
Networked Microcontrollers for
Distributed Audio Spatialisation

Thomas Albert Rushton

Sound and Music Computing, 2023-06

Master’s Project

S
T

U

D
E

N
T R E P O R T

Copyright © Aalborg University 2023

Typset with pdfTeX π-2.6-1.40.24 and Latexmk 4.77

Department of Architecture, Design and
Media Technology

Aalborg University
https://www.aau.dk

Title:
Networked Microcontrollers for Dis-

tributed Audio Spatialisation

Theme:
Scientific Theme

Project Period:
Spring Semester 2023

Project Group:
n/a

Participant(s):
Thomas Albert Rushton

Supervisor(s):
Stefania Serafin

Romain Michon (external)

Copies: 1

Page Numbers: 61

Date of Completion:
May 25, 2023

Abstract:

Systems for spatial audio typically de-

mand large numbers of loudspeakers

and audio hardware capable of serv-

ing many output channels. Centralised

systems of this sort are inflexible, and,

due to their reliance on specialist audio

hardware and software, costly, with a

high barrier to entry. Recent decades

have seen increasing interest in both au-

dio spatialisation and the transmission

of audio over computer networks. Ad-

vancements in low-cost microcontroller

platforms with support for networking

and audio processing, may facilitate a

decentralised approach to audio spa-

tialisation systems. Based on one such

platform, this thesis describes the devel-

opment of a modular, scalable system of

distributed audio processors with appli-

cations to spatial audio. Though faced

by significant technical challenges, the

system demonstrates interesting initial

perceptual results. Findings are com-

mensurate with a capability, with fur-

ther development and research, to dis-

rupt and democratise the fields of spa-

tial and immersive audio.

The content of this report is freely available, but publication (with reference) may only be pursued with the
agreement of the author.

http://www.aau.dk

Contents

Preface vii

1 Introduction 1
1.1 Digital Audio Signals . 1

1.1.1 Numerical Representation . 2

1.1.2 Storage and Transmission . 3

2 Analysis 5
2.1 Networked Audio . 5

2.1.1 Protocols and Systems . 6

2.1.2 Anatomy of a Datagram . 8

2.2 Hardware Platforms . 9

2.3 Approaches to Audio Spatialisation 10

2.3.1 Wave Field Synthesis . 13

2.4 Distributed Computing . 15

2.5 Distributed Audio Systems . 16

2.5.1 State of the Art . 16

2.5.2 Challenges . 17

2.6 Research Questions . 18

2.6.1 Prior Work . 18

3 Development 21
3.1 The Networked Audio Server . 21

3.1.1 Designing a Networked Audio Protocol 22

3.1.2 Server Design . 23

3.2 The Networked Audio Client . 26

3.2.1 Synchronicity with the Server 28

3.3 The Spatialisation Algorithm . 30

3.4 System Overview . 32

3.4.1 Hardware Setup . 32

3.4.2 Software System . 33

v

vi Contents

4 Evaluation 35
4.1 Technical Evaluation . 36

4.2 Perceptual Evaluation . 39

4.3 Discussion . 42

5 Conclusion 45
5.1 Future Work . 46

Bibliography 47

A Prior Work 53

Preface

This project began life as an internship assignment on the Emeraude research team at

Inria (Institut national de recherche en sciences et technologies du numérique) in Villeur-

banne, France, under the supervision of itinerant Faust evangelist, Romain Michon.

He tasked me with expanding on a proof-of-concept JackTrip microcontroller client

that a previous team of interns had created, and I spent a couple of months wrestling

with the Teensy platform, JackTrip and Linux audio in general, and gazing at Wire-

shark captures. The result was a distributed Wave Field Synthesis implementation

based on JackTrip and Faust, which was presented at the 2022 Programmable Audio
Workshop (also held in Villeurbanne). A paper detailing the work was submitted to

the 2023 Sound and Music Computing conference and very kindly accepted at peer

review; it will be published in the proceedings of the conference later in 2023.

I will not claim to be more than a neophyte where much of the content of this

thesis is concerned — particularly with regard to the low-level specifics of network

transmission and computing hardware. That being said, the work of research has

invariably focused on its engineering aspects, rather than its creative applications, so

the former is where my efforts must lie in terms of documentation; I hope that the

reader will bear with me as I make what best I can of my understanding.

Acknowledgements

My sincerest thanks to Stéphane Letz for sharing his unrivalled knowledge of JACK

and Faust; to Dan Overholt and Peter Williams for their support with the vagaries

of working with microcontrollers; and to Shawn Silverman for taking the time to

walk me through how ethernet works on Teensy. Thanks also to Romain Michon and

Stefania Serafin for their patient supervision.

Copenhagen, May 25, 2023

Thomas Albert Rushton

<trusht21@student.aau.dk>

vii

Chapter 1

Introduction

Spatial and immersive audio techniques have been the beneficiaries of significant

research interest over the past few decades. The more recent explosion in virtual

and augmented reality technologies, and object-based audio techniques, has led to an

acceleration in interest in the creation of virtual sound fields via approaches such

as Wave Field Synthesis (WFS) and Higher Order Ambisonics (HOA)[1–4]. These

techniques call for the deployment of large numbers of loudspeakers, and centralised,

in situ installations of dedicated hardware and software. The costs associated with

such installations have seen them relegated to the reserve of concert venues, cinemas,

and institutions with the means to purchase and operate monolithic systems of this

sort.

Recent advancements in embedded computing mean that there now exist an

assortment of small, low-cost devices with support for audio digital signal processing

(DSP). These devices are easily programmable, open source, and may provide

support for communication over ubiquitous computer networking equipment and

protocols. A network of such devices could be used to distribute the problem of

audio spatialisation, potentially lowering the barrier of entry to what is otherwise a

comparatively exclusive branch of audio research.

The work that this thesis describes is an exploration of the possibility of achieving

such an outcome. As such, it is concerned primarily with the transmission of digital

audio signals throughout a computer network. It is meaningful, then, to reflect on

the nature of such signals, a selection of their properties most pertinent to this work,

and their representations within computer systems and networks.

1.1 Digital Audio Signals

In a digital audio system with sampling rate Fs, an audio signal y is composed of

samples y[n], each representing the amplitude of the signal at a given point in time

t, where t = n/Fs. For arithmetical convenience, sample amplitudes are typically

1

2 Chapter 1. Introduction

considered to be floating point numbers, constrained to the range y ∈ [−1, 1] (see

Figure 1.1). It is in this form that samples are typically handled during the processing

stage of a DSP algorithm, but the true underlying representation is concealed, and

matters such as numerical resolution and precision abstracted away.

Figure 1.1: An audio signal (1 kHz sine wave); (a) in continuous time; (b) sampled at intervals of 1/Fs

seconds, with Fs = 44 100 Hz.

Samples undergo format conversion at various stages during processing, such as

from an integer pulse code modulation (PCM) filetype to a stream of floating point

audio samples in a digital audio workstation (DAW), or from a floating point audio

stream in an audio device driver to an integer stream to be handled by a hardware

codec. For the most part a user, and even a developer of audio software, need not

concern themselves with the rudiments of sample representation and conversion; as

shall be shown, however, under certain circumstances these digital fundamentals

must be dealt with directly.

1.1.1 Numerical Representation

Commonly-encountered sample formats include 16 and 24 bit integer, and 32 bit

floating point. Broadly speaking, more bits afford greater resolution in terms of

sample amplitudes that can be represented, with ramifications for dynamic range

and signal to noise ratio, as well as for storage and throughput. Integer formats offer

comparatively poor resolution at low amplitudes due to the mismatch between the

linear distribution of their values versus the logarithmic nature of sound intensity.

Floating-point formats address this by having a logarithmic distribution of available

values; the IEEE standard for single precision (i.e. 32-bit) floating point numbers[5]

dictates that precision is greatest around zero, with around half the available numbers

lying in [−1, 1].1 For brevity’s sake, and for its pertinence later in the text, consider

the 16-bit case, and a single 16-bit integer audio sample:

1Actually, given available negative exponents from -126 to -1, and a fraction of 23 bits for each

exponent, around 49.2%. The remainder consists of numbers in ±[1, 3.4× 1038], plus space reserved

1.1. Digital Audio Signals 3

Figure 1.2: Detail of Figure 1.1 (b). Sample amplitudes converted to 16 bit hexadecimal values.

Listing 1.1: A 16-bit audio sample, binary representation

11010101 01101010

Separating the bits into two groups of eight is reflective of the fact that the eight-bit

byte is typically the unit of transmission in computer systems. Grouping the bits in Tighten up the wording

around unit of transmis-

sion?

this way points to their expression in hexadecimal format, transforming the bytes

into more easily-digestible morsels of two digits:

Listing 1.2: A 16-bit audio sample, hexadecimal representation

d5 6a

A number of this kind may also been seen represented (in C and C++ code for

example) as 0xd56a with ‘0x’ indicating that the number to follow is in base sixteen.

Sixteen bits grant access to 216 = 65,536 distinct amplitude values for each sample;

what listing 1.2 tells us is that, in decimal terms, this sample should take the 54,634
th

amplitude value2. See Figure 1.2 (and the sample at n = 5) for an illustration of this.

1.1.2 Storage and Transmission

Listings 1.1 and 1.2 hint at the property of endianness, which is to say the order in

which a number’s component bits and bytes appear[6]. The above representations

mirror the left-to-right nature of western written language and numbers, being big
endian at the levels of both bit and byte, with the most significant bit (and most

significant byte, both abbreviated MSB) appearing first.

Paraphrasing Cohen[6], if digital audio signals could be transmitted in their

for representing infinity and non-numbers.
2For convenience and explicitness elsewhere in the text, decimal equivalents to hexadecimal numbers

will be indicated with subscript 10, e.g. 5463410.

4 Chapter 1. Introduction

entirety, i.e. the unit of transmission was an audio signal, then endianness would

not matter. Practically speaking, however, in order to be handled by software

or hardware, or transmitted over a network, audio signals must be broken down

into temporally-distributed blocks, those blocks into samples, samples into bytes,

and bytes into bits; correct endianness must be observed with respect to differing

computer architectures, file formats, and transmission protocols.

The PCM WAV file format, for example, dictates that the least significant byte of

each sample is stored first — little endian — but that bit order should be big endian[7];

thus the audio sample in listing 1.2 should be stored in a .wav file as 0x6ad5. The

ethernet standard for communication over local area computer networks[8] calls for

something akin to the opposite: octets (bytes) are sent "top to bottom", but each octet

is transmitted with its least significant bit first.Section in intro on spatial

audio?

Chapter 2

Analysis

In this chapter an overview is given of the problem space. The topic of delivering data,

and audio signals in particular, over computer networks is addressed, with particular

focus on the user datagram protocol for network transmission. Suitable hardware

platforms for implementing a low-cost distributed audio system are described, as are

audio spatialisation algorithms, with an emphasis on wave field synthesis. Prior art

in distributed audio systems is considered, and aims for the development of a new

system, taking advantage of current consumer-grade microcontroller technology,

described.

2.1 Networked Audio

The transmission of audio data has been a topic of research interest since the earliest

days of computer networking as it is recognised today, i.e. over packet-switched

networks whereby data to be transmitted is grouped into packets, each consisting of

a header and a payload. Voice transmission over ARPANET was being conducted as

early as 1974[9] and the first standard for voice communication over packet-switched

networks — the Network Voice Protocol (NVP) — was released in 1977[10].

With its references to ‘calling’, ‘ringing’, and termination of a connection as

a ‘goodbye’, it is clear that the NVP standard was intended for digital telephony.

Indeed, research on networked audio was primarily interested in telephony well

into the 1990s, focusing on real-time voice communication over wide area networks

(WAN) with efforts centring on quality of service (QoS), particularly with regard to the

perennial issues of latency, packet loss, and network jitter — inconsistencies in the rate

of packet transmission[11, 12]. Work at this time dealt with streams of compressed

audio data, and speech coding algorithms to overcome the deleterious effects of

dropped packets over unreliable network paths and low-bandwidth connections.

Whereas the priority for digital telephony, and later voice over IP (VoIP) systems,

is intelligibility, for musical purposes fidelity, and the use of uncompressed audio

5

6 Chapter 2. Analysis

signals, is of greater concern. With the increasing availability of high-speed internet

connections in the late 1990s came research into transmitting uncompressed audio

data over the internet[13, 14]. Work of this sort was spearheaded by the SoundWIRE
project, developed by researchers at McGill University and the Centre for Computer

Research in Music and Acoustics (CCRMA) at Stanford University, and took the form

of a wide variety of experiments with high quality audio over both WAN and local

area networks (LAN). These experiments included LAN-based real-time musical

performances[13], concert streaming over WAN[13, 14], and sonification of QoS via a

distributed digital waveguide dubbed the Network Harp[13, 15].

2.1.1 Protocols and Systems

VoIP research in the 1990s focused on matters such as audio codecs and data

compression[12, 16], seeking a compromise with the best-effort nature of internet

service. The SoundWIRE project, in search of high audio quality, turned its attention

directly to the fundamental transport layer protocols of the Internet Protocol suite:

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Doing

away with data compression removed a layer of computational overhead inherent

to VoIP, and Chafe et al. characterised SoundWIRE and associated work as taking

a “simplified approach”[13] to networked audio, emphasising the importance of

delivering multichannel audio of at least CD quality (16 bit, 44.1 kHz) with as little

latency as possible.

SoundWIRE experiments included using TCP for unidirectional transmission

such as concert streaming. TCP is in fact a bidirectional protocol, but its connection-
oriented, one-to-one design, whereby networked entities establish a connection via a

‘handshake’, following which they exchange packets of data, allows for mechanisms

that guarantee packet ordering and provide protections against packet loss[17, 18].

These mechanisms mean that, at the expense of increased latency, quality of service,

and thus audio fidelity, is ensured; ideal for a remote concert scenario. The strict

one-to-one nature of TCP clearly places limits on its applicability to distributed

computing, however.

UDP by comparison is a connectionless protocol, providing no guarantees on the

integrity of the stream of network data, but equally none of the computational, or

indeed temporal, overhead that such guarantees introduce. A network entity can

send UDP packets to a network address irrespective of whether any other entity with

that address exists. Further, many-to-many (multicast) and one-to-many (broadcast)

modes of transmission are possible via address spaces reserved as part of the internet

protocol standard[19]. Via UDP, SoundWIRE was able to run as a distributed digital

waveguide over a WAN spanning ~4500 km[13].

From the SoundWIRE project emerged JackTrip [20, 21], a hybrid system that

couples a TCP handshake with data transmission over UDP, thus sidestepping the

2.1. Networked Audio 7

overhead of TCP packet flow control. Rather than rely on TCP’s built-in mechanisms

for stream integrity, JackTrip supplements UDP with a number of optional buffering

strategies that aim to tailor its use to operation over local versus wide area networks. In

this sense it is more flexible than TCP, but in effect JackTrip moulds UDP transmission

into something akin to the connection-oriented model of TCP, and, in its ‘hub server’

mode, into a kind of multiple one-to-one design — multicast transmission is not

possible.

UDP has emerged to be the protocol of choice for platforms enabling remote

musical collaboration, serving as the basis for systems such as NetJACK[22], part

of the JACK Audio Connection Kit (a cross-platform audio host), Jamulus[23],

Soundjack[24], and other jamming-focused platforms, plus more recent entrants

to the arena of networked audio and music such as Elk OS, which operates on a

closed-source, but ultimately UDP-based, system[25]. It even serves as a critical

component of proprietary systems such as Dante (Digital Audio Network Through

Ethernet)[26].

AoE in the Audio Industry

In parallel with the work being carried out by researchers such as those developing

SoundWIRE, JackTrip and NetJACK, audio industry bodies were taking an interest

in networked audio. Prominent amongst these bodies were the IEEE (Institute of

Electrical and Electronics Engineers) and AES (Audio Engineering Society) standards

groups, and companies like Audinate, the creators of the Dante system. Traditional

large-scale audio systems such as those used in broadcast, concert venues and

recording studios rely on the installation of unwieldy systems of analogue hardware

and cabling, with many potential points of failure. Seeking literally to lighten the

load posed by “hundreds of kilograms”[27] of analogue cabling in analogue audio

installations, in the 2000s industry entities were looking to high speed ethernet as

a means to simplify the provision of high-quality, multichannel audio in industry

settings.

Dante, with its promise of low-latency, highly-multichannel audio over ethernet,

and device synchronisation via Precision Time Protocol (PTP), has become the de

facto standard in this area[27]1. In 2011, IEEE released the Audio Video Bridging

(AVB, IEEE 802.1) standard, and AES67 followed in 2013; these open technical

standards describe operation at layers below TCP and UDP in the hierarchy of

network technology, and provide frameworks for interoperability between AoE and

AoIP systems, including mechanisms for device discovery and synchronisation. Being

standards, and not implementations in themselves, it is then up to manufacturers to

1Bakker et al. refer to Dante as an “open” system. This is perhaps true in the sense that companies

can incorporate the Dante system into their own products under licence from Audinate, but, from the

perspective of the research community, Dante is very much a closed-source initiative.

