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Abstract

This thesis was written as the final project of the Master of Science in Sound
and Music Computing at Aalborg University Copenhagen.

The presented work has been carried out in the Music Representations
team at IRCAM - STMS Lab in Paris, between February and May 2023.
During this stay, several applications for assisted cyber-human improvisation
have been explored, finally focusing on the co-creative generative software
Somax. New features have been researched, implemented and tested, and two
artistic residencies with well known improvising musicians has been carried
on, leading to performances in international renowned festivals.

This research brought up a number of interesting outcomes that will be
explored in a future collaboration, regarding the behaviour of autonomous
agents for human-machine improvisation as well as the extension of the artis-
tic residencies in question.
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5.1 A.I. Komböı . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Chapter 1

Introduction

Historically, the first digital systems for music generation were mainly based
on sets of rules coded by a programmer or a composer, to achieve certain re-
sults. Examples of this protocol are the systems designed by Iannis Xenakis
for his compositions [1], as well as Voyager by George E. Lewis [2]. In partic-
ular, the latter might be considered the progenitor of all modern co-creative
improvising systems, as it defined a model of rules to achieve high levels of
musical interaction [3].

During the years, music generation, or computer-assisted composition,
has been extended with a wide number of tools and libraries. Among these,
two of the most famous and important were developed at IRCAM [4]: Open-
Music [5] [6], an object-oriented visual programming environment for musical
composition based on Common Lisp , and Bach [7], a toolbox for computer-
assisted composition for Max/MSP [8], which among other things adapts and
integrates several concepts from OpenMusic into Max/MSP. These works
eventually helped extending the field of music generation and computer-
assisted composition with the notion of machine, or corpus-based, impro-
visation.

Machine improvisation uses computer algorithms to create improvisation
on existing music materials (corpus). This is usually done by sophisticated
recombination of musical phrases extracted from existing music, either live
or pre-recorded. In order to achieve credible improvisation in a particular
style, machine improvisation uses machine learning and pattern matching
algorithms to analyze existing musical examples. The resulting patterns are
then used to create new variations in the style of the original music, develop-
ing a notion of stylistic reinjection, a term coined in [9]. This is different from
other improvisation methods that use algorithmic composition to generate
new music without performing analysis of existing music examples [10].

Style modeling implies building a computational representation of the
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musical surface that captures important stylistic features from data. Statis-
tical approaches are used to capture the redundancies in terms of pattern
dictionaries or repetitions, which are later recombined to generate new mu-
sical data. Style mixing can be realized by analysis of a database containing
multiple musical examples in different styles. Machine Improvisation builds
upon a long musical tradition of statistical modeling that began with Hiller
and Isaacson’s Illiac Suite for String Quartet (1957) [11] and Xenakis’ uses
of Markov chains and stochastic processes [12]. Style mixing is possible by
blending models derived from several musical sources, with the first style
mixing done by Shlomo Dubnov in the piece NTrope Suite, using Jensen-
Shannon joint source model [13]. Later the use of factor oracle algorithm (a
finite state automaton constructed in linear time and space in an incremental
fashion) [14] was adopted for music by Gérard Assayag and Shlomo Dubnov
[15] and became the basis for several systems that use stylistic reinjection.

1.1 Related works

Over the past two decades, several real-time systems for machine improvisa-
tion that, to some extent, interacts or relates to a human musician have been
developed. As previously mentioned, the term machine improvisation stems
from the fact that the system has some sort of musical understanding of the
content it is performing and that the output is being generated on the fly.

Among the more impactful examples of such a system is OMax, a soft-
ware environment (Creative Agent) which learns in real-time typical features
of a musician’s style and plays along with him interactively, giving the flavor
of a machine co-improvisation. It is based on a research on stylistic model-
ing carried out by Gérard Assayag and Shlomo Dubnov [15] and a research
on improvisation with the computer by G. Assayag, M. Chemillier and G.
Bloch (also known as the OMax Brothers) [9]. OMax reinjects in several dif-
ferent ways the musician’s material that has gone through a machine-learning
stage, allowing a semantics-level representation of the session and a smart
recombination and transformation of this material in real-time [16]. As pre-
viously mentioned, during this research, the authors coined the term stylistic
reinjection to express this particular way of interacting of one’s own clone.

Several systems for human-machine improvisation have been developed
that to some extent stems from OMax. Among these are Somax [17], [18],
[19], which adds the concept of reactivity to the OMax model, allowing the
system not only to draw its material from an input, but to react to a mu-
sician in real-time, hence creating a situation of co-improvisation. Another
system, Improtek [20], adds the concept of temporal scenarios and contextual
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awareness to the model. Recently, the DYCI2 project [21] [22] was designed
with the intention to merge these three systems into a single framework and
introducting longer term scenarios.

1.2 REACH: Raising Co-creativity in Cyber-

Human Musicianship

The work carried on during this thesis is part of the framework of the Eu-
ropean Research Council (ERC) Project REACH: Raising Co-creativity in
Cyber-Human Musicianship [23], directed by Gérard Assayag, in the Music
Representation Team at IRCAM STMS Lab [24].

The research objective of this inter-disciplinary project is to model and
enhance co-creativity as it arises in improvised musical interactions between
human and artificial agents in a spectrum of practices spanning from inter-
acting with software agents to mixed reality involving instrumental physi-
cality and embodiment [25]. Such creative interaction strongly involves co-
improvisation, as a mixture of more or less predictable events, reactive and
planned behaviors, discovery and action phases, states of volition or idleness.
Improvisation is thus at the core of this project and indeed a fundamental
constituent of co-creative musicianship, as well as a fascinating anthropolog-
ical lever to human interactions in general.
The outline of the project unfolds as follows:

• Understanding, modeling, implementing music generativity and impro-
vised interaction as a general template for symbiotic interaction be-
tween humans and digital systems (cyber-human systems);

• Creating the scientific and technological conditions for mixed reality
musical systems’ based on the interrelation of creative agents and active
control in physical systems;

• Achieving distributed co-creativity through complex temporal adapta-
tion of creative agents in live cyber-human systems, articulated to field
experiment in musical social sciences.

The purpose of this thesis is thus to explore parts of this large research
program, analyze and summarize the state of the art in co-creative musical
interaction, improve features of existing software, experiment and prototype
with musicians and creative instruments, in order to adapt to realistic ex-
perimental and creative situations.
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Hence, this thesis will focus on Somax [26], IRCAMMusic Representation
team’s state of the art in the field of AI interaction for human-machine co-
creation. After an introduction given in chapter 1, chapter 2 will present
the theoretical model of Somax, summarizing the work done in [18], [19] and
[27]. In chapter 3 the work done to improve the real-time beat tracking of the
environment will be presented. Chapter 4 will describe the implementation
of interaction design strategies used during the artistic residencies, from the
study of physical models to generate sound synthesis, to interaction strategies
derived from the context of musical co-creativity. Chapter 5 will focus on
the artistic research work that has proved fundamental to the development
of the current version of Somax and to the success of the artistic residency
projects that have accompanied this research. Finally, Chapter 6 will present
some suggestions and ideas for future work in the field.
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Chapter 2

Somax Concepts

Somax is an interactive system which improvises around a given musical ma-
terial, aiming to produce a stylistically coherent improvisation while jointly
listening to and adapting to live musical input . The system is trained on
musical material selected by the user, from which it constructs a corpus that
will serve as a basis for the improvisation. Somax can use either audio or
MIDI files as its musical material (or a combination of the two), and it is able
to listen and adapt to both audio and MIDI input from the external world.

Somax may serve as a co-creative agent in the improvisational process,
where the system after some initial tuning is able to continuously listen and
adapt to the musician in a self-sufficient manner. Of course, the input doesn’t
have to come from a live musician; any type of audio and/or MIDI input
works, be it from an audio file, score editor, synthesizer, DAW, or another
Somax player (agent). Somax also allows detailed parametric controls of its
output and can even be controlled as an instrument in its own right. Also,
the system isn’t necessarily limited to a single agent or a single input source -
it is possible to create an entire ensemble of agents where the user can control
how the agents listen to various input sources as well as to each other.

The goal of this section is to provide a brief introduction to Somax and
provide the reader with the fundamental knowledge about how its interaction
model works, which in turn should serve as a basis for making informed
choices when tuning and interacting with the system. The content of this
chapter summarizes the Somax theoretical and interaction model detailed in
[19], [27] and [28].
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2.1 The Corpus and Navigation Model

As previously mentioned, the Somax system generates its improvisation ma-
terial based on an external set of musical material, the corpus. This corpus
can be constructed from one or multiple MIDI files, or a single audio file,
freely chosen by the user. In contrast to many other generative approaches,
the system does not construct a model that eventually is independent of
the material that was used to train it. Rather, the model is constructed
directly on top of the original data and provides a way to navigate through
it in a non-linear manner. One way of seeing this is to consider that some
fine-grained aspects of the musical stream are somehow too complex to be
modeled, but will be preserved – to a certain extent – when weaving into this
musical material.

In order for Somax to build a corpus from given music material, the first
step is to segment the musical stream into discrete units or slices, which
are vertical (polyphonic) segments of the original file, where the duration
of a slice is the distance between two note onsets.1 Each slice is analyzed
and classified with regards to a number of musical features related to its
harmony/texture, individual pitches, dynamics, etc., and these features along
with the pattern structure they infer over the musical sequence will serve as
the main basis for controlling the navigation model. Thus a navigation model
is made of a musical memory (basically the corpus), plus a dynamic pattern
matching and selection scheme to navigate into memory and reconstruct a
generative signal. Slicing is illustrated in Figure 2.1 in the case of MIDI,
where the polyphony is broken down in vertical columns with ties between
notes, prior to analysis and classification of the content. This representation
allows to weave back the polyphonic structure at generation time.

The procedure of mapping memory with patterns is actually repeated
for each music feature (harmony, melody etc.) in the analysis, effectively
resulting in a multilayer representation where each layer roughly corresponds
to one feature, i.e., one layer for harmony, one for pitch, etc.

When a musician interacts with the system, a similar process of segmenta-
tion and multilayer analysis and classification is computed in real-time on the
input stream, and at each point in time the result of this process is matched
to the information in the navigation model, generating activations, or peaks,
at certain points in the sequential memory where the input corresponds to

1In non-quantized MIDI files it is rare for any two notes that are perceived as simulta-
neous to be exactly simultaneous. Since one goal of Somax is to be able to maintain and
reproduce the original timings within slices as recorded, notes with almost simultaneous
onsets will still be grouped together in a single slice but with their internal timing offset
preserved.
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Figure 2.1: Constructing a corpus by segmenting MIDI data into slices.

the model. Each peak corresponds to a point in the memory, so the entire set
of peaks can effectively be seen linearly as a one-dimensional curve over the
corpus’ time axis (see Figures 2.3 and 2.4 below for examples). The peaks
in each layer are merged and scaled according to how the system has been
tuned, and finally the output slice is selected from the sequential memory
based on the distribution of the peaks, typically at a location that is a good
match with the overall context at this particular moment.

Figure 2.2: An overview of the steps through which the system generates its
output at each given point in time.

The generated output of this process is a co-improvisation that recom-
bines existing material in a way that is coherent with the sequential logic
and statistical properties of the original material while at the same time
adapting in real-time to match the input from the musician. This is because
the multilayer peak profiles is shaped not only by the input, but also by the
output of the navigation itself, which is called “self-listening”. Self-listening
conditions its own set of layers, that combine in turn with external listening
ones. This process of attempting to balance the internal logic of the corpus
with the external logic of the musician often provides a mix of coherency and
unexpectedness in a way that convincingly gives the impression of an active
agent in the improvisational process.
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2.2 Interacting with Somax

When interacting with Somax, there are three main concepts that are im-
portant to understand: slices, influences and peaks.

2.2.1 Slices

A slice, as previously mentioned, is a short segment of the corpus and serves
as the smallest building block of the output of the system. The slice can be
manipulated to some extent (transposed, filtered with regards to voices/chan-
nels, stretched etc.) but will always maintain most fundamental properties
of the original corpus.

2.2.2 Influences

When Somax listens to a musician, this musical stream is segmented and
analyzed with respect to its musical parameters similarly to how the cor-
pus was constructed, but with a slightly different set of methods to be able
to operate in real-time. The result of this process are discrete chunks of
multilayer data or influences, which the system uses to be able to compare
the input to the memory, where the main purpose of the influence is to act
as the guide that determines the output of the system. The concept of an
influence may initially seem like an implementation detail, but will become
increasingly important for more complex configurations with multiple agents
and/or multiple input sources. The main takeaway is that the system cannot
listen directly to a musical input stream, but will need to translate it into
influences, and that the process of tuning the listener can be a very impor-
tant factor for the quality of the co-improvisation. Thus influences are the
main data that circulate between the Somax agents, hence the names ‘au-
dioinfluencer’ and ‘midiinfluencer’ for the input modules. Typically, a Somax
Player ”listens” to a certain amount of cumulated influences (audio inputs,
MIDI inputs, other agents’ productions) and takes decisions based on these
influences.

