
Summary

For our Master thesis we decided to explore the domain of realistic dynamic
network simulation. This is done with foundation in our work with Software
Defined Networks(SDNs) on the 9th semester pre-specialization. In particular
we continue to explore the realms of network simulation, realistic traffic data
implementation, data plane recomputation and failure protection. Through this
project we define and implement a complete packet-level simulation framework.
This framework is the product of our three contributions from the project. The
first being the realistic simulation and extension of the discrete event simulator
OMNeT++. On the basis of our pre-specialization project we wanted to achieve
a more realistic network simulation than the one we had previously used. There-
fore we looked to the simulation tool OMNeT++ as a possible choice. However
we found that OMNeT++ was lacking in some aspects, and we therefore saw
the need to extend the tool, such that it would better suit our needs for real-
istic simulation. The second contribution incorporated in the framework is our
genetic algorithm Spungeet. We have previously worked with genetic algorithms
and therefore saw the potential that they have as a solution to generating data
planes. We therefore decided to implement the algorithm Spungeet to swiftly
react to changes in the dynamic network. Spungeet works by first generating a
random population of individuals which in this case are represented by demand
weights, it then evaluates this population before it goes on to create offspring
by means of crossover and mutation of these individuals, when the update time
runs out, Spungeet stores the elite individuals of the population for the next
udate round and then generates and installs the data plane based on the best
individual. The third contribution of our project, which is used for the network
part of the framework, is the analysis and generation of real world traffic data.
Since we wanted to achieve realistic simulation of a network, we got access to
traffic data from a large European ISP. We then analyzed this real world traffic
data and used it to generate traffic data for networks in the Internet Topol-
ogy Zoo. This was based on a well studied machine learning method, Gaussian
Mixture models. The model we trained allowed us to probabilistically sample
realistic network patterns. Thus giving us a more accurate representation of real
world networks as opposed to the static demands that the Internet Topology Zoo
normally uses. The project concludes with experiments comparing our proposed
solution, Spungeet, with the state of the All Shortest Paths algorithm and the
genetic algorithm GAOSPF. The experiments show that Spungeet consistenly
outperforms the other two solutions. Thus indicating the novelty and potential
of using a genetic algorithm for swift dynamic updates of network data planes.
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Abstract. We explore the domain of realistic simulation of dynamically
changing networks. Throughout this exploration we define and imple-
ment a complete packet-level simulation framework and quickly manage
changes in a dynamic network. This is accomplished by our utilization of
the discrete event simulator OMNeT++ and our own non-trivial exten-
sions of the simulation tool. Furthermore we also analyze and transform
real world traffic data from a large European ISP, leveraging the real-
ism of the traffic data to improve the otherwise static traffic demands
of the Internet Topology Zoo. Finally we contribute with our own ge-
netic algorithm Spungeet, as a means of swiftly reacting to the constant
changes of a parallel running network. Spungeet leverages the fact that
the order in which demands are routed makes a large difference in the
ability to deliver the packets and thus it is evident that mapping the
demands to individuals will enable quick generation of well performing
data planes for the network. The Spungeet algorithm tries to maximize
the percentage of packet delivery and performs well in both scenarios
with and without failures.

1 Introduction

Modern communication networks continue to increase in size along with the
demands and expectations for the quality of service of these networks. Software
Defined Networks(SDNs)[30] provide network operators with a separation of
the control plane and the data plane allowing for scheduling data plane updates
through the software level control plane. Within SDN traffic engineering is the
discipline that deals with the performance optimization and evaluation of such
networks [7]. A problem in the field of traffic engineering is determining the
best routing for the traffic, i.e. to optimize the performance of the network in
regards to throughput, availability, stretch, path etc [4][17][19]. Within this
problem there are two different challenges that we wish to overcome. Firstly
is the fact that demands are constantly changing as is seen in the real world
ISP data. This is a challenge since it is very uncertain how much the demand
changes and whether or not it increases or decreases. Secondly is the fact
that links can suddenly fail [23]. There are many reasons for why link failures
might happen e.g. power outage or equipment failure [18] etc. Thus resulting
in impacting traffic in the network. For this project we want to explore a



possible solution to these two challenges. In this regard we first explore a way
to get data for a dynamic network model. Based on traffic data from a Large
European ISP containing demands over a week, we create dynamic traffic based
on the real world traffic for use with the Internet Topology Zoo [22]. This is
done since the Internet Topology Zoo demands are created by the simulation
tool REPETITA [10] and only contains static traffic data. Therefore the data
synthesis creates many varying scenarios for our testing. Secondly we want to
explore the area of realistic dynamic network simulation. For this endeavor we
work with the discrete event simulator OMNeT++ [25]. We however found
that OMNeT++ is lacking in some features for our particular use case. Thus,
we choose to extend OMNeT++ with the necessary functionality for our
testing environment. With the necessary foundation established we propose
the genetic algorithm Spungeet, a reactive approach to maximizing the packet
delivery percentage both under heavy load and network failures. The idea
behind Spungeet is based on the belief that forwarding traffic on links with
a lot of excess capacity is preferred as opposed to using links that are close
to congestion. Due to the evolutionary nature of genetic algorithms they are
particularly well suited for finding the most fit solution from a wide range of
solutions. Therefore these types of algorithms map very well to the problem of
deciding which route each demand should utilize.

The paper is organized into the following sections. Section 2 details the differ-
ent related approaches to the problem domain along with information on related
tools and techniques. Section 3 presents a range of definitions that describe our
network model. Section 4 Details the analysis and transformation of traffic data
from the Large European ISP. Section 5 details how we model the dynamic
network along with providing the problem statement that we wish to answer,
additionally we explain how we use the dynamic network model in a system
which allows for monitoring and reacting to changes in the dynamic network.
Section 6 Details the simulation granularity of the project along with how we
use and extend the OMNeT++ [25] simulation tool. Section 7 explains in detail
how the genetic algorithm Spungeet works. Section 8 Shows our results from
several different experiments comparing Spungeet, GAOSPF [8] and All Short-
est Paths(From here on named ASP). Section 9 Concludes on the project and
our contributions. Section 10 describes any future work that we would like to
complete if we were to work more on the project.

