
Testing of AI models for
Air-Interface Applications

- Masters Thesis -

Project Report

Filip Ivanović

Aalborg University
Electronics and IT



Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Testing of AI models for Air-Interface Ap-
plications

Theme:
Signal Processing

Project Period:
Spring Semester 2023

Project Group:
976

Participant(s):
Filip Ivanović

Supervisor(s):
Carles Navarro Manchón
Alan Anderson

Copies: 1

Page Numbers: 108

Date of Completion:
May 30, 2023

Abstract:

Artificial Intelligence (AI) is a rapidly developing
field of technology being implemented in many
contexts, including in air interface communications.
Alongside the development of AI comes the de-
velopment of systems designed to test AI, ensur-
ing its performance and understanding its charac-
teristics. This project, done in collaboration with
Keysight Technologies and using their xpl[AI]ned
framework, stands as a study into the usability and
relevance of a few different testing methods on AI
models designed for the air interface communica-
tion space. This is done through a process of re-
searching various different aspects of AI and test-
ing methods and applying them to two AI mod-
els that are chosen to be representative of potential
real world implementations. The two main testing
methods applied are Monte Carlo dropout and the
Fast Gradient Sign Method (FGSM) for testing ad-
versarial robustness. Monte Carlo dropout is found
to be useful in quantifying the efficiency of the con-
struction of the models, but due to the nature of the
context its quantification of certainty is not found
to be useful. FGSM is found to be extremely useful
with its capability to show if a model is vulnerable
to adversarial perturbations, as well as generating
adversarial data that can be analysed to further de-
termine model characteristics. A few other meth-
ods and testing paths were also looked into to gain
further clarity. The overall result of this investiga-
tion is a resounding success for the xpl[AI]ned con-
cept as well as a greater understanding of the types
of methods relevant when testing air interface AI
models.



Contents

List of Tables vi

List of Figures viii

Preface xiv

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 AI models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Use of AI in the Air Interface . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 AI Model Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 xpl[AI]ned - Keysight’s new AI testing toolkit . . . . . . . . . . . . . . 8

1.3 Clarified Goals and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Technical Analysis 11
2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Hidden Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 Types of Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.8 Intricacies of Neural Network training . . . . . . . . . . . . . . . . . . 16

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Model 1: Neural Receiver for OFDM SIMO Systems . . . . . . . . . . 19
2.2.3 Model 2: End to End Learning with Autoencoders . . . . . . . . . . . 23

2.3 Determining Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



Contents iii

3 Testing 32
3.1 Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 xpl[AI]ned and the Testing Environment . . . . . . . . . . . . . . . . . . . . . 35
3.3 Monte Carlo Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Methodology and Implementation . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Model 1: Neural Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Model 2: End to End Autoencoder . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Initial Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 FGSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Methodology and Implementation . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Model 1: Neural Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Model 2: End to End Autoencoder . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Initial Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Further Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 Investigating the effect of increased input amplitude . . . . . . . . . . 60
3.5.2 SHAP and CEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Investigating performance at high Eb/N0 levels . . . . . . . . . . . . . 62

4 Discussion 68
4.1 Monte Carlo Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 FGSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions 74

Bibliography 77

A Raw Data 80
A.1 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2 Monte Carlo Dropout: Neural Receiver . . . . . . . . . . . . . . . . . . . . . . 83
A.3 Monte Carlo Dropout: End to End Autoencoder . . . . . . . . . . . . . . . . . 98
A.4 FGSM: Neural Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.5 FGSM: End to End Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Acronyms

Eb/N0 Energy per Bit to Noise Power Spectral Density Ratio. iii, viii–xii, 23, 26–30, 33, 34,
36–40, 42–44, 47–52, 54, 57–60, 62, 64, 71

AI Artificial Intelligence. i, 2, 3, 11, 17, 18, 25, 42, 68–70, 72–75

BCE Binary Cross Entropy. 14, 21, 24

BER Bit Error Rate. viii–xiii, 11, 26–29, 34, 37–50, 53–55, 60–65, 68, 71, 83–87, 98, 99

BLER Block Error Rate. 26, 71

BMD Bit-Metric Decoding rate. 21

CEM Contrastive Explanation Method. iii, 35, 61, 62, 70

CNN Convolutional Neural Network. 5, 8, 16

DL Deep Learning. 4

FGSM Fast Gradient Sign Method. i, iii, x–xii, 7, 32–34, 46–52, 55–60, 69–71, 74, 104–108

LDPC Low Density Parity-Check Code. 21, 22, 26

LLR Log Likelihood Ratio. x, xi, 21, 22, 24, 26, 29, 34, 46, 49, 55

LS Least Squares. 19, 20

MAE Mean Absolute Error. 14

ME Mean Error. 14

ML Machine Learning. 3, 9, 71, 76

MSE Mean Squared Error. 14

iv



Acronyms v

NN Neural Network. 6, 11

OFDM Orthogonal Frequency-Division Multiplexing. 5, 20, 21, 51

PN Pertinent Negatives. 35

PP Pertinent Positives. 35

QAM Quadrature Amplitude Modulation. 25, 61

QPSK Quadrature Phase Shift Keying. 19, 25, 53

ReLU Rectified Linear Unit. 13, 24

RL Reinforcement Learning. xii, xiii, 24, 26, 64–67

RMSE Root Mean Squared Error. 14

SGD Stochastic Gradient Descent. 5, 15, 24

SHAP SHapley Additive exPlanations. iii, 34, 35, 61, 62, 70, 71, 75

xpl[AI]ned Keysight’s new AI model testing and development software. iii, ix, xiv, 8–10,
17–19, 32, 33, 35–37, 46, 51, 61, 62, 68–70, 72, 74, 75



List of Tables

3.1 Average difference in amplitude between original and adversarial inputs for
Neural Receiver model. On average, the adversarial inputs have a greater
amplitude, and this difference increases with the epsilon value . . . . . . . . 53

3.2 Average difference in amplitude between original and adversarial inputs
for End to End model. On average, the adversarial inputs have a greater
amplitude, and this difference increases with the epsilon value . . . . . . . . 58

A.1 Bit Error Rate for Neural Receiver Model(NR) and End to End Model(E2E)
from -20 to 20dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Average Confidence for Neural Receiver Model(NR) and End to End Model(E2E)
from -20 to 20dB. Average confidence is the average absolute value for the
LLRs generated by the models . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 Average Changes to BER for Neural Receiver Due to Dropout applied to
Input Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4 Average Changes to BER for Neural Receiver Due to Dropout applied to 1st
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 Average Changes to BER for Neural Receiver Due to Dropout applied to
2nd Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.6 Average Changes to BER for Neural Receiver Due to Dropout applied to 3rd
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.7 Average Changes to BER for Neural Receiver Due to Dropout applied to 4th
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.8 Average Changes to BER for Neural Receiver Due to Dropout applied to 5th
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.9 Average Changes to BER for Neural Receiver Due to Dropout applied to 6th
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.10 Average Changes to BER for Neural Receiver Due to Dropout applied to 7th
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.11 Average Changes to BER for Neural Receiver Due to Dropout applied to 8th
Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



List of Tables vii

A.12 Average Changes to BER for Neural Receiver Due to Dropout applied to
Output Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.13 Average Changes to BER for End to End Due to Dropout applied to Input
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.14 Average Changes to BER for End to End Due to Dropout applied to Hidden
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.15 Average Changes to BER for End to End Due to Dropout applied to Output
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.16 Average Changes to BER for Neural Receiver Due to FGSM . . . . . . . . . . 104
A.17 Average Changes to Prediction Confidence for Neural Receiver Due to FGSM 105
A.18 Average Changes to BER for End to End Due to FGSM . . . . . . . . . . . . . 107
A.19 Average Changes to Prediction Confidence for End to End Due to FGSM . . 108



List of Figures

2.1 An example of a neural network portrayed graphically. The nodes represent
neurons, with the lines between representing weights. The red lines rep-
resent negative weights and the blue lines represent positive weights. The
opacity of each indicates the magnitude. This network has an input layer of
size 2, an output layer of size 1, and 3 hidden layers . . . . . . . . . . . . . . . 12

2.2 Block diagram showing top level design of the Neural Receiver model. The
model also features the possibility to run two different non AI baseline im-
plementations, these have not been represented here[27]. . . . . . . . . . . . . 19

2.3 Block diagram showing an example implementation of OFDM detection
without the use of a neural network . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 An example of one of the residual blocks that make up the Neural Receiver. 21
2.5 A detailed look at the internal structure of the Neural receiver in the Neural

Receiver model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 A block diagram showing the top level of the Neural receiver once necessary

modifications had been made to allow for accurate testing and control of
input and output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 A block diagram showing the top level functionality of the End to End Au-
toencoder model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Block diagrams showing the iterative training setups for the End to End
model in its Reinforcement Learning Training mode. These diagrams are
taken directly from the literature the training method is based on [4] . . . . . 25

2.9 Bit error rate curve for the End to End model, with a minimum BER value
of 0.098 reached at 13dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Bit error rate curve for the Neural Receiver model, showing minimum BER
at 18,5dB but also showing very inconsistent results at the higher Eb/N0 levels. 27

2.11 Extended bit error rate curve for the End to End model, showing the unex-
pected performance at higher Eb/N0 levels. . . . . . . . . . . . . . . . . . . . . 28

2.12 Bit error rate curve for the Neural Receiver model after retraining, with
minimum BER value reached at 13dB and showing reduced inconsistency
prior to reaching the minimum value . . . . . . . . . . . . . . . . . . . . . . . 28

viii



List of Figures ix

2.13 Decision confidence for the Neural Receiver model. Confidence starts off
higher in the region where the models output is essentially random, lowers
and then gradually increases in the region where the models performance
begins improving but noise is still high, and then rises rapidly as the model
approaches its optimum operating Eb/N0 value. It continues increasing past
this value, even though the model performance begins to degrade. . . . . . . 30

2.14 Decision confidence for the End to End model. Confidence starts off higher
in the region where the models output is essentially random, lowers and
then gradually increases in the region where the models performance be-
gins improving but noise is still high, and then rises rapidly as the model
approaches its optimum operating Eb/N0 value. It continues increasing past
this value, even though the model performance begins to degrade. . . . . . . 31

3.1 A block diagram showing the structure and functionality of the xpl[AI]ned
testing framework. The data for a given test and the model parameters are
loaded into their respective loaders, which inherit their baseline character-
istics from the basic templates within xpl[AI]ned. These loaders are then
passed to the method, which itself takes its baseline characteristics from a
method template. The output of this method is the results for the given test 36

3.2 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its input layer. Dropout here appears to have a significant
negative effect on the performance, with the higher rates essentially render-
ing the model unusable at all Eb/N0 levels. . . . . . . . . . . . . . . . . . . . . 39

3.3 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its output layer. Dropout here appears to have a signifi-
cant negative effect on the performance, with the higher rates essentially
rendering the model unusable at all Eb/N0 levels. . . . . . . . . . . . . . . . . 39

3.4 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its first hidden layer. Being the first of 8 other hidden layers,
dropout has the least effect here, with 80% dropout having a maximum
effect on the BER of around 0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its fifth hidden layer. Being around halfway through the
model structure, the impact of dropout here is more significant than in the
first layer, with a maximum impact of 0.03 at 80% dropout. . . . . . . . . . . 41

3.6 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to the last hidden layer. This layer is the most affected out
of all of the hidden layers, with a maximum impact of around 0.06 at 80%
dropout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Figures x

3.7 Bit Error Rate curves for the Neural Receiver model at a dropout rate of 0.5
applied to each hidden layer. The increasing degradation of performance as
dropout is applied closer to the output is clear from this graph, although at
this level the BER at layers 6-8 appears to plateau at a similar value. . . . . . 42

3.8 Bit Error Rate curves for the End to End model with different dropout rates
applied to its input layer. Dropout here appears to have a significant neg-
ative effect on the performance, with the higher rates essentially rendering
the model unusable at all Eb/N0 levels. . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Bit Error Rate curves for the End to End model with different dropout rates
applied to its first hidden layer. The effect of dropout here is reduced com-
pared to the input layer, although the impact around the models optimum
range of between 10 and 15dB is still significant, especially when compared
to Neural Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Bit Error Rate curves for the End to End model with different dropout rates
applied to its output layer. Much like its input layer, the impact here is
significant, albeit still lesser overall . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Bit Error Rate curves for the Neural Receiver model due to adversarial in-
puts of different epsilon values. The results are as expected, with the higher
epsilon values causing greater impact, especially in the region of 5 to 15dB
where the model can be said to be operating optimally . . . . . . . . . . . . . 48

3.12 New Decision Confidence values for the Neural Receiver model due to ad-
versarial inputs with different epsilon values. This is represented by sub-
tracting the average change in magnitude for the LLRs from the baseline
Decision Confidence. The impacts of the adversarial inputs are noticeable
even for the low epsilon values, meaning that even if the models input data
was perturbed it would be detectable, implying the model is relatively robust. 49

3.13 The increase in BER as a percentage of the baseline value due to FGSM at
different epsilon values for the Neural Receiver model. This graph quanti-
fies the severity of the loss of performance for this model, with even epsilon
values of 0.1 reaching an increase of 1000% . . . . . . . . . . . . . . . . . . . . 50

3.14 The decrease in Decision Confidence as a percentage of the baseline value
due to FGSM at different epsilon values for the Neural Receiver model. The
models adversarial robustness is clearest here, as there are consistent and
marked decreases in confidence at all epsilon values and Eb/N0 levels. . . . . 50

3.15 Amplitude of the original inputs, adversarial inputs and the difference be-
tween said amplitudes for an FGSM test run at an Epsilon value of 0.1 and
Eb/N0 of 13dB for the Neural Receiver model. Even at this low level, the
tendency for the adversarial inputs to be of a greater amplitude than the
original ones can be observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



List of Figures xi

3.16 Amplitude of the original inputs, adversarial inputs and the difference be-
tween said amplitudes for an FGSM test run at an Epsilon value of 0.5 and
Eb/N0 of 13dB for the Neural Receiver model. The tendency for adversarial
inputs to be of a greater amplitude than the original ones is clearer from this
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.17 Amplitude of the original inputs, adversarial inputs and the difference be-
tween said amplitudes for an FGSM test run at an Epsilon value of 0.8 and
Eb/N0 of 13dB for the Neural Receiver model. The tendency for adversarial
inputs to be of a greater amplitude than the original ones is very clear from
this graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.18 Bit Error Rate curves for the End to End model showing the effect of adver-
sarial inputs with different epsilon values. The results show a very consis-
tent increase for each epsilon value, with some convergence at the higher
values starting around 5dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.19 Effect on Decision Confidence for the End to End model due to adversarial
inputs with different epsilon values. This is represented by subtracting the
average change in magnitude for the LLRs due to FGSM from the baseline
Decision Confidence. The impacts of the adversarial inputs are small for all
but the largest epsilon values, implying that this model is not robust. . . . . 55

3.20 The increase in BER as a percentage of the baseline value due to FGSM at
different epsilon values for the End to End model. This graph shows how
the performance degradation for the End model is relatively lower than for
the Neural Receiver, never going above 50%. However, this is due in large
part due to the worse baseline performance of this model in general. . . . . . 55

3.21 The decrease in Decision Confidence as a percentage of the baseline value
due to FGSM at different epsilon values for the End to End model. The lack
of adversarial robustness is clear here, as in the optimal operating region the
decrease in confidence barely exceeds 10% for the highest epsilon values,
with the lower values showing negligible differences. . . . . . . . . . . . . . . 56

3.22 Amplitude of the original inputs, adversarial inputs and the difference be-
tween said amplitudes for an FGSM test run at an Epsilon value of 0.1 and
Eb/N0 of 13dB for the End to End model. No pattern is present immediately
except for the large amount of input pairs that have identical amplitudes. . . 57

3.23 Amplitude of the original inputs, adversarial inputs and the difference be-
tween said amplitudes for an FGSM test run at an Epsilon value of 0.5 and
Eb/N0 of 13dB for the End to End model. Overall, there appear to be a
significant number of adversarial inputs of a greater amplitude, but a larger
amount of ones with identical amplitudes. . . . . . . . . . . . . . . . . . . . . 57



List of Figures xii

3.24 Amplitude of the original inputs, adversarial inputs and the difference be-
tween said amplitudes for an FGSM test run at an Epsilon value of 0.8 and
Eb/N0 of 13dB for the End to End model. Overall, there appear to be a
significant number of adversarial inputs of a greater amplitude, but a larger
amount of ones with identical amplitudes. . . . . . . . . . . . . . . . . . . . . 58

3.25 Phase angle of the original inputs, adversarial inputs and the difference be-
tween said phase angles for an FGSM test run at an Epsilon value of 0.8 and
Eb/N0 of 13dB for the End to End model. Comparing this data for different
epsilon values shows a pattern of the average difference increasing, but the
majority of inputs appear to have remained the same, in both amplitude and
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.26 Effect of scaling the output of the channel(input of the model) on the BER
for the Neural Receiver model. Scaling by factors of 2 and 4 appear to im-
prove performance(albeit inconsistently), while scaling by 6 and 8 degrade
it significantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.27 Effect of scaling the output of the channel(input of the model) on the BER
for the End to End model. Any scaling appears to degrade performance
significantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.28 BER curve for the Neural Receiver model after having been retrained with
data in a range from 10 to 25dB. This graph shows the expected result, with
the performance improving in the area around 15-20dB where it was poor
before, and then beginning to degrade around 30dB . . . . . . . . . . . . . . . 63

3.29 BER curve for the End to End model after having been retrained with data
in a range from 10 to 25dB. This result does not match expectations, and the
model appears to be entirely useless. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.30 BER curves for the End to End model for both its conventional and re-
inforcement training implementations when trained at a range of 5-8dB.
There appears to be minimal difference in performance between the two
implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.31 BER curves for the End to End model for both its conventional and rein-
forcement training implementations when trained at a range of 10-25dB. As
shown previously, the RL implementation appears to break entirely, while
the conventional implementation shows similar performance to the Neural
Receiver model, with its ’optimum range’ moved up and a severe degrada-
tion present after said range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.32 Trained constellation for RL implementation of the End to End model trained
at 5-8dB. A clear pattern of points existing in groups of 2-4 that differ by 1-
2 bits is visible, implying that the model is able to easily determine that a
given point is within a group, but struggles to determine which point within
said group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



List of Figures xiii

3.33 Trained constellation for conventional implementation of the End to End
model trained at 5-8dB. A clear pattern of points existing in pairs that differ
buy 1 bit is visible, implying that the model is able to easily determine that
a given point is one of the two, but struggles to determine which one. . . . . 66

3.34 Trained constellation for RL implementation of the End to End model trained
at 10-25dB. The previous pattern is gone and the constellation has taken a
grid-like appearance, implying that demapping should be more consistent. . 67

3.35 Trained constellation for conventional implementation of the End to End
model trained at 10-25dB.The previous pattern is gone and the constellation
has taken a grid-like appearance, implying that demapping should be more
consistent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its input layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its first hidden layer. . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its second hidden layer. . . . . . . . . . . . . . . . . . . . . . . 84

A.4 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its third hidden layer. . . . . . . . . . . . . . . . . . . . . . . . 84

A.5 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its fourth hidden layer. . . . . . . . . . . . . . . . . . . . . . . 85

A.6 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its fifth hidden layer. . . . . . . . . . . . . . . . . . . . . . . . 85

A.7 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its sixth hidden layer. . . . . . . . . . . . . . . . . . . . . . . . 86

A.8 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its seventh hidden layer. . . . . . . . . . . . . . . . . . . . . . 86

A.9 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its eighth hidden layer. . . . . . . . . . . . . . . . . . . . . . . 87

A.10 Bit Error Rate curves for the Neural Receiver model with different dropout
rates applied to its output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.11 Bit Error Rate curves for the End to End model with different dropout rates
applied to its input layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.12 Bit Error Rate curves for the End to End model with different dropout rates
applied to its first hidden layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.13 Bit Error Rate curves for the End to End model with different dropout rates
applied to its output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Preface

The author would like to clarify that this project was done in collaboration with the
xpl[AI]ned team at Keysight Technologies. The team brought expertise in the area of
AI-related programming, while the author brought experience with the air interface con-
text and developing/programming relevant testing solutions. In order to develop the
testing methods described within and adapt them for use to air interface AI models, the
xpl[AI]ned team would develop the basics of the technical backend, and then any neces-
sary work needed to mate the model to the testing methods was done in collaboration
between them and the author. All front end work involving building testing solutions,
data analysis and drawing of relevant conclusions was then done soley by the author. The
author would like to thank the xpl[AI]ned team, those being Lukas Klose, Carl Schiller
and Till Hajek, for their tireless work and assistance. This project would not have been
possible without their expertise and experience.

The author would like to thank Dr Carles Navarro Manchon and Dr Alan Anderson
for their insightful supervision and excellent advice and guidance throughout the course
of the project. Dr. Manchon’s guidance insured that the project was always heading in
the correct direction with the correct motivation, and Dr. Anderson’s technical experience
provided a wealth of knowledge to aid in all conclusions drawn within.

The author would like to thank Alice Hundt, for her endless patience, assistance and
reassurance throughout the entirety of the project cycle.

Aalborg University, May 30, 2023

Filip Ivanovic
<fivano21@student.aau.dk>

xiv

FilipIIvanovic



Chapter 1

Introduction

1.1 Introduction

As we move into the third decade of the 21st century, it is becoming clear that the defin-
ing technology of this decade will most likely be the advancement of Machine Learning
systems, colloquially called ’AI’. This technology is permeating almost all areas of engi-
neering and development, and this includes cellular communication technologies. The
generations of technology in this field are often defined by one disruptive development,
and AI is poised to be that for 6G. 6G is being built with AI technologies in mind, in terms
of both using AI to design communication systems and making sure that 6G is compatible
with large distributed learning systems.[19]

The advancement of this type of technology naturally comes with issues and growing
pains as existing infrastructure has to adapt. One of the most disruptive parts of AI is the
inherent lack of transparency in its operation. This means that while these machine learned
systems may work well for their intended purpose, the exact nature of their operation and
the factors that contribute to different aspects of their performance remain a mystery to
the layman and severely obfuscated at the very least to engineers and technicians working
in the field. This means that improvements, testing and validation operations can be diffi-
cult to perform without doing arduous processes such as retraining and brute force data
validation. This is especially disruptive to companies like Keysight Technologies, who spe-
cialise in providing testing equipment and solutions; if you can’t put in input x, observe
operation + y and see result x + y, how can you make a reliable testing solution?

With this motivation in mind, Keysight has begun to undertake multiple projects in
order to ensure that they aren’t left behind when 6G arrives and by the advancement of AI
enabled technologies in general. One of these projects involves investigations into more
advanced and granular methods of examining AI models - how they work, which parts of
them contribute the most to their performance, and how they can be adversely affected by

1



1.2. Background 2

different external conditions and internal failures. This project has Keysight as a part of
the European Union (EU) funded CENTRIC project, in which they are the main partner in
charge of research into testing methods [7].

Within Keysight, tools are being developed which can implement new methods for
testing AI. These tools comprise the standardised templates for the development of meth-
ods for use in investigating the robustness, accuracy and internal structure of AI models.
So far, these have been used in image recognition fields, but work is beginning on dis-
tributing them within the company so that various departments can begin experimenting
with them. This includes the Aalborg office, which will be one of the locations participat-
ing in the 6G research.

It is this office, in collaboration with the Edinburgh office, that put forward the proposal
for this project, which is as follows: To conduct an investigation into the possibilities for
new methods of testing AI models related to the air interface through the use of these
newly developed tools. With the proposal being open ended by design, the project will
take on a explorative nature, focusing on research and drawing conclusions from gathered
data rather than the production of a specific testing system/method.

This report follows the exploration of this proposal from the initial background re-
search stages, the clarification of the goals and requirements of the proposal, the work
done in researching and integrating a set of testing methods, discussing the performance
of said methods and the implications of their results, as well as the conclusions drawn
from the research and development process.

1.2 Background

1.2.1 AI models

The development and use of AI models is currently one of the fastest growing fields in
many different engineering spaces. Spurred on by advances in both hardware and soft-
ware, engineers are finding new ways to improve how AI models work and to make their
integrations with other systems more efficient. It is a complex field with many different
intersecting definitions, so it is worthwhile to go over the most common ones and define
what areas of study and development they cover.

At the highest level, the subset of data science that deals with the development of sys-
tems that can simulate human intelligence processes is referred to as Artificial Intelligence
(AI). While to the layman this brings forth images of malevolent machines with red eyes
bent on destruction, in reality AI development deals less with sentient computers and
more with having computers work in a way that can emulate how a human being thinks



1.2. Background 3

to aid them in solving issues that would be difficult through traditional programming.
Some of the most basic versions of AI come in the form of knowledge bases, large sets of
data that can be searched by a computer through the use of keywords to provide necessary
information, for example in a customer support setting[13].

Going one level further in complexity, we get to Machine Learning (ML), a subset of
AI that deals with developing machines that can learn from their experience and improve
over time without the need to have all possible interactions programmed directly. All ML
models are AI, but the opposite is not necessarily true. ML has two main methods of
operation relating to the method by which it learns, those being supervised and unsuper-
vised learning, although semi-supervised learning is also possible. In supervised learning,
training data that has been manually labeled and classified is provided. The model learns
from this data to be able to make predictions on new datasets. Unsupervised learning
feeds the model unlabeled, raw data. The model is not told what to do and must learn
how to classify the data from scratch by itself. This is extremely useful in situations where
data may have an unidentified hidden structure that cannot be labeled by hand but can be
discerned by the model through the learning process.

ML models are most commonly designed to solve two different types of task: Regres-
sion and Classification. In regression, the model is used to determine the relationship
between some independent variable/feature and another dependant variable/outcome,
like estimating a person’s weight based on their height and various other factors. In signal
processing, regression problems are called estimation problems. Classification models on
the other hand assign labels and categories to test data, such as determining the colours
present in a video feed. These are equivalent to detection problems in signal processing.
In all forms, machine learning is highly dependant on the representation of the data that
is passed to it; it is expecting the data it receives to be of a certain format and it needs it to
be of that format for it to provide a suitable output[13].

However, sometimes data can be incredibly complex and the best way to format said
data into a representation that can be used efficiently by the model is a task in itself. This
leads to the concept of representation learning, a subset of ML where the expected for-
mat of the data itself is part of the training process for the model. This allows for the
processing of complex data and adapting to changing situations with minimal human in-
tervention. However, when data sets reach certain levels of complexity, even these models
can struggle to put together a good representation of the data. A common example of this
tends to be things that we as humans ’perceive’, such as the presence of human speech. In
these situations, a representation learning model may be no faster than human engineers
identifying/designing complex features for the model to use[13].

In these situations where we have complex representations, we use a type of ML model



1.2. Background 4

called a Deep Learning (DL) model. These models employ deep neural networks, that is
to say neural networks with many layers, which contain many neurons that allow complex
representations to be broken down into sets of interconnected simpler ones. This process
of building complex systems out of simple concepts is what makes DL so powerful. The
base data is presented to the model at the visible layer. The visible layer contains variables
that are observable to the outside, as opposed to the following hidden layers which extract
abstract features from the provided data. The greater the number of hidden layers, the
more capable the model is at finding increasingly abstract and useful patterns within the
data[13].