8 Chapter 2. Analysis

implement their recommendations in their products. (AES67, for example, has in

fact been implemented in Dante[27].)

The proprietary nature of Dante means that, despite the intriguing nature of its

guarantees of device synchronicity to the sub-microsecond range, it is not a serious

target for further research. Two interrelated factors preclude the further consideration

of AVB and AES67 in this work: 1) their reliance on network protocols such as PTP

that are not supported by ubiquitous networking equipment; 2) the high cost of

devices that do provide such support. Ultimately, if an accessible, low-cost solution

is sought, attention must be turned back to the transport layer, and UDP.

2.1.2 Anatomy of a Datagram

Figure 2.1: Structure of an ethernet frame containing a UDP packet.

A UDP packet consists of data encoded an 8-bit integer format. Being a transport

layer protocol, a UDP packet is in fact preceded in an ethernet frame by information

relating to lower layers in the hierarchy of network topology: the network layer and

data link layer. The structure of a UDP packet (within an ethernet frame) is shown in

Figure 2.1.

Listing 2.1: Network capture: ethernet frame containing a UDP packet

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

0000 00 00 0c 9f f5 16 d8 80 83 80 8c b7 08 00 45 00E.

0010 00 2a 83 ba 40 00 40 11 0a 09 ac 1e fe df 01 01 .*..@.@.........

0020 01 01 ed 3f 22 b8 00 16 01 74 48 65 6c 6c 6f 2c ...?"....tHello,

0030 20 77 6f 72 6c 64 21 0a world!.

The ethernet frame in listing 2.1 was generated using the Netcat (nc) command line

2.2. Hardware Platforms 9

utility2, and captured with Wireshark network packet analysis software3. Four-digit

numbers to the left indicate the hexadecimal number of the byte at the beginning of

the corresponding line. The central block of two-digit hexadecimal numbers are a

representation of the bytes in the ethernet frame, labelled above by byte position. The

block of characters to the right are the same data represented with ASCII encoding.

Bytes 0x0000 to 0x000d make up the ethernet header, consisting of the media

access control (MAC) addresses of the destination and source; the final two bytes of

the ethernet header, 0x0800, indicate that this is an internet protocol version 4 frame.

Bytes 0x000e to 0x0021 are the IPv4 header; this contains information about the

internet protocol part of the packet, such as its length in bytes — 0x002a (42
10

) — and

the source and destination IP addresses, encoded as groups of four-bytes. The source

IP address, for example, is 0xac1efedf, a 32-bit encoding of the more familiar-looking

172.30.254.223.

Beginning at byte 0x0022 is the UPD header. This contains the source port (0xed3f,

60735
10

), destination port (0x22b8, 8888
10

), the length of the UDP part of the frame

(0x0016, 22
10

bytes) and ends with a checksum, which can be used to verify the

integrity of the packet4. The packet payload begins at byte 0x002a, and consists of

bytes corresponding with the ASCII characters Hello, world!, plus 0x0a, the line

feed (LF) character, captured and sent by Netcat when the user hit the return key.

Netcat takes data supplied to a computer’s standard input stream, in this case

characters entered in a terminal emulator, and uses this data as the payload for the

packet to be transmitted. The payload of a UDP packet can of course consist of any

data which can be appropriately byte-encoded, such as a stream of audio samples, or

audio control data such as MIDI or OSC messages.

Ethernet frames, and UDP datagrams by extension, are subject to size limitations.

The maximum transmissible unit (MTU) of a transport medium is the limit on the

size of a packet that can be sent without fragmentation, i.e. being split into multiple

subpackets. The theoretical limit on datagram size is 65535 bytes[17] — this is the

largest number representable by the two bytes allocated to the ‘Total Length‘ field of

the IPv4 header — however in practice the data link layer imposes a basic limit of

1500 bytes on the payload of an ethernet frame[8].

2.2 Hardware Platforms

The notion of taking a distributed approach to DSP is reliant on the identification

of a suitable supporting hardware platform. For a distributed audio application,

the ideal computing platform should be small, inexpensive, plus easily and rapidly

2https://nc110.sourceforge.io/
3https://www.wireshark.org/
4In the remainder of this work it is assumed that transmission over LAN is unlikely to result in

packet corruption. The UDP checksum is not used, nor discussed any further.

https://nc110.sourceforge.io/
https://www.wireshark.org/

10 Chapter 2. Analysis

Platform Processor Memory Price

Teensy 4.16 ARM Cortex-M7 600 MHz 1 MB SDRAM ~€32

Daisy Seed7 ARM Cortex-M7 480 MHz 64 MB SDRAM ~€28

ESP32-LyraTD-MSC8 Xtensa LS6 240 MHz 8 MB PSRAM ~€52

Bela9 ARM Cortex-A8 1 GHz10 512 MB DDR3 ~€209

Table 2.1: Comparison of selected embedded audio development platforms. Prices as of May 2023.

programmable; of course, it should also provide audio and networking capabilities.

Recent years have seen the emergence of a number of small, low-cost, open-

source platforms for embedded development, perhaps best known amongst these

being Arduino5. Though support for audio is limited via official Arduino models,

a number of audio-specific, Arduino-like systems have been developed, principal

amongst these being various ESP32 models, Daisy Seed, and the Teensy family of

microcontrollers. Also worthy of consideration is the Bela platform; though not a

true microcontroller (being based on the Beaglebone single-board computer, and

running an opeating system) it is a small-footprint audio-focused device suitable for

embedded applications. Platforms of this kind that also possess networking support

may also fall under the category of Internet of Things (IoT) devices.

A comparison of selected devices can be found in table 2.1. Bela is significantly

more powerful than the microcontroller systems, but it is commensurately costly.

Daisy Seed is well-appointed with memory (which is important for DSP algorithms

featuring long delay-lines, for example), but does not feature ethernet support.

Teensy4.1, and the selected ESP32 device support networking via their repsective

ethernet add-ons, but the latter’s CPU is under-powered. Though lacking in memory,

Teensy’s processor and low price make it the most suitable candidate to support a

distributed, networked audio implementation.

2.3 Approaches to Audio Spatialisation

Audio spatialisation is the practice of distributing sound in space. In terms of

the reproduction of primary sound sources, i.e. sound captured by microphones,

recorded as digital audio files, or synthesised in real-time, spatialisation can be

achieved simply by delivering those primary sources to secondary sound sources, i.e.

loudspeakers, placed at arbitrary positions relative to a listener. Such an approach is,

5https://www.arduino.cc/
6https://www.pjrc.com/store/teensy41.html
7https://www.electro-smith.com/daisy/daisy
8https://www.espressif.com/en/products/devkits/esp-audio-devkits
9https://shop.bela.io/products/bela-starter-kit

10https://beagleboard.org/black

https://www.arduino.cc/
https://www.pjrc.com/store/teensy41.html
https://www.electro-smith.com/daisy/daisy
https://www.espressif.com/en/products/devkits/esp-audio-devkits
https://shop.bela.io/products/bela-starter-kit
https://beagleboard.org/black

2.3. Approaches to Audio Spatialisation 11

of course, inflexible; loudspeakers being stationary entities by-and-large, the idea of

moving a sound source is physically impractical, and, that of locating a sound source

between loudspeaker positions physically impossible. Taking advantage of auditory

cues, however, and the nature of the propagation of sound, it is possible to suggest

the presence of primary sources at arbitrary locations, independent of the secondary

source distribution. The motivation behind audio spatialisation, then, is to create

(or indeed recreate) sonic environments for creative and immersive purposes, such

as for virtual reality experiences, in cinematic settings, for music production or art

installations, to give but a handful of examples.

A number of techniques exist for what is termed sound field synthesis[28, 29],

all of which essentially take the form of applying some manner of driving function
to an input audio signal to generate an appropriate driving signal to be delivered

to a secondary sound source in the listening environment[28]. For a loudspeaker

at position x =
[
x y z

]T
, the driving signal D̂(x, ω) can be expressed, in the

frequency domain, as the product of the input signal, Ŝin(ω) and the driving function

D(x, ω):

D̂(x, ω) = Ŝin(ω) ·D(x, ω), (2.1)

where f is time frequency and ω denotes radian frequency, ω = 2πf . Moving to the

time domain, the multiplication of the input signal and driving function changes to a

convolution, and equation (2.1) becomes:

d̂(x, t) = ŝin(t) ∗ d(x, t), (2.2)

where t denotes time.

An early sound field synthesis approach, referred to as an ‘acoustic curtain’[30]

entailed placing microphones in one space, such as a concert auditorium, and, in

another space, loudspeakers at locations corresponding to those of the microphones.

In this case, there are as many input signals Ŝk(ω) as there are microphones, and

the driving function reduces to a ‘pass-through’ of each signal to its corresponding

loudspeaker, i.e. Dk(x, ω) = 1.

The acoustic curtain is a relatively rarely-deployed technique (though similar

recreation of ‘real’ sound fields is still conducted, albeit typically by way of ambisonic

recording and reproduction) and sound field synthesis is most often concerned with

the distribution and movement of artificial or arbitrary sound sources. Commonly-

employed approaches to sound field creation can be grouped into two broad categories:

amplitude- and time-based panning techniques, and physical sound field recreation

approaches.

Periphony

The former, periphonic, types are perhaps more familiar to the layperson and encom-

pass stereophony and surround-sound systems, consisting of secondary sources in a

12 Chapter 2. Analysis

horizontal planar arrangement equidistant to the listening position. These techniques

exploit interaural level difference (ILD) cue, i.e. the difference in perceived amplitude

relative to the listener’s ears[30–32], to encourage the listener to localise sound to a

position on the circumference of an arc or circle around the listening position. This

is achieved by weighting the amplitudes of signals sent to the secondary sources,

creating a “phantom” sound source that may appear to emanate from a position

between loudspeakers. For systems of this sort, the driving function is a constant

scalar value, or, for a moving phantom source, a time-varying function that returns

a scalar value. Such periphonic approaches can extend to three dimensions in the

case of vector base amplitude panning (VBAP)[31], which uses trios of speakers to

position phantom sources on the surface of a sphere.

Time-based panning effects, by contrast, make use of the interaural time difference

(ITD) cue to give the impression of a phantom source located toward the loudspeaker

producing the signal at the earliest time[31, 32]. Thus the driving function for a

time-based panning system is a delay of the form:

d(x, t) = δ(t− τ), (2.3)

where τ is the duration of the delay.

The effects of ILD and ITD cues may transfer to headphone-based listening, in

which case, rather than periphonic, they become a sort of in-head localisation[28].

It is worth mentioning that these cues vary in their effectiveness with frequency

and, excepting the case of headphone-based listening, intersect with cues related to

listener’s torso[32] and the head-related transfer function[33, 34].

Periphonic approaches (again, headphones excepted) are subject to the phe-

nomenon of an ideal listening position, or sweet-spot[29, 32], that is a listening position

away from which the spatialisation effect is significantly degraded. As such, these

techniques are not suited to subjection to multiple listeners, nor to immersive audi-

tory experiences permitting the participant to move freely about their environment.

Additionally, phantom sources are inherently bound to the periphery on which they

reside; there is no authentic way to model a phantom source at greater (or lesser)

distance, though using reverberation and amplitude cues may offer a satisfactory

perceptual impression.

Physically-Inspired Techniques

Physical approaches fall into two main types: wave field synthesis (WFS) and am-

bisonics (and higher-order ambisonics — HOA). Rather than directly manipulating

sound localisation cues, these types seek to trigger those cues indirectly by synthesis-

ing a sound field as if it had been created by ‘true’ acoustic sources, as opposed to

loudspeakers. In the case of ambisonics, the sound field is decomposed into ‘spherical

harmonics’, spatial functions described by linear sums of directional components of

2.3. Approaches to Audio Spatialisation 13

Figure 2.2: Holophony. Huygens’ principle states that the propagation of a wavefront can be recreated

by a collection of secondary point sources. The bottom of the figure represents a virtual sound field,

and the top a real sound field, separated by a row of secondary point sources (loudspeakers). The small

blue circle represents a virtual sound source and the blue dashed arcs are virtual wavefronts associated

with that sound source; the grey arcs are wavefronts produced by the array of secondary point sources;

the solid blue arcs represent the propagation of a reconstructed wavefront in the real sound field.

increasing order[29]. Spherical and plane waves can be reproduced, corresponding

with virtual point sources and sources at ‘infinite distance’ respectively.

Ambisonics, like periphonic approaches, suffers from a sweet-spot effect which ex-

acerbates with attempts to reproduce sounds of higher frequency. The ideal listening

area can be broadened by implementing ambisonics at higher order, increasing the

density of the distribution of secondary sources. Doing so obviously has ramifications

for the physical complexity of an ambisonics installation, and, since higher-order

spherical modes must be calculated, in terms of computational demands placed on

the system.

2.3.1 Wave Field Synthesis

WFS, reminiscent of the acoustic curtain, is based upon Huygens’ principle, originat-

ing in the field of optics, which states that a propagating wavefront can be recreated

by a distribution of secondary point sources[1, 35, 36] (see Figure 2.2). It is variously

termed a form of acoustic holography or holophony[28, 37]. Effectively, by timing

the reproduction of an input signal at an array of secondary sources, a wavefront

associated with a virtual sound source can be synthesised. To simulate distance cues,

14 Chapter 2. Analysis

a filter can be applied to model losses to the virtual medium of acoustic propagation.

The principle assumes a continuous array of secondary sources but of course in

practice it is necessary to use a discrete array of loudspeakers, which, much as is

the case with HOA, has ramifications for spatial resolution; to mitigate the issue of

spatial aliasing, whereby sounds of higher frequency cannot be recreated unambigu-

ously[38], secondary sources should be placed very close together. Consequently,

to serve a large listening area, many speakers, and thus many audio channels, are

required.

Via appropriate timing of the delivery of a primary sound source to the secondary

source array, it is possible to synthesise virtual sound sources, plane waves, and

focused sound sources, corresponding with concave, flat, and convex synthesised

wavefronts respectively; the latter, dependent on the location of the listener, appear

to emanate from within the real sound field, rather than its virtual counterpart.

Figure 2.3: The driving signal for the WFS secondary source at position x, for virtual primary source

ŝin,k, is dependent on the distance rk of the primary source from the secondary source. This corresponds

with a propagation delay via the simulated medium of propagation, coupled with a filter describing

losses to that medium.

Focusing on the former kind, however, for m virtual sources, the time-domain

driving signal d̂ for the secondary source at x may be expressed as:

d̂(x, t) =
m−1∑

k=0

ŝin,k ∗ dk(x, t), (2.4)

where the driving function dk is[28]:

dk(x, t) =
yk
rk

f(t) ∗ δ
(
t− rk

c

)
. (2.5)

The WFS prefilter[28] f(t) is a function that aims to simulate the absorption of energy

into the simulated medium of acoustic propagation. The delta function δ has the

effect of delaying the prefilter, and thus ŝin,k, by the time of propagation for a medium

with propagation speed c (typically modelled as 343 m/s for sound in air). The

components of the driving function are depicted in Figure 2.3.

2.4. Distributed Computing 15

2.4 Distributed Computing

In the broadest terms, a distributed system is “a collection of independent entities that
cooperate to solve a problem that cannot be individually solved”[39]. In turn, the term

distributed computing simply describes a system of computation that is distributed in

space[40].11 At a low enough level, this effectively describes any computer system,

such systems being composed of individual entities — processors, memory, input

and output devices, et cetera — all acting in cooperation.

At a higher level — that of a computer network, for example — why take a

distributed approach to computation? As Kshemkalyani and Singhal describe[39], a

variety of rationales exist for taking such an approach; adapting these to the notion

of distributing an audio spatialisation algorithm across a computer network, most

relevant are:

Scalability Particularly so if taking advantage of a network protocol that supports

multicast or broadcast transmission. Under a unicast model, such as that employed

by JackTrip, streams of audio data are duplicated on a per-client basis; under such a

model, at some point all available network bandwidth will be exhausted. An ideal

multicast networked audio system entails there being just one stream of audio data,

plus perhaps a stream of control data, for all clients to consume. Dependent on the

application, the server in such a system may not need to be aware of how many

clients are connected; by a similar token, clients exist in isolation, and fulfil their task

with no dependency on their peers on the network.

Modularity Closely related to scalability, modularity entails extensibility. This is

something that centralised audio spatialisation systems either lack entirely, or possess

only at great cost in terms of hardware, and even then only if the hardware supports

extension via daisy-chaining, for example. The matter of expense anticipates:—

Improved cost/performance ratio A modular, scalable system can be constructed to

meet the size that circumstances require, with the minimum amount of redundancy.