The sections which contain our contributions are as follows:

1. The extensions made to OMNeT++ is in Section 6
2. The synthesis of real world traffic data in Section 8
3. The Spungeet algorithm compared with the state-of-the-art algorithm ASP

and the genetic algorithm GAOSPF in Section 8
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2 Related Work

In this section we detail some of the work related to the field of traffic engineering.
We will present each paper and how it relates to this paper.

2.1 Related tools and techniques

MPLS-kit Vanerio et al. [29] implemented the simulation tool MPLS-kit. The
tool provides quick generation of MPLS data planes for simulation. It allows
for simulation of the data planes at a flow level. Although the quick generation
of data planes is convenient, a problem which we discuss further in Subsection
6.1, is that flow level simulations are inaccurate when network links are being
congested, and because they do not account for the extra size data from packet
headers, which also contributes to congetion. As congestion is an important
aspect in the area of traffic engineering we will not be using MPLS-kit for the
experiments in this paper.
Alternative approaches to traffic modelling Recently proposed solutions
for traffic prediction make use of recurrent neural networks [28][27]. The model
takes as input a time series of traffic, which it then uses for predicting the
future traffic. Although this is generally effective, limitations include the fact
that predicted data will be similar to the training data and difficulties such as
vanishing gradients which is when the gradient in gradient descent becomes too
small for the network to learn efficiently. We do not try to predict future traffic
in this paper, but instead just focus on generating the best possible data plane
based on the current traffic.

2.2 Related solutions

DOTE[27] Is another novel solution to updating the data plane, making use of
neural networks to predict future traffic and generate optimal flows based on
the prediction. The solution presented makes use of the fact that the objective
function of linear programs are convex/concave. This attribute is highly desir-
able as it makes way for using optimization methods such as stochastic gradient
descent. The paper also discusses the use of different objective functions for
the network traffic engineering such as maximum link utilization and maximum
network throughput. Finally the proposal is realized through a five layer neural
network that takes as input the last 12 traffic matrices from the network to
predict the next traffic matrix. For the output it uses the predicted matrix to set
the weights of flows across tunnels in the network essentially solving the multi
commodity splittable flow problem. In contrast, our approach seeks to react
swiftly to traffic changes and as such Spungeet has the advantage of flexibility
of a reactive system as well as increased adaptability in uncertain traffic.

GAOSPF[8] Another paper which is relevant to this project is the Genetic
Algorithm Open Shortest Path First (GAOSPF). This paper proposes a genetic
algorithm solution to the weight setting problem for Open Shortest Path First.
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The OSPF weight setting problem looks to send traffic through the network
by setting weights on each link and then routing each demand through all
shortest paths from source to destination. The path length is determined
by the sum of edge weights in the path. Compared to GAOSPF, Spungeet
extends the idea of genetic algorithms, by running in parallel with the network.
Additionally it retains information between runs and rapidly adapts to the
current network environment. Furthermore Spungeet outpeforms GAOSPF in
all of our experiments.

All shortest paths(ASP) A state-of-the-art approach widely used by ISPs is
utilizing all shortest paths to route packets. The approach works by generating a
Directed Acyclic Graph(DAG) of all the shortest paths from source to target. If
the route through the DAG diverges at any point, the flow is split proportional
to the capacities of the edges. Advantages of this approach is minimal stretch
but at the cost of being oblivious to network load. Our approach with Spungeet
differs greatly by constantly adapting to the networks current status.

Essence In a previous paper we proposed the algorithm Essence[13] as a solution
to creating a congestion aware data plane for a network. The solution produces
a resilient but also memory and congestion aware data plane. The general idea
behind the algorithm is to generate a large amount of diverse paths and then find
a strong configuration in terms of stretch and link utilization. In short Essence
works by selecting a single primary path for each demand. Any non-primary
paths are used as backup paths, and are ordered according to their longest
common prefix with the primary path. These paths are then given to the forward
backward routing (FBR) algorithm[20], which generates the data plane from the
paths. Comparatively, Spungeet takes the other approach of recomputing the
data plane using global information. Furthermore it is also known that in the
worst case, deterministic fast failover algorithms are bound to create high load,
because of the limited information available[1].

3 Network Model

In this section we present our formal definitions representing the network, routing
and traffic.

Definition 1 (Network). A directed graph G = (V,E, c) where V represents
the routers, E represents the links E ⊆ V ×V and c : E → N≥0 is the bandwidth
of each link.

We use the typical network definition as a graph with routers modeled as
vertices and links as edges. We elect to use a directed graph as traffic is directed
on a link and effects the utilization of a link only in one direction. In practice,
all the networks in our experiments will have links in both directions.

We now define the paths that data is forwarded on as a tunnel.
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Definition 2 (Tunnel). For a network G = (V,E, c) We define a tunnel as a
sequence of connected edges f = (v0, v1)(v1, v2)...(vn−1, vn) where every edge in
f is in E and f is loop free, i.e. every edge is in f at most once. We use F to
denote the set of all possible tunnels.

A tunnel f = (v0, v1)(v1, v2)...(vn−1, vn) is a path in the network that can be
used to forward data from v0 to vn. We say that f routes from v0 to vn. Note
from the definition that a tunnel is finite in length.

We now introduce how we model network traffic using demands.

Definition 3 (Demand). Given a network G = (V,E, c), a demand is a triple
(vin, vout, l) ∈ V × V × N>0 where vin is the ingress router, vout is the egress
router, l is a positive amount of data that needs to be delivered from vin to vout.
We use D ⊂ V × V × N>0 to denote the set of all demands in the network.

Based on this definition we can now define how the traffic of a demand is
routed across the network using the classification function.

