in the inverters, then it is not necessary to use a more
complicated model of the transmission lines.

2.2 Transformers

Transformers are used to transform the voltage up to voltage of the transmission lines and down
again. When the ratio of nominal voltages is equal to the ratio of primary and secondary windings
and neglecting the magnetizing reactance, the transformer can be viewed as a series impedance if
the unit system is chosen correctly. A typical set of base units could be the nominal voltages and
the rated power of the transformer [2]. However, most transformers have the capability to change
the turn ratio for the purposes of voltage control. In this case the transformer can be modeled with
a π-equivalent model [2].

2.3 Synchronous generators

Another component that can be found in a typical grid network is the synchronous generator.
These generators typically generate and maintain the electrical voltage and frequency of the grid.
Synchronous generators are special in the sense that the electrical frequency is coupled with the
rotation of the mechanical system inside the generator. This gives the grid an inertia that restricts
the rate of change of frequency. The power load is shared among the generators on the grid by
utilizing droop control, which adjusts the power output of a generator based on the frequency of
the grid. At the synchronous frequency, the electrical power, which is determined by the load,
is balanced with the mechanical torque of the turbine driving the rotor of the generator. If the
load on the grid increases, the rotation of the synchronous generators will slow down because
the electrical torque becomes larger. To match the new load requirement, the generators power
output is increased to match the new electrical torque, speed up the rotor to match the synchronous
frequency once more. The rate at which the power is increased depends on the rated power output
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CHAPTER 2. THE POWER GRID AND PASSIVITY 2.4. INVERTERS

of the generator. Therefore its is common practice to adjust the power output such that a 2.5 %
drop in frequency corresponds to half of the rated power output. That way each generator responds
to the load increase proportional to their rated power output [2]. Frequency droop allows a small
change in electrical frequency, in order to match the required power generation. Usually, a few
larger generators then increase their rated power output to lift the frequency back up to the nominal
frequency of the grid [2].

2.4 Inverters

Another form of power supply on the grid are inverters. Inverter based power sources are different
because they do not necessarily have a mechanical subsystem directly coupled to the electrical
frequency. Inverters have therefore been controlled as current sources that inject power, following
the voltage magnitude and frequency on the grid. The advantage of current controlled inverters is
that the current can easily be limited in order to protect the hardware from over current. Inverter
operating in grid following mode, where the current is injected in-phase with the grid, work well in
strong grids, meaning grids with a lot of inertia from synchronous generators. Another advantage
for grid following inverters is that they do not need an energy storage, since they do not need
to produce virtual inertia. A problem arises when the grid is weak, meaning the frequency and
voltage is less stable. Changes in frequency are amplified by grid following inverters and the grid
can become unstable at high penetration levels of inverter based power [12]. Therefore, another
method of controlling inverters is of increasing interest: The grid forming inverter control [13].
Grid forming inverters do not measure the phase of the grid directly. They function more like
generators on the sense that they inject power into the grid and synchronize to the grid frequency
by themselves. Rather than a current source, grid forming inverters are viewed as voltage sources
[13]. Because of this, they also need current limiting capabilities in order to protect the hardware.
Grid forming inverters are able to function in islanded grids that have little to no inertia because
they themselves produce virtual inertia. In order to produce virtual inertia flexibility in the power
delivery, typically in the form of energy storage, is necessary. Another option is to have an over
capacity in energy production that can be used provide additional power during spikes.

2.5 Loads

Finally, there are also loads on the grid consuming all the power produced by the generators and
inverters. Most loads require purely active or real power. But some loads, for example some
industrial motors, require some reactive power as well. This has the effect of changing the phase
angle between the voltage and current in the network. Reactive power is a concept that describes
power that is not consumed at the load, but flows back and forth between the consumer and the
producer. Even though the energy is not consumed, the current still flows through the transmission
line leading to heat losses and wear in the hardware.

2.6 Passivity

In broad terms, passivity is a property of any system with equal number of inputs and outputs,
that indicates that the system is dissipative in nature. A passive system will never accumulate more
signal energy than it is supplied. Mathematically, this means that there exists a storage function,
that is a positive definite function of the state trajectories of the system, and the time derivative of
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CHAPTER 2. THE POWER GRID AND PASSIVITY 2.6. PASSIVITY

which is always less than the signal power supplied to the system. For passivity specifically the
supply rate s(u, y) is defined as the inner product between the input and the output of the system:

s(u, y) = uTy (2.1)

Passivity means that the rate of change of energy in the system is always less than this supply rate.
Equivalently, the energy stored in the system is always less than or equal to the energy supplied to
it. The necessary definitions as defined by Khalil [14] are stated in the following. Let the dynamic
system S be defined as:

S :
ẋ = f (x, u)

y = h(x, u)
(2.2)

Khalil [14] defines passivity of a dynamic system like S as the following:

Definition 2.1 The system S is passive if there exists a continuously differentiable positive semi-definite
function V(x) (called the storage function) such that

uTy ≥ V̇ =
∂V(x)

∂x
f (x, u) , ∀(x, u) (2.3)

Moreover, it is

• lossless if uTy = V̇.

• input strictly passive if uTy ≥ V̇ + uTϕ(u) and uTϕ(u) > 0, ∀ u ̸= 0.

• output strictly passive if uTy ≥ V̇ + yTρ(y) and yTρ(y) > 0, ∀ y ̸= 0.

• strictly passive if uTy ≥ V̇ + ψ(x) for som positive definite function ψ(s).

In all cases, the inequality should hold for all (x, u).

Memoryless systems are systems with an output that is directly defined from the input to the
system, meaning that they have no dynamics. Khalil [14] defines the passivity of memoryless
functions as:

Definition 2.2 The system y = h(t, u) is

• passive if uTy ≥ 0

• lossless if uTy = 0

• input strictly passive if uTy ≥ uTϕ(u) > 0, ∀u ̸= 0

• output strictly passive if uTy ≥ yTρ(y) > 0, ∀y ̸= 0

In all cases, the inequalities should hold for all (t, u).

Passive systems are stable in the sense of Lyapunov. This means that the systems energy will never
increase without input and the states will always either stay in place ore move closer to the origin.
Usually, the coordinates of the system are chosen such that the equilibrium point is at the origin
x = 0. Strict passivity on the other hand implies that the system states will asymptotically approach
the origin in a finite time. Storage functions and Lyapunov functions are very similar. Consider the
storage function of a passive system as a Lyapunov function candidate. Note that storage functions
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CHAPTER 2. THE POWER GRID AND PASSIVITY 2.6. PASSIVITY

fulfill all the requirements to be viewed as such. Setting the input to the system to zero yields the
following:

V̇ ≤ 0 (2.4)

Therefore, the storage function for a passive system can also be viewed as a Lyapunov function for
zero input. Thus the system is stable while no input is applied.

Spanias et al. [1] showed that the network of transmission lines is passive when viewed as a
impedance matrix transforming voltages into currents. The individual buses then take the currents
as input in order to produce a bus voltage corresponding to the requested injected power. This
model is shown in Figure 2.3.

Bus dynamics

Network

VB

IB

Figure 2.3: Interconnection of a bus on the power grid with the rest of the network according to Spanias et al. [1].

According to Spanias et al. [1] as long as all bus dynamics are passive, the interconnection with the
network will also be passive. This follows directly from Theorem 7.1 in Khalil [14]:

Theorem 2.1 The feedback connection of two passive systems is passive.

Now that the basic components of the grid have been defined and the approach for using passivity
to investigate the stability of the power grid is outlined, the control algorithms for the grid forming
inverters are investigated.
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3 Grid forming inverters

There are many different grid forming methods already described in the literature. Rathnayake
et al. [13] places the existing methodologies into three major groups: The Droop-based control,
Synchronous machine-based control, and "other" types of control. These are all outer controllers in
the sense that they provide the voltage amplitude and phase reference that needs to be generated by
the inverter. The inverter is thus controlled like a voltage source. In this chapter the basic concept
of a droop controlled inverter is investigated. Droop-based grid forming inverter control is one of
the most straight forward control methods for grid forming inverters. It shares a lot of similarities
with the Virtual Synchronous Machine based control as well [13]. The simplest control scheme is
chosen as there is no reason to add complexity if it is not necessary for the purposes of studying
passivity. First, a typical inner control structure of grid forming inverters is described. Next a droop
controlled inverter is described in more detail.

3.1 Inner voltage and current control

In this section it is detailed how the inverter can to some extent be viewed as a simple voltage source
with regards to the slower power control and synchronization loops. The control structure of the
inner control loop of a conventional grid forming inverter is shown in Figure 3.1.

PWM
Generator

L f

C f

Filter

Ll Rl

Line

Bus

dq(θ)

Current
control

dq−1(θ)

dq(θ)

Voltage
control

|V|re f

0

Vabc

Vdq

Ire f ,dq

Idq

Ere f

Ere f ,abc

Iabc

Figure 3.1: The inner control of a conventional grid forming inverter without current limiting [6] [16]. In this depiction,
the output voltage is controlled to be aligned with that of the DQ-transformation hence the zero reference to the voltage
control q-axis. Note θ is to be generated by the power control.

The purpose of the inner control is to control the output voltage of the inverter, i.e. the voltage
after the filter, and also to limit the current to protect the inverter. The voltage control is typically
achieved by the use of a cascaded control where the voltage across the LC filter is controlled by PI
controllers. Due to the series inductor in the filter, the current is proportional to the average voltage
of the PWM generator. Likewise the voltage of the capacitor is proportional to the current. In the dq
coordinate frame this basic relation is still true, however there is some known cross coupling terms
that must be removed. The bandwidth of this inner control is typically relatively large and for the
purposes of power control the inverter can be viewed as controlled voltage behind a line impedance
which is usually mainly inductive.
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CHAPTER 3. GRID FORMING INVERTERS 3.2. DROOP-BASED CONTROL

3.2 Droop-based control

Droop control is an outer control loop that provides the set point for the voltage control as well
as the phase angle used for the dq-transformation. It takes inspiration from the traditional control
employed when controlling multiple synchronous generators in parallel. In order for generators
to respond to a load change proportionally to their individual power rating, the synchronous
frequency is drooped. This means that the generator produces the rated power as longs as the
synchronous frequency is at the rated frequency. Should the frequency drop due to an increase
in load on the grid, the power of the generator is increased linearly and proportionally with the
change in frequency [2]. This is illustrated in Figure 3.2.

0
Power [pu]

Frequency [pu]

1.0

ωFL

ωNL

ω0

P0

Figure 3.2: Typical frequency droop-characteristic. When the frequency is at the operating point ω0 the power output is
P0. The maximum rated power output of the generator is reached at the full load frequency ωFL. The generator produces
no power at the no load frequency ωNL.

The droop characteristic shown in 3.2 is basically a proportional controller of the form

∆ω

∆P
= KP (3.1)

where:
∆ω is the change in frequency
∆P is the change in active power
KP is a constant

Sometimes, a low-pass filter (LPF) is included in the droop-control as well to reduce unwanted
harmonic oscillations [13]. The resulting transfer function becomes:

∆ω

∆P
= KP

ωP

s + ωP
=

KP

τPs + 1
, τP =

1
ωP

(3.2)

where:
ωP is the cut-off frequency of the LPF for the P-ω droop
τP is the time constant of the LPF for the P-ω droop

Designers might also be interested in providing a virtual inertia to the network to replace the
inertia of generators. One way to do this is to model the swing equation of the rotation shaft in
a synchronous generator. Typically this design is called a Virtual Synchronous Generator (VSG). In
general there are multiple ways to implement the VSG, however a low-pass filter is mathematically
equivalent to a basic VSG implementation [13]. Therefore it is not investigated separately.
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CHAPTER 3. GRID FORMING INVERTERS 3.2. DROOP-BASED CONTROL

The voltage amplitude can be controlled based on the reactive power:

∆V
∆Q

= KQ
ωQ

s + ωQ
=

KQ

τQs + 1
, τQ =

1
ωQ

(3.3)

where:
∆V is the change in voltage magnitude
∆Q is the change in reactive power
KQ is a constant
ωQ is the cut-off frequency of the LPF for the Q-V droop
τQ is the time constant of the LPF for the Q-V droop

The voltage magnitude set point is provided by the Q-V droop directly. The phase angle can
be obtained by integrating the frequency obtained by the P-ω droop. The control structure is
summarized in Figure 3.3.

KP
τPs+1 +

+∆ω

ω0

1
s

ω
θ+

− ∆PP0

P

KQ
τQs+1 +

+∆V

V0

V+
− ∆Q

Q0

Q

Figure 3.3: Block diagram of the P − ω- and Q − V droop control law [13]. The active and reactive power set points are
called P0 and Q0 respectively and the frequency and voltage set points are called ω0 and V0 respectively.

In this report the focus is on the control shown in Figure 3.3. The inner voltage, current, and PWM
control shown in Figure 3.1 is assumed to be fast enough that its dynamics can be ignored. Note
that the line impedance in the figure is still relevant. Figure 3.4 shows the resulting inverter control.

Inner Control

KP
τPs+1 +

+

ω0

1
s

θ
−
+

P0

KQ
τQs+1 +

+

V0

V
−
+

Q0

Power
V, I

Q

P

Ll Rl
Bus

Figure 3.4: Overview of the control structure.

As indicated by the circle around the output of the inner control, the voltage and current are
measured after the inner control and before the line impedance connecting the inverter to the bus.
The inner control is fast and its dynamics are assumed to be insignificant for the droop control.
The passivity of this droop-based voltage source inverter control is investigated in the following
chapters.
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4 Passivity analysis of a droop controlled inverter

This chapter explores the passivity of a droop controlled inverter connected to an infinite bus
through a line impedance. This is done in order to investigate the passivity of droop controlled
inverters viewed with a bus voltage as output and injected current as the input as is proposed by
Spanias et al. [1]. First off, the dynamic phasor approximation of the dqz-coordinate transformation
is described. The phasor approximation is then used to model the dynamics of the bus, including
the droop control. The dynamic equations are simulated to find a steady state that can be used
to linearize the dynamic model. The passivity of the linear model is then analyzed using the
positive realness of the corresponding transfer matrix. Finally the results of the passivity analysis
are discussed and a change in coordinates is proposed in order to alleviate some of the problems
with viewing the network as an admittance.

4.1 Phasor approximation

Some assumptions are made about the system in order to simplify the analysis. First off, it is
assumed that all systems are balanced and symmetrical. In a balanced three-phase system the
currents and voltages each sum to zero. For the electrical system to be symmetric all component
values must be the same between the three phases. Using these assumptions, the three phase signal
can be reduced to a two dimensional signal via the dqz-transform. Let a three phase voltage signal
be given as: va

vb
vc

 =

 V(t) cos(ωt + ϕ(t))
V(t) cos(ωt + ϕ(t)− 2π

3 )

V(t) cos(ωt + ϕ(t) + 2π
3 )

 (4.1)

where:
V(t) is the time varying magnitude of the voltage signal
ω is the frequency of the signal
ϕ(t) is the time varying phase of the voltage signal

Assuming that the angle used for the dqz-transform is θ(t) = ωt, where ω is a constant frequency,
it is shown in Levron et al. [17] that the dqz-coordinates for such a balanced system are given as:vd

vq

vz

 =

V(t) cos ϕ(t)
V(t) sin ϕ(t)

0

 (4.2)

In reality, the frequency is not constant, but as long as it is changing slowly, the deviation can
be seen as a time varying phase instead of a change in frequency. Thus, when keeping the dqz-
transformation synchronized with the synchronous frequency, the three-phase signal reduces to a
slowly varying phasor:

V = V(t)ejϕ(t) = V(t) cos ϕ(t) + jV(t) sin ϕ(t) = Vd + jVq (4.3)

This representation is only subtly different from dqz-coordinates. A bigger difference comes when
viewing electrical components like inductors in this phasor representation. This will be described
further in the next section.
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CHAPTER 4. PASSIVITY ANALYSIS OF A DROOP
CONTROLLED INVERTER

4.2. BUS DYNAMICS OF A DROOP
CONTROLLED INVERTER

4.2 Bus dynamics of a droop controlled inverter

This section establishes the relationship between the injected bus current and the bus voltage of a
droop controlled inverter. As mentioned in Section 3.1 the inverter with inner control is viewed as
a controlled voltage source behind a series impedance. For simplicity it is assumed that the line
has no series resistance. Furthermore, this analysis utilities a constant grid frequency which should
be chosen to be an equilibrium point of the inverter frequency control. The idea is to investigate if
there exist some frequency at all that attracts every inverter. As a first approach the other bus is an
infinite bus, and if the inverters is not attracted to the frequency of this bus it de-synchronizes. The
resulting setup is shown in Figure 4.1.