If it becomes desirable to scale the system up, this can be achieved by small increments

rather than by expensive leaps.

Kshemkalyani and Singhal also vaunt enhanced reliability as motivation for dis-

tributed computing. This may indeed hold true for systems where the failure of a

single node can be compensated for by increased work on the part of the remaining

nodes until such time as the failed node can resume operation or be replaced; it does

not for the sort of system under consideration here. Indeed, this points toward two

11There is a certain linguistic symmetry here with respect to spatial audio, but that’s about as far as

the parallel goes.

16 Chapter 2. Analysis

significant drawbacks of distributed systems in general: increased complexity and

a proliferation of potential points of failure. Nodes in a distributed computational

system must be served at the very least with power and access (e.g. over a network)

to the data that they require in order to operate. This entails the provision of cables,

perhaps batteries, and physical connections that may be subject to wear-and-tear or

misuse. Additional concerns surround the programmability of such a system, which

is the other side to the coin of modularity; integrity, in terms of all nodes possessing

up-to-date instructions for operation, may be difficult to ensure.

2.5 Distributed Audio Systems

The notion of taking a distributed approach to audio processing is by no means

unprecedented; a selection of prior work in distributed DSP and audio spatialisation,

plus systems incorporating microcontrollers and single-board computers is detailed

below.

2.5.1 State of the Art

Applications of SoundWIRE to what its creators termed Internet Acoustics[15] obvi-

ously represent a case of distributed audio processing. These include implementations

such as a network reverberator[41], or “transcontinental echo chamber”[13], plus the

aforementioned Network Harp. Experiments of this sort were intended initially as

sonifications of QoS — a characteristic of network systems that is difficult to represent

in graphical or textual form due to the ephemeral nature of phenomena such as jitter

and packet loss — but stand as fascinating applications in their own right of digital

audio in the age of computer networking. Subsequent work on JackTrip has focused

on optimising networked audio less for sound processing or as a creative tool in itself,

and more in service of the social and communal aspects of music participation and

appreciation in a networked world; these are topics that came to the fore in computer

music research during the COVID 19 pandemic[42, 43].

Lago[44] proposed a UDP-based system for real-time distributed audio processing

taking the form of a network of general purpose computers. A server sent packets

of audio data to be processed by a collection of clients, which would then return

processed audio to the server to be combined and used for output. Since clients

were not to be used directly for output, synchronisation was not important, but Lago

identifies the timing or hardware based interrupts for audio and network processing

as being of great importance to a distributed real-time implementation. Though an

interesting exploration of approaching certain difficulties of distributed computing,

DSP in particular, and ambitious for its time (2004), arguably the need for such

a system has been obviated by advances in computer processing power over the

succeeding two decades.

2.5. Distributed Audio Systems 17

A digital music production system of networked Beagleboard single-board

computers was demonstrated by Gabrielli et al.[45] Another ambitious project,

particularly since it relied on wireless communication, the authors describe an

interesting way of measuring transmission round-trip times.

Exploring the possibilities of burgeoning network technology in the early 2010s,

Lopez-Lezcano set out to build a UDP-based ‘network sound card’ to support a

networked WFS system[46]. The aim was to replace otherwise expensive high

channel-count conventional audio interfaces, which receive audio over the MADI

protocol, with something more cost-effective. Ultimately the devised system was not

used for audio spatialisation, but facilitated networked musical performance, and it

stands an example of the results that can be achieved by using ‘raw’ UDP data for

audio transmission, rather than an established protocol or system.

In addition to Gabrielli et al., implementations on IoT-like devices include Chafe

and Oshiro’s port of JackTrip to the Raspberry Pi single-board computer for further

internet acoustics, plus distributed spatialisation systems such as those described by

Devonport and Foss[47] and Belloch et al.[36] The latter two address aims closely

aligned with the work described here, but are based on costly computing platforms.

Devonport and Foss achieved high synchronicity via AVB; Belloch et al. used a

GPU-based hardware platform, which is perhaps unsuited to its task, and report client

synchronisation to the millisecond range — likely not sufficient for timing-critical

audio spatialisation effects.

Also of interest is the OTTOsonics[48] project; its emphasis on a fully-costed, do-

it-yourself alternative to conventional spatial audio systems is pertinent to this work,

though it diverges in its use of AVB, and associated hardware for audio transmission.

2.5.2 Challenges

Time, especially when dealing with the fine margins posed by real-time audio

processing, represents the principal source of difficulty in a distributed audio setting.

Jitter refers to fluctuations in the rate of transmission or processing. In a networked

audio setting, jitter gives rise to a situation whereby the arrival of audio data does

not correspond with the moments at which it is needed. in a naive implementation,

this may result in a recipient either halting processing until it receives the expected

data, or simply continuing without any data. In either case, the result is likely to be

disruption of the integrity of the audio signal in the form of audible discontinuities.

Clock drift arises as an inevitable consequence of no source of time in a system of

computation being perfectly uniform, and no two sources of time being identical.

The timing of a computer system is typically governed by a crystal oscillator, the

accuracy of which is affected by factors such as ambient temperature, and potentially

computational load on the system it governs[49] Relative drift (sometimes, within

the diagnostic parts of JackTrip for example, referred to as skew), is the difference in

18 Chapter 2. Analysis

clock rates between two or more systems. Whereas jitter is a short-term phenomenon,

clock drift typically takes effect over a longer timescale. As two distinct systems of

time move in and out of phase with each other over the longer term, drift may indeed

give rise to jitter.

In studio and professional audio settings, devices may be synchronised via an

authoritative clock source such as word clock, or, in a networked setting, via PTP

or lower-resolution network time protocol. In the absence of such an authoritative

source, e.g. over a wide area network, or if using hardware that does not support such

measures, buffering strategies are typically employed, coupled with delay-locked

loops[50] and resampling[51].

2.6 Research Questions

The primary focus of this thesis is an exploration of employing a network of hardware

modules to act as a co-ordinated networked-audio system with a view to supporting

a distributed approach to audio spatialisation techniques. It is hoped that in selecting

a low-cost hardware platform, using ubiquitous computer networking technologies,

and keeping the overall design as simple as possible, the work here could lead to a

lowering of the barrier to entry of the creation of large scale spatial and immersive

audio installations. The first research question, then, is:

Research Question 1
How can a network of microcontrollers be used to create a distributed audio system suitable
for managing scalable installations for spatial and immersive audio?

Adjacent to the bare bones of implementation is the performance of the devised

system:

Research Question 2
How can such a system be created and configured such that it maintains inter-client
synchronicity? What are the effects of loss of synchronicity on distributed spatialisation
algorithms?

2.6.1 Prior Work

Before beginning work on this project, a distributed WFS system was developed,

based on the Teensy 4.1 microcontroller and JackTrip protocol. This consisted of an

audio application running on a general purpose computer, delivering audio over

2.6. Research Questions 19

JackTrip to a collection of hardware modules, and WFS control data over multicast

UDP. Strategies were developed for mitigating the effects of jitter and clock drift, and

these serve as the basis for work on the project described in this thesis.

The prior system was not formally evaluated, but, anecdotally, provided support

for the holophonic effect of primary-source WFS. These strategies were initial efforts,

based on a limited understanding of the problem-space, and called for further

development. It was deemed, also, that the implementation was constrained by the

more opinionated aspects of the JackTrip system.

A paper documenting the work on the JackTrip-based approach can be found in

appendix A.

Chapter 3

Development

To address the research questions posed in section 2.6, a networked audio system was

developed. Being a system distributed across distinct computing platforms (a general

purpose computer; a network of microcontrollers), and software elements serving

a variety of purposes (server and client instances for transmission and reception of

networked audio and control data, plus a digital signal processing algorithm), it is

important to consider each of these elements in detail. In the sections to follow, these

elements are described; finally an overview of the devised system is provided.

3.1 The Networked Audio Server

Prior work having been predicated on the development of a JackTrip client for the

Teensy platform, a principal aim of conducting further work on the server part of

the networked audio system was to establish whether improvements could be found

by addressing certain shortcomings of JackTrip. JackTrip, running in hub server, is

a hybrid system, based on both TCP and UDP; clients initiate a connection with a

JackTrip server by way of a TCP handshake, whereby client and server exchange

the port numbers that will subsequently be used for audio transmission over UDP.

TCP is, as described in section 2.1.1, a connection-based, one-to-one protocol, so

the JackTrip connection model enforces a sort of pseudo-connectionfulness on the

otherwise connectionless UDP. The result is a system which permits only unicast

UDP transmission, and, for multiple clients, must send a duplicate of the outgoing

stream of audio datagrams to each connected client. A JackTrip server creates two

instances of its UpdDataProtocol class per client: a sender and a receiver, each of

which is a thread of execution[20]. Modern computer systems may be able to contend

quite contentedly with the operation of large numbers of threads, and bandwidth

over a LAN may be plentiful, but ultimately a unicast system does not meet the

requirement of scalability (see section 2.4).

With a view to exploiting the UDP multicast capabilities of NetJACK, initial

21

22 Chapter 3. Development

efforts centred on attempts to create a minimum-viable NetJACK client for the

Teensy platform. Beyond making initial contact with a NetJACK server, however,

these did not bear fruit. In the absence (to the best of the author’s knowledge) of

readily-available documentation of the NetJACK protocol, work on a Teensy-based

client relied upon reverse engineering the JACK2 codebase, running a debuggable

instance of jackd and scrutinising Wireshark captures for clues. Ultimately, although

representing the promise of a multicast networked audio server, work on NetJACK

was abandoned for two main reasons: 1) NetJACK was created as a general-purpose

system, with functionality beyond the requirements of the proposed implementation;

2) JACK has not served as a truly cross-platform audio host for a number of years;

although jackd runs on Mac OS X systems, not since OS X 10.14 has JACK been

compatible with Mac’s CoreAudio API, thus any server implementation based upon

NetJACK would not be operable on a modern Mac operating system.1

Of course, being inherently tied to JACK as its audio host, the latter rationale

applies also to the JackTrip-based approach. This being the case, attention was turned

to the design of a bespoke multicast networked audio system.

3.1.1 Designing a Networked Audio Protocol

To take a true no-protocol approach, such as that described by Lopez-Lezcano[46], is

not without its drawbacks. Ironically, for a no-protocol system to work, the rubric that

ensures successful data encoding, transmission, and decoding must be understood

implicitly by all members of the network; i.e. there is, in fact, a protocol, but that

protocol is an unspoken contract. Dependent on the intended application, and if

assumptions can be made about matters such as bit resolution, this may be a sensible

design choice, but to make the new protocol somewhat flexible and future-proof, a

simple packet header was devised. Its structure is given in listing 3.1.

Listing 3.1: Packet header structure

struct PacketHeader {

uint16_t SeqNumber;

uint8_t BufferSize;

uint8_t SamplingRate;

uint8_t BitResolution;

uint8_t NumChannels;

};

The resulting six-byte header is comprised, then, of a two-byte (unsigned 16 bit

integer) packet sequence number, to be incremented by the sender, plus four further

1For more information, see Stéphane Letz’s proposed design for a successor to the defunct Core-

Audio/JACK bridge https://github.com/jackaudio/jack-router/blob/main/macOS/docs/JackRoute

r-AudioServerPlugin.md (accessed 08/05/2023).

 https://github.com/jackaudio/jack-router/blob/main/macOS/docs/JackRouter-AudioServerPlugin.md
 https://github.com/jackaudio/jack-router/blob/main/macOS/docs/JackRouter-AudioServerPlugin.md

3.1. The Networked Audio Server 23

bytes describing the structure of the audio data in the packet. Of course, commonly-

encountered sampling rates, and buffer sizes greater than 255, cannot be represented

by unsigned eight-bit integers, so these are backed up by enumerations inspired by

those used by JackTrip2:

Listing 3.2: Supporting enumerations for packet metadata

enum BufferSizeT {

BUF8 = 3,

BUF16,

BUF32,

BUF64,

BUF128,

BUF256,

BUF512,

BUF1024,

BUF2048,

BUF4096

};

enum BitResolutionT {

BIT8 = 1,

BIT16,

BIT24,

BIT32

};

enum SamplingRateT {

SR22,

SR32,

SR44,

SR48,

SR88,

SR96,

SR192

};

Thus a buffer size of 16 is represented by the number 4, which is the appropriate

power of two to use in converting between the enumeration and the number with

which it corresponds. Similarly, a bit resolution of 16 is associated with the number

2, which is of course the number of bytes in a 16-bit integer.

For well-formed packets, BufferSize could in fact be inferred from the size of

the packet (minus its header), divided by NumChannels and BitResolution, the latter

treated as the number of bytes per sample (as per the enumeration value). To permit

scope for the detection of malformed packets, however, the expense of an additional

byte in the header was deemed a reasonable one. The sequence number will wrap

around every 65,536 packets, and is intended as a means for a recipient to identify

the occurrence of packet loss.

3.1.2 Server Design

The networked audio server was written in C++ using utility classes provided by

the JUCE framework for the development of audio applications.3 The server is

encapsulated as a class called NetAudioServer, which can be incorporated into any

JUCE-based audio application; initial development was conducted on a basic console

application, and later work targeted a DAW plugin supporting as a consolidated

audio server and wave field synthesis controller (see section ??).

NetAudioServer expects to receive blocks of multichannel audio from an audio

2https://github.com/jacktrip/jacktrip/blob/v1.6.8/src/AudioInterface.h#L56
3JUCE 7.0.5 https://github.com/juce-framework/JUCE

https://github.com/jacktrip/jacktrip/blob/v1.6.8/src/AudioInterface.h#L56
https://github.com/juce-framework/JUCE

24 Chapter 3. Development

Figure 3.1: Overview of operation of the networked audio server. The network sender awaits notification

of readiness to read samples from a first-in-first-out buffer of audio samples. The audio processor

receives audio channels from a multichannel source (e.g. a DAW); at each iteration of its processing

loop, it writes samples to the FIFO; upon write-completion, the FIFO sends a signal to the network

sender that a block of samples is ready. Samples are converted to the appropriate format, and bundled

into a UDP packet which is then written to the network.

application’s main processing loop. It sets up sender and receiver execution threads,

and assigns a network socket to each; a socket is essentially a numerical identifier for

an “endpoint for [network] communication”[52] to which a type, such as SOCK_STREAM

for TCP or SOCK_DGRAM for UDP, can be assigned. To avoid potentially blocking the

processing thread with networking operations, upon receiving an audio block the

server writes it to an intermediate buffer — a first-in-first-out (FIFO) structure —

and signals to the sender thread that an audio block is ready for transmission. The

sender thread, which has been awaiting such a signal, then requests samples from

the FIFO; these are stored as contiguous channels of 32 bit floating point samples

and converted when requested to the bit resolution specified in a packet header

created when NetAudioServer is initialised. Upon receiving the requested samples,

the sender thread writes these to its socket, which has been configured to connect to

a UDP multicast group.

Listing 3.3 shows an example network capture of an outgoing UDP audio packet:

Listing 3.3: Network capture of a UDP audio packet

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

0000 01 00 5e 04 e0 04 a0 36 bc d0 aa 18 08 00 45 00 ..^....6......E.

0010 00 62 8b b5 40 00 01 11 63 1a c0 a8 0a 0a e0 04 .b..@...c.......

0020 e0 04 39 f9 a3 56 00 4e 66 2b df 1c 04 02 02 02 ..9..V.Nf+......

0030 3f 7a 40 7a 41 7a 42 7a 43 7a 44 7a 45 7a 46 7a ?z@zAzBzCzDzEzFz

0040 47 7a 48 7a 49 7a 4a 7a 4b 7a 4c 7a 4d 7a 4e 7a GzHzIzJzKzLzMzNz

0050 2c 8c ff 88 43 86 05 84 46 82 00 81 44 80 00 80 ,...C...F...D...

0060 45 80 ff 80 46 82 06 84 41 86 02 89 29 8c db 8f E...F...A...)...

Bytes 0x0000 to 0x0029 comprise the ethernet, IPv4, and UDP headers, including

the destination address: at position 0x001e, the bytes 0xe004e004, or 224.4.224.4,

3.2. The Networked Audio Client 25

a valid (and unassigned) UDP multicast address from the second ad-hoc address

block as specified in the IANA multicast address assignment guidelines[19]. The

six subsequent bytes are the header inserted into the packet by NetAudioServer. In

listing 3.3 these are:

• 0xdf1c: a sequence number of 57116
10

;

• 0x04: buffer size 4
10

corresponding with BUF16;

• 0x02: sampling rate 2
10

corresponding with SR44;

• 0x02: bit resolution 2
10

corresponding with BIT16;

• 0x02: 210 audio channels.