Definition 4 (Classification Function). A classification function is any func-
tion γ : D → F that takes as input a demand d = (vin, vout, l) and returns a
tunnel f that routes from vin to vout.

The classification function returns a tunnel for each demand in the network,
which is the route that the traffic of the demand is routed on. We use the term
data plane to denote the set of all tunnels in the network, i.e. the set {γ(d)|d ∈ D}

Figure 1 depicts a small network with demands and routing. The edges have
arrows in both directions, depicting that there is a directed link going in both
directions. So for example there is a link (v1, v2) with capacity c((v1, v2)) =
80 and a link (v2, v1) with capacity c((v2, v1)) = 80 as well. There are two
demands, d1 = (v3, v4, 40) and d2 = (v1, v4, 80) being routed on tunnels γ(d1) =
(v3, v4)(v4, v2)(v2, v5) and γ(d2) = (v1, v2)(v2, v4)(v4, v5).

Given a set of demands D and classification function γ, we now define the
link load l(e) as:

l(e) =
∑

d′=(v,v′,l)∈{d|e∈γ(d)}

l

In other words, the link load is the sum of all the loads we are trying to route
on that link.

From the definition of link load we can define the link utilization as:

u(e) =
l(e)

c(e)

The link utilization is a measure of how much load we are attempting to
route on a link relative to its capacity. If u(e) > 1 we say that e is congested.
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◦ d1 = (v3, v5, 40) γ(d1) = (v3, v4)(v4, v2)(v2, v5)

d2 = (v1, v5, 80) γ(d2) = (v1, v2)(v2, v4)(v4, v5)

Fig. 1: Network example with two demands additionally depicting the tunnels
classified to each demand.

4 Traffic Data

In this section we present our analysis of traffic data from a large European ISP
and our generation of traffic patterns based on the data which were used in our
network simulations in OMNeT++.

The purpose of this section is to describe our methodology for the transfor-
mation of traffic data from a large European ISP to dynamic traffic demands.

Data Collection Large ISPs constantly monitor their network, at certain time
intervals they sample the traffic of the network, here a variety of techniques can
be used such as flow-based monitoring, packet sniffing and network probes [5].
The traffic dataset from the ISP consists of demands from a source to a target in
hourly time intervals. The number of demands present in the ISP traffic dataset
consists of a fourth of all possible demands(|V | × |V |) as traffic is not present
between all pairs of routers.

Traffic Data Analysis Analyzing the traffic data will help us better imitate
the real world behavior of network traffic. This would then allow us to extend
static demands for the Internet Topology Zoo, such that the traffic will better
emulate real world traffic behavior. Not only does it increase the accuracy of our
network model, but it also gives a more enhanced reflection of the real world
scenario that the system would be deployed in.

We will structure the European ISP data as a set of sets of demands D. Each
subset is denoted with T corresponding to the hour the demands are active,
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T = {0, 1, . . . , 23} representing each hour over 24 hours i.e. 0, 1 . . . 23. The time
interval t ∈ T is a unique period where Dt is exclusively active.

This implies that each demand d = (vin, vout, l) from the set of demands DT

can be represented as a |T | dimensional vector ⃗(vin, vout) by taking the demand
from vin to vout from each set of demands Dt ∈ DT .

Each element in the vector represents the traffic from vin to vout for the
corresponding time interval t, i.e. the first element (vin, vout)0 is the traffic from
vin to vout from 00 − 01, the second element (vin, vout)1 is the traffic in the
interval 01− 02 and so on.

Pattern Generation Let ⃗(vin, vout) = ((vin, vout)0, . . . , (vin, vout)|T |−1) be a
vector depicting a demand over time. To find the pattern we convert each demand
vector into a pattern: Each element in the vector is divided by the largest element
in the vector to find the pattern. This is done for each demand which results in
a set of demand vectors s.t. 0 ≤ (vin, vout)

′
t ≤ 1,∀t ∈ T . The resulting vector is

then: ⃗(vin, vout)′ = ((vin, vout)
′
0, (vin, vout)

′
1, . . . , (vin, vout)

′
|T |−1). We denote the

set of all pattern vectors as PV .
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Fig. 2: Temporal patterns from large european ISP

Temporal Pattern Mapping By modelling the demands into a |T |-
dimensional vector representation, we model the traffic data as a Gaussian
mixture model[3, p. 430-438]. To do so we use the expectation maximization
algorithm[3, p. 435] to fit a number of Gaussians onto all vectors in PV , in our
case we use 5 distributions. To generate new demands, we sample the Gaussian
distributions. Figure 2 visualizes the mean of each distribution.
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Using the mixture of Gaussians we now map these patterns onto the topolo-
gies from the Internet Topology Zoo[22]. The patterns are used in tandem with
the randomized gravity model created by Gay et al. [10]. To translate the static
demands created by REPETITA[10], we do the following process for each net-
work topology G and corresponding set of demands D:

1. Let s⃗ = ⟨s1, s2, . . . , s|T |−1⟩ be a sample from PV and let d = (vin, vout, l) ∈ D
be a demand sample.

2. For each element st we generate the demand d′t = (vin, vout, st · l) and add
it to the set of dynamic demands D′

t.
3. We remove d from D and keep sampling PV and D sets until all demands

have been exhausted.

Thus we end up with the set {D0, D1, . . . , D23}. After all dynamic demands
have been added to D′

t, we use the set to simulate the dynamic network envi-
ronment.

5 Traffic Engineering In Dynamic Networks

We have introduced the formal definitions for the network, traffic and routing
that we will be using in the rest of the paper. In this section we present our model
for dynamic data plane recomputation. Previous studies such as [24] show that
both link failures and router failures happen in networks regularly. We want to
create a traffic engineering algorithm that performs well during these failures.
We motivate the use of global data plane recomputation through the use of a
small example.