−
+V̄

Ll V̄B
Network

Ī

Figure 4.1: An inverter viewed as a controlled voltage source connected to an electrical network through an inductor.

When viewed as phasors, the relationship between the voltages and current in Figure 4.1 can be
expressed using Ohm’s law. The current through the inductor is given as the difference in voltages
divided by the impedance:

I =
V − VB

jXL
(4.4)

VB = V − jXL I (4.5)

where:
V is the voltage phasor produced by the inverter
VB is the bus voltage phasor
I is the current phasor produced by the inverter
XL is the reactance of the line inductance

The phasors can also be written in vector form where the components are the real and imaginary
part of the phasor:

V = Va + jVb =

[
Va

Vb

]
(4.6)

Equation (4.5) can be written with this vector form by first expanding the phasor terms into real
and imaginary parts:

VB,a + jVB,b = Va + jVb − jXL(Ia + jIb) = (Va + XL Ib) + j(Vb − XL Ia) (4.7)

From this, Equation (4.7) can be consolidated into matrix-vector notation:[
VB,a

VB,b

]
=

[
Va

Vb

]
−
[

0 −XL

XL 0

] [
Ia

Ib

]
(4.8)
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CONTROLLED INVERTER

4.2. BUS DYNAMICS OF A DROOP
CONTROLLED INVERTER

Until now, the phasors have all been written in the buses reference frame which was denoted with
the subscripts a and b. Instead, the phasors can be expressed in the reference frame of the inverter.
Furthermore, the reference frame is chosen in a such a way, that the internal voltage V aligns with
the real axis. This new reference frame is denoted with a d for the real part and a q for the imaginary
part. Let the phase angle of the bus frame be denoted ϕ and the phase angle of the inverter frame
be denoted θ. The difference in phase angles is denoted δ.

δ = ϕ − θ (4.9)

Figure 4.2 shows how the two coordinate systems are related to each other.

d

q

a

b

V
δ

Figure 4.2: Relationship between the bus reference frame (red) and the internal inverter reference frame. The bus frame
is rotated counter-clockwise with the angle δ with respect to the inverter frame. The internal voltage of the inverter V
aligns with the real axis of the inverter frame.

To express the internal voltage in the buses reference frame, the voltage phasors needs to be rotated
clockwise by δ. For this purpose the coordinate transformation T is defined as:

T(δ) : (a, b) → (d, q) (4.10)

Since T(δ) is a simple counter-clockwise rotation, the phasor and matrix representations are easily
found.

T(δ) = ejδ or T(δ) =
[

cos δ − sin δ

sin δ cos δ

]
(4.11)

Thus, the internal voltage can be written in the inverter reference frame as:

Vdq = T(δ)Vab (4.12)

The relationship in Equation (4.5) can now be transformed into the inverter frame, by applying a
clockwise rotation to both sides of the equation:

T(δ)VB,ab = T(δ)Vab − jXLT(δ)Iab (4.13a)

VB,dq = Vdq − jXL Idq (4.13b)

This can also be expressed in vector form:[
VB,d
VB,q

]
=

[
Vd
0

]
−
[

0 −XL

XL 0

] [
Id
Iq

]
(4.14)
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4.2. BUS DYNAMICS OF A DROOP
CONTROLLED INVERTER

Note that the voltage in the q-direction is always zero, because the coordinate frame was chosen for
this specific purpose. Next, the dynamic states of the controller are investigated.

Firstly, the states, inputs, and outputs of the system need to be defined, in order to determine the
dynamics of the system. The input to the system u is the currents that are measured at the bus in
the reference frame of the bus. ie. the current phasor Ia,b:

u =

[
Ia

Ib

]
(4.15)

The output of the system y is the bus voltage phasor in the buses reference frame VB,ab:

y =

[
VB,a

VB,b

]
(4.16)

The output map h is Equation (4.8), as it links the input and output. The output map also requires
knowledge about the internal voltage Vab. This voltage is therefore identified as a state. In order
to simplify the dynamic equations, the state is chosen to be the internal voltage in the inverter
reference frame. Because the transformation between reference frames requires the phase angle
difference, δ is also chosen as a state. Finally, it is assumed, that the bus phase angle is determined
by integrating the grid frequency, which is constant. The dynamics of the phase angle difference is
therefore determined exclusively by the dynamics of the inverters internal phase angle θ, which is
the integral of the inverters internal frequency ω. Thus the states x of the system are identified as:

x =

ω

Vd
δ

 (4.17)

Next, the dynamics of the individual states are determined starting with the frequency and voltage.
From Equation (3.2) the differential equation for the frequency droop controller can be derived:

∆ω =
KP

τPs + 1
∆P (4.18a)

s∆ω =
1
τP

(KP∆P − ∆ω) (4.18b)

In time domain this becomes:

∆ω̇ =
1
τp

(KP∆P − ∆ω) (4.19)

Similarly, from Equation (3.3) the dynamics of the Q − V droop are:

∆V̇ =
1

τQ
(KQ∆Q − ∆V) (4.20)

The droop control is based on the changes in frequency and voltage:

∆ω = ω − ω0 (4.21a)

∆V = V − V0 (4.21b)

Because of this, the time derivatives of the changes in frequency and voltage are the same as the
derivatives of just the frequency and voltage:

∆ω̇ = ω̇ (4.22a)

∆V̇ = V̇ (4.22b)
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Also, the changes in active and reactive power are given as:

∆P = P0 − P (4.23a)

∆Q = Q0 − Q (4.23b)

The dynamics of the frequency and voltage thus become:

ω̇ =
1
τP

(KP(P0 − P)− (ω − ω0)) (4.24)

V̇ =
1

τQ
(KQ(Q0 − Q)− (V − V0)) (4.25)

From here, an expression of the active and reactive power as a function of bus voltage and current
is needed. The three phase complex power S in phasor notation is written as [18]:

S =
3
2

VB,dq I∗dq (4.26)

where:

I∗dq is the complex conjugate of the current phasor in the inverter reference frame

The choice of reference frame is arbitrary, but the inverter frame comes with the benefit of having
Vq = 0, which will simplify the expression in the end. The active power is the real part of the
complex power, while the reactive power equates to the imaginary part. When the complex power
is written out as real and imaginary parts it becomes:

S = P + jQ =
3
2
(VB,d + jVB,q)(Id − jIq) =

3
2
(VB,d Id + VB,q Iq) + j

3
2
(VB,q Id − VB,d Iq) (4.27)

The active and reactive power are therefore recognized as:

P =
3
2
(VB,d Id + VB,q Iq) (4.28a)

Q =
3
2
(VB,q Id − VB,d Iq) (4.28b)

Using these expressions for the power, the dynamics of the frequency and voltage can be expanded.
The frequency dynamics in Equation (4.24) become:

ω̇ =
1
τP

(
KP

(
P0 −

3
2
(VB,d Id + VB,q Iq)

)
− (ω − ω0)

)
(4.29)

Using Equation (4.14) the frequency dynamics can be expressed without the bus voltages. Further-
more, the currents are expressed in the bus reference frame using the coordinate transformation in
Equation (4.10):

ω̇ =
1
τP

(
KP

(
P0 −

3
2
((Vd + XL Iq)Id − XL Id Iq)

)
− (ω − ω0)

)
(4.30a)

=
1
τP

(
KP

(
P0 −

3
2

Vd Id

)
− (ω − ω0)

)
(4.30b)

=
1
τP

(
KP

(
P0 −

3
2
[
Vd 0

] [Id
Iq

])
− (ω − ω0)

)
(4.30c)

=
1
τP

(
KP

(
P0 −

3
2
[
Vd 0

] [cos δ − sin δ

sin δ cos δ

] [
Ia

Ib

])
− (ω − ω0)

)
(4.30d)
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Equivalently, the voltage dynamics can be expressed as the following:

V̇ =
1

τQ

(
kQ

(
Q0 −

3
2
(VB,q Id − VB,d Iq)

)
− (Vd − V0)

)
(4.31a)

=
1

τQ

(
kQ

(
Q0 −

3
2
(−XL I2

d − (Vd + IqXL)Iq)

)
− (Vd − V0)

)
(4.31b)

=
1

τQ

(
kQ

(
Q0 +

3
2

{[
Id Iq

] [XL 0
0 XL

] [
Id
Iq

]
+
[
0 Vd

] [Id
Iq

]})
− (Vd − V0)

)
(4.31c)

=
1

τQ

(
kQ

(
Q0 +

3
2

{[
Id Iq

] [XL 0
0 XL

] [
Id
Iq

]
+
[
0 Vd

] [cos δ − sin δ

sin δ cos δ

] [
Ia

Ib

]})
− (Vd − V0)

)
(4.31d)

Finally, the dynamics of the phase angle difference δ are needed. From the definition of the phase
angle difference in Equation (4.9), the dynamics are found as:

δ̇ = ϕ̇ − ω̇ = ωr − ω (4.32)

where:

ωr is the reference frequency of the bus

The other half of the system is the network, which produces a current given the voltages in the
network. The network is described in the next section.

4.3 Network dynamics

As a first approach the network is a transmission line modeled as a resistor in series with an
inductor, which connects to an infinite bus. The network is shown on Figure 4.3.

−
+V

Ll VB
Rg Lg

−
+ VgI Ig

Figure 4.3: An inverter viewed as a controlled voltage source connected to an electrical network through an inductor.

The network takes the bus voltage as an input and produces the corresponding injected current,
which is fed back into the inverter dynamics. Using Ohm’s law, it can be seen from Figure 4.3 that:

I = YL(V − VB) (4.33)

Ig = Yg(Vg − VB) (4.34)

where:
Vg is the infinite bus or grid voltage phasor
YL = 1

jXL
is the line admittance

Yg = 1
Rg+jXg

is the grid admittance
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Isolating VB in Equation (4.34) yields:

VB = Vg −
1

Yg
Ig (4.35)

Substituting VB in Equation (4.33) with Equation (4.35) gives an expression for the current:

I = YL

(
V −

(
Vg −

1
Yg

Ig

))
(4.36)

Kirchhoff’s current law gives Ig = −I, and thus:

I = YL

(
V −

(
Vg +

1
Yg

I
))

(4.37)

Rearranging the expression for the current gives:

I =
(

YLYg

YL + Yg

)
(V − Vg) (4.38)

With the bus dynamics and network equations in place the system can be set up as an ODE and
simulated using Matlab.

4.4 Steady state simulation

In order to find a steady state solution the system is simulated using ode15s with the parameters
shown in Table 4.1 and Table 4.2. The relative tolerance is set to 10−5. Note that the frequency of the
infinite bus is chosen as ω0 and the voltage angle of the infinite bus also determines the network
reference in this case.

Table 4.1: Droop control parameters.

Parameter KP τP KQ τQ P0 Q0 V0 ω0

Value 15 0.05 10 0.1 0.5 W 0.1 VAR 1 V 2π50

Table 4.2: Network parameters.

Parameter Ll Lg Rg Vg

Value 100 µH 1000 µH 0.05 Ω 1 V

The simulation is run with these parameters for 5 seconds to ensure the system reaches a stable
steady state. The initial conditions for the states are:

x0 =

 ω0

Vd,0
δ0

 =

2π50 rad
s

1 V
0 rad

 (4.39)

Figure 4.4 shows the state trajectories of the bus dynamics.
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Figure 4.4: State trajectories of a droop controlled inverter connected to an infinite bus through an inductive transmission
line.

The system does appear to be in steady state at the end of the 5 seconds. The states x̂ and the inputs
û at the steady state are shown in Table 4.3.

Table 4.3: System states and inputs in steady state.

Parameter ω̂ V̂d δ̂ Îa Îb

Value 314.1593 rad
s 1.0330 V −0.1084 rad 0.3279 A −0.0304 A

Now that a steady state is found, the inverter dynamics can be linearized in order to ease the
passivity analysis.

4.5 Linearization of the bus dynamics and network

The dynamics derived in this chapter are non-linear. This makes analysis of the system difficult.
Therefore, the system is linearized to make it easier to investigate passivity properties. For the pur-
pose of linearization, a first order Taylor approximation is used. A first order Taylor approximation
of the function f (x) around the operating point a is given as:

f (x) ≈ f (a) + f ′(a)(x − a) (4.40)

In this case the operating point is (x̂, û) and the function f denotes the dynamics of the system:

ẋ = f (x, u) = f (ω, Vd, δ, Ia, Ib) (4.41)

Because the dynamics are a vector function, the derivative in Equation (4.40) is replaced by the
Jacobian J f (x̂, û) with respect to both the states and the inputs:

f (x, u) ≈ f (x̂, û) + J f (x̂, û)
([

x
u

]
−
[

x̂
û

])
= f (x̂, û) + J f (x̂, û)

[
x̃
ũ

]
(4.42)
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The small signal change in states and inputs are:

x̃ = x − x̂ (4.43a)

ũ = u − û (4.43b)

From the definition of the states, the Jacobian can be identified as:

J f =

 Jω

JVd

Jδ

 (4.44)

where:
Jω is the Jacobian of the frequency dynamics
JVd is the Jacobian of the voltage dynamics
Jδ is the Jacobian of the phase angle difference dynamics

The frequency dynamics of the inverter are a function of the frequency ω itself, the inverter voltage
Vd, the bus currents Ia and Ib, and the phase angle difference δ:

ω̇ = fω(ω, Vd, δ, Ia, Ib)

=
KP

τP

(
P0 −

3
2
[
Vd 0

] [cos δ − sin δ

sin δ cos δ

] [
Ia

Ib

])
− ω − ω0

τP

(4.45)

The Jacobian of the frequency dynamics is therefore:

Jω =
[

∂ fω

∂ω
∂ fω

∂Vd

∂ fω

∂δ
∂ fω

∂Ia

∂ fω

∂Ib

]
(4.46a)

∂ fω

∂ω
= − 1

τP
(4.46b)

∂ fω

∂Vd
= −3KP

2τP
(Ia cos δ − Ib sin δ) (4.46c)

∂ fω

∂δ
= −3KP

2τP
Vd(−Ia sin δ − Ib cos δ) (4.46d)

∂ fω

∂Ia
= −3KP

2τP
Vd cos δ (4.46e)

∂ fω

∂Ib
= +

3KP

2τP
Vd sin δ (4.46f)

Similarly, the voltage dynamics are also a function of itself, the current and the phase angle differ-
ence, but not the frequency:

V̇d = fV(ω, Vd, δ, Ia, Ib)

=
KQ

τQ

(
Q0 +

3
2

{[
Ia Ib

] [XL 0
0 XL

] [
Ia

Ib

]
+
[
0 Vd

] [cos(δ) − sin(δ)
sin(δ) cos(δ)

] [
Ia

Ib

]})
− (Vd − V0)

τQ

(4.47)
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The Jacobian of the voltage dynamics is thus:

JVd =
[

∂ fVd
∂ω

∂ fVd
∂Vd

∂ fVd
∂δ

∂ fVd
∂Ia

∂ fVd
∂Ib

]
(4.48a)

∂ fVd

∂ω
= 0 (4.48b)

∂ fVd

∂Vd
=

3
2

KQ

τQ
(sin(δ)Ia + cos(δ)Ib)−

1
τQ

(4.48c)

∂ fVd

∂δ
=

3
2

KQ

τQ
(Vd cos(δ)Ia − Vd sin(δ)Ib) (4.48d)

∂ fVd

∂Ia
=

3
2

KQ

τQ
(2IaXL + Vd sin(δ)) (4.48e)

∂ fVd

∂Ib
=

3
2

KQ

τQ
(2IbXL + Vd cos(δ)) (4.48f)

Furthermore, the dynamics of the phase angle difference are:

δ̇ = fδ(ω, Vd, δ, Ia, Ib) = ϕ̇ − ω̇ = ωr − ω (4.49)

The Jacobian of fδ becomes:

Jδ =
[

∂ fδ

∂ω
∂ fδ

∂Vd

∂ fδ

∂δ
∂ fδ

∂Ia

∂ fδ

∂Ib

]
=
[
−1 0 0 0 0

]
(4.50)

Additionally, the output map of the system needs to be linearized as well. The first order Taylor
approximation of h is:

y = h(x, u) = h(x̂, û) + Jh(x̂, û)
([

x
u

]
−
[

x̂
û

])
(4.51)

The output map h in this case refers to Equation (4.8), but with the internal voltage transformed
into the inverter frame, because the state is Vd:[

VB,a

VB,b

]
= h(ω, Vd, δ, Ia, Ib) =

[
cos δ sin δ

− sin δ cos δ

] [
Vd
0

]
−
[

0 −XL

XL 0

] [
Ia

Ib

]
(4.52)

The Jacobian of the output map is therefore:

Jh =
[

∂h
∂ω

∂h
∂Vd

∂h
∂δ

∂h
∂Ia

∂h
∂Ib

]
=

[
0 cos(δ) − sin(δ)Vd 0 XL

0 − sin(δ) − cos(δ)Vd −XL 0

]
(4.53)

With all the Jacobians obtained it is possible to write a linearization of the state space:

d
dt

ω

Vd
δ

 ≈ f (x̂, û) +


∂ fω

∂ω
∂ fω

∂Vd

∂ fω

∂δ
∂ fVd
∂ω

∂ fVd
∂Vd

∂ fVd
∂δ

∂ fδ

∂ω
∂ fδ

∂Vd

∂ fδ

∂δ


∣∣∣∣∣∣∣∣x=x̂
u=û

 ω̃

Ṽd

δ̃

+


∂ fω

∂Ia

∂ fω

∂Ib
∂ fVd
∂Ia

∂ fVd
∂Ib

∂ fδ

∂Ia

∂ fδ

∂Ib


∣∣∣∣∣∣∣∣x=x̂
u=û

[
Ĩa

Ĩb

]
(4.54a)

[
VB,a

VB,b

]
≈ h(x̂, û) +

[
∂h
∂ω

∂h
∂Vd

∂h
∂δ

]∣∣∣x=x̂
u=û

 ω̃

Ṽd

δ̃

+
[

∂h
∂Ia

∂h
∂Ib

]∣∣∣x=x̂
u=û

[
Ĩa

Ĩb

]
(4.54b)
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The constant terms in the linearization f (x̂, û) and h(x̂, û) are moved to the other side of the equality
sign. The left side of the equations thus becomes the small signal state derivatives ˙̃x and output ỹ.