Audio data begins at byte 0x0030. Since the header indicates that there are two

channels of 16-bit audio, and a buffer size of 16 (samples, or rather frames of two

channels worth of samples), it is clear that the data for channel 1 encompasses the 32

bytes from 0x0030 to 0x004f, and channel 2 the remaining bytes.

Here, channel 1 is a test signal, a unit amplitude-increment unipolar sawtooth

wave, i.e. a signal whose amplitude starts at zero, and increments by 1 at each

sample until it reaches the maximum value that a signed 16-bit integer may take

— 32767
10

— at which point it wraps around to zero and repeats. This test signal

serves two important purposes. First, its impulse-like behaviour once every 32767

samples (roughly 0.74 s) is useful for taking basic synchronicity measurements, e.g.

involving connecting two clients’ audio outputs to an oscilloscope. Second, this

numerically-predictable signal served as a means to inspect the integrity of the

audio server algorithm, and to identify the appropriate endianness for transmission.

Inspecting the first sixteen samples of the first audio channel (grouped by sample

for legibility, see listing 3.4), it is evident that the amplitude values increment on a

per-sample basis, and, since it is the first byte that increases with each sample, that

samples are transmitted little endian. This proved to be the appropriate endianness

for the system under development.

Listing 3.4: Extract of samples from the unipolar sawtooth wave

3f 7a 40 7a 41 7a 42 7a 43 7a 44 7a 45 7a 46 7a

Mention numerical range

of signed 16-bit integers?
The receiver thread polls its socket for traffic reaching the multicast group from

clients, and uses the presence of an incoming packet stream as proof that a client is

connected.

26 Chapter 3. Development

Figure 3.2: A hardware module consisting of Teensy 4.1 microcontroller (labelled with the last two

bytes of its serial number-derived IP address), connected via headers to an audio shield and via ribbon

cable to an ethernet shield.

3.2 The Networked Audio Client

Unlike the networked audio server, which runs on a general purpose computer and

has access to threads of execution, which it can use to conduct related but separate

tasks that rely on some central resource (the FIFO buffer alluded to above), the client

implementation is designed to operate on a microcontroller platform that has no

operating system, and no native notion of threads4.

The task of the network audio clients is threefold in nature:

1. to retrieve packets of audio data from the UDP multicast group;

2. to send a stream of audio data back to the multicast group, primarily to

announce their connectivity;

3. to maintain, as far as possible, synchronous operation with the server, and (by

extension) each other.

To address the first two requirements, the client sets up a socket, which it uses to

both read from and write to the UDP multicast group.

4There is in fact a non-core library, TeensyThreads, that provides thread-like functionality. It was

experimented with during development, but found to be incompatible with the interrupt-driven nature

of the Teensy audio and networking libraries.

3.2. The Networked Audio Client 27

The client was created as a C++ class named NetJUCEClient, an implementation

of the Teensy audio library class AudioStream. AudioStream descendents must

implement a method named update(); this method is called at each audio hardware

interrupt, and is where an audio library class should perform operations on the

current audio buffer. Due to the regular timing of calls to AudioStream::update,

and the correspondence between an audio buffer and a network audio packet, it

was tempting to use that method, and thus the underlying audio interrupt as an

opportunity to handle networking operations too. This proved unreliable, however;

conflicts between the audio and network interrupts caused the Teensy to crash

sporadically.

Instructions to read from and write to the network were moved to a method,

NetJUCEClient::loop, which is called from the top level loop of the Teensy program.

Although not called at regular intervals — Teensy’s loop() function is itself executed

from the body of a non-terminating while loop — tests indicated that the time

between iterations lay on the order of tens of microseconds, far lower than the audio

interrupt interval.

Separating audio and networking operations to update() and loop() methods

respectively, the two sets of operations were linked by way of an intermediate buffer,

similar to the FIFO used on the server. Thus the client attempts to receive packets

from, and send a packet to, the multicast group on each call to loop(), with incoming

packets written to the intermediate buffer:

Listing 3.5: loop method of the networked audio client implementation

void NetJUCEClient::loop() {

receive();

checkConnectivity();

send();

adjustClock();

}

The client also performs a periodic check for the presence of the server (and potentially

other clients — see section 3.2.1), and, as described in section 3.2.1, makes adjustments

to its audio clock.

On the audio interrupt, the client reads from the intermediate buffer to produce

samples for audio output. It also takes samples reaching its audio inputs (e.g. arriving

from other Teensy audio library classes), and adds those to a packet to be sent to the

multicast group at the earliest possible subsequent call to NetJUCEClient::loop:

28 Chapter 3. Development

Listing 3.6: update method of the networked audio client implementation

void NetJUCEClient::update(void) {

doAudioOutput();

handleAudioInput();

}

3.2.1 Synchronicity with the Server

Due to the influence of clock drift and transmission jitter, and since the clients

constitute a distributed system, with no direct knowledge of each other and no

authoritative source of time, their third task posed, without doubt, the greatest

challenge.

A two-pronged strategy was developed for addressing server-client and inter-

client timing discrepancies:

Jitter Compensation Similar to the approach taken in prior work[53], clients

monitored the difference between the write and read positions to their intermediate

audio buffer, using a delay-locked loop to keep this difference within an interval of

one audio buffer. This was achieved by way of setting thresholds for the read-write

difference, and adjusting the read-position increment if it fell beyond those thresholds;

increasing the increment if the difference exceeded the high threshold; decreasing it

should the difference fall short of the low threshold. This in turn entailed employing

a fractional read-position, and interpolating around the read-position to achieve an

appropriate sample value; essentially a form of adaptive resampling. For this purpose

a cubic Lagrange interpolator was used; sample values for the interpolator were

converted from their 16-bit signed integer representation to floating point numbers,

interpolation conducted, and the resulting value rounded to the nearest integer for

output.

Clock Drift Compensation In the absence of an authoritative source of time, clients

were set up to infer the difference in rate between their own internal clock and that

of the server by comparing the rate of packet reception from the network to their

internal audio interrupt rate. This was achieved by taking the ratio, over thirty-second

intervals, of packets written from the network to the intermediate buffer to blocks

read from the intermediate buffer for audio output. This ratio was then used to

calculate appropriate divisors to apply to the 24 MHz master clock generated by a

crystal oscillator on the Teensy, adjusting the audio clock’s phase locked loop to

produce an adjusted audio sampling rate. The aim of this approach was to minimise

reliance on the adaptive resampler described above, and ultimately encourage all

clients to run at the same audio rate as the server.

3.2. The Networked Audio Client 29

An Unexpected Source of Jitter

Jitter does not arise solely during the journey from machine to machine across a

network. It was found that, using the default development machine’s default audio

host (ALSA), the timing of iterations of JUCE’s audio processing loop, and thus

signals to NetAudioServer’s sender thread, was very uneven, i.e. subject to a high

degree of jitter. Though the average rate of execution was commensurate with the

selected sample rate and audio buffer size, individual audio buffer intervals differed,

in microsecond terms, by up to an order of magnitude. This inconsistent audio

timing was sufficient to cause transmission jitter that overwhelmed the client-side

strategy for jitter compensation. The result was consistent audible distortion due to

rapid fluctuations in the client’s audio buffer read-position increment.

Switching from ALSA to JACK as the audio host resolved this issue, but since

JACK uses ALSA as its underlying audio host, this phenomenon was difficult to

account for. A detailed description lies beyond the scope of this report, but essentially

JACK uses direct memory access to map the underlying audio device into memory5,

and seemingly does so in a more effective manner than the driver for the sound

card on the development machine. It is not known at the time of writing whether

using ALSA with an external audio interface (a potential barrier to entry) would have

improved the situation.

This incident serves to illustrate that, beyond the concerns associated with effective

software design, a system such as the one described here, for which the timing of

operations is critical, is susceptible to the whims of a variety of supporting hardware

and software systems — things that in a more conventional audio system can, to a

greater degree, be taken for granted. The topic of whether to attempt to compensate

for this sort thing in software or impose strict requirements on a future end-user in

terms the audio host they should use (something that would almost certainly vary

with the user’s operating system), remains one for future research.

A Note on the Client-Server Dichotomy

In principle, there is no meaningful impediment to the so-called clients acting as

servers in their own right; a change of port number is all that would be required

for each client to receive traffic from (and send traffic to) not just the server, but also

from (and to) all other clients. Consequently, in code for both the server and clients,

networked audio entities in the system are referred to as peers (see, e.g. Figure 3.5). In

practice, and for the particular application — distributed spatial audio — considered

here, receiving UDP packets from sources other than the designated server is not

only unnecessary, but also manifestly inefficient. With Chafe et al.’s Internet Acoustics
work in mind, it is likely that there are some very interesting uses for a promiscuous

5Credit goes to Stéphane Letz, a prominent contributor to the JACK project, for providing this bit of

context.

30 Chapter 3. Development

Figure 3.3: Architecture of the networked audio system. The server sends audio and control data to a

UDP multicast group on distinct port numbers; clients listen for this data, and send an audio stream

back to the multicast group with which the server can register their presence on the network.

network of audio peers, but, for now, such applications lie beyond the scope of this

work.

3.3 The Spatialisation Algorithm

With some minor modifications, e.g. the possibility to specify speaker spacing

parametrically, the WFS algorithm from[53] was reused. This algorithm was written

in Faust, a domain-specific programming language for audio synthesis and signal

processing6, and compiled to a C++ class compatible with the Teensy audio library

via Faust’s faust2teensy utility[54].

Implementing Huygens’ principle in a digital audio system entails applying

delays to an audio signal representing a virtual sound source based on the intended

position of that sound source with respect to the secondary point sources. To limit

the computational burden placed on the hardware modules, specifically with regard

to memory, the length of the delay lines was reduced by discarding the longitudinal

component of rk, leaving only the relative inter-speaker delay. Additionally, a

simplified WFS prefilter was employed, using the distance from each virtual sound

source to each secondary point source to an inverse square law mapping for frequency-

independent amplitude loss to the medium of propagation, and the cutoff of a

two-pole lowpass filter. Adopting a modified version of equation (2.5), the driving

6https://faust.grame.fr/

https://faust.grame.fr/

3.3. The Spatialisation Algorithm 31

Figure 3.4: Example timeline of client-server interaction. Blue arrows indicate audio data being sent

from the server to the multicast group; orange arrows indicate audio data being sent from the client

back to the multicast group; green arrows represent control data.

function becomes:

dk(x, t) = f(t, rk) ∗ δ
(
t− rk − yk

c

)
. (3.1)

In implementation, the prefilter was tuned by ear using Faust’s fi.lowpass function7;

a thorough treatment of the simulation of distance effects in WFS stands as a topic

for future work.

Modularity and Maximum Delay

The reduction in the maximum delay length represented by the subtraction of the

longitudinal distance component in equation (3.1) is essential for the viability of the

system. As capable a platform as Teensy 4.1 is, as described in section 2.2, it is limited

in terms of memory. This in turn places limits on the lengths of delay lines that it

can compute, a matter exacerbated if there are many such delays to consider, such

as in the case of a WFS implementation with multiple virtual sound sources. Each

hardware module must compute two delay lines for each virtual source, one for each

of its output channels, the maximum length of which (depending on the position of

a given module in the speaker array) corresponds, after removal of the longitudinal

component, of the width of the speaker array. It was observed that, for eight virtual

sources and eight hardware modules, the maximum speaker spacing permissible

lay around 0.425 m, corresponding with a speaker array of maximum width 15 × 0.4

= 6 m, equating to a maximum delay of ~17 ms or approximately 795 samples at a

sampling rate of 44.1 kHz. The matter has not been rigorously tested, but nonetheless

the presumption is that this places significant limits on the modularity of the system.

7https://faustlibraries.grame.fr/libs/filters/#filowpass

https://faustlibraries.grame.fr/libs/filters/#filowpass

32 Chapter 3. Development

It is hoped that future versions of the Teensy platform, or developments in other

microcontroller platforms, overcome this manner of limitation.

Controlling the WFS Algorithm

Parameter values are delivered to the Faust algorithm in the form of OSC messages.

OSC control data, describing virtual sound source positions, speaker spacing, and

informing clients of their position in the speaker array, is bundled into UDP packets

and delivered by the server to the multicast group for all clients to consume.

Listing 3.7: Network capture of a UDP control data packet

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

0000 01 00 5e 04 e0 04 a0 36 bc d0 aa 18 08 00 45 00 ..^....6......E.

0010 00 44 54 23 40 00 01 11 9a ca c0 a8 0a 0a e0 04 .DT#@...........

0020 e0 04 39 f9 a3 57 00 30 4d 60 23 62 75 6e 64 6c ..9..W.0M`#bundl
0030 65 00 00 00 00 00 00 00 00 01 00 00 00 14 2f 73 e............./s

0040 6f 75 72 63 65 2f 30 2f 78 00 2c 66 00 00 3d 1b ource/0/x.,f..=.

0050 5f a2 _.

Listing 3.7 demonstrates an example control data packet, an OSC bundle contain-

ing one message. This message has address /source/0/x, indicating that it refers to

the x-coordinate of the zeroth sound source, providing a value in the form of a 32-bit

floating point number, 0x3d1b5fa2, approximately 0.038
10

.

3.4 System Overview

Being composed of multiple hardware and software components, it is worthwhile to

summarise the nature of these components and the interactions between them.

3.4.1 Hardware Setup

The network audio server runs on a general purpose computer. During the devel-

opment and testing of this project, that computer was an ASUS G513R Notebook

PC, with an AMD Ryzen 7 6800H processor with a clock speed of 3.2 GHz. For the

majority of development, the computer’s internal sound card was used; for testing

and evaluation, it was connected to a Steinberg UR44C USB audio interface in the

hope that this would provide better reliability in terms of audio interrupt timing.

The computer was connected via CAT6 ethernet cable to an eight-port ethernet

switch (D-Link DGS-108GL). For evaluation, and to support a total of eight network

audio clients, this switch was daisy-chained to an additional switch (D-Link DES-

1008D). Teensy 4.1 hardware modules, assembled as per Figure 3.2, were connected

3.4. System Overview 33

via CAT6 ethernet cables to available ports on the ethernet switches. Hardware

modules were powered by a combination of a seven-port USB hub, plus, for the

eighth module, a USB mains socket. The two audio outputs of each hardware module

were connected to M-Audio BX5 speakers.

3.4.2 Software System

Figure 3.5: User interface for the WFS controller DAW plugin, with modal settings window visible.

The interface consists of an X/Y control surface, with eight nodes representing the locations of sound

sources in a virtual sound field. Dropdown menus at the bottom of the interface correspond with

hardware module positions in the loudspeaker array. The settings window facilitates setting the speaker

spacing, and shows a list of connected network peers.

Server-side, the software system consists of a VST plugin running in Reaper

digital audio workstation software8. The plugin comprises the networked audio

server, receiving monophonic audio sources in the form of audio or instrument tracks

in the DAW, plus a control data server, commanded either by parameter automation

via the DAW, or manually via a graphical user interface (see Figure 3.5). The audio

and control data servers send streams of UDP packets to a UDP multicast group.

8https://www.reaper.fm/

34 Chapter 3. Development

Client-side software connects to the multicast group and reads UDP packets

containing audio and control data from the server. These streams are delivered

to the Faust-based WFS algorithm, with audio streams processed according to the

control parameters of virtual sound source positions and speaker spacing. The

WFS algorithm produces driving signals for each of the two output channels of the

hardware module on which it is running. Additionally, the client-side networked

audio client returns a stream of audio data to the multicast group, to be consumed

by the server.

Code for the server and client software components can be found at https://gi

thub.com/hatchjaw/netjuce and https://github.com/hatchjaw/netjuce-teensy

respectively9.

9At the time of writing both codebases are undocumented, but the key details of implementation lie

in each repository’s src/ directory.

https://github.com/hatchjaw/netjuce
https://github.com/hatchjaw/netjuce
https://github.com/hatchjaw/netjuce-teensy

Chapter 4

Evaluation

Figure 4.1: System configuration for technical and perceptual evaluation. Eight hardware modules

connected to fifteen loudspeakers — seven of the modules produced output for two loudspeakers each;

the final module used only its first output channel.

Possessing technical underpinnings, but ultimately being designed to serve immersive

auditory ends, it was important to consider the performance of the system described

and developed in chapter 3 in terms of both its technical capabilities and the quality

of the perceptual effects it was able to support. The success of the system as platform

for audio spatialisation techniques is contingent on it being composed of effective

solutions to the challenges posed by distributing audio processing across a local

area network. It makes limited sense, however, as a technical exercise in isolation;

the subjective assessment provided by listeners exposed to its output may help

35

36 Chapter 4. Evaluation

identify the most critical aspects of the technical implementation and guide future

development.

4.1 Technical Evaluation

Figure 4.2: Illustration of the use of a test signal, a unipolar sawtooth wave, to measure round trip time.

Subtracting the return signal from the outgoing signal gives the time (in samples) between transmission

and reception.