Figure 3 shows a comparison of failure recovery using data plane recompu-
tation compared to the fast failover approach, which is when a router has a
preinstalled backup tunnel that it uses if its next hop has failed. We have two
demands being routed without causing congestion when all links are up on Fig-
ure 3a. Consider now Figure 3b where (v2, v3) has failed. In that instance, the
traffic of d2 is rerouted at v2 on the backup tunnel (v2, v1)(v1, v3). This causes
congestion on link (v2, v1), as the capacity of the link is shared with the red
demand d1. Conversely, if the data plane was recomputed globally, the traffic of
d2 could simply be routed directly from v1 to v3 on link (v1, v3). This is a simple
showcase of the limitations of fast failover in the context of traffic engineering.

There is another motivation for dynamically updating the data plane. In
the traffic data we received from the ISP, we observe that demands change
dynamically over time. In order to maintain a high percentage of data reaching
its destination, the data plane should be updated dynamically to account for the
changing demands.

These two observations form the foundation for the problem that we seek to
create a solution for:

How can we maximize the data delivery percentage
in a network environment with dynamic demand changes

and possible link failures.
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(a) No failed links

v1
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100 ×
100

(b) One failed link

v1

v2

v3

100 ×
100

(c) One failed link

d1 = (v2, v1, 100)

d2 = (v1, v3, 100) ◦

Utilization

Link Non-failed Single fail

(v1, v2) 1 1
(v2, v3) 1 fail
(v1, v3) 0 1
(v2, v1) 1 2
(v3, v2) 0 fail
(v3, v1) 0 1

Fig. 3: Example comparing the potential of fast failover to dynamic dataplane
recomputation.

As mentioned previously, we want to ensure a high data delivery percentage
in a dynamic network environment. Therefore we introduce the dynamic network
model of Figure 4. This type of model will be realized through a SDN, s.t. the
running network reflects the data plane and the update component reflects the
control plane.

Running Network Update Component
Demands

Failed links

Data plane updates

Fig. 4: Dynamic Network Model. The update component intermittently sends
data planes to the network based on the demands and failed links.
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In this model, the update component receives snapshots of the current traffic
demands and failed links from the running network with some interval.

The computation of new data planes is delegated to the update component,
which uses the demands and failed links to recompute new data planes. The
model is temporal, and the flow of the model is depicted on Figure 5. The de-
mands and failed links are emitted by the network at a fixed rate. These demands
and failed links are used as input for the update component, which generates a
new data plane and sends the updated data plane back to the network.

Demands, Failed Links Data plane
CreationUpdated Data plane

Demands, Failed Links Data plane
CreationUpdated Data plane

Demands, Failed Links Data plane
CreationUpdated Data plane

Demands, Failed Links Data plane
CreationUpdated Data plane

Running Network Update Component

Time

Fig. 5: Flow of the dynamic network model over time.

Figure 5 depicts the flow of the model over time. Over time the network out-
puts the traffic demands and failed links, and the update component recomputes
the data plane and sends the updates back to the the network.

6 Simulation Framework

This section will detail the considerations we made when deciding how to im-
plement and simulate our dynamic model. For this purpose we will compare two
methodologies for evaluating traffic engineering algorithms; a flow level simula-
tion, and a packet level simulation..

6.1 Issues with flow-level granularity

Many traffic engineering papers simulate their algorithm at a flow level, with
tools such as MPLS-kit by Vanerio et al. [29] or REPETITA by Gay et al. [11].
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D =

d1 = (v1, v2, 35 )

d2 = (v3, v1, 70 ) ◦
d3 = (v2, v3, 150 ) ♦

Link Utilization

Link 64 B 264 B Flow-based

(v1, v3) 1 0.78 2.31
(v2, v1) 1 1 7.33
(v3, v2) 0.56 0.40 0.35

Fig. 6: Cyclic network example

A problem with the realism of flow-level granularity is depicted on Figure
6. Observe the three demands depicted by the red circle, blue ring and green
diamond. The three demands are routed using the tunnels depicted by the cor-
responding flows in the network figure. The problem with the flow-based simu-
lation approach is measuring how much traffic is being dropped when there is
congestion on a link. For example, the utilization on link (v1, v3) is 2.31, so a
naive guess is that 1.31

2.31 of the fraction of data will be dropped on this link. This
logic is incorrect in reality, as part of the traffic of flow d3 is being dropped on
the previous link (v2, v1). Thus the real utilization on link (v1, v3) is less than
2.31. But how much less depends on how much data d3 is dropping on (v2, v1),
which depends on how much traffic d2 is dropping on (v3, v2), which depends on
how much data d1 is dropping on (v1, v3) and so forth. Thus we end up with a
cyclical dependency when trying to compute how much traffic is being dropped
from each flow.

Another concern is with the added size of packet labels that is appended to
packets. Consider some demand d = (v, v′, 100000kbps) in a network. In reality,
the total data to be forwarded is more than 100000 kbps as the data is partitioned
into packets that require packet headers. For example, a UDP packet being
forwarded in an IPv4 network with MPLS, requires a header size of at least 8 +
20 + 4 = 32 bytes. Also packet headers can vary in size depending on metadata,
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with IPv4 headers ranging in size from 20 to 60 bytes. We also showcase this in
Figure 6 by using a packet level simulation. The table in the figure shows the
link utilizations depending on the size of the packets simulated. Observe that
simulating with 264 B packets results in less utilization than 64 B packets. This
is because the demands are split into fewer packets, thus creating fewer labels.
The reason why no link exceed 1 utilization is because the packets are dropped
if the link becomes congested.

Due to the above concerns with flow-level simulations, we decided to run all
the experiments in this paper using a packet level simulation tool.

For this purpose, we run our simulations in the OMNeT++ simulation envi-
ronment.

6.2 OMNeT++ As A Packet Level Simulator

OMNeT++ is a discrete event simulation environment made in C++ [25]. We
use the INET framework for OMNeT++, which provides tools and modules
for simulating communication networks at the packet level. Our algorithms are
implemented using an MPLS model in Python.