2.2.3 Peaks

Finally, a peak is, again, a point in the corpus where the input corresponds
to the model, or simply a match between an incoming influence and a cor-
responding slice that would serve as an output candidate. Each peak has a
height, corresponding to a probability (or viability) of that particular slice
as an output candidate. Unlike influences (which are visible in the interface)
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and slices (which are correlated to the audible output of the system), peaks
are never interacted with directly, they’re only part of the internal state of the
system, but perhaps the most vital part. Each peak effectively corresponds
to a slice in the corpus that could serve as an output at the current point in
time, given the latest influence. Having at each point in time a reasonable
number of peaks is thus vital for the quality of the output, since having no
peaks means that the output has not taken the musician’s influences into
account, and on the opposite side, in most cases a large number of peaks
indicate that the matching is imprecise.

2.2.4 Putting all together

To put the concept of peaks in context, it is needed to briefly explore in more
detail how the system works. While the musician is playing, Somax is at each
detected onset segmenting / analysing the input into influences, carrying
information about the pitch, harmony, etc. of what the musician currently is
playing. This process is carried out by agents of the system called influencers.
This information is routed to a player, which handles the entire process of
matching and generating output. The influence is routed in multiple layers
by the player, as briefly mentioned, where each layer corresponds to one
musical dimension (e.g. harmony, melody) of the influence. In each layer, a
model of the corpus with respect to the particular layer’s musical dimension
exists, and upon receiving an influence, the model will look for sequences in
the corpus that match the sequence of most recent influences from the input,
and, in each of those places, insert new peaks.

Figure 2.3: The process of shifting and decaying previous peaks in a single
layer upon receiving new influences (the process of matching the incoming
influence to the corpus has been omitted for clarity).
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The system is also simulating a type of short-term memory inside this
model by not immediately discarding peaks from previous influences, but
rather shifting them along the time axis of the memory and decaying their
height corresponding to the amount of time that has passed, followed by
merging them with the new incoming set of peaks. This means that se-
quences continuously matching several consecutive influences will be more
highly prioritized over others, as illustrated in Figure 2.3. Another powerful
property of this system is that it allows some form of fuzzy pattern recogni-
tion since positions that are not perfect matches at time t, can still become
good matches at time t + i, due to the propagation mechanism. Finally,
the peaks from all layers will be merged together into a single set of peaks
which the system will use to probabilistically determine which slice is the
best output candidate2. The result of this multilayer peak merging process
is an output that will not just strictly match the harmony and pitch of the
influence but rather improvise around the most recent history of influences
with regards to the corpus own structure, with both fidelity and agency. In
addition, as already said, there are also two layers which listens to the output
of the player itself, as feedback layers, that can be used to balance the player’s
consistency with the input with its continuity in its own performance. The
balance between the different layers as well as control over the shift/decay
time of old peaks, length of sequences to match in the memories, etc. are all
available in the ‘somax.player.app’ and ‘somax.player.ui’ user interface.

Another important aspect of the interaction with Somax is its relation to
time. According to the user’s preference, each player can be assigned to either
operate continuously in time as an autonomous agent, maintaining the pulse
and exact within-slice timings of the original corpus (while possibly adapting
to the tempo and/or phase of the input), or operate reactively, generating
output synchronously as requested by the input’s events. In the continuous
case, this means that the player improvises freely over time while still taking
the influences of the musician into account, while in the reactive case, it
synchronizes strictly (note-by-note) or loosely (depending on tuning) with
the input. Of course, the player is in the latter mode not strictly limited to
the input from where it receives its influences, but could be connected to a
third source of some sort, for example any type of step-sequencer or other
generative approaches, thus giving the user multiple options for controlling
the temporal domain of the system.

2Actually, in addition to this, there are a number of parameters that scale the height
of the peaks individually with regard to a number of other musical parameters of choice,
but this is thoroughly documented in the help files and tutorials in Max and will not be
discussed here
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Figure 2.4: The four layers of peaks corresponding to different musical di-
mensions such as internal melody, internal harmony, external melody and
external harmony, being merged into one set of peaks before the final scaling
and peak selection. Here, all four layers are weighted equally, but it is pos-
sible to balance the contribution from each of the layers.

2.3 Somax User Interface

The user interface of Somax, which was discussed briefly in [19], is imple-
mented in the Max [29] programming language. The user interface was origi-
nally designed as a thin client, where all of the computation is handled on the
Python server (apart from the real-time signal processing required for audio
signals used as influences). Being Max a visual programming language where
the default means of programming is by connecting objects using patch cords,
in most cases, the readability of a Max program is determined by how easy
it is to follow the cords throughout the program. The Somax user interface
was originally designed with this in mind to promote readability on both
micro and macro levels of the program, but is from version 2.3 using wireless
communication (send and receive) between objects on a macro level. While
this approach to some extent obscures the readability (or at least the global
signal flow) of the system, the benefits are manifold. First of all, the archi-
tecture becomes easier for the user to extend - adding new players can be
done with a single keypress - and objects can dynamically select which other
objects to interact with without having to modify the architecture. This new
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architecture and its implications is now presented in [28] and [30].
Another purpose of this redesign is to make the system integrable into

Ableton Live. Somax can as a system be described as a function that reads
one or multiple audio and/or MIDI streams and outputs one or multiple MIDI
streams. For compatibility with Live, this has to be split into several smaller
objects based on Live’s syntax of instruments (function that reads one MIDI
stream and outputs one audio stream), audio effects (function that reads one
audio stream and outputs one audio stream) and MIDI effects (function that
reads one MIDI stream and outputs one MIDI stream). Using a wireless
architecture, this goal is possible to achieve for Somax.

To accommodate these changes, the Python back-end has been updated
to drastically increase the performance when using multiple players.

Figure 2.5: Interaction model for the wireless architecture. Dotted arrow
lines denote some sort of “wireless” communication between objects while
filled arrow lines denote their traditional UML relations (composition, gen-
eralization) and corresponding cardinality.

A simplified diagram over the entire wireless system can be seen in figure
2.5. Here we see that the only objects that do not have corresponding objects
in the Python back-end are the influencers. Each influencer is given a name
by the user, which the system ensures is unique, and this name will serve as
the address on which the influencer sends its influences to players.

The new Somax2.5 has been redesigned both as a Max application and a
Max library. Almost every object in the package has a ‘core’ version and an
‘.app’ version (i.e., ‘somax.player’ and ‘somax.player.app’). As their names
say, core objects are pure Max abstractions, intended for users that want to
use Somax in a fully Max-like programming style. On the other hand, .app
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objects are abstractions providing a user interface to control the parameters,
as well as other utility tools to immediately use the abstractions. They are
really wrappers around the core objects (that are still contained inside any
.app object) that provide the users instant access to a nice interaction, while
maintaining the modularity of the core objects. Only .app objects appear in
the ‘somax2.maxpat’ application that most people will use, unless they are
skilled Max programmers and wish to build their own custom application
patch. Some of the objects have also a ‘.ui’ version (i.e., ‘somax.player.ui’),
which is a compact user interface version of the core object, and that could
be used as an alternative to this one. Note that the .ui objects doesn’t have
the same utilities as the .app objects, and therefore they cannot be used
as ready-to-play objects, but rather they are intended as visual feedback
alternatives to the core objects. Since .ui objects are included in .app objects
they will also serve in the following to show and explain some of the .app
user interface details. In Figure 2.6 are presented the basic objects of the
Somax application. These are:

• the Server;

• the Player;

• the Audio Influencer;

• the MIDI Influencer.

This is of course just one possible configuration of the Somax objects, as
a big advantage of this application is that each object communicates with
each other in a wireless way, without the need of patch chords. In this
way it is possible to adapt the patches at one’s need, and build personal
configurations.
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Figure 2.6: The ‘somax2.maxpat’ included in the distribution gives access to
all the objects in the Somax application: server, player, audio influencer and
MIDI influencer.
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Chapter 3

Real Time Beat Tracking

Beat tracking is the identification of a regular pulse in a piece of music,
similar to the informal task of tapping ones foot ‘in time’ to a piece [31].
To a human, even a non-musician, this is often a trivial task that can be
achieved with little conscious effort. However, the automation of this process
in computer systems has proved difficult to solve comprehensively [32]. As
Goto [33] noted, “although in the brains of performers music is temporally
organized according to its hierarchical beat structure, this structure is not
explicitly expressed in music”. Developing a real time beat tracker brings up
a further challenge, since we have no access to future information. Therefore,
a causal approach is needed, where past and present information alone are
used to inform predictions of future beat locations.

3.1 State of the art research

Over the years, a wide number of different approaches tried to solve the
problem of beat tracking. Among these are some of the most important:

• Goto [33], presented a system that is able to recognise beats at multiple
metrical levels. The system, assuming a steady tempo and a time sig-
nature of 4/4, examines onset times, chord changes and drum patterns
in the input signal;

• Ellis [34], proposed an algorithm based on dynamic programming, where
an onset strength envelope is extracted by re-sampling the input audio
to 8kHz and extracting short-time Fourier transform frames. These are
converted to an “approximate auditory” representation with 40 bands
on the Mel scale – a perceptual frequency scale. The first-order differ-
ence in each band is taken and the positive differences summed across
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all bands and the final function smoothed. From this function a global
tempo estimate for the signal is calculated from the weighted output of
an auto-correlation function. This global tempo estimate is then used
with the onset strength envelope to create a transition cost function
which in turn is used in the calculation of a recursive function with
peaks at likely beat locations [31];

• Davies and Plumbley [35], introduced a system that calculates an onset
detection function based upon the complex spectral difference between
adjacent Fourier transform frames. The auto-correlation of the onset
detection function is then calculated and passed through a weighted
comb filterbank. The output of this comb filterbank has peaks at lags
that match the periodicities in the auto-correlation function and is used
to estimate the beat period (or time between beats). Analysis of the
most recent single beat period of the onset detection function is then
performed to extract the beat phase.

• Finally, the models of Large and Kolen [36] and Toiviainen [37] are sim-
ilar, and address the issue of rhythm perception through a method of
adaptive oscillators (as well as the various evolutions of Large’s model;
see [38]; [39]; [40]; [41]). Two key parameters describe these oscilla-
tors: their phase and period, which can adapt to allow the oscillator
to remain synchronized with the music input (represented as discrete
events). In the absence of stimuli, the oscillator continues to produce
a pulse at the current tempo. These two models differ mainly in the
mechanism chosen to adapt their internal parameters. When a new
event arrives (a note, represented by its attack time), Large’s model
instantly adapts its parameters (phase and period) according to a gra-
dient descent method; Toivianen’s model, largely inspired by Large’s,
introduces an adaptation function that delays the modifications made
to the internal parameters, which allows to take into account the du-
ration of the notes. A shortcoming of this type of model is that it is
not able to find the right initial values of the phase and especially of
the period. It should also be noted that these models have been used
and tested in improvisations from the beginning (see [36]; [38]; [37]).

• Also worth mentioning, IRCAM has already implemented a plugin for
real time beat detection, IrcamBeat [42]. Created by Geoffroy Peeters
and developed by Geoffroy Peeters and Frédéric Cornu in the IRCAM
Analysis-Synthesis team at STMS lab, the VAMP plugin created and
developed by Pierre Guillot and Matthew Harris, offer a set of analyses
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from the AudioSculpt 3 application, and could be loaded in the Partiels
application [43].

3.2 Implementing a new beat tracker in So-

max

As of today, Somax has an integrated beat tracker, implemented by Laurent
Bonnasse-Gahot [44]. This is based on the two different models of Large and
Kolen [36] and Toiviainen [37] but its imlementation goes back to 2010 and
was specifically designed for Omax [15]. This implementation, in the partic-
ular context of Somax, was identified as a weak point by many members of
the Music Representations team, so much so that it was not actually used in
testing and performance by any of them. In fact, Omax has a different archi-
tecture, being implemented fully in Max/MSP, while Somax has a Python
back-end and a Max front-end [45], so the way the algorithm was imple-
mented in Omax doesn’t really fit the internal structure of Somax. Moreover
in this new application is very important to being able to synchronize agents
(Somax players) with an external audio or MIDI influence, carrying some
tempo information, or even within agents, sharing tempo information and
syncing between them.

After a thorough research on existing real time beat tracking algorithm
that could potentially be included in the current version of Somax, the choice
fell on the btrack∼ implementation by Stark [31]. The model draws on
two existing systems: the tempo induction of the Davies and Plumbley [35]
method and the dynamic programming approach of Ellis [34]. In this section,
a brief explanation of the algorithm is given; for a full derivation see [46] and
[31].