Of most pressing technical concern is the matter of synchronicity between the

hardware modules. To assess this, a similar approach was taken to that found in [53]

and [45]:

Round Trip Time To measure transmission round trip time (RTT), the server

transmitted a unipolar sawtooth wave of unit amplitude increment to the multicast

group, and each client, upon receiving that signal simply returned it immediately to

that same group to be consumed by the server. At the server side, the return signal,

xret, was subtracted from the outgoing signal, xout, at the time of reception, with

round trip time found as:

RTT =

{
(xout + max

int16
)− xret, xout < xret,

xout − xret, otherwise,
(4.1)

where max
int16

is the maximum value representable by a signed 16-bit integer, 0x7fff

(32767
10

).

The vagaries of buffering at the level of the server’s audio driver aside, the

resulting value should provide an accurate impression of the number of samples

that elapse between transmission and reception (see Figure 4.2). Since there is one

source of transmission, for multiple clients, comparing RTT offers a means to assess

inter-client synchronicity. Server-to-client latency cannot be measured in this way,

4.1. Technical Evaluation 37

but that can be inferred to be around half of, and, of course, certainly not greater

than, the RTT.

Clock Drift/Skew A unipolar sawtooth wave of unit amplitude increment was

generated on the clients, subtracted from the incoming sawtooth wave from the server,

and the difference (found similarly to equation (4.1)) returned to the multicast group

for consumption by the server. Under ideal conditions, the incoming signal and the

one being generated on a given client, while not necessarily (and almost certainly

not) synchronised, should be out of phase by some constant value; if this value

changes then some relative drift has occurred between server and client. While not of

direct relevance to synchronicity, the client-side clock-adjustment strategy described

in section ?? was designed to minimise the reliance on the adaptive resampling

approach that it complements; low (and ideally no) drift would be indicative of the

effectiveness of that strategy.

Figure 4.3: Round-trip time, round-trip time spread, and clock drift measurements for eight networked

audio clients, for a networked audio session of eight minutes’ duration. Audio buffer size, 16 samples.

Initial RTT and relative drift measurements for eight clients are shown in Figure 4.3.

38 Chapter 4. Evaluation

Mean RTT spread, describing the average temporal interval over which clients were

distributed over the course of the test, is promising, the 12.43 sample interval

corresponding to approximately 282 µs. RTT, and thus maximum latency, is clustered

around a respectable 190 samples (~4.3 ms).

That visual clustering, coupled with the apparent tendency for RTT spread to

lie at around 16 samples (i.e. precisely one buffer), suggest, however, a certain

over-aggressiveness in the resampling strategy, perhaps resulting in a polarisation

of clients to the temporal extremes of the interval between their audio interrupts.

What Figure 4.3 does not show, and, given the short timescales involved, is not easily

represented in such a diagram, is the rate of relative inter-client movement, i.e. the

rate of change of asynchronicity. Cursory, subjective assessment of the system’s

audible output revealed that, given the rapid rate of relative movement between

clients, in this state it would not stand up to perceptual testing.

Transmitting a signal consisting of white Gaussian noise (WGN) to the clients

and delivering this to their audio outputs without further processing — seeking,

essentially, to sonify QoS — an aggressive phasing, or time-varying comb-filter effect

was clearly audible. This effect is visualised in Figure 4.5(a); ideally (and subject

to the frequency of the response of the microphone used) an ambient recording of

a white noise source would correspond with a magnitude spectrogram exhibiting

equal intensity across the frequency range at all times; clearly, though, there are

regions of greater and lesser intensity, and these regions shift and change rapidly over

time. In addition to the above, tests involving the reproduction of signals containing

steady-state harmonic content revealed obtrusive audible artefacts.

A buffer size of 16 samples had been selected in an attempt to minimise the

duration of the window of inter-client synchronicity, and to maximise the number of

channels that could be transmitted over the network, subject to restrictions posed

by the MTU (see section 2.1.2). Recalling, however, that previous work[53] had

employed a 32-sample audio buffer, equivalent measurements were taken for the

larger buffer size, the results of which are depicted in Figure 4.4 and Figure 4.5(b).

Again, visually, there is an apparent clustering in the RTT recordings, with

clients spending large periods separated by around one buffer’s worth of samples

(~726 µs), seemingly often grouped at either extreme of the interval of one audio

buffer. The mean RTT spread, ~626 µs, is comparable with results from prior

work, but, disappointingly, slightly less favourable. Importantly, however, and as

demonstrated in Figure 4.5(b), the rate of relative inter-client temporal movement

was much improved by the switch to a 32-sample buffer. Although exhibiting

similar visual striations to the spectrogram for the test at 16 samples, fluctuations

occur less frequently, and seemingly more gradually. Indeed, subjectively-speaking,

the disruption caused by the phasing effect that afflicted the 16-sample buffer

implementation was significantly reduced, as was the presence of audible artefacts

affecting harmonic signals. Thus it was the version of the system employing a buffer

4.2. Perceptual Evaluation 39

Figure 4.4: Round-trip time, round-trip time spread, and clock drift measurements for eight networked

audio clients, for a networked audio session of eight minutes’ duration. Audio buffer size, 32 samples.

size of 32 samples that was exposed to perceptual evaluation.

Clock drift measurements in Figures 4.3 and 4.4 exhibit comparable trends.

Increasing negative drift over time is indicative of the clients running faster than

the server. Visually, there is evidence that client clocks adjust to approximate parity

with the server for periods of time, perhaps falling slightly slower (e.g. the drift

plot in Figure 4.3, between 100 and 160 seconds), but periodically demonstrate large

negative steps. These leaps are far from desirable, and suggestive of there being

significant room for improvement in the devised strategy for PLL adjustment.

4.2 Perceptual Evaluation

The WFS system was subjected to an informal perceptual evaluation, in which

participants were presented with a virtual sound source at various locations and

asked to indicate, on a digram of the virtual sound field, the point at which they

estimated the sound had emanated from. The informality of the experiment arose in

40 Chapter 4. Evaluation

Figure 4.5: Magnitude spectrograms of ambient, monophonic recordings of a reproduction of white

Gaussian noise by a group of eight networked audio clients driving an array of fifteen loudspeakers

spaced at intervals of 0.175 m. Capacitor microphone placed ~2 m from the speaker array. Audio buffer

(and thus network packet) size (a) 16 samples; (b) 32 samples.

part as a consequence of the listening environment not being acoustically treated,

and there being sources of ambient sound in the laboratory in which the WFS

system was installed. Furthermore, the speaker array (Figure 4.1) consisting of fifteen

speakers, but each hardware module producing two audio output channels, the

second channel of the right-most module was not used; for eight modules, however,

the WFS plugin assumed a virtual sound field spanning sixteen speakers, thus it

was possible to position a virtual sound source horizontally beyond the rightmost

extent of the speaker array. Ultimately the aim of the experiment was to draw some

preliminary, guiding conclusions as to the effectiveness of the distributed WFS system

in triggering listeners’ localisation cues, its technical and installation shortcomings

notwithstanding.

In terms of the design of the auditory stimulus, it was felt that listeners would be

most comfortable localising a naturalistic sound. Rather than use blasts white noise

as in [32, ch. 6], but wishing to minimise the potential effects of frequency-dependent

localisation interference due to spatial aliasing, a broadband stimulus was selected in

the form of a close-mic recording of a snare drum. The recorded sample was repeated

three times in succession at intervals of 0.125 s, and, again in the interests of adding a

natural quality to the sound, with slight variations in amplitude (the second iteration

of the sample was played marginally quieter than the first; the third slightly louder).

Participants were given a brief description of the system under evaluation, and

informed that they should expect to hear sounds that appeared to emanate from

‘behind’ the speaker array, from which they stood at a distance of 2 m. Eight

different virtual source positions were specified via automation of the x (lateral) and

y (longitudinal distance) components of the position of a node in the WFS plugin

interface. The range of the x component corresponded with the distance from the

4.2. Perceptual Evaluation 41

driver of the leftmost speaker to the centre of the driver of the missing sixteenth

loudspeaker; drivers lay at intervals of 0.175 m, giving a horizontal axis spanning

2.625 m. Longitudinal position was mapped to a range from 0 m (i.e. lying directly

on the speaker array) to 10 m ‘behind’ the array.

For each position, the auditory stimulus was sounded, and repeated at the

participant’s request. Details of the source positions for each test, and the responses

given by eight participants, are displayed in Figure 4.6.

As can be seen, although far from perfect, and with some significant outliers (e.g.

the position reported by the fifth participant for test (h)), certain trends do appear

to emerge from the results. Firstly, responses seem to loosely track the intended

positions, with reported positions most closely corresponding with intended ones

for virtual source locations lying close to the speaker array. Indeed, tests (b), (d),
and (g) exhibit the lowest mean error values between the intended and reported

positions. The results for tests (c) and (h), exhibit the greatest mean error, and

ambiguity regarding the lateral position of distant sound sources is to be expected; as

the distance of a sound source from the listener increases, rk − yk tends towards zero,

and thus the ITD (and ILD) also approaches zero; thus, with increased distance the

wavefront produced by a sound source (be it a real sound source or one synthesised

under ideal conditions) approximates more and more closely a plane wave. In any

case, despite this inherent, physical ambiguity, there is (visually at least) a tendency

amongst the results toward the lateral location of the most longitudinally distant

intended virtual source positions. Particularly for test (c), participants seem to have

had greater difficulty in estimating the depth of the virtual sound field; this may

simply be as a function of their developing a familiarity with that aspect of it over

the course of what was only a brief experiment.

Participants were asked for any anecdotal observations they had, based on their

experience of the experiment. One participant noted, for the first position in particular,

that the amplitude variations between the snare drum strikes gave the impression of

a sound source that was advancing upon the listening position; for the lack of any

visual cue as to the position of the sound source, this is a reasonable conclusion to

draw; it did not, however, ultimately prevent them from reaching a decision with

regard to their estimate for the position of the sound source. Another, likely hearing

the time-varying comb-filter effect, asked whether the “phasing” they were hearing

was intentional. A third, also perceiving a similar phenomenon, suggested that they

felt that the sound sources were moving. Finally, a participant with prior experience

working with WFS systems, remarked that the distance effect (i.e. the WFS prefilter)

was perhaps a little extreme, and not altogether realistic.

42 Chapter 4. Evaluation

4.3 Discussion

The temporal clustering and polarisation seen in Figures 4.3 and 4.4 is indicative

of two points for concern with regard to technical implementation: the read-write

difference threshold strategy may be insufficiently forgiving, forcing the read position

into deleteriously fluctuating increment changes in response to periods of jitter. and

without a master clock to indicate to each client the beginning of each output audio

block, even with clock rates perfectly aligned, there is nothing to guarantee agreement

of the timing of audio interrupts at the client side.

To avoid sudden, large or ‘unrealistic’ clock adjustments, clients assess the drift

ratio as assessed via the ratio of network packet transmission to reception and, if it

lies beyond an arbitrary threshold, simply resets the clock to the default 44.1 kHz.

Resets of this sort may account for the large steps seen in the drift plots in Figures 4.3

and 4.4. It is clear that this strategy could be significantly improved upon.

The phasing effect noted by one participant is a disappointing consequence of the

approach taken to combating jitter and keeping the clients close, temporally, together,

and as close to the server as possible. It is clear that the current approach is, at best,

too aggressive to be viable for high-quality audio output. Furthermore, an unpitched

sound source such as a snare drum, though audibly susceptible to the time-varying

comb-filter effect described, masks other artefacts caused by phenomena such as rapid

fluctuations in the clients’ buffer read position increment, and sudden, comparatively

large audio clock adjustments.

4.3. Discussion 43

Figure 4.6: Results of the perceptual evaluation. Lateral (horizontal axis) and longitudinal (vertical axis)

components are normalised to [0, 1]. For each plot, the horizontal axis (i.e. longitudinal component

equalling 0) corresponds with the location of the speaker array. Each plot shows the intended position

of the virtual sound source as specified by parameters to the WFS plugin interface (blue cross) and

estimated sound source positions as reported by participants (coloured dots). Each plot is labelled

with the mean euclidean error µϵ between intended position and reported positions. Legend in plot (a)
applies to all plots.

Chapter 5

Conclusion

This thesis has described an exploration of certain fundamental aspects of digital

audio, transmission of audio over computer networks, distributed computing and

audio spatialisation. A networked audio system was developed, strategies devised

for addressing challenges presented by distributed computing, and a distributed

spatial audio system was developed and deployed. Evaluation of the system exposed

the extent of the technical challenges that confront it in its current form, and shed

light on opportunities for further development. In an informal setting, perceptual

testing revealed that it may, with heavy provisos, offer performance sufficient to

support timing-critical sound field synthesis techniques.

It is pertinent at this point to consider the research questions stated in section 2.6,

and what exploring those questions has revealed.

Research Question 1 It has been shown that a system of discrete computational

entities can communicate effectively over an ethernet network, exchanging audio

and control data in a scalable fashion via a UDP multicast group. Though facing

significant technical challenges, an approach to the foundational requirements of

such a system has been demonstrated, with encouraging results with regard to spatial

audio applications.

Research Question 2 Timing discrepancies between entities in the networked audio

system give rise to audible artefacts such as time-varying comb-filtering. Loss of

synchronicity is difficult to measure and compensate for in real-time and the extent

of the resulting audible disturbances is unpredictable, but, depending on the nature

of the sound sources being dealt with, certainly perceptible. The developed strategies

for mitigation of asynchronicity are best-effort in nature, and call for further refinement,

or replacement with more sophisticated techniques.

45

46 Chapter 5. Conclusion

5.1 Future Work

Given its potential to disrupt the present situation with regard to spatial audio

installations, or complement it with a modular approach that could serve more

flexible and perhaps creative ends, it is hoped that scope will exist to develop this

work further. A number of technical challenges remain, and questions with regard to

the fundamental, low-level characteristics of the various components of the devised

system stand unanswered. From the level of audio hardware and driver software,

to audio host and audio buffer behaviour, to network QoS and the performance

of network switches, to the behaviour of the Teensy platform, and the processor

and audio codec that it is built around, plus its software libraries — much that is

typically taken for granted in the development of embedded systems, and audio and

networking systems, calls for deeper investigation.

Clock-sharing Each Teensy generates a clock signal to deliver to its audio shield.

In a locally distributed setting, this is quite redundant. It may be possible to generate

a single, authoritative clock on one Teensy and deliver that to all others in the system.

If this can be achieved, it would remedy the issue of clock drift, leaving only jitter to

be addressed.

Further Audio Spatialisation Techniques A basic, linear, distributed wave field

synthesis algorithm has been demonstrated, implementing primary virtual sources.

WFS is capable of producing other types of sources, supporting nonlinear speaker

arrays, three-dimensional arrays, and more faithful models of energy loss due to

absorption. There are many further avenues to pursue, including optimising any

DSP algorithms to best exploit the capabilities of what is, in the shape of the Teensy,

a very powerful platform. Further, and only given cursory treatment here, higher

order ambisonics remains as a worthy target for implementation in future work.

Bibliography

[1] A. J. Berkhout, D. de Vries, and P. Vogel. “Acoustic control by wave field

synthesis”. In: The Journal of the Acoustical Society of America 93.5 (May 1993),

pp. 2764–2778. url: https://asa.scitation.org/doi/abs/10.1121/1.405852

(visited on 12/15/2022).

[2] Jens Ahrens, Rudolph Rabenstein, and Sascha Spors. “The Theory of Wave

Field Synthesis Revisited”. In: Audio Engineering Society, May 2008. url: http

s://www.aes.org/e-lib/browse.cfm?elib=14488 (visited on 12/15/2022).

[3] Jerome Daniel, Sebastien Moreau, and Rozenn Nicol. “Further Investigations

of High-Order Ambisonics and Wavefield Synthesis for Holophonic Sound

Imaging”. In: Audio Engineering Society Convention 114 (2003).

[4] Matthias Frank, Franz Zotter, and Alois Sontacchi. “Producing 3D Audio

in Ambisonics”. In: Audio Engineering Society Conference: 57th International
Conference: The Future of Audio Entertainment Technology–Cinema, Television and
the Internet (2015).

[5] IEEE Std 754™-2019 (Revision of IEEE Std 754-2008) IEEE Standard for Floating-
Point Arithmetic. Tech. rep. 2019.

[6] D. Cohen. “On Holy Wars and a Plea for Peace”. In: Computer 14.10 (Oct. 1981),

pp. 48–54.

[7] Multimedia Programming Interface and Data Specifications 1.0. Tech. rep. 1991. url:

https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/rif

fmci.pdf.

[8] IEEE Standard for Ethernet (IEEE Std 802.3™-2018 (Revision of IEEE Std 802.3-2015).
Tech. rep. IEEE, 2018. url: https://ieeexplore.ieee.org/document/8457469/

(visited on 05/11/2023).