˙̃x = ẋ − f (x̂, û) (4.55a)

ỹ = y − h(x̂, û) (4.55b)

Using the steady state from Table 4.3, the linearization defines the linear system P:

P :
˙̃x = Ax̃ + Bũ

ỹ = Cx̃ + Dũ
(4.56)

where:

A =

−20 −145.2126 −30.5441
0 −19.8564 50
−1 0 0

 , B =

−462.1052 −50.3091
−13.6792 153.7486

0 0


C =

[
0 0.9941 0.1118
0 0.1082 −1.0269

]
, D =

[
0 0.0314

−0.0314 0

] (4.57)

The system P is in a feedback with the network K. This is illustrated in Figure 4.5.

P

K

ỹũ

Figure 4.5: Illustration of the coupling of the network with the dynamics of the inverter.

The figure shows the feedback K that replaces the network. The system K relates the bus voltage
VB and the current I. This relationship is known from Equation (4.34) and Kirchhoff’s current law:

I = −Yg(Vg − VB) (4.58)

Equation (4.58) needs to be linearized in order to obtain the relationship between the small signal
versions of the bus voltage and current. It is assumed that the bus is infinite and thus the voltage
Vg is constant. A first order Taylor approximation of the current yields:

I ≈ Î + JIṼB (4.59)

The small signal current is defined as:

Ĩ = I − Î (4.60)

Combining this with the Taylor approximation gives the network system K:

K : Ĩ = YgṼB (4.61)

It is verified through a simulation, that the linearization is a good approximation of the non-linear
system for small changes in the power set points. This is done in Appendix A. Next, the passivity
of the droop controlled inverter is investigated

Page 22 of 74



CHAPTER 4. PASSIVITY ANALYSIS OF A DROOP
CONTROLLED INVERTER

4.6. PASSIVITY OF A DROOP CONTROLLED
INVERTER

4.6 Passivity of a droop controlled inverter

According to Khalil [14] the passivity of an LTI system can be inferred from its positive realness.
Let S be an LTI system of the form:

S :
ẋ = Ax + Bu

y = Cx + Du
(4.62)

The transfer matrix G of the system is given as:

G(s) = C(sI − A)−1B + D (4.63)

According to Lemma 5.4 in Khalil [14] an LTI system is passive if G(s) is positive real, and strictly
passive if G(s) is strictly positive real. Khalil [14] defines positive realness of a transfer matrix as
follows:

Definition 4.1 An m × m proper rational transfer function matrix G(s) is positive real if

• poles of all elements of G(s) are in the LHP,

• for all real ω for which jω is not a pole of any element of G(s), the matrix G(jω) + GT(−jω) is
positive semidefinite, and

• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue matrix lims→jω(s −
jω)G(s) is positive semidefinite Hermitian.

It is strictly positive real if G(s − ε) is positive real for some ε > 0.

For the passivity analysis the linear system P in Equation (4.56) is used. The state space matrices
are given in Equation (4.57). The eigenvalues of the A-matrix are found to be:

eig(A) =

 9.4498
−24.6531 + 14.9914j
−24.6531 − 14.9914j

 (4.64)

Since A is not Hurwitz, the inverter system is not open loop stable. Since the system is not stable
in the first place, it cannot be passive either. Open loop stability of the bus dynamics is necessary
for passivity. It is infeasible to write an analytical expression for the eigenvalues of the open loop
system and see exactly why the system is not open loop stable. Instead it is opted to plot the closed
and open loop relationship between power, voltage, and angle to see what is happening.

The active and reactive power at the bus are the controlled variables, the phase and amplitude of
the inverter voltage are the actuation variables. For the simplicity of this analysis it is assumed that
there exists a mostly inductive connection between the internal inverter voltage and the grid voltage
which is represented as an infinite bus. Thus the active and reactive power supplied by the inverter
can be represented by the following equations [2]:

P =
3|V||Vg|

2XL
sin(θ − ϕ) (4.65)

Q =
3|V|2
2XL

−
3|V||Vg|

2XL
cos(θ − ϕ) (4.66)
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Droop control assumes that the cross coupling between the active power and voltage as well as the
reactive power and the angle is small. It is also assumed that the angle θ − ϕ is small in the operating
point. With these assumptions the behavior of the control can be plotted. The active power as a
function of the phase angle θ is shown in Figure 4.6a and the reactive power as a function of the
voltage magnitude |V| is shown in Figure 4.6b.

θ

P

(a) Active power as a function of the phase angle (blue line).
The red line shows the slope near a operating reasonable
operating point.

|V|

Q

(b) Reactive power as a function of the voltage magnitude
(blue line). The red line shows the slope near a reasonable
operating point

Figure 4.6

It is seen that the relationship between active power and angle is sinusoidal, and assuming that the
angle is small in the operating point this is a positive linear relationship. For the reactive power,
assuming the operating points is around zero reactive power and a non zero voltage, while the angle
difference is small, the relationship between reactive power and voltage is also positive. The open
loop condition is that the input is held constant. This means that the injected current is constant,
which leads to the following injected power:

S =
3
2

VI∗ =
3|V||I|

2
[cos(θ − θI) + j sin(θ − θI)] (4.67)

where:

θI is the phase angle of the current in the inverter reference frame

The difference in voltage and current phase angle is assumed to be small (i.e. the power factor is
close to 1), since the power set point is mostly active power. Hence the cosine term in Equation (4.67)
dominates. Using this expression for the complex power, and assuming that the current is constant,
the following plots in Figure 4.7 can be inferred.
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θ

P

(a) Active power as a function of the phase angle with
constant current (blue line). The red line shows the slope
near a operating point where the current lags the voltage.

|V|

Q

(b) Reactive power as a function of the voltage magnitude
with constant current lagging behind the voltage (blue line)
and with constant current leading the voltage (blue dashed).
The red line shows the slope near a reasonable operating
point for one of the cases.

Figure 4.7

Notice in Equation (4.67) how the sign of Q is entirely dependent on whether the current leads or
lags the voltage, the slope is positive when the current lags and negative when it leads the voltage.
Furthermore, notice how the slope of the active power as a function of voltage angle is negative if the
current lags the voltage, and positive is the current leads, but is simply positive in the closed loop
case. This means that the effect of this simple network actually changes the algebraic relationship
between the inverter voltage and the power in such a way that the sign of the dependency of either
the V − Q or P − θ relation is switched. This is an issue, because the bus dynamics are not passive if
the equilibrium defined by the closed loop system is not a stable equilibrium of the open loop bus
dynamics in some neighborhood [1]. However, it seems that this condition cannot be satisfied with
conventional Q − V, P − ω droop, when power transfer happens over an inductive line because of
the way the algebraic relationship between voltage and power changes under the constant current
condition.

4.7 Network as impedance

The issue of open loop stability can be fixed by changing the coordinates of the system such that
the network is viewed as an impedance and the current becomes the output of the bus devices, and
the bus voltage the input. However, for the interconnection to be passive both the inverters and
the network must be passive. According to Dey et al. [19], the network, viewed as impedance, can
be open loop stable and passive. Even though the bus devices are open loop stable in these new
coordinates, it is still not possible to achieve passivity while controlling the power injected to the
grid. Recall that from Definition 5.4 that a requirement for positive realness is that the quadratic
form of the transfer matrix is positive definite in all frequencies ω for which jω is not a pole of
G(s). It is investigated whether it is possible to achieve this at steady state when controlling the
power. Since the network is an impedance, the output is the voltage and the controller must output a
current. Thus any controller that have functional power control must output a current in accordance
with the complex power equation at least within the control bandwidth. From the definition of the
complex power, the injected current can be calculated from the voltage and the desired complex
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power:

I = Ia + jIb =
2
3

(
S
V

)∗

=
2
3

(
P + jQ

Va + jVb

)
=

2
3

(
PVa + QVb

V2
a + V2

b
+ j

PVb − QVa

V2
a + V2

b

)
(4.68)

Assume that active and reactive powers (P and Q) reach some steady state due to these being the
controlled variables. Linearizing Equation (4.68) in this steady state yields the necessary small
signal relation from voltage to current needed to achieve the desired complex power. Note that this
is not the entire bus dynamic. Rather, the control algorithm of the inverter will try to approach the
relation in Equation (4.68) in a steady state. In order to check whether any controller that achieves
the power set points in the steady state can be passive, the properties of the linearization of the map
in Equation (4.68) is investigated:

Ĩ = JI(V̂, Ŝ)Ṽ (4.69)

where:

JI is the Jacobian of the current with respect to the voltage.

The Jacobian with regards to Va and Vb is the following:

JI =

[
∂Ia
∂Va

∂Ia
∂Vb

∂Ib
∂Va

∂Ib
∂Vb

]
(4.70)

The derivatives are found using the Symbolic Math Toolbox in Matlab to be:

JI,11 =
∂Ia

∂Va
= − ∂Ib

∂Vb
= −2

3
PV2

a + 2QVaVb − PV2
b

(V2
a + V2

b )
2

(4.71a)

JI,12 =
∂Ia

∂Vb
=

∂Ib

∂Va
= −2

3
−QV2

a + 2PVaVb + QV2
b

(V2
a + V2

b )
2

(4.71b)

The Jacobian thus becomes:

JI =

[
JI,11 JI,12

JI,12 −JI,11

]
(4.72)

The unfortunate structure of this matrix means that it always has positive and negative eigenvalues
as they can be found to be the following by solving the eigenvalue problem:

λ = ±
√

J2
I,11 + J2

I,12 (4.73)

This means that the transfer matrix in a steady state, that is jω = 0, is not positive semi-definite, and
therefore also not positive real. Hence the behavior of a bus device with functional P and Q control
cannot be passive in these coordinates. Even though droop controllers does not exactly follow the
set points, it is assumed that the voltage current relation approaches that of Equation (4.68).

Thus it can be concluded that the bus devices are not likely to be passive when viewing the network
as either admittance or impedance. However, these are not the only possible options for coordinates
to analyze the passivity in. One promising lead is to view the output of the bus devices as voltage
magnitude and phase and the input as the active and reactive power. This possibility will be
investigated in the next chapter.
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The previous chapter described the network as an admittance and using the current and voltage at
the bus connection as input and output respectively. It was found that the bus with droop control
becomes open loop unstable at the equilibrium because the power droop fundamentally relies on
the current reacting to changes in voltage. However, it might be possible to segment the system in a
slightly different way such that both the bus and the network become passive. It was also found that
viewing the network as an impedance did not fix the issue. Another possible alternative is to use a
polar representation of the voltage phasor instead of the d and q components. The network has the
voltage magnitude and phase as inputs and the active and reactive power as outputs in this case.
This is promising, because the droop controlled bus becomes much simpler in this representation
as the non-linear power calculation is moved into the network. First off, a feed forward damper
is introduced in order to make the droop control passive. The passivity of the droop control is
analyzed together with the closed loop stability of the grid using the circle criterion. Next, a simple
example of two inverters connected through a purely inductive line is examined to show if such a
system can be passive. The stability of interconnected inverters is shown under the assumptions that
the network is lossless and the phase angle differences are small. The effects of the feed forward
damper is further investigated. Lastly, the passivity of a more generalized interconnection of N
inverters is shown to be passive under the mentioned assumptions.

5.1 Stability of droop control in polar coordinates

In polar coordinates achieving passivity of the grid requires more consideration [19], but before
this, it is investigated whether power control can be passive with the power as input and voltage
as output. In these coordinates, it is beneficial for the simplicity of the analysis to assume that the
inverters point of coupling with the network is at the controlled voltage, and the line impedance of
the inverter can simply be viewed as part of the network. In these coordinates, neither the power
nor the voltage magnitude depends on the reference angle. Furthermore in the open loop the Q−V
and P − ω droops are entirely independent.

Under steady state conditions it can be assumed that the network frequency and the internal
frequency of the power controller are the same. Since Q − V droop is just a first order low-pass
filter, it is strictly passive (See Appendix B). However, the P − ω droop is not passive because the
relative degree of the system is 2 [14]. This is because of the series connection of an integrator and
low-pass filter. By adding a feed forward term from the output of the low pass filter, directly to the
output angle, bypassing the integrator, it is possible to passivate the control. This is illustrated in
Figure 5.1. Note that this is equivalent to the selfsync algorithm presented in [20].

KP
τPs+1 +

+∆ω

ω0

1
s

ω
+
−
+

K f f

θ′
+
− ∆PP0

P

δ

ϕ

Figure 5.1: Droop control with a feed forward damper.
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In a given steady state, it is assumed that the inverter is synchronized with the grid, and a network
frequency ωr is defined as the steady state frequency of the grid and the bus devices. The phase
angle ϕ is the integral of this frequency. This is done such that the output of the bus devices
represent compatible phasor angles and not absolute angles. The new output is then δ = θ − ϕ.
The state equations of this system can be written in the following manner, assuming ω0 and P0 are
constant set points and that the feed forward term K f f is a static gain.

ω̇ =
1
τP

(KP(P0 − P)− ω + ω0) (5.1a)

δ̇′ = ω − ωr (5.1b)

δ = δ′ + K f f (ω − ω0) (5.1c)

The input is chosen as −P because the active power enters the system with a minus in order to get
negative feedback in the closed loop system. Figure 5.2 shows a block diagram of the system.

Inverter

Network

+
−

(V, δ)

(P, Q)

(P0, Q0)

Figure 5.2: Feedback connection of inverter and network with polar voltage as input and power as output.

Indicated by the figure, the output of the network is P and Q, so in order for the feedback to be
negative, the input to the inverter should be −P. This system is linearized in order to show that it
is passive with changes in −P as the input.[

˙̃ω
˙̃δ′

]
=

[
−1
τP

0
1 0

] [
w̃
δ̃′

]
+

[
KP
τP

0

]
(−P̃)

δ̃ =
[
k f f 1

] [ω̃

δ̃′

] (5.2)

The equivalent transfer function from −P̃ to δ̃ is shown in Equation (5.3).

δ̃(s) =
KP(k f f s + 1)

s(τPs + 1)
(−P̃)(s) = GP(s)(−P̃)(s) (5.3)

The transfer function GP(s) has two poles, one in 0 and one in − 1
τP

. According to the definition of
positive realness, all poles must be in the closed left half plane, which they are.

For all other frequencies, GP(jω) + GT
P(−jω) must be positive semi-definite. For SISO systems like

this, GP(jω) + GT
P(−jω) equals to 2Re[GP(jω)] [14]. Thus the second condition for positive realness

reduces to Re[GP(jω)] ≥ 0 for all ω ∈ [0, ∞) that are not poles of GP(s). Replacing s with jω
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and removing the complex part of the denominator by expanding the fraction with the complex
conjugate of the denominator gives:

GP(jω) = KP
K f f (jω) + 1

(jω)(τP(jω) + 1)
= KP

jK f f ω + 1
−τPω2 + jω

= KP
(K f f ω2 − τPω2)− j(K f f τPω3 + ω)

τ2
Pω4 + ω2

(5.4)

The real part of GP(jω) is identified as:

Re[GP(jω)] = KP
K f f − τP

τ2
Pω2 + 1

(5.5)

It can be seen that in order for this system to be positive real K f f must be greater or equal to
τP. Finally, the last condition for positive realness states that any pure imaginary pole of GP(s)
must be a simple pole and the residue matrix lims→jω(s − jω)GP(s) must be positive semi-definite
hermitian. Since there is a pole in 0, this condition must be checked. Since the imaginary pole is at
0, the residue becomes:

lim
s→0

(s − 0)GP(s) = lim
s→0

KP
K f f s + 1
τPs + 1

= KP (5.6)

The Droop gain KP is a real scalar and therefore hermitian. This means that as long as KP ≥ 0 and
K f f ≥ τP, GP(s) is positive real.