1.2.2 Use of AI in the Air Interface

Research into the use of AI models in air interface applications has increased in frequency
in the recent years due to the increased capability and availability for technology to sup-
port it. Developments are being made to begin integrating AI into the current generation
(5G), enhancing specific areas such as Channel state information, Beam management and
Positioning [25]. All of these show a lot of promise in terms of performance gains for
5G. On the other hand, 6G is being developed with the possibility of using AI to design
and continually modify parts of the system itself, not just enhance and build on top of
pre-existing designs [19]. Studies cover the performance possibilities for AI integration
for almost all aspects of the air interface communication chain, with many offering solid
evidence that the possibility exists to enhance every step within it.

A common area of interest and implementation for AI models currently is on the re-
ceiver side, all the way from smaller models that handle channel decoding to models which
fully generate the receiver stack from reception to presenting the received message[17].
Due to the nature of the air interface communication and the effects of the channel, AI
models here can be used to more efficiently optimise complex calculations and allow these
systems to more seamlessly adapt to changing environments. Specifically, the complexity
inherent in the process of channel decoding means that this is fertile ground for the intro-
duction of a neural network for the purposes of decoding incoming messages transmitted
over the channel [16]. With these implementations, the large amount of potential code-
words poses a limitation due to the curse of dimensionality, which means that training the
network on every possible codeword is not feasible. In some studies, a small structured
training set is used by the system to develop a decoding algorithm to be able to infer the
rest of the code words [16]. In this case, the learning method plays a big role in the ac-
curacy of the final system due to the small size of the initial dataset. As well as this, if
the initial code set is random and does not follow a set structure in the generation of its
code words, the performance of the system is significantly decreased due to its inability
to form a consistent algorithm. However, with structured code systems the performance



1.2. Background 5

is promising to an extent that it acts as evidence that neural networks can be used for the
production of a decoder that potentially rivals or exceeds the performance of currently
implemented methods.

This idea of the enhancement of complex tasks with neural networks has also been im-
plemented on a more granular level, improving individual components of the processing
chain. When looking at Orthogonal Frequency-Division Multiplexing (OFDM), a common
data transmission method, replacing the entirety of the process with a neural network
equivalent has lead to issues with regards to the restriction of certain performance capabil-
ities. However, individual steps within the method have been replaced with AI equivalents
with promising results. An example can be seen in [15], which replaces both the channel
estimation error second order statistics and demapping steps with a Convolutional Neural
Network (CNN) and finds it improves performance across the board.

Studies also exist that expand the scope to include the creation of full end to end sys-
tems through the use of AI, incorporating both the transmission and reception of a signal.
This would entail training a neural network to handle signal generation, transmission,
channel estimation and reception. The obvious issue in this case is the fact that such a
design would not be able to comply with the need to have a differentiable channel model.
One way that this issue has been circumvented is systems in which the channel model is
avoided in the learning process [4]. Instead, the receiver and transmitter are trained in an
alternating pattern by using the true gradient of the loss function and an approximation
of it respectively. In each cycle, the receiver is initially trained by the transmitter sending
a batch of messages over the channel. The receiver compares the received messages to the
library of test messages, generating a probability matrix for each received message. This
is then optimised through the use of Stochastic Gradient Descent (SGD). The transmitter
is then trained by having it once again send messages across the channel and having the
receiver generate a probability matrix. The per message losses are then sent to the trans-
mitter via a feedback link, where the loss gradient is then estimated through SGD. This
system shows promise in terms of performance, but suffers in terms of the complexity of
the training phase and the requirement of a feedback link.

A lot of these studies and implementations have been prototypes or simulations, and
there has been a notable recent push towards actually implementing some of these pro-
posed designs in more relevant hardware, to identify potential areas of issue and validate
the proposed gains in performance. Moving to these implementations will have an effect
on the performance due to hardware limitations, and especially if they are implemented
with a fixed point instead of a floating point number system. While the floating point
implementation allows for greater flexibility and accuracy, a fixed point implementation
is more representative of real world consumer computing devices. This is due to the fact
that it allows compute units to be simplified and hardware resource and energy usage to



1.2. Background 6

be reduced. This in turn makes any implemented NN more efficient and a more realistic
consideration. Despite these simplifications and reductions in complexity, studies have
found that given enough bits in sent and received messages, there is no noticeable loss in
performance [3].

1.2.3 AI Model Testing Methods

The field of how to test and verify AI model performance grows and develops alongside
the field of AI model development. The unique qualities of this technology necessitated
that the methods used to perform tests are often just as complicated. Testing functionality
remains as important as ever, but in recent years there has been a push to expand testing
to include understanding of a models functionality and verifying the validity of the un-
derlying logic.

A basic ’smoke test’ for an AI model, a test that ensures basic functionality and key
features are implemented as expected, is the most basic and most common method of
testing an AI model. These types of tests often involve passing data through the model
and noting if the results are as expected. While important and useful especially during
the early phases of a development process, smoke testing is a design tool more so than an
testing one, and as such it gives very little insight into the actual performance of the model.

Cross validation methods are used to test how a model performs when exposed to
unseen data. In the K fold cross validation method, the test data is split into k parts. Each
iteration, one of the parts becomes the test set and the rest become the training set. By
averaging the generated metrics, more reliable estimates of accuracy and prediction error
can be found [12, 39]. This method can also be taken to its extreme with Leave-One-Out
Cross Validation, where the k number of parts is equal to the total amount of data, mean-
ing that each iteration uses every data point bar one to make a prediction about that said
data point. This is computationally more expensive and sometimes useful, but has issues
with correlation for its estimates and can lead to high variance in its averages [30]. These
methods are among the most commonly implemented in terms of validating performance
and functionality, but struggle when dealing with edge case scenarios and also do not do
much to increase the transparency of a model.

The edge case issues present in cross validation methods can be negated by performing
Coverage methods. These methods are used to explore as much of the input space as pos-
sible to identify which parts of said space are not being covered adequately. Many of these
methods attempt to use the inherent structure of the model to make evaluations about its
coverage. This includes examining the fraction of activated neurons when processing a



1.2. Background 7

test set or looking at the layers themselves and the combinations of their top neurons [29,
24].

Tests are also performed on more ’soft’ aspects of the model, such as its bias, fairness
or its privacy. Bias and fairness are crucial for ensuring that AI models make just classi-
fications and decisions, and that the model has not carried over skewed viewpoints from
its training set or its creators. These tests can be difficult to standardise, but often involve
multiple different sub-methods to analyse the source and cause of any identified areas of
bias and unfairness [32]. The privacy of a model relates to how well it protects its data,
either data that is subject to patent or personal data relating to users, if the model is op-
erating within this area. Methods that examine privacy often attempt to attack and ’trick’
a model into revealing information it is not meant to, or exposing some type of back door
through which the internal details of said model can be accessed [28].

In recent years, there has been a push towards methods which can measure a models
resistance to adversity, be it intentional or incidental. This has given rise to the term and
type of model testing method known as Adversarial Robustness, which describes meth-
ods which test a models ability to withstand various different types of onslaught once
they are deployed [8]. These attacks would force the model to provide incorrect results,
negatively impacting any infrastructure relying on the model. The attacks come from two
main vectors, those being poisoned data and weight perturbation. Poisoned data attacks
aim to adjust the data fed to a model to force it to act in unexpected ways [8]. If they
are subtle enough, these attacks can be difficult to notice while having strong knock-on
effects. Weight perturbation on the other hand attacks the weight parameters which help
to determine a models output. Through making small adjustments to these values, the
models prediction accuracy can be skewed, once again in subtle enough ways that make
detection difficult [8].

Testing methods that measure adversarial robustness often subject a model to either of
these types of attack, measuring how easy the attack is to execute, how negative the effects
are and how easy it would be to detect. One such method is Fast Gradient Sign Method
(FGSM), which attacks data by adding small perturbations to it to force misclassifications
[14]. These perturbations effectively maximise the cost function instead of minimising it,
generating data that will make the model perform mathematically worse. This field is
new, and new methods are being developed all the time to ensure models are safe from
these types of attack.

The main tools in terms of improving the transparency of the operation of AI models
are methods that focus on Explainability. The lack of transparency is one of the main hur-
dles in terms of the implementation of AI models in many different environments, as the
lack of trust means that they cannot be relied upon in situations that require 100% assur-



1.2. Background 8

ance for the operator. This problem is exacerbated as the complexity of models increases;
structures like neural networks are extremely difficult to interpret and understand when
looking from the top down.

Explainability methods come in two main forms. The first are methods that do not
know or take account of specific details regarding the model. These are known as Model
Agnostic. These perform entirely independently of the model itself, relying on making
changes to inputs and observing model reactions. One framework that makes use of
these methods is the Local Interpretable Model-Agnostic Explanations toolkit, commonly
referred to as LIME. LIME perturbs the original input around its neighbourhood and ob-
serves the reactions of the model. These datapoints are then weighted based on proximity
to the original, and a new model is created based upon them. This new model is then used
as a resource to explain why the original made the choices that it did [31]. On the other
hand, Model Specific methods take into account the model that is under test. These offer
the most transparency, but the methods themselves can be dependant on the model hav-
ing a specific structure, which means they are not universal. For example, some of these
methods are based on deconvolution and traverse the path of the CNN in reverse and
point out specific features of the data contribute the most to the final decision. While tak-
ing a long amount of time and computational resources, the level of understanding offered
by these methods is second to none, allowing for full explainability and customisation [34].

1.2.4 xpl[AI]ned - Keysight’s new AI testing toolkit

xpl[AI]ned is Keysight’s new internal toolset that is being developed to ensure the com-
pany remains ahead of the game in terms of testing as the explosion of AI enabled devices
and technologies continues. As a company whose core business is allowing engineers to
understand the relationship between given inputs and outputs, the complexity of the I/O
relation for AI models poses a serious risk. Without this understanding, AI cannot be de-
ployed into safety critical environments, as the technology cannot be developed to a high
degree of confidence by the manufacturer and cannot be trusted or understood by engi-
neers. At its core, xpl[AI]ned aims to standardise the process for creating explainable AI
by combining existing testing methods including interpretability, certainty estimation and
adversarial robustness into a single framework. The key difference that makes xpl[AI]ned
unique is its design goal in so far as it aims to be used in every phase of the life-cycle of
the development of a machine learning model. From problem formulation, data collection,
through training, validation and final deployment, in this way ensuring a deep and fun-
damental understanding of the functionality of the model. The various tests it implements
can be combined into an overall score that can rate the safety of the deployment of the
model and accurately report as to where necessary adjustments need to be made. This
automation and ability to provide insight means that when fully developed and deployed,



1.3. Clarified Goals and Requirements 9

xpl[AI]ned should be an invaluable tool for engineers in many different fields.

1.3 Clarified Goals and Requirements

The initial proposal set out by Keysight Technologies was purposefully vague, as there
were a lot of possible directions this project could have been taken and a lot of unknowns
at the time of the proposals writing. With the essential background research performed,
the goals and requirements of the project could be elaborated on. The aim of the project
is the twofold investigation of the possibilities of modern AI model testing techniques
in the field of air interface communication models, as well as the potential that all-in-one
frameworks such as xpl[AI]ned have in the design, testing and evaluation process for these
types of models. With the limitation of time and manpower in mind, the project aims to
investigate two models with two different testing methods, adding on more methods in
the later phases of testing if time allows. These tests should produce data that can be
used to inform about the structure, functionality and performance of the model, and allow
for conclusions that directly relate to the model’s real world use, i.e., in an air interface
communication system. If we can take the results generated by these testing systems and
create direct links to the real world application, we can prove that the methods in use are
valid and have value in this context.

With this in mind, a structured set of tasks/goals for the project is as follows:

1. Select two models that exemplify a common use case for ML models in the 5/6G
air interface

2. Understand the performance of both models to be used as a baseline

3. Select relevant and available testing methods to subject the models to

4. Apply the methods to the selected models and document/interpret the generated
results

5. Extract conclusions about the relevance of selected testing methods, how they in-
form future design decisions for testing air interface ML components and what
the results say about intricacies of working in this space

Even so, the project remains open ended, with the scope more relating to the avail-
ability of resources rather than the level of technical development. The chosen models
under test should be kept simple, for the purposes of simplifying the adaptation of testing
methods to them and for allowing them to be easily explainable, both internally and in the
context of this paper. The models should not require intensive rewrites of their internal
logic and structure in order to fit with chosen testing methods, as this would invalidate



1.3. Clarified Goals and Requirements 10

the overarching goal of the project and the xpl[AI]ned development within Keysight.

Another factor that is important to note is that while the production of interesting data
that can be used to draw conclusions is the preferred goal from any given testing method,
a testing method being incompatible and not working as well with a model is also a valid
and interesting result. The project aims to investigate the possibility for the use of these
methods in this context, and if a certain method does not work well, the reasons as to why
can be helpful for future choice of testing methods for these types of models.

The report is structured into chapters, each covering a key part in the project develop-
ment cycle. Chapter 1 has covered the initial background research and motivation behind
the project. Chapter 2 presents a more in depth technical analysis into the necessary tech-
nical aspects of the project, including a detailed look at Neural Networks, potential models
and the performance of the selected models. Chapter 3 is a record of the testing performed
and results generated from said tests. This includes the two main testing methods as well
as further smaller tests that were conducted. Chapter 4 goes into the implications of both
the results, discussing what they mean and what they can tell us about the models, meth-
ods and working within this context. Finally, Chapter 5 wraps up the report with a look
at the most important conclusions that can be drawn from over the course of the entire
project.



Chapter 2

Technical Analysis

This chapter covers the more in-depth research that was performed when the direction/-
motivation of the project was clarified. As previous research had shown that most air
interface models made use of them, Neural Networks are looked into in more detail to
understand their functionality, structure, training and any intricacies that can be expected
of them. A short discussion about the process of choosing models for the project is also
included, as well as an in-depth analysis of each chosen model and a record of their per-
formance in terms of Bit Error Rate and confidence to use as a baseline for future testing.

2.1 Neural Networks

Neural networks are at the forefront of AI development when it comes to complex tasks
such as air interface communications. Almost all models that we identified as potential
candidates for this investigation featured neural networks of some description, so it is
worth going into them in more detail.

2.1.1 Overview

As mentioned previously, neural networks consist of layers of interconnected artificial
neurons whose activation within the network are controlled by what are called activation
functions. These neurons have a set of weights that they multiply all their inputs by and
then add together with a bias value. This is then passed to the activation function which
decides the final value of the neurons output. During training, these weights are adjusted
through back-propagation to minimise the value of the chosen loss function. Every neural
network has its constituent layers organised into three main categories. The input layer is
the one visible to the user on the front end of the network and it represents the dimensions
of the input vector. At the other end, the output represents the final result generated by

11



2.1. Neural Networks 12

the network. In between these two are all of the layers which calculate the final output
based on the input. These layers are not visible/accessible, and so are called hidden layers
[21].

A mathematical generalisation of a simple, fully connected neural network can be seen
in (2.1). r is the number of layers, W is the set of weight matrices of which there is one per
layer, b is the set of bias vectors and g is the set of activation functions. It is worth noting
that the number of neurons and the activation function may differ on a layer by layer basis
[22]. Fig. 2.1 shows a graphical example of such a network. The nodes represent neurons,
and the lines between neurons represent the corresponding weights. A red line indicates
negative weight and a blue line indicates positive, with the opacity of each indicating the
magnitude.

ŷ = a[r] = g[r](W [r]a[r�1] + b[r]) (2.1)

Input Layer ∈ ℝ² Hidden Layer ∈ ℝ¹⁰ Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ⁴ Output Layer ∈ ℝ¹

X

Figure 2.1: An example of a neural network portrayed graphically. The nodes represent neurons, with the
lines between representing weights. The red lines represent negative weights and the blue lines represent
positive weights. The opacity of each indicates the magnitude. This network has an input layer of size 2, an
output layer of size 1, and 3 hidden layers



2.1. Neural Networks 13

2.1.2 Weights

Every connection a neuron has to any neuron in the next layer has some "weight" asso-
ciated with it, that is to say a coefficient by which its output is multiplied before being
passed to the neuron in question. These weights can be considered to represent how much
impact the value of the neuron has on all the neurons it is connected to. A high weight
will mean the value of the neurons output is very important to the output of the connected
neuron, a low weight means it will have very little effect. The output of any given neuron
is found by taking the output of all of the neurons from a previous layer it is connected to,
multiplying them by their respective weights, and adding on some bias value. The output
is then fed through the neurons activation function to determine the final output [33].

2.1.3 Activation Functions

Activation functions work by normalising the output of each neuron and passing them on
in the correct format. A linear activation function, shown in (2.2), means the neuron will
output in full, multiplied by some coefficient with some added constant. A binary step
function will go to one given a certain condition is fulfilled and be zero otherwise. A Rec-
tified Linear Unit function, shown in (2.3) acts as a rectifier, only passing positive outputs
[2]. A large variety of different kinds of these functions exist, but they can be broken down
into three main categories. Ridge activation functions act on a linear combination of the
input variables of the neuron [23]. Radial activation functions have an output that depends
only on the distance between the input and some point, usually the euclidean distance [5].
Finally, folding activation functions are used in pooling layers, as they perform an aggre-
gation over the inputs of the neuron.

f(x) = a + bx (2.2)

f(x) = max(0, a + bx) (2.3)

2.1.4 Loss Functions

The loss function is a key part of how neural networks function, and the choice of a loss
function is highly dependant on the networks intended purpose. As we train the model,
we feed data in and pass it through the model in a process known as forward propagation.
Once an output is generated, it is compared against the desired output through a process
known as back propagation, where the models parameters are adjusted so that the next
instance of forward propagation produces an output that is more similar to the desired
one. This comparison between the desired output and the generated output is the role
of the loss function. The aim is to minimise the output of this function through every



2.1. Neural Networks 14

instance of back propagation.

There are a few different types of loss function, but two specifically that are most
commonly used for neural networks. Binary Cross Entropy (BCE)(also referred to as Log
Loss), or just Cross Entropy when dealing with a multi-class problem, is the standard
choice for neural networks whose purpose is classification [37]. Entropy is the measure
of uncertainty associated with a given distribution, and cross entropy is the measure of
uncertainty of a distribution based on another, different distribution. In a classification
situation, a BCE function determines the uncertainty of the output based on its knowledge
of the input. The more similar the output and the input become, the lower the entropy is.
The final value or "loss" is an average of the individual losses from each datapoint in both
distributions, and it is this that is optimised through the training process. The equation
can be seen in (2.4). N is the number of datapoints in the test distribution, yn is the data
label and p(yn) is the probability given by the neural network for a given datapoint to be yn

Average BCE = � 1
N

N

Â
n=1

[yn • log(p(yn)) + (1 � yn) • log(1 � p(yn))] (2.4)

For neural networks solving regression problems, where the problem is not one of
assigning a category to data but instead generating discrete or continuous data that corre-
sponds to some input, Mean Error (ME) loss functions are most commonly used for train-
ing [38]. These functions take the difference between individual results and their expected
values, and then find the overall mean of this result. There are a few different versions
of these functions. One of the most common, MSE has the advantage of ensuring outlier
predictions are identified due to the weight that these types of predictions are assigned
due to the squaring nature of the function. However, the amplification of outlier errors
can make this function impractical. To solve this, Mean Absolute Error (MAE) functions
take the absolute value of the error instead of squaring it, which is essentially the opposite
in terms of advantages and disadvantages. These two functions can also be combined, to
attempt to get the best out of both of them. Root Mean Squared Error (RMSE) can also be
used, taking a square root of the MSE result to return the error in a more interpretable way
and also reduce the effects of outliers on the error. The equations for these functions can
be seen in 2.5, 2.6 and 2.7. N is the total number of datapoints, yi is the predicted value,
and ŷi is the actual value.

MSE =
1
N

N

Â
i=1

(yi � ŷi)
2 (2.5)

MAE =
1
N

N

Â
i=1

|yi � ŷi| (2.6)



2.1. Neural Networks 15

RMSE =

vuut 1
N

N

Â
i=1

(yi � ŷi)2 (2.7)

2.1.5 Training

Training an Neural Network is an iterative process that involves adjusting the previously
mentioned weights and biases within each neuron based on the output of the loss func-
tion. If we take one data sample and forward propagate it through a network that is being
trained, the input is fed through the layers, passing through neurons until the network
generates as its output what it believes to be the correct response to the input. Assuming
a supervised learning situation, we can take the our known expected result and compare
it to the output of the network. The loss of the network is the average of the losses across
all of the datapoints, determined by the loss function in use. The training process involves
pushing this network loss to its theoretical minimum value. To do this, the loss of each
individual data point needs to be considered. This loss value tells us proportionally how
much the weighted sum of all the inputs for that particular output neuron needs to change
in order for that output to be at the desired value. To change this value in the most effi-
cient way, the neurons with the highest value from the previous layer for this particular
output neuron should have their weights increased, and the ones with the lowest value
should have their weights decreased. This in essence is incentivising the neurons that are
contributing to the "correct" decision, while disincentivising the ones that are pushing to-
wards an incorrect one. This is then done for every single neuron in every single layer,
with the final result being a calculated average "best" change for each weight present in
the network, also known as the gradient. This is then applied to the network, and another
forward propagation can performed. This process is called Back-propagation and is the
core of how neural networks "learn" [33]. Very often, to reduce computational complexity,
the required weight changes are not calculated for each individual datapoint, but instead
for small randomised batches of them, decreasing the accuracy of the gradient calculation
but increasing the overall speed of finding it in a process known as Stochastic Gradient
Descent (SGD) [33].

2.1.6 Hidden Layers

The layers within the hidden section can take multiple different forms. These forms are
usually defined by the way that the layers are interconnected. A fully connected layer
for example is one in which every neuron within the layer is connected and influences
every neuron within the next layer [11]. These layers are used sparingly and for specific
purposes, as they are very sensitive to growth in the size of their inputs, which leads to a
exponential growth in how computationally expensive they are. They are commonly used
for classification. Convolutional layers, as the name suggests, perform a convolution on



2.1. Neural Networks 16

their input and pass the result on to the next layer [11]. This result is an abstraction of the
input, sometimes referred to as a feature map, which allows the complex and large input
to be represented by a smaller set of abstract features that can be used by the network for
classification. A de-convolutional layer naturally does the opposite, taking feature maps
and returning them to their original formats [11]. Pooling layers take the outputs of large
clusters of neurons and reduce them into the output of a single neuron that is passed onto
the next layer [1]. This is done to reduce the dimensions of data and therefore the com-
putational complexity of the network. Layers can be provided with a form of "memory"
through the use of Recurrent layers, which as an input take the output of the previous
layer but also the previous iteration of their own output [11]. This iterative nature allows
for better performance in situations where input data is of a sequential/deterministic na-
ture.

2.1.7 Types of Neural Network

All of these factors can be put together in a myriad of different ways to generate different
types of neural networks [21]. A few of the more complex and relevant examples include
a Multi-layer Perceptron, which features only fully connected layers and bi-directional
propagation. While good for deep learning due to the high level of interconnectedness
between the neurons, these networks struggle to be built and maintained due to their in-
herent complexity. A Convolutional Neural Network attempts to solve this issue by intro-
ducing convolutional layers, which means fewer parameters are required but the network
can function slower depending on the number of hidden layers. Radial Basis Function
neural networks make use of radial basis activation functions in their layers to perform
classifications based on euclidean distance. The most relevant of these types of network
for our purposes is the Convolutional Neural Network, as its balance of lower computa-
tional complexity and high performance ceiling means it is very commonly implemented
in the air interface communication space.

2.1.8 Intricacies of Neural Network training

Training a given network to perform well on training data is the process of optimisation,
but it truly becomes machine learning when a network can be shown to work well on
previously unseen data. The ability to work well on unseen inputs is called generalisation,
and the error when the network is operating in this context is called the generalisation
error or the test error. While training works on making the training error as small as pos-
sible, the minimisation of the test error is the real goal of network design and training.
If we assume i.i.d samples for both training and test data, the training error and the test
error should be equivalent, so the sign of a well trained network is one where the training
error is very close to the test error [13]. Two main training errors arise when consider-



2.2. Models 17

ing this performance metric, those being underfitting and overfitting. Underfitting occurs
when the training error cannot be optimised to a sufficiently low value, leading to an
under-performing network that does not ’understand’ the underlying patterns in the data.
Overfitting occurs when the training error is small, but the gap between it and the test
error is excessively large. This occurs when the network ’memorises’ aspects and patterns
that occur within the training set that do not represent the overall trend of the data and
therefore lead to it making mistakes when exposed to unseen data. These two problems
are often a trade-off: we want our network to be able to generalise and understand the
underlying trends in data while also ensuring it can extrapolate those trends to data it has
never seen before [13].

A models ’capacity’ is its ability to fit a wide variety of functions and is the characteris-
tic that is altered to control a models likelihood to over or under fit. There are many ways
to change the capacity of a model, including changing the size of the input layer, changing
the type of model, and changing the types of function that the model can represent [13].
When looking at the functions specifically, a simpler one will be more likely to generalise,
but the function must be complex enough in order to accurately represent the trends in
the data. Modifying a models capacity is a balancing act: leave it too small and the model
is incapable of solving complex tasks, while a capacity that is too large for the task at hand
can lead to overfitting. The optimal capacity is one where the model can generalise well,
while also minimising the gap between the training and test errors [13].

2.2 Models

2.2.1 Acquisition

The first step of the investigation on the technical side was to look into what models were
available and which models would be suitable for the purposes and scope of the project.
The requirements of the project, with it being an exploration of testing possibilities rather
than a direct measure of performance of specific models, meant that the scope was quite
broad. The age, source and relative performance of the models in comparison to others
was less important than their purpose being common and representative of the field as
well as being of a common format that would be easy to adapt to the xpl[AI]ned software.
As the search progressed, two main potential sources were identified: models sourced
from research papers covering development of AI in the air interface space, and models
sourced from Nvidia’s Sionna research software.



2.2. Models 18

Models from Research Papers

A lot of research papers were studied during the early phases of the investigation to
develop an understanding of the current state with regards to AI in the air interface and
potential future developments. A lot of the models within the papers were deemed unsuit-
able, as they represented a very niche or complicated process that would pose unnecessary
difficulty in terms of implementation and testing. The xpl[AI]ned toolkit was untested in
this field, so models with less specialised purposes were preferable. After looking at all of
literature used for the project, two candidates stood out, both related to channel decoding.
The first was a model developed in a paper titled "On Deep Learning Based Channel De-
coding"[16]. This model uses a deep neural network to decode structured codes, for the
purpose of proving that neural networks can be used to decode algorithms, rather than
just as classifiers. The restrained scope and simple structure lends itself well to our appli-
cation. The second was a more modern update to the first, titled "Graph Neural Networks
for Channel Decoding"[6]. The aim of this paper was the same as the first, but with a more
advanced structure and performance potential. With this in mind, it was also earmarked
as a potential option.

Models related to Sionna

Sionna, an open source library made by Nvidia for the purposes of 6G research, contains
within it and supports many different models relating to the air interface [18]. These are
either open source examples of possible Sionna implementations or models that are used
within Sionna as a key part of its functionality. Sionna was suggested as a possible re-
source for this project by Keysight themselves, who are working alongside the developers
Nvidia for the previously mentioned CENTRIC project. Of the variety of models present
within the library, two were identified as being fit for our purposes, both of which coming
from tutorials on the Sionna documentation. The first model comes from a tutorial in the
Sionna documentation titled "Neural Receiver for OFDM SIMO Systems" [27]. This tutorial
detailed the creation of a model that could be used to simulate a OFDM receiver, and was
set aside as a possible option due to the fact that the model simulated a complex system
in a seemingly simple way. Another tutorial, "End to end Learning with Autoencoders",
describes a model which consists of a full communication system, from transmission to
reception [26]. This model represents a much simpler system than the previous one, and
is much lighter and easier to run. As well as this, some aspects of the models structure
seemed relevant and interesting. Both of these models also share the advantage of very
well documented code and design documents, owing to them both being the subject of
tutorials.