[9] Henning Schulzrinne. Voice communication across the Internet: A network voice
terminal. Tech. rep. University of Massachusetts at Amherst, Department of

Computer and Information Science, 1992.

47

https://asa.scitation.org/doi/abs/10.1121/1.405852
https://www.aes.org/e-lib/browse.cfm?elib=14488
https://www.aes.org/e-lib/browse.cfm?elib=14488
https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf
https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf
https://ieeexplore.ieee.org/document/8457469/

48 Bibliography

[10] D. Cohen. Specifications for the Network Voice Protocol (NVP). Tech. rep. RFC0741.

RFC Editor, Nov. 1977, RFC0741. url: https://www.rfc-editor.org/info/rfc

0741 (visited on 05/15/2023).

[11] V. Hardman et al. “Reliable Audio for Use Over the Internet”. In: Proceedings
of INET. 1995. url: https://web.archive.org/web/20160103083922/http://w

ww.isoc.org/inet95/proceedings/PAPER/070/html/paper.html (visited on

12/15/2022).

[12] Vicky Hardman, Martina Angela Sasse, and Isidor Kouvelas. “Successful

multiparty audio communication over the Internet”. In: Communications of the
ACM 41.5 (May 1998), pp. 74–80. url: https://dl.acm.org/doi/10.1145/2749

46.274959 (visited on 12/19/2022).

[13] Chris Chafe et al. “A Simplified Approach to High Quality Music and Sound

Over IP”. In: Proceedings of the COST G-6 Conference on Digital Audio Effects
(DAFX-00). 2000.

[14] Aoxiang Xu et al. “Real-Time Streaming of Multichannel Audio Data over

Internet”. In: Journal of the Audio Engineering Society 48.7/8 (July 2000), pp. 627–

641. url: https://www.aes.org/e- lib/online/browse.cfm?elib=12056

(visited on 01/13/2023).

[15] Chris Chafe, Scott Wilson, and Daniel Walling. “Physical model synthesis with

application to Internet acoustics”. In: 2002 IEEE International Conference on
Acoustics, Speech, and Signal Processing. Vol. 4. May 2002, pp. IV–4056–IV–4059.

[16] Thierry Turletti. “The INRIA videoconferencing system (IVS)”. In: ConeXions 8

(Jan. 1995).

[17] Flávio Luiz Schiavoni, Marcelo Queiroz, and Marcelo M Wanderley. “Alter-

natives in network transport protocols for audio streaming applications”. In:

ICMC. 2013.

[18] Fahad Taha AL-Dhief et al. “Performance comparison between TCP and

UDP protocols in different simulation scenarios”. In: International Journal of
Engineering & Technology 7.4.36 (2018), pp. 172–176.

[19] David Meyer, Michelle Cotton, and Leo Vegoda. IANA Guidelines for IPv4
Multicast Address Assignments. Request for Comments RFC 5771. Internet

Engineering Task Force, Mar. 2010. url: https://datatracker.ietf.org/doc

/rfc5771 (visited on 05/19/2023).

[20] Juan-Pablo Cáceres and Chris Chafe. “JackTrip: Under the Hood of an Engine

for Network Audio”. In: Journal of New Music Research 39.3 (Sept. 2010), pp. 183–

187. url: https://doi.org/10.1080/09298215.2010.481361 (visited on

12/15/2022).

https://www.rfc-editor.org/info/rfc0741
https://www.rfc-editor.org/info/rfc0741
https://web.archive.org/web/20160103083922/http://www.isoc.org/inet95/proceedings/PAPER/070/html/paper.html
https://web.archive.org/web/20160103083922/http://www.isoc.org/inet95/proceedings/PAPER/070/html/paper.html
https://dl.acm.org/doi/10.1145/274946.274959
https://dl.acm.org/doi/10.1145/274946.274959
https://www.aes.org/e-lib/online/browse.cfm?elib=12056
https://datatracker.ietf.org/doc/rfc5771
https://datatracker.ietf.org/doc/rfc5771
https://doi.org/10.1080/09298215.2010.481361

Bibliography 49

[21] Juan-Pablo Cáceras and Chris Chafe. “JackTrip/SoundWIRE Meets Server

Farm”. In: Computer Music Journal 34.3 (2010), pp. 29–34. url: https://www.jst

or.org/stable/40963030 (visited on 12/15/2022).

[22] Alexander Carôt, Torben Hohn, and Christian Werner. Netjack – Remote music
collaboration with electronic sequencers on the Internet. Jan. 2009.

[23] Volker Fischer. Case Study: Performing Band Rehearsals on the Internet With Jamulus.
2015. url: https://jamulus.io/PerformingBandRehearsalsontheInternetWit

hJamulus.pdf.

[24] Alain Renaud, Alexander Carôt, and Pedro Rebelo. “Networked Music Perfor-

mance : State of the Art”. In: AES 30th International Conference. Jan. 2012.

[25] Luca Turchet and Carlo Fischione. “Elk Audio OS: An Open Source Operating

System for the Internet of Musical Things”. In: ACM Transactions on Internet
of Things 2.2 (Mar. 2021), 12:1–12:18. url: https://doi.org/10.1145/3446393

(visited on 01/19/2023).

[26] What is Dante? | Audinate | Dante Pro AV Networking. url: https://www.audina

te.com/meet-dante/what-is-dante (visited on 12/20/2022).

[27] Ron Bakker, Andy Cooper, and Atsushi Kitagawa. An introduction to networked
audio. White Paper. Yamaha Commercial Audio Team, 2014.

[28] Jens Ahrens. Analytic Methods of Sound Field Synthesis. T-Labs Series in Telecom-

munication Services. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

url: https://link.springer.com/10.1007/978-3-642-25743-8 (visited on

05/13/2023).

[29] Rozenn Nicol. “Sound Field”. In: Immersive Sound. Routledge, 2017, pp. 276–310.

[30] Tim Ziemer. “Wave Field Synthesis”. In: Psychoacoustic Music Sound Field
Synthesis. Vol. 7. Cham: Springer International Publishing, 2020, pp. 203–243.

url: http://link.springer.com/10.1007/978-3-030-23033-3_8 (visited on

05/17/2023).

[31] Ville Pulkki. “Virtual Sound Source Positioning Using Vector Base Amplitude

Panning”. In: J. Audio Eng. Soc 45.6 (1997), pp. 456–466. url: http://www.aes.o

rg/e-lib/browse.cfm?elib=7853.

[32] E. N. G. Verheĳen. “Sound reproduction by wave field synthesis”. In: (1998).

url: https://repository.tudelft.nl/islandora/object/uuid%3A9a35b281-

f19d-4f08-bec7-64f6920a3821 (visited on 05/18/2023).

[33] Giovnni De Poli and Davide Rocchesso. “Physically based sound modelling”.

In: Organised Sound 3.1 (Apr. 1998), pp. 61–76. url: http://www.journals.camb

ridge.org/abstract_S1355771898009182 (visited on 02/10/2022).

https://www.jstor.org/stable/40963030
https://www.jstor.org/stable/40963030
https://jamulus. io/PerformingBandRehearsalsontheInternetWithJamulus. pdf
https://jamulus. io/PerformingBandRehearsalsontheInternetWithJamulus. pdf
https://doi.org/10.1145/3446393
https://www.audinate.com/meet-dante/what-is-dante
https://www.audinate.com/meet-dante/what-is-dante
https://link.springer.com/10.1007/978-3-642-25743-8
http://link.springer.com/10.1007/978-3-030-23033-3_8
http://www.aes.org/e-lib/browse.cfm?elib=7853
http://www.aes.org/e-lib/browse.cfm?elib=7853
https://repository.tudelft.nl/islandora/object/uuid%3A9a35b281-f19d-4f08-bec7-64f6920a3821
https://repository.tudelft.nl/islandora/object/uuid%3A9a35b281-f19d-4f08-bec7-64f6920a3821
http://www.journals.cambridge.org/abstract_S1355771898009182
http://www.journals.cambridge.org/abstract_S1355771898009182

50 Bibliography

[34] Matthias Geier, Jens Ahrens, and Sascha Spors. “Object-based Audio Repro-

duction and the Audio Scene Description Format”. In: Organised Sound 15.03

(Dec. 2010), pp. 219–227. url: http://www.journals.cambridge.org/abstract

_S1355771810000324 (visited on 01/17/2023).

[35] Rolf K Mueller. “Acoustic holography”. In: Proceedings of the IEEE 59.9 (1971),

pp. 1319–1335.

[36] Jose A. Belloch et al. “On the performance of a GPU-based SoC in a distributed

spatial audio system”. In: The Journal of Supercomputing 77.7 (July 2021), pp. 6920–

6935. url: https://doi.org/10.1007/s11227- 020- 03577- 4 (visited on

12/20/2022).

[37] A. J. Berkhout. “A Holographic Approach to Acoustic Control”. In: Journal of
the Audio Engineering Society 36.12 (Dec. 1988), pp. 977–995. url: https://www

.aes.org/e-lib/browse.cfm?elib=5117 (visited on 05/18/2023).

[38] F Winter, J Ahrens, and S Spors. “A Geometric Model for Spatial Aliasing

in Wave Field Synthesis”. In: Proc. of German Annual Conference on Acoustics
(DAGA) (2018).

[39] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, Mar. 2011.

[40] Leslie Lamport and Nancy Lynch. “Distributed Computing: Models and

Methods”. In: Formal Models and Semantics. Elsevier, 1990, pp. 1157–1199. url:

https://linkinghub.elsevier.com/retrieve/pii/B9780444880741500238

(visited on 05/14/2023).

[41] Chris Chafe. “I am Streaming in a Room”. In: Frontiers in Digital Humanities 5

(2018). url: https://www.frontiersin.org/articles/10.3389/fdigh.2018.0

0027 (visited on 12/16/2022).

[42] Marina Bosi et al. “Experiencing Remote Classical Music Performance Over

Long Distance: A JackTrip Concert Between Two Continents During the Pan-

demic”. In: Journal of the Audio Engineering Society 69.12 (Dec. 2021), pp. 934–

945. url: https://www.aes.org/e-lib/browse.cfm?elib=21542 (visited on

12/16/2022).

[43] Matteo Sacchetto, Antonio Servetti, and Chris Chafe. “JackTrip-WebRTC:

Networked music experiments with PCM stereo audio in a Web browser”. In:

Web Audio Conference WAC-2021. 2021.

[44] Nelson Posse Lago. Distributed Real-Time Audio Processing. 2004.

[45] Leonardo Gabrielli et al. “Networked Beagleboards for wireless music applica-

tions”. In: 2012 5th European DSP Education and Research Conference (EDERC).
Sept. 2012, pp. 291–295.

http://www.journals.cambridge.org/abstract_S1355771810000324
http://www.journals.cambridge.org/abstract_S1355771810000324
https://doi.org/10.1007/s11227-020-03577-4
https://www.aes.org/e-lib/browse.cfm?elib=5117
https://www.aes.org/e-lib/browse.cfm?elib=5117
https://linkinghub.elsevier.com/retrieve/pii/B9780444880741500238
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00027
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00027
https://www.aes.org/e-lib/browse.cfm?elib=21542

Bibliography 51

[46] Fernando Lopez-Lezcano. “From Jack to UDP packets to sound and back”. In:

Proceedings of the Linux Audio Conference. Vol. 2012. 2012.

[47] Sean Devonport and Richard Foss. “The Distribution of Ambisonic and Point

Source Rendering to Ethernet AVB Speakers”. In: 5th International Conference on
Spatial Audio. 2019.

[48] Manu Mitterhuber, Rojin Sharafi, and Enrique Tomás. Ottosonics. url: https:

//tamlab.kunstuni-linz.at/projects/ottosonics/ (visited on 05/04/2023).

[49] Hicham Marouani and Michel R. Dagenais. “Internal Clock Drift Estimation in

Computer Clusters”. In: Journal of Computer Networks and Communications 2008

(May 2008), e583162. url: https://www.hindawi.com/journals/jcnc/2008/58

3162/ (visited on 12/15/2022).

[50] Fons Adriaensen and Alcatel Space. “Using a DLL to filter time”. In: Linux
audio conference. 2005.

[51] Fons Adriaensen. “Controlling adaptive resampling”. In: Linux Audio Conference.
2012.

[52] socket(2) - Linux manual page. url: https://man7.org/linux/man-pages/man2/s

ocket.2.html (visited on 05/24/2023).

[53] Thomas Albert Rushton, Romain Michon, and Stéphane Letz. “A Microcontroller-

based Network Client Towards Distributed Spatial Audio”. In: Sound and Music
Computing Conference (SMC-23). 2023.

[54] Romain Michon et al. “Real Time Audio Digital Signal Processing With Faust

and the Teensy”. In: Sound and Music Computing Conference (SMC-19). Malaga,

Spain, May 2019. url: https://hal.archives-ouvertes.fr/hal-03153709

(visited on 12/15/2022).

REMOVE THE TODO

LIST

https://tamlab.kunstuni-linz.at/projects/ottosonics/
https://tamlab.kunstuni-linz.at/projects/ottosonics/
https://www.hindawi.com/journals/jcnc/2008/583162/
https://www.hindawi.com/journals/jcnc/2008/583162/
https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man2/socket.2.html
https://hal.archives-ouvertes.fr/hal-03153709

Appendix A

Prior Work

At the time of writing, the paper A Microcontroller-based Network Client Towards
Distributed Spatial Audio[53], which is to feature in the proceedings of the 2023

Sound and Music Computing conference, has not yet been published. For the reader’s

convenience, it is included here in the pages to follow.

53

A MICROCONTROLLER-BASED NETWORK CLIENT TOWARDS
DISTRIBUTED SPATIAL AUDIO

Thomas Albert Rushton
Aalborg University

A. C. Meyers Vænge 15
2450 Copenhagen, Denmark
trusht21@student.aau.dk

Romain Michon
Univ Lyon, Inria,

INSA Lyon, CITI, EA3720
69621 Villeurbanne, France

michon@grame.fr

Stéphane Letz
Univ Lyon, GRAME-CNCM,

INSA Lyon, Inria, CITI, EA3720
69621 Villeurbanne, France

letz@grame.fr

ABSTRACT

Audio spatialisation techniques such as wave field synthesis
call for the deployment of large arrays of loudspeakers, typ-
ically managed by dedicated audio hardware. Such systems
are typically costly, inflexible, and limited by the com-
putational demands and high throughput requirements of
centralised, highly-multichannel digital signal processing.
The development of a distributed system for audio spatiali-
sation based on Audio over Ethernet represents a potential
easing of the infrastructural burdens posed by traditional,
centralised approaches.

This work details the development of a networked audio
client, supporting the popular JackTrip audio protocol, and
running on a low-cost microcontroller. The system is ap-
plied to the case of a wave field synthesis installation, with
a number of client instances forming a distributed array of
signal processors. The problems of client-server latency,
and interclient synchronicity are discussed and a mitiga-
tive strategy described. The client software and hardware
modules could support large scale audio installations, plus
serve as self-contained interfaces for other networked audio
applications.

1. INTRODUCTION

The past few decades have seen a rapid increase in interest
in audio spatialisation techniques. In the commercial sphere,
surround-sound systems and networked home entertain-
ment platforms have become commonplace. In academia,
techniques such as Wave Field Synthesis (WFS) and Am-
bisonics [1–3] have received considerable treatment, and
their applications for object based approaches to audio per-
sonalisation [4, 5] continue to draw research interest.

Audio spatialisation systems tend, however, to be mono-
lithic in-situ installations, requiring dedicated, multichannel
hardware, and bringing with them the costs and inflexibility
associated with specialist equipment. The recent emergence
of a raft of low-cost, small form-factor consumer micro-
controllers with dedicated audio functionality, presents an
opportunity to explore other approaches to audio spatiali-
sation, incorporating flexibility of application, distributed

Copyright: © 2023 Thomas Albert Rushton et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

computing, and taking advantage of the benefits of net-
worked audio.

Taking one such microcontroller platform and using WFS
as a proof-of-concept implementation, this project seeks to
establish how a distributed, networked array of microcon-
trollers can be used to support a low-cost, modular imple-
mentation of an audio spatialisation system. To stand as a
viable alternative or complement to established approaches,
such a system demands reliable transmission of audio over
a network protocol, low latency, and high synchronicity.
Interoperability with other audio systems is also a prior-
ity. A credible implementation could serve as the basis for
large-scale systems, other spatialisation techniques, and a
variety of practical and creative applications of networked
audio.

2. BACKGROUND

Networked audio has been a ubiquitous part of digital com-
munication for many years. As the availability of high-
speed internet connections has improved, so have opportu-
nities for real-time network audio transmission for activities
such as videoconferencing and musical performance. Since
its earliest days, networked audio research has focused on
the challenges posed by transmission across networks where
data integrity is not guaranteed [6]. Packet loss and jitter
— inconsistency in the rate of packet arrival — are peren-
nial issues, and incorporating redundancy and a forgiving
buffering strategy, while minimising latency, have always
entailed striking a fine balance [6, 7].