Thus it is concluded that the selfsync controller is passive but not strictly passive. In order to
make the system strictly passive, another feedback from the phase angle δ would be required. As
this phase angle is not measured, this output feedback is not possible. However, passivity ensures
that there exists a Lyapunov function of the negative feedback connection of inverters and the grid.
Because the dynamics of the grid are assumed to be much faster than that of the control, they can be
viewed as a static non-linear map. One can then use the Circle Criterion to ensure absolute stability
of the system, that is, the origin is globally uniformly asymptotically stable [14]. This is equivalent
to the grid being the passivizing output feedback.

The multivariate circle criterion states that an observable and controllable system in negative feed-
back with a memoryless non-linearity ψ is absolutely stable if the following condition is fulfilled
[14]:

ψ ∈ [K1, ∞] and G(s)[I + K1G(s)]−1 is strictly positive real (5.7)

The first condition ψ ∈ [K1, ∞] means that the feedback must belong to the sector [K1, ∞]. For a
memoryless function to belong to a sector one of the following must be true [14]:

Definition 5.1 A memoryless function h(t,u) belongs to the sector

• [0, ∞] if uTh(t, u) ≥ 0.

• [K1, ∞] if uT[h(t, u)− K1u] ≥ 0.

• [0, K2] with K2 = KT
2 if hT(t, u)[h(t, u)− K2u] ≤ 0.

• [K1, K2] with K = K2 − K1 = KT > 0 if [h(t, u)− K1u]T[h(t, u)− K2u] ≤ 0

In all cases, the inequality should hold for all (t, u).
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Let the state space representation of G(s) be:

ẋ = Ax + Bu

y = Cx + Du
(5.8)

The state space model for the P − ω droop is given in Equation (5.2). It is verified that the controller
is controllable since the controlability matrix C has full rank:

C =
[
B AB

]
=

[KP
τP

−KP
τ2

P

0 KP
τP

]
(5.9)

The observability matrix also has full rank due to the triangular structure:

O =

[
C

CA

]
=

[
k f f 1

1 − k f f
τP

0

]
(5.10)

Thus, the circle criterion in Equation (5.7) applies to the linearized droop controller. Next, the
sector ψ belongs to is investigated. A transfer matrix of N droop controlled inverters will only
have diagonal elements, since the P − ω and Q − V droops are independent of each other, as are
the inverters themselves. Thus, the requirements reduce to the negative feedback connection of the
P − ω droop being positive real, and the same for the Q −V droop for all the inverters individually.
Since GP(s) is SISO, the closed loop transfer function from the circle criterion reduces to:

GP(s)[I + K1GP(s)]−1 =
GP(s)

1 + K1GP(s)
(5.11)

It is assumed that ψ belongs to the sector [αI, ∞] with α > 0 which is fulfilled when ψ > α. The
closed loop transfer function thus becomes:

GP(s)
1 + αGP(s)

=
KP(K f f s + 1)

s(τPs + 1) + αKP(K f f s + 1)
=

KP(K f f s + 1)
τPs2 + (αKPK f f + 1)s + αKP

(5.12)

To verify the strict positive realness of the closed loop transfer function, it first off needs to be
Hurwitz. The poles of the feedback system are:

pGP(s) =
−(αKPK f f + 1)±

√
(αKPK f f + 1)2 − 4ατPKP

2τP
(5.13)

Since α, KP, K f f , and τP all are positive, the part left of the ±-sign is always negative. In the case
where the square root becomes complex, the poles are all negative. In the case where the square
root is positive, it needs to be less than first part of the expression in order to produce negative
poles: √

(αKPK f f + 1)2 − 4ατPKP < (αKPK f f + 1) (5.14a)

(αKPK f f + 1)2 − 4αKPτP < (αKPK f f + 1)2 (5.14b)

−4αKPτP < 0 (5.14c)

Again, since α, KP, and τP are positive the inequality holds true. The closed loop transfer function
is therefore Hurwitz. The next condition is to check that the real part of the closed loop transfer
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function is positive definite for all frequencies that are not a pole:

GP(jω)

1 + αGP(jω)
=

KP(K f f (jω) + 1)
τP(jω2) + (αKPK f f + 1)(jω) + αKP

=
KP + jKPK f f ω

αKP − τPω2 + jω(αKPK f f + 1)

=
(KP + jKPK f f ω)(αKP − τPω2 − jω(αKPK f f + 1))

(αKP − τPω2)2 + ω2(αKPK f f + 1)2

(5.15)

The real part of the closed loop transfer function thus becomes:

Re
[

GP(jω)

1 + αGP(jω)

]
=

αK2
P + αK2

PK2
f f ω2 + KPω2(K f f − τP)

(αKP − τPω2)2 + ω2(αKPK f f + 1)2 (5.16)

All parts of the expression above are either squared or positive with the exception being the
difference term at the end. The positive realness of GP(s) requires K f f ≥ τP and thus K f f − τP ≥ 0,
confirming the positive definiteness of the closed loop transfer function.

The last condition for strict positive realness of SISO transfer functions requires that either the trans-
fer function is positive definite at infinity, or that it is zero at infinity and limω→∞ ω2Re[G(jω)] > 0.
The transfer function evaluated at infinity is:

GP(∞)

1 + αGP(∞)
= lim

s→∞

GP(s)
1 + αGP(s)

= lim
s→∞

KPK f f
s + KP

s2

τP +
αKPK f f +1

s + αKP
s2

= 0 (5.17)

Since the closed loop transfer function at infinity is zero, the other limit needs to be checked as well:

lim
ω→∞

ω2Re
[

GP(jω)

1 + αGP(jω)

]
= lim

ω→∞
ω2

αK2
P + αK2

PK2
f f ω2 + KPω2(K f f − τP)

(αKP − τPω2)2 + ω2(αKPK f f + 1)2

= lim
ω→∞

αK2
P

ω2 + αK2
PK2

f f + KP(K f f − τP)

τ2
P +

α2K2
P

ω2 − 2αKPτP
ω2 +

(αKPK f f +1
ω2

=
αK2

PK2
f f + KP(K f f − τP)

τ2
P

> 0

(5.18)

Thus, it is shown that the P − ω droop in the closed loop is absolutely stable according to the circle
criterion.

In order to confirm absolute stability for the entire closed loop system, the Q − V droop in closed
loop also needs to be strict positive real. The closed loop transfer function from the circle criterion
for the Q − V droop, which only consists of a first order low-pass filter, is the following:

GQ(s)
1 + αGQ(s)

=
KQ

τQs + αKQ + 1
=

KQ

αKQ + 1
1

s τQ
αKQ+1 + 1

(5.19)

As was seen before, a first order low pass filter is always strict positive real as long as the gain
and time constant are strict positive (see Appendix B). For the closed loop Q − V droop the gain is
positive as long as KQ > 0 and αKQ > −1. Furthermore, the time constant must be positive, which
is the case when τQ > 0 and αKQ > −1. Hence, the closed loop Q − V system is absolutely stable
under these requirements.
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To recap, both the P − ω and Q − V droop are absolute stable as long as KP > 0, KQ > 0, K f f ≥ τP,
ψ ∈ [αI, ∞] with α > 0, and αKQ > −1. The second to last requirement says that the quadratic form
of the memoryless feedback must be positive definite which sets a requirement on the network.
However, the quadratic form of the network is not guaranteed to have positive eigenvalues. To see
how this might be the case, the next section explores a simple example grid.

5.2 Passivity of example network

In this section the passivity of an example network of two inverters connected in series is inves-
tigated. The goal is to determine if such a grid lives up to the requirements set in the previous
section. The network system is shown in Figure 5.3.

−
+Vejθ

Y

−
+ EejϕI

Figure 5.3: Network example with two buses and a line admittance.

In the new coordinates the network has the voltage phases θ and ϕ and magnitudes V and E as
inputs and the active and reactive powers at the buses, PV , PE, QV , and QE as outputs. Recall that
the complex power was given in Equations (4.28) as:

P =
3
2
(Vd Id + Vq Iq) (5.20a)

Q =
3
2
(Vq Id − Vd Iq) (5.20b)

From Figure 5.3 the current can be expressed from the admittance and voltages as:

I = Y(V − E) (5.21)

Given the admittance Y = G + jB, the relationship between the current and voltages becomes:

Id + jIq = (G + jB)
[
(Vd + jVq)− (Ed + jEq)

]
= (GVd − BVq − GEd + BEq) + j(BVd + GVq − BEd − GEq)

(5.22)

Using this expression for the current, the active and reactive powers at the V-bus are written as a
function of only the voltages and admittance:

PV =
3
2
[
Vd
(
GVd − BVq − GEd + BEq

)
+ Vq

(
BVd + GVq − BEd − GEq

)]
=

3
2

[
G(V2

d + V2
q )− G(VdEd + VqEq) + B(VdEq − VqEd)

] (5.23a)

QV =
3
2
[
Vq
(
GVd − BVq − GEd + BEq

)
− Vd

(
BVd + GVq − BEd − GEq

)]
=

3
2

[
−B(V2

d + V2
q ) + G(VdEq − VqEd) + B(VdEd + VqEq)

] (5.23b)
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When calculating the power at the E-bus, the current magnitude is the same but the sign is reversed:

PE =
3
2
(Ed(−Id) + Eq(−Iq)) (5.24a)

QE =
3
2
(Eq(−Id)− Ed(−Iq)) (5.24b)

Substituting the current gives:

PE = −3
2
[
Ed(GVd − BVq − GEd + BEq) + Eq(BVd + GVq − BEd − GEq)

]
=

3
2

[
G(E2

d + E2
q)− G(VdEd + VqEq)− B(VdEq − VqEd)

] (5.25a)

QE = −3
2
[
Eq(GVd − BVq − GEd + BEq)− Ed(BVd + GVq − BEd − GEq)

]
=

3
2

[
−B(E2

d + E2
q)− G(VdEq − VqEd) + B(VdEd + VqEq)

] (5.25b)

Next, the voltage representation is changed into polar coordinates using the following relations:

Vd = V cos(θ) Ed = E cos(ϕ)

Vq = V sin(θ) Eq = E sin(ϕ)
(5.26)

Replacing the voltages in Equations (5.23) and Equations (5.25) yields:

PV =
3
2
[G(V2 cos2 θ + V2 sin2 θ)− G(V cos θE cos ϕ + V sin θE sin ϕ)

+ B(V cos θE sin ϕ − V sin θE cos ϕ)]
(5.27a)

QV =
3
2
[−B(V2 cos2 θ + V2 sin2 θ) + G(V cos θE sin ϕ − V sin θE cos ϕ)

+ B(V cos θE cos ϕ + V sin θE sin ϕ)]
(5.27b)

PE =
3
2
[G(E2 cos2 ϕ + E2 sin2 ϕ)− G(V cos θE cos ϕ + V sin θE sin ϕ)

− B(V cos θE sin ϕ − V sin θE cos ϕ)]
(5.27c)

QE =
3
2
[−B(E2 cos2 ϕ + E2 sin2 ϕ)− G(V cos θE sin ϕ − V sin θE cos ϕ)

+ B(V cos θE cos ϕ + V sin θE sin ϕ)]
(5.27d)

The addition and subtraction formulas for sine and cosine are needed from here:

cos2 α + sin2 α = 1 (5.28a)

cos(α − β) = cos α cos β + sin α sin β (5.28b)

sin(α − β) = sin α cos β − cos α sin β (5.28c)

Using these trigonometric identities be power expression can be reduced to:

PV =
3
2
[
GV2 − GVE cos(θ − ϕ)− BVE sin(θ − ϕ)

]
(5.29a)

QV =
3
2
[
−BV2 − GVE sin(θ − ϕ) + BVE cos(θ − ϕ)

]
(5.29b)

PE =
3
2
[
GE2 − GVE cos(θ − ϕ) + BVE sin(θ − ϕ)

]
(5.29c)

QE =
3
2
[
−BE2 + GVE sin(θ − ϕ) + BVE cos(θ − ϕ)

]
(5.29d)
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The powers are linearized in the magnitudes and phases of the inverters.
P̃V

P̃E

Q̃V

Q̃E

 = JP,Q(θ̂, ϕ̂, V̂, Ê)


θ̃

ϕ̃

Ṽ
Ẽ

 =


∂PV
∂θ

∂PV
∂ϕ

∂PV
∂V

∂PV
∂E

∂PE
∂θ

∂PE
∂ϕ

∂PE
∂V

∂PE
∂E

∂QV
∂θ

∂QV
∂ϕ

∂QV
∂V

∂QV
∂E

∂QE
∂θ

∂QE
∂ϕ

∂QE
∂V

∂QE
∂E


∣∣∣∣∣∣∣∣∣∣
θ̂,ϕ̂,V̂,Ê


θ̃

ϕ̃

Ṽ
Ẽ

 (5.30)

where:

P̃E, P̃E, Q̃V , Q̃E are the small signal active and reactive powers
θ̃, ϕ̃, Ṽ, Ẽ are the small signal phase angles and magnitudes
JP,Q(θ̂, ϕ̂, V̂, Ê) is the Jacobian of the active and reactive power evaluated at the operating point.

The partial derivatives in the Jacobian can be calculated from Equations (5.29), but are not shown
symbolically here. Rather, the Jacobian is evaluated in a steady state. This steady state is found by
simulating two controlled inverters using a similar simulator to the one in Section 4.4:

P̃V

P̃E

Q̃V

Q̃E

 = K


θ̃

ϕ̃

Ṽ
Ẽ

 =


46.4090 −46.4090 2.6073 −1.5838
−46.3656 46.3656 −2.5961 1.5730
−1.5374 1.5374 47.8928 −47.8069
2.5268 −2.5268 −47.6373 47.5622




θ̃

ϕ̃

Ṽ
Ẽ

 (5.31)

Recall that in order for the closed loop system to be strict positive real, the memoryless feedback K
needed to belong to the sector K ∈ [αI, ∞] with α > 0. A memoryless function belongs to the sector
[K1, ∞] if [14]:

uT[h(u)− K1u] ≥ 0 (5.32)

For the linearized network to belong to the sector [αI, ∞] the following must be true:

uT(Ku − αu) ≥ 0 (5.33)

The input u inside the parenthesis in Equation (5.33) can be factored outside of the parenthesis:

uT(K − αI)u ≥ 0 (5.34)

Thus, the eigenvalues of the quadratic form of K − αI must be positive. This means that, because
α > 0, the eigenvalues of 1

2 (K + KT) must be positive and bigger than α. The eigenvalues of
1
2 (K + KT) are:

λK =


−0.0058

0
92.7842
95.4512

 (5.35)

Sadly, there is not only an eigenvalue in zero, but also one that is negative. In fact, one of the
eigenvalues will always be zero because of the symmetry of the example. The power over an
inductor depends mostly on the angle difference between the voltages on either side. Because there
are only two angles, the angle difference from one side will always be minus the difference from
the other side. Thus in the linearization, the first and second column in K will be the negative of
each other, making the matrix column rank deficient, guaranteeing an eigenvalue in zero. Since the
eigenvalues of 1

2 (K + KT) are not positive, the closed loop system is not strict positive real either
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and thus the circle criterion cannot guarantee absolute stability of the closed loop system. Having
an eigenvalue in zero is not necessarily a big issue as the network can still be passive, but not
strictly passive. However, it requires a bit more work to guarantee asymptotic stability of the closed
loop system in this case. The negative eigenvalue means that the system is not passive at all. The
negative eigenvalue is very close to being zero, and it is of interest to investigate what assumptions
must be made in order for the network to become passive, and whether asymptotic stability can be
guaranteed with those assumptions.

5.3 Stability of interconnected inverters using the invariance principle

In this section it is illustrated by a simple example how the invariance principle may be used to
show the stability of multiple interconnected droop controlled inverters around an operating point.
The system investigated in the following is the same as in Section 5.2. For simplicity it is assumed
that the inverters are connected through lossless transmission lines and the difference in phase
angle is small. Changes in power are therefore proportional to changes in phase angle [21]. How
these assumptions simplify the system can be seen by investigating the Jacobian in Equation (5.30).
Lossless transmission lines mean that the conductivity G of the lines are zero. The active power
injected by two inverters connected via a lossless inductive transmission line is found to be:

P12 =
3
2
(−BV1V2 sin(ϕ1 − ϕ2)) (5.36a)

P21 =
3
2
(BV1V2 sin(ϕ1 − ϕ2)) (5.36b)

where:

Pij is the power transmitted from inverter i to inverter j.