2.2. Models 19

Final Model Choice

The final choice of models to be analysed and tested came down to a few factors. The
most important of these were how easily the models could be made to work with the
xpl[AI]ned framework, how straightforward the purpose of the model was and how un-
derstandable the inner functionality of the model was for the author but also for prospec-
tive readers. With all of these in mind, a final decision was made to use the two models
related to Sionna. The readability and explainability of these models was far above any
other prospective ones, and the ample documentation, age, and consistent formatting of
these two models meaning that the initial infrastructure and setup work that needed to be
done by both the author and the developers working on xpl[AI]ned was minimised. This
last advantage is magnified by choosing both of these models, as their similar structures
should reduce the amount of backend work required. The structure and functionality of
both chosen models, as well as the steps taken in order to prepare them for testing is de-
scribed in Sections 2.2.2 and 2.2.3.

2.2.2 Model 1: Neural Receiver for OFDM SIMO Systems

Outer
Encoder

QPSK
Mapper

OFDM
Mapper

Transmitter

Channel

Outer
Decoder

Receiver

Neural Receiver

Information
Bits

Codewords Baseband
Symbols

Resource
Grid

Received
Resource

Grid

LLRsReconstructed 
Information 

Bits

Figure 2.2: Block diagram showing top level design of the Neural Receiver model. The model also features the
possibility to run two different non AI baseline implementations, these have not been represented here[27].

The first model is an implementation of a trained receiver for OFDM detection [36]. This
is a complex operation, involving knowledge of the channel, through estimation or full
knowledge of the channel response, some form of equalisation, and demapping based on
the type of modulation used(QPSK in this case). The common way that this is done, as
shown in the Sionna tutorial for this model, is through the use of Least Squares baseline es-
timation alongside an LMMSE equaliser. A diagram of this method can be seen in Fig. 2.3.



2.2. Models 20

The OFDM resource grid is received and fed into a LMMSE equaliser and an LS channel
estimator. This estimator uses the transmitted pilot data to estimate the channel character-
istics using nearest neighbour interpolation [27]. With this data, the LMMSE equaliser can
then extract the symbols from the grid and feed them to a demapper and decoder in order
to reconstruct the initial information bits.

Outer
Encoder

QPSK
Mapper

OFDM
Mapper

Transmitter

Channel

Outer
Decoder

Receiver

Information
Bits

Codewords Baseband
Symbols

Resource
Grid

Received
Resource

Grid

LLRsReconstructed 
Information 

Bits

QPSK
Demapper

LMMSE
Equaliser

LS Channel
Estimator

Estimated 
Channel

Response

Equalised
Symbols

Figure 2.3: Block diagram showing an example implementation of OFDM detection without the use of a
neural network

The model replaces channel estimation, equalisation and demapping with a neural
network. The Sionna example/documentation also includes surrounding infrastructure
allowing the model to be trained and tested, such as a channel simulator, en/decoders
and mappers. A top level diagram can be seen in Fig. 2.2. The receiver itself is made
up of Keras convolutional layers. These layers are put together into residual blocks, with
residual connections implemented to avoid the gradient vanishing problem. Diagrams de-
scribing the structure of the Residual blocks and the Neural receiver can be seen in Fig.
2.4 and Fig. 2.5.



2.2. Models 21

Layer
Normalisation ReLU

Residual Block

Conv2D Layer
Normalisation ReLU Conv2D OutputInput

Figure 2.4: An example of one of the residual blocks that make up the Neural Receiver.

Stack Conv2D Residual Block (x4)

Neural Receiver

Conv2D

Received 
Resource 

Grid

Noise
Power

Figure 2.5: A detailed look at the internal structure of the Neural receiver in the Neural Receiver model.

In terms of the data structure of the model as it relates to I/O and training, while the
input to the whole infrastructure is the initial information bits, the input to the model itself
is the FFTs of the received resource grid and the output is a set of Log Likelihood Ratio
(LLR)s with the magnitude of negative results showing the models confidence in a given
bit being zero, and the magnitude of positive results showing the confidence in it being
a one. During training, a modified Binary Cross Entropy (BCE) loss function is used to
train the model. The Bit-Metric Decoding rate (BMD)is calculated by computing the aver-
age entropy between the encoded information bits and the output LLRs and subtracting
them from 1. The inverse of this value is the value being optimised during training. This
loss function can be seen in equation 2.8. R is the Bit-metric decoding rate [35], S is the
batch size, N is the number of subcarriers, M is the number of OFDM symbols, K is the
number of bits per symbol, Bs,n,m,k is the kth coded bit transmitted on resource element
(n, m) for the sth batch example, LLRs,n,m,k is the LLR computed by the neural receiver
corresponding to the kth coded bit transmitted on the resource element (n, m) for the sth
batch example and BCE is binary cross entropy in log base 2. During operation, the LLRs
the model generates are converted back to information bits through the use of a decoder.

R = 1 � 1
SNMK

S�1

Â
s=0

N�1

Â
n=0

M�1

Â
m=0

K�1

Â
k=0

BCE(Bs,n,m,k, LLRs,n,m,k) (2.8)

Observing the structure of the model shown in Fig. 2.2 we can see that the output of the
code provided by Sionna is not actually the output of the model; instead being the output
of a Low Density Parity-Check Code (LDPC) decoder which turns the LLRs produced by
the model into the reconstructed information bits as mentioned previously. This poses an
issue with regards to the presentation of our results. A lot of the methods we would like



2.2. Models 22

to implement involve procedures that will induce errors in the model. The LDPC decoder
corrects errors, and while given enough errors the degradation in performance would still
be evident, this error correction would make it difficult to make conclusions about the per-
formance of the model itself, as opposed to the performance of the entire receiver structure.

To solve this, modifications had to be made to the structure of the model, or more ac-
curately the infrastructure surrounding it. The first step was to identify where the output
of the model itself was, and to "disconnect" it from the decoder. The model output as
mentioned was a set of LLRs, 2784 to be exact, corresponding to the 1392 symbols with 2
bits each that comprised each message that the model processed. As mentioned, a positive
LLR value indicated a predicition of a bit being one, and vice versa. This meant that a
basic interpreter could be added to the output of the model to convert these LLRs to the
bits that the model predicted, and then the output of this interpreter could be set as the
output of the overall model infrastructure itself.

In order to compute the initial bit error rate and run future tests, the input and the
output of the model needed to be of the same format, and the input had to be a known
set. As mentioned, the output of the model now matched the format of the codewords
generated by the encoder from the information bits that the binary source within the model
generated randomly. This part of the model was then also modified to no longer use the
random binary source but to take an array as an input, an array that would be a batch of
known, pre-generated codewords, 2784 bits in length. With both of these modifications,
we now had full control of both the input and output of the model, as well as assurance
that any mistakes made by the model would be accurately detected. A block diagram of
the modified model infrastructure can be seen in Fig. 2.6.



2.2. Models 23

QPSK
Mapper

OFDM
Mapper

Transmitter

Channel

Receiver

Neural Receiver

Codewords

Baseband
Symbols

Resource
Grid

Received
Resource

Grid

LLRs

Figure 2.6: A block diagram showing the top level of the Neural receiver once necessary modifications had
been made to allow for accurate testing and control of input and output.

Training

This model was trained using the base parameters specified in the Sionna tutorial, with
30,000 iterations on a batch size of 128 codewords with an Eb/N0 range of -5 dB to 10 dB.

2.2.3 Model 2: End to End Learning with Autoencoders

Mapper AWGN Channel Dense

Autoencoder

Codewords Dense Dense

Trainable
Constellation

Neural Demapper

LLRs

Baseband
Symbols

Received
Samples

Figure 2.7: A block diagram showing the top level functionality of the End to End Autoencoder model

The second model that would be put under test instead modeled an entire end to end au-
toencoder, where a full communication system from transmission to reception is trained.



2.2. Models 24

A typical baseline for this type of system can be made using a fixed QAM constella-
tion/mapper, AWGN channel emulator and AWGN demapper. The model itself consists
of a trained constellation instead of a fixed one, and a neural network taking the place of
the demapper [26]. This demapper features three layers, with the first two comprising 128
neurons and using the Rectified Linear Unit activation method. The final one features as
many neurons as the number of bits per communication symbol, in this case 6, and has a
linear activation function. A block diagram of the models structure can be seen in Fig. 2.7

This model had two different potential training methods. It could be trained through
conventional means, through the use of SGD and back-propagation of the gradients through
the channel. This inherently assumes the presence of a differentiable channel model and
knowledge about the channel characteristics. The other option does not make this as-
sumption, and instead uses Reinforcement Learning (RL) by alternating between training
the receiver and then training the transmitter based on the results from the receiver train-
ing. This training method is based on a study that is mentioned in Section 1.2.2, and was
the implementation that ended up being chosen for testing. Diagrams showing these two
training modes can be seen in Fig. 2.8.

With regards to the data structure of the model, the transmitter takes the base infor-
mation bits as an input and provides mapped baseband symbols as an output, while the
neural demapper takes samples received from the channel and noise as input and outputs
a set of LLRs. During training, the demapper is trained using a basic BCE loss function
and SGD, with the loss for the demapper computed as the average BCE value. This BCE
value is fed back to the transmitter through the reinforcement link. Backpropagation is not
possible here due to the assumption of no known channel model, so the gradient has to be
calculated differently. During transmitter training a known perturbation is applied to the
transmitter output. By combining the gradient of this perturbed output with the BCE loss
computation from the receiver, an estimation of the transmitter weight gradients can be
obtained by approximating the loss function. These gradients are optimised over time to
train the transmitter. This entire process is performed iteratively, improving each section
based on the improvements to the other section from the previous iteration.



2.2. Models 25

Transmitter Training Mode

Transmitter Channel ReceiverInformation
Bits

Transmitter
Output

Channel
Output

Training
Algorithm

LLRs
Optimising

Loss
Computation

Perturbation

Perturbed
Transmitter

Output Receiver
Loss

Receiver Training Mode

Transmitter Channel ReceiverInformation
Bits

Transmitter
Output

Channel
Output

Training
Algorithm

LLRsOptimising

Figure 2.8: Block diagrams showing the iterative training setups for the End to End model in its Reinforcement
Learning Training mode. These diagrams are taken directly from the literature the training method is based
on [4]

This model required very similar changes to the Neural Receiver model, with the mod-
els standard random input generation being circumvented to allow for a consistent, known
input to be used. Once again, the output was changed to LLRs originating directly from
the models output instead of the bitstream from the built in decoder. This model used very
different parameters to the Neural Receiver model, with a 64-QAM modulation implemen-
tation instead of QPSK and a smaller codeword length of 1500. The possibility was initially
considered that these could be changed to allow for greater parity to the Neural Receiver
model for the purposes of comparing results. However, considering how different the two
models are in terms of complexity and their implementation, matching certain parameters
would not necessarily bring these models into any sort of parity. Furthermore, for the
purposes of this investigation these models are acting as tools with which to examine the
usefulness of certain AI testing methods, so being able to compare their performance like
for like is not a requirement.



2.3. Determining Model Performance 26

Training

For the purposes of the investigation, the RL training method presented the more interest-
ing and relevant implementation, as it more accurately represented what was more likely
to be the real world situation. It was then trained with a total of 10,000 iterations on a
batch size of 128 codewords with an Eb/N0 range of 5 dB to 8 dB.

2.3 Determining Model Performance

With both models now prepared for further testing, the first step was to establish a per-
formance baseline for both, by investigating their respective bit error rates. The Sionna
tutorials where both of these models featured had documentation about the block error
rates, but considering the modifications made to both models and the fact that quite a few
of the potential testing methods required more granularity, calculating the bit error rate
was necessary. To do this, the first step was to generate a data-set that would be used
across both models. This data-set of codewords would be the input, and once the models
processed the data-set and returned their interpreted LLRs, a basic bitwise XOR operation
could be performed to find any bits that differed between the two sets. The sum of this
value divided by the total number of bits in the data set would then give the bit error rate.
This operation could be performed across multiple different Energy per Bit to Noise Power
Spectral Density Ratio (Eb/N0) steps to produce a graph showing the overall performance
of each model.

The results for both models can be seen in Fig. 2.9 and Fig. 2.10, each showing an
average Bit Error Rate (BER) curve with runs of a batch size of 10,000. Both models reach
their minimum BER between 10 and 20 dB(13 for End to End, 18,5 for Neural Receiver).
This is higher than the zero Block Error Rate (BLER) points in the tutorials, but this is
due to the Bit Error Rate being more granular than BLER, and the removal of the LDPC
decoder at the output which would perform a certain amount of error correction. Both
models also show some unexpected behaviour. Looking at Fig. 2.10, The Neural Receiver
model experiences lot of volatility in its BER at the high Eb/N0 values, with the overall
trend being a decrease but not as smoothly as it is for the End to End model. Both models
also show some unexpected behaviour as the Eb/N0 is increased further. We would expect
that as the Eb/N0 rises, the quality of transmission increases, and the BER should remain
low/zero. However, if we look at Fig. 2.11, the opposite is observed. This plot shows the
results for the End to End model, but this behaviour is consistent for both models.



2.3. Determining Model Performance 27

Figure 2.9: Bit error rate curve for the End to End model, with a minimum BER value of 0.098 reached at 13dB

Figure 2.10: Bit error rate curve for the Neural Receiver model, showing minimum BER at 18,5dB but also
showing very inconsistent results at the higher Eb/N0 levels.



2.3. Determining Model Performance 28

Figure 2.11: Extended bit error rate curve for the End to End model, showing the unexpected performance at
higher Eb/N0 levels.

In an attempt to investigate the inconsistency at higher Eb/N0 levels for the Neural
Receiver, it was retrained, this time with the maximum possible Eb/N0 in the training
range increased to 20 dB from 10 dB, as it was noticed that the inconsistency in its results
appeared to start at 10 dB. The result of this retraining can be seen in Fig. 2.12.

Figure 2.12: Bit error rate curve for the Neural Receiver model after retraining, with minimum BER value
reached at 13dB and showing reduced inconsistency prior to reaching the minimum value

This retraining seemed to have two effects. Firstly, the performance of the model ap-



2.3. Determining Model Performance 29

pears to have improved, with a minimum BER (1.3 ⇤ 10�4) reached at 13 dB. As well as
this, the inconsistency in the results prior to reaching the minimum appears reduced sig-
nificantly. However, once past the minimum BER mark, the inconsistency returns, and
the BER continues on an upward trend. For the sake of better consistency, this retrained
version will be used for future testing.

The issue of undesirable performance at higher Eb/N0 values is interesting, but does
not pose any issues in terms of disrupting tests that we wish to run. It could potentially
be investigated in the future to identify the source and attempt to alleviate it.

A more in depth understanding of both models performance can be gained by going
one step deeper into the model and collecting data about the model’s confidence in its
result. This value is represented by the Log Likelihood Ratio (LLR)s in the case of both
of our models, a measure of the relative likelyhood of the decisions the model can make.
For example an LLR of -15 shows a higher likelyhood of a bit being zero than an LLR
of -5, while positive LLR values represent the likelyhood of a one. For both models, the
maximum magnitude for these LLRs in practice was around 20, although in theory their
range is infinite. Understanding these LLR values would help to put the BER results into
context, and also act as an important baseline for any future testing methods which would
affect the confidence of the models’ decisions.

These results can be seen in Figs. 2.13 and 2.14 where the confidence of each model at
a given Eb/N0 level is represented as an average of the absolute value of the LLR output
at said level, henceforth called the Decision Confidence. It is defined in (2.9), with N in
this case is the number of codewords.

Decision Confidence =
ÂN

i=1 abs(LLR Output)
N

(2.9)

The results are shown from -20 dB, right when the performance for both models ceases
to be random, to 20dB. The same pattern is evident in both graphs, but to different extents.
In both models, the confidence at -20 starts off relatively high. In this region, the noise
level is so high that it overpowers the signal, and the model attempts to classify the noise
itself, causing the high confidence but essentially random model output. As the models’
performance with respect to the BER begins to improve, the confidence decreases from this
artificially inflated value as the model is able to identify and classify the signal, but poorly.
The confidence continues to increase as the minimum BER point is reached, and in Neural
Receivers case remains consistent, while in End to Ends case continues increasing. This is
despite the fact that for both models the BER performance begins to become inconsistent
and/or degrade past the minimum BER point. For the End to End model, a possible expla-
nation for this is epistemic uncertainty, due to the fact that the model was not trained on
these higher Eb/N0 values. However, with the retraining performed previously the Neural



2.3. Determining Model Performance 30

Receiver model has been trained to up to 20 dB, so the high confidence in this area does
not have an immediate explanation.

All of the effects described above are much more noticeable and of a higher magnitude
in the End to End model (Fig. 2.14). The most likely reason for this is due to the difference
in training ranges of the 2 models, with End to End having a range of 3dB compared to
Neural Receivers 25dB. This very small range means that any effects caused by the model
dealing with data outside of its range will be exacerbated when comparing both models
across the same range of Eb/N0 values.

Figure 2.13: Decision confidence for the Neural Receiver model. Confidence starts off higher in the region
where the models output is essentially random, lowers and then gradually increases in the region where the
models performance begins improving but noise is still high, and then rises rapidly as the model approaches
its optimum operating Eb/N0 value. It continues increasing past this value, even though the model perfor-
mance begins to degrade.



2.3. Determining Model Performance 31

Figure 2.14: Decision confidence for the End to End model. Confidence starts off higher in the region where
the models output is essentially random, lowers and then gradually increases in the region where the models
performance begins improving but noise is still high, and then rises rapidly as the model approaches its
optimum operating Eb/N0 value. It continues increasing past this value, even though the model performance
begins to degrade.



Chapter 3

Testing

This chapter covers the implementation of various testing methods and the results gener-
ated from said methods. Two main methods are outlined and implemented, those being
Monte Carlo Dropout and Fast Gradient Sign Method (FGSM). Documentation about the
implementation of a couple of other methods is also present, as well as the results of some
independent testing motivated by the results produced by the main testing methods.

3.1 Testing Methods

With the models ready and their functionality and performance understood, the next step
was to determine which testing methods they would be subjected to. A large limiting
factor here was the methods that were available/possible to implement currently within
the xpl[AI]ned framework. We knew that we wanted to run tests in different areas, such
as robustness, certainty or explainability, in order to understand how they could be used
in the context of an air interface model. After meeting with the xpl[AI]ned team and dis-
cussing the various possibilities that already existed or could be developed, a few main
testing methods were decided upon.

Monte Carlo

The first method was Monte Carlo Dropout, a method which helps to determine certainty
as well as improve the efficiency of a model. Dropout in a neural network context refers to
neurons that can be switched off during the iterative training process. These are randomly
switched off at some pre-determined rate, anywhere from 0 to 100% and are used as a tech-
nique to prevent overfitting, as they allow for information to spread across the network
more evenly and make the model better at generalisation. As well as this, as different
neurons are dropped during each training iteration, the final model can be considered an

32



3.1. Testing Methods 33

average of many slightly different architectures, resulting in a better overall performance.
The Monte Carlo dropout method takes these dropout neurons and activates the dropout
during the testing phase, instead of the training phase. This has multiple different con-
sequences and potential areas for analysis. It means that, if the method is active, each
instance of the model being run is actually a run made by a slightly different architecture.
These different runs therefore have the potential of delivering different results. By look-
ing at the errors made during the testing of each of these different architectures, we can
analyse and see how resistant the model is to neuron failure; how much performance is
lost if 10% of the neurons malfunction, or 50%. As well as this, it can give us informa-
tion about how certain a model is about its result. If at small dropout rates, the error in
the models predictions does not change by a relevant amount, we can conclude that the
model has a high degree of certainty. This can also give some insight about the model’s
efficiency, as if no drop in performance is observed after a high degree of dropout, the
model might be too large, and could stand to lose neurons without expecting a drop in
performance. Conversely, if the model experiences significant drops in performance with
very low dropout rates, it could indicate that the model is as efficient as possible, and that
every single constituent neuron is necessary to maintain its performance.

In our context, Monte Carlo dropout would be used to examine the effect on the bit
error rate that losing certain proportions of neurons during operation would be. This
would be done across a range of different Eb/N0 values, to determine how much of the
information can be lost while still maintaining acceptable performance. Due to the nature
of the information being sent and the lack of redundancy, the effects of this are likely to
be extreme, especially at the input and output layers. The hidden layers may have some
sort of robustness however, the exact nature of which will be determined. The conclusions
about the model’s efficiency will be arguably more useful, as hardware in this context is
often limited and unnecessarily heavy models would be a big drain on potential resources.

FGSM

The second method that showed promise was Fast Gradient Sign Method (FGSM). This
method had been implemented by the xpl[AI]ned team for use in automotive AI imple-
mentations, but we were interested in the possibilities for its use within the air interface.
FGSM is an adversarial type method, which attempts to generate adversarial inputs that
will force a neural network to mis-classify or make wrong decisions. These inputs are
generated by applying small but intense and ’worst case’ perturbations to the dataset. For
FGSM specifically, the necessary perturbations are found by working backwards through
the model and finding the signed gradients that minimise the loss function. By taking
these signed gradients, multiplying them by a small value, and adding them to the origi-
nal input, FGSM generates the adversarial inputs[14]. The equation for FGSM can be seen
in (3.1). X is the input, Epsilon is the small value that is added to the input,r is the gradi-



3.1. Testing Methods 34

ent of the loss function with respect to X, L is the loss function and Y is the data label for X.

XAdversarial = X + # · sign(rxL(X, Y)) (3.1)

This method of essentially applying ’gradient ascent’ means that these inputs force the
model into mistakes for which it could still report a high level of confidence, if its adver-
sarial robustness is low. The level to which these adversarial inputs reduce the model’s
confidence in its output can be measured and analysed to determine how resistant the
model is to these types of attacks and therefore how adversarially robust it is. As well as
this, the inputs themselves can be useful, as collecting a lot of them and then identifying
patterns within them can lead to identifying key areas in which the model is vulnerable
or insufficiently prepared to deal with.

In the context of this project, similarly to Monte Carlo, analysing how the BER was
affected across different Eb/N0 levels would be useful to determine the magnitude of the
impact of adversarial perturbation through the form of some sort of interference. How-
ever, as the purpose of FGSM is to force the model into making ’confident’ mistakes, it
would be useful to go one step deeper, and examine the LLRs at the output of the model
to determine how much the adversarial inputs affected the model’s decision confidence.
We expect to see large drops in confidence for a robust model, and no changes for one that
has a weak adversarial robustness. As well as this, the adversarial inputs themselves could
be analysed in terms of amplitude or phase, identifying patterns in them which could then
be linked to real world situations or causes. With this, it could be possible to build a pic-
ture about the expected performance of the model depending on the outside factors of its
operating environment. However, the inherent complexity of the models and the context
of the data means that identifying these patterns and extracting useful information from
them could be a significant undertaking.

SHAP

The possibility also existed to implement SHapley Additive exPlanations (SHAP) testing
as a stretch goal given enough time in the project development cycle. SHAP is an explain-
ability method, that aims to increase the transparency and interpretability of a model. It is
based on the Shapley value, which is a concept developed from game theory that is used
to quantify the average of the marginal contributions to a task from all actors across all
permutations. When applied to the field of machine learning, the task is the minimisation
of the loss function, and the actors are the features that contribute to the output of the
model. In this way, an understanding can be gained about the models input, and what
features of said input are the most responsible for correct or incorrect predictions by the
model. As a method, SHAP involves the calculation and/or estimation of these values by



3.2. xpl[AI]ned and the Testing Environment 35

various means. These values then provide the user with global interpretability, showing
the overall contribution of each feature on a correct prediction, and local interpretability,
where each individual instance has its own SHAP values to help with transparency.

The specific version of SHAP considered for implementation was called the Kernel Ex-
plainer [10]. A subclass within the overall SHAP library, the Kernel explainer works by
putting together a weighted linear regression from the base data labels, the output of the
model and the function that generates the output. The SHAP values are then calculated
based on the method for calculating the original Shapley values and the coefficients of
the linear regression [20]. In our case, the Kernel explainer would ideally allow us to pin-
point the key features that lead to predictions of a zero or a one in the input of our models.

CEM

Another explainability method posed as a stretch goal was Contrastive Explanation Method
(CEM). Similar to SHAP in its goals but producing simpler results, CEM provides seeks to
provide contrastive explanations. A common analogy used to describe these comes from
medicine, where to prove someone has the flu a doctor must show they have a temper-
ature, a cough, but also that they do not have chills, confirming they have a flu and not
pneumonia [9]. Two main types of information are provided by applying CEM. Pertinent
Positives (PP) finds the features within data that contribute the most to a correct predic-
tion, ergo, those having the highest feature weight. On the other hand, Pertinent Negatives
(PN) find the features that have the largest negative output on the prediction, and ideally
should be absent from an ideal prediction instance. While this is less overall information
than methods like SHAP, it is provided in a more understandable way that then allows for
further investigation.

Due to the binary nature of the classification in both models, the identification of PNs
could potentially be very useful in terms understanding the key features that influence the
choice of the model. If these features can be identified and isolated, they can be used to
identify situations in which the model makes errors due to the presence of these PNs, and
also to improve the functionality of the model in the future.

3.2 xpl[AI]ned and the Testing Environment

As mentioned previously, a key part of this project is the use of Keysight’s new xpl[AI]ned
testing framework. Structurally, it consists of three main sections. The first of these is
the data-loader, which is loaded with the required input data for the given model/test,
in the correct format and specifying the amount of said data to be used for the test. The



3.2. xpl[AI]ned and the Testing Environment 36

parameters for the model under test are loaded into the model-loader, along with the
location of the saved weights for the model and the type of model being loaded. Finally,
the model-loader and data-loader are passed to the method call, alongside any variables
required for the models call function and any other data required by the method. Each of
these three components inherit their basic characteristics from templates developed by the
xpl[AI]ned team. A diagram of the basic structure of xpl[AI]ned can be seen in Fig. 3.1

Dataloader Modelloader

Method

Dataloader Template Modelloader Template

Method Template

Output

Data Model
parameters

Figure 3.1: A block diagram showing the structure and functionality of the xpl[AI]ned testing framework.
The data for a given test and the model parameters are loaded into their respective loaders, which inherit
their baseline characteristics from the basic templates within xpl[AI]ned. These loaders are then passed to the
method, which itself takes its baseline characteristics from a method template. The output of this method is
the results for the given test

The main work with regards to xpl[AI]ned required during the testing phase was mat-
ing the chosen models and their context specific requirements to the framework. This
included changes in the input format for the models/methods, modifying internal code
relating to the calculation of certain metrics and changing the type of output that the meth-
ods generated. The specific changes are described in Sections 3.3 and 3.4 where relevant.
When these modifications were made, the testing infrastructure for any given method
or test was built around the structure of xpl[AI]ned, with loops used to sweep variables
through ranges of values. These variables included ones unique to each testing method,
but also the Eb/N0 as the xpl[AI]ned methods were set up to do tests for one Eb/N0 level
at a time.