While early work on Audio over Ethernet (AoE) centred
on communication [6, 8], by the late 1990s research was
underway with respect to how audio in general, and music
in particular, could be created and transmitted over com-
puter networks in real time [9, 10]. In 1999, UDP-based
concertcasts of compressed audio were being facilitated by
the SoundWIRE system [9], featuring buffering strategies
designed to overcome the jarring effects of packet loss on
networked musical performance, albeit at the expense of
latency amounting to “a number of seconds” [9]. Suffice
it to say, no definitive solution has been found to the prob-
lems of latency and jitter, and they remain active topics of
research [11, 12].

Networked audio presents a unique challenge amongst
modes of real-time network communication due to the short
timescales and fine margins at play [9]. Though packet loss
can be monitored relatively easily, jitter, no less deleteri-

ous to the quality of an audio signal under transmission,
may occur suddenly and sporadically, and can be difficult
to monitor and quantify. Perhaps as a by-product of these
difficulties, pioneering work on AoE featured creative appli-
cations of networked audio; Chafe et al. [13, 14] essentially
treated the internet as a resonant medium, using the net-
work as a digital waveguide with their SoundWIRE-based
Network Harp. This approach served as a way of sonifying
jitter, thus providing an intuitive, auditory quality of service
(QoS) measure.

2.1 Protocols for Networked Audio

In principle, the transmission of audio signals across a com-
puter network is subject only to identifying an appropriate
network transport layer protocol, and establishing a suitable
scheme for encoding and decoding audio data at the points
of delivery and reception. If signal integrity is a higher
priority than minimising latency, or if high QoS cannot
otherwise be ensured (e.g. over a Wide Area Network),
Transmission Control Protocol (TCP), with its guarantees
on packet ordering and retransmission of lost packets, may
be a good choice. If low-latency is of greater importance, or
if working with a Local Area Network (LAN), User Data-
gram Protocol (UDP), which provides no such guarantees,
but exhibits none of the computational overhead associated
with ensuring the integrity of the packet stream, may be
preferable [15]. Further, TCP is a connection-oriented pro-
tocol and thus supports strictly one-to-one communication;
UDP, on the other hand, is connectionless, and supports
one-to-many, and many-to-many multicast communication.

Networked audio brings with it certain domain-specific
requirements, however; it is sensible to include metadata in
audio packets, such as the sampling rate and bit resolution.
A variety of more-or-less opinionated protocols and systems
— typically UDP-based but with audio-specific features —
have been developed to provide specific support for AoE, of
which a selection are described in the paragraphs to follow.

Before proceeding, it is worthwhile to introduce the JACK
Audio Connection Kit, (JACK 1) a cross-platform sound
server that acts as a layer between audio applications and
the underlying audio host. 2 JACK provides, amongst other
things, an API for making arbitrary connections between
the input and output ports of audio applications and devices.

Developed as part of the JACK suite, Netjack 3 is a mul-
ticast system for distributed musical performances [16].
Netjack operates on a centralised model, with one machine,
running JACK on a traditional audio host, acting as the
server, and clients running on JACK’s NET host.

Other JACK-based systems include Zita-njbridge, 4 a com-
mand line, multicast audio client intended for use over
local networks, and JackTrip [17, 18], a successor to the
SoundWIRE project, described as “a [. . .] system that
supports multi-machine network [audio] performance over

1 https://jackaudio.org/ (This and all other URLs last accessed
23/01/2023.)

2 For Linux, the host is typically ALSA (Advanced Linux Sound Archi-
tecture); on Mac, Core Audio; ASIO (Audio Stream I/O) on Windows.

3 https://github.com/jackaudio/jackaudio.github.com/wiki
/WalkThrough_User_NetJack2

4 https://kokkinizita.linuxaudio.org/linuxaudio/

best-effort Internet” [17]. Zita-njbridge uses adaptive re-
sampling at the receiver to compensate for the lack of a
common clock between network nodes [19]. JackTrip pro-
vides a selection of buffering strategies to protect against
jitter [17], but supports only unicast transmission.

There is the proprietary Dante [20], which uses Precision
Time Protocol (PTP) and specialist hardware to achieve
synchronicity between clients, the Audio Video Bridging
(AVB, IEEE 802.1) protocol for highly-synchronised audio
(and video) over ethernet, plus a plethora of rehearsal and
jamming-focused platforms [21–23], in which JackTrip also
features [12].

Amidst this multitude of systems it may be tempting, then,
to pursue a ‘No-protocol’, or ‘raw-UDP’ solution such as
in [24]. Such an approach is certainly an option, but sys-
tems of this sort are by nature sui generis, and unlikely to
find use beyond their specific application. The prospect of
interoperability via building atop an accessible, widely-used
platform, potentially opens the door to creative applications
and interactions with existing tools.

2.2 Distributed, Networked Audio Systems

Clearly the idea of taking a distributed approach to real-
time audio and music creation is not without its precedents.
Of particular interest here are projects concerned with di-
viding the computation of some signal process or audio
synthesis amongst multiple network nodes. These include
the aforementioned Network Harp [13] project and related
work on internet acoustics, plus ongoing use of JackTrip
for purposes such as distributed reverberation, again taking
advantage of a computer network’s ancillary nature as a
system of delay lines [25].

But why pursue a distributed approach to audio spatialisa-
tion? As described in section 1, centralised systems tend to
be single-purpose installations reliant on costly, specialist
equipment, such as highly multichannel audio interfaces.
Such systems cannot easily be extended, and dedicated,
niche control software runs a high risk of obsolescence. A
well-designed distributed system could be modular and scal-
able, reprogrammable to support a variety of applications,
generic and trivial to upgrade.

Distributed JackTrip networks have been implemented
in such a fashion, with clients running on Raspberry Pi
single-board computers [26]. A networked ‘music studio’ of
wirelessly networked Beagleboard single-board computers
has been demonstrated [27]. Indeed, Belloch et al. created
a distributed WFS implementation [28], albeit running a
non-generic system on a GPU-based single-board hardware
platform.

Centralised approaches may, however, offer advantages
in terms of reliability — distributed systems may have
more potential points of failure — and synchronicity —
distributed audio systems are subject to timing discrepan-
cies, as each node in such a system has its own clock. The
latter point is particularly pertinent in the case of timing-
critical applications such as spatial audio; Belloch et al.
relied on an external Network Time Protocol (NTP) clock
to synchronise the nodes in their WFS implementation.

2.3 Wave Field Synthesis

Figure 1: The basic principle of WFS. A sound source
is situated within a virtual soundfield; dotted lines indi-
cate simulated distances from an array of secondary point
sources. x, y position and delay d indicated with respect to
the kth secondary point source. With appropriate timing, a
wavefront can be recreated suggesting the position of the
sound source, were it physically present.

Wave Field Synthesis is a form of acoustic holography [1],
or holophony [3], based on Huygens’ principle, which states
that the propagation of a wavefront can be recreated from a
collection of secondary point sources, such as an array of
loudspeakers [1, 28, 29]. Whereas more commonplace spa-
tialisation techniques, such as stereo panning and surround-
sound, use amplitude-based rules to give the impression of
a sound source emerging from a given location, WFS, in
its most basic form, composes wavefronts from secondary
point sources via fine control of delay lines (see Figure 1).

Given the simulated position of a sound source relative to
a speaker array, the equivalent time for sound to reach each
secondary point source can be computed, and used to set
an appropriate sample delay d for the kth secondary point
source:

dk =
Fs

c

√
x2
k + y2k, (1)

where c is the speed of sound and Fs the system sampling
rate.

The above describes a basic, two-dimensional approach to
WFS, consisting of primary (virtual) point sources and a lin-

ear distribution of secondary point sources (loudspeakers).
WFS supports the generation of planar sources — analo-
gous to primary point sources at infinite distance — and
focused sources, virtual sources located in the non-virtual
sound field [29]. Extensions to three-dimensional and circu-
lar or irregular arrays of loudspeakers are also possible [2].
Further, the discrete nature of the positioning of secondary
sources gives rise to the phenomenon of spatial aliasing [30].
Suffice it to say, WFS is a topic of significant depth and
nuance, the greater part of which will not be treated here.

Of greatest pertinence to this work is the fact that the WFS
Algorithm pictured in Figure 1 does not need to be one
single piece of signal processing. Each speaker in the array
could be driven by its own dedicated algorithm, so long as
the underlying implementation is aware of its position in
the array.

3. DEVELOPMENT

The Teensy 4.1 5 microcontroller was selected as the hard-
ware platform for the networked audio client. Teensy 4.1
is powerful (600 MHz CPU, 1024 kB RAM), inexpensive
($31.50 at the time of writing) device, with a dedicated
audio shield and accompanying audio development library,
and built-in Ethernet functionality (albeit available via a
further hardware add-on); it is also, as the name suggests,
rather small (61 mm in length). Development for Teensy
is conducted in the C++ programming language. Teensy
is also one of a number of embedded platforms supported by
the Faust audio programming language 6 via the faust2teensy
utility, which compiles Faust code to C++ compatible with
the Teensy Audio Library [31]. 7

Unlike the single-board platforms used in [26–28] Teensy
is a true microcontroller system and does not run an operat-
ing system. 8 This means development on Teensy can be
conducted very rapidly (in part due to a very short start-up
time), but precludes the installation of complex software
such as JACK, or even JackTrip as was the case for [26].
Teensy has no native threading model; operations take place
on hardware interrupts, with a default sampling rate of
44.1 kHz and buffer size of 128 samples, though the latter
can be altered via a compiler flag.

3.1 Hardware Setup

Eight Teensy 4.1s were assembled, with audio shield and
Ethernet add-on (see Figure 2). Teensy receives 5 V power
over USB, and each module was connected to a USB hub.
The audio shield provides two-channel output and these out-
puts were connected to a pair of powered monitor speakers.
A Cat 6 Ethernet cable was used to connect each Teensy’s
Ethernet add-on to a Gigabit Ethernet switch. The switch
was in turn connected to a laptop, running a Linux operating
system (Ubuntu 20.04.5).

5 https://www.pjrc.com/teensy/
6 https://faust.grame.fr/
7 https://www.pjrc.com/teensy/td_libs_Audio.html
8 An OS, e.g. RTOS or Zephyr, can be run on Teensy, but, in the

interests of maintaining flexibility, and compatibility with the Teensy
Audio Library, this possibility was dismissed early in development.

Figure 2: A hardware module, featuring Teensy 4.1 micro-
controller, audio shield, and Ethernet add-on, labelled with
the last octet of its IP address.

3.2 Audio Protocol

The JackTrip and Netjack protocols were considered for
implementation. Netjack’s multicast functionality makes it
an attractive candidate, but due to its comparatively com-
plex architecture, it was not possible within the scope of
the project to establish a functioning Netjack client on the
Teensy platform.

JackTrip, by comparison, proved relatively simple to inter-
act with. With JACK running, JackTrip can be started with
the following terminal command:

jacktrip -S -q2 -p5 -n<N>

with -S indicating that JackTrip should run in hub server
mode, i.e. as a server to which multiple clients may join;
-q2 instructs JackTrip to use its lowest packet buffer size
(two) in the interests of minimising network transmission
round trip time (RTT); -p5 specifies that no autopatching
via the JACK API should occur when a client connects to
the server; -n<N> specifies the use of N input and output
audio channels.

A connection to a JackTrip server is initiated via a TCP
handshake, whereby server and client exchange UDP port
numbers. Following a successful handshake, the server
creates a send and a receive thread and transmission begins
over UDP as described in [17]; this is subject only to the
condition that peers operate at the same sampling rate and
buffer size.

JackTrip uses the IP address of the client and, via a series
of calls to the JACK API, sets up a device in the JACK
graph representing that client, complete with the appropriate
number of input and output ports.

The number of audio channels is limited by a combination
of the buffer size and maximum packet size available under
the network configuration. Though the maximum theoreti-
cal UDP datagram size is 65535 bytes, this is limited by the
Maximum Transmission Unit of the network link layer and
the Ethernet payload size (1500 bytes) [15]. Additionally,
Teensy sets a default maximum socket size of 1024 bytes.

JackTrip sends a header with each UDP packet (containing
information such as the sampling rate and bit resolution)
totalling 16 bytes; this leaves 1008 bytes for audio data.
The maximum number of channels that may be transmitted,
then, is

Cmax =

⌊
1008

NBNs

⌋
(2)

where NB is the number of bytes per audio sample and Ns

is the number of samples per buffer. A smaller audio buffer
size permits a greater number of channels, and vice versa.

With a couple of provisos, it was straightforward to pro-
gram the modules to achieve the client-side requirements
described in the preceding section. Each device that joins
an Ethernet network must have a unique MAC (Media Ac-
cess Control) address; Teensy has no such address, but one
can be derived from its unique serial number. Additionally,
since no network router is present, and thus no DHCP (Dy-
namic Host Configuration Protocol) server to automatically
assign IP addresses, each Teensy was assigned an IP ad-
dress derived also from its serial number. Modules were
programmed to poll the network immediately after booting
for a JackTrip server. The TCP handshake typically takes
place within a few seconds, following which the exchange
of UDP packets begins. The JackTrip client implementation
was composed as a class compatible with the Teensy Audio
Library named JackTripClient. 9

3.3 Challenges

Ideal transmission would be latency-free and perfectly syn-
chronous; temporal inconsistencies between the server and
clients emerged as the principal source of difficulty with
regard to supporting a low-latency, high-synchronicity sys-
tem.

3.3.1 Clock Drift

The timing of a computer system is typically governed by
a crystal oscillator. Naturally no two crystals are the same,
so no two computers run at the same speed. Clock speed
and stability are affected, additionally, by factors such as
ambient temperature and computational load [32].

Due to Teensy’s threadless architecture, it was deemed
most sensible to check for an incoming UDP packet once
per audio hardware interrupt. In a perfectly synchronous
world this would be fine; in reality, however, the rate of
packet arrival does not perfectly correspond with the occur-
rence of Teensy’s audio interrupt, so the number of available
packets may be zero, or greater than one. The solution to
this issue was to establish a circular buffer at the client side,
and read greedily from the network, consuming all avail-
able packets at each interrupt. This approach guarantees
an increase in latency, though for a low audio buffer size
this increase will be modest. Indeed, for a technique such
as WFS, synchronisation is of course of far more pressing
concern.

This strategy was not sufficient to handle situations where
the Teensy might fall far behind (or run far ahead of) the
server, in which case the circular buffer read and write

9 Code and usage notes can be found in a repository at https://gith
ub.com/hatchjaw/jacktrip-teensy

Figure 3: Overview of a networked audio system incorporating the microcontroller-based JackTrip client and distributed
WFS system described in this work. Connections between components are illustrative of one potential configuration.

positions would eventually overlap. To mitigate this, a
form of adaptive resampling was implemented: the ratio
of circular buffer writes to reads was taken every 1000
writes, and from that a non-integer read-position increment
derived, designed to keep the now fractional read position at
a manageable interval behind the integer write index. Cubic
interpolation was used with respect to the read position to
compute an appropriate sample value to use for output. This
differs from JackTrip’s own strategies for handling circular
buffer underrun and overflow conditions [17, §2.2], and
aims to ensure audio output free from the audible artefacts
of large read-position adjustments or circular buffer resets.

3.3.2 Jitter

The scenario described in section 3.3.1, whereby an at-
tempted packet-read may yield a number of packets less
than or greater than one, represents a form of jitter. Jit-
ter manifestations of that form, related to clock drift, are
relatively easy to guard against, but short-term network
instability and changes in process prioritisation by a com-
puter running many other tasks besides a JackTrip server,
were found to result in chaotic changes in the delta between
the read position and write index to the client’s circular
buffer, potentially erratic enough to overcome the cushion
provided by the circular buffer and fractional read-position
increment.

To mitigate, low (L) and high (H) thresholds were intro-
duced for the read-write delta (∆). Between the thresholds,
the read-position increment is derived from the long-term
read-write ratio. If the delta exceeds the high threshold the
read-position increment is increased to ∆/H to return the
read position to between H and L; when the delta falls below
the low threshold the read-position increment is reduced to
∆/L.

Protecting against jitter entails increasing latency, and the
method used here requires striking a compromise between
latency, inter-client synchronicity, and the perceptual im-
pact of rapid fluctuations in the read-position increment.
Lowering the low read-write delta threshold, with the aim

of minimising server-client latency, increases the risk of the
read position approaching the write index and coming to
a halt as the read-position increment approaches zero. Set
too narrow an interval between low and high thresholds,
with the aim of optimising inter-client synchronicity, and
it is inevitable, during periods of high jitter, that the read
position increment will fluctuate wildly enough to introduce
audible artefacts to the output signal.