3.2.1 Input Feature

The input feature for this beat tracking system is the complex spectral dif-
ference onset detection function (DF) [47]; a continuous mid-level represen-
tation of an audio signal which exhibits peaks at likely note onset locations.
The onset detection function Γ(m) at sample m is calculated by measuring
the Euclidean distance between an observed spectral frame Xk(m), and a
predicted spectral frame X̂k(m) for all bins k:

Γ(m) =
K∑
k=1

|Xk(m)| − |X̂k(m)| (3.1)
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3.2.2 Beat Prediction

Stark’s model for beat tracking assumes that the sequence of beats, γb, will
correspond to a set of approximately periodic peaks in the onset detection
function. Following the dynamic programming approach of Ellis [34], at the
core of this method is the generation of a recursive cumulative score function,
C∗(m), which represents the best possible score of all possible beat sequences
ending at the point m. This cumulative score value at m is calculated as the
weighted sum of the current DF value Γ(m) and the value of C∗ at the most
likely previous beat location:

C∗(m) = (1− α)Γ(m) + αmax
v

(W1(v)C(m+ v)) (3.2)

Specifically, the algorithm searches for the most likely previous beat over
the interval (into the past) [m− 2τb,m− τb/2] where m is the current input
feature sample and τb is the beat period (the method for determining τb is
given in a later section). A log-Gaussian transition weighting W1 favours the
time exactly τb samples in the past:

W1(v) = exp

(
−(η log(−v/τb))

2

2

)
(3.3)

where v = −2τb, ...,−τb/2 and η is the tightness of the transition weight-
ing. The cumulative score C∗ is updated with every new detection function
sample Γ(m) and its recursive calculation allows to carry some periodic mo-
mentum even in the presence of silence. This feature is the one allowing the
algorithm to make predictions of future beat locations without observing the
entire signal. Each predicted beat γb+1 is made at a fixed point in time m0

once the current beat γb has elapsed, m0 = γb + τb/2. From here, the future
cumulative score for one beat into the future is generated and the next beat
is predicted as:

γb+1 = m0 + argmax
v

(C∗(m0 + v)W2(v)) (3.4)

where v = 1, ..., τb specifies the future one-beat window and W (2) is a
Gaussian weighting centred on the most likely beat location (m0 + τb/2):

W2(v) = exp

(
−(v − τb/2)

2

2(τb/2)2

)
(3.5)

An example of the beat prediction process in shown in Figure 3.1.
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Figure 3.1: Top: Onset Detection with predicted beat locations. Bottom:
Cumulative score (solid line) with future cumulative score (dotted line). Cur-
rent time is shown as the bold grey vertical line. Taken from [46].

3.2.3 Tempo Induction

To be able to track beats in music that varies in speed in real time, a regular
update of the tempo estimate is needed. In line with the beat prediction, the
tempo is re-estimated once each new predicted beat has elapsed. To estimate
the value of τb, the beat period estimate at the bth beat γb used in the beat
prediction section, Stark adopted a method based on Davies and Plumbley
method [35]. This can be summarised in five steps:

• a six second analysis frame (up to m0) is extracted from the onset
detection function Γ(m);

• the peaks in Γ(m) are preserved by applying an adaptive moving mean
threshold to leave a modified detection function Γ̃(m);

• the autocorrelation function of Γ̃(m) is taken;

• this autocorrelation function is passed through a shift-invariant comb
filterbank weighted by a tempo preference curve;

• the beat period is found as in the index of the maximum value of the
comb filterbank output, R(l).
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An example of the comb filterbank output is shown in the top plot of Fig-
ure 3.2. For a complete derivation of R(l) see [35]. To minimise some common
errors, like tapping tempo at different metrical levels [48], or switching be-
tween metrical levels [35], Stark restricted the range of possible tempi to a
single tempo octave from tmin = 80 beats per minute (bpm) to tmax = 160
bpm. The output of the comb filterbank R(l) is mapped from the lag domain
to the tempo domain between tmin and tmax to give Rb(t) by:

Rb(t− tmin) = R(|60/(fr × t)|) (3.6)

where t = tmin, ..., tmax and fr is the temporal resolution of the onset
detection function in seconds. Plots of R(l) and Rb(b) are shown in Figure
3.2.

Figure 3.2: Top: Comb Filterbank Output R(l). Bottom: R(l) mapped into
the tempo domain to give Rb(t). Taken from [46].

Finally, since it has been assumed in previous works [49] that tempo is
a slowly varying process, Stark introduced a transition matrix A(ti, tj) to
favour changes in tempo (from the current tempo ti to a new tempo tj) that
are small, so that the new tempo is close to the current tempo. In this
matrix, each column contains a Gaussian of fixed standard deviation σ, so
that each Gaussian is wide enough to capture small changes in tempo but
narrow enough to favour the hypothesis that tempo is a slowly changing
process.
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Figure 3.3: Top: Tempo initialisation of an artificial likelihood for the previ-
ous beat ∆b−1 at 140 bpm. Bottom: resulting tempo probability distribution
after operations with the matrix. Taken from [46].

At each step, the previous tempo likelihood ∆b−1 is stored and multiplied
by the transition matrix A; the maximum value from each column is taken
to create a tempo probability distribution θb. The tempo likelihood for the
current iteration ∆b is then calculated as ∆b(tj) = Rb(tj)θb(tj). The current
tempo is then found as the index of the maximum value of ∆b and converted
from bpm to the beat period τb, as shown in Figure 3.3.

3.3 Evaluation

Evavaluation of Stark’s beat tracking model has been carried on an existing
annotated database [50] comprised of 222 audio files each approximately 60
seconds in length. Here each file was accompanied by a sequence of beat
annotations, recorded as beat times in seconds and created by a human
listener tapping in time to the piece [31].

To evaluate the proposed beat tracker, compared to the ones of Davies
and Plumbley [35] and of Klapuri [49], Stark utilised two different evaluation
measures, both developed by Hainsworth [50] and Klapuri [49]:

• AMLc (Allowed Metrical Levels, with Continuity required), that re-
quires that there be some continuity in the beats output by the beat
tracker;
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• AMLt (Allowed Metrical Levels, total number of correct beats), which is
a measure of the total number of correct beats, regardless of continuity.
For more information on both measures see [31], 3.1.6.

The results of this evaluation are collected in Table 3.1. As can be seen,
the proposed btrack∼ algorithm is comparable in efficiency to the existing
state of the art algorithms.

AMLc(%) AMLt(%)
DP 70.5 79.1
KLc 65.7 76.5
BT 66.0 74.9

Table 3.1: Results of the evaluation of btrack∼ (BT) [31] compared to Davies
and Plumbley (DP) [35] and casual Klapuri (KLc) [49], with the two pro-
posed evaluation measures AMLc (Allowed Metrical Levels, with Continuity
required) and AMLt (Allowed Metrical Levels, total number of correct beats).

3.4 Max/MSP external

Stark’s algorithm, implemented in C++, is available under GNU License [51]
as a public repository1. Starting from this code, a Max/MSP external, shown
in Figure 3.4, has been compiled in XCode [52], adapting the algorithm to the
latest version of Max. The btrack∼.mxo external has then been inserted in
an experimental version of Somax for testing with live audio inputs. Having
a Max/MSP external is very convenient in term of adding it to the overall
application. In this way, a routing of the tempo of both the audio and MIDI
influencers can be sent to the players in Somax; moreover, each player could
send its own tempo information, creating tempo feedback within the players
themselves. It is hoped that a solid beat tracker in the Max/MSP environ-
ment, based on a C++ implementation of the algorithm, could increment
the tempo performances of the system, as well as provide its maintenance in
future developments.

3.4.1 Gen∼ development

As a proof of concept and to deepen the state of the art research in the
Max/MSP environment, additional experimentation has been carried on on

1https://github.com/adamstark/BTrack
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Figure 3.4: btrack∼ Max patch developed by Stark, Davies and Plumbley
following Stark’s research in [31], compiled as a Max/MSP external for the
latest architectures.

the signal analysis side. In particular, a wide range of audio descriptors, as
described by Stark in [31], have been implemented in the gen∼ environment,
under the supervision of Graham Wakefield, gen∼ developer and author of
[53].

Gen∼ is part of the Max/MSP environment, but contrary to this, operates
at sample rate, providing the possibility to develop complex DSP algorithms.
This process is already part of a wide range of products, as the Shaper Syn-
thesizer [54], OWL Modular Eurorack [55] or MOD Duo [56]. Unfortunately,
however, gen∼ is not well documented, but thanks to the aforementioned
support of Graham Wakefield and after a considerable number of attempts, I
have been able to implement these descriptors, with particular emphasis on
the complex spectral difference descriptor, defined in [47]. The results can
be seen in Figure B.2 and B.1 in Appendix.

3.5 Extensions to the algorithm

Following the work on swarm robots and their temporal interaction, as de-
scribed in [57], the previous algorithm has been extended with the following
features:
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• Regular beat-tracking mode that does everything described thusfar,
but does not handle boundary tempo octave conditions;

• A count-in mode that uses the first two onsets to define the initial
tempo estimate before switching back into regular beat-tracking mode;

• Tempo-locked mode, which, after an initial tempo has been established,
just plays evenly-spaced beats that are not influenced by audio input.
This is accomplished by setting the cumulative score α parameter, as
described in Equation 3.2, to unity.

An example of this is presented in Figure B.3 in Appendix.
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Chapter 4

Interaction Design

This chapter will focus on the music technology techniques used for the devel-
opment of Somax in the context of the artistic and research residencies that
made up this research project. In the same way, the interaction strategies
that have led to the concrete realization of these works of artistic co-creativity
will be described. In particular, for the digital synthesis of sound, in relation
to the project A.I. Komböı, which will be described in the next chapter, stud-
ies on physical modeling have made it possible to reach a satisfactory level
of sound likelihood with the harpsichord, although maintaining the unique
characteristics relating to digital synthesis, thus being consistent with the
research work in progress. All the interaction strategies explored during the
residency and the use of Somax as the main environment for musical co-
interaction will also be described.

4.1 Digital Harpsichord

In order to be coherent with the original idea of Komböı, written for percus-
sion and harpsichord (an analysis of it will be given in the next Chapter),
while the percussion part was played with the exact set described by Xe-
nakis in the score, the harpsichord part has been synthesized. A digital
harpsichord sound has been designed using physical modelling technique on
a digital hardware synthesizer, an Arturia MiniFreak [58].

4.1.1 Digital Waveguides

Proposed by Smith in [59], digital waveguide methods follow a different path
from the ones based on numerical integration of the wave equation. In this
implementation, the wave equation is first solved in a general way to obtain

25



travelling waves in the medium. In the lossless case, a travelling wave between
two points in the medium can be implemented using nothing but a delay
line. The advantage of this is that, operating with Linear Time-Invariant
systems (LTI), most of the simulation still consists of delay lines, keeping
the computational costs very low. The following explanations are taken from
[59], where further explorations could be found.

4.1.2 The Ideal Vibrating String

Fully derived in [60] and in most textbooks on acoustic, the wave equation
for an ideal (lossless, linear and flexible) string is given by:

∂2y

∂t2
= c2

∂2y

∂x2
(4.1)

where y(t, x) represents the vertical string displacement over time t and
horizontal space x, and c is the speed of the wave propagating in the string.

Following Bilbao’s implementation, the former equation could also be
written as:

Ky′′ = ϵÿ (4.2)

where K
∆
= string tension, ϵ

∆
= linear mass density, y

∆
= y(t, x) string

displacement, ÿ
∆
= ∂2y

∂t2
and y′′

∆
= ∂2y

∂x2 . In the following form, the wave equa-

tion can be interpreted as a statement of Netwon’s second law F⃗ = ma⃗ on
a microscopic scale. Considering transverse vibration of the string, the force
is given by the string tension times the curvature of the string (Ky′′) and
it is balanced by the mass times the transverse acceleration (ϵÿ). For the
physical modeling of musical instruments, this is the most common equation
and can be applied to any perfect elastic medium which is displaced along
one dimension, describing transverse vibration in an ideal string, longitudi-
nal vibration in an ideal bar or pressure in an acoustic tube [61] [62]. For
example, the air column of a clarinet or organ pipe can be modeled using
the one-dimensional wave equation, substituting air pressure deviation for
string displacement, and longitudinal volume velocity of air in the bore for
transverse velocity on the string. We refer to this general class of media
as one-dimensional waveguides, though extensions to more dimensions are
mathematically possible [59].
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4.1.3 Travelling-Wave Solution

The wave equation can be solved by any string shape which travels to the left
or right with speed c =

√
K/ϵ. If we denote right-going travelling waves as

yr(x− ct) and left-going travelling waves yl(x+ ct), then the general solution
for the lossless one-dimensional wave equation can be expressed as:

y(x, t) = yr(x− ct) + yl(x+ ct) (4.3)

while an example of the appearance of the travelling wave components is
shown in Figure 4.1.

Figure 4.1: An example of the appearance of the travelling wave components
shortly after plucking an infinitely long string at three points as shown in
[59]. The plucking points are labeled by “p” and are plucked simultaneously,
producing an initial triangular displacement. This initial displacement is
modeled as the sum of two identical triangular pulses which at t = 0 are
exactly on top of each other but then begin to separate at t = t0.