Early on in the project’s development cycle, it was decided that the bulk of the devel-
opment of the testing infrastructure should be done through the medium of Jupyter Note-



3.3. Monte Carlo Dropout 37

books. The reason for this was twofold. Firstly, it was recommended by the xpl[AI]ned
team, as in their experience this was the most efficient and flexible way to work within
their framework. As well as this, the powerful computer provided by Keysight for large
scale testing was most easily accessible through a Jupyter server. This meant that if Jupyter
Notebooks were used, the testing infrastructure could be developed within xpl[AI]ned and
then simply uploaded to the testing machine with minimal changes required. Each model
had its own notebook for each testing method. The notebook contained the necessary
code to build and load the model, as well as the required code to interface the model with
xpl[AI]ned and run a variety of different tests. These notebooks shared similar structures
due to the consistency in the design of xpl[AI]ned, with each testing method instantiated
in essentially the same way, limiting the amount of unique infrastructure needed for each
model-method combination.

3.3 Monte Carlo Dropout

3.3.1 Methodology and Implementation

The underlying theory behind this method is described in Section 3.1. The work needed to
implement Monte Carlo dropout with xpl[AI]ned was fairly straightforward. The modifi-
cations made to both models described in Section 2.2 meant that the formats for both the
input and output were already correct. To add the capability to modify dropout efficiently,
a new parameter was added to the model call function, passing a number between 0 and
1 which corresponded to the desired dropout rate. The dropout layers themselves were
manually added/changed within each model’s structure for each test, using the dropout
parameter as their input. The method call itself would provide as an output the mean BER
for the baseline runs, the mean BER for the model runs done with dropout introduced,
and the difference between the two values

The Monte Carlo test for both models would be looking at two main factors: The
model’s response to dropout being introduced, and how that response changed depend-
ing on where the dropout was introduced. Each model had multiple layers between which
dropout could occur. For each location, the dropout rate would be swept from 0% to 80%
in increments of 10%, and at each of these intervals the bit error rate would be calculated
for a range of Eb/N0 values. This range would go from -20 dB, as neither model experi-
enced a relevant change in bit error rate performance with a smaller Eb/N0 value, to 20
dB, as both models reached their minimum bit error rate with a smaller Eb/N0 value. The
sweep would feature 10,000 codewords at each Eb/N0 level, with 10 baseline (no dropout)
and 10 dropout runs done for each sample. An average value would be calculated for
each of these, and the final output would be the difference between these two averages,
or the average impact on the BER due to induced dropout. This dataset would give de-



3.3. Monte Carlo Dropout 38

tailed information as to how the loss of a differing number of neurons affected the model
performance with reference to its expected performance at a given Eb/N0 level. When
introduced at input or output layers, we would expect severe degradation as key informa-
tion with no form of redundancy is lost. The expected result for hidden layers is unknown
and depends on the structure of both models and how rightly sized they are in terms of
amount of neurons.

3.3.2 Model 1: Neural Receiver

The core of the model consists of 4 residual blocks, and within each of these blocks are 2
convolutional layers. There were also 2 additional convolutional layers acting as input and
output layers. This mean dropout could be introduced at 10 distinct locations. This model
proved to be extremely heavy even for the powerful computer that we were using to run
the tests, and the number of samples had to be decreased to 3000 to maintain consistency
and avoid out-of-memory errors occurring. This was still a sizeable amount of data espe-
cially considering multiple dropout tests would be performed on each input, so the risk of
loss of statistical significance was minimal.

The results for the input and output convolutional layers show a high susceptibility to
dropout as seen in Fig 3.2 and 3.3. This makes sense, as denying the model access to initial
input information and cutting out information generated by the hidden layers right before
the output will have an obvious impact on the BER. In both cases, the model is essentially
rendered useless at the higher dropout rates, reaching BERs of 0.5.



3.3. Monte Carlo Dropout 39

Figure 3.2: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
input layer. Dropout here appears to have a significant negative effect on the performance, with the higher
rates essentially rendering the model unusable at all Eb/N0 levels.

Figure 3.3: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
output layer. Dropout here appears to have a significant negative effect on the performance, with the higher
rates essentially rendering the model unusable at all Eb/N0 levels.

The overall results for all the hidden layers in the residual blocks follow a distinct pat-



3.3. Monte Carlo Dropout 40

tern: these layers are relatively resistant to dropout, but the negative impact increases the
further away from the input layer the dropout is applied. This is expected, as the fur-
ther down the chain the dropout is applied the fewer following layers there are to correct
for any mistakes that occur. Consistently across all hidden layers, anywhere up to 50%
dropout has an effect on the BER of less than 0.01. The absolute maximum impact in the
hidden layers occurs in the eighth, where at 80% dropout a maximum increase of around
0.06 is observed between 10 and 15dB. The graphs for the first, fifth and eighth layer are
shown in Figs. 3.4, 3.5 and 3.6. Fig. 3.7 shows the BER at all Eb/N0 levels for every hidden
layer at a dropout rate of 0.5, showing how the effect of dropout increases as it is applied
deeper into the model. The full set of graphs and data are shown in Appendix A.2

Figure 3.4: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
first hidden layer. Being the first of 8 other hidden layers, dropout has the least effect here, with 80% dropout
having a maximum effect on the BER of around 0.003



3.3. Monte Carlo Dropout 41

Figure 3.5: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
fifth hidden layer. Being around halfway through the model structure, the impact of dropout here is more
significant than in the first layer, with a maximum impact of 0.03 at 80% dropout.

Figure 3.6: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to the
last hidden layer. This layer is the most affected out of all of the hidden layers, with a maximum impact of
around 0.06 at 80% dropout.



3.3. Monte Carlo Dropout 42

Figure 3.7: Bit Error Rate curves for the Neural Receiver model at a dropout rate of 0.5 applied to each hidden
layer. The increasing degradation of performance as dropout is applied closer to the output is clear from this
graph, although at this level the BER at layers 6-8 appears to plateau at a similar value.

3.3.3 Model 2: End to End Autoencoder

While this model technically consists of 2 independently trained components, only one of
these actually ends up being a neural network, that being the Receiver. On the transmitter
side, the constellation and the bit labelling are optimised during the training process, but
once complete both of these are set in stone, and do not act as AI models. This means that
dropout can only be performed on the neural demapper side. Following the methodology
for Monte Carlo dropout, the combined Eb/N0/Dropout sweep was performed for each
of the three layers that comprise the neural demapper.

The results for the input layer can be seen in Fig. 3.8. As expected and similarly to
the Neural Receiver model, dropout applied to the input layer has a significant impact on
performance.



3.3. Monte Carlo Dropout 43

Figure 3.8: Bit Error Rate curves for the End to End model with different dropout rates applied to its input
layer. Dropout here appears to have a significant negative effect on the performance, with the higher rates
essentially rendering the model unusable at all Eb/N0 levels.

The lower Eb/N0 values, where the bit error rate is high to begin with show very little
change due to dropout as expected. Once the Eb/N0 reaches around 0dB, the effects of
dropout start becoming significant, exceeding an increase of 0.1 in the BER once 40% of
the neurons are missing. This trend continues, and at 5dB and above the effects are in-
creasingly drastic, especially considering the low base BER at these Eb/N0 levels. At the
higher performance levels from 10dB onward, the BER change is almost 0.5 for the higher
dropout rates, rendering the model essentially useless.

The effects on the performance due to dropout when applied to the hidden layer are
noticeably reduced in comparison, but appear to be more significant than the results ob-
served for Neural Receiver. This is most likely due to the network being shallower, that is
to say having fewer layers and therefore less protection against dropout. The results can
be seen in Fig. 3.9.



3.3. Monte Carlo Dropout 44

Figure 3.9: Bit Error Rate curves for the End to End model with different dropout rates applied to its first
hidden layer. The effect of dropout here is reduced compared to the input layer, although the impact around
the models optimum range of between 10 and 15dB is still significant, especially when compared to Neural
Receiver.

Once again, the lower Eb/N0 levels are barely affected by the introduction of dropout.
The effects between -5dB to 10dB have been decreased compared to the input layer, with
changes of less than 0.1 for dropout rates of up to 50%. However, in the optimal region
of between 10 and 15dB, 40% dropout and above have an increase exceeding 0.1, with a
maximum of around 0.3 for 80%, which still shows an untenable BER of 0.4 and above
consistently.

The effects of dropout on the output layer are less than the ones seen for the first layer,
but more significant than the effects on the hidden layer. Up to 20% dropout remains
below a 0.2 BER in the region between 10 and 15dB, but performance at higher dropout
rates is significantly degraded, with 70 and 80% dropout making the model unusable due
to BERs of 0.4 and above. These results can be seen in Figure 3.10, and full tables of data
for all three dropout tests for the End to End model can be seen in Appendix A.3



3.3. Monte Carlo Dropout 45

Figure 3.10: Bit Error Rate curves for the End to End model with different dropout rates applied to its output
layer. Much like its input layer, the impact here is significant, albeit still lesser overall

3.3.4 Initial Conclusions

The generated results for Monte Carlo Dropout fit with what we expected to see. In both
models, we see the input and output layers being disproportionately affected. This makes
sense, as denying the model input data or withholding its outputs will obviously have
an adverse affect on its performance. When looking at the hidden layers, the End to End
model saw worse performance in this area than the Neural Receiver, owing to the fact
that it only has 1 small hidden layer as opposed to Neural Receiver’s 8. While the quan-
tification may be of some use, the knowledge that the loss of any amount of input leads
to degraded performance is not groundbreaking for this context. On the other hand, the
response to dropout in the hidden layers tells us that the End to End model is probably as
small as it could feasibly be, while the Neural Receiver could have some design space for
optimisation considering how relatively unaffected its performance was by dropout in its
hidden layers. This is compounded when looking at the difference in the minimum BER
that both models reach, with Neural Receiver having more room for error.



3.4. FGSM 46

3.4 FGSM

3.4.1 Methodology and Implementation

The underlying theory behind this method is described in Section 3.1. The methodol-
ogy and process required to get FGSM working for both of these models was a lot more
complicated than Monte Carlo dropout. Whereas Monte Carlo dropout was able to fit
directly over the top of both models after a minimal amount of work on the backend of
the xpl[AI]ned framework, FGSM required a full rework of the method and both loaders,
as well as a significant deconstruction of the models themselves.

The key issue was the interaction between the structure of the models, specifically re-
lating to the surrounding infrastructure that makes the models work, and the nature of
the types of operations that FGSM needs to perform. As FGSM steps backwards through
the model to calculate the gradients and eventually apply the perturbations, it needs an
understanding of the format of the input and output in order to be able to generate a
valid adversarial input. Initial efforts to apply FGSM on the full structure of both models
returned many issues, including the fact that the method was apparently unable to deter-
mine the necessary gradients correctly. This issue plagued the project for a while until an
analysis of xpl[AI]neds implementation of the method and the structure of both models
revealed the cause of the issues.

In this project, we have referred to both of the structures developed by Sionna as mod-
els when referring to them for the sake of brevity, but it is worth remembering that in both
cases the model constitutes a small part of said structure, surrounded by necessary signal
processing infrastructure and other data processing methods that are necessary for the
model to do its job correctly. It is this structure that caused the most issues, as attempting
to apply FGSM to generate adversarial inputs in the form of the initial information bits or
codewords failed as neither of these were the actual input to the model. FGSM had to be
applied to just the neural network portion of the model itself, which in both cases meant
the actual inputs were received samples/resource grid after the effects of the channel and
the outputs were the generated LLRs. With this in mind, the FGSM implementation would
act on only the neural networks themselves, but the surrounding signal/data processing
steps would need to be included in the methods in order to allow for them to be used
on the front end with input/output data that made sense. This significantly increased the
complexity of the method, requiring multiple signal processing steps to be performed each
time it was called. A number of variables that needed to be passed upon initiation for both
the model and the method, including the epsilon value and the loss object. With all these
changes implemented, the output of the method call would be the mean BER as a result
of both the original and adversarial inputs, the average change in decision confidence due
to the adversarial inputs, as well as both sets of model inputs.



3.4. FGSM 47

A few different types of test would be run through the means of FGSM. Firstly, sim-
ilarly to Monte Carlo, the Bit Error Rate response to the adversarial inputs would be
investigated. This would be done by sweeping through a range of perturbation/epsilon
values(0.1 to 0.8) for a range of Eb/N0 values, once again from -20 to 20 dB (Refer to
equation (3.1) as a reference). As well as this, separate sweeps would be performed to
investigate the changes in decision confidence due to the adversarial inputs. FGSM aims
to generate inputs that will have the model making mistakes but retaining a high level of
confidence, so these results can help to show how resistant the models are to these types
of attack, or how easy they would be to detect. Due to the differences in complexity of
their design, we expected to see Neural Receiver perform better than End to End in this
regard.

The adversarial inputs themselves are also of interest, as if they can be extracted and
compared to the baseline inputs for the model, it is possible to deduce patterns in the data
that lead the models to make mistakes. These inputs would be in the form of frequency
domain samples in both cases, and as such the magnitudes of both sets of inputs could be
plotted in a spectrum and the differences between them at different epsilon levels can be
analysed. Any trend found here could then be investigated further to isolate potential real
world causal effects behind the degraded performance.

3.4.2 Model 1: Neural Receiver

As mentioned in the methodology section, implementing FGSM for the Neural Receiver
model required a lot of work, including recreating the pre-model signal processing steps
within the testing method itself. An unexpected downside of this was that the model, a
significantly heavy one already that used a lot of memory during operation, became even
heavier due to the increased amount of temporary/intermediate files that it was storing.
This meant that the maximum possible batch size was significantly reduced down to 500,
potentially reducing the the statistical significance and reliability of the results.

The first test investigated the impact of the adversarial inputs on the BER, with the
results shown in Fig. 3.11. The impact of the adversarial inputs increases as the Eb/N0
increases, becoming noticeable at around 0dB. The higher epsilon values(0.5-0.8) cause the
BER to plateau in the range of 0.1 to 0.2, while the lower ones have a lower but still notice-
able effect that increases as the Eb/N0 increases.



3.4. FGSM 48

Figure 3.11: Bit Error Rate curves for the Neural Receiver model due to adversarial inputs of different epsilon
values. The results are as expected, with the higher epsilon values causing greater impact, especially in the
region of 5 to 15dB where the model can be said to be operating optimally

With the stated goal of FGSM being to force the model to make errors with high con-
fidence, the more useful measure is the change of the model’s decision confidence due
to FGSM which can be seen in Fig. 3.12. From this figure, we can see that as the Eb/N0
increases, the drops in confidence at each epsilon level also increase, with the relationship
at each Eb/N0 level being approximately linear. The most important piece of information
to glean is that the drops in confidence are noticeable even for the lower epsilon values
from 0dB onward, which coincides with where the significant degradation of performance
due to the adversarial inputs begins(Fig. 3.11).



3.4. FGSM 49

Figure 3.12: New Decision Confidence values for the Neural Receiver model due to adversarial inputs with
different epsilon values. This is represented by subtracting the average change in magnitude for the LLRs
from the baseline Decision Confidence. The impacts of the adversarial inputs are noticeable even for the low
epsilon values, meaning that even if the models input data was perturbed it would be detectable, implying
the model is relatively robust.

To better quantify the impact to both the BER and the confidence, we can look at how
both look in terms of percentages. Fig. 3.13 shows the BER increase per epsilon value
at each Eb/N0 level as a percentage of the original BER value, with Fig 3.14 showing the
same but for the decreases in confidence. In Fig. 3.13 it is evident how significant the
degradation of performance is for the model, with even FGSM inputs with epsilon values
of 0.1 reaching up to a 1000% reduction in performance at 15dB. At the same Eb/N0 level,
epsilon values of 0.6, 0.7 and 0.8 show degradations of 100,000%. This is to be expected
due to the exceptionally low base BER values exhibited by this model. This drop in per-
formance is severe, but when combined with the results in Fig. 3.14 we can see that this
model actually has a good amount of adversarial robustness. The drops in confidence are
consistent and noticeable, with even epsilon values of 0.1 conferring a 10% drop. Perhaps
the only downside seems to be that the drops in confidence do not increase with the Eb/N0
as the performance degrades, but the consistency of the reduction means that this model
should still be very resistant to adversarial perturbations.



3.4. FGSM 50

Figure 3.13: The increase in BER as a percentage of the baseline value due to FGSM at different epsilon values
for the Neural Receiver model. This graph quantifies the severity of the loss of performance for this model,
with even epsilon values of 0.1 reaching an increase of 1000%

Figure 3.14: The decrease in Decision Confidence as a percentage of the baseline value due to FGSM at
different epsilon values for the Neural Receiver model. The models adversarial robustness is clearest here, as
there are consistent and marked decreases in confidence at all epsilon values and Eb/N0 levels.



3.4. FGSM 51

Adversarial Input Analysis

By analysing the characteristics of the baseline inputs to the model and the modified ad-
versarial versions and the differences between them, it was theoretically possible to look
for patterns to try and identify what conditions caused the model to have decreased per-
formance. The xpl[AI]ned FGSM implementation could output both the adversarial and
unaltered inputs for any given run of the method. Individual frequencies of an OFDM
symbol could be separated, the magnitudes of which calculated and these plotted into a
spectrum across all of the subcarriers. The difference between the amplitudes of both the
original and adversarial inputs could then be found and also plotted, with this entire pro-
cess done for multiple epsilon values. Examples can be seen in Figs. 3.15, 3.16 and 3.17. A
consistent pattern emerged across these plots, that being that a lot of the adversarial inputs
seemed to on average have a consistently larger amplitude than the original ones. Table
3.1 shows the average difference between the two sets over 1000 codewords. This pattern
has implications about aspects of the models structure, and the steps taken to prove those
implications are described in Section 3.5.

Figure 3.15: Amplitude of the original inputs, adversarial inputs and the difference between said amplitudes
for an FGSM test run at an Epsilon value of 0.1 and Eb/N0 of 13dB for the Neural Receiver model. Even at
this low level, the tendency for the adversarial inputs to be of a greater amplitude than the original ones can
be observed.



3.4. FGSM 52

Figure 3.16: Amplitude of the original inputs, adversarial inputs and the difference between said amplitudes
for an FGSM test run at an Epsilon value of 0.5 and Eb/N0 of 13dB for the Neural Receiver model. The
tendency for adversarial inputs to be of a greater amplitude than the original ones is clearer from this graph.

Figure 3.17: Amplitude of the original inputs, adversarial inputs and the difference between said amplitudes
for an FGSM test run at an Epsilon value of 0.8 and Eb/N0 of 13dB for the Neural Receiver model. The
tendency for adversarial inputs to be of a greater amplitude than the original ones is very clear from this
graph.



3.4. FGSM 53

Table 3.1: Average difference in amplitude between original and adversarial inputs for Neural Receiver model.
On average, the adversarial inputs have a greater amplitude, and this difference increases with the epsilon
value

Epsilon Value Average Difference
0.1 -0.00195
0.2 -0.01536
0.3 -0.04729
0.4 -0.07889
0.5 -0.09274
0.6 -0.13509
0.7 -0.20815
0.8 -0.23711

The modulation type used by the Neural Receiver is Quadrature Phase Shift Keying
(QPSK). In principle, this form of modulation should be robust to changes in amplitude
(despite the evidence seen thus far) while being sensitive to changes in phase. With this in
mind, it was deemed worth investigating the difference in phase between the original and
adversarial inputs. However, across multiple attempts and large scale data gathering ef-
forts, no consistent pattern was able to be elucidated in the phase angle results. The phase
angle between the two sets of data would differ but no consistent trend for this difference
could be found except for a slight tendency to increase with the epsilon value, and even
this was not observed every time. This is the opposite of what should be expected for
QPSK, and could be earmarked for future investigation.

3.4.3 Model 2: End to End Autoencoder

The End to End model, being a much smaller and less complex implementation than the
Neural Receiver, did not suffer the same issues with the increase in memory requirement
despite also requiring a significant amount of work to implement. As such all of its tests
were run with the full batch size of 10.000 codewords.

The first test was the basic bit error sweep, with the results seen in Fig. 3.18. The
impacts of the adversarial inputs are lesser relatively speaking compared to the ones seen
for the Neural Receiver model, but the effect on performance is still significant with BER
changes of around 0.03 in the optimum operating range between 5 and 15dB. The real im-
pact however can be seen in Fig. 3.19, where it is evident that these performance degrada-
tions do not come with consistent drops in confidence, especially in the models optimum
operating range.

Once again to better quantify these effects, Fig 3.20 and 3.21 show the changes to the



3.4. FGSM 54

BER and confidence as a percentage of their baseline value. Looking at Fig 3.20, the relative
degradation of performance for the End to End model is significantly reduced compared
to Neural Receiver, with epsilon values of 0.1 never causing an impact greater than 20%,
and an overall maximum impact of around 45% from an epsilon value of 0.8 at 0dB. Once
again, this is to be expected due to the significantly poorer baseline performance of this
model compared to the Neural Receiver model. This relative advantage however is decep-
tive, as Fig. 3.21 shows just how much this model lacks adversarial robustness. In between
-10 and 0dB, a noticeable decrease to the confidence can be seen, but as the Eb/N0 increases
into the optimum operating (and far more relevant) range for the model, the reduction in
confidence becomes significantly smaller. At 10dB and above, even epsilon values of 0.8
cause a change of 10% or less , with the smaller epsilon values cause negligible changes.
This model is therefore extremely susceptible to adversarial perturbations, as while the
relative effects to its performance are smaller, the lack of significant change to its confi-
dence means that these performance degradations would not be easily detected.

Figure 3.18: Bit Error Rate curves for the End to End model showing the effect of adversarial inputs with
different epsilon values. The results show a very consistent increase for each epsilon value, with some con-
vergence at the higher values starting around 5dB.



3.4. FGSM 55

Figure 3.19: Effect on Decision Confidence for the End to End model due to adversarial inputs with different
epsilon values. This is represented by subtracting the average change in magnitude for the LLRs due to FGSM
from the baseline Decision Confidence. The impacts of the adversarial inputs are small for all but the largest
epsilon values, implying that this model is not robust.

Figure 3.20: The increase in BER as a percentage of the baseline value due to FGSM at different epsilon values
for the End to End model. This graph shows how the performance degradation for the End model is relatively
lower than for the Neural Receiver, never going above 50%. However, this is due in large part due to the worse
baseline performance of this model in general.



3.4. FGSM 56

Figure 3.21: The decrease in Decision Confidence as a percentage of the baseline value due to FGSM at
different epsilon values for the End to End model. The lack of adversarial robustness is clear here, as in the
optimal operating region the decrease in confidence barely exceeds 10% for the highest epsilon values, with
the lower values showing negligible differences.

Adversarial Input Analysis

Once again, the adversarial inputs generated by FGSM and their original counterparts
were extracted in order to compare and analyse. Comparing the amplitudes of the orig-
inal inputs and adversarial ones again, we see a similar pattern emerge. As the epsilon
values increase, on average the adversarial values increase in amplitude, as seen from Ta-
ble 3.2. However, looking at Figs. 3.22, 3.23 and 3.24, we can also see that a significant
amount of these inputs have identical or near identical amplitudes, potentially implying
that there may be another factor at play compared to the Neural Receiver model. The
implications of the patterns in amplitude are investigated further in Section 3.5



3.4. FGSM 57

Figure 3.22: Amplitude of the original inputs, adversarial inputs and the difference between said amplitudes
for an FGSM test run at an Epsilon value of 0.1 and Eb/N0 of 13dB for the End to End model. No pattern is
present immediately except for the large amount of input pairs that have identical amplitudes.

Figure 3.23: Amplitude of the original inputs, adversarial inputs and the difference between said amplitudes
for an FGSM test run at an Epsilon value of 0.5 and Eb/N0 of 13dB for the End to End model. Overall, there
appear to be a significant number of adversarial inputs of a greater amplitude, but a larger amount of ones
with identical amplitudes.



3.4. FGSM 58

Figure 3.24: Amplitude of the original inputs, adversarial inputs and the difference between said amplitudes
for an FGSM test run at an Epsilon value of 0.8 and Eb/N0 of 13dB for the End to End model. Overall, there
appear to be a significant number of adversarial inputs of a greater amplitude, but a larger amount of ones
with identical amplitudes.

Table 3.2: Average difference in amplitude between original and adversarial inputs for End to End model. On
average, the adversarial inputs have a greater amplitude, and this difference increases with the epsilon value

Epsilon Value Average Difference
0.1 -0.00295
0.2 -0.00936
0.3 -0.01785
0.4 -0.02936
0.5 -0.04338
0.6 -0.02932
0.7 -0.07774
0.8 -0.09599

The presence of a large amount of identical amplitudes could imply that significant
differences between the two sets of inputs could be elsewhere, such as there being signif-
icant differences in phase between the two inputs. However, further testing showed that
while there did appear to be differences in phase between the two sets, there was still a
significant amount of inputs with identical phase. An example can be seen in Fig. 3.25.
This together with the amplitude results implies that a lot of the inputs between the two
sets are identical. This in turn implies that potentially very few inputs actually need to be
changed in order to induce significant performance degradation for the End to End model.



3.4. FGSM 59

Figure 3.25: Phase angle of the original inputs, adversarial inputs and the difference between said phase angles
for an FGSM test run at an Epsilon value of 0.8 and Eb/N0 of 13dB for the End to End model. Comparing
this data for different epsilon values shows a pattern of the average difference increasing, but the majority of
inputs appear to have remained the same, in both amplitude and phase.

3.4.4 Initial Conclusions

Despite the difficulties encountered in its implementation due to the large amount of back-
end work required, FGSM ended up being a very successful method. It was able to fulfil
its stated purpose of measuring the robustness of both models when exposed to adver-
sarial attacks, with Neural Receiver showing itself to be very robust, experiencing large
drops in its confidence when attacked. On the other hand, the End to End model is the
opposite, as its confidence was essentially unaffected in its optimum operation region.
The perturbation of input data is a distinct possibility in the context of air interface com-
munication, be it through interference or malicious actions such as jamming, so knowing
the adversarial robustness of a model would be paramount. Furthermore, extracting the
adversarial inputs for analysis allowed for the discovery of certain patterns in what types
of inputs cause issues for both models. There is the possibility for more to be done in
this area specifically, given more complex analysis methods. Overall, this method stands
out as very useful for this context in the design, validation and implementation stage of a
prospective models life cycle.



3.5. Further Testing 60

3.5 Further Testing

3.5.1 Investigating the effect of increased input amplitude

During FGSM testing, a pattern was observed when comparing the original inputs to the
adversarial ones for both models, where they showed a distinct trend of the adversarial in-
puts having consistently larger amplitudes. While not true of every single input point, this
pattern is consistent enough that it warranted a question: is the performance of both mod-
els susceptible to changes in amplitude? To investigate this, the structure of both models
was modified to multiply the output of the channel by a set amount. This multiplication
would be performed on both the signal and the noise to maintain a constant Eb/N0. The
results for this can be seen in Figs. 3.26 and 3.27. Interestingly, scaling factors of 2 and 4
appear to have very little effect and even improve the performance of Neural Receiver to
an inconsistent degree, however in all other situations for both models the performance is
significantly degraded.

Figure 3.26: Effect of scaling the output of the channel(input of the model) on the BER for the Neural Receiver
model. Scaling by factors of 2 and 4 appear to improve performance(albeit inconsistently), while scaling by 6
and 8 degrade it significantly.