3.4 The WFS Algorithm

A distributed WFS program for Teensy was created by com-
bining JackTripClient with a modular WFS algorithm
developed in Faust. Parameters to this algorithm are c, the
simulated speed of sound (m/s) in the virtual sound field,
and sH , the inter-speaker spacing (m).

For the ith virtual sound source, with position (xi, yi) in
the virtual sound field, the Faust algorithm must calculate
the appropriate delay line length di,k for each secondary
point source k for which it is responsible. For all secondary
point sources the longitudinal component yi,k = yi, but
xi,k varies with respect to k. The algorithm receives an
index m representing the position in the speaker array of
the module on which it is running; with this value the lateral
component may be found:

xi,k = xi − sH(k + 2m). (3)

In practice, the longitudinal distance between the virtual
sources and the speaker array is not temporally relevant,
so this can be subtracted from equation (1) to give the the
relative delay for each secondary point source:

di,k =
Fs

c

(√
x2
i,k + y2i,k − yi,k

)
, (4)

which has the advantage of limiting the maximum delay line
length to the time taken for sound to traverse the speaker
array, and thus minimises the memory footprint of the algo-
rithm. Equation (4) produces a non-integer value for di,k

so the algorithm employs linearly-interpolated fractional
delay lines via Faust’s de.fdelay function. 10

This effectively models the lateral position of a given
sound source. As sound propagates, some of its energy is
dissipated to the medium of propagation, with energy in
high frequencies lost more rapidly than low frequencies.
So, to give a basic impression of longitudinal distance, an
inverse mapping was created between yi,k and the ampli-
tude of the ith sound source, and the cutoff frequency of
a second order Butterworth lowpass filter applied to that
sound source.

To support the WFS system, a desktop application was
developed using the JUCE C++ audio application frame-
work. 11 The application consists of a multichannel au-
dio source, with each channel representing a virtual sound
source, and user interface elements that trigger control mes-
sages as Open Sound Control (OSC) data distributed to the
modules over multicast UDP. Additionally, the application
uses the JACK C API to connect its own audio output ports
to the inputs of all JackTripClient instances found in the
JACK graph.

The user interface features a series of dropdown menus
corresponding with speaker-pair positions, containing the
IP addresses of the connected modules. Assigning a module
to a speaker pair sends the index m to the appropriate mod-
ule. Also featured is an XY-coordinate controller to which
movable nodes may be added. Upon adding a node, the user
is instructed to select an audio file to associate with that
node, and the file is registered to the multichannel audio
source. The position, (xi, yi), of the node is reported to all
clients and updated when the node is moved.

4. RESULTS

The eight-module WFS system was demonstrated, with
clients using an audio buffer size of 32 samples and low
and high read-write delta thresholds of 32 and 64 samples
respectively. As per equation (2), the buffer size permitted
the transmission of a maximum of 15 channels. Anecdo-
tally, the system supported the holophonic effect. To assess
the quality of inter-module synchronisation, a separate test
configuration of the modules was created and recordings
taken. 12 A test signal was transmitted to the clients, tak-
ing the form of a unipolar 16 bit sawtooth wave with unit
amplitude increment per sample, thus having a period of
215 samples. In addition, a unipolar sawtooth wave was
generated on the clients themselves. Signal routing on the
clients was configured such that each client would return
two channels to the server: 1) the incoming sawtooth wave,
following adaptive resampling; 2) the difference in ampli-
tude between the incoming sawtooth wave and the sawtooth
wave generated on the client.

The first returning channel was subtracted from the outgo-
ing sawtooth wave to provide a measure of the full network
round trip transmission time for each client (see [27] for

10 https://faustlibraries.grame.fr/libs/delays/#defdelay
11 JUCE 7.0.2 https://github.com/juce-framework/JUCE
12 Only one eight-port ethernet switch was available for this test, one

port of which was reserved for connection to the JackTrip server, so it was
possible to test only seven of the eight modules.

a similar approach). The middle plot in Figure 4a shows
that, over the course of a 10 min session, clients remained
synchronised, on average, to around 26 samples (~590 µs),
albeit exhibiting temporal drift relative to each other, as
shown in the upper plot in Figure 4a and detail in Figure 4b.

Regarding clock drift, as the lower plot in Figure 4a shows,
the trend is for clients to fall behind the server in approx-
imately linear fashion (under stable ambient and compu-
tational conditions) but at differing rates. The oscillatory
modulation of the drift patterns arises from an interaction
between the clock drift and the ‘greedy’ packet-read strat-
egy (described in section 3.3.1); as hardware interrupts on
the client fall in and out of phase with the arrival of UDP
packets, the likelihood changes of reading zero or multiple
packets. It is intuitive, then, that clients exhibiting greater
drift also display higher-frequency oscillatory modulation.

These results suggest that the system as demonstrated
may have performed well enough to create a convincing
spatial effect at least some of the time, but that there is
scope for improvement. Speakers were spaced at intervals
of 0.23 m, a distance travelled by sound in air in ~671 µs or
~30 samples at 44.1 kHz. There would almost certainly have
been some spatial ambiguity at the boundary of adjacent
speaker pairs.

Computationally, however, the system does not place un-
due strain on the Teensy platform. Memory usage in testing
was consistently low (512 B to 1536 B), and, handling the
full 15 available virtual sources, the algorithm consumes
~25% of available CPU time. JackTripClient alone uses
only ~4% CPU.

5. CONCLUSION

This project demonstrated a proof-of-concept distributed
audio spatialisation system comprised of a collection of
networked audio modules based on an affordable micro-
controller platform. The system proposed here has been
shown to effectively distribute the computation of a WFS
system across a collection of networked modules; the under-
lying networked audio client provides respectable module
synchronicity, and may support timing-critical applications,
albeit with scope for improvement in this regard.

The implementation of a JackTrip client in the Teensy
Audio environment is an ideal starting-point for further net-
worked audio projects, and in this sense interoperability
with existing networked audio systems has been shown to
be well within the reach of the Teensy platform. That being
said, for high-synchronicity applications JackTrip proved
perhaps not to be the ideal choice of protocol, owing to
its multithreaded model and lack of multicast functionality.
Although more complex to establish as a bare-bones em-
bedded client, the creation of a Teensy-based Netjack client
promises to open the way for multicast transmission, and,
it is hoped, greater guarantees of synchronicity. An AVB
client would also be a very useful addition to the Teensy
ecosystem.

The WFS model implemented is fairly rudimentary and
calls for extension to other types of virtual sound sources
and speaker array configurations. Ambisonics would be
an ideal follow-up implementation to attempt, but an in-

(a) RTT and clock drift across a 10 min networked audio session.
RTT Spread is the difference between the maximum and minimum
per-client RTT at each point in time.

(b) Excerpt of RTT measurement from Figure 4a (upper
plot). Data points represent samples taken once per
period of the test signal, i.e. at intervals of (~0.8 s).

Figure 4: RTT and clock drift measurements for seven JackTripClient instances, each identified by its IP address. JACK
configured to use a hardware audio driver (Focusrite Scarlett 18i20) with a sampling rate of 44.1 kHz and buffer size of 32
samples. For a description of the measurement methodology, see section 4.

vestigation of the feasibility of distributing an ambisonics
algorithm would be required. Nevertheless, there may be
other spatial audio techniques, and DSP algorithms in gen-
eral, that would find a good home in a distributed setting.

An expansion on the synchronicity measurements taken
in section 4 and a thorough evaluation of the adaptive re-
sampling technique employed would be prudent next steps.
The effects of different buffer sizes and read-write delta
thresholds on client synchronicity should be assessed, both
in terms of mean spread and spread variability. Resampling
may introduce phase modulation and will certainly add
noise to a signal; quantifying these effects would help to
legitimise the approach taken here, or point toward better ap-
proaches. Indeed, it may be profitable to pursue other clock
discrepancy mitigations, such as modifying Teensy’s audio
clock, either by altering parameters to the phase locked loop
from which that clock is derived or adopting an external
PTP or GPS clock source. The addition of a master clock
would raise the barrier to entry, but it may prove to be the
only way to achieve sample-accurate synchronisation.

Acknowledgments

This project was conducted as part of an internship with the
Emeraude team at Inria, 13 in Villeurbanne, France. Form-
ing part of the PLASMA project, 14 the work was carried out
at the Center of Innovation in Telecommunication and Inte-
gration of Service (CITI) at INSA-Lyon 15 and at GRAME
Studios. 16 An internship salary was kindly provided by
Inria.

13 Institut national de recherche en sciences et technologies du
numérique, https://www.inria.fr/

14 Pushing the Limits of Audio Spatialization with eMerging Archi-
tectures, a collaboration between Emeraude and the Center for Com-
puter Research in Music and Acoustics (CCRMA) at Stanford University,
https://team.inria.fr/emeraude/plasma/

15 Institut National des Sciences Appliquées, https://www.insa-lyo
n.fr/

16 GRAME CNCM (Centre national de création musicale), https:
//www.grame.fr/

Thanks: to Guillaume Anthouard and colleagues, who
conducted the initial work on running Teensy as a JackTrip
client; to Pierre Cochard and the Emeraude team; to Chris
Chafe, Fernando Lopez-Lezcano, and Yann Orlarey; and to
members of the Teensy and JUCE forum communities.

6. REFERENCES

[1] A. J. Berkhout, D. de Vries, and P. Vogel, “Acoustic
control by wave field synthesis,” The Journal of the
Acoustical Society of America, vol. 93, no. 5, pp. 2764–
2778, May 1993.

[2] J. Ahrens, R. Rabenstein, and S. Spors, “The Theory of
Wave Field Synthesis Revisited,” May 2008.

[3] J. Daniel, S. Moreau, and R. Nicol, “Further Investiga-
tions of High-Order Ambisonics and Wavefield Synthe-
sis for Holophonic Sound Imaging,” 2003.

[4] M. Geier, J. Ahrens, and S. Spors, “Object-based Audio
Reproduction and the Audio Scene Description Format,”
Organised Sound, vol. 15, no. 03, pp. 219–227, Dec.
2010.

[5] L. Ward and B. Shirley, “Personalization in Object-
based Audio for Accessibility: A Review of Advance-
ments for Hearing Impaired Listeners,” Journal of the
Audio Engineering Society, vol. 67, no. 7/8, pp. 584–
597, Aug. 2019.

[6] V. Hardman, M. A. Sasse, M. Handley, and A. Watson,
“Reliable Audio for Use Over the Internet,” in Proceed-
ings of INET ’95, 1995.

[7] V. Hardman, M. A. Sasse, and I. Kouvelas, “Success-
ful multiparty audio communication over the Internet,”
Communications of the ACM, vol. 41, no. 5, pp. 74–80,
May 1998.

[8] T. Turletti, “The INRIA videoconferencing system
(IVS),” ConeXions, vol. 8, Jan. 1995.

[9] C. Chafe, S. Wilson, R. Leistikow, D. Chisholm, and
G. Scavone, “A Simplified Approach to High Quality
Music and Sound Over IP,” 2000.

[10] A. Xu, W. Woszczyk, Z. Settel, B. Pennycook, R. Rowe,
P. Galanter, and J. Bary, “Real-Time Streaming of Multi-
channel Audio Data over Internet,” Journal of the Audio
Engineering Society, vol. 48, no. 7/8, pp. 627–641, Jul.
2000.

[11] P. Ferguson, C. Chafe, and S. Gapp, “Trans-Europe
Express Audio: testing 1000 mile low-latency uncom-
pressed audio between Edinburgh and Berlin using GPS-
derived word clock, first with jacktrip then with Dante.”
May 2020.

[12] M. Bosi, A. Servetti, C. Chafe, and C. Rottondi, “Ex-
periencing Remote Classical Music Performance Over
Long Distance: A JackTrip Concert Between Two Con-
tinents During the Pandemic,” Journal of the Audio
Engineering Society, vol. 69, no. 12, pp. 934–945, Dec.
2021.

[13] C. Chafe, S. Wilson, and D. Walling, “Physical model
synthesis with application to Internet acoustics,” in 2002
IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 4, May 2002, pp. IV–4056–
IV–4059, iSSN: 1520-6149.

[14] C. Chafe and R. Leistikow, “Levels of temporal resolu-
tion in sonification of network performance,” 2001.

[15] F. L. Schiavoni, M. Queiroz, and M. M. Wanderley,
“Alternatives in network transport protocols for audio
streaming applications,” in ICMC, 2013.

[16] A. Carôt, T. Hohn, and C. Werner, “Netjack – Remote
music collaboration with electronic sequencers on the
Internet,” Jan. 2009.

[17] J.-P. Cáceres and C. Chafe, “JackTrip: Under the Hood
of an Engine for Network Audio,” Journal of New Music
Research, vol. 39, no. 3, pp. 183–187, Sep. 2010.

[18] J.-P. Cáceras and C. Chafe, “JackTrip/SoundWIRE
Meets Server Farm,” Computer Music Journal, vol. 34,
no. 3, pp. 29–34, 2010.

[19] F. Adriaensen, “Controlling adaptive resampling,” in
Linux Audio Conference, 2012.

[20] “What is Dante? | Audinate | Dante Pro AV
Networking.” [Online]. Available: https://www.audina
te.com/meet-dante/what-is-dante

[21] V. Fischer, “Case Study: Performing Band Re-
hearsals on the Internet With Jamulus,” URL:
https://jamulus. io/PerformingBandRehearsalsontheIn-
ternetWithJamulus. pdf, 2015.

[22] L. Turchet and C. Fischione, “Elk Audio OS: An Open
Source Operating System for the Internet of Musical
Things,” ACM Transactions on Internet of Things, vol. 2,
no. 2, pp. 12:1–12:18, Mar. 2021.

[23] A. Renaud, A. Carôt, and P. Rebelo, “Networked Music
Performance : State of the Art,” Jan. 2012.

[24] F. Lopez-Lezcano, “From Jack to UDP packets to sound
and back,” in Proceedings of the Linux Audio Confer-
ence, vol. 2012, 2012.

[25] C. Chafe, “I am Streaming in a Room,” Frontiers in
Digital Humanities, vol. 5, 2018.

[26] C. Chafe and S. Oshiro, “Jacktrip on Raspberry Pi,” in
LAC-Linux Audio Conference, 2019.

[27] L. Gabrielli, S. Squartini, E. Principi, and F. Piazza,
“Networked Beagleboards for wireless music applica-
tions,” in 2012 5th European DSP Education and Re-
search Conference (EDERC), Sep. 2012, pp. 291–295.

[28] J. A. Belloch, J. M. Badía, D. F. Larios, E. Personal,
M. Ferrer, L. Fuster, M. Lupoiu, A. Gonzalez, C. León,
A. M. Vidal, and E. S. Quintana-Ortí, “On the perfor-
mance of a GPU-based SoC in a distributed spatial
audio system,” The Journal of Supercomputing, vol. 77,
no. 7, pp. 6920–6935, Jul. 2021.

[29] T. Sporer, “Wave field Synthesis - Generation and Re-
production of Natural Sound Environments,” 2004.

[30] F. Winter, J. Ahrens, and S. Spors, “A Geometric Model
for Spatial Aliasing in Wave Field Synthesis,” 2018.

[31] R. Michon, Y. Orlarey, S. Letz, and D. Fober, “Real
Time Audio Digital Signal Processing With Faust and
the Teensy,” in Sound and Music Computing Conference
(SMC-19), Malaga, Spain, May 2019.

[32] H. Marouani and M. R. Dagenais, “Internal Clock Drift
Estimation in Computer Clusters,” Journal of Computer
Networks and Communications, vol. 2008, p. e583162,
May 2008.

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Digital Audio Signals
	1.1.1 Numerical Representation
	1.1.2 Storage and Transmission

	2 Analysis
	2.1 Networked Audio
	2.1.1 Protocols and Systems
	2.1.2 Anatomy of a Datagram

	2.2 Hardware Platforms
	2.3 Approaches to Audio Spatialisation
	2.3.1 Wave Field Synthesis

	2.4 Distributed Computing
	2.5 Distributed Audio Systems
	2.5.1 State of the Art
	2.5.2 Challenges

	2.6 Research Questions
	2.6.1 Prior Work

	3 Development
	3.1 The Networked Audio Server
	3.1.1 Designing a Networked Audio Protocol
	3.1.2 Server Design

	3.2 The Networked Audio Client
	3.2.1 Synchronicity with the Server

	3.3 The Spatialisation Algorithm
	3.4 System Overview
	3.4.1 Hardware Setup
	3.4.2 Software System

	4 Evaluation
	4.1 Technical Evaluation
	4.2 Perceptual Evaluation
	4.3 Discussion

	5 Conclusion
	5.1 Future Work

	Bibliography
	A Prior Work