4.1.4 Sampling the Travelling Waves

To carry the travelling-wave into the digital domain, it is necessary to sample
the travelling-wave amplitudes at intervals of T seconds, corresponding to a
sampling rate fs = 1/T (samples per second). The spatial sampling index X
is defined as X = cT (meters), representing the distance sound propagates
in one temporal sampling interval T . In air, where c is the speed of sound
(331m/s), for a fs = 44100Hz, X = 331/44100 = 7.5mm of spatial sampling
interval.

Sampling is carried out by the following change of variables:

x → xm = mX

t → tn = nT
(4.4)
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Substituting them into equation 4.3 gives:

y(tn, xm) = yr(tn − xm/c) + yl(tn + xm/c)

= yr(nT −mX/c) + yl(nT +mX/c)

= yr[(n−m)T ] + yl[(n+m)T ]

(4.5)

Since T multiplies all the arguments we can suppress it by defining

y+
∆
= yr(nT ) y−

∆
= yl(nT ) (4.6)

Now, the left- and right-going travelling waves could be summed into:

y(tn, xm) = y+(n−m) + y−(n+m) (4.7)

Any ideal one-dimensional waveguide can be simulated in this way. Here,
the term yr[(n − m)T ] = y+(n − m) can be thought as the output of an
m-sample delay line whose input is y+(n), resulting in the right-going com-
ponent in the upper rail of Figure 4.2. Similarly, the term yl[(n + m)T ] =
y−(n + m) can be thought as the input of an m-sample delay line whose
output is y−(n), resulting in the left-going component in the lower rail in the
same Figure.

Figure 4.2: Simplified picture of ideal digital waveguide as shown in [59].
The figure emphasizes that an ideal and lossless waveguide is simulated by a
bidirectional delay line.
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4.1.5 Rigid Terminations

A rigid termination is the simplest case of a string termination. It imposes
the constraint that the string cannot move at all at the termination. If we
terminate a length L ideal string at x = 0 and x = L we have the so-called
boundary conditions.

y(t, 0) = 0 y(t, L) = 0 (4.8)

Since y(t, 0) = yr(t) + yl(t) = y+(t/T ) + y+(t/T ) and y(t, L) = yr(t −
L/c) + yl(t+ L/c), the constraints of the sampled travelling waves becomes:

y+(n) = −y−(n)

y−(n+N/2) = −y+(n−N/2)
(4.9)

where N
∆
= 2L/X is the time in samples to propagate from one end of

the string to the other and back (total string loop delay).
The ideal plucked string with rigid terminations for the bridge and the

nut, implemented in this project, is then defined as a string with initial dis-
placement and zero initial velocity. An example of an initial pluck excitation
in this digital waveguide string model is shown in Figure 4.3

Figure 4.3: Initial conditions for the ideal plucked string as shown in [59].

4.1.6 Implementation

To design the harpsichord sound, according to the previously described phys-
ical model techniques, an Arturia MiniFreak keyboard has been chosen. The
choice fell on this particular keyboard for multiple reasons. First of all, the
MiniFreak is a polyphonic hybrid keyboard that combines dual digital sound
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engines with analog filters, modulations, effects and two oscillators. The two
oscilallators, providing different sound engines, make it possible to generate
plucked string sounds through a special case of digital waveguide synthesis,
as described above, the Karplus-Strong algorithm, which will described in the
next paragraph. Moreover, the MiniFreak comes also with a VST version of
it, the MiniFreak V (see Figure 4.4), that enables advanced preset manage-
ment and exact mirroring with the physical keyboard. Lastly, the keyboard
has embedded MIDI in and out, essential for sending MIDI messages from
the Max/MSP patch used in the performance.

Figure 4.4: Arturia MiniFreak V patch for designing of Harpsichord sound,
generated through physical modelling.

Karplus-Strong

Karplus–Strong string synthesis is a method of physical modelling synthesis
that loops a short waveform through a filtered delay line to simulate the
sound of a hammered or plucked string or some types of percussion [63] [64].
At first glance, this technique can be viewed as subtractive synthesis based
on a feedback loop similar to that of a comb filter for z-transform analysis.
However, it can also be viewed as the simplest class of wavetable-modification
algorithms now known as digital waveguide synthesis, because the delay line
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acts to store one period of the signal. Alexander Strong invented the algo-
rithm, and Kevin Karplus did the first analysis of how it worked. Together
they developed software and hardware implementations of the algorithm,
including a custom VLSI chip. They first named the algorithm “Digitar”
synthesis, as a acronym for “digital guitar”.

Figure 4.5: Scheme of Karplus-Strong algorithm.

As shown in Figure 4.5, the Karplus-Strong algorithm works in the fol-
lowing way:

• A short excitation waveform (of length L samples) is generated. In the
original algorithm, this was a burst of white noise, but it can also in-
clude any wideband signal, such as a rapid sine wave chirp or frequency
sweep, or a single cycle of a sawtooth wave or square wave.

• This excitation is output and simultaneously fed back into a delay line
L samples long.

• The output of the delay line is fed through a filter. The gain of the fil-
ter must be less than 1 at all frequencies, to maintain a stable positive
feedback loop. The filter can be a first-order lowpass filter (as pic-
tured). In the original algorithm, the filter consisted of averaging two
adjacent samples, a particularly simple filter that can be implemented
without a multiplier, requiring only shift and add operations. The filter
characteristics are crucial in determining the harmonic structure of the
decaying tone.

• The filtered output is simultaneously mixed into the output and fed
back into the delay line.
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4.2 Designing Co-Interaction

Based on the theoretical model previously described in Chapter 2, the basic
workflow of interacting with the Somax system, as shown in Figure 4.6,
unfolds as following:

• Somax generates its improvisation material based on an external set of
musical material, the corpus. This corpus can be constructed from one
audio or MIDI file freely chosen by the user, thanks to the dedicated
corpusbuilder objects. The constructed corpus is then stored in a bigger
database called corpora, accessible by the Player from a corpuspath
folder. So, the corpus is the actual musical material loaded into a
Player.

• The Audio and MIDI Influencers listen to a continuous stream of audio
or MIDI input data (from any type of source, including live musicians)
and segments it temporally, where each slice is analyzed with respect
to onset, pitch and chroma, which then is sent to the Player. Thus, the
influences are the triggers for the co-improvisational behaviour of the
Player.

• The Player is the main agent of Somax. It listens to the influencers
and, based on that, it recombines the content of the corpus, generating
some output.

• The Server is the core of Somax, handling all the scheduling and com-
munication with the background Python app and all instances of so-
max.player through OSC.

• The ‘somax.player’ does not play back, it only provides a list of sequen-
tial events. Playback is handled independently via the somax.audio/midi
renderer objects (or by implementing ones own sequencer/playback
patch). However, if using the ‘somax.player.app’ object, rendering and
playback of the output is handled here, as this is a ready-to-play ap-
plication object.

4.2.1 Interaction Parameters

The interaction parameters described in this section refer to the latest add-
ons and advances made in the design and development of Somax in the last
years. For a full dissertation of those, see [28].
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Figure 4.6: Basic Workflow of the Somax system.

While the ‘somax.player’ has a wide set of parameters, fully documented
in the parameters tab of the ‘somax.player.app.maxhelp’, the ‘somax.player.ui’
gives access to a selection of main parameters, as shown in Figure 4.7, and
described in the following section.

Playing Mode

Controls the player’s mode:

• Reactive: Output will be triggered whenever the player receives input
from an influencer (note-by-note);

• Continuous: Output will be triggered continuously regardless of input.
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Figure 4.7: The user interface of ‘somax.player.ui’ shows a set of main pa-
rameters to control the interaction.

Timeout

In reactive mode, this option controls whether the player should continue
playing if no new trigger has arrived by the time the player has finished
playing its current event. Setting this to a non-zero value will make the
player continue for that number of seconds. It’s also possible to disable this
to make the player continue endlessly.

Continuity

Continuity controls the order of the current state index of the player’s output:

• Continuity > 1 will prioritize continuation (and result in fewer jumps);

• Continuity = 1.00 will result in no alterations (no bias introduced by
this parameter);

• Continuity < 1 will prioritizing jumping.
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Quality / Sparse

The Quality Threshold sets a minimum score required for a match to qualify
as output. When combined with Sparse, this will ensure that no events are
played unless they are considered good matches.

If Sparse is On:

• quality 0.0 plays any found match;

• quality 1.0 will almost never play;

• in-between values will act as a threshold, to select matches above this
threshold and play them.

If Sparse is Off, it will replace the voids (no-play) by a default event, generally
the next event, or a jump resulting from self-influence.

Cut

In reactive mode, output is generated each time a new trigger (onset) arrives.
If the player is in the middle of playing an event when a trigger arrives, cut
controls whether the currently played event should be interrupted or not:

• Allowed: Interrupt the current event and trigger the new event imme-
diately when the new trigger arrives.

• Not Allowed: Delay the trigger so that the new event starts playing
once the current event has been completed.

Probability

It will condition each generated output with a probability, so that it may or
may not play the event. This parameter is inactive when set to 1.0 (off), but
any value lower than 1.0 will result in less than 100% of the events being
played. For example, when set to 0.2, only 20% of the generated events will
be played

Internal and External Influences

Control the balance between different internal and external type of influences
(layers). As it can be seen in Figure 4.8, the four colors (green, purple, red,
blue) correspond to the four different layers introduced in Section 2.2.4:

• Green (internal melody): The feedback layer which listens to the melody
(pitch) of the previous output of the player itself;
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• Purple (internal harmony): The feedback layer which listens to the
harmony (chroma) of the previous output of the player itself;

• Red (external melody): The melody layer which listens to melodic
(pitch) influences from exernal sources (audio/MIDI influencers);

• Blue (external harmony): The harmony layer which listens to harmonic
(chroma) from external source (audio/MIDI influencers).

Figure 4.8: User interface to control the Balance between the dimensions,
length of matching sequences for each dimension as well as decay time of
peaks (Memory lengths).

State

The last state that was output is visualized in the lower part of the interface,
as well as a Region Filter to select the desired range of states you want the
player to jump to. Here you have also a visual feedback of the occurrence of
a match or not, through the Match light. If green, a match occurred and is
being played, if red, you don’t have a match, if yellow, the player is playing
a default sequence, generally linear, which happens either because there is
no match — but Sparse is Off , so it defaults to the fallback behaviour — or
because it is playing the time-out sequences.

Number of Matches

The green, purple, red and blue indicators (see Figure 4.10 shows the number
of matches in each layer. Note that this may contain overlapping matches.
The white indicator shows the total number of matches when all layers have
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Figure 4.9: This part of the player’s interface shows the last output state, as
well as the region filter (if enabled), and if a match occured or not.

been merged. The merged result will not contain duplicates, and will in most
cases be lower than the sum of the individual layers.

Figure 4.10: While the user doesn’t interact directly with the peaks, they
are still indicated in the user interface. Here, the colors green, purple, red,
blue and white correspond to the number of peaks in the internal feedback
layer (green: pitch, purple: harmony), external pitch layer (red), external
harmonic layer (blue), and total number of peaks after merge (white) .

4.2.2 Manual Corpus Segmentation

When using certain corpora, particularly conceived and designed for a spe-
cific piece or performance, it has been noted that a custom segmentation of
the corpus provided by the user could be highly effective in arranging and
organizing the sound material. This is especially true in the case of ad-hoc
composed material, where an elevate and refined understanding of the events
in the corpus could positively affect the resulting interaction. In order to
achieve this, a module for manual segmentation has been added in the Audio
Corpus Builder Max object. This relies on a Python algorithm, using RegEx
(Regular Expression) [65] to match pattern in the .txt files generated from
certain DAWs, when manually adding markers and exporting them. The
DAWs currently supported are ProTools, Reaper, Audacity and SoundStu-
dio. These has been chosen according to the needs of the RepMus members
and Somax beta testers, but it will be possible to extend this feature to other
environments, in the future. A full overview of the class implemented for this
is presented in the Appendix.
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Chapter 5

Artistic Applications

When it comes to music technology systems, it is necessary not only to test
that the implementation of these systems is well structured, but that their
use in concrete music creation and co-creation contexts is satisfactory and
leads to good musical results. In this sense, the work done in the last period
has been essential to the development of Somax.

Thanks to the context provided by the REACH research program, it has
been possible to organize several artistic residencies with world-class musi-
cians in the field of improvisation and artistic research. These residencies are
aimed at concerts in mainstream musical situations of clear reputation and
high level, such as the ManiFeste festival in Paris, which will be held at the
Centre George Pompidou, and Klang Festival, the most important interna-
tional festival of contemporary music, based in Copenhagen and hosted in
the Concert Hall of the Royal Danish Academy of Music.

Specifically, while the first concert will feature double bassist Joëlle Léandre
as the musician interacting with the system and will be mainly marked by
free improvisation, the second will involve percussionist Lorenzo Colombo, as
part of a project in which Somax will attempt to break through the barriers of
improvisation, extending into the field of assisted composition and real-time
reinterpretation of pre-composed material. In fact, although Somax began as
a co-improvisation system, its development and organic nature has allowed
it to be used in broader contexts, where improvisation and composition are
continuously in dialogue. To achieve this goal, the residency in question was
marked by the work of Iannis Xenakis, and his piece Komböı, for percussion
and harpsichord.