3.5. Further Testing 61

Figure 3.27: Effect of scaling the output of the channel(input of the model) on the BER for the End to End
model. Any scaling appears to degrade performance significantly.

Looking at these graphs, it is evident that the Neural Receiver performs some amount
of equalisation/channel estimation as it appears to have some sort of robustness against
amplitude scaling to some extent. When the input is scaled by larger factors, the model
fails as the inputs are too different to the training inputs. This is probably exacerbated by
the fact that the training dataset involves some degree of normalisation, so the model is not
used to dealing with inputs that are so large. On the other hand, the End to End model
is operating with an AWGN channel which does not attenuate/amplify the transmitted
symbol and only adds noise, which means the model does not have to perform any kind
of channel equalisation. This is compounded by the models choice of modulation, that
being 64 state Quadrature Amplitude Modulation (QAM). This explains the results seen
in the graph, where it appears to be extremely vulnerable to input scaling. While such
oversights are understandable due to the tutorial nature of both models, it does mean that
to some extent both models have a very basic attack vector that can be used to degrade
their performance, representing a significant weakness in their design.

3.5.2 SHAP and CEM

Due in part to the efficiency of working with the xpl[AI]ned system, there was time during
the project period to look into both SHAP and CEM. In order to make the most of the time
that was available, the choice was made to focus on the End to End model, as its relative
simplicity compared to Neural Receiver increased the likelihood of success. Starting with
SHAP, while a lot of time was spent trying to implement it and generate values, the im-



3.5. Further Testing 62

plementation was not possible in the end. After some investigation, this appears to be due
to issues of dimensionality; the SHAP kernel explainer expects a maximum 2 dimensional
array for both the input and the output, with a 1 dimensional array being preferable. The
I/O to both chosen models had a larger dimensionality than this, meaning this imple-
mentation could not work directly. The possibility existed to change parts of the internal
structure of the model in order to make the dimensionality fit with the requirements, but
due to time issues and the fact that this would constitute a significant change and therefore
essentially invalidate any generated results, this was not done.

Unfortunately, CEM was also not implemented in time, although this time the issue
was one of incompatibility and lack of time. The xpl[AI]ned implementation for CEM
used certain tools that were present in tensorflow v1.x but not in tensorflow v2.x. Both of
the models were designed around tensorflow 2.x, which meant that the xpl[AI]ned CEM
implementation required a rewrite from the ground up. Due to the fact that CEM was be-
ing attempted so late in the project cycle, there was not enough time to test this potential
new implementation.

3.5.3 Investigating performance at high Eb/N0 levels

As mentioned throughout this report and evident in many of the figures, both models
experience a marked degradation in performance at the higher Eb/N0 levels. The focus of
this investigation is not the performance of these models in particular, but investigating
this phenomena is still worthwhile as it presents an interesting intersection between issues
with model design and issues relating to the air interface context. The main theory for this
quirk in performance was thus: the models were trained on Eb/N0 levels with significant
amounts of noise, so as they tried to process data at Eb/N0 rates with very low noise lev-
els, they were mis-characterising parts of the signal as noise, leading to the errors. To test
this hypothesis, both models could be retrained at higher Eb/N0 ranges. Ideally, a similar
pattern should emerge, with the models performing well within their range but having
the performance drop significantly soon after.

Both models were retrained in a range from 10 to 25dB, and the results can be seen
in Figs. 3.28 and 3.29. The results for the Neural Receiver model are as expected. When
trained with the lower levels of noise present, the performance of the model significantly
increases in the 15 to 25dB range, even reaching 0 in a few instances. As predicted, once
the noise level starts decreasing(in this case around 30dB) the performance begins to de-
teriorate, becoming inconsistent as the BER begins to increase. However, the results for
the End to End model do not replicate this, as it instead appears that this retraining has
resulted in the model breaking entirely, with the BER never going below 0.3.



3.5. Further Testing 63

Figure 3.28: BER curve for the Neural Receiver model after having been retrained with data in a range from
10 to 25dB. This graph shows the expected result, with the performance improving in the area around 15-20dB
where it was poor before, and then beginning to degrade around 30dB

Figure 3.29: BER curve for the End to End model after having been retrained with data in a range from 10 to
25dB. This result does not match expectations, and the model appears to be entirely useless.

The models share a lot of aspects of their basic structure, with the main difference be-
ing the training structure, with the End to End model having its transmitter and receiver



3.5. Further Testing 64

trained separately via reinforcement link as opposed to the standard back-propagation
method seen in Neural Receiver. In order to test what effect this training structure had
on the high Eb/N0 performance, the End to End model was retrained in its ’conventional’
mode, both at the baseline range of 5 to 8dB and at the high end range of 10 to 25dB. At
the baseline range, the performance of both implementations is very similar, as seen in
Fig. 3.30. However, when retrained at a high range(Fig. 3.31), the conventionally trained
model shows the expected performance that was also observed with Neural Receiver. This
implies that the stated hypothesis might be correct with models trained using traditional
back propagation, as it appears they are not able to discern between signal and noise at
higher ranges. On the other hand, it seems that the RL implementation for the end to end
model struggles at high Eb/N0 values in general, possibly due to the way in which it uses
approximation during training.

Figure 3.30: BER curves for the End to End model for both its conventional and reinforcement training
implementations when trained at a range of 5-8dB. There appears to be minimal difference in performance
between the two implementations



3.5. Further Testing 65

Figure 3.31: BER curves for the End to End model for both its conventional and reinforcement training
implementations when trained at a range of 10-25dB. As shown previously, the RL implementation appears
to break entirely, while the conventional implementation shows similar performance to the Neural Receiver
model, with its ’optimum range’ moved up and a severe degradation present after said range.

In an attempt to further understand the intricacies of the performance of the End to
End model, the mapping constellation was investigated for both training implementations.
The constellation in both instances was also trained during the training process, so could
provide some insight into the performance and the difference between the two implemen-
tations. When looking at the constellations for training in the base range of 5-8dB, as
shown in Figs. 3.32 and 3.33, there appears to be a consistent pattern. In both constella-
tions, a lot of the mappings seem to be grouped into pairs or sets of 3/4 that differ by 1-2
bits, with this being more common with the lower magnitude mappings. This observation
provides an explanation for the relatively mediocre performance of both implementations
in terms of BER when trained at this range, as these groups imply that the model knows
with a high degree of certainty that a given datapoint is one of the values in the group,
but is not able to reliably determine which one of said values it is.

When retrained at 10-25dB, both constellations lose this pattern and take on a more
expected grid-like pattern. This is most likely due to the lower overall noise presence, and
also explains the significantly improved BER performance in the optimal region for the
conventional implementation. With this in mind however, the poor performance of the RL
implementation becomes an even bigger mystery. These results can be seen in Figs. 3.34
and 3.35.



3.5. Further Testing 66

Figure 3.32: Trained constellation for RL implementation of the End to End model trained at 5-8dB. A clear
pattern of points existing in groups of 2-4 that differ by 1-2 bits is visible, implying that the model is able
to easily determine that a given point is within a group, but struggles to determine which point within said
group.

Figure 3.33: Trained constellation for conventional implementation of the End to End model trained at 5-8dB.
A clear pattern of points existing in pairs that differ buy 1 bit is visible, implying that the model is able to
easily determine that a given point is one of the two, but struggles to determine which one.



3.5. Further Testing 67

Figure 3.34: Trained constellation for RL implementation of the End to End model trained at 10-25dB. The
previous pattern is gone and the constellation has taken a grid-like appearance, implying that demapping
should be more consistent.

Figure 3.35: Trained constellation for conventional implementation of the End to End model trained at 10-
25dB.The previous pattern is gone and the constellation has taken a grid-like appearance, implying that
demapping should be more consistent.



Chapter 4

Discussion

4.1 Monte Carlo Dropout

The data generated from all of the testing methods applied to both models is quite useful.
While the data reveals information about the specific performance of both models, this is
of less importance to this project than what the data can tell us about the viability of the
testing methods for the air interface context. Looking at Monte Carlo dropout first, this
was one of the first methods implemented by the xpl[AI]ned team for the purpose of au-
tomotive image processing AI testing. In this context, dropout is a useful certainty test as
image classification tends to feature a lot of redundancy; you can lose 50% of a picture of
a car and still visually identify that it is a car. Therefore, dropout can help to identify just
how much of an image a model needs in order to make a confident prediction. Moving
this method over to the air interface communication space, this use case does not carry
over to a large extent. By design, air interface communication works with the exact nec-
essary amount of redundancy for the particular operating conditions. This means there is
not a lot of flexibility, so the introduction of data loss through dropout would lead to the
model having an inability to fully reconstruct the original message. This is shown by both
models showing a significant negative impact when dropout is introduced in their input
and output layers. While knowing just how much loss of input data degrades performance
is useful, it also isn’t anything new; losing part of the original information will obviously
make reconstructing said original information more difficult.

Of course, dropout can also be used as a design and validation tool, ensuring that a
model isn’t unnecessarily large or determining the level of structural redundancy. This is
done by performing dropout on hidden layers, and when done here both models showed
an increase in BER as a result of dropout. The Neural Receiver model was more resistant
in these tests than the End to End model, which suggests it is better optimised, while the
End to End model could use some expansion as its BER suffered greatly. Considering how
limited and efficient air interface communication hardware needs to be, the use of dropout

68



4.2. FGSM 69

during development of these models makes sense. An unnecessarily large model requires
more hardware, be it memory or processing power, making for less efficient communica-
tion systems.

Overall, while fairly easy to implement, the usefulness of Monte Carlo dropout as a
testing method for air interface AI models is mixed. As a tool for certainty it is almost
useless in this context, as we very rarely have redundant data that can be lost without af-
fecting the communication performance in a meaningful way. This means that when used
in this way, the method does not tell us anything we do not already know. On the other
hand, implementing the method to investigate model size and efficiency remains useful
as well as very easy. The differences in design between the two models were made clear
using dropout, with the End to End model being as optimised as possible in terms of size
while the Neural Receiver model showing a reduced response to dropout in comparison,
especially at the lower rates of dropout. Based on this result, future work could be done to
attempt to identify optimisation possibilities for Neural Receiver in more detail, in order to
investigate how much lower the hardware requirement could be made while maintaining
an acceptable level of performance.

4.2 FGSM

Another method ported over from xpl[AI]neds automotive AI ventures, FGSM ended up
being a far more successful implementation than Monte Carlo dropout. This is perhaps
not a surprise, as the field of air interface communications is known to be susceptible to
data being compromised, so measuring a models resistance to it should give relevant in-
formation. A lot of work had to be done on the back end to make FGSM work, and while
that is to be expected considering the amount of post and pre-processing done in this field,
it was exacerbated by the choice of model. The Sionna models, being designed for tuto-
rials, are put together in such a way where they are very open with many "disconnected"
parts. Both the author and the xpl[AI]ned team believe that implementation for models
intended for actual deployment, while still requiring some effort, would be a lot less time
consuming than the experience with these models. While the final conclusions showing
Neural Receiver as having a high adversarial robustness and End to End as having a low
one are perhaps unsurprising due to their design philosophies, the ability to quantify and
visualise both of these conclusions was extremely valuable, leading to further testing that
could be expanded in the future.

This method was also taken further with the investigations into analysing the adversar-
ial features, leading to the discovery of both models struggles with regards to equalisation.
There is far more that could be done with this thread of investigation, and the potential
exists for the use of FGSM as a tool to discover what types of interference a given air



4.3. General Discussion 70

interface model is weak to. This could be interference from other signals present in the op-
erating environment, or malicious interference from jamming and other such means. The
possibilities of this area of analysis have not been fully explored, and are perhaps worth
an individual investigation themselves.

Overall, FGSM shows a lot of promise as a testing method for models in the air in-
terface context. The results we have been able to collate show that it is useful in every
stage of the development life cycle of an air interface AI model, with unique advantages
when used in this context. It does require a considerable amount of development work,
especially if the model needs to be surrounded by signal processing steps in order to func-
tion, but the potential of the results are such that when the work is done, FGSM produces
results which greatly benefit the development of the model and the operators knowledge
of its capabilities and limitations.

4.3 General Discussion

Explainability Methods

Explainability methods are perhaps some of the most interesting with regards to their po-
tential for improving our understanding of model performance. Two such methods were
set aside as stretch goals for the project, those being SHAP and CEM. They were relegated
to stretch goals due to their inherent complexity and the fact that the xpl[AI]ned team
did not have experience with implementing them yet. Due to a variety of factors, there
was enough time to attempt some basic testing with both methods. SHAP was not imple-
mented successfully as there were issues with regards to the dimensionality of the models
that required significant changes to their structure in order to fix. This could potentially be
indicative of a systemic issue, as very often when implementing signal processing meth-
ods we rely on having large multi dimensional matrices to store our results. It remains to
be seen if this issue persists with more complex models in the future. It is possible CEM
could have produced some interesting results as the xpl[AI]ned team believed it would
not have had the same issues as SHAP, but there was not enough time to develop the
implementation.

Overall, the inability to implement either chosen explainability method is perhaps the
most unfortunate result of the project, as these methods are on the cutting edge and there
is not a lot of documentation of them being used in this context. They remain as the first
choice for avenues in which the work in this project could be taken further.



4.3. General Discussion 71

Notes on performance degradation

The consistent issues with high Eb/N0 performance, while having very little impact on the
development during the project, are an interesting abnormality. As documented in Section
3.5.3, the hypothesis for the cause behind the inconsistencies was that the models had a
poor grasp of the differing noise levels, and when the levels began to be too low compared
to the training dataset, they would begin to mis-characterise parts of the signal itself as
noise. The retraining of both models at higher Eb/N0 ranges gave mixed results, although
when the End to End model was implemented in its conventional form, the results fit more
closely to what was expected. These results imply a potential underlying flaw in design
that could perhaps be linked to Sionna with further testing.

It is worth noting that in both cases, the Eb/N0 ranges the models were tested at in
this report far exceed the ranges used in the documentation for both. The main reasoning
behind this is the projects use of Bit Error Rate as a metric instead of Block Error Rate,
meaning that a larger Eb/N0 range was required to find the optimum value. With this in
mind, it is possible that these architectures, especially the End to End model, were not de-
signed to be operated at these levels and are simply unsuitable. Whatever the case may be,
the anomalous performance of both models stands as a testament to the fact that training a
model on a dataset does not guarantee that it will ’understand’ the underlying pattern that
the dataset is based on, which can lead to undesired performance at unknown extremes.
This observation shows one of the biggest limitations of ML based models in this space.
Receivers based on classical stochastic models of the system are able to operate on wide
Eb/N0 ranges, even when such ranges exceed the ones they were designed for. This is
due to the fact that the structure they define does not change as the noise power changes,
while ML based methods do not necessarily have this advantage.

Other potential testing methods and future work

This project managed to exceed its desired scope in many ways, but there is still a lot than
can be explored in the field. Many methods that potentially show a lot of promise could
be implemented. Adversarial robustness was analysed through the use of FGSM, but this
is one of the simplest methods for doing so and perhaps more insight can be gained with
more complex implementations, especially for the issue of weight perturbation which was
not covered. The analysis of the adversarial inputs generated by FGSM represents perhaps
the most potential for future expansions of this project. The conclusions we were able to
draw were fairly basic, and future work could begin to really dig into understanding the
patterns the method generated and how they relate to real world interference. As well
as this, explainability remains a field of testing with a lot of potential to be explored, es-
pecially considering the lack of success with implementing SHAP. It would be prudent
to implement certain model aware methods as well, given the openness of the Sionna



4.3. General Discussion 72

structure. These explainability methods are critical for this context due to the complex-
ity of the operations being performed, as understanding the model behaviour is necessary
in order to have a concrete idea of what any communication system will do once deployed.

Perhaps most obvious development would be graduating to a more complex and rep-
resentative set of models to put under test. The Sionna models were chosen for their ease
of use and understanding, and now that a better understanding of development and good
types of methods within the context has been gained it is important to investigate how the
conclusions drawn from this report are supported/changed by running tests on different
types of models. This comes with potential advantages and disadvantages. The Sionna
models were put together in a way such as to be as open and easy to understand as pos-
sible, but aspects of that openness lead them to be difficult to develop for, especially with
methods that required gradient analysis. Potentially, more ’professionally’ minded mod-
els would not have this issue. However, this advantage goes hand in hand with the fact
that such models would not be as explainable and malleable as the Sionna models were,
especially if we do not have access to their internals. This uncertainty is exactly the reason
why testing with more ’realistic’ models is paramount to future development in the field.

Usefulness of xpl[AI]ned

The feasibility of this project proposal was predicated on the use of Keysight’s xpl[AI]ned
software. Ideally, this software would allow for the streamlining of the process of im-
plementing new testing methods, as well as providing a universal framework that would
allow for the development of front end testing code to be more efficient. The big unknown
in this situation was the context, as xpl[AI]ned had thus far been developed for automo-
tive AI purposes and not for use with air interface communication models. By the authors
estimation, the use of xpl[AI]ned reduced the time taken for completion for the project by
1-2 months. Its use of templates for its methods, model and data loaders completely cir-
cumvented the complex work that would have been required to code everything required
for each testing method manually. As well as this, it also simplified work on the front
end, as test result generation code could be written with the knowledge of xpl[AI]ned’s
structure in mind and so could be reused between multiple models and methods.

That is not to say that there wasn’t work to be done, as the template based structure
also meant that the software expected to be presented with models and data in specific
ways, so work had to be done to incorporate the various signal processing steps that sur-
rounded our models in order for the test steps to work. However, the author and the
xpl[AI]ned team believe that this downside would be lessened through the use of a model
built for deployment with a more conventional structure. When comparing this work to
any alternative development paths that could have been taken, it is clear that without
xpl[AI]ned the project in the form that it is presented in this report would not exist. The



4.3. General Discussion 73

software’s advantages have allowed the scope of this project to be expanded and the au-
thor believes that the concept has serious potential to improve the AI development and
validation pipeline in the future.



Chapter 5

Conclusions

The stated goal at the start of this project was an exploration of the application of certain
testing methods on air interface communication AI models through the means of Keysight
Technologies’ new xpl[AI]ned system. Given Keysight’s area of expertise, they were in-
terested in how this system could adapt to the context, and the author was interested in
gaining an understanding of what air interface AI looked like in terms of structure and
performance. As the development of the project progressed, these goals were refined, and
at the conclusion of the project it stands as documentation of the implementation, rele-
vance and results of two main testing methods and other smaller explorations on two air
interface related neural network models. The author believes that the project has achieved
its stated goal and can act as a record of an exploration of the space, but not without some
caveats.

The two main testing methods that were implemented were Monte Carlo Dropout and
the Fast Gradient Sign Method for adversarial robustness. These methods represent two
current industry standard methods for AI model testing, and together cover a models
certainty, structural efficiency and response to adversarial perturbation. Attempts were
made to implement two explainability methods as well, but these were met with technical
issues. The results generated from these models, despite being unexpected occasionally
due to certain aspects of the model performance, come together to begin to form a picture
about working within this space and how model complexity affects some of their more
hidden characteristics. While some of the results showed expected and known trends, the
meta-results of this project with regards to difficulty of implementation and interpretation
are perhaps more interesting and useful as a whole. The air interface communication space
is a complex context to develop models within, and understanding these complexities is
key to enabling better development in the future.

A big reason behind why data extracted from these methods was useful was due to the
smart decisions made with regards to model choice. By keeping the models simple and

74



75

broad in terms of their representation but also making them opposite sides of the spectrum
in terms of complexity, this report shows the wide range of results that can be expected
when implementing the chosen testing methods. On the other hand, the model choice
also hampered certain aspects of result generation. The structure of both models and the
’openness’ with which they were put together due to being essentially tutorials lead to
some issues with implementing certain testing methods. As well as this, the inconsistent
performance of the models in certain aspects limits the usefulness of the generated data,
and ideally these testing methods could now be taken and implemented on models that
are more representative of industry standards.

The choice to directly tie this project to Keysight’s xpl[AI]ned infrastructure meant that
the amount of work that was achieved within the project period was significantly more
than would otherwise have been possible. While the choice of two models with similar
structures also helped in this regard, the fact that testing infrastructure could essentially
be reused due to the consistency of the way methods were implemented in xpl[AI]ned was
a huge factor. The project managed to achieve all of its stretch goals despite any work that
had to be done in order to adapt xpl[AI]ned to this context. However, it is possible that
the requirements of xpl[AI]ned in terms of format limited certain tests, such as SHAP, but
without it it is questionable if reaching these more advanced testing methods would have
even been possible.

Overall, the author believes that this project has been a significant success. From a
vague and open ended proposal, a report has been put together that documents not only
new methods of standardising the application of testing methods for AI models, but also
how certain methods interact with air interface communication models. The experiences
of implementation and the generated results come together to paint a picture of a situation
which can have various unique requirements when compared to many other contexts, and
as such special considerations must be applied. This is especially true when working with
models that simulate small parts of complex systems as described in this report, as sur-
rounding processing steps often have a large impact on the format of the I/O, requiring
careful engineering in order to implement certain testing methods. At the end of the day
it is the authors belief that this project can stand as an introductory piece of work that
can point the way in terms of development in the field of air interface communication AI
model testing.

In terms of how the work undertaken by this project can be expanded upon further,
there are multiple different paths that can be taken. As previously mentioned, this project
lacks documentation of the results of explainability methods, of which there appears to
be very little documentation of in general in this space. A significant part of the project
is focused on a study of robustness, but this could be taken even further. The effects of
data poisoning on the training data could be studied to determine the robustness of the



76

models in a training context. Comparing this robustness against the robustness to devi-
ations in test data documented within this report could be a useful tool to inform future
model design. A key aspect of the air interface context not represented by this report is
the fact that multiple different ML models are often implemented in concurrence when
used in this space. These models perform complex operations and pass data amongst
themselves as they execute various tasks. Combining models in this way leads to new
testing opportunities that could be explored, such as developing methods to test the ag-
gregate effect of all of these models put together and what the vulnerabilities are of such
systems as a whole, rather than of the individual components within as this project has
investigated. This field is a rapidly expanding one, and almost every aspect covered by
this report could be investigated further to make more granular and complete conclusions.



Bibliography

[1] A Gentle Introduction to Pooling Layers for Convolutional Neural Networks. url: https:
//machinelearningmastery.com/pooling-layers-for-convolutional-neural-
networks/.

[2] A Gentle Introduction to the Rectified Linear Unit (ReLU). url: https://machinelearningmastery.
com / rectified - linear - activation - function - for - deep - learning - neural -
networks/.

[3] Faycal Aoudia and Jakob Hoydis. “Towards Hardware Implementation of Neural
Network-based Communication Algorithms”. In: July 2019, pp. 1–5. doi: 10.1109/
SPAWC.2019.8815398.

[4] Fayçal Ait Aoudia and Jakob Hoydis. “Model-free training of end-to-end commu-
nication systems”. In: IEEE Journal on Selected Areas in Communications 37.11 (2019),
pp. 2503–2516.

[5] Martin D Buhmann. “Radial basis functions”. In: Acta numerica 9 (2000), pp. 1–38.

[6] Sebastian Cammerer et al. “Graph neural networks for channel decoding”. In: 2022
IEEE Globecom Workshops (GC Wkshps). IEEE. 2022, pp. 486–491.

[7] CENTRIC. url: https://centric-sns.eu/.

[8] Pin-Yu Chen. Securing AI systems with adversarial robustness. 2021. url: https://
research.ibm.com/blog/securing-ai-workflows-with-adversarial-robustness.

[9] Amit Dhruandhar. Contrastive Explanations Help AI Explain Itself by Identifying What is
Missing. 2018. url: https://www.ibm.com/blogs/research/2018/05/contrastive-
explanations/.

[10] SHAP Documentation. shap.KernelExplainer. url: https://shap-lrjball.readthedocs.
io/en/latest/generated/shap.KernelExplainer.html.

[11] Four Common Types of Neural Network Layers. url: https://towardsdatascience.
com/four-common-types-of-neural-network-layers-c0d3bb2a966c#:~:text=
The\%20four\%20most\%20common\%20types,how\%20they\%20can\%20be\%20used..

[12] Tadayoshi Fushiki. “Estimation of prediction error by using K-fold cross-validation”.
In: Statistics and Computing 21 (2011), pp. 137–146.

77



Bibliography 78

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016. Chap. 1.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harness-
ing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[15] Mathieu Goutay et al. “Machine Learning-enhanced Receive Processing for MU-
MIMO OFDM Systems”. In: 2021 IEEE 22nd International Workshop on Signal Process-
ing Advances in Wireless Communications (SPAWC). IEEE. 2021, pp. 246–250.

[16] Tobias Gruber et al. “On Deep Learning-based Channel Decoding”. In: 2017 51st
annual conference on information sciences and systems (CISS). IEEE. 2017, pp. 1–6.

[17] Mikko Honkala, Dani Korpi, and Janne MJ Huttunen. “DeepRx: Fully convolutional
deep learning receiver”. In: IEEE Transactions on Wireless Communications 20.6 (2021),
pp. 3925–3940.

[18] Jakob Hoydis et al. “Sionna: An open-source library for next-generation physical
layer research”. In: arXiv preprint arXiv:2203.11854 (2022).

[19] Jakob Hoydis et al. “Towards a 6G AI-Native Air Interface”. In: IEEE Communications
Magazine May 2021 (2021), pp. 76–81.

[20] Chris Kuo. Explain Any Models with the SHAP Values — Use the KernelExplainer. url:
https://towardsdatascience.com/explain-any-models-with-the-shap-values-
use-the-kernelexplainer-79de9464897a.

[21] Great Learning. Types of Neural Networks and Definition of Neural Network. url: https:
//www.mygreatlearning.com/blog/types-of-neural-networks/.

[22] Benoit Liquet, Sarat Moka, and Yoni Nazarathy. General Fully Connected Neural Net-
works. url: https://deeplearningmath.org/general-fully-connected-neural-
networks.html#n-layers-neural-network.

[23] Benjamin F Logan and Larry A Shepp. “Optimal reconstruction of a function from
its projections”. In: (1975).

[24] Lei Ma et al. “Deepgauge: Multi-granularity testing criteria for deep learning sys-
tems”. In: Proceedings of the 33rd ACM/IEEE international conference on automated soft-
ware engineering. 2018, pp. 120–131.

[25] Juan Montojo. AI/ML for NR Air Interface. url: https://www.3gpp.org/technologies/
ai-ml-nr.

[26] NVlabs. End-to-end Learning with Autoencoders. url: https://nvlabs.github.io/
sionna/examples/Autoencoder.html.

[27] NVlabs. Neural Receiver for OFDM SIMO Systems. url: https://nvlabs.github.io/
sionna/examples/Neural_Receiver.html.

[28] Ayodeji Oseni et al. “Security and privacy for artificial intelligence: Opportunities
and challenges”. In: arXiv preprint arXiv:2102.04661 (2021).



Bibliography 79

[29] Kexin Pei et al. “Deepxplore: Automated whitebox testing of deep learning systems”.
In: proceedings of the 26th Symposium on Operating Systems Principles. 2017, pp. 1–18.

[30] Francesc Pozo Montero. “Validation Procedures. Leave-one-out cross-validation (LOOCV)
and k-fold cross-validation”. In: (2019).

[31] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust you?"
Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.