In order to simulate our experiments using OMNeT++ we made the following
additions:

– A two-phase-commit module for data plane updates.
– A link weighting module that allows custom forwarding splitting ratios to

be implemented (needed for GAOSPF and ASP)
– A module which intermittently (at a customizable rate) outputs the de-

mands, link utilizations and failure events.
– Dynamic statistics collection to get exact numbers of packet drops, plots of

link utilization over time, maximum link utilization, etc.
– A Dynamic Sending Interval function for UDP hosts, which dynamically

updates the demands to simulate the traffic demands described in Subsection
4.

The two-phase-commit protocol takes as input a file of data plane updates.
It splits the update into two phases, an add phase and a remove phase. The
add phase adds all the new MPLS rules to the data plane, and is implemented
immediately. The remove phase removes the MPLS rules that are no longer
needed, and is implemented after a short duration when the add rules have been
implemented and the packets using the labels of the old data plane have flushed
the network. By using this two-phase approach, no intermittent routing will be
created that results in packets being dropped, thus increasing the packet delivery
percentage.

The link weighting module takes an XML file as input that defines the split-
ting ratios when using flow splitting algorithms. This functionality is used to
implement the ASP algorithm.

The output module reads data from the network and intermittently outputs
link utilization, traffic demands and failed links into json files. This represents
the dynamic network component of our model.
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The dynamic statistics collection is used in the evaluation of our algorithm.
In order to get the packet delivery rate, we count the number of packets that
reach their target and divide that number by the number of packets that entered
the network.

The dynamic sending interval was a change we made to the already exist-
ing UDP host module, to allow the usage of the dynamic demands that were
generated from the traffic data that we acquired from the large european ISP.

In total our contributions to OMNeT++/INET amount to around 1500 lines
of code. Our contributions can be found at our repository1. Most of our code is
in the inet/src/inet/p10 directory.

6.3 Simulation scale impact on precision.

When simulating a network in OMNeT++, simulation time can be very long, as
every single packet has to be routed. In order to speed up the simulations, We
scaled down the size of the simulation to see how this would affect the precision
of the recorded measures. When scaling the simulation to size α, we generate
the scaled demands:

Dα = {(vin, vout, αl)|(vin, vout, l) ∈ D}

And we scale the capacities such that cα(e) = αc(e).
Figure 7 shows the average deviation from perfect precision, in terms of the

the values gathered with α = 1. We compare with link utilization. So a y-value
on the plot of e.g. 0.2 for some α′ means that the recorded link utilization was
0.2% off from the the link utilization of α = 1. Based on these results, we used
an α ≈ 0.1.
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Fig. 7: Precision experiment. Shows that the deviation from perfect precision is
quite small even with α = 0.1

1 https://github.com/Lassebk45/inet
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7 Spungeet

In this section we propose our solution to the problem formulation. We propose
Spungeet, a genetic traffic engineering algorithm. In our dynamic network model,
Spungeet corresponds to the update component.

7.1 Intuition

The main intuition of the algorithm, is based on the belief that forwarding
traffic on links with a lot of excess capacity is preferred as opposed to using
links that are close to congestion. An idea of how to do this, is by routing on the
shortest path in a graph representing the network, where link weights are set to
w(e) = 1

c′(e) where c′(e) denotes the excess capacity on the link (we disregard

the cases where the load on the link exceeds the capacity for simplicity in the
intuition). By using this weight function, links with a lot of excess capacity are
weighted lower and therefore more likely to be used in the shortest path.

An example of the usage of this weighting function is depicted in Fig-
ure 8. The capacities are c((v1, v2)) = 10, c((v1, v3)) = 11, c((v2, v4)) = 10,
c((v3, v4)) = 11 leading to the inverse capacities as observed in Subfigure
8a on the edges. We want to create tunnels for d1 and d2. When creating
the tunnel γ(d1) first, the shortest path is γ(d1) = (v1, v3)(v3, v4) with the
length 1

11 + 1
11 = 2

11 . We then subtract the load of d1, 10, from the remain-
ing capacities of edges (v1, v3) and (v3, v4), giving the updated link weights
w((v1, v3)) = 1

11−10 = 1 and w((v3, v4)) = 1
11−10 = 1. These new weights are

depicted on Subfigure 8b. When computing γ(d2) second, the shortest path is
γ(d2) = (v3, v4). Computing the tunnels in this order results in congestion on link
(v3, v4) as depicted in the table. Subfigures 8c and 8d depict the tunnels that are
generated if the order of tunnel computation is reversed. Then γ(d2) = (v3, v4)
and γ(d1) = (v1, v2)(v2, v4) are the computed tunnels. These tunnels create no
congestion in the network.
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(a) d1 first. γ(d1) = (v1, v3)(v3, v4)

v1

v2

v3

v4

1
10

1
10

1
11−10

1
11−10

(b) d2 second. γ(d2) = (v3, v4)

v1

v2

v3

v4

1
10

1
10

1
11

1
11

(c) d2 first. γ(d2) = (v3, v4)

v1

v2

v3

v4

10 10

11
1

11−5

(d) d1 second. γ(d1) = (v1, v2)(v2, v4)

d1 = (v1, v4, 10) ◦
d2 = (v3, v4, 5)

Utilization

Link capacity γ(d1) → γ(d2) γ(d2) → γ(d1)

(v1, v2) 10 0 1
(v2, v4) 10 0 1
(v1, v3) 11 0.9090 0
(v3, v4) 11 1.5000 0.5000

Fig. 8: The tunnels created by using the shortest path with edge weights w(e) =
1

c′(e) . When a tunnel γ(d) is created for a demand d = (vin, vout, l), then c′(e) :=

c′(e) − l for the edges used in the tunnel. The notation γ(d) → γ(d′) denotes
that a tunnel was created for d and then for d′. The weights on the edges denote
the weights that were used to calculate the shortest path in the network
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Using the inverse capacity of links as weights for a shortest tunnel algorithm,
has also been the default OSPF cost for Cisco, a major network technology
firm[8]. In our case it helps us encourage the distribution of tunnels in the net-
work.