This chapter will thus expound on the musical and artistic research stud-
ies that were instrumental in setting up and finalizing the artistic residency
works carried out over the past few months, using Somax as the main human-
machine interaction environment.
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5.1 A.I. Komböı

A.I. Komböı is a project conceived by the two musicians and researchers,
Marco Fiorini and Lorenzo Colombo. While sharing different backgrounds,
spacing from contemporary music to non idiomatic improvisation, they have
the common intent of constantly experimenting new means of expression,
and a shared deep knowledge of electronic music.

Willing to fulfill the inter-disciplinary objectives designed by the REACH
project, this collaboration intends to bring up the potential of Somax as an
application for musical improvisation and composition in the real world of
high level performers and musicians, facing real life scenarios. In this way, the
outcome of previous scientific research works is applied to concrete creative
situations, building important interactions between music researchers, com-
posers and performers, to reveal the mechanisms of co-creativity and build
the epistemological boost required for this creative interaction to succeed.

Our ongoing research consists of 3 fundamental steps:

• Compositional research, starting from Xenakis’s piece Komböı

• Collaborative research towards the commission of new compositions
exploring Somax’s potential;

• New solo/duo music work as conclusion of the data accrued from the
above mentioned research.

Iannis Xenakis represents one of the pioneering figures in the creative,
musical and broader artistic progress of the last 100 years. His composi-
tional spirit and research influenced generations of composers and perform-
ers and his work still resonates to this day. Xenakis’ work was avant-garde
in many ways, developing ideas that furthered musical progress by imple-
menting mathematical formulas and theories predicting the modern world,
where computers and technology have become integral parts in most creative
processes. This research is meant to celebrate Xenakis as a composer and
pioneer, starting from the Journée d’études en hommage à Iannis Xenakis
organized in May 2022 by the REACH project together with Mâkhi Xenakis,
daughter of the composer.

We will start our research from Komböı, written in 1981 for percussion
and harpsichord. The title, Komböı, means “knots,” in this case of rhythms,
timbres, structures, personalities (Xenakis 1982b). Komböı features some of
the most relevant techniques developed by Xenakis such as the sieves and the
stochastic ones. The mathematical approach generates a lot of possibilities,
giving us the chance to research with Somax as an organic composer of
material and music ideas.
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Is it possible to instruct Somax to generate music material from the in-
teraction between AI and a human musician? Let’s imagine a percussionist
performing a faithful version of Komböı. Our goal is to instruct Somax to
perform the harpsichord part by feeding the software with data belonging
to the same composition, generating an interaction between computer and
musician with a real-time exchange of information and stimuli.

Our work will serve to reply the following questions:

• How can artificial intelligence create a coherent piece of music after
being instructed to use the harpsichord material composed by Xenakis?

• Can artificial intelligence react to the percussion material by active
listening, creating coherent music in real time?

• In a duo context, can we think of an inverse composition process where
one of the two voices is generated as a real-time reaction to the other
one?

With Komböı, Xenakis intended to enhance the timbre characteristics of
the harpsichord and in particular its electronics, almost synthetic qualities.
In our case, we want to keep the percussion part faithful to the original,
experimenting with digital synthesizers as an alternative to harpsichord, still
maintaining its electronic sound qualities already described. This operation
is meant to give a modern sound to this masterpiece and to study differ-
ent modes of interaction between acoustic and electronic sounds, human and
digital performers. The module will be played directly from Somax, commu-
nicating with MIDI data.

A.I. Komböı is not a simple research project, but rather the necessity to
explore technology as a resource for new creative possibilities. The project
will be presented at various festivals becoming also material for a physical
and digital release. The live activity will be accompanied by a large number
of lectures with the aim of showing Somax and its immense possibilities.
Another fundamental aspect will be open debates on artificial intelligence
applied to music, art and creativity. Last, musicological and compositional
aspects will be investigated, through open calls for commission pieces written
specifically for the project in the form of a duo (percussions and Somax). In
this way, composers could explore new forms of interactions as well as agogic
research on notation and composition using the new opportunities that a tool
like Somax brings up.
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5.1.1 Komböı

Komböı (in Greek: κoµβoι, meaning “knots”) is a 1981 stochastic compo-
sition for amplified harpsichord and percussion by Greek composer Iannis
Xenakis. It is one of the two compositions for harpsichord and percussion
written by Xenakis, the other one being Oophaa.

Xenakis composed Komböı after a long collaboration with both harpsi-
chordist Elisabeth Chojnacka and percussionist Sylvio Gualda, which at that
time formed a duo and commissioned works for both instruments to other
composers. As Xenakis worked previously with both musicians (he also com-
posed Khoai for Chojnacka in 1976 and Psappha for Gualda in 1975), the
composer was much more focused in exploring the timbral capabilities of
both instruments by creating an homogeneous sound texture. It is indeed
dedicated to Gualda and Chojnacka, the latter being the dedicatee of all five
compositions for harpsichord by Xenakis. It was eventually premiered by the
duo on December 22, 1981, at the Rencontres Internationales de Musique
Contemporaine in Metz.

Analysis

The composition is in only one movement and takes approximately 17 min-
utes to perform. It is scored for one harpsichord, one vibraphone, two wood
blocks, two bongos, three congas, four tom-toms, one bass drum, and seven
terracotta flower pots. As put by Xenakis, Komböı explores “non-octave
scales”, its rhythm examines “anthypheresis” (as displacement of musical
stress), and its timbres exploit “the antitheses or homeophanies of the am-
plified harpsichord and percussion.” In this sense, Komböı means knots, as
“knots of rhythms, timbres, structures, and personality,” interweaving each
one with others. To make instruments blend more effectively, Xenakis used
amplification in all of his works for harpsichord [66]. Both harpsichord and
percussion are capable aggressors, particularly when the harpsichord is am-
plified as required for this piece (and all of Xenakis’ harpsichord music). But
Komböı instead seeks to explore the more delicate and refined colors of these
instruments. Xenakis uses the knots metaphor to interweave characters, per-
sonalities, materials and patterns. It is a tribute both to the dedicatees and
to their instruments.

The composition can be divided in five sections, which also contains in-
terludes and variations. The opening section features an ostinato played by
the bongos, while the harpsichord plays mainly rising tone clusters. In this
case, the bongos stress beats and offbeats unevenly to produce the sensation
of “anthypheresis”. Here, Xenakis explores the relationship of the sonority
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between a somewhat ordered percussion with the clusters played by the harp-
sichord. The relationship between the “ordered” sounds of percussion instru-
ments and the scales of pitched notes is one of the “knots” Xenakis explores
here. The second section, marked Crystalline, mixes the harpsichord and
the vibraphone, and the relationship between these two instruments seems
to fuse more effectively. The sonorities fuse in a way that is utterly magical
and the composer explores the combination through fluctuating clouds of
notes that pass the spotlight back and forth between the two. After that,
the vibraphone changes to the wood blocks and, later on, the harpsichord
starts a lengthy solo.

Then, the percussion joins with the sound of the flower pots, which blends
with the needle-like sound of the harpsichord, which uses an ostinato of seven
chords. The delicate, ringing tone of the flower-pots blends extremely well
with the needle-like tone of the harpsichord. It makes for wonderful theater
to watch the percussionist playing them, of course, but the incorporation
of this sound is a stroke of genius. Set against the flower-pots, Xenakis
introduces a randomized ostinato for the harpsichord built from just seven
chords. It is another knot, matching the limited collection of five sonorities
in the percussion with a limited collection of sonorities in the keyboard. It is
the rhythmic and timbral interplay that carries the focus and Xenakis would
make much use of similar passages in later pieces. Komböı, in any case, is
an evocative, engaging work that highlights a gentler side of this iconoclastic
composer.

5.1.2 Sieve Theory

Komböı, as most other late pieces of Xenakis, is based on Sieve Theory. Xe-
nakis developed Sieve Theory during his stay in Berlin, having received a
Ford Foundation grant to live and work in West Germany, in 1963, and pub-
lished first material on it in [67] and [68], leading to an ultimate publication
of it in [69]. The theory mainly concerns the creation of scales, arrived at
through the combination of residue class sets.

The Sieve of Eratosthenes

The primordial sieve in mathematics is known as the Sieve of Eratosthenes,
an ancient algorithm for finding all prime numbers up to any given limit,
as shown in Algorithm 1. The earliest known reference to the sieve is in
Nicomachus of Gerasa’s Introduction to Arithmetic, an early 2nd century CE
book which attributes it to Eratosthenes of Cyrene, a 3rd century BCE Greek
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mathematician, though describing the sieving by odd numbers instead of by
primes [70].

Algorithm 1 Sieve of Eratosthenes

Require: An integer n > 1
Ensure: All prime numbers from 2 through n
let A be an array of Boolean values, indexed by integers 2 to n, initially
all set to true;
for i = 2, 3, 4, ..., not exceeding

√
n do

instructions;
if A[i] is true then

for j = i2, i2 + i, i2 + 2i, i2 + 3i, ..., not exceeding n do
set A[j] := false;

end for
end if

end for
Return all i such that A[i] is true.

The importance of this technique to Xenakis is fundamental; it has pro-
vided him with a method for filtering elements in order to create and manip-
ulate structures. Furthermore, Xenakis’s and Eratosthenes’s methods share
a common origin in the foundations of arithmetic.

An intuitive way to unfold the algorithm consists on the following simple
procedure: we write down in a matrix, in ascending order, all the integers
from 2 to n. We leave the first element (2) and erase all its multiples, we
leave the next number that has not been erased (3) and erase all its multiples,
and so on. We proceed until we reach prime number p, where p ≤

√
n. The

remaining integers are the prime numbers between 2 and n. The result
consists of four parts (each for one stage of the process) and shows the cross-
outs for each element: in the top left part of the table we have erased all the
multiples of 2 (every second number), in the top right part all the multiples
of 3 (every third number), and so on for 5 and finally 7, which is the greatest
prime ≤ 50.

Sieve Theory in Xenakis music

What Xenakis drew from this is not merely the idea of filtering – passing
the elements of a set through a sieve – but also the process of using starting
points and steps of a specific distance. However, Xenakis’s application of
Sieve Theory is not intended to determine primes: his sieves allow both the
starting points and all the following steps. Each of the four stages in the Sieve
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of Eratosthenes is for Xenakis an infinite set of numbers, that might coincide
with each other in a more or less complex way. The degree of complexity is
a matter of compositional decision and aesthetics. This was done in a period
when he would attempt to take further his investigation towards formalisa-
tion; this time though not with stochastics and probabilities, but with the
aid of the deterministic laws that govern Number and Set Theory. However,
both cases were for him a matter of generating outside-time structures of
music . A sieve, then, refers to a selection of points on a straight line; this is
the abstract image of sieves: “Every well-ordered set can be represented as
points on a line, if it is given a reference point for the origin and a length u
for the unit distance, and this is a sieve”. Xenakis referred to unit distance
(e.g. the semitone in the major diatonic scale) also as Unit of Elementary
Displacement (ELD) [69].

The theory was used in order to construct symmetries at a desired degree
of complexity. This was achieved by the combination of two or more modules.
A module is notated by an ordered pair (m, r) that indicates a modulus
(period) and a residue (an integer between zero and m − 1) within that
modulus [1]. For example, for m = 3 and r = 1 we have the following
module: (3, 1) = {1 4 7 10 13 ...}. Elements that lie in distance equal to the
value of the modulus are said to be congruent modulo m. In other words,
elements that yield the same residue (r) when divided by the same number
(m) belong to the same congruence class. In the example, elements 4, 7,
and 10 are congruent modulo 3. By applying the set-theoretical operations
of union, intersection, and complementation, or a combination of them, it
is possible to construct more complex sieves. Since this section is intended
to give an introduction to the theory, for further discussion and in-depth
analysis see [71].

Xenakis provided two computer programs for the treatment of sieves.
They are found both in his article of 1990 [69] and as Chapter XII of the
1992 edition of Formalized Music [1]. Their titles are indicative of their
function: “A. Generation of points on a straight line from the logical formula
of the sieve”, and “B. Generation of the logical formula of the sieve from a
series of points on a straight line”.

A Model for Sieve composition

One of the basic problems in Sieve Theory is the redundancy of formulae
for a single sieve. That is, whereas the problem of decomposed formulae
redundancy is overcome by prime factorisation, the redundancy of simplified
formulae is not as straightforward to resolve. It is therefore needed to de-
termine another level of periodicity, different from the overall period of the
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Figure 5.1: Simplified Matrix of the sieve of Neküıa, from [71].

sieve. To overcome this problem, Xenakis investigated formulas to decom-
pose and simplify the development of sieves, as well as models to control
their possible operations, such as inversion, simmetry, periodicity, etc. One
important piece he wrote to apply these concepts is Neküıa, which sieve can
be compared to the one of Komböı.