[32] Drew Roselli, Jeanna Matthews, and Nisha Talagala. “Managing Bias in AI”. In: Com-
panion Proceedings of The 2019 World Wide Web Conference. WWW ’19. San Francisco,
USA: Association for Computing Machinery, 2019, 539–544. isbn: 9781450366755.
doi: 10.1145/3308560.3317590. url: https://doi.org/10.1145/3308560.3317590.

[33] Grant Sanderson. Neural networks. 2023. url: https://www.youtube.com/playlist?
list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

[34] Ramprasaath R Selvaraju et al. “Grad-CAM: Why did you say that?” In: arXiv
preprint arXiv:1611.07450 (2016).

[35] K. Pavan Srinath and Jakob Hoydis. Bit-Metric Decoding Rate in Multi-User MIMO
Systems: Theory. 2022. arXiv: 2203.06271 [cs.IT].

[36] Keysight Technologies. Concepts of Orthogonal Frequency Division Multiplexing (OFDM)
and 802.11 WLAN. url: https://rfmw.em.keysight.com/wireless/helpfiles/
89600b/webhelp/subsystems/wlan-ofdm/content/ofdm_basicprinciplesoverview.
htm.

[37] Understanding binary cross-entropy / log loss: a visual explanation. url: https://towardsdatascience.
com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-
a3ac6025181a.

[38] Understanding the 3 most common loss functions for Machine Learning Regression. url:
https://towardsdatascience.com/understanding-the-3-most-common-loss-
functions-for-machine-learning-regression.

[39] Tzu-Tsung Wong and Po-Yang Yeh. “Reliable accuracy estimates from k-fold cross
validation”. In: IEEE Transactions on Knowledge and Data Engineering 32.8 (2019), pp. 1586–
1594.



Appendix A

Raw Data

A.1 Model Performance

80



A.1. Model Performance 81

Table A.1: Bit Error Rate for Neural Receiver Model(NR) and End to End Model(E2E) from -20 to 20dB

Eb/N0 Average BER NR Average BER E2E
-20 4.96E-01 4.81E-01
-19 4.93E-01 4.79E-01
-18 4.90E-01 4.76E-01
-17 4.85E-01 4.73E-01
-16 4.77E-01 4.70E-01
-15 4.71E-01 4.66E-01
-14 4.60E-01 4.61E-01
-13 4.49E-01 4.55E-01
-12 4.36E-01 4.50E-01
-11 4.19E-01 4.43E-01
-10 4.03E-01 4.35E-01
-9 3.83E-01 4.25E-01
-8 3.60E-01 4.15E-01
-7 3.33E-01 4.03E-01
-6 3.06E-01 3.90E-01
-5 2.77E-01 3.75E-01
-4 2.45E-01 3.59E-01
-3 2.10E-01 3.42E-01
-2 1.75E-01 3.25E-01
-1 1.39E-01 3.06E-01
0 1.06E-01 2.86E-01
1 7.74E-02 2.67E-01
2 5.36E-02 2.48E-01
3 3.51E-02 2.29E-01
4 2.20E-02 2.08E-01
5 1.27E-02 1.86E-01
6 7.19E-03 1.65E-01
7 3.49E-03 1.45E-01
8 1.78E-03 1.27E-01
9 1.09E-03 1.13E-01
10 6.39E-04 1.05E-01
11 3.87E-04 1.02E-01
12 2.94E-04 9.76E-02
13 1.79E-04 9.48E-02
14 1.41E-04 9.83E-02
15 2.02E-04 1.15E-01
16 2.32E-04 1.30E-01
17 3.56E-04 1.35E-01
18 4.47E-04 1.42E-01
19 5.14E-04 1.59E-01
20 4.86E-04 1.86E-01



A.1. Model Performance 82

Table A.2: Average Confidence for Neural Receiver Model(NR) and End to End Model(E2E) from -20 to 20dB.
Average confidence is the average absolute value for the LLRs generated by the models

Eb/N0 Average Confidence NR Average Confidence E2E
-20 1.79E+00 2.24E+01
-19 1.50E+00 1.87E+01
-18 1.27E+00 1.56E+01
-17 1.08E+00 1.30E+01
-16 9.65E-01 1.08E+01
-15 8.91E-01 8.98E+00
-14 8.53E-01 7.51E+00
-13 8.43E-01 6.29E+00
-12 8.57E-01 5.31E+00
-11 8.86E-01 4.52E+00
-10 9.28E-01 3.88E+00
-9 9.95E-01 3.37E+00
-8 1.07E+00 2.98E+00
-7 1.16E+00 2.67E+00
-6 1.29E+00 2.45E+00
-5 1.46E+00 2.29E+00
-4 1.69E+00 2.20E+00
-3 2.00E+00 2.16E+00
-2 2.44E+00 2.18E+00
-1 3.05E+00 2.25E+00
0 3.84E+00 2.38E+00
1 4.73E+00 2.56E+00
2 5.65E+00 2.83E+00
3 6.68E+00 3.18E+00
4 7.76E+00 3.62E+00
5 8.90E+00 4.15E+00
6 1.01E+01 4.77E+00
7 1.12E+01 5.45E+00
8 1.23E+01 6.14E+00
9 1.32E+01 6.80E+00
10 1.39E+01 7.38E+00
11 1.44E+01 7.87E+00
12 1.47E+01 8.30E+00
13 1.49E+01 8.69E+00
14 1.50E+01 9.05E+00
15 1.51E+01 9.42E+00
16 1.51E+01 9.75E+00
17 1.51E+01 1.01E+01
18 1.51E+01 1.04E+01
19 1.50E+01 1.08E+01
20 1.49E+01 1.12E+01



A.2. Monte Carlo Dropout: Neural Receiver 83

A.2 Monte Carlo Dropout: Neural Receiver

Figure A.1: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
input layer.

Figure A.2: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
first hidden layer.



A.2. Monte Carlo Dropout: Neural Receiver 84

Figure A.3: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
second hidden layer.

Figure A.4: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
third hidden layer.



A.2. Monte Carlo Dropout: Neural Receiver 85

Figure A.5: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
fourth hidden layer.

Figure A.6: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
fifth hidden layer.



A.2. Monte Carlo Dropout: Neural Receiver 86

Figure A.7: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
sixth hidden layer.

Figure A.8: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
seventh hidden layer.



A.2. Monte Carlo Dropout: Neural Receiver 87

Figure A.9: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
eighth hidden layer.

Figure A.10: Bit Error Rate curves for the Neural Receiver model with different dropout rates applied to its
output layer.



A.2. Monte Carlo Dropout: Neural Receiver 88

Table A.3: Average Changes to BER for Neural Receiver Due to Dropout applied to Input Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000794 0.001413 0.002222 0.002411 0.002734 0.003605 0.003794 0.004047
-19 0.001225 0.002808 0.003964 0.005046 0.00578 0.005846 0.005447 0.00634
-18 0.002341 0.004331 0.006536 0.0076 0.008196 0.00997 0.01031 0.010271
-17 0.003334 0.006887 0.009842 0.011694 0.014059 0.015505 0.016464 0.017078
-16 0.004778 0.009505 0.014283 0.017469 0.020892 0.022991 0.024807 0.025704
-15 0.006419 0.012099 0.017975 0.023406 0.028333 0.031827 0.035061 0.036277
-14 0.006746 0.014642 0.021456 0.029008 0.035883 0.041656 0.046244 0.048248
-13 0.007814 0.016104 0.024713 0.033597 0.042772 0.051274 0.05762 0.061638
-12 0.009285 0.018657 0.028293 0.038445 0.0497 0.060792 0.070155 0.076431
-11 0.010257 0.020503 0.032161 0.0446 0.056816 0.069732 0.083482 0.093431
-10 0.011207 0.023635 0.036838 0.049959 0.064777 0.080164 0.096399 0.110392
-9 0.01251 0.025325 0.040908 0.056659 0.072993 0.091273 0.109506 0.128508
-8 0.013277 0.02798 0.044317 0.061693 0.081137 0.102273 0.123199 0.146605
-7 0.01451 0.030036 0.048053 0.067414 0.089325 0.112352 0.137905 0.164596
-6 0.015635 0.032741 0.051218 0.072993 0.096269 0.123004 0.151971 0.18246
-5 0.016629 0.035487 0.055996 0.078574 0.104271 0.133372 0.166118 0.200766
-4 0.018365 0.038249 0.060378 0.084741 0.112613 0.144262 0.180553 0.220005
-3 0.019602 0.041492 0.065494 0.091996 0.121939 0.156095 0.195262 0.239448
-2 0.021151 0.044982 0.070795 0.099445 0.131501 0.168441 0.210942 0.2592
-1 0.022844 0.048017 0.07563 0.106733 0.141396 0.180864 0.226197 0.27824
0 0.023936 0.050533 0.079798 0.11294 0.149889 0.192047 0.240226 0.295969
1 0.024469 0.052107 0.082732 0.117459 0.156635 0.20115 0.252318 0.311237
2 0.024808 0.052831 0.084599 0.120614 0.161521 0.208157 0.261663 0.323251
3 0.024494 0.052609 0.08477 0.121944 0.164179 0.212551 0.268248 0.33206
4 0.023718 0.051694 0.083769 0.121635 0.164835 0.214644 0.271898 0.337904
5 0.022548 0.049604 0.081842 0.119844 0.163715 0.214661 0.27344 0.341081
6 0.021216 0.047505 0.079043 0.117022 0.161513 0.213343 0.273075 0.341925
7 0.019743 0.045006 0.076363 0.113762 0.158598 0.210883 0.271593 0.341388
8 0.018536 0.042925 0.073508 0.11086 0.155935 0.208634 0.269765 0.340304
9 0.017463 0.040845 0.071147 0.108506 0.153391 0.206354 0.267936 0.339098

10 0.0167 0.039561 0.069331 0.106326 0.151462 0.204661 0.266542 0.337835
11 0.015963 0.03823 0.067747 0.104952 0.149861 0.203004 0.265464 0.336801
12 0.015329 0.037512 0.06666 0.103735 0.148831 0.202133 0.264421 0.336206
13 0.01506 0.036989 0.06605 0.103107 0.148031 0.201434 0.263716 0.335942
14 0.014828 0.03647 0.065495 0.10248 0.147364 0.20125 0.263554 0.335582
15 0.014579 0.036096 0.065303 0.102357 0.146934 0.200941 0.26354 0.33529
16 0.014632 0.036082 0.065075 0.102256 0.147267 0.200677 0.263322 0.335401
17 0.01454 0.036071 0.065244 0.102265 0.147462 0.201098 0.263243 0.335515
18 0.01459 0.036154 0.065289 0.102333 0.147723 0.201105 0.263588 0.335555
19 0.014583 0.03635 0.065544 0.102644 0.14833 0.201403 0.263786 0.335816
20 0.0147 0.036565 0.065911 0.103326 0.148559 0.202044 0.26413 0.335997



A.2. Monte Carlo Dropout: Neural Receiver 89

Table A.4: Average Changes to BER for Neural Receiver Due to Dropout applied to 1st Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000195 0.000633 0.000146 0.000497 0.00061 0.000581 0.000523 0.001388
-19 0.000165 0.000564 0.000718 0.000828 0.001188 0.001907 0.001664 0.002424
-18 0.000195 0.000707 0.001181 0.001748 0.001774 0.002371 0.003034 0.004509
-17 0.000864 0.000758 0.001487 0.002267 0.002848 0.004 0.005063 0.006273
-16 0.000582 0.000794 0.002221 0.003354 0.00406 0.005648 0.007089 0.008737
-15 0.000297 0.001439 0.00313 0.004326 0.005498 0.006965 0.008534 0.01206
-14 0.000722 0.002061 0.003091 0.004644 0.006091 0.007819 0.01054 0.014546
-13 0.000674 0.00282 0.0034 0.005267 0.007324 0.009477 0.012305 0.016617
-12 0.001439 0.002377 0.004389 0.005611 0.007936 0.010385 0.014287 0.018331
-11 0.001316 0.003356 0.004799 0.006461 0.009 0.011483 0.014815 0.020871
-10 0.001105 0.002599 0.004749 0.006549 0.009115 0.012126 0.015971 0.02214
-9 0.001388 0.002754 0.00435 0.006747 0.009405 0.012503 0.0169 0.023709
-8 0.001539 0.002577 0.004184 0.006323 0.008588 0.012362 0.01698 0.024431
-7 0.001082 0.002578 0.004175 0.005459 0.008489 0.011452 0.016338 0.024088
-6 0.000959 0.002171 0.003406 0.005341 0.007482 0.01051 0.014983 0.023228
-5 0.000862 0.00206 0.002853 0.004694 0.006697 0.009525 0.013822 0.022123
-4 0.000979 0.001547 0.002984 0.004079 0.005985 0.008534 0.012714 0.021145
-3 0.000685 0.001359 0.002429 0.003595 0.005382 0.007596 0.011597 0.01956
-2 0.000325 0.001351 0.002099 0.003209 0.004788 0.007278 0.011127 0.018913
-1 0.000481 0.001184 0.001929 0.002998 0.004199 0.006487 0.010257 0.018046
0 0.000453 0.001216 0.001655 0.002802 0.003966 0.006143 0.009677 0.017193
1 0.000421 0.000812 0.001725 0.002535 0.003845 0.005581 0.008987 0.016432
2 0.000412 0.000784 0.001439 0.00222 0.003489 0.005316 0.008481 0.015484
3 0.000274 0.000811 0.001301 0.001789 0.003091 0.004605 0.007687 0.014247
4 0.000166 0.000588 0.001056 0.001765 0.002592 0.00408 0.00664 0.012608
5 0.000253 0.000446 0.000831 0.00135 0.002032 0.003298 0.005645 0.010838
6 0.000114 0.000412 0.000621 0.000988 0.00166 0.002748 0.004318 0.00894
7 0.000129 0.000223 0.000456 0.000716 0.001162 0.001857 0.003308 0.007207
8 2.91E-05 0.000171 0.000357 0.000525 0.000873 0.001405 0.002443 0.005678
9 2.96E-05 0.000137 0.000232 0.000385 0.000627 0.001056 0.001821 0.004566

10 1.58E-05 8.65E-05 0.000204 0.000247 0.000465 0.000775 0.001451 0.003825
11 4.56E-05 7.91E-05 0.000141 0.000201 0.000375 0.000673 0.001312 0.00341
12 4.47E-05 7.12E-05 0.000107 0.000191 0.000351 0.000646 0.001105 0.003117
13 2.61E-05 4.94E-05 9.16E-05 0.000204 0.000298 0.00053 0.001097 0.002994
14 8.26E-06 8.83E-05 0.000142 0.000118 0.000289 0.000523 0.001144 0.002935
15 4.1E-05 5.63E-05 0.000106 0.000207 0.000345 0.000572 0.001129 0.003015
16 4.64E-06 9.64E-05 0.000126 0.000224 0.000386 0.000654 0.001178 0.003273
17 5.13E-05 7.1E-05 0.000163 0.000206 0.000361 0.000648 0.00123 0.00348
18 9.09E-05 4.55E-05 0.000145 0.000294 0.000435 0.000734 0.001467 0.003718
19 4.4E-05 9.23E-05 0.000193 0.000268 0.000482 0.000895 0.001644 0.004071
20 2.2E-05 0.000196 0.000195 0.000456 0.000562 0.000941 0.001823 0.004418



A.2. Monte Carlo Dropout: Neural Receiver 90

Table A.5: Average Changes to BER for Neural Receiver Due to Dropout applied to 2nd Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000649 0.000377 0.000957 0.001712 0.001521 0.001854 0.002072 0.002524
-19 0.000424 0.001362 0.001394 0.002467 0.002381 0.00321 0.004342 0.004324
-18 0.000828 0.001555 0.002179 0.003086 0.004494 0.004929 0.00598 0.006863
-17 0.001186 0.00274 0.003559 0.005498 0.006883 0.008549 0.009567 0.011568
-16 0.001925 0.003801 0.005777 0.007447 0.01027 0.012216 0.014822 0.0176
-15 0.002494 0.005355 0.008065 0.010815 0.014806 0.018481 0.021367 0.025738
-14 0.003495 0.00689 0.011345 0.015878 0.020852 0.025067 0.029925 0.034688
-13 0.004645 0.009149 0.015317 0.020328 0.026488 0.03312 0.0386 0.044772
-12 0.005308 0.012133 0.018271 0.025167 0.033013 0.040729 0.048381 0.05691
-11 0.006245 0.013398 0.02152 0.030254 0.038995 0.049258 0.059121 0.068825
-10 0.006525 0.01479 0.022942 0.033775 0.045013 0.057148 0.069543 0.082276
-9 0.006175 0.014418 0.023818 0.035361 0.048745 0.06314 0.078227 0.095256
-8 0.006282 0.013608 0.022707 0.035071 0.049754 0.067009 0.085451 0.10634
-7 0.005374 0.012157 0.021302 0.032968 0.048282 0.067288 0.09022 0.115666
-6 0.004396 0.010553 0.018108 0.029666 0.044999 0.064336 0.090313 0.121188
-5 0.003883 0.008623 0.01565 0.025155 0.03896 0.058513 0.085647 0.122764
-4 0.002907 0.00724 0.012721 0.021054 0.032773 0.05045 0.077518 0.119671
-3 0.00228 0.005656 0.010346 0.01681 0.026698 0.041822 0.067475 0.109954
-2 0.001816 0.004264 0.008138 0.013369 0.02107 0.033799 0.056022 0.09729
-1 0.001222 0.003455 0.006354 0.010052 0.016632 0.026677 0.044942 0.081991
0 0.00097 0.002357 0.004672 0.007711 0.012701 0.020704 0.035691 0.067259
1 0.000673 0.001808 0.003681 0.00598 0.00992 0.016594 0.02853 0.055189
2 0.000612 0.001429 0.002852 0.004811 0.007847 0.01318 0.022909 0.045822
3 0.000581 0.001158 0.002281 0.003929 0.006493 0.010792 0.018962 0.038272
4 0.000413 0.000989 0.001742 0.003094 0.005205 0.008524 0.015387 0.032502
5 0.000286 0.000723 0.001261 0.002327 0.003961 0.006654 0.012317 0.026636
6 0.000137 0.000489 0.000855 0.001738 0.002763 0.004931 0.00934 0.02169
7 0.000155 0.000335 0.000598 0.001089 0.001906 0.003517 0.006811 0.01707
8 0.000128 0.000198 0.000359 0.000736 0.001307 0.002337 0.004839 0.013439
9 5.48E-05 0.00017 0.000238 0.000498 0.000773 0.001593 0.003397 0.010591

10 2.68E-05 0.00015 0.000197 0.000274 0.000567 0.001092 0.002493 0.008366
11 1.97E-05 4.77E-05 0.000173 0.000263 0.000366 0.000795 0.001846 0.007082
12 2.24E-05 3.91E-05 0.000103 0.000155 0.000349 0.000643 0.001474 0.00605
13 6.75E-05 5.68E-05 0.000102 0.000155 0.000272 0.000559 0.00138 0.005451
14 2.54E-05 6.92E-05 6.01E-05 0.000159 0.000308 0.000506 0.001262 0.005345
15 9.02E-07 5.4E-05 9.74E-05 0.000188 0.000264 0.000475 0.001267 0.005362
16 1.37E-05 5.17E-05 0.000108 0.000203 0.000375 0.000608 0.001409 0.005619
17 7.86E-05 8.9E-05 0.000111 0.000217 0.000351 0.000658 0.001481 0.00607
18 1.45E-05 2.77E-05 0.000115 0.000245 0.000417 0.000736 0.00158 0.006849
19 2.74E-05 3.54E-06 0.000215 0.000273 0.00055 0.000858 0.001891 0.007702
20 7.67E-05 6.29E-05 0.00019 0.00028 0.000602 0.001052 0.002325 0.008904



A.2. Monte Carlo Dropout: Neural Receiver 91

Table A.6: Average Changes to BER for Neural Receiver Due to Dropout applied to 3rd Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 9.92243E-05 0.000113 0.000409 0.000173 0.000439 0.000704 0.000684 0.00142
-19 0.000124777 0.00056 0.000865 0.000519 0.000909 0.00072 0.001273 0.001634
-18 8.26805E-05 0.000737 0.000543 0.000733 0.000821 0.001298 0.002526 0.003755
-17 0.000288928 0.001014 0.000826 0.001696 0.002413 0.002778 0.004246 0.005571
-16 0.000498205 0.001097 0.002338 0.0024 0.004076 0.005051 0.006594 0.008976
-15 0.000379825 0.001879 0.002772 0.003254 0.00565 0.00672 0.009173 0.012577
-14 0.001158435 0.001438 0.003177 0.004756 0.006422 0.008045 0.011244 0.015729
-13 0.000870043 0.001795 0.003237 0.005111 0.006631 0.009806 0.01264 0.018872
-12 0.00098526 0.002295 0.004006 0.005682 0.007694 0.010115 0.014224 0.020194
-11 0.00138208 0.002773 0.003997 0.005622 0.008234 0.011512 0.01585 0.022775
-10 0.001136574 0.002449 0.004852 0.006151 0.008653 0.012569 0.017601 0.025294
-9 0.00139969 0.003158 0.004264 0.006739 0.009393 0.012954 0.018148 0.026844
-8 0.001138451 0.003025 0.004693 0.006533 0.009965 0.013639 0.018683 0.027855
-7 0.001110114 0.00263 0.004866 0.007058 0.009866 0.013497 0.018815 0.028793
-6 0.001484868 0.00277 0.004707 0.006825 0.009652 0.013457 0.019344 0.029021
-5 0.001414946 0.002372 0.004372 0.006622 0.009448 0.013525 0.01917 0.029444
-4 0.001127067 0.00249 0.00429 0.00649 0.009315 0.013373 0.019071 0.029433
-3 0.001305944 0.002569 0.004055 0.006574 0.009265 0.013138 0.019267 0.029708
-2 0.001193457 0.002473 0.004122 0.006261 0.009064 0.012986 0.019109 0.029684
-1 0.001100499 0.002399 0.004004 0.006177 0.009041 0.012923 0.018983 0.029704
0 0.000922705 0.002429 0.003711 0.00604 0.008783 0.012659 0.0188 0.029687
1 0.000960095 0.002149 0.003699 0.005776 0.008639 0.012625 0.018737 0.029677
2 0.000869839 0.002142 0.003404 0.005784 0.008678 0.012628 0.018778 0.029923
3 0.000761126 0.00201 0.003324 0.005278 0.008024 0.011898 0.018163 0.029684
4 0.000706937 0.001699 0.002996 0.004867 0.007264 0.0111 0.017001 0.028049
5 0.000529016 0.001363 0.00245 0.004077 0.00614 0.009575 0.015262 0.026114
6 0.000408859 0.001066 0.001825 0.003173 0.005125 0.008147 0.013274 0.0235
7 0.000310047 0.00071 0.001282 0.002298 0.00393 0.006461 0.011299 0.020866
8 0.000155871 0.000472 0.000935 0.001648 0.002907 0.005074 0.009387 0.018464
9 0.000124563 0.000263 0.000614 0.001212 0.002193 0.004049 0.007896 0.016446

10 9.23147E-05 0.000219 0.00047 0.000806 0.001599 0.003257 0.006822 0.015098
11 4.27726E-05 0.000123 0.000323 0.00062 0.001281 0.00285 0.006075 0.01392
12 6.3729E-06 6.1E-05 0.000219 0.000548 0.001152 0.002424 0.005538 0.013233
13 2.64316E-05 5.98E-05 0.000216 0.000481 0.000995 0.002289 0.005179 0.012807
14 6.8027E-05 5.98E-05 0.000165 0.000371 0.000925 0.002109 0.005039 0.012586
15 1.21747E-05 8.84E-05 0.000206 0.000398 0.000961 0.002086 0.005078 0.012736
16 3.00663E-05 0.000107 0.000182 0.000381 0.00093 0.002162 0.005122 0.012899
17 6.56901E-06 6.43E-05 0.000225 0.000421 0.001011 0.002214 0.005295 0.01307
18 9.74114E-05 5.45E-05 0.000198 0.000491 0.001052 0.002396 0.005496 0.01343
19 3.26853E-05 4.99E-05 0.000248 0.000529 0.00118 0.002534 0.0056 0.013967
20 3.72414E-05 0.000114 0.000399 0.000712 0.001314 0.002717 0.00608 0.014453



A.2. Monte Carlo Dropout: Neural Receiver 92

Table A.7: Average Changes to BER for Neural Receiver Due to Dropout applied to 4th Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000218 0.001283 0.000985 0.001408 0.001134 0.002132 0.0023 0.002682
-19 0.000773 0.001085 0.002353 0.002665 0.003128 0.003214 0.003876 0.004272
-18 0.000944 0.002249 0.003423 0.004399 0.004611 0.005466 0.005913 0.006595
-17 0.001488 0.003877 0.004803 0.0064 0.007549 0.00893 0.010646 0.011118
-16 0.002322 0.004353 0.007099 0.009214 0.011694 0.013463 0.015255 0.016808
-15 0.002358 0.00526 0.008661 0.011676 0.015498 0.01782 0.020435 0.023336
-14 0.001912 0.00546 0.008837 0.013931 0.017494 0.021392 0.025533 0.029276
-13 0.001407 0.004667 0.008425 0.013949 0.018624 0.024584 0.029384 0.034663
-12 0.000799 0.003874 0.007979 0.013327 0.019223 0.025532 0.032363 0.039777
-11 0.0005 0.002798 0.006486 0.011776 0.018508 0.026123 0.033818 0.04367
-10 0.000246 0.002583 0.005618 0.011541 0.017676 0.025507 0.035639 0.046189
-9 0.000655 0.002303 0.005711 0.010981 0.01717 0.025367 0.0361 0.049119
-8 0.000717 0.002625 0.006015 0.01049 0.0163 0.025059 0.035934 0.050025
-7 0.001026 0.002833 0.00602 0.010509 0.016247 0.024386 0.035418 0.050141
-6 0.001122 0.003518 0.006199 0.010372 0.015744 0.024482 0.034961 0.050609
-5 0.001243 0.003392 0.006372 0.010382 0.016175 0.024044 0.034713 0.050631
-4 0.001606 0.003696 0.006891 0.010693 0.016253 0.023631 0.033951 0.050383
-3 0.001299 0.003762 0.006518 0.010522 0.015976 0.023033 0.033622 0.050208
-2 0.001629 0.003708 0.006537 0.010433 0.015692 0.022805 0.033343 0.049762
-1 0.001322 0.003421 0.006528 0.010251 0.015504 0.022817 0.033251 0.049704
0 0.001409 0.003526 0.006515 0.010249 0.015402 0.022793 0.03349 0.05107
1 0.001498 0.003822 0.006747 0.010648 0.016145 0.023496 0.0347 0.052074
2 0.001318 0.003717 0.006631 0.010776 0.016132 0.023804 0.034947 0.053121
3 0.001521 0.003734 0.006263 0.010417 0.01562 0.023531 0.034581 0.053026
4 0.001334 0.003122 0.005835 0.00964 0.014545 0.022076 0.033063 0.051633
5 0.001148 0.002722 0.005029 0.008379 0.013045 0.019981 0.031023 0.049705
6 0.000856 0.002175 0.004059 0.00682 0.011072 0.017557 0.028092 0.046225
7 0.000651 0.001542 0.003084 0.005491 0.008955 0.015 0.025029 0.043134
8 0.000454 0.001069 0.002204 0.004053 0.007262 0.012548 0.022015 0.039746
9 0.000259 0.000728 0.001581 0.003073 0.0057 0.010482 0.019406 0.036797