We use the example in Figure 8 as the motivation for Spungeet, which seeks
to find an ordering of the demands that reduces congestion, when computing the
tunnels in that order.

As mentioned earlier, Spungeet is a genetic algorithm, which we now intro-
duce the general concept of.

7.2 Genetic Algorithms

A genetic algorithm belongs to the class of algorithms called evolutionary
algorithms[6][16][15]. These algorithms work by iteratively making new solution
proposals by combining previous solutions.

Since a genetic algorithm is very much inspired by natural evolution, many
technical terms are inherited from the field. An individual represents the solution
(in this case a classification function γ) and the population is the set of all
individuals. Based on the intuition for the algorithm, we define an individual as
follows.

Definition 5 (Individual). Let D be a set of demands. An individual is a

vector ⃗ind = ⟨w0, w1 . . . w|D|⟩ where wi ∈ N represents a weight for demand di.
A higher weight means the demand has a higher priority.

Algorithm 1: Converting an individual into a classification table γ

Input : Individual i⃗
Set of demands D
Directed graph G′ = (V,E \X, c)

Output: A classification table γ, mapping a demand to a path
1 W : E → (0, 1] defined as W (e) = 1

max(1,c(e)) for all edges.

2 γ(d) is undefined for all demands

3 D′ := D ordered by i⃗ in descending order
4 for d′ = (vin, vout, l) in D′ do
5 f := ShortestPath(G′, vin, vout,W )
6 γ(d) := f
7 for edge ∈ f do
8 c(edge) := c(edge)− l

/* This updates the weight function W */

9 return γ

It is fundamental for a genetic algorithm that each individual can represent a
solution to the problem. Therefore, we define Algorithm 1, which describes how
the classification function can be computed from the individual. This algorithm
is based on the inverse capacity shortest path algorithm, as explained in the
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intuition. In the algorithm on line 1 we instantiate the inverse capacity of links
as the initial link weights. We use max(1, c(e)) to stop division with a negative
number. In line 3 we order the demands D according to the permutation defined
by sorting i⃗ in descending order. Afterwards we iterate over the demands in the
sorted order, creating a shortest path for each demand in the network using the
inverse capacity weighting. When the path is found we add the path as a tunnel
to the classification and subtract the load of the demand from the remaining
capacity of each link in the path. This happens on line 7-8. This implies that
the inverse capacity function returns a new value for each edge in the path.

Algorithm 2: Genetic algorithm

1 n := 0
2 Create initial population P0

3 Evaluate P0

4 while time limit not exceeded do
5 n := n+ 1
6 Pn := ∅
7 while |Pn| < |Pn−1| do
8 Select parents based on evaluation from Pn−1

9 Combine parents to create child
10 Mutate child with some probability
11 Add child to Pn

12 Evaluate Pn

13 return Best individual in Pn

Definition 6 (Population). A population is the multiset pop = {−→i1 ,
−→
i2 . . .

−→
in}

of all the individuals.

With an individual and population defined, we can now describe the outline
of Spungeet in Algorithm 2. |P | denotes the size of the population. The algorithm
proceeds by generating an initial population and evaluating each inidividual. An
individual is evaluated using its fitness score. Figure 9 shows the flow of how an
individual is used to compute a fitness score. We then select parents based on the
evaluation, and combine them to create the individuals in the next generation.
When the time limit is exceeded, the algorithm returns the individual with the
best fitness score.

Individual Classification
Table

FitnessAlgorithm 1
Fitness
function

Fig. 9: Model showing how an individual is used to obtain a data plane and a
fitness score
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7.3 Elitism

To maintain solutions across generations we employ elitism[6, p.89]. Elitism is a
method that puts the best individuals to the next generation without modifica-
tion and as a result the fitness score cannot drop between iterations. Furthermore
this technique compliments short update intervals in a changing network environ-
ment. This is based on the fact that losing the best individual between iterations
can reduce the quality of the resulting dataplane and the primary drawback of
elitism, which is stagnating at a local optima, is less severe.

7.4 Crossover

Crossover is the process of combining two individuals to generate a new individ-
ual. For the Spungeet algorithm we use the crossover function random keys[2],
which inhibits the characteristics of a crossover function that enables good di-
versity and convergence. First, two parent individuals are selected; one from the
elite class and one from the non-elite class. The crossover function works by
iterating over each demand in the set of demands. For each demand the gene
has 70% probability to be picked from the a parent from the elite class and 30%
probability to be picked from the non-elite class. This is done until you have
a weighting for each demand in the resulting child. The pseudo code for the
function can be seen in Algorithm 3. The notation c[d] denotes the element in c
that corresponds to the demand d.

Algorithm 3: Spungeet crossover

Input : Elite parent p⃗1
Non-elite parent p⃗2
A set of Demands D

Output: A child individual c
1 c⃗ := empty individual
2 for d = (vin, vout, l) ∈ D do
3 if rand(0, 1) < 0.7 then
4 c⃗[d] := p⃗1[d]

5 else
6 c⃗[d] := p⃗2[d]

7 return c

7.5 Mutation

A child has 10% chance of mutating. If this happens, all of the child’s weights are
randomized in the range 1 ≤ dwi ≤ 10× |D|. This seeks to negate a populations
stagnation of the fitness score, which can occur in genetic algorithms[6, p. 32].
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7.6 Fitness function