The period of a sieve is external to it and symmetry is an internal prop-
erty; but when a sieve is asymmetric, ‘a more hidden symmetry’ might exist.
The external periodicity is none other than the sieve’s overall period. The
inner periodicities of the sieve are shown by a simplified formula in the form
of elementary modules. Each one of these elementary modules has a single
modulus whose multiples produce some of the points of the sieve. These
points are conveniently shown by a matrix, that Exarchos calls “simplified
matrix” [71]. To construct a simplified matrix we write all the sieve’s ele-
ments in the top row and all the modules of the simplified formula in the
leftmost column (such that this column represents the simplified formula).
The intervallic structure of the sieve (in semitones) is shown under the actual
points of the sieve. We then mark all the cells where the elements of each
module (rows) meet a point (columns) of the given sieve.

The simplified matrix of the sieve of Neküıa is shown in Figure 5.1. The
labels (M, I, R) stands for: Modulus, Initial point, Reprises of the Modulus.
The matrix shows that each of the twenty modules cover several points of
the sieve. When a simplified formula is based on the inner periodicities
there is no information indicating the overall period, This means that the
focus is now on the sieve’s internal structure. he process of constructing an
inner-periodic formula ignores the period and takes into account only the
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intervallic structure of the sieve. The redundancy of inner- periodic formulae
can be overcome by checking every single point of the sieve and assigning
to it the smallest possible modulus. More specifically, we can find for each
point, the module with the smallest modulus, that either starts on this point
or produces it later. By progressing to a simplified notation, Xenakis showed
a new way of revealing the hidden symmetry of sieves, which are now viewed
as multiplicities of periodicities.

Sieve of Komböı

The opening sieve of Komböı was also used partly in another work of the same
year, Pour la Paix. Is deviates from Xenakis’s usual practice of constructing
sieves with the greatest interval the major 3rd. As shown in Figure 5.2, there
is only one major 3rd, the lowest interval of the sieve. It is therefore a sieve
with greater density than one would expect: D = 0.52 (44 elements occupy a
range of 84 semitones). The simplified formula includes 19 modules. Recall
that the same number of modules produced the sieve of Neküıa which is
slightly less dense, with D = 0.48. In this respect then, the opening sieve of
Komböı is more inner-symmetric than that of Neküıa. Indeed, whereas in
the latter there are two non-periodic modules, in the chart of Figure 5.2 only
one module is outside the inner-symmetry curve, and more periodic modules
are concentrated in the region of the chart where R = 3 than that where R =
2. But if we compare it with the sieve of Neküıa, which has 20 modules all of
which are periodic, we see that in the sieve of Komböı most of the modules
are more periodic, with a non-periodic breaking the inner-symmetry.

There are several sieves in the duo, but most of them appear only partly,
and this prevents a complete analysis. However, later in the work one sieve
appears in a great range; it is shown in Figure 5.3. This sieve is less dense
(it includes intervals of major 3rd); there are 37 points in a 82-semitone (D
= 0.47) range with 14 modules, one of which is non-periodic. The small
number of modules does not imply that these are, in average, more periodic
than those of the opening sieve, due to the fact that the density and range
of the sieve (as it appears in the work) are smaller than that of the opening
one.

Although pure sieve composition is beyond the scope of this current artis-
tic research, it is interesting to point out that this is an open field of studies,
still bringing out new possibilities and perspectives to music generation tech-
niques and scenarios. As an example of that, Ariza in [72] demonstrates a
new object-oriented model and full Python implementation of the Xenakis
sieve process
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Figure 5.2: Opening Sieve of Komböı, from [71], with reference to Modulus
M on the x-axis and Initial point I of each period of the sieve on the y axis.

Figure 5.3: Sieve of Komböı, from [71], with reference to Modulus M on the
x-axis and Initial point I of each period of the sieve on the y axis.
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5.1.3 Setup

The full technical and instrumental setup for the performance to be premiered
at Klang Festival in Copenhagen on June 6th 2023 is shown in Figure 5.4.
This consists of two musicians, Lorenzo Colombo on percussion and Marco
Fiorini on Somax. The full percussion set is composed by one vibraphone,
two wood blocks, two bongos, three tumbas, four tom-toms, one large bass
drum and seven flowerpots.

All of these are captured by a pair of overhead narrow condenser micro-
phones, sending the audio of all the percussion to an Ableton Live session.
From here the audio signal of the percussion is sent to a second computer,
the one running Somax. These signals are received in input as influences in
the Somax environment. On this machine, a Max/MSP patch using Somax
as the core generative co-creative system has been prepared to manage the
communication between the external musician and the software, and to be
played in real-time. The Somax players used in this session are set as MIDI
only, as the corpora used in the performance have been transcribed with var-
ious techniques, according to the different composed sections, in MIDI files,
as described in the next section. The MIDI output of the players is then sent
to the Arturia MiniFreak for the sound generation; from here the audio goes
to the front of house as a stereo signal. The control of the Somax param-
eters, as well as all the cues to navigate the piece, comes from a Novation
Launchpad XL, connected to the same Max/MSP patch.

5.1.4 Interaction Strategies

This artistic research work has brought to light new possibilities for the use
of Somax in contexts initially unrelated to it. Although born as a software
dedicated to human-machine improvisation, the system was also found to be
stable and effective in an augmented composition situation, or mixed music
interpretation according to the paradigm of computer-aided composition.

Komböı is a piece that features not only complex compositional tech-
niques, but sections with very different overall harmonic and rhythmic char-
acter, with passages of considerable performance difficulty. Our research
focused on trying to make the overall design of the piece as faithful as pos-
sible to the original, but leaving room for the co-creativity introduced by
Somax and the surprise factor related to musical improvisation. To succeed
in this performance, various synchronization techniques and interaction de-
sign strategies were tested and considered, until a series of concepts were
solidified and proved successful.

Following the setup illustrated in the previous paragraph and visible in
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Figure 5.4: Technical and instrumental setup for A.I. Komboi, as performed
by Lorenzo Colombo and Marco Fiorini at Klang Festival in Copenhagen on
June 6th 2023.

Figure 5.4, Lorenzo Colombo studied the percussion part in a manner faith-
ful to the original. His signal is then captured and sent in real time to the
computer with Somax (controlled by me). The signal is then analyzed ac-
cording to Somax’s system of influences, coding into onset (tempo), pitch
(melodic content) and chroma (harmonic content) parameters. Since a large
part of the percussion set consists of instruments that are not properly tuned,
a bonk algorithm, as opposed to a yin algorithm, was chosen for the sec-
tions concerning these. This is because this algorithm works much better
with non-tuned or polyphonic material, making it ideal in general for per-
cussion instruments. During the vibraphone section, on the other hand, the
yin algorithm was used, given the presence of strongly melodic material.

In terms of rhythmic context, the piece has precisely sections with a very
different character. In the opening of the piece, as can be seen in Figure 5.5,
both percussion and harpsichord play on the same pulse, but varying the
rhythmic subdivision. For sections of this type, an onset sending time from
the influences to the Somax players of 0 seconds was used, thus achieving an
instantaneous reaction. With regard to rhythmic subdivision, on the other
hand, the corpus used for this section was transcribed rhythmically continu-
ous, but using the Output Probability parameter (described in Section 4.2.1)
it was possible to alter the rhythmic scansion, thus producing syncopations

49



Figure 5.5: First two bars of Komböı. Both percussion and harpsichord share
a common beat but have different subdivisions (32-notes against 16-notes).

Figure 5.6: One of the many knots, or clouds of notes during the piece. Both
percussion and harpsichord play with the concept of density over a common
beat, that is however not explicitly highlighted.

and enlargements of rhythmic continuity, arriving at subdivisions virtually
identical to those written in the score.

A similar strategy was applied in the sections characterized by the idea
of “rain”, nodes in which the rhythmic pulsation remains implicit but the
agogics of the performative gesture is underlined by real cascades of notes,
which respond and articulate each other (see Figure 5.6). In these sections,
the vibraphone activates the generation of the Somax response, which rapidly
plays sequences of notes, rhythmically articulated again by the Output Prob-
ability parameter. To obtain a convincing and organic sound cloud effect,
two different corpora, one for the right hand (high register of the harpsichord)
and one for the left hand (low register), have been loaded onto two different
Somax players, which play simultaneously.
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Figure 5.7: A moment of heterogeneous rhythmicity in Komböı. Both instru-
ments play in cues, but with different rhythmic divisions interlocked together.

A decidedly more complicated situation was that of synchronizing partic-
ularly precise but different rhythmic interventions. This occurred both when
Xenakis overlaps polyrhythms that do not imply a subdivision reaction of the
same meter (see Figure 5.7), or other moments in the piece in which the two
instruments do not play at the same time, but in consecutive interventions,
always rhythmically synchronized. To solve the problem, given that, as ex-
plained in Chapter 3, rhythmic synchronization and in general the concept of
temporal adaptation between different agents is a research field still open in
Somax, a synchronization system managed by Ableton Live was used. Here,
bangs relating to the start of the various cues are sent from one computer to
another, thus generating onset influences according to the desired moment.
Although this strategy does not fall within the solutions natively offered by
Somax, it is a well-established technique, even in contemporary and elec-
tronic music performances in general, and it has proved to be a winning idea
for extending the rhythmic synchronization of the two performers.

In total, 22 MIDI corpora have been transcribed, keeping in mind the
compositional processes conceived by Xenakis, and the different possibilities
of rhythmic interaction. These corpora are loaded during the performance
into two different Somax players. 16 different cues were necessary for the
synchronization of the different corpora and for the executive scrolling of the
piece. In the various cues, in addition to loading the corpus, via messages in
Max/MSP, the character of the players was changed, according to parame-
ters designed ad-hoc for the success of each different section. The dynamics
were instead controlled directly by the master volume potentiometer on the
Arturia MiniFreak, defining a dynamic range that goes from piano, to mezzo-

51



forte, up to fortissimo. The control of the cues and of the internal parameters
of Somax (mainly the Output Probability parameter was the one with which
the performer interacted in real time, while the others were programmed
and set at each new cue) was managed by the Novation Launchcontrol XL
controller.

5.2 REACHing OUT - Jöelle Léandre

In addition to the artistic residency described in the previous sections, an-
other important artistic research work, fully focused on improvisation, has
been carried on with Joëlle Léandre, and will be briefly discussed in this
section. Joëlle Léandre is a renowned double bass player, known for her col-
laborations with other musicians in the field of improvised and contemporary
music [73]. Born in France on September 12th, 1951, she has performed with
Pierre Boulez’s Ensemble InterContemporain, and worked with Merce Cun-
ningham, Morton Feldman, John Cage and Giacinto Scelsi. Both Cage and
Scelsi have composed works specifically for her [74].

5.2.1 Setup

Dealing with Jöelle Léandre, a chamaleontic improviser who often sings while
playing her double bass, we used different microphones to capture both her
bass and her voice. I used also an electric guitar, providing more influences
to Somax and trying to extend the common paradigm of a single instru-
ment interacting with the software (more on this in the following sections).
These instruments were captured through microphones and D.I. boxes, and
their signal was sent to all the three different Somax stations, allowing each
computer musician to choose which audio influence use to drive the different
Somax players. A wide range of different corpora has been tested, ranging
from contemporary pieces of Cage, Scelsi, Stockhausen and Xenakis. Dur-
ing the first studio sessions, different solo improvisations of Jöelle Léandre
have been recorded. These recordings have been used in the further sessions
to build different corpora and let her play with them, investigating another
hypothesis advanced during the residency (see further sections) and experi-
menting over the topic of recalled memory in a musical performance.

5.2.2 Studio Sessions

The studio sessions of this artistic research spanned from June 2022 to May
2023, in the IRCAM Studios 2, 3 and 5. The lineup of musicians and re-
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searchers consisted of:

• Jöelle Léandre: double bass and voice;

• Gérard Assayag: Somax;

• Mikhail Malt: Somax;

• Marco Fiorini: electric guitar and Somax;

• Manuel Poletti: Spatialization and Live effects.

Before our first studio session, I analysed a wide number of previous
performances using Somax. The factor common to all of these performance
is the fact that everyone performing with Somax uses it as if it as instrument
itself. The usual performance scenario consists of a duo where:

• Player 1: plays an acoustic or electric instrument;

• Player 2: plays Somax, as a RIM (Réalisateur en Informatique Musi-
cale, term coined in 1977 by Pierre Boulez at IRCAM to define expert
musicians in charge of the electronic part of a performance).

This analysis brought up a few hypothesis/questions I tried to fulfill dur-
ing the upcoming studio sessions:

• what if I want to play both Somax and an instrument?

• what if I want Somax to be an extension of my instrument?

This should apply to different performance constellations, covering a wide
array of possibilities, e.g. solo, duo, trio, etc.

During the first studio session we experimented with two different sce-
narios, trying to collect feedback and opinions on these research questions:

• Scenario 1 - Playing both guitar and Somax : this turned out to be not
comfortable, because the player needs to use his/her hands both for the
instrument and Somax, and one could easily take away the attention
from the other. A possible statement is that it can probably work with
singers, having hands free while performing

• Scenario 2 - Focusing more on playing guitar and letting Somax playing
as an independent player/agent itself : the problem here is that there
is no fine tuning of the parameters that dynamically create the little
interesting, evolving and responsive nuances in a performance.