10 0.000151 0.000494 0.001101 0.002274 0.004582 0.008824 0.017342 0.034364
11 0.000116 0.00037 0.000808 0.001782 0.003764 0.007672 0.015615 0.032373
12 6.06E-05 0.000257 0.000622 0.001443 0.003155 0.00667 0.014173 0.030531
13 7.32E-05 0.000243 0.00055 0.001205 0.002739 0.006033 0.013231 0.029292
14 0.000112 0.000203 0.000503 0.001094 0.002439 0.005591 0.012476 0.02814
15 5.16E-05 0.000162 0.000452 0.000922 0.002301 0.005223 0.012051 0.027535
16 4.06E-05 0.000107 0.00041 0.000883 0.002126 0.004892 0.01155 0.026989
17 1.84E-05 0.000178 0.000365 0.000886 0.002065 0.004708 0.011328 0.026492
18 3.31E-05 0.000131 0.000368 0.000819 0.001958 0.004588 0.011245 0.026516
19 8.42E-05 0.000124 0.000413 0.00084 0.001932 0.004575 0.010926 0.026317
20 9.56E-05 9.92E-05 0.000359 0.000833 0.001987 0.004491 0.011001 0.026083



A.2. Monte Carlo Dropout: Neural Receiver 93

Table A.8: Average Changes to BER for Neural Receiver Due to Dropout applied to 5th Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000372 0.000211 0.000738 0.000308 0.000114 0.000195 0.000756 0.000387
-19 0.000419 0.000134 0.00068 0.000343 0.000673 0.00069 0.001237 0.001234
-18 0.000269 0.000513 0.0008 0.000428 0.001258 0.00182 0.002742 0.003097
-17 0.000253 0.000961 0.001156 0.001354 0.00244 0.003058 0.004628 0.006472
-16 0.000618 0.001298 0.00156 0.002664 0.00451 0.005625 0.007482 0.010537
-15 0.001011 0.002269 0.003138 0.004856 0.006748 0.008359 0.011047 0.014993
-14 0.001258 0.002925 0.004235 0.005752 0.008034 0.011281 0.014888 0.019653
-13 0.001164 0.003749 0.005116 0.00725 0.009824 0.013383 0.018507 0.02481
-12 0.001883 0.004082 0.005522 0.008477 0.012098 0.015853 0.021909 0.029753
-11 0.001893 0.004471 0.00715 0.010204 0.014054 0.018384 0.024914 0.034523
-10 0.001979 0.004077 0.007261 0.010163 0.014579 0.020158 0.027504 0.038637
-9 0.001948 0.004463 0.007349 0.010182 0.014635 0.021199 0.029225 0.042152
-8 0.001843 0.003688 0.006431 0.009881 0.01452 0.021475 0.0304 0.044391
-7 0.001413 0.003346 0.006144 0.009627 0.014086 0.020172 0.030226 0.045518
-6 0.001368 0.003108 0.005533 0.008683 0.013256 0.019745 0.029613 0.045454
-5 0.001065 0.003011 0.005385 0.008457 0.012675 0.01909 0.028931 0.045014
-4 0.001159 0.003134 0.005083 0.008196 0.012548 0.018771 0.028174 0.044289
-3 0.001203 0.003115 0.005292 0.008288 0.012583 0.018455 0.028271 0.044543
-2 0.001334 0.003063 0.005416 0.008662 0.012944 0.019002 0.028254 0.044637
-1 0.001484 0.003352 0.005827 0.008785 0.01323 0.019415 0.028935 0.045293
0 0.001548 0.003534 0.006084 0.009327 0.013513 0.020211 0.0296 0.046581
1 0.00169 0.003668 0.006228 0.009549 0.014138 0.020617 0.030631 0.047728
2 0.001582 0.003627 0.006281 0.009536 0.014259 0.02088 0.031059 0.049029
3 0.001601 0.003404 0.005947 0.00922 0.014168 0.020575 0.0313 0.049339
4 0.00134 0.003247 0.005499 0.00863 0.013293 0.020022 0.030423 0.048748
5 0.001181 0.002716 0.004888 0.007942 0.012089 0.018717 0.028889 0.047552
6 0.000889 0.002147 0.004077 0.006817 0.010708 0.016822 0.02701 0.04541
7 0.00065 0.001684 0.003293 0.005606 0.009142 0.014871 0.024636 0.043016
8 0.000502 0.001242 0.002441 0.004439 0.007695 0.013137 0.022515 0.040157
9 0.000299 0.000878 0.001846 0.003598 0.006529 0.011604 0.020533 0.03837

10 0.00023 0.000666 0.00149 0.002954 0.005536 0.010299 0.019084 0.036476
11 0.00022 0.000525 0.001145 0.00245 0.004903 0.009476 0.017991 0.034913
12 0.000126 0.000417 0.000989 0.002209 0.004412 0.00872 0.016958 0.03408
13 0.000131 0.000317 0.000882 0.001984 0.004114 0.008222 0.01648 0.033156
14 6.12E-05 0.000342 0.00077 0.00183 0.003825 0.007823 0.016042 0.032625
15 0.000109 0.000321 0.000759 0.001763 0.003754 0.007706 0.015684 0.032481
16 0.000133 0.000314 0.000818 0.001743 0.003651 0.007593 0.015784 0.032217
17 0.000126 0.000366 0.000816 0.001688 0.003643 0.007682 0.015768 0.032515
18 7.46E-05 0.000314 0.000816 0.001697 0.00371 0.007749 0.015765 0.032687
19 0.000124 0.000418 0.00085 0.001863 0.003837 0.007758 0.016208 0.033192
20 0.000168 0.000434 0.000922 0.002003 0.004015 0.00817 0.016573 0.033714



A.2. Monte Carlo Dropout: Neural Receiver 94

Table A.9: Average Changes to BER for Neural Receiver Due to Dropout applied to 6th Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.00048 0.000773 0.000647 0.001702 0.002128 0.002911 0.002606 0.00261
-19 0.001171 0.001469 0.00207 0.003228 0.003725 0.003741 0.004666 0.005387
-18 0.00153 0.002976 0.003874 0.004568 0.00597 0.006677 0.007823 0.008537
-17 0.002043 0.004122 0.006647 0.008013 0.009549 0.010127 0.0118 0.012493
-16 0.002556 0.005363 0.008257 0.0103 0.01282 0.0152 0.016387 0.018274
-15 0.003375 0.006582 0.009475 0.012936 0.016304 0.019356 0.021888 0.024704
-14 0.003126 0.007052 0.010917 0.014757 0.018908 0.023239 0.027778 0.031124
-13 0.00413 0.006661 0.011681 0.016224 0.021398 0.026187 0.032159 0.036898
-12 0.00378 0.006679 0.011822 0.017685 0.023314 0.029637 0.036404 0.043691
-11 0.004131 0.00727 0.012529 0.018355 0.024968 0.032343 0.040568 0.050455
-10 0.003379 0.007267 0.012868 0.019107 0.026206 0.035033 0.044726 0.05627
-9 0.003092 0.007719 0.012817 0.019855 0.027702 0.037012 0.04792 0.061408
-8 0.003297 0.008019 0.013088 0.020036 0.028073 0.037764 0.050425 0.065962
-7 0.00347 0.00715 0.01285 0.0195 0.027528 0.037764 0.051748 0.068503
-6 0.003292 0.006979 0.01202 0.018266 0.026676 0.037314 0.05162 0.070231
-5 0.003018 0.006621 0.01142 0.017664 0.025296 0.036048 0.0503 0.070702
-4 0.002733 0.006496 0.010661 0.016547 0.024187 0.03477 0.04911 0.069929
-3 0.002739 0.005867 0.010655 0.016205 0.023831 0.033445 0.048369 0.069251
-2 0.002408 0.00609 0.010391 0.016084 0.023003 0.033122 0.04749 0.069119
-1 0.0028 0.005746 0.010003 0.015673 0.023078 0.033138 0.047153 0.070267
0 0.002503 0.005624 0.009987 0.015352 0.023046 0.033176 0.048008 0.070954
1 0.002532 0.005826 0.009986 0.0156 0.02323 0.033534 0.048429 0.0718
2 0.002495 0.005764 0.009961 0.015523 0.02309 0.03356 0.048597 0.072657
3 0.002458 0.005488 0.009772 0.015136 0.02271 0.033408 0.048684 0.073014
4 0.002276 0.00515 0.009138 0.014593 0.022109 0.032581 0.04822 0.072655
5 0.001962 0.004595 0.008392 0.013436 0.020806 0.031144 0.047246 0.07133
6 0.001614 0.003979 0.007481 0.012168 0.019143 0.029375 0.044711 0.069852
7 0.001283 0.003231 0.006348 0.01089 0.017253 0.027382 0.042534 0.067885
8 0.000965 0.002565 0.00527 0.009369 0.015669 0.025358 0.040472 0.065429
9 0.000709 0.002148 0.004392 0.008239 0.014234 0.023526 0.038348 0.063403

10 0.000563 0.001689 0.003771 0.007126 0.012783 0.021862 0.036497 0.06147
11 0.000416 0.001407 0.003164 0.006479 0.011724 0.020706 0.035179 0.059749
12 0.000363 0.001161 0.0028 0.005933 0.011064 0.019922 0.034284 0.059048
13 0.000295 0.001029 0.00255 0.005496 0.010577 0.019001 0.033589 0.058326
14 0.000278 0.000941 0.002397 0.005301 0.010055 0.018906 0.03306 0.058101
15 0.000245 0.000872 0.002235 0.005012 0.009933 0.018543 0.032926 0.05813
16 0.000271 0.000833 0.002247 0.004916 0.009875 0.018395 0.032797 0.057846
17 0.000194 0.000924 0.002322 0.004975 0.01002 0.018458 0.032703 0.058458
18 0.000206 0.000883 0.002314 0.005032 0.010113 0.018623 0.033339 0.058736
19 0.000256 0.001024 0.00243 0.005135 0.010305 0.019052 0.033937 0.05903
20 0.000228 0.001064 0.002525 0.005517 0.010563 0.019373 0.034518 0.060642



A.2. Monte Carlo Dropout: Neural Receiver 95

Table A.10: Average Changes to BER for Neural Receiver Due to Dropout applied to 7th Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.001148 0.000154 0.000127 0.000254 0.000496 0.000781 0.001373 0.001366
-19 0.000328 0.000202 0.000192 0.001248 0.001057 0.001349 0.001827 0.002912
-18 0.000266 0.0004 0.000965 0.001661 0.001804 0.002464 0.003683 0.004882
-17 0.000287 0.001892 0.002299 0.003276 0.004234 0.005407 0.006737 0.008596
-16 0.001088 0.002496 0.003435 0.005323 0.006516 0.00853 0.010976 0.013572
-15 0.001692 0.002988 0.004481 0.007165 0.00936 0.012323 0.015084 0.01839
-14 0.001528 0.004041 0.006212 0.008562 0.010902 0.01501 0.018481 0.024122
-13 0.001965 0.003558 0.006497 0.009032 0.012469 0.0168 0.021787 0.028498
-12 0.001617 0.003315 0.006527 0.009416 0.013049 0.017813 0.024024 0.032292
-11 0.001158 0.003755 0.0056 0.009196 0.012618 0.018012 0.025297 0.035005
-10 0.001764 0.002869 0.005074 0.008706 0.013025 0.018524 0.0257 0.0374
-9 0.001076 0.00299 0.005087 0.008134 0.011738 0.01792 0.026284 0.03838
-8 0.001208 0.002661 0.004807 0.007403 0.011998 0.017547 0.025949 0.038739
-7 0.000853 0.002414 0.004536 0.007226 0.011271 0.016511 0.024818 0.038655
-6 0.001134 0.002441 0.004521 0.00723 0.010596 0.016333 0.023925 0.037894
-5 0.000987 0.002539 0.004528 0.007236 0.010835 0.016246 0.02429 0.037894
-4 0.001223 0.002794 0.00472 0.007667 0.011179 0.016588 0.024843 0.038523
-3 0.001441 0.003097 0.005198 0.007775 0.012108 0.017853 0.026024 0.04062
-2 0.001536 0.003441 0.005663 0.009085 0.013327 0.019311 0.028329 0.043832
-1 0.001599 0.004063 0.006806 0.010367 0.015158 0.022279 0.031967 0.048481
0 0.002185 0.004636 0.007845 0.011739 0.017176 0.024543 0.035864 0.054098
1 0.002273 0.005031 0.008636 0.013121 0.019122 0.027205 0.039452 0.059659
2 0.002388 0.005299 0.009031 0.013921 0.020415 0.02949 0.04286 0.064303
3 0.002355 0.00546 0.009304 0.014289 0.021338 0.030913 0.045211 0.068386
4 0.002329 0.00525 0.009068 0.014139 0.021294 0.031586 0.046947 0.071558
5 0.002065 0.004754 0.00837 0.013264 0.020682 0.031273 0.047299 0.073353
6 0.001726 0.003898 0.007423 0.012497 0.019699 0.030033 0.046977 0.074607
7 0.001246 0.003222 0.006203 0.010911 0.018053 0.028859 0.045998 0.074562
8 0.000845 0.002462 0.005164 0.009414 0.016405 0.027465 0.045065 0.07448
9 0.000638 0.001885 0.00422 0.008184 0.015001 0.025704 0.043896 0.073915

10 0.000406 0.001421 0.00351 0.007171 0.013506 0.024411 0.042381 0.07302
11 0.000381 0.001111 0.002861 0.00624 0.012455 0.022909 0.041144 0.072325
12 0.000268 0.0009 0.002371 0.005605 0.01142 0.021763 0.040288 0.071223
13 0.000202 0.000755 0.002185 0.005031 0.010799 0.021045 0.039037 0.070416
14 0.0002 0.000633 0.001903 0.004654 0.010175 0.020389 0.038314 0.069856
15 0.000192 0.000618 0.001799 0.004424 0.009809 0.019804 0.037791 0.069479
16 0.000203 0.0006 0.001717 0.004257 0.009497 0.01964 0.037537 0.06861
17 0.00021 0.000541 0.001554 0.004098 0.009371 0.019431 0.037266 0.068957
18 0.000222 0.000555 0.001686 0.004024 0.00921 0.019366 0.037251 0.068739
19 0.000209 0.000575 0.00157 0.004024 0.009314 0.019402 0.037298 0.068823
20 0.000206 0.000622 0.001599 0.004044 0.009315 0.019383 0.037374 0.069655



A.2. Monte Carlo Dropout: Neural Receiver 96

Table A.11: Average Changes to BER for Neural Receiver Due to Dropout applied to 8th Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000501 0.000841 0.001554 0.001883 0.002751 0.002936 0.003075 0.003782
-19 0.000854 0.002275 0.002229 0.003293 0.004099 0.00482 0.005353 0.005873
-18 0.001396 0.002546 0.003828 0.004874 0.00602 0.006697 0.007635 0.00883
-17 0.001512 0.002895 0.004644 0.006192 0.007506 0.009045 0.010311 0.011439
-16 0.001757 0.003269 0.005029 0.006641 0.008741 0.010578 0.012305 0.014517
-15 0.001646 0.004057 0.004947 0.007909 0.009637 0.012231 0.014678 0.017035
-14 0.00209 0.004089 0.005705 0.007783 0.011103 0.01337 0.016665 0.01965
-13 0.001735 0.00458 0.006811 0.009466 0.012378 0.015801 0.018772 0.022856
-12 0.002071 0.004681 0.006955 0.010092 0.014271 0.017596 0.021766 0.02624
-11 0.002427 0.005276 0.007792 0.011649 0.016308 0.020623 0.0253 0.030537
-10 0.00293 0.006631 0.008914 0.013544 0.017483 0.022851 0.028151 0.035004
-9 0.003504 0.006862 0.00974 0.014277 0.019768 0.024488 0.030941 0.037893
-8 0.003055 0.006094 0.010799 0.015512 0.019905 0.025284 0.032596 0.040793
-7 0.003074 0.006257 0.010798 0.015043 0.020397 0.026667 0.033408 0.042378
-6 0.003077 0.006649 0.010324 0.014818 0.019627 0.026206 0.03346 0.0429
-5 0.003027 0.006398 0.009824 0.014953 0.019822 0.026601 0.033337 0.042988
-4 0.002801 0.006181 0.009678 0.014673 0.019622 0.025694 0.033275 0.043161
-3 0.002453 0.006104 0.009714 0.014626 0.019741 0.025771 0.033836 0.043637
-2 0.00304 0.006006 0.009872 0.014244 0.019707 0.02607 0.033706 0.04482
-1 0.00273 0.005639 0.00976 0.014071 0.019456 0.026278 0.034725 0.046064
0 0.002631 0.005738 0.009467 0.013769 0.019274 0.026542 0.035399 0.04815
1 0.002541 0.005355 0.009005 0.013578 0.019123 0.026655 0.036474 0.050142
2 0.002417 0.005244 0.008827 0.013479 0.019299 0.027007 0.037306 0.051616
3 0.002165 0.005051 0.008341 0.013195 0.018877 0.026692 0.037703 0.053048
4 0.002086 0.004528 0.008148 0.012375 0.018287 0.026701 0.037916 0.054183
5 0.001662 0.004057 0.007169 0.011638 0.017402 0.025726 0.037653 0.054863
6 0.001449 0.003514 0.006366 0.010426 0.016297 0.024737 0.036963 0.055318
7 0.001094 0.002858 0.005401 0.009451 0.015087 0.023579 0.036124 0.055482
8 0.00089 0.002207 0.004545 0.008265 0.013825 0.022662 0.03554 0.055984
9 0.000611 0.001877 0.0039 0.007392 0.012982 0.021589 0.035095 0.056421

10 0.00049 0.001607 0.003388 0.006588 0.012084 0.020932 0.034763 0.056358
11 0.000403 0.001274 0.002985 0.006051 0.011275 0.019922 0.034135 0.056457
12 0.000297 0.001115 0.002657 0.005627 0.010729 0.019444 0.033498 0.055969
13 0.000263 0.001031 0.002464 0.005367 0.010318 0.018775 0.032909 0.055861
14 0.00026 0.00095 0.002323 0.005022 0.01004 0.018356 0.032689 0.055812
15 0.000222 0.000888 0.002254 0.004928 0.009698 0.017988 0.032289 0.054892
16 0.000277 0.000857 0.002168 0.00484 0.009664 0.018032 0.032164 0.054804
17 0.000273 0.000865 0.002119 0.0047 0.009686 0.017716 0.031934 0.055238
18 0.000259 0.000884 0.002185 0.00492 0.009581 0.017984 0.032122 0.055353
19 0.00028 0.001009 0.002308 0.004998 0.009663 0.018299 0.03269 0.055447
20 0.000189 0.000935 0.002297 0.00514 0.009788 0.018435 0.032481 0.056251



A.2. Monte Carlo Dropout: Neural Receiver 97

Table A.12: Average Changes to BER for Neural Receiver Due to Dropout applied to Output Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.000367 0.000984 0.001374 0.001224 0.00222 0.002262 0.002646 0.002981
-19 0.000953 0.000955 0.002128 0.002204 0.00292 0.00363 0.004424 0.005577
-18 0.000774 0.002323 0.003283 0.004852 0.004676 0.006894 0.007371 0.008214
-17 0.001355 0.002913 0.004731 0.006641 0.008626 0.010035 0.01122 0.013893
-16 0.002039 0.004719 0.007109 0.00991 0.012389 0.014967 0.017972 0.020915
-15 0.003384 0.006576 0.010011 0.013948 0.017411 0.020907 0.025033 0.02934
-14 0.004575 0.008506 0.013176 0.018024 0.023481 0.028774 0.033411 0.038553
-13 0.00562 0.011377 0.017103 0.023625 0.029715 0.037011 0.043426 0.04973
-12 0.006563 0.013564 0.020949 0.028671 0.036916 0.045906 0.05435 0.063691
-11 0.007943 0.017234 0.026035 0.036058 0.046441 0.056452 0.067031 0.078032
-10 0.010675 0.020523 0.032399 0.043482 0.055723 0.068395 0.081217 0.094546
-9 0.012307 0.025227 0.038427 0.052627 0.066812 0.081881 0.096852 0.112391
-8 0.014351 0.02939 0.045812 0.062051 0.078686 0.096153 0.114232 0.131908
-7 0.016904 0.034689 0.053226 0.07219 0.092045 0.112098 0.131686 0.15267
-6 0.019581 0.040504 0.061491 0.083462 0.10546 0.128513 0.151822 0.174856
-5 0.023122 0.046269 0.070328 0.095078 0.120295 0.145911 0.171463 0.198064
-4 0.026001 0.052558 0.079341 0.107349 0.135507 0.164399 0.193277 0.222372
-3 0.029326 0.059192 0.089663 0.120288 0.151806 0.183374 0.215671 0.247959
-2 0.032678 0.066153 0.099849 0.134099 0.168545 0.203269 0.238528 0.273684
-1 0.036169 0.073013 0.11011 0.147354 0.184977 0.222751 0.261003 0.299143
0 0.039604 0.079357 0.119535 0.159786 0.200396 0.240996 0.281798 0.322546
1 0.042393 0.084855 0.127579 0.170709 0.213708 0.256821 0.300004 0.34334
2 0.044666 0.089627 0.13443 0.17953 0.224649 0.269908 0.315215 0.360364
3 0.046608 0.093074 0.139829 0.186463 0.233441 0.280293 0.327118 0.374031
4 0.04791 0.095781 0.143663 0.191555 0.239676 0.287736 0.33577 0.38403
5 0.048704 0.097629 0.146397 0.195098 0.244125 0.292785 0.341982 0.390865
6 0.049262 0.098617 0.147953 0.197461 0.246746 0.296181 0.345726 0.395088
7 0.049602 0.099327 0.148904 0.198648 0.248322 0.298088 0.347735 0.397522
8 0.04976 0.099593 0.149467 0.19931 0.24918 0.298981 0.348809 0.398687
9 0.04993 0.099701 0.149726 0.199632 0.249518 0.299458 0.349391 0.399322

10 0.049963 0.099886 0.149842 0.199808 0.249667 0.299735 0.349634 0.399582
11 0.050008 0.099879 0.149867 0.199835 0.24978 0.299799 0.349771 0.399683
12 0.04997 0.099906 0.149881 0.199862 0.249877 0.299802 0.349823 0.399813
13 0.049954 0.099923 0.149933 0.19992 0.249928 0.299818 0.349825 0.39979
14 0.049999 0.099918 0.149945 0.19987 0.249895 0.299896 0.349821 0.399805
15 0.04996 0.099939 0.149943 0.199922 0.249808 0.299862 0.349856 0.399779
16 0.049993 0.099987 0.149928 0.199873 0.249834 0.299811 0.349811 0.39982
17 0.049979 0.099918 0.149865 0.199935 0.249862 0.29985 0.349792 0.399724
18 0.049922 0.099926 0.149883 0.199938 0.249801 0.299779 0.349744 0.399758
19 0.049931 0.09995 0.149947 0.19984 0.249815 0.299777 0.349702 0.399735
20 0.049946 0.099838 0.149906 0.199779 0.249674 0.299778 0.349823 0.39964



A.3. Monte Carlo Dropout: End to End Autoencoder 98

A.3 Monte Carlo Dropout: End to End Autoencoder

Figure A.11: Bit Error Rate curves for the End to End model with different dropout rates applied to its input
layer.

Figure A.12: Bit Error Rate curves for the End to End model with different dropout rates applied to its first
hidden layer.



A.3. Monte Carlo Dropout: End to End Autoencoder 99

Figure A.13: Bit Error Rate curves for the End to End model with different dropout rates applied to its output
layer.