To assess individuals, we use a fitness function. The fitness function takes an in-
dividual and assesses how good a solution the individual brings forth. This part
is very important as the solution’s assessment has a direct effect on what is prior-
itized by the genetic algorithm[6]. In the field of traffic engineering there exists a
few different optimization objectives including maximum link utilization[21][27]
or maximizing throughput[17]. In our case we chose to use an optimization ob-
jective inspired by the Fortz and Thorup piece-wise linear function[9], which
we also employed in the previous project Essence[13]. The Fortz and Thorup
inspired function Φ is visualized in Figure 10 and defined as:

Φ(u) =



0.1u for u ≤ 1
20

0.3u− 0.01 for 1
20 < u ≤ 1

10

u− 0.08 for 1
10 < u ≤ 1

6

2u− 0.24666 for 1
6 < u ≤ 1

3

5u− 1.24666 for 1
3 < u ≤ 1

2

10u− 3.74666 for 1
2 < u ≤ 2

3

20u− 10.41333 for 2
3 < u ≤ 9

10

70u− 55.41333 for 9
10 < u ≤ 1

500u− 485.41333 for 1 < u ≤ 11
10

5000u− 5435.41333 for u > 11
10 .

Let G = (V,E, c) be the network topology, i⃗ be an individual and γ be
the path function returned by Algorithm 1. Then the fitness of individual i⃗ is
calculated by: ∑

e∈E

Φ(u(e)) · c(e)

The goal of the fitness function is to assess how good the classification func-
tion corresponding with the individual is. The intuition behind this fitness func-
tion is mainly that the demands with a high weighting are given the freedom
to take up the shortest routes, whereas other demands that have a lower weight
are forced to choose an alternative if their shortest routes are occupied. As such,
it encourages a diverse distribution which both reduces utilization on links, but
also naturally reduces the length of routes. The process of extracting the fitness
score from the individual is depicted in Figure 9.

7.7 Storing individuals between update cycles

Since the update cycles can be very short, we have chosen to save individuals
between update cycles. The way we do it is by saving all the elite individuals and
inserting them into the next cycles initial population. This is especially useful
if the demands do not change much, as the strong individuals in the previous
cycle will be strong again.
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Fig. 10: Plot of the function inspired by Fortz and Thorup[9]

7.8 Parameters

Through experiments, we converged to these parameters, which brought out the
best results for the genetic algorithm. They are as follows:

– Population size: The population size determines the number of individuals
that are created for each generation. The trade-off is that a larger population
size gives a bigger search space, but slower convergence rate and a smaller
population does the opposite. To strike a balance in the dynamic network
environment, we choose to use a population size of 200.

– Crossover function (random-keys) weighting: The random-keys weighting de-
scribes the probability that a demand weight will be picked from one or the
other individual. In our case the probability ration of 70% chance of choosing
the elite demand weight, and 30% chance of choosing the non-elite demand
weight worked best. Again the trade-off is if the weighting is more skewed to-
wards the non-elite, the search space becomes bigger and convergence slower
and vice versa.

– Mutation probability: The rate of randomly mutating a child individual,
randomizing all demand weights. The technique effectively seeks to introduce
new orderings for demands and as a result help escape local optima. This
rate is set to 10%.

– Elite population percentage: This percentage denotes the number of indi-
viduals belonging to the elite class. We set this percentage to 20% of the
population, primarily to maintain the fitness score between iterations.

8 Evaluation Framework

In this section we present the performance of Spungeet. We measure the perfor-
mance of the algorithm based on its connectivity, which is the fraction of data
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that reaches its target (i.e. 50% connectivity means half of the traffic reached its
destination).

We compare the algorithm against GAOSPF [8] and the (ASP) algorithm
used by the european ISP.

We evaluate the performance on the network topologies of the Internet Topol-
ogy Zoo[22]. The Internet Topology Zoo is a well studied collection of real world
ISP topologies, that contains 260 real world topologies from various ISPs. The
demands are created by REPETITA[10] a tool creating traffic data based on a
randomized gravity model which has shown to be a realistic synthesis method
for demand matrices. The gravity model creates demands for a router such that
incoming traffic is proportional to the sum of its outgoing link capacities. The
traffic generated is scaled such that maximum link utilization is equal to 90%
when the set of failed links is empty.

8.1 Parallelization of Spungeet split

Previous papers have shown the strength of parallelizing genetic algorithms [12].
Spungeet also takes advantage of this technique, by parallelizing a costly part of
the algorithm: the fitness function. This parallelization incorporates distribut-
ing the computation of the fitness score of individuals over multiple cores. The
calculation of the fitness function can be slow on large topologies and this is
especially amplified when working in a dynamic network environment were swift
response to failures is crucial. We saw a dimishing gain from increasing the num-
ber of cores and settled at 8 cores per simulation. On a medium sized topology
the average speedup from 1 to 4 cores was 72.42%, the average speedup from
4 to 8 cores was 27.49% and the speedup from 8 to 12 cores was 9.73%. This
scaling is naturally affected by Amdahl’s law[14].

We now present the experiments we ran to evaluate the performance of
Spungeet. We compare against the ASP algorithm that is used on the large
european ISP, as well as the other genetic algorithm GAOSPF, which we ex-
plained in Section 2.

8.2 Setup

The OMNeT++ simulations and the Python update component ran on a Slurm
cluster with Ubuntu 18.04.5. The jobs were parallalized using 8 cores on an
AMD OpteronTM Processor 6376 and 32 GB RAM. Each simulation was run
for approximately 3 hours, simulating the 3 peak hours from the traffic pat-
terns(hours 16-19). The experiments are conducted with a 10 second interval
between dataplane updates.

8.3 Network selection

We ran our experiments on 40 randomly selected networks from the Topology
Zoo [22], which consists of more than 250 real world topologies ranging in size
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from 4 nodes to 197. We apply a pruning technique where we remove all the
one-degree routers (edge routers) from the network as these routers only have
a single link to route traffic on, and thus their traffic demands can be trivially
aggregated at the next router. This is done recursively, as a result shrinking the
networks makes the simulations run faster and lets Spungeet and GAOSPF run
more generations.