The linearization of the active powers in this case is:

[
P̃12

P̃21

]
= B

[
−V̂1V̂2 cos(ϕ̂1 − ϕ̂2) V̂1V̂2 cos(ϕ̂1 − ϕ̂2) −V̂2 sin(ϕ̂1 − ϕ̂2) −V̂1 sin(ϕ̂1 − ϕ̂2)

V̂1V̂2 cos(ϕ̂1 − ϕ̂2) −V̂1V̂2 cos(ϕ̂1 − ϕ̂2) V̂2 sin(ϕ̂1 − ϕ̂2) V̂1 sin(ϕ̂1 − ϕ̂2)

] 
ϕ̃1

ϕ̃2

Ṽ1

Ṽ2


(5.37)

Note that B has a negative value when transmission lines are inductive. Since the angle difference
is small, the cosine term in the angle derivatives are close to one. The sine term in the voltage
derivatives becomes very small. The active power is thus almost independent of changes in voltages.
Under these assumptions, the linearization becomes:[

P̃12

P̃21

]
= −BV̂1V̂2

[
1 −1
−1 1

] [
ϕ̃1

ϕ̃2

]
(5.38)

Similarly, the reactive powers only depend linearly on the voltages and are almost independent of
the phase angles. It is therefore sufficient to show passivity of the P − ω and the Q − V part of
the network individually under these assumptions. The structure of the feedback connection of
the inverters and the network is shown in Figure 5.4. This structure is different from the previous
example in that the inverter only includes one integrator for the P − ω part, namely the one from
the low pass filter. The other integrator, which calculates the phase angle is moved into the network,
which no longer is memoryless as a result. The Q − V part of the interconnection is unchanged.
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Gω1

GωN

0

0

GQ1

GQN

HP(s) 0

0 HQ

-

-

ω

V

P

−P

Q

−Q

Figure 5.4: Illustration of feedback connections of droop controlled inverters and the network.

First, the P − ω part of the system is investigated. The Q − V droop is treated in a later section.
Starting with the P − ω part of the network, the derivative of the difference in phase angles can be
written as:

d
dt

[
δ̃12

δ̃21

]
=

[
1 −1
−1 1

] [
ω̃1

ω̃2

]
(5.39)

where:

δ̃ij is the change in phase angle difference between inverter i and j.
ω̃i is the change in frequency of the i’th inverter.

Because of the assumptions, the changes in active power only depend on the changes in phase angle
differences. But the changes in active power in Equation (5.38) are not written as a function of the
phase angle differences. By multiplying the matrix in front of the phase angles in Equation (5.38)
with the phase angles, the linearization becomes:[

P̃12

P̃21

]
= −BV̂1V̂2

[
ϕ̃1 − ϕ̃2

ϕ̃2 − ϕ̃1

]
=

[
Γ12 0
0 Γ21

] [
δ̃12

δ̃21

]
(5.40)

where:
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Γij is the proportionality constant for the power transfer between inverters i and j.

It is important to note that Γ12 = Γ21 because of the symmetry in the example. In order to not
lose generality, the subscripts are kept throughout this section. The transfer function from changes
in frequency ω̃ to the changes in active power P̃ can be found by combining Equation (5.39) and
Equation (5.40): [

P̃12(s)
P̃21(s)

]
=

1
s

[
Γ12 −Γ12

−Γ21 Γ21

] [
ω̃1(s)
ω̃2(s)

]
= HP(s)

[
ω̃1(s)
ω̃2(s)

]
(5.41)

Passivity may be shown by investigating the positive realness of the transfer function HP(s) [14].
The first requirement is that the real part of all poles of all elements of a transfer matrix are in the
closed left half plane. The poles of HP(s) are all 0 because of the 1

s term in HP(s). The second
requirement is that the transfer function plus its conjugate transpose is positive semi definite:

HP(jω) + HT
P (−jω)T =

1
jω

[
Γ12 −Γ12

−Γ21 Γ21

]
+

1
−jw

[
Γ12 −Γ12

−Γ21 Γ21

]T

= 0 (5.42)

Since HP(jω) + HT
P (−jω) = 0 it is also positive semi-definite. Lastly the residue matrix at any

simple pure imaginary pole must be positive semi-definite hermitian. The residue of the transfer
matrix for the poles in zero is:

lim
s→j0

(s − j0)
s

[
Γ12 −Γ12

−Γ21 Γ21

]
=

[
Γ12 −Γ12

−Γ21 Γ21

]
(5.43)

All elements in the residue matrix have the same absolute value, hence the eigenvalues of the matrix
are in 0 and 2Γ12 > 0. Furthermore, since the residue matrix is real symmetric, it is also hermitian.
Thus the transfer matrix HP(s) is positive real. This means that the P − ω part of the network with
the frequencies as input and the active power as output is passive and there exists some storage
function VP(δ̃) > 0 ∀δ̃ ̸= 0 with VP(0) = 0 such that P̃Tω̃ ≥ V̇P(δ̃).

In addition to the network, the passivity of the inverter dynamics is also investigated. The dynamics
of the frequency droop may be written as follows:

d
dt

[
ω̃1

ω̃2

]
=

[
− 1

τP,1
0

0 − 1
τP,2

] [
ω̃1

ω̃2

]
+

[KP,1
τP,1

0

0 KP,2
τP,2

] [
−P̃12

−P̃21

]
(5.44)

This system is diagonal, with a low pass filter on each diagonal. A first order low pass filter is
always output strictly passive (see Appendix B). Notice how if one adds the positive feedback with
gain 1

KP
to either one of the systems it degenerates into a pure integrator, which is lossless. This

also means that the inverters excess Output Feedback Passivity (OFP) is inversely proportional with
the droop gain. Because the system is output strictly passive it has a storage function Vω(ω̃) with
ω̃T(−P̃) ≥ V̇ω(ω̃) + ω̃ρ(ω̃), ω̃ρ(ω̃) > 0 ∀ ω̃ ̸= 0.

In order to investigate stability the sum of storage functions is investigated as a Lyapunov function
candidate for the closed loop system.

V̇ω(ω̃) + V̇P(δ̃) ≤ ω̃T P̃ + ω̃T(−P̃)− ω̃ρ(ω̃) ≤ −ω̃ρ(ω̃) (5.45)

Notice that the derivative of this Lyapunov function is negative definite everywhere except when
ω̃ = 0. However, the system can only stay identically in ω̃ = 0 when ˙̃ω = 0 which is only the case
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when P̃ = 0 and ω̃ = 0. Thus the origin is the only invariant set, and the origin is asymptotically
stable according to the invariance principle [14].

When moving the integrator to the network, passivity and stability is shown even without the
feed forward damper in this example. Therefore, it is investigated how the feed forward damper
influences the passivity of this example.

5.4 Effects of the feed forward damper

The feed forward damper that is necessary to passivate the transfer function from active power to
voltage angle as seen in Section 5.1 is not a prerequisite for asymptotic stability. To see how the feed
forward damper increases the passivity margins of the transfer function from frequency to power,
a storage function candidate for the system is investigated. Recall that the phase angle difference
between two inverters was defined as:

δ̃ij = ϕ̃i − ϕ̃j (5.46)

A damper is added to each phase angle, bypassing the integrator:

ϕ̃i = ϕ̃′
i + K f f ,iω̃i (5.47)

Note that ϕ̃′
i is the internal phase angle of the inverter calculated by the integrator without the

damper. Substituting the new phase angle with the damper into Equation (5.46) gives:

δ̃ij = ϕ̃i − ϕ̃j = (ϕ̃′
i + K f f ,iω̃i)− (ϕ̃′

j + K f f ,jω̃j)

= (ϕ̃′
i − ϕ̃′

j) + (K f f ,iω̃i − K f f ,jω̃j)

= δ̃′ij +
[
K f f ,i −K f f ,j

] [ω̃i
ω̃j

] (5.48)

where:

δ̃′ij
is the change in phase angle difference between the internal inverters phase angles from their
integrators without the dampers.

The dynamics of the internal phase angle differences are still the same:

d
dt

[
δ̃′12
δ̃′21

]
=

[
1 −1
−1 1

] [
ω̃1

ω̃2

]
(5.49)

The main difference comes in the output map of the system. The active powers with the dampers
are given as: [

P̃12

P̃21

]
=

[
Γ12 0
0 Γ21

] [
δ̃′12
δ̃′21

]
+

[
Γ12 0
0 Γ21

] [
K f f ,1 −K f f ,2
−K f f ,1 K f f ,2

] [
ω̃1

ω̃2

]
(5.50)

A storage function candidate for this system could be:

V(δ̃′) =
Γ12

4

(
δ̃′212 + δ̃′221

)
(5.51)

where:

Page 38 of 74



CHAPTER 5. PASSIVITY IN POLAR
COORDINATES 5.4. EFFECTS OF THE FEED FORWARD DAMPER

δ̃′ is the vector containing all phase angle differences.

Note again, that Γ12 and Γ21 are the same value. Taking the time derivative of the storage function
candidate yields:

V̇(δ̃′) =
Γ12

2

(
δ̃′12

dδ̃′12
dt

+ δ̃′21
dδ̃′21
dt

)
=

Γ12

2

[
δ̃′12 δ̃′21

] d
dt

[
δ̃′12
δ̃′21

]

=
Γ12

2

[
δ̃′12 δ̃′21

] [ 1 −1
−1 1

] [
ω̃1

ω̃2

]
= Γ12

[
δ̃′12 δ̃′21

] [ω̃1

ω̃2

]
= Γ12

(
δ̃′12ω̃1 + δ̃′21ω̃2

)
(5.52)

Given the expression for the active powers in Equation (5.50), the supply rate is given as:

P̃Tω̃ = P̃12ω̃1 + P̃21ω̃2

= (Γ12δ̃′12 + Γ12K f f ,1ω̃1 − Γ12K f f ,2ω̃2)ω̃1 + (Γ12δ̃′21 + Γ12K f f ,2ω̃2 − Γ12K f f ,1ω̃1)ω̃2

= Γ12δ̃′12ω̃1 + Γ12δ̃′21ω̃2 + Γ12K f f ,1ω̃2
1 + Γ12K f f ,2ω̃2

2 − Γ12(K f f ,2 + K f f ,1)ω̃1ω̃2

(5.53)

The first two terms can be identified to be the time derivative of the storage function candidate:

P̃Tω̃ = V̇(δ̃′) + Γ12k f f 1ω̃2
1 + Γ12k f f 2ω̃2

2 − Γ12(k f f 2 + k f f 1)ω̃1ω̃2 (5.54)

The polynomial added to the derivative of the storage function to make it equal to the supply rate
can be rewritten to a quadratic form in order to show if it is positive semi-definite:

V̇(δ̃′) + ω̃TΓ12

[
K f f ,1 −K f f ,1+K f f ,2

2

−K f f ,1+K f f ,2
2 K f f ,2

]
ω̃ = P̃Tω̃ (5.55)

The characteristic polynomial of the quadratic form is:

det

∣∣∣∣∣
[

K f f ,1 − λ −K f f ,1+K f f ,2
2

−K f f ,1+K f f ,2
2 K f f ,2 − λ

]∣∣∣∣∣ = (K f f ,1 − λ)(K f f ,2 − λ)−
(K f f ,1 + K f f ,2)

2

4

= λ2 − (K f f ,1 + K f f ,2)λ + K f f ,1k f f 2 −
1
4
(K f f ,1 + K f f ,2)

2

(5.56)

The eigenvalues are the solutions to this characteristic polynomial:

λ =
K f f ,1 + K f f ,2 ±

√
(K f f ,1 + K f f ,2)2 − 4

(
K f f ,1K f f ,2 −

(K f f ,1+K f f ,2)2

4

)
2

=
K f f ,1 + K f f ,2 ±

√
2(K2

f f ,1 + K2
f f ,2)

2

(5.57)

In order for the quadratic form matrix to be positive semi-definite, the eigenvalues must be positive.
For the eigenvalue with the negative square root term to be positive semi-definite the following
inequality must be true:

0 ≤ K f f ,1 + K f f ,2 −
√

2(K2
f f ,1 + K2

f f ,2) (5.58a)√
2(K2

f f ,1 + K2
f f ,2) ≤ K f f ,1 + K f f ,2 (5.58b)
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From here it is necessary to require that K f f ,1 + K f f ,2 ≥ 0. With this requirement, both sides of the
inequality can be squared:

2(K2
f f ,1 + K2

f f ,2) ≤ K2
f f ,1 + K2

f f ,2 + 2K f f ,1K f f ,2 (5.59a)

K2
f f ,1 + K2

f f ,2 ≤ 2K f f ,1K f f ,2 (5.59b)

(K f f ,1 − K f f ,2)
2 ≤ 0 (5.59c)

For the last inequality to hold true K f f ,1 must be equal to K f f ,2.

For the other eigenvalue to be positive semi-definite the following must hold true:

K f f ,1 + K f f ,2 +
√
(2(K2

f f ,1 + K2
f f ,2) ≥ 0 (5.60)

The square root part is again always positive and K f f ,1 + K f f ,2 was required to be positive from
before. Thus both eigenvalues of the quadratic form are positive or zero as long as K f f ,1 + K f f ,2 ≥ 0
and K f f ,1 = K f f ,2.

Since K f f ,1 = K f f ,2, one of the damper gains can be replaced with the other in Equation (5.55):

P̃Tω̃ = V̇(δ̃′) + ω̃TΓ12K f f ,1

[
1 −1
−1 1

]
ω̃ (5.61)

The eigenvalues of the quadratic term are zero and 2Γ12K f f ,1. The corresponding eigenvectors are
ω̃1 = ω̃2 for the eigenvalue in zero and ω̃1 = −ω̃2 for the other eigenvalue. This means that
the feed forward damper adds output feedback passivity to the network part of the P − ω droop
interconnection in all directions except ω̃1 = ω̃2, as the eigenvalue in this direction is zero. This
likely improves the performance of the overall control scheme. It might also be possible to loosen
the equality constraint of the feed forward damper gains by taking into account the output strict
passivity of the frequency droop filter.

A simulation example of the linearized system is made in order to show the effect of the damper.
The frequency in each inverter is shown with and without the damper in Figure 5.5.
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!
1

Damper
No damper

0 1 2 3 4 5 6 7 8 9 10

Time

-2

0

2

4

6

!
2

Damper
No damper

Figure 5.5: Simulation of a linearized grid with two droop controlled inverters with and without dampers. The simulation
parameters are: τP = 1, KP = 10, Γ = 1, and K f f ,1 = K f f ,2 = 1.
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As can be seen on the figure, the damper drastically reduces frequency oscillations when the system
finds a steady state.

It has thus been shown, that the feed forward damper increases the passivity margins of the
P − ω part of the network. Passivity can be achieved with two interconnected inverters under
the assumptions that the transmission lines are lossless and the phase angle differences between
inverters are small and the feed forward damper affects the passivity of the P − ω loop positively.
In the next section, the analysis is extended to include N interconnected inverters instead of only
two.

5.5 N interconnected inverters

In order to show the stability in the case of N interconnected inverters a transfer function description
is constructed in the same manner as for the case of two inverters and the positive realness is
investigated. Denote with P̃1, P̃2, · · · , P̃N the active powers injected into the grid from the inverters.
The active power an inverter supplies to the grid is proportional to the change in phase angle
difference, under the assumptions of Section 5.3:

P̃i =
N

∑
j=1
j ̸=i

Γijδ̃ij (5.62)

where:

Γij =
∂Pi
∂δij

is the proportionality constant between the active power and the phase angle difference.

The changes in all active powers in the network can therefore be written in matrix form as follows:


P̃1

P̃2
...

P̃N

 =


Γ12 Γ13 · · · Γ1N

Γ21 Γ23 · · · Γ2N
. . .

ΓN1 ΓN2 · · · ΓNN−1





δ̃12

δ̃13
...

δ̃1N

δ̃21

δ̃23
...

δ̃2N

δ̃N1

δ̃N2
...

δ̃NN−1



(5.63)

Furthermore, the changes in phase angle difference are given as the integral of the difference in the
changes in inverter frequencies:

δ̃ij =
1
s
(ω̃i − ω̃j) (5.64)
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This can also be written in matrix form, which gives:

δ̃12

δ̃13
...

δ̃1N

δ̃21

δ̃23
...

δ̃2N

δ̃N1

δ̃N2
...

δ̃NN−1



=
1
s



1 −1
1 −1
...