To fulfill both these scenarios I designed two possible solutions that have
been tested first individually and then in the second studio session:
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Solution 1

• Record or prepare multiple corpora of performances with your main
instrument;

• Build these corpora in Somax;

• Perform using only Somax.

In this case one can totally focus on playing Somax but with the corpus of
his/her instrument and his/her past self playing (keeping also the philosoph-
ical shadow of the player/agent itself/yourself), while playing together with
another player (The usual performance scenario).

Solution 2

• Use Somax as an extension of your instrument: e.g. augmented electric
guitar;

• Control it with a MIDI pedalboard: this keep the player’s hands free
and it’s a common practice routine for an electric guitarist which is
very used to interact with pedals;

• But which corpus should we use?

To fulfill this workflow, one could recall NMF (Non-negative Matrix Fac-
torization) [75] [76], a technique that uses bases to build a dictionary that
can be recalled in real time based on the activation of these bases. The
peak matching algorithm of Somax [77] already does something very simi-
lar conceptually to the NMF matching, so the main problem would consist
in building the dictionaries (different corpi) and interactingt with them. I
thought that it could be interesting to separate different techniques/parame-
ters into different corpora, according to the instrumental techniques of choice.
For instance on an electric guitar I could have corpora for:

• guitar harmonics (thus working on timbre, register and harmony);

• extended techniques (timbre);

• chords only (harmony);

• intervals only (melody).
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As a starting point, I recorded 18 different harmonics on guitar (the ones
the sounds louder and clearer), built a corpus with it and instantiated Somax
with two players, both using this corpus. I then expression pedal and a MIDI
interface to control the Quality Threshold of a player with cut and sparse
and long timeout (more independent, being able also to propose some new
material), while I had another player without timeout (more reactive player).
Here, cut, sparse and timeout are new parameters, implemented in the last
months as part of the new Somax version. Specifically, cut controls if Somax
should play another audio segment from its corpus, if a new match with the
incoming influences is not found. Sparse is a control that is related to a new
quality threshold parameter: when sparse is active, every incoming event
from the influencers that has a matching quality inferior to the one set by
the threshold will be excluded. Finally, timeout is a parameters that sets
an interval in which the Somax players could still go on outputting events
from the corpus, even if no incoming new matches are found. In this way a
good interaction between reaction and interaction has been reached, and a
resulting piece can be heard1.

Following the considerations and the outcome of the first studio session,
we designed a couple of different scenarios for the improvised piece of this
one.

The first take has been performed asking Jöelle Léandre to play with a
previous memory of herself. Specifically, we used as Somax corpus a solo
of her, recorded on the previous session. This was to focus our research on
a sort of augmented instrument with a memory, particularly interesting in
the case of a player like Léandre who worked so much with this concepts in
Scielsi and Cage music.

Another interesting issue was trying to have multiple audio influencers
routed to the same Somax, since previously every instance of the software
took as input only one influencer for each class (audio or MIDI). This has been
tested in two different takes, one where Jöelle Léandre was playing double
bass and singing at the same time and another one where I played only guitar
without focusing on the software. This is also connected to the possible ways
of controlling and interaction discussed after the first studio session. More
work and research on solo interaction with MIDI pedals will be held in the
future as part of the autonomous agents and behaviour exploration.

The overall feedback on these sessions was quite satisfactory from all par-
ticipants and led to the decision of an upcoming preparation for a concert
with this setup in the well known ManiFeste festival at Centre George Pompi-

1https://drive.google.com/file/d/1PVUoBCga8bHDPeJ5CqNMxUFasyEpUqQY/view

?usp=share_link
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dou on June 16th 2023. The artistic residency continued focusing on deeper
agent behaviour and different forms of interactions, such as a sort of installa-
tive scenario generated by Somax that could be perturbed and renewed by
the intervention a musician. Finally, to give some form of structure in the
context of a whole improvised concert with such a wide constellation of per-
formers, a set-list has been thought. In this set-list, pre-fixed configurations
of duo/trios/tutti has been decided, with the possibility to be spontaneously
extended with the entrance of other improvisers.

This residency turned out to be a solid work of research both in the
scientific and artistic domain, leading to many improvements not only in the
Somax system but also in the way musicians could interact with it. The
feedback collected during this period will be used for further research on
agent architecture and interaction control, as it will be briefly described in
the next chapter.
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Chapter 6

Future Work

Although the work carried out by the Music Representation team at IR-
CAM - STMS Lab in recent years is to be considered highly satisfying and
important in the development of music co-creativity systems, thanks to the
work within the same team, it has been possible for me to envision a future
trajectory of possible improvements and new research paths to be taken and
expanded. Some suggestions resulting from these reflections and recent new
collaborations are briefly set out in the following chapter.

6.1 Mapping

The main question to be solved is related to the actual choice of which map-
ping strategy to implement. The ultimate goal in designing new Digital
Musical Instruments (DMI) is to be able to obtain similar levels of control
subtlety as those available in acoustic instruments, but at the same time
extrapolating the capabilities of existing instruments [78]. Considering map-
ping as part of an instrument or an application, two main directions could
be deduced from the analysis of the existing literature:

• The use of generative mechanisms, such as neural networks.

• The use of explicitly defined mapping strategies.

Although possible mapping with a neural network have already been ex-
plored in previous iterations of Somax [79], in the end our decision was to use
explicit mapping strategies, presenting the advantage of keeping the designer
in control of the implementation of each of the instrument’s component parts,
therefore providing an understanding of the effectiveness of mapping choices
in each context [80].
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6.1.1 Explicit mapping strategies

The available literature generally considers mapping of performer actions to
sound synthesis parameters as a few-to-many relationship [81]. Considering
two general sets of parameters, three intuitive strategies relating the param-
eters of one set to the other can be devised as [80]:

• one-to-one, where one synthesis parameter is driven by one performance
parameter,

• one-to-many, where one performance parameter may influence several
synthesis parameters at the same time, and

• many-to-one, where one synthesis parameter is driven by two or more
performance parameters.

Concerning explicit mappings between two sets of parameters, many ways
of abstraction of the performance parameters have been proposed, from per-
ceptual parameters [82] to focusing on continuous parameter changes repre-
sented by gestures produced by the user [78] [83].

6.1.2 Three-layer mapping

The latest version of Somax consists of a very large number of controls, taking
care of different individual aspects of the architecture paradigm. Interacting
with such a wide number of parameters is common practice to expert com-
puter designers or Max/MSP programmers but may constitute an issue for
a musician with a low confidence in computer usage. Another problem could
arise if a player wants to control Somax at the same time as playing his/her
instrument (this will be explored in a further section). In this case, having a
control on a smaller range of parameters could be beneficial.

In designing an explicit mapping for this wide range of parameters, a good
approach could be to adopt a three-layer mapping model. In this model, the
first layer is interface-specific, since it converts the incoming information
into a set of chosen (intermediate or abstract) parameters that could be
perceptually relevant. These are then mapped – in a second independent
mapping layer – onto the specific controls needed for a particular synthesis
engine. The advantages of this model are that the first mapping layer is a
function of the given input device and the chosen abstract parameters, while
the synthesis engine could be changed by changing the second mapping layer,
e.g. from model controls to FM synthesis or physical modelling, since the
second mapping layer is not dependent on the control parameters directly.
The proposed mapping layers (see Figure 6.1) are thus:
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Figure 6.1: Three-layer mapping model, as presented in [84].

• Extraction of meaningful performance parameters.

• Connection of performer’s (meaningful) parameters to some interme-
diate representation set of parameters (for instance, perceptual or ab-
stract).

• Decoding of intermediate parameters into system-specific controls.

6.2 Towards an Agent-Oriented application

This layer of Control Parameters could also be intended as a set of behaviours,
more related to human perception. In [85] Golvet et al. investigated the idea
of adopting congruent and interacting behaviours in the context of collective
free improvisation. Exploring the idea that the goal of delivering a cre-
ative output could eventually benefit from disagreements and autonomous
behaviors, their research suggested that relational intents might function as
a primary resource for creative joint actions.

This could bring to the extension of the Somax paradigm integrating more
agents to the system, similarly to what happens in George E. Lewis’ Voyager
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Figure 6.2: Envisioned future agent architecture idea for real-time learning.

[2] [3]. These behaviours could in a way define limits for the wide range
of parameters, where the agents could analyse different input features (e.g.
based on audio or MIDI descriptors) and take care of dynamically changes
the inner parameters of Somax. An expected result of this agent-oriented
approach could be the possibility to have organic and autonomous changes
in Somax behaviour, augmenting its idea of agency and providing new ways
of interaction for the musicians (e.g. solo performance with Somax acting as
an augmented instrument, as described in the previous chapter), as shown in
Figure 6.2. In this envisioned architecture, an agent could query a represen-
tation space (Memory) as a response to a live context (Listen). In addition
to input-based learning processes, the agent is thus learning from the very
course of interaction through reinforcement. An agent could be submitted
to external scenarios (related to composition), but can also generate its own
scenarios as a result of interaction. Finally, as we have the musicians,and the
system (model of music making), there could be also a latent space where
they join; especially now, in the era of deep learning and other A.I. methodol-
ogy, it could be possible to build a powerful latent space where the musician
and the system can meet and have a match as a way of playing together,
that can become more rich.

Future work will be carried on on this topic, also based on the model
proposed by Saint-Germier and Canonne in [86].
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Chapter 7

Conclusion

The goal of this thesis research was to explore the major aspects of the
REACH project, focusing in particular on Somax. At the current time, So-
max represents the state of the art in the Music Representations team at
IRCAM STMS Lab, concerning human-machine co-creativity and AI inter-
action. This projects finds its place in a broader path of research, thanks to
the European project REACH1 and the national project MERCI2. Thanks to
this environment, the work described in this thesis has been part of a wider
set of research activities.

During my stay in the Music Representations team at IRCAM, first as
an intern and then as a research assistant, I could benefit from this rich and
inspiring setting, following and contributing to the developing of the current
version of Somax. Since its latest update, the software has undergone a series
of improvements, regarding its features, and its user interface. One notable
improvement is its new modular architecture, which now makes it both a
Max application and a Max library, compatible with the workflow of Max
programmers and computer music designers who are familiar with it.

Through different ongoing artistic residencies with well known impro-
vising musicians and direct confrontation with other researchers at STMS,
we’ve been able to design a longer trajectory in this research that will address
enhancements to the Somax co-creative improvisation environment, includ-
ing high level autonomous agents [87], automatization of refined interaction
strategies and behaviours, exploration of time structures and scenarios [88],
and embodiment through physical instruments.

The work here described has been presented at the last IRCAM Forum
Workshop in Paris [89] and will be presented in the second International

1http://repmus.ircam.fr/reach
2https://www.ircam.fr/projects/pages/merci/
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Conference on Hybrid Human-Artificial Intelligence HHAI2023 in Munich in
June 2023.

On the artistic side, I will perform using the latest release of the described
software in two important international festivals. The whole Somax team will
take part to a concert for ManiFeste festival at Centre George Pompidou to-
gether with the world renowned bass player and improviser Joëlle Léandre,
and the rock band Horse Lords3. Another field of artistic application for
Somax will be explored in a performance for Klang, the most important in-
ternational festival for contemporary music in Denmark4. Here we will use
Somax to reconstruct a pre-composed piece by Iannis Xenakis, thus extend-
ing the scope of the software to assisted composition and pure composition
practices, while maintaining its strong root of co-creative interactive system.
These artistic collaborations are crucial, as they are a concrete manifestation
of a research project that is as ambitious as it is successful.

The use of Somax in important contexts of musical creation and research
necessarily opens the way for new forms of musical creation and interaction,
which are increasingly taking hold in the form of mixed reality environments
and post-modern artistic research. As a researcher and a musician, I firmly
believe that new forms of co-creativity are needed to enhance the artistic
creation of post-modern times. Mixed reality and new interactive tools will
evolve the practice of creation in all art forms, and enrich the criteria by which
we enjoy art, just as the introduction of major technological and philosophical
innovations have already done in the past century. I expect these tools to
be increasingly part of everyone’s artistic creation, providing new means of
expression and research for musical intent of communication and interaction
with the unexpected aspects of improvisation.

With this, it is hoped that the research done during this study can work
as a personal foundation for future relevant investigations in these fields and
could lead to improvements to the current state of the art of cyber-human
musicianship.

3https://manifeste.ircam.fr/agenda/reaching-out-28/
4https://klang.dk/2023/program/lorenzo-colombo-debutkoncert
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Appendix A

Manual Corpus Segmentation

Here it is presented the manual text formats.py Python class for man-
ual corpus segmentation, addressing custom user segmentation derived from
ProTools, Reaper, SoundStudio and Audacity. The file is available in the
Somax2 GitHub repository1.