8.4 Percentage of delivered packets

We evaluate the performance of Spungeet by counting the fraction of packets
that reach their target. Figure 11a depicts the percentage of delivered pack-
ets of Spungeet compared to GAOSPF and (ASP). In all instances, Spungeet
outperforms both competing algorithms by a considerable amount, on average
Spungeet is 2.17% better than GAOSPF and 3.16% better than (ASP). Note
the worst three cases, where GAOSPF and ASP achieve between 82% and 84%
packet delivery, whereas Spungeet delivers over 90% of packets in all simula-
tions. Additionally Spungeet achieves 100% packet delivery for 9 topologies,
which GAOSPF and ASP can replicate for only 5 topologies.

8.5 Failure scenarios

To investigate the performance of Spungeet under the threat of failure, we intro-
duce probabilistic failure scenarios and compare the performance of Spungeet,
ASP and GAOSPF. In the generated scenarios we randomly fail nodes and links
based on a preset probability. Our experiments incorporates a range of failure
probabilities ranging from 5% to 25%. If a node fails all ingoing and outgoing
links become unavailable. If a link fails it becomes unusable. We use the ratio of
failures described in [24], which are 70% link failures and 30% node failures.

To increase the impact of failures our failure model uses a weighted probabil-
ity of node and link failures, where nodes connected to links with high capacity
and links with high capacity are weighted higher. The weighting is done by di-
viding by the maximal sum for node failures and maximal link capacity for link
failures. In effect this favors more threatening scenarios that most likely results
in dropping packets.

For the failure scenarios we simulated 5 failure scenarios on 8 topologies for
each of the algorithms.

8.6 Percentage of delivered packets under failure scenarios

We also test the performance of Spungeet in failure scenarios, to evaluate how
effective the recomputation of the data plane is at traffic engineering when a
failure occurs.

For fast failover, we deploy the widespread standard facility node protection
as is detailed in [26]. This is a basic protection scheme that routes traffic around
failed nodes by following the shortest path. If there is no shortest path around
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the node, it instead reroutes around the link. The Percentage of delivered packets
under failure plot shows that Spungeet is slightly better than both GAOSPF and
the (ASP)) algorithm. Spungeet is on average 2% better than GAOSPF and
4.31% better than (ASP). Each point in the plot shows the average percentage
of delivered packets over the 8 topologies for each of the algorithms.

8.7 Maximum Link Utilization

To see how well the algorithms avoid congestion on links and distribute the load,
we use a classic traffic engineering measure of maximum link utilization. This
measure gives use the worst case in the network, low maximum link utilization
generally characterizes the dataplane as having a good distribution of load in
the network. We evaluate the performance of Spungeet by gathering the largest
utilization amount for each topology. Figure 11c depicts the amount of maximum
utilization for each topology for Spungeet, GAOSPF and (ASP). Note that for
maximum utilization the lowest score is desirable, since maximum utilization is
negative measure. In all instances, Spungeet outperforms both competing algo-
rithms by a considerable amount, on average Spungeet is 11.86% better than
GAOSPF and 3.96% better than (ASP). Note how GAOSPF is only capable of
achieving under 75% maximum utilization for 4 topologies while (ASP) has 9
under 75% compared with 11 topologies for Spungeet.
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Fig. 11: Comparison of Spungeet, GAOSPF, All Shortest Path.

8.8 Summary

Our experimental evaluation shows that Spungeet is consistently better than
the competing genetic algorithm GAOSPF. We see Spungeet has significantly
better connectivity on 5 topologies in Figure 11a. In Figure 11c we observe that
Spungeet again beats the competition with a lower maximum link utilization in
all but one case where the ASP algorithm is better. Although all three algorithms
employ fast failover protection, we again see that Spungeet out competes both
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of the other algorithms. Based on these results we can conclude that Spungeet
in consistently better that its competitors in all three measures.

9 Conclusion

We look at two challenges of the Traffic Engineering domain, namely the con-
stantly changing demands of modern Software Defined Networks(SDNs) and the
constant risk of links in the network suddenly failing. With these two challenges
in mind we set out to design a system which would allow for monitoring and
reacting to changes in a dynamic network. In our pursuit of designing this sys-
tem we worked with the discrete event simulation tool OMNeT++. Our first
contribution comes from the several non-trivial extensions to the simulation tool
as we saw it necessary for the purpose of having more realistic simulation of
the network. Our second contribution is the synthesis and transformation of real
world traffic data from a Large European ISP, onto the Internet Topology Zoo
traffic demands, this both increases the accuracy of our network model but also
gives a better reflection of the real world scenario that our system would be
deployed in. Our third and last contribution is the implementation and test-
ing of our own genetic algorithm Spungeet. Spungeet works by first randomly
assigning weights to each demand, it then goes through an interative process
where it first evaluates each individual of the population, combines individu-
als through crossover and mutates some of the individuals. When the update
time has passed, Spungeet stores elite individuals for the next update round and
then creates and installs the data plane based on the best individual. Running
experiments for both connectivity and packet delivery percentage shows that
Spungeet is capable of beating out both All Shortest Path routing used by the
Large European ISP and the GAOSPF algorithm which is a genetic algorithm
for the OSPF problem. Due to the results of our experimentation there is good
reason to believe that Spungeet is a worthy solution for reacting to changes in a
dynamic network.

10 Future Work

In this section we will outline some of the ideas that we believe could improve
this project if we were to continue working on it.

One of the ways in which we could extend the Spungeet algorithm would be
to add predictive data plane generation. This could possibly help create better
solutions by analysing the info received from the dynamic network, and trying to
predict what state the network is going to be in later, such that it can precompute
data planes and immediately install these when needed. Furthermore we could
also try to add congestion aware fast rerouting to the Spungeet algorithm. This
would be beneficial since rerouting often causes congestion on the links that are
used for the rerouting. Therefore a solution which tries to avoid congestion when
it reroutes a demand, is desirable.
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