. . .
1 −1
−1 1

1 −1
...

. . .
1 −1

−1 1
−1 1

. . .
...

−1 1




ω̃1

ω̃2
...

ω̃N

 (5.65)

Combining Equation (5.62) and Equation (5.64) yields the following equation:

P̃i =
N

∑
j=1
j ̸=i

Γij
1
s
(ω̃i − ω̃j) =

1
s

 N

∑
j=1
j ̸=i

Γijω̃i −
N

∑
j=1
j ̸=i

Γijω̃j

 (5.66)

The first sum of proportionality constants, pertaining to ω̃i is collected into one constant:

Ξi =
N

∑
j=1
j ̸=i

Γij (5.67)

With this change, the change in active power for the i’th inverter becomes:

P̃i =
1
s

Ξiω̃i −
N

∑
j=1
j ̸=i

Γijω̃j

 (5.68)

Equation (5.68) can be written in matrix form as follows:
P̃1

P̃2

P̃3
...

P̃N

 =
1
s



Ξ1 −Γ12 −Γ13 · · · −Γ1N

−Γ21 Ξ2 −Γ23 · · · −Γ2N

−Γ31 −Γ32 Ξ3
. . .

...
...

...
. . . . . . −Γ(N−1)N

−ΓN1 −ΓN2 · · · −ΓN(N−1) ΞN




ω̃1

ω̃2

ω̃3
...

ω̃N

 (5.69)

In order to show passivity via. positive realness the poles of the transfer matrix in Equation (5.69)
need to be less or equal to zero. Because of the 1

s term, all poles are equal to zero. For all other
frequencies, the transfer matrix must be positive semi definite and hermitian. It is seen that the
transfer matrix is Diagonally Dominant, that is, the diagonal entries Ξi are greater than or equal to
the sum of the absolute values of the off diagonal entries Γij [22]:

Ξi ≥ ∑
j ̸=i

|Γij| (5.70)
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Symmetric diagonally dominant matrices are always positive semi definite. Because the proportion-
ality constants Γij are symmetric in the sense that Γij = Γji, it can be concluded that the matrix is
symmetric and therefore also positive semi definite. For all poles on the imaginary axis, the residue
matrix must be positive semi definite as well. Because the positive semi definiteness of the transfer
matrix is independent of the pole in zero, it is still positive semi definite if the pole is removed.
Thus, the transfer matrix is positive real. This means that there exist a storage function for which
V̇HP ≤ P̃Tω̃. Thus, the strict positive realness of the individual transfer matrices Gω,i guarantees
stability via the invariance principle just like it did in the case of two inverters.

It can be concluded that the sharing of active power between inverters is stable when they are
connected through inductive lines and the angle differences between the inverters are small. Fur-
thermore, the margin of passivity is inversely proportional to KP. The feed forward dampers can
potentially be used to further improve the passivity of the inverters and the dynamic response. In
order to ensure the stability of the entire grid, the voltage control also needs to be stable. The next
section therefore investigates the passivity of the Q − V part of the interconnection.

5.6 Stability of the reactive power regulation

In Section 5.2 the reactive powers for a system of two connected inverters were found. Assuming
that the transmission lines are lossless, the reactive powers of two connected inverters are:

Q1 =
3
2
[−BV2

1 + BV1V2 cos(ϕ1 − ϕ2)] (5.71a)

Q2 =
3
2
[−BV2

2 + BV1V2 cos(ϕ1 − ϕ2)] (5.71b)

It was mentioned earlier, that the reactive power is almost independent of the phase angle difference,
as long as the difference is small. The linearization of the reactive power with respect to the voltages
is: [

Q̃1

Q̃2

]
=

3
2

[
−2BV̂1 + BV̂2 BV̂1

BV̂2 −2BV̂2 + BV̂1

] [
Ṽ1

Ṽ2

]
(5.72)

Note, when V̂1 = V̂2 the matrix becomes diagonally dominant and symmetric, meaning it is positive
semi-definite, because B is negative. However, when this is not the case the matrix can have negative
eigenvalues, and passivity of the inverters are not sufficient to show stability.

Consider now the case of N interconnected inverters. Each inverter supplies a reactive power.
In contrast to the active power, the reactive power transfer in the interconnection is not lossless.
Assume that each inverter is connected to each other inverter through an equivalent inductive line
as shown in Figure 5.6.

Inv 1 Inv 2

Inv 3

Figure 5.6: Equivalent network of three inverters connected through inductive transmission lines.
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A linearization of the reactive powers of two inverters connected via a single inductive line is given
in Equation (5.72). The reactive power that one inverter injects into the network in total is equal to
the sum of reactive powers that inverter injects into all its equivalent connections. More specifically,
the reactive power inverter i injects into the equivalent connection with inverter j is given as:

Q̃ij =
[
−2BijV̂i + BijV̂j BijV̂i

] [Ṽi

Ṽj

]
(5.73)

where:

Bij is the susceptance of the equivalent inductive connection between inverters i and j.

Note that the 3
2 is hidden away in the B’s. The total reactive power from the i’th inverter is then:

Q̃i =
N

∑
j=1
j ̸=i

Q̃ij =

 N

∑
j=1
j ̸=i

−2BijV̂i + BijV̂j

 Ṽi +

 N

∑
j=1
j ̸=i

BijV̂iṼj

 (5.74)

The sum in front of Ṽi is collected into:

Ki =
N

∑
j=1
j ̸=i

−2BijV̂i + BijV̂j (5.75)

Substituting Ki into the total reactive power yields:

Q̃i = KiṼi +
N

∑
j=1
j ̸=i

BijV̂iṼj (5.76)

This can also be expressed in matrix form:
Q̃1

Q̃2

Q̃3
...

Q̃N

 =



K1 B12V̂1 B13V̂1 · · · B1NV̂1

B21V̂2 K2 BV̂2 · · · B2NV̂2

B31V̂3 B32 K3
. . .

...
...

...
. . . . . . B(N−1)NV̂N−1

BN1V̂N BN2V̂N · · · BN(N−1)V̂N KN




Ṽ1

Ṽ2

Ṽ3
...

ṼN

 (5.77)

It is seen that when every voltage is equal the matrix is positive semi definite, as it is diagonally
dominant and symmetric. But when this is not the case it is not positive nor symmetric. However,
it is reasonable to assume that the voltage differences between the inverters are small and it can be
assumed that in a given steady state the network can belong to some sector which may be lower
bounded by the sector [−αI, ∞]. The network belongs to this sector if [14]:

xT(HQ + αI)x ≥ 0 ∀x ̸= 0 (5.78)

where:

HQ is the transfer matrix from the voltages to the reactive powers.

The circle criterion states that for the system to be stable GQ(s)(1 − αGQ(s))−1 must be strictly
positive real [14]. Due to the diagonal structure of GQ(s) and the lower bound of the sector it is
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enough if every diagonal system is strictly positive real, that is Equation (5.79) must be strictly
positive real for every inverter.

GQ,i(s)(1 − αGQ,i(s))−1 =
KQ,i

sτQ,i + 1
1

1 − α
KQ,i

sτQ,i+1

=
KQ,i

1 − αKQ,i

1
s τQ,i

1−αKQ,i
+ 1

(5.79)

Equation (5.79) is strictly positive real whenever the time constant τQ,i
1−αKQ,i

is positive as it is a first
order low pass filter with positive gain (See Appendix B). Therefore αKQ,i < 1 and KQ,i > 0 is
sufficient for stability given the assumptions. Note that this condition is conservative as it might be
possible to lower bound the sector which the network belongs to with a matrix that does not have
the same diagonal elements instead of −αI. This would mean that some inverters may be allowed a
high KQ, which means better control of the reactive power delivered by those inverters. However, if
one is mostly interested in regulating the voltage, letting KQ,i be small is much more likely to fulfill
the stability conditions.

Another observation to be aware of is that capacitive loads are a source of reactive power. This
means that they absorb negative reactive power proportional to the voltage over them. The inverters
must therefore provide less reactive power to compensate. Capacitors could thereby work towards
making the network more negative i.e lowering the smallest eigenvalue of 1

2 (HQ + HT
Q). This means

α must be larger to provide a lower bound for the sector the network belongs to, limiting the range
of viable droop gains guaranteeing stability via the circle criterion.

It is seen that both the P − ω and Q − V parts of the network are asymptotically stable under
some rather limiting assumptions of the network and the steady state. Therefore, it is of interest to
investigate, by some more general simulation examples, what happens when those assumptions are
not met. This is because one cannot expect the assumptions made in this chapter to hold for any
real configuration of a grid.
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6 The effects of loads and losses

In the previous chapter assumptions about the network were made in order to simplify the analysis
and showcase the basic relations in inverter based networks. This was done to show that there is
some feasibility to the notion of guaranteeing stability based only on the parameters of the inverters
and some basic assumptions of the power grid. However, in a real network there will be loses and
loads that also impact the stability of the network, and it is important to investigate the validity of
the previous results under less ideal conditions. First, a simulation model of the Two Area Network
from Kundur et al. [2] is build using graph theory. The simulation is used to investigate whether
the system is stable when using only droop controlled inverters, as well as the effect that certain
controller parameters have on the behavior of the system. Later on, a simulation of the IEEE 24 Bus
Reliability Test System is made and investigated using the same methods.

6.1 Two Area Network

As a first approach a simulation model of four inverters supplying a two load network consisting of
mainly inductive, but slightly resistive lines is investigated. Such a network is shown in Figure 6.1
and is based on the Two Area Network example from Kundur et al. [2, page 813].

T1

−
+ Inv 1

T2

−
+ Inv 2

T3

−
+ Inv 3

T4

−
+ Inv 4

Line 1 Line 2 Line 3 Line 4 Line 5

L1 L2

Figure 6.1: Simple network for investigation of inverter behavior with lossy lines and capacitive loads, T are transformers,
Inv are inverters, L are loads, and Line are transmission lines.

The inverters are connected to the transmission lines via transformers, denoted T1 through T4. It
assumed that the turn ratio of the transformers are equal to the ratio of base units on each side
of the transformer. In this case the transformer can be viewed as a simple impedance [2]. The
transmission lines themselves are shown as an inductance, but also include a series resistance, as
mentioned earlier. The loads denoted L1 and L2 are resistive loads with a shunt capacitance.

In order to solve the network in the simulation, graph theory is used. A directed graph of the
network in Figure 6.1 is constructed and shown in Figure 6.2.
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v1 v2 v3 v4

v7 v8 v5 v6 v9 v10

v11

e1

e2

e4

e3

e5 e6

e7 e8 e9 e10

e11 e12 e13 e14e15

Figure 6.2: Directed graph of the Two Area Network from Kundur in Figure 6.1.

Each vertex represents a voltage in the network, with v11 representing the common ground. Each
edge represents a component. The edges are organized in such a way that the first 4 correspond to
the inverters, 5 and 6 correspond to the loads, 7 through 10 correspond to the transformers, and the
rest are transmission lines. The direction of the edges are chosen in the direction of the expected
power flow. The incidence matrix of the graph shown in Figure 6.2 is constructed by looking at the
direction of the edges leaving and arriving at each vertex. An edge leaving a vertex places a +1 in
the incidence matrix, while an edge arriving places a -1:

A =



−1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1
1 1 1 1 −1 −1 0 0 0 0 0 0 0 0 0



(6.1)

The columns of A represent the edges and are ordered the same way as the edges in the graph,
meaning that the first 6 columns correspond to the inverters and loads. In order to obtain the
reduced incidence matrix A, the last row of A is removed. To calculate the cycle matrix B, the
reduced incidence matrix needs to be partitioned into two parts: One containing a set of chords,
and one containing the remaining spanning tree. Cutting all but one connection from the inverters
and loads to ground (v11) creates a spanning tree. The set of the first 5 columns in A are therefore a
valid choice of chords. Denote the chord partition AC and the tree partition AT, then A =

[
AC AT

]
,

where AC is the first 5 columns of A and AT are the remaining columns. The cycle matrix B is then
given as [23]:

B =
[

I −AC(AT
T)

−1
]
=


1 0 0 0 0 1 1 0 0 0 1 1 1 0 0
0 1 0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0 0 1 1
0 0 0 0 1 −1 0 0 0 0 0 0 −1 0 0

 (6.2)

With the cycle matrix established, the next step is to calculate the edge currents. To do this, the edge
current and voltage vectors are ordered in such a way that the edges corresponding to controlled
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voltage sources are placed first:

i =
[

iv

iR

]
∆v =

[
∆vv

∆vR

]
(6.3)

Furthermore, the cycle matrix is re-ordered the same way:

B =
[
Bv BR

]
(6.4)

The cycle currents iC are then given as [23]:

iC = −(BRZBT
R)

−1Bv∆vv (6.5)

where:

Z
is a diagonal matrix containing the impedances of non voltage controlled source edges in the
correct order.

The controlled voltage source edges ∆vv depend on the inverter voltage phasors V, which are states
of the ODE simulation, and the reduced incidence matrix, which indicates the sign of the voltage
drop across these edges:

∆vv = A′
vV (6.6)

where:

A′
v

is a square matrix containing the voltage source edges and corresponding vertices of the
reduced incidence matrix.

Finally, the edge currents i are given from the cycle currents as follows [23]:

i = BTiC = −BT(BRZBT
R)

−1Bv A′
vV (6.7)

With all edge currents known, the non voltage source edge voltages can be obtained from the cycle
currents using Ohm’s law [23]:

∆vR = ZiR = ZBT
RiC (6.8)

With the network solved, the rest of the simulation is an ODE similar to the one set up in previous
simulations. As mention before, the inverter voltage phasors are states in the ODE. More specifically,
the voltage magnitudes Vi and phase angles ϕi are states in addition to the inverter frequencies
ωi. The complex power of each inverter Si is calculated from the inverter voltage phasor and the
calculated edge current pertaining to the inverter iv,i:

Si = Pi + jQi =
3
2
(Viejϕi)(iv,i)

∗ (6.9)

The frequency, voltage magnitude, and phase dynamics are the same as in earlier chapters:

d
dt

ωi
Vi
ϕ′

i

 =


KP,i
τP,i

(P0,i − Pi)− ωi−ω0,i
τP,i

KQ,i
τQ,i

(Q0,i − Qi)− Vi−V0,i
τQ,i

ωi

 (6.10a)

ϕi = ϕ′
i + K f f ,i(ωi − ω0,i) (6.10b)

These dynamics are implemented for all four inverters. The only thing missing now are network
and controller parameters. The network parameters are the impedances of all the non voltage source
edges and the controller parameters are the droop gains and time constants as well as frequency,
voltage magnitude, and power set points.
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6.2 Model parameters

In order to select values such that impedances of the transmission lines and the loads are sensible
given the simulation voltages, the Two Area Network example from Kundur et al. [2, page 813]
is used as a baseline. These values are then scaled such that the nominal value of voltages of all
inverters and loads are 1 unit. In the example the base power for the transformers are 900 MVA and
for the simulation all powers are scaled down by this amount, meaning all currents and impedances
are scaled. The base unit of the currents and impedances are:

Ibase =
Sbase

Vbase
and Zbase =

Vbase

Ibase
(6.11)

Load 1 is supposed to draw (967 − j100) MVA given with a nominal voltage of 230 kV line to line
rms. Recall that the per phase complex power in terms of voltage and impedance is given as:

S = Vrms I∗rms = Vrms

(
Vrms

Z

)∗
=

V2
rms
Z∗ (6.12)

Thus the per phase impedance of L1 is the following:

ZL1,pu =
ZL1

Zbase
=

1
Zbase

V2
L1

S∗
L1

=
Ibase

Vbase

V2
L1

S∗
L1

=
Sbase

V2
base

V2
L1

S∗
L1

=
900 MVA
(230 kV)2

(230 kV)2

(967 + j100)MVA
= (0.92 − j0.095)pu

(6.13)

The unit impedances are found for every other device in the same manner and shown in Table 6.1.