A.3. Monte Carlo Dropout: End to End Autoencoder 100

Table A.13: Average Changes to BER for End to End Due to Dropout applied to Input Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.002042 0.003751 0.005479 0.007626 0.009453 0.011102 0.013043 0.014921
-19 0.002019 0.004287 0.006042 0.008269 0.010413 0.012534 0.014682 0.016815
-18 0.00208 0.004668 0.00671 0.009291 0.011675 0.013845 0.016531 0.018746
-17 0.002644 0.004857 0.007419 0.010093 0.0128 0.015657 0.018448 0.021203
-16 0.002761 0.005748 0.008599 0.011447 0.014295 0.017651 0.020686 0.023784
-15 0.00306 0.006361 0.009657 0.012524 0.01615 0.019523 0.023011 0.026243
-14 0.003291 0.006903 0.010556 0.01446 0.018283 0.021793 0.025869 0.029896
-13 0.003734 0.00799 0.012054 0.016174 0.020371 0.024998 0.029243 0.033755
-12 0.004208 0.008958 0.013385 0.018304 0.023437 0.028197 0.033357 0.038486
-11 0.004832 0.010024 0.0154 0.020987 0.026643 0.032381 0.038174 0.044048
-10 0.005555 0.011387 0.017708 0.024066 0.030772 0.037277 0.043853 0.050478
-9 0.006078 0.012968 0.020315 0.027892 0.035652 0.043274 0.050949 0.058435
-8 0.007246 0.014973 0.023304 0.032088 0.041361 0.050101 0.059033 0.067534
-7 0.008393 0.017319 0.027214 0.037653 0.048129 0.058405 0.068823 0.078674
-6 0.009691 0.020325 0.031742 0.043829 0.056069 0.068344 0.080039 0.09113
-5 0.011082 0.023671 0.037048 0.051313 0.065731 0.079565 0.093142 0.105465
-4 0.012742 0.027033 0.043172 0.059669 0.076213 0.092361 0.107669 0.121554
-3 0.014634 0.031452 0.049914 0.0694 0.08854 0.107187 0.12403 0.13947
-2 0.01668 0.036658 0.058354 0.080927 0.103133 0.124098 0.143061 0.159833
-1 0.019407 0.042443 0.067539 0.093394 0.118524 0.141818 0.162413 0.180473
0 0.021765 0.047914 0.076858 0.10577 0.133586 0.158864 0.180974 0.20043
1 0.024487 0.054086 0.086288 0.118317 0.148617 0.175351 0.198941 0.219923
2 0.027198 0.060239 0.09592 0.130929 0.162969 0.191435 0.217144 0.238918
3 0.029742 0.066924 0.106366 0.143951 0.177092 0.207544 0.236244 0.257835
4 0.033825 0.075943 0.119029 0.157525 0.193585 0.226796 0.255826 0.277847
5 0.039063 0.086353 0.131698 0.17341 0.210918 0.247614 0.277229 0.29818
6 0.044443 0.096079 0.144734 0.18895 0.229681 0.267821 0.296502 0.317825
7 0.049708 0.105661 0.158831 0.204931 0.249221 0.28627 0.314646 0.336332
8 0.055019 0.117392 0.172864 0.221645 0.269771 0.304834 0.331244 0.353507
9 0.06107 0.12882 0.185763 0.237214 0.283083 0.318513 0.344418 0.367029

10 0.0666 0.137997 0.196542 0.251375 0.292593 0.326836 0.352596 0.375834
11 0.073545 0.146712 0.204177 0.259556 0.300015 0.330972 0.357114 0.38078
12 0.081824 0.153751 0.213142 0.26131 0.302539 0.331054 0.357558 0.381951
13 0.088631 0.154596 0.220068 0.259404 0.298966 0.325883 0.352753 0.37767
14 0.086803 0.151923 0.21071 0.253045 0.287723 0.313701 0.341068 0.366312
15 0.075131 0.150691 0.194321 0.238788 0.268479 0.294572 0.322235 0.347678
16 0.07384 0.151791 0.187615 0.229994 0.256403 0.282429 0.310376 0.336407
17 0.089265 0.149 0.189952 0.226829 0.250983 0.277038 0.305232 0.331588
18 0.102525 0.139858 0.18584 0.215767 0.238832 0.264879 0.293267 0.31982
19 0.091056 0.125739 0.17088 0.195863 0.218839 0.244691 0.273414 0.300136
20 0.063368 0.105976 0.146488 0.166959 0.189733 0.215577 0.244457 0.271375



A.3. Monte Carlo Dropout: End to End Autoencoder 101

Table A.14: Average Changes to BER for End to End Due to Dropout applied to Hidden Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 5.68173E-05 0.000177 0.000511 0.000921 0.001347 0.002637 0.004027 0.006038
-19 0.000253218 0.000431 0.000795 0.000959 0.001788 0.003036 0.004543 0.006941
-18 0.000426501 0.000585 0.000893 0.001634 0.002367 0.003572 0.00555 0.008089
-17 0.000251698 0.000506 0.001278 0.0017 0.002832 0.004212 0.006136 0.00918
-16 0.000183716 0.000761 0.001167 0.002046 0.003296 0.004831 0.007196 0.010757
-15 0.000119427 0.000943 0.001448 0.002508 0.004056 0.005933 0.008451 0.012017
-14 0.000355979 0.001047 0.001903 0.003133 0.004615 0.006927 0.009807 0.014022
-13 0.000655989 0.001514 0.002264 0.003561 0.005462 0.008356 0.011631 0.016205
-12 0.000794705 0.001835 0.003057 0.004841 0.006832 0.009612 0.013537 0.018849
-11 0.001226482 0.002389 0.003875 0.005861 0.008558 0.011755 0.016182 0.022141
-10 0.00134381 0.003074 0.004885 0.007216 0.010414 0.014336 0.019177 0.026086
-9 0.001967234 0.003792 0.006409 0.009003 0.012666 0.01729 0.023207 0.030888
-8 0.002381102 0.004895 0.007875 0.011531 0.015661 0.020807 0.027631 0.036881
-7 0.002855737 0.006138 0.009717 0.013836 0.018589 0.025042 0.032854 0.043618
-6 0.003487146 0.00757 0.011514 0.016552 0.0223 0.029456 0.038671 0.05107
-5 0.004595691 0.009048 0.013752 0.019468 0.026252 0.034707 0.045295 0.059535
-4 0.005174179 0.010535 0.016222 0.022701 0.030188 0.040116 0.0524 0.069294
-3 0.006264857 0.012403 0.019111 0.026393 0.035479 0.046489 0.060573 0.079451
-2 0.007587489 0.014862 0.022537 0.030943 0.040647 0.05332 0.069399 0.091039
-1 0.008647982 0.016746 0.025017 0.034439 0.045618 0.059597 0.077849 0.102035
0 0.009196503 0.01799 0.026943 0.036998 0.048954 0.064075 0.084188 0.111503
1 0.009782181 0.018767 0.028095 0.038515 0.051092 0.067167 0.088934 0.119121
2 0.0100243 0.01929 0.028902 0.039493 0.052745 0.069503 0.092324 0.125153
3 0.010584148 0.020139 0.030164 0.041203 0.054584 0.071929 0.095695 0.130591
4 0.010994513 0.021419 0.032194 0.043883 0.05785 0.075869 0.100777 0.137718
5 0.011357134 0.022768 0.034118 0.046885 0.061724 0.080694 0.10682 0.145895
6 0.011653066 0.023482 0.036177 0.049974 0.065823 0.085974 0.113543 0.154801
7 0.011948675 0.024983 0.038746 0.053588 0.070918 0.09232 0.121701 0.165099
8 0.013099334 0.027347 0.042102 0.058228 0.076825 0.099996 0.130954 0.177173
9 0.014792971 0.030297 0.046189 0.063576 0.0836 0.108251 0.141429 0.189716

10 0.016552969 0.033294 0.050493 0.069099 0.090282 0.116741 0.151601 0.201753
11 0.019666902 0.037547 0.055738 0.07546 0.098275 0.126338 0.162763 0.213767
12 0.023299183 0.041846 0.060672 0.081654 0.105876 0.135443 0.173154 0.224137
13 0.024851593 0.043417 0.063317 0.08537 0.111065 0.141896 0.180109 0.23005
14 0.021155385 0.040043 0.060922 0.084466 0.111359 0.143002 0.180967 0.22943
15 0.011616079 0.031167 0.053448 0.078271 0.106082 0.137795 0.175028 0.221102
16 0.010894142 0.031729 0.05539 0.081054 0.109025 0.140058 0.175706 0.219427
17 0.019117035 0.041704 0.065988 0.091793 0.119177 0.148944 0.18272 0.223676
18 0.024020925 0.047149 0.071072 0.09608 0.122223 0.1503 0.181999 0.220384
19 0.024529549 0.045608 0.068106 0.091814 0.116341 0.142614 0.172238 0.208325
20 0.016189926 0.034382 0.055425 0.077472 0.100421 0.124863 0.15246 0.18638



A.3. Monte Carlo Dropout: End to End Autoencoder 102

Table A.15: Average Changes to BER for End to End Due to Dropout applied to Output Layer

Dropout(%)
Eb/N0 (dB) 10 20 30 40 50 60 70 80

-20 0.00022 0.000766 0.001301 0.002355 0.003991 0.006098 0.00818 0.010659
-19 0.000299 0.000914 0.001634 0.003077 0.004651 0.006805 0.009369 0.012297
-18 0.000656 0.001032 0.001944 0.003463 0.005496 0.008047 0.01088 0.013817
-17 0.000527 0.00136 0.002561 0.00425 0.006443 0.00898 0.012248 0.015671
-16 0.000637 0.001848 0.003099 0.005037 0.007684 0.010755 0.014185 0.01787
-15 0.001114 0.002249 0.003922 0.005948 0.009177 0.012458 0.016126 0.019998
-14 0.001395 0.002973 0.004946 0.00741 0.010692 0.01442 0.018462 0.023181
-13 0.001884 0.003826 0.006122 0.009258 0.012748 0.017118 0.021516 0.026427
-12 0.002677 0.005111 0.007793 0.011491 0.015457 0.02012 0.025393 0.030636
-11 0.003758 0.006642 0.010219 0.014101 0.018862 0.024122 0.029442 0.035472
-10 0.005037 0.00891 0.012946 0.017727 0.023046 0.028705 0.03498 0.041382
-9 0.006567 0.011543 0.016425 0.022027 0.028172 0.034503 0.041103 0.048376
-8 0.008681 0.015226 0.021037 0.02717 0.034158 0.041284 0.048858 0.056997
-7 0.011031 0.019126 0.026474 0.033436 0.041069 0.049192 0.057638 0.066949
-6 0.013233 0.023166 0.031899 0.040182 0.049025 0.058145 0.067636 0.077989
-5 0.015507 0.02756 0.037854 0.047671 0.057658 0.067919 0.07886 0.090703
-4 0.018383 0.032224 0.044238 0.055299 0.066672 0.078548 0.090875 0.104714
-3 0.021066 0.037276 0.051075 0.064007 0.076706 0.089982 0.104133 0.119421
-2 0.024915 0.042947 0.058449 0.072578 0.087044 0.102429 0.118299 0.13619
-1 0.028324 0.048011 0.065086 0.080956 0.096826 0.113768 0.132133 0.152186
0 0.030493 0.051695 0.069897 0.087261 0.104907 0.123542 0.144178 0.167051
1 0.031874 0.053804 0.073212 0.091624 0.110773 0.13134 0.154243 0.180051
2 0.03198 0.054828 0.074893 0.094498 0.115056 0.137135 0.162554 0.19149
3 0.03223 0.055283 0.076058 0.096374 0.118444 0.142499 0.170049 0.20234
4 0.032754 0.056758 0.077985 0.09931 0.122313 0.148234 0.17835 0.214286
5 0.033284 0.058072 0.080039 0.102424 0.126447 0.154227 0.187095 0.226521
6 0.032845 0.05863 0.08168 0.104701 0.13024 0.159968 0.195667 0.238518
7 0.032589 0.059244 0.083166 0.107576 0.13461 0.166121 0.204379 0.250775
8 0.032944 0.060253 0.085511 0.111184 0.139731 0.17344 0.214105 0.263335
9 0.033386 0.061772 0.087991 0.11513 0.145064 0.180846 0.223467 0.274816

10 0.034055 0.063152 0.090414 0.118477 0.149999 0.187006 0.23125 0.283719
11 0.035883 0.065751 0.093731 0.122944 0.155627 0.193494 0.238449 0.291132
12 0.038049 0.068092 0.096739 0.127002 0.160672 0.199416 0.24426 0.29614
13 0.0383 0.068122 0.097629 0.128769 0.163208 0.201998 0.246294 0.296707
14 0.033683 0.063558 0.094136 0.126111 0.160713 0.19917 0.242158 0.290593
15 0.02355 0.05408 0.085582 0.11807 0.152514 0.189874 0.231328 0.277675
16 0.022504 0.05424 0.086318 0.118586 0.152076 0.188144 0.227771 0.271772
17 0.030828 0.063462 0.095327 0.126544 0.158799 0.1931 0.230809 0.272299
18 0.035618 0.067719 0.098112 0.12793 0.158525 0.191086 0.226601 0.265839
19 0.034891 0.064257 0.09282 0.120872 0.14972 0.180503 0.214164 0.251078
20 0.024817 0.0513 0.077838 0.10411 0.131366 0.160424 0.192101 0.22704



A.3. Monte Carlo Dropout: End to End Autoencoder 103



A.4. FGSM: Neural Receiver 104

A.4 FGSM: Neural Receiver

Table A.16: Average Changes to BER for Neural Receiver Due to FGSM

Epsilon Value
Eb/N0 (dB) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-20 0.007404 0.013964 0.020218 0.025155 0.031074 0.034822 0.039623 0.043796
-19 0.007806 0.01482 0.020796 0.026328 0.031649 0.037071 0.041061 0.044732
-18 0.008119 0.015283 0.021563 0.027402 0.033069 0.037618 0.040697 0.046319
-17 0.008477 0.015596 0.022956 0.02891 0.03416 0.040568 0.044143 0.048651
-16 0.009112 0.017267 0.023544 0.030721 0.036747 0.040166 0.0457 0.050507
-15 0.009738 0.018574 0.026858 0.034207 0.040164 0.045957 0.051476 0.053515
-14 0.01041 0.020651 0.029507 0.037571 0.044295 0.05101 0.055023 0.061917
-13 0.012314 0.023126 0.032739 0.041988 0.049845 0.057378 0.062855 0.069931
-12 0.013667 0.025817 0.037809 0.048492 0.055509 0.065964 0.072723 0.078144
-11 0.01581 0.028991 0.042027 0.05339 0.064188 0.07245 0.082766 0.090727
-10 0.017993 0.034146 0.049511 0.060275 0.071263 0.081527 0.092636 0.099495
-9 0.019625 0.036945 0.054214 0.067668 0.081677 0.088915 0.102088 0.110309
-8 0.021235 0.039765 0.058762 0.072374 0.086719 0.099584 0.112493 0.120626
-7 0.02316 0.043599 0.061679 0.078096 0.094589 0.107637 0.119512 0.128049
-6 0.025527 0.046495 0.066205 0.082176 0.100646 0.112564 0.125567 0.139495
-5 0.027416 0.050251 0.069154 0.08506 0.101876 0.119439 0.132023 0.145342
-4 0.029051 0.052396 0.069856 0.087879 0.104119 0.121451 0.137728 0.153479
-3 0.030091 0.052135 0.070606 0.089924 0.106348 0.124215 0.144667 0.157735
-2 0.029684 0.050444 0.068275 0.087288 0.107586 0.12707 0.146626 0.16394
-1 0.028523 0.046129 0.064439 0.084479 0.1067 0.129923 0.150953 0.171853
0 0.025311 0.041654 0.062731 0.084269 0.107476 0.128926 0.15137 0.173394
1 0.021406 0.037288 0.059159 0.08387 0.108011 0.135529 0.15725 0.179146
2 0.017818 0.033243 0.054657 0.082337 0.110552 0.136233 0.163336 0.186295
3 0.014015 0.029212 0.051801 0.078744 0.107553 0.134198 0.164579 0.186767
4 0.010921 0.026017 0.049418 0.077765 0.109615 0.138936 0.161809 0.187969
5 0.008317 0.021569 0.044616 0.075269 0.102553 0.135742 0.163126 0.190566
6 0.005771 0.018342 0.0408 0.068533 0.102877 0.136299 0.160325 0.19388
7 0.004177 0.014433 0.036147 0.060742 0.096703 0.127606 0.159314 0.19266
8 0.002979 0.010832 0.029266 0.053442 0.092528 0.124664 0.155317 0.188085
9 0.002057 0.009564 0.026367 0.05326 0.0903 0.120626 0.152825 0.184385

10 0.001488 0.006481 0.023474 0.045564 0.083961 0.110336 0.151418 0.187962
11 0.000941 0.007509 0.021886 0.043271 0.086317 0.125787 0.143298 0.182778
12 0.000936 0.007252 0.021728 0.046771 0.080853 0.11634 0.161331 0.183782
13 0.000787 0.005115 0.018473 0.049708 0.089011 0.127316 0.155887 0.187613
14 0.000659 0.004224 0.017692 0.053335 0.087535 0.131043 0.159089 0.195407
15 0.001894 0.005885 0.016064 0.049674 0.089544 0.127826 0.158456 0.194144
16 0.000994 0.005924 0.017319 0.052741 0.093004 0.124267 0.162388 0.194823
17 0.000646 0.007063 0.017062 0.057871 0.094064 0.135043 0.174812 0.196086
18 0.000808 0.007174 0.018475 0.055208 0.095193 0.134295 0.164623 0.212213
19 0.001983 0.008128 0.0229 0.051961 0.104369 0.13991 0.17576 0.202306
20 0.001504 0.007138 0.020164 0.056139 0.101972 0.145966 0.1773 0.206317



A.4. FGSM: Neural Receiver 105

Table A.17: Average Changes to Prediction Confidence for Neural Receiver Due to FGSM

Epsilon Value
Eb/N0 (dB) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-20 0.035736 0.072011 0.106386 0.141716 0.177313 0.210074 0.247809 0.276894
-19 0.03802 0.074488 0.111233 0.148243 0.183448 0.222304 0.259234 0.295524
-18 0.039712 0.079972 0.120903 0.159778 0.198647 0.237279 0.275022 0.308247
-17 0.043349 0.086869 0.128947 0.17239 0.21343 0.254359 0.298052 0.339843
-16 0.047642 0.094113 0.143398 0.188581 0.232785 0.278233 0.324292 0.367178
-15 0.053115 0.104951 0.156992 0.207938 0.256741 0.305735 0.356209 0.410984
-14 0.058992 0.117509 0.174105 0.235046 0.288803 0.340852 0.390467 0.445601
-13 0.06649 0.133596 0.196873 0.26066 0.319719 0.379368 0.440524 0.50714
-12 0.075773 0.148621 0.222174 0.292408 0.360945 0.43134 0.495973 0.557604
-11 0.084773 0.171208 0.253555 0.32995 0.40274 0.485147 0.550944 0.615524
-10 0.097919 0.190564 0.279057 0.374279 0.454576 0.538449 0.612556 0.68073
-9 0.110266 0.216146 0.31856 0.417336 0.516205 0.600974 0.687228 0.765046
-8 0.123069 0.239384 0.357335 0.464213 0.567145 0.659174 0.764882 0.836312
-7 0.139218 0.270145 0.39569 0.51849 0.629305 0.739422 0.837664 0.922695
-6 0.15535 0.305492 0.449475 0.577796 0.697789 0.819275 0.929996 1.029176
-5 0.176685 0.339259 0.50071 0.649529 0.789729 0.917246 1.034832 1.145692
-4 0.204702 0.397192 0.583452 0.736413 0.904273 1.037733 1.194063 1.316287
-3 0.239581 0.457461 0.685852 0.881315 1.044091 1.227943 1.382753 1.523983
-2 0.285661 0.562265 0.820269 1.057344 1.251352 1.439907 1.631269 1.852167
-1 0.355523 0.685212 0.995111 1.292429 1.508166 1.761576 1.969902 2.137168
0 0.434998 0.839712 1.239445 1.54554 1.88781 2.148131 2.424528 2.60056
1 0.525434 1.0006 1.472058 1.86456 2.22795 2.522243 2.830817 3.067641
2 0.615438 1.166883 1.69236 2.173108 2.570143 2.986324 3.282964 3.576533
3 0.707858 1.394212 1.991076 2.4972 2.943142 3.372906 3.782082 4.088865
4 0.839199 1.596943 2.248179 2.847302 3.378114 3.865302 4.233888 4.620678
5 0.958439 1.798015 2.579132 3.307736 3.863135 4.321296 4.776269 5.212969
6 1.089223 2.045058 2.881142 3.594339 4.261584 4.891966 5.326192 5.929914
7 1.216685 2.262254 3.204224 3.992812 4.749484 5.441424 5.956753 6.503576
8 1.315465 2.468162 3.485371 4.423963 5.164505 5.939209 6.681333 7.219769
9 1.328178 2.605996 3.660298 4.687263 5.64431 6.359511 7.164647 7.760785

10 1.356884 2.610681 3.850864 4.952113 5.942072 6.857104 7.760212 8.189072
11 1.380227 2.662348 3.883268 5.091587 6.136686 7.024518 7.87096 8.684822
12 1.362854 2.702855 3.939573 5.215706 6.211768 7.282264 8.09088 8.912025
13 1.390454 2.69587 3.928696 5.192624 6.320302 7.361215 8.334358 9.081624
14 1.423659 2.747424 3.974759 5.150024 6.254113 7.335784 8.414747 9.170728
15 1.402889 2.728841 3.976065 5.167489 6.301169 7.460137 8.395815 9.174944
16 1.426602 2.754762 4.019296 5.20769 6.237952 7.41856 8.369213 9.220868
17 1.43403 2.784503 3.962819 5.193556 6.363837 7.412468 8.357891 9.232536
18 1.430716 2.74177 4.101672 5.208396 6.273557 7.385919 8.292755 9.311301
19 1.433082 2.782577 4.019177 5.258334 6.338202 7.335022 8.296944 9.127494
20 1.42382 2.804508 4.012204 5.232384 6.301556 7.365746 8.227826 9.061571



A.4. FGSM: Neural Receiver 106



A.5. FGSM: End to End Autoencoder 107

A.5 FGSM: End to End Autoencoder

Table A.18: Average Changes to BER for End to End Due to FGSM

Epsilon Value
Eb/N0 (dB) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-20 0.009272 0.018754 0.02244 0.024954 0.032786 0.039347 0.041111 0.044055
-19 0.010418 0.018038 0.025863 0.029934 0.035767 0.04219 0.047922 0.052711
-18 0.006356 0.01771 0.029129 0.036697 0.045058 0.051315 0.059696 0.065294
-17 0.010686 0.018184 0.028338 0.036032 0.042767 0.048776 0.055738 0.060251
-16 0.013391 0.018599 0.024984 0.030562 0.036672 0.042701 0.046929 0.05013
-15 0.021603 0.0325 0.041047 0.048556 0.059209 0.067089 0.071947 0.074603
-14 0.018975 0.030465 0.040273 0.051144 0.060837 0.067755 0.072391 0.073724
-13 0.017372 0.029396 0.041292 0.057493 0.070511 0.077967 0.083863 0.087475
-12 0.016035 0.031125 0.045129 0.064891 0.085623 0.096097 0.104183 0.108404
-11 0.017202 0.030491 0.045668 0.06404 0.087221 0.104343 0.112586 0.117258
-10 0.019126 0.03 0.04719 0.065769 0.084043 0.104897 0.11321 0.118658
-9 0.021903 0.032097 0.049766 0.071852 0.088897 0.111842 0.121422 0.127289
-8 0.024896 0.035301 0.051692 0.074274 0.093224 0.117702 0.129117 0.133991
-7 0.027914 0.038519 0.054593 0.076578 0.096672 0.122337 0.136635 0.141162
-6 0.030456 0.041742 0.056156 0.076205 0.096999 0.121846 0.139991 0.145407
-5 0.033459 0.044696 0.057642 0.075625 0.096382 0.120113 0.139135 0.147946
-4 0.03527 0.048068 0.059493 0.075085 0.094877 0.116979 0.13636 0.149523
-3 0.035922 0.053199 0.064495 0.078174 0.09606 0.116593 0.136105 0.151487
-2 0.035646 0.055332 0.066938 0.078808 0.094771 0.113735 0.132532 0.148978
-1 0.034704 0.056038 0.068355 0.07929 0.092529 0.108384 0.125715 0.142114
0 0.033386 0.053697 0.066986 0.078868 0.091389 0.104735 0.119142 0.133351
1 0.032606 0.052551 0.065339 0.076278 0.087783 0.099834 0.111929 0.123522
2 0.030589 0.0487 0.060056 0.069638 0.079376 0.089087 0.09834 0.107686
3 0.028633 0.045434 0.056199 0.065156 0.073102 0.080333 0.087135 0.093491
4 0.026833 0.042525 0.052657 0.060702 0.067327 0.072168 0.077059 0.081336
5 0.025767 0.041198 0.050807 0.058162 0.063803 0.068014 0.07167 0.074807
6 0.024323 0.039047 0.047951 0.054278 0.058972 0.06253 0.065431 0.067477
7 0.023063 0.036912 0.044912 0.050106 0.053593 0.056029 0.058014 0.059163
8 0.021568 0.034322 0.041561 0.045729 0.048269 0.049673 0.050391 0.050498
9 0.019875 0.03137 0.037859 0.041325 0.04301 0.043766 0.043633 0.04334

10 0.018199 0.028554 0.034135 0.037072 0.038293 0.038381 0.037972 0.037342
11 0.016594 0.025837 0.030895 0.03352 0.034492 0.03455 0.033864 0.032881
12 0.015095 0.023402 0.028024 0.030595 0.031623 0.031518 0.03097 0.029939
13 0.013739 0.021225 0.025494 0.02778 0.028858 0.028836 0.028201 0.027219
14 0.012417 0.01915 0.0231 0.025179 0.025988 0.026217 0.025565 0.024885
15 0.011263 0.017217 0.020611 0.02244 0.023233 0.023298 0.023003 0.022386
16 0.010078 0.015358 0.018288 0.01988 0.020497 0.020662 0.020442 0.01982
17 0.008865 0.013431 0.015959 0.017247 0.017716 0.01784 0.01765 0.017211
18 0.007727 0.011613 0.013712 0.01488 0.015344 0.015233 0.015097 0.014672
19 0.006744 0.010042 0.011819 0.012758 0.013106 0.013086 0.012855 0.012594
20 0.005856 0.008695 0.010108 0.010909 0.011216 0.011177 0.011057 0.010754



A.5. FGSM: End to End Autoencoder 108

Table A.19: Average Changes to Prediction Confidence for End to End Due to FGSM

Epsilon Value
Eb/N0 (dB) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-20 0.278014 0.552132 0.823202 1.09119 1.359076 1.629352 1.904544 2.191594
-19 0.259024 0.518275 0.782205 1.05504 1.328221 1.607104 1.886792 2.174139
-18 0.265748 0.532298 0.797769 1.065023 1.334387 1.602045 1.881416 2.161383
-17 0.291155 0.588378 0.89064 1.194644 1.500643 1.812308 2.126005 2.434671
-16 0.275629 0.556082 0.836967 1.1203 1.402483 1.684859 1.956823 2.231605
-15 0.35956 0.719956 1.078089 1.429254 1.783101 2.120091 2.439649 2.750283
-14 0.334437 0.667073 0.99778 1.32074 1.633371 1.938634 2.240217 2.532307
-13 0.342829 0.679257 1.00855 1.335253 1.657786 1.966058 2.271829 2.575555
-12 0.387526 0.761536 1.128485 1.489706 1.845982 2.196768 2.535479 2.861016
-11 0.407173 0.802275 1.187496 1.562494 1.933683 2.299412 2.65697 2.9948
-10 0.39353 0.779732 1.150166 1.511695 1.868793 2.221699 2.568713 2.90431
-9 0.403355 0.799652 1.180754 1.550949 1.912401 2.271069 2.628984 2.971005
-8 0.409441 0.804519 1.189897 1.561223 1.927258 2.29201 2.651719 3.007113
-7 0.404378 0.796778 1.178804 1.54445 1.904639 2.267729 2.630229 2.982761
-6 0.381999 0.752756 1.114689 1.466083 1.813315 2.157399 2.498856 2.836578
-5 0.351098 0.693241 1.027122 1.358527 1.688851 2.019633 2.341287 2.663656
-4 0.321299 0.633726 0.944667 1.259295 1.574734 1.892338 2.198359 2.505417
-3 0.305673 0.606536 0.908208 1.213848 1.524781 1.834121 2.141447 2.450773
-2 0.289048 0.571554 0.857095 1.146432 1.437675 1.734156 2.032475 2.335512
-1 0.266952 0.527233 0.788594 1.053558 1.325151 1.599172 1.879349 2.167425
0 0.246894 0.485599 0.722734 0.963917 1.210126 1.463692 1.723319 1.99106
1 0.229567 0.450987 0.66921 0.888355 1.113343 1.347176 1.587361 1.838649
2 0.20947 0.411175 0.609123 0.807462 1.009653 1.224548 1.443904 1.675178
3 0.189423 0.370726 0.546597 0.722268 0.904448 1.093604 1.290129 1.49811
4 0.173229 0.338392 0.49886 0.657187 0.821885 0.9927 1.170553 1.360423
5 0.163835 0.320865 0.472791 0.622285 0.774084 0.933159 1.099647 1.273937
6 0.15641 0.307009 0.452389 0.595938 0.740943 0.891556 1.049532 1.214438
7 0.148374 0.292074 0.431715 0.569475 0.708297 0.85162 1.002334 1.158359
8 0.140835 0.277907 0.41125 0.544311 0.676756 0.812585 0.954541 1.098504
9 0.132586 0.26136 0.387632 0.513386 0.637856 0.766372 0.896992 1.032609

10 0.123155 0.243275 0.360745 0.476257 0.592688 0.711319 0.831162 0.956339
11 0.114179 0.225077 0.333459 0.441684 0.549444 0.658379 0.769075 0.881419
12 0.106132 0.208874 0.309307 0.409065 0.508372 0.609696 0.712434 0.815178
13 0.098044 0.192895 0.285641 0.377385 0.468882 0.562512 0.653901 0.751403
14 0.090482 0.178219 0.263961 0.348198 0.432253 0.518429 0.602218 0.691077
15 0.083028 0.164131 0.242715 0.320127 0.397621 0.476282 0.556367 0.635802
16 0.07589 0.149909 0.222392 0.293883 0.365099 0.436291 0.508844 0.582795
17 0.068429 0.135651 0.201365 0.265363 0.3314 0.395125 0.461018 0.527118
18 0.061373 0.121504 0.180206 0.238449 0.296672 0.353599 0.413012 0.472878
19 0.054342 0.10763 0.160059 0.212605 0.263155 0.314435 0.366081 0.416983
20 0.047867 0.095113 0.141086 0.186951 0.231908 0.277852 0.322767 0.367866