1 import inspect

2 import logging

3 import re

4 import sys

5 from abc import ABC , abstractmethod

6 from typing import List , Type , Tuple , Dict , Any , Optional

7

8 from somax.features.feature import CorpusFeature

9

10

11 class Constants:

12 FLOAT = r" -?(?:\d+\.[\d]*|\.[\d]+)(?:e-?\d+)?"

13 COMMENT = r"^\\s*?/\\*"

14 EMPTY = r"^\s*$"
15 TEMPO = COMMENT + r"\\s*?tempo" # Format: /* tempo (...)

\d+ (...)

16

17

18 class ParsingError(Exception):

19 def __init__(self , message: str):

20 super().__init__(message)

21

22

23 class TextFormat(ABC):

24 @staticmethod

25 @abstractmethod

1https://github.com/DYCI2/Somax2/blob/913192ce0dbeef634deaf0b734321ccb5

e7975cc/python/somax/somax/corpus_builder/manual_text_formats.py
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26 def keyword () -> str:

27 """ """

28

29 @classmethod

30 @abstractmethod

31 def parse_file(cls ,

32 analysis_file_path: str ,

33 use_tempo_annotations: bool = False ,

34 pre_analysed_descriptors: Optional[List[

Type[CorpusFeature ]]] = None ,

35 ignore_invalid_lines: bool = False) ->

Tuple[List[float], List[Optional[float ]]]:

36 """ raises: RuntimeError if parsing failed """

37

38 @staticmethod

39 @abstractmethod

40 def format_line(onset: float , duration: float , features:

List[CorpusFeature ]) -> str:

41 """ returns a single line to write to a file """

42

43 @staticmethod

44 def keywords () -> List[str]:

45 """ raises: KeyError """

46 return [cls.keyword () for cls in TextFormat.

_introspect ().values ()]

47

48 @staticmethod

49 def _introspect () -> Dict[str , Type[’TextFormat ’]]:

50 return dict(inspect.getmembers(sys.modules[__name__],

51 lambda member: inspect

.isclass(member) and

52

issubclass(member , TextFormat) and

53 not

inspect.isabstract(member) and

54 (member

.__module__ == __name__ # static classes

55 or (

member.__module__ == ’abc’

56

and not member.__name__ == ’ABC’)))) # dynamic classes

57

58 @staticmethod

59 def from_keyword(keyword: str) -> Type[’TextFormat ’]:

60 """ raises: KeyError """

61 return {cls.keyword ().lower(): cls for cls in

TextFormat._introspect ().values ()}[ keyword.lower ()]

62

63 @staticmethod
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64 def default () -> str:

65 return SoundStudio.keyword ()

66

67

68 class UniformTextFormat(TextFormat , ABC):

69

70 @staticmethod

71 @abstractmethod

72 def parse_line(line_str: str ,

73 keys: List[Type[CorpusFeature ]]) -> Tuple[

float , Optional[float], Dict[Type[CorpusFeature], Any ]]:

74 """ returns: onset , offset , feature_dict """

75

76 @classmethod

77 def parse_file(cls ,

78 analysis_file_path: str ,

79 use_tempo_annotations: bool = False ,

80 pre_analysed_descriptors: Optional[List[

Type[CorpusFeature ]]] = None ,

81 ignore_invalid_lines: bool = False

82 ) -> Tuple[List[float], List[Optional[

float ]]]:

83 with open(analysis_file_path , ’r’) as f:

84 onsets: List[float] = []

85 offsets: List[float] = []

86 for i, line in enumerate(f): # type: int , str

87 if use_tempo_annotations and re.match(

Constants.TEMPO , line , flags=re.IGNORECASE):

88 raise NotImplementedError("Tempo is not

supported yet")

89 if re.match(Constants.EMPTY , line):

90 logging.debug(f"Line {i + 1}: Ignoring

empty line")

91 else:

92 try:

93 onset_s: float

94 offset_s: Optional[float]

95 descriptor_dict: Dict[Type[

CorpusFeature], Any]

96 onset_s , offset_s , descriptor_dict =

cls.parse_line(line ,

97

keys=pre_analysed_descriptors)

98 except ParsingError as e:

99 err_msg: str = f"invalid line {i +

1}: ’{str(e)}’"

100 if ignore_invalid_lines:

101 logging.warning(err_msg)

102 continue
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103 else:

104 raise RuntimeError(err_msg)

105

106 onsets.append(onset_s)

107 offsets.append(offset_s)

108

109 return onsets , offsets

110

111

112 class ProTools(TextFormat):

113

114 @staticmethod

115 def keyword () -> str:

116 return ProTools.__name__

117

118 @classmethod

119 def parse_file(cls ,

120 analysis_file_path: str ,

121 use_tempo_annotations: bool = False ,

122 pre_analysed_descriptors: Optional[List[

Type[CorpusFeature ]]] = None ,

123 ignore_invalid_lines: bool = False

124 ) -> Tuple[List[float], List[Optional[

float ]]]:

125 with open(analysis_file_path , ’r’) as f:

126 sample_rate: Optional[float] = None

127 while sample_rate is None:

128 try:

129 sample_rate = cls.parse_sample_rate(next(

f))

130 if sample_rate is not None and

sample_rate <= 0:

131 raise RuntimeError(f"Invalid sample

rate: {sample_rate}")

132

133 except StopIteration as e:

134 # End of file without successfully

parsing any sample rate

135 raise RuntimeError from e

136

137 found_markers: bool = False

138 pattern: re.Pattern[str] = re.compile("M A R K E

R S\s\sL I S T I N G")

139 while not found_markers:

140 try:

141 found_markers = bool(re.match(pattern ,

next(f)))

142 except StopIteration as e:
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143 # End of file without successfully

parsing markers listing header

144 raise RuntimeError from e

145

146 # Ignore headers of markers list

147 next(f)

148

149 onsets: List[float] = []

150 offsets: List[Optional[float]] = []

151

152 reached_end_of_markers: bool = False

153 while not reached_end_of_markers:

154 try:

155 onset: Optional[int] = cls.parse_line(

next(f))

156 if onset is None:

157 reached_end_of_markers = True

158 else:

159 onsets.append(onset / sample_rate)

160 offsets.append(None)

161

162 except ParsingError as e:

163 raise RuntimeError from e

164 except StopIteration:

165 reached_end_of_markers = True

166

167 return onsets , offsets

168

169 @staticmethod

170 def format_line(onset: float , duration: float , features:

List[CorpusFeature ]) -> str:

171 raise RuntimeError("Not implemented")

172

173 @staticmethod

174 def parse_line(line: str) -> Optional[int]:

175 if re.match(Constants.EMPTY , line):

176 logging.debug("Ignoring empty line")

177 return None

178

179 pattern: re.Pattern[str] = re.compile(f"^\\s*\\d+\\s

+(?:\\d+|\\d+:\\d+)\\s+(\\d+)")

180 tokens = re.match(pattern , line)

181

182 if tokens is None:

183 raise ParsingError(f"Invalid format: {line}")

184

185 return int(tokens.group (1))

186

187 @staticmethod
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188 def parse_sample_rate(line: str) -> Optional[float]:

189 pattern: re.Pattern[str] = re.compile(f"SAMPLE RATE

:\\s*({ Constants.FLOAT})")

190 tokens = re.match(pattern , line)

191

192 return None if tokens is None else float(tokens.group

(1))

193

194

195 class Reaper(TextFormat):

196

197 @staticmethod

198 def keyword () -> str:

199 return Reaper.__name__

200

201 @classmethod

202 def parse_file(cls ,

203 analysis_file_path: str ,

204 use_tempo_annotations: bool = False ,

205 pre_analysed_descriptors: Optional[List[

Type[CorpusFeature ]]] = None ,

206 ignore_invalid_lines: bool = False

207 ) -> Tuple[List[float], List[Optional[

float ]]]:

208 with open(analysis_file_path , ’r’) as f:

209

210 found_markers: bool = False

211 pattern: re.Pattern[str] = re.compile(" #

Name Start")

212 while not found_markers:

213 try:

214 found_markers = bool(re.match(pattern ,

next(f)))

215 except StopIteration as e:

216 # End of file without successfully

parsing markers listing header

217 raise RuntimeError from e

218

219 # Ignore headers of markers list

220 next(f)

221

222 onsets: List[float] = []

223 offsets: List[Optional[float]] = []

224

225 reached_end_of_markers: bool = False

226 while not reached_end_of_markers:

227 try:

228 onset: Optional[float] = cls.parse_line(

next(f))
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229 if onset is None:

230 reached_end_of_markers = True

231 else:

232 onsets.append(onset)

233 offsets.append(None)

234

235 except ParsingError as e:

236 raise RuntimeError from e

237 except StopIteration:

238 reached_end_of_markers = True

239

240 return onsets , offsets

241

242 @staticmethod

243 def format_line(onset: float , duration: float , features:

List[CorpusFeature ]) -> str:

244 raise RuntimeError("Not implemented")

245

246 @staticmethod

247 def parse_line(line: str) -> Optional[float]:

248 if re.match(Constants.EMPTY , line):

249 logging.debug("Ignoring empty line")

250 return None

251

252 pattern: re.Pattern[str] = re.compile(f"^\\s*.\\d

+(?:\\d+|\\s*|.+)\\s+({ Constants.FLOAT})")

253 tokens = re.match(pattern , line)

254

255 if tokens is None:

256 raise ParsingError(f"Invalid format: {line}")

257

258 return float(tokens.group (1))

259

260

261 class SoundStudio(UniformTextFormat):

262 @staticmethod

263 def keyword () -> str:

264 return SoundStudio.__name__

265

266 @staticmethod

267 def parse_line(line_str: str ,

268 keys: List[Type[CorpusFeature ]]) -> Tuple[

float , Optional[float], Dict[Type[CorpusFeature], Any ]]:

269 """ format: <ONSET >\n

270 <ONSET >\n

271 ...

272

273 where ONSET = mm’ss,ffff

274 """
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275 tokens = re.match("\s*(\d+) ’(\d+) ,(\d+)\s*", line_str

)

276 if tokens is None:

277 raise ParsingError(line_str)

278

279 try:

280 onset: float = int(tokens.group (1)) * 60 + int(

tokens.group (2)) + 0.0001 * int(tokens.group (3))

281 descriptors = {}

282 return onset , None , descriptors

283 except IndexError:

284 raise ParsingError(line_str)

285

286 @staticmethod

287 def format_line(onset: float , duration: float , features:

List[CorpusFeature ]) -> str:

288 minutes , seconds = divmod(onset , 60) # type: float ,

float

289 seconds , hundreds = divmod(seconds , 1) # type: float

, float

290 return f"{int(minutes)}’{int(seconds):0>2},{int(

hundreds * 1000) :0 <4}\n"

291

292

293 class Audacity(UniformTextFormat):

294 REGEX = re.compile(f"\\s*({ Constants.FLOAT })\\s({

Constants.FLOAT }).*")

295

296 @staticmethod

297 def keyword () -> str:

298 return Audacity.__name__

299

300 @staticmethod

301 def parse_line(line_str: str ,

302 keys: List[Type[CorpusFeature ]]) -> Tuple[

float , Optional[float], Dict[Type[CorpusFeature], Any ]]:

303 """ format:

304 <LINE >\n

305 <LINE >\n

306 ...

307

308 where LINE = <ONSET >\t<OFFSET >\t[<MARKER_NAME >]

309 ONSET = float

310 OFFSET = float

311 MARKER_NAME = string | <empty >

312

313 Note that in the case where ONSET OFFSET ,

OFFSET will be parsed as the next marker ’s onset

314
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315 """

316 if len(keys) > 0:

317 raise RuntimeError(f"Format ’{Audacity.keyword ()

}’ does not support manual descriptors")

318 tokens = re.match(Audacity.REGEX , line_str)

319 if tokens is None:

320 raise ParsingError(line_str)

321

322 try:

323 onset: float = float(tokens.group (1))

324 offset: Optional[float] = float(tokens.group (2))

325 if offset - onset < 0.01: # 10 ms

326 offset = None

327 descriptors = {}

328 return onset , offset , descriptors

329 except IndexError:

330 raise ParsingError(line_str)

331

332 @staticmethod

333 def format_line(onset: float , duration: float , features:

List[CorpusFeature ]) -> str:

334 return f"{onset :.3f}\t{onset + duration :3f}\n"
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Appendix B

Additional Beat Tracker
Figures

In this appendix are presented additional figures addressing the implemented
devices and tools following the research described in chapter 3. These are the
complex spectral difference descriptor implemented in the gen∼ environment
of Max/MSP, the patch used to compute the onset detection from it and the
patch showing the onset, tempo and beat detecting object implemented with
the extensions described in the same chapter.
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Figure B.1: gen∼ implementation of a complex spectral difference descrip-
tors, as described in [31] and [47]. Help and support in the gen∼ environment
has been kindly given by Graham Wakefield, developer of gen∼ and author
of [53].
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Figure B.2: Max/MSP patch used to compute onset detection of an audio
signal, throught the complex spectral difference descriptor shown in Figure
B.1.
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Figure B.3: New Max/MSP implementation of the presented beat tracker
with added features and modes. These include different configurations of
onset, tempo and beat detection, countin, beat prediction adjustment and
metronome mode.
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