Table 6.1: Network parameters for simulation

Device unit impedance
L1 0.92 − j0.095
L2 0.5 − j0.043
T1 j0.15
T2 j0.15
T3 j0.15
T4 j0.15

Line 1 0.023 + j0.23
Line 2 0.009 + j0.09
Line 3 0.2 + j2
Line 4 0.009 + j0.09
Line 5 0.023 + j0.23

Next, the controller parameters and set points need to be chosen. Typically, the droop gain is
chosen such that a 5 % change in frequency or voltage corresponds to a 100 % change in P and
Q respectively [2]. This means that the droop gains should be KP = KQ = 0.05 for all inverters.
Because the P − ω droop equation in Equation (6.10a) is not in per unit, the frequency droop gain
needs to be scaled to KP = 2π50 · 0.05 ≈ 15.7. Because the time varying phasor modeling relies
on the dynamics of electrical components being much faster than the dynamics of the inverter, the
time constants of the droop control need to be sufficiently slow. The network in Figure 6.1 consists
of some series connected impedances and resistances. The time constant of an R-L circuit is τ = L

R ,
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where L is the inductance and R is the resistance of the equivalent circuit. The loop in Figure 6.1
with the highest inductance to resistance ratio is from inverter 1 through load 2 passing through
lines 1 to 3. The corresponding impedances can be found in Table 6.1. This loop has an equivalent
impedance in per unit of:

Zτ = ZT1 + ZLine1 + ZLine2 + ZLine3 + ZL2

= j0.15 + 0.023 + j0.23 + 0.009 + j0.09 + 0.2 + j2 + 0.5 − j0.043

= 0.7320 + j2.4270 pu

(6.14)

Note that the impedance still has a unit similar to Ω, but with the base unit of Zbase instead of
1 Ω. The equivalent inductance is found by dividing the reactance by the nominal frequency ω0 =

2π50 rad
s :

Lτ =
Im[Zτ]

ω0
=

2.4270 pu
2π50 rad

s

= 0.0077
pu · s
rad

(6.15)

The approximate time constant of the network is thus:

τ =
Lτ

Rτ
=

0.0077 pu·s
rad

0.7320 pu
≈ 0.01

s
rad

(6.16)

Multiplying τ with 2π rad gives the approximate rise time of any step dynamics:

T = 2π rad · τ ≈ 0.0628 s (6.17)

Hence, the time constants τP and τQ have to be at least 10 times bigger than τ ≈ 0.0628 s to
ensure that the network is decoupled from the outer power control. They are chosen to be both
τP = τQ = 0.7. The feed forward damper gain K f f is chosen to be slightly larger than τP at
K f f = 0.75.

The droop controller set points generally need to be set according to the loads on the network. The
target frequency ω0 is almost always going to be the rated frequency ω0 = 2π50 rad

s . The active and
reactive power set points P0 and Q0 depend on what the expected power requirements of the loads
are. In this example, it was determined by simulating a steady state, that when all inverters share
power, the active power set points should all be P0 = 0.8 pu, while the reactive power set points
should be Q0,1 = Q0,4 = 0.23 pu and Q0,2 = Q0,3 = 0.43 pu. Lastly, the voltage set point V0 is used
to control the voltage at the loads. In order to set the voltage at the loads accurately, another outer
control loop would be needed. Instead, an appropriate voltage set point of V0 = 1.045 pu, which
gives voltages across the loads which are approximately 1 pu.

The simulation is implemented with ode15s() in Matlab and run for 10 seconds with a relative
tolerance of 10−5. The states for all 4 inverters during this simulation are shown in Figure 6.3.
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Figure 6.3: Inverter states from simulation of the system in Figure 6.1. The states from top to bottom are: Frequency ωi,
Voltage magnitude Vi, and voltage phase angle differences ϕi − ϕ1.

Because of the choices of set points in the controller the steady state values for the frequencies
are close to 1 pu. The power sharing seems to work as intended, since the frequencies are a bit
higher, indicating that the load is smaller than the set point. The voltage amplitudes are split
into two groups according to the reactive power set points, which is expected, since the two loads
are different. Furthermore, they appear to be close to the set point value of 1.045 pu. The phase
angles are shown relative to the phase angle of inverter 1. This is done to show how the angles
are behaving relative to each other. The absolute phase angles increase at almost the same rates,
making it difficult to identify the phase angle differences.

To verify that the power sharing is working as intended, the active and reactive power injected by
the inverters is plotted. These can be seen in Figure 6.4.
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Figure 6.4: Active and reactive power injected into the grid from the inverters. The powers are given as a fraction of their
rated output.
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As can be seen from Figure 6.4, the active power is shared equally between all inverters. This
is expected since the active power droop gains and set points for all inverters are equal as well.
The reactive powers are also somewhat following their set points. It is important to note, that
the inverters do not arrive at their power set points by themselves, because they have to supply
whatever power is drawn by the loads. There is no control loop that ensures frequency reference
tracking. Instead, the droop gains and power set points control how much each inverter contributes
to the required power draw. However, if the power set points are chosen wisely, the steady state is
very close to the set points, which produces only a small deviation from the rated frequency and
voltage.

With the network simulation functioning as expected and the control parameters chosen, it is
investigated how the network in steady state compares to the previous analysis. Also, it is of
interest to push the simulation into areas where the system becomes unstable to investigate what
might cause instability.

6.3 Network behavior

In order to investigate how the behavior of the two area system compares to that of the passivity
analysis in Section 5.3 the linearized relation from the simulation between power and inverter
voltage is calculated in a steady state of the simulation of the previous section, and shown in
Equation (6.18).

K =

[
K11 K12

K21 K22

]
=

[
∂P
∂ϕ

∂P
∂V

∂Q
∂ϕ

∂Q
∂V

]

=



2.0818 −2.0904 0.0121 −0.0034 0.8989 0.43 0.0863 0.0341
−2.1328 2.1431 0.0073 −0.0177 −0.1834 1.3384 0.2188 0.0848
−0.0629 −0.1931 2.3337 −2.0777 −0.0644 −0.1283 1.686 −0.0334
−0.0276 −0.0818 −1.9865 2.0959 −0.0233 −0.0439 0.5605 0.957
0.6001 −0.4686 −0.094 −0.0375 2.3214 −1.9183 0.0111 −0.0031
0.2017 0.1297 −0.2382 −0.0931 −1.9402 2.7464 0.0067 −0.0161
0.0708 0.1398 −0.2473 0.0367 −0.0572 −0.1772 2.9642 −1.891
0.0256 0.0479 −0.6102 0.5367 −0.0251 −0.0751 −1.8247 2.3546



(6.18)

In this example there exist two weakly coupled areas separated by the dashed lines in the in the
Jacobian K in Equation (6.18). It shows a strong coupling between the inverters in each area but a
weak coupling between the areas. This is seen by investigating each row of K and observing which
angles influence the power in each inverter. Looking at the first row, the power in inverter 1 is
highly dependent on the angle in inverter 1 and 2 but has little influence from 3 and 4. It is also
seen that the coupling from voltage to active power is not close to zero in this case. In general it is
seen that the assumptions made in Section 5.3 are far from the situation in this example network.
The angle differences between the two areas are quite large because of the weak coupling. Also,
the resistive loads make the active power transfer voltage dependent. However, the network is
stable and behaves nicely with the power control parameters based only on rules of thumb and
the findings of the passivity analysis of a simplified network. This result could be a coincidence,
but it suggest that there might exist a set of broad conditions for a given network for which the
power control of grid forming inverters is guaranteed to be stable, requiring only simple rules for
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the power control parameters.

The analysis in Section 5.3 suggested that a high capacitance in the network could destabilize the
system. Therefore, the load’s shunt capacitances are increased until the system becomes unstable.
Increasing the capacitance to 4 times the normal value yields the results shown in Figure 6.5 and
Figure 6.6. However, the mechanism of the instability is due to the non-linearity of the system.
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Figure 6.5: Inverter states of the two area Kundur simulation with 4 times increased capacitance.
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Figure 6.6: Inverter power of the two area Kundur simulation with 4 times increased capacitance.

From Figure 6.6 and Figure 6.5 it is seen that there are power oscillations between the two areas. The
problem is the droop control set points. The system attempts to transfer more active power between
the areas than is possible with the voltages in the system and the droop control never manages to
find an equilibrium. However, changing the set points such that inverter 3 and 4 attempt to deliver
more power and 1 and 2 less, makes the system stable again. Figure 6.7 and Figure 6.8 show how
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the change in set points influences the inverters.
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Figure 6.7: Inverter states of the two area Kundur simulation with 4 times increased capacitance and the following active
power set points P0 =

[
0.6 0.6 1 1

]
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Figure 6.8: Inverter power of the two area Kundur simulation with 4 times increased capacitance and the following active
power set points P0 =

[
0.6 0.6 1 1

]
.

This is a non-linear behavior that is not captured in any of the linearized models. This result
highlights that it is important that the set points are reasonable given the network, especially when
some areas of the network are weakly coupled. Given that it was possible to reach a steady state, it
is interesting to see if the eigenvalues of K22 are reduced as is expected with an increase in capacitive
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load. The linearized network matrix is shown for this network in the steady state:

KHC =



2.3425 −2.2261 −0.0778 −0.0386 0.9314 0.4635 0.0731 0.0194
−2.2779 2.5975 −0.2166 −0.1029 −0.1653 1.4405 0.1687 0.0408
−0.1108 −0.2662 2.5789 −2.2018 0.0159 0.0934 2.2518 −0.1435
−0.0416 −0.0957 −2.0293 2.1667 0.0131 0.0527 0.7856 1.3706

0.619 −0.5167 −0.0809 −0.0214 2.1033 −1.9967 −0.0704 −0.035
0.1837 0.0479 −0.1865 −0.045 −2.0501 2.1897 −0.1958 −0.0933
−0.0177 −0.1041 −0.0365 0.1583 −0.0998 −0.2388 2.5152 −1.9962
−0.0145 −0.0588 −0.8689 0.9422 −0.0375 −0.0859 −1.8349 2.2554


(6.19)

The eigenvalues of the lower right quadrant of KHC are compared to the eigenvalues of the same
quadrant of K:

eig
(

1
2
(KHC,22 + KT

HC,22)

)
=
[
0.0208 0.5626 4.1598 4.3204

]
(6.20a)

eig
(

1
2
(K22 + KT

22)

)
=
[
0.5633 0.8055 4.4696 4.5482

]
(6.20b)

As it is seen from Equations (6.20) the eigenvalues are indeed reduced, but not to the point of
becoming negative. In an attempt to make a more general passivity based stability criterion that
includes this network, the output strict passivity of the Q − V droop is used.

Consider a block diagonal system of a passive and an output strictly passive system, G1(s) =
y1(s)
−u1(s)

and G2(s) =
y2(s)
−u2(s)

respectively, connected in negative feedback by the matrix K such that:[
u1

u2

]
= K

[
y1

y2

]
=

[
K11 K12

K21 K22

] [
y1

y2

]
(6.21)

Note that G1 and G2 have −u1 and −u2 as inputs, such that the negative feedback is defined
algebraically. Because G1 is passive and G2 is output strictly passive, there exist storage functions
V1 and V2 for each block. The sum of the time derivatives of these storage functions is then:

V̇1 + V̇2 ≤ −yT
1 u1 − yT

2 u2 − yT
2 ψy2 (6.22)

where:

ψ is a positive definite matrix

Inserting Equation (6.21) into the previous equation yields the following:

V̇1 + V̇2 ≤ −yT
1
[
K11 K12

] [y1

y2

]
− yT

2
[
K21 K22

] [y1

y2

]
− yT

2 ψy2 (6.23a)

V̇1 + V̇2 ≤ −
[
yT

1 yT
2

] [K11 K12

K21 K22 + ψ

] [
y1

y2

]
(6.23b)

Thus the system is guaranteed to be Lyapunov stable whenever:[
K11 K12

K21 K22 + ψ

]
≥ 0 (6.24)
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In order to find out what ψ is, the storage function of the Q − V droop is investigated. Consider the
dynamics of the Q − V droop with x = V and u = −Q:

ẋ = − 1
τQ

x +
KQ

τQ
u

y = x
(6.25)

A storage function candidate for this system could be:

VQ(x) =
τQ

2KQ
x2 (6.26)

Using the definintion of ẋ, the time derivative of the storage function candidate becomes:

V̇Q(x) =
τQ

KQ
x
(
− 1

τQ
x +

KQ

τQ
u
)
= − 1

KQ
x2 + xu (6.27)

Because the output of the system is the state (y = x), the state in the previous equation can be
replaced:

V̇Q(x) = − 1
KQ

y2 + yu (6.28a)

yu = V̇Q(x) +
1

KQ
y2 (6.28b)

It can therefore be concluded, that ψ = 1
KQ

I. Adding this to K22 means that the quadratic form of K
has the following eigenvalues:

eig

1
2

[
K11 K12

K21 K22 +
1

KQ
I

]
+

[
K11 K12

K21 K22 +
1

KQ
I

]T
 =

[
−0.0691 0.1857 4.1806 4.2259 20.5986 20.8392 24.5012 24.5791

] (6.29)

It is seen that the quadratic form is not positive semi definite and therefore the passivity of the
inverters themselves are not enough to guarantee small signal stability. It is possible to make KQ
smaller, however no level of KQ can make this particular eigenvalue zero. The eigenvalue seems to
stem from the asymmetry in the phase dependency. Recall from Section 5.3 that the symmetry of
the transfer function from frequency to power, and by extension from phase to power, is required
to be symmetric for the diagonal dominance to show that it is positive semi definite. In this system
the sum of each entry in every row of K11 is zero and the diagonal entries are positive. However, it
is not symmetric and hence the quadratic form of K11 has a negative eigenvalue. Thus, it has not
been shown that the passivity of the inverter control is enough to guarantee small signal stability
in networks with loads and losses. It seems like designing the inverters to be passive could easily
result in stable networks as it did in this case, however one has to verify the stability by different
means. It is of interest to simulate how the droop controlled inverters reacts to load changes as
these are common disturbances on the grid.

6.4 Load step and parameter ranges

Another interesting behavior of the system is the response to increases and decreases in load. For
this purpose, the impedance of Load 1 is increased by 25 % at 5 seconds into the simulation. Also,
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there exist a large range of controller parameters for which the inverters are passive. First off, it was
shown in Section 5.1 that the droop gain KP must be positive for the inverter system to be passive.
Choosing a negative droop gain would change the negative power feedback into a positive feedback
and the system will become unstable. Increasing the droop gain has the effect, that the frequency
changes more with changes in power. It is therefore of interest to keep the droop gain as small as
possible. On the other hand, a small droop gain also means that the control bandwidth is drastically
reduced, which affects the time it takes for the inverters in the network to share the new load. The
time constant τP only affects the control bandwidth and thus varying the time constant only makes
the control faster or slower. In reality, the dynamic phasor approximation becomes less accurate for
smaller time constant, but this would not be seen in the simulation results. The one parameter of
the inverter control that does have an interesting effect on the system is the feed forward gain K f f .
Therefore, it is also of interest to investigate different values of the feed forward damper, both inside
and outside the passive range. A simulation is run for three different feed forward gains K f f = τP,
K f f = 0.2τP, and K f f = 4τP. For reference, the passivity criteria required the feed forward gain
to be greater or equal to the time constant. The state trajectories of these simulations are shown
in Figure 6.9 and the active and reactive power as well as the power shared across the inter area
transmission line are shown in Figure 6.10.
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Figure 6.9: Response to a 25% increase in impedance in area 1 of droop controlled inverters with different levels of feed
forward dampening.

It is seen from the figure that decreasing the dampening below the time constant results in slight
oscillations, and that increasing the feed forward dampening leads to a faster response of the angles,
however it takes longer for the internal frequencies to synchronize.
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Figure 6.10: Response to 25% increase in impedance in area 1 of droop controlled inverters with different levels of feed
forward dampening. The last row is the power transfer from area 1 to area 2

From Figure 6.10 it is seen that when the load of area 1 decreases the power transfer to area 2
is increased. An important thing to keep in mind is that the transmission line between the two
areas can only transfer a limited amount of power. If the power transfer between the two areas
saturates, the synchronization mechanism breaks down. This is because at some point, the phase
angle difference becomes larger than 90◦ and the angle-power relationship changes sign, meaning
that further increases in phase angle difference reduce the power transfer rather than increase it.
It is therefore very important that the set points are set according to the carrying capacity of weak
links in the network. To illustrate this the same step is performed, however the power set points
are set so the power transfer to area 2 is almost saturated from the beginning. The results of these
simulations are shown in Figure 6.11 and Figure 6.12.
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Figure 6.11: Response to 25% increase in impedance in area 1 of droop controlled inverters with different levels of feed
forward dampening. The initial active power set points of the two areas are equal to enforce larger power transfer in the
steady state.
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Figure 6.12: Response to 25% increase in impedance in area 1 of droop controlled inverters with different levels of feed
forward dampening. The last row is the power transfer from area 1 to area 2. The initial active power set points of the
two areas are equal to enforce larger power transfer in the steady state.
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It is seen that when the load in area 1 is reduced, the power transfer to area 2 increases slightly.
Since the power transfer through the cable is already very close to being saturated, increasing
the frequency in area 1 does not result in greater power transfer, as it otherwise would and the
two areas desynchronize. This means that some level of coordination between areas of droop
controlled inverters is a necessity. It seems that, as long as the set points to the system are set
within the carrying capacities of the cables, at least for this example network the system is capable
of synchronizing. In the next section a more complex network configuration is investigated in order
to show that the control works for most kinds of interconnections.

6.5 IEEE 24 Bus Network

In order to see if a different network configuration yields different results a setup with more
inverters and lines is simulated. The simulation setup is based on the IEEE 24 bus reliability test
system [3]. The line diagram of this system can be seen in Figure 6.13.
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Figure 6.13: Copyright © 1979, IEEE. Line diagram of the 24 bus IEEE Reliability Test System [3].
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This setup has 10 generators, that are replaced by voltage source inverters in order to investigate
how droop controlled inverters interact. The power draw of the loads is given in the network
specification. These are then modeled as impedances the same way as in Section 6.2. Transmission
lines are modeled with their equivalent π-circuits and transformers are modeled with their equiv-
alent impedance. The per unit values for these are found in the IEEE paper [3]. The synchronous
condenser at bus 14 and the reactor at bus 6 are omitted from the simulation. With loads modeled as
impedances and generation units as controlled voltage sources a graph of the network is constructed
and solved with graph theory in the same manner as described previously in this chapter. The
reactive power set points of all inverters are set to 0, and the active power set points and droop
gains are set according to their ratings in such a way that the steady state frequency before the step
is close to 1 per unit. The voltage set points are chosen such that the voltage across the loads is
approximately 1 per unit as well. Some buses have multiple generating units. In that case they have
been lumped into one and their power rating is accumulated. In order to perturb the network, a
load step is applied at t = 5 s, where the impedance of half of the loads is decreased by 25 % (bus
1-9). The feed forward damping gain K f f is again changed in order to observe its effects on the
system. The results of this simulation is shown in Figure 6.14
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Figure 6.14: State trajectories of the 10 inverters in the IEEE Reliability Test system after a step reducing the impedance
of half of the loads by 25 % for three different feed forward dampening gains.

Once again, with the feed forward dampening in the passive range the system is very well behaved.
This network seems to be even less problematic than the Two Area Kundur example. It requires
more perturbation to reach an unstable configuration of set points and loads because of the generally
stronger connections between the inverters. It is seen that designing the inverters so that the transfer
function from power to phase angle is passive yields very well behaved responses to changes in
loads. This reinforces the statement that networks with a large amount of droop controlled inverters
are very likely to synchronize nicely even though stability cannot be guaranteed through any of the
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passivity arguments investigated. However, there are still many nuances that are omitted from the
analysis. Some of these are discussed further in the next chapter.
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7 Discussion

Throughout the report some interesting questions have come up that are not investigated fully. This
chapter discusses some things that are potentially interesting to include in some future work. The
biggest problem with the passivity of the grid forming droop control is that the network transfer
matrix is not positive definite without strict assumptions. A passivating feedback from the phase
angle to the active power set point could be a solution to this problem. The inverters are modeled as
controlled voltage sources in this report. In practice however, the current of grid forming inverters
has to be limited in order to protect the hardware. The effects of this current limiting is also
discussed. The capacity of the energy storage of the inverter is also discussed, as it is needed to
supply the inertia that is required from them. Lastly, the effect of measurement noise on the system
is discussed, in order to get a better understanding of the sensitivity of the control.

7.1 Feedback passivation with coordinated control

It was seen in Chapter 6 that the networks transfer matrix was very close to being positive definite
and therefore passive. Thus, it does not require a large increase of the diagonal elements of this
matrix in order to make it passive. However, this increase must come from the inverter control. It
is possible in theory to reference every inverter to a global grid frequency and phase. With this
reference phase, a feedback can be made from the phase angle of each inverter to their power set
point compensating for negative eigenvalues in the grid. This is illustrated in figure Figure 7.1.
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Figure 7.1: Closed loop P − ω system of a single inverter with feed forward damper and feed back passivation K′.

Notice that the feedback from inverter angle to power is equivalent to a positive feedforward over
the network matrix K. This feedback has some interesting effects. It essentially counteracts power
sharing across weak links as it gives the inverters an inherent reluctance to allow large angle
differences. The small signal model can be passivated by increasing the gain of this feedback,
depending on how negative the network is. In order to show how this works, the exact same
simulation as the one shown in Figure 6.12 of the Two Area Network by Kundur is performed.
However, this time with the feedback passivation gain as the tested variable and K f f = 0.7. The
state trajectories for K′ = 0, K′ = 0.1, and K′ = 0.2 are shown in Figure 7.2. The active and reactive
powers and the inter area power transfer is shown in Figure 7.3.
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Figure 7.3: Active and reactive power as well as inter area power transfer following a 25 % increased impedance in area
1 of the Two Area Network by Kundur for three different feedback passivation gains.

It is seen that with the coordinated passivation the system is now able to stay synchronized even
though the weak link is very close to saturation. Another effect of this feedback is that the steady
state frequency is always precisely the agreed upon frequency. Therefore it seems that if it is possible
to synchronize the inverters like this it gives a tool to increase the robustness of both small and
large signal stability of the network. Unfortunately synchronizing the time at every inverter with an
accuracy much smaller than a single period of the reference frequency might require an expensive
solution. As it was seen in Chapter 6 the network can also be stable without this passivation granted
sensibly chosen set points. In many cases it may be more sensible to analyze the stability by other
means than passivity and design the network accordingly.
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7.2 Current limiting

Many inverters have to protect themselves from over current, one such current limitation algorithm
is the virtual impedance. This works by reducing the setpoint to the inner voltage controller
according to a virtual output impedance. This virtual impedance can also be increased and reduced
according to how close the inverter is to the current limit. This has the effect that the inverter does
not follow exactly the setpoints of the outer controller when the current is limited [16]. Therefore,
it is also important to investigate how the inner control of the inverter affects its ability to stay
synchronized with the grid given large load changes and other disturbances. However, doing this
requires a model that is valid in a wider bandwidth than the phasor model applied to the analysis
of the outer control.

7.3 Capacity for virtual inertia

In order to provide the virtual inertia as determined by the low pass filter of the frequency droop
control, it is necessary that the devices in question has the capacity to provide it. That is, they
need some sort of energy storage. In windturbines some of this energy could be extracted from the
rotating mass, though this may limit the turbine controls capability to efficiently track maximum
wind power and in general the interaction with the turbine control should be considered [24]. In
solar farms a storage solution would be necessary in order to draw the energy required to provide
inertia. However, this may not be a limiting factor as the cost of utility scale energy storage is
expected to decline further as battery technology and manufacturing improves [25]. Furthermore,
energy storage may be necessary regardless in order to replace the demand response capability of
convectional fossil fuel based generation.

7.4 Disturbances and noise

In order to assess the effects of measurement noise and disturbances on the control performance,
the possible sources of disturbances and signal noise have to be identified. The most relevant dis-
turbance in the system is the load impedances, as they are the most likely to change unpredictably
during normal operation of the system. In Section 6.4 this disturbance is tested by applying a 25 %
step to the load impedance. As was seen in that section, the system does not become unstable with
such a disturbance, even for feed forward damper gains outside of the range that makes the droop
control passive. The other concern with regards to robustness of the control is the measurement
noise on the power. Since the droop controller needs to calculate the power by measuring the
voltage and current there will be some measurement noise associated to the power. However, the
first thing this signal encounters in the control is a low-pass filter. Therefore, it is expected that
the measurement noise does not significantly affect the droop control. Another source of noise in
the system is the harmonic distortion coming from the modulation algorithm generating the AC
voltage in the inverter [26]. Although there are regulations for the amount of harmonic noise that
is allowed to be injected into the grid [27], it is unlikely that this distortion would have much effect
on the control performance even without the regulation, because of the aforementioned low-pass
filter. Because of the phasor model that is used in this report, the effects of noise and harmonic
distortion is difficult to determine. Most of the noise will likely not make it through the low pass
filter anyway.
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8 Conclusion

While passivity is a good tool for ensuring stability of large interconnected non-linear systems, it
does have its limitations. A low frequency time varying phasor model is used for investigating the
passivity of the primary control of droop controlled inverters. This model does not account for the
inner control loops of the inverters nor the dynamics of components on the network. It is concluded
that modeling the network as an admittance in rectangular coordinates like Spanias et al. [1] yielded
issues with open loop stability of the inverter dynamics. It is also shown that modeling the network
as an impedance means the required voltage-current relationship to achieve close to constant power
cannot be passive.

In polar coordinates with power as input and voltage as output the behavior of the inverter can
be passive. This requires the application of a feed forward damper to bypass the integrator that
calculates the phase angle from the frequency. This is because the relative degree of the inverter
control must be one or zero for it to be passive. With this feed forward damper in place, the inverter
dynamics are passive as long as the droop gain KP > 0 and the feed forward damper gain K f f
is greater or equal to the time constant of the low pass filter τP (K f f ≥ τP). Making use of the
circle criterion, it is shown that an interconnection of inverters can be absolutely stable as long as
the network is strictly passive. This requires that the reactive power droop gain KQ is greater than
zero. However, power networks are in general not passive and cannot be strictly passive in these
coordinates due to rank deficiency in the network representation. Using the invariance principle
and moving the frequency integration to the network, it is possible to show stability of the network.
This requires the assumptions that the network is lossless and the phase angle differences between
inverters are small, suggesting that strongly coupled networks are well behaved.

Using simulation models based on the Two Area Network example by Kundur and the IEEE 24
Bus Reliability Test System, it is shown that a passivizing feed forward damper yields damped
responses of the inverters to load variations. Graph theory is used to solve the electrical network
that the inverters are connected through, and Matlabs ODE solver to solve the dynamics of the
inverters. It is seen that weakly coupled areas can easily de-synchronize as only small changes in
loads can be enough to saturate the power transfer of the connecting cable. Otherwise, the simulated
networks are stable and well behaved.

While it is not possible to guarantee stability with conventional droop control using the passivity
arguments investigated in this report, it is discussed that the networks investigated requires only a
small passivizing feedback from the phase angles back to the power setpoints to ensure small signal
stability and extend the region of large signal stability. While such a feedback is simple in theory, it
would require coordination of the phase angle between the inverters needing accurate timing.

In conclusion passivity is not directly applicable as a tool to ensure stability of a grid of droop
controlled inverters in any of the coordinates presented. However, stability can be guaranteed with
the addition of a passivizing feedback. Even though stability in general can not be guaranteed,
the control performance is improved by the addition of a feed forward damper in the active power
control.
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A Comparison of simulation to the linearization

In order to compare the behavior of the linearization to the non-linear simulation, two additional
inputs are defined: The active and reactive power set points, P0 and Q0 respectively. The additions
to the Jacobians are calculated. The first addition is to the B matrix in the linearization. Two more
columns are added, one for the derivative of the state dynamics with respect to the active power,
and one for the reactive power. Since only the frequency dynamics depend on the active power set
point, and only the voltage dynamics depend on the reactive power set point, the addition to the B
matrix becomes:

B′ =

B


∂ fω

∂P0

∂ fω

∂Q0
∂ fVd
∂P0

∂ fVd
∂Q0

∂ fδ

∂P0

∂ fδ

∂Q0


 =

B


KP
τP

0

0 KQ
τQ

0 0


 =

−462.1052 −50.3091 300 0
−13.6792 153.7486 0 100

0 0 0 0

 (A.1)

Similarly, two columns are added to the D matrix as well:

D′ =
[

D
[

∂h
∂P0

∂h
∂Q0

]]
=

[
D

[
0 0
0 0

]]
=

[
0 0.0314 0 0

−0.0314 0 0 0

]
(A.2)

The new system P′ with the additional inputs and outputs becomes:

P′ :
˙̃x = Ax̃ + B′ũ′

ỹ = Cx̃ + D′ũ′ (A.3)

where:

ũ′ =
[

Ĩa Ĩb P̃0 Q̃0

]T
is the augmented input.

Now, when closing the loop there are two inputs, which are the changes in active and reactive power
set points. The new interconnection is shown in Figure A.1.

P′

K

ṼB

Ĩ

P̃0
Q̃0

Figure A.1: Augmented system of the linearized inverter dynamics P and the network K.

Using Matlab, the step response of the MIMO system P′ is calculated using the step()-function.
The function returns the state trajectories as well as the output. Ohm’s law is used to calculate the
current in the network from the internal and bus voltage like in Equation (4.14):

I = YL(V − VB) (A.4)

The injected power from the inverter can now be calculated using the power calculation in Equa-
tion (4.26):

S̃ = P̃ + jQ̃ =
3
2

ṼB Ĩ
∗

(A.5)
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APPENDIX A. COMPARISON OF SIMULATION
TO THE LINEARIZATION

The steady state simulation is run again with the same parameters as before. At t = 5 s a step of
5 % is applied to the active power. The same step is applied to the linear system and the power is
calculated using Equation (A.5). The general shape of the step response of the linearization looks
similar to the results from Section 4.4. Therefore the residuals between the simulation and the
linearization is plotted instead. The residual of the step response is shown in Figure A.2
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Figure A.2: Residual of the active and reactive power between the simulation and linearization during a 5 % step on the
active power. For comparison, the peak variations in P and Q due to the step are the following: P : 35 mW, Q : 0.09 mVAr.

Note that the units on Figure A.2 is in mW and mVAr, meaning the residual of the active power is
between two to three orders of magnitudes smaller than the step size. Even though the variation
in reactive power is small, the residual is larger. This suggest some non-linear relationship between
the active and reactive power for which the linearized model is less suited. The state trajectories
and outputs show a similar magnitude of linearization error. These can be seen in Figure A.3 and
Figure A.4.

-0.5

0

0.5

1

!
 [m

ra
d/

s]

-20

-10

0

V
d 

[µ
V

]

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
Time [s]

-20

-10

0

10

/
 [µ

ra
d]

Figure A.3: Residual of the state trajectories between the simulation and linearization during a 5 % step on the active
power. For comparison, the peak variations due to the step are the following: ω : 141 mrad

s , Vd : 393 µV, δ : 7846 µrad.

Page 72 of 74



APPENDIX A. COMPARISON OF SIMULATION
TO THE LINEARIZATION

-40

-20

0

V
B

a 
[µ

V
]

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
Time [s]

-10

0

10

V
B

b 
[µ

V
]

Figure A.4: Residual of the bus voltage between the simulation and linearization during a 5 % step on the active power.
For comparison, the peak variations due to the step are the following: VB,a : 369 µV, VB,b : 7384 µV.

Note again the units on the figures. Because the error is small enough, results obtained from the
linearization are deemed to apply to the non-linear system as well, at least in some region around
the steady state of 5 % active power. Therefore, the passivity properties can be investigated on the
linear system.
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B Positive realness of a first order low pass filter

The transfer function for a first order low pass filter is as follows:

G(s) =
K

sτ + 1
(B.1)

A definition of positive realness of a transfer function matrix is given in Lemma 5.1 in Khalil [14].

Lemma B.1 Let G(s) be an m × m proper rational transfer function matrix, and suppose det[G(s) +
GT(−s)] is not identically zero. Then, G(s) is strictly positive real if and only if:

1. G(s) is Hurwitz; that is, poles of all elements of G(s) have negative real parts,

2. G(jω) + GT(−jω) is positive definite for all ω ∈ R, and

3. either G(∞)+GT(∞) is positive definite or it is positive semidefinite and limω→∞ ω2(m−q) det[G(jω)+

GT(−jω)] > 0, where q = rank[G(∞) + GT(∞)].

Furthermore Khalil [14] mentions that:
"In the case of m = 1, the frequency-domain condition of the lemma reduces to Re[G(jω)] > 0 for all
ω ∈ [0, ∞) and either G(∞) > 0 or G(∞) = 0 and limω→∞ ω2Re[G(jω)] > 0."

A simple first order low-pass filter has a transfer function matrix of order m = 1. The pole of G(s)
is in − 1

τ . Thus as long as τ > 0 the first condition is fulfilled. For the second condition, the real part
of the transfer function matrix G(jω) is needed. The transfer function matrix in jω is:

G(jω) =
K

jωτ + 1
=

K(1 − jωτ)

ω2τ2 + 1
(B.2)

The real part of this transfer function is:

Re[G(jω)] =
K

ω2τ2 + 1
(B.3)

It is seen that Re[G(jω)] > 0 and thus positive definite when K > 0. For the last condition, it is seen
that:

lim
s→∞

K
sτ + 1

= lim
s→∞

K
s

τ + 1
s

= 0 (B.4)

It is therefore necesary to determine if the following limit is greater than zero:

lim
ω→∞

ω2Re[G(jω)] = lim
ω→∞

ω2 K
ω2τ2 + 1

= lim
ω→∞

K
τ2 + 1

ω2

=
K
τ2 (B.5)

Thus, it is seen that a first order low-pass filter is strictly positive real whenever the gain and the
time constant are strictly positive.
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