
Efficiently Finding Ratio-Optimal Infinite Cycles in

Doubly-Priced Timed Automata

by

Nicklas S. Johansen, Kristian Ø. Nielsen, and Rasmus G. Tollund

{nslorup, kristianodum, rasmusgtollund}@gmail.com

Master’s Thesis in Computer Science

Department of Computer Science

Aalborg University, Denmark

June 2023

Abstract. In this report, we study symbolic approaches for efficiently finding ratio-optimal

infinite cycles in doubly priced timed automata. As our main contribution, we present sym-

bolic λ-deduction that reduces the problem to a single priced automaton and uses priced

zones to incrementally improve the best found cycle. We prove that it converges on an op-

timal solution by proving its correctness and termination. Furthermore, we also present an

algorithm that solves the problem through binary decision diagrams (BDDs) using the tran-

sition relation induced by the automaton. However, the BDD approach has wretched perfor-

mance, but it does have theoretical value. In an experimental evaluation of practical models,

we compare the various approaches to address their performance and show that symbolic

λ-deduction outperforms the concrete alternative in some cases. We will also experimentally

test the algorithm’s symbolic strength of being completely unaffected by large clock space,

where a concrete approach suffers an exponential slowdown.

Summary of Master’s Thesis in Danish

I denne rapport undersøger vi symbolske teknikker til effektivt at finde forhold-

soptimale uendelige cykler i dobbeltprismærkede tidsautomater. Dette problem

finder relevans i den virkelige verden ved optimering af processer i realtidssys-

temer. Realtidssystemer har faste realtidsrestriktioner, der kræver, at bestemte

handlinger skal ske indenfor specifikke tidsrammer. Det er dog ikke altid til-

fredsstillende kun at garantere, at tidsrammerne bliver overholdt. Det er også

vigtigt, at processen bliver udført effektivt. For cykliske processer, hvor der ikke

er en sluttilstand, der skal opnås, kan effektiveten beskrives som et forhold

mellem omkostninger og belønninger. Dette kan modelleres som en dobbeltpris-

mærket tidsautomat. En optimal løsning er således en uendelig cyklus, der har

lavest mulig omkostning per belønning. Problemet er bevist at være PSPACE-

fuldstændigt.

Vores hovedbidrag er at have udviklet algoritmen symbolic λ-deduction, som

udnytter prismærkede zoner til at repræsentere tidsrummet, og dermed leder

efter cykler til trinvist at forbedre den hidtil bedste cyklus. Hovedprincippet i

algoritmen er at omdanne den dobbelt prismærkede automat til en enkelt pris-

mærkede automat, således at negative cykler i den enkelt prismærkede automat

svarer til bedre (end den nuværende) cykler i den dobbelt prismærkede au-

tomat. Vi beviser dens korrekthed og endelighed, hvilket betyder, at denne trin-

vise forbedring konvergerer på en optimal løsning. Tilmed viser vi, hvordan den

ændring en symbolsk cykel har på prisfunktionen for prismærkede zoner kan

repræsenteres som en affin afbildning i form af en matrix, og hvordan dette kan

bruges til at effektivt identificere negative symbolske cykler.

Vi udvikler også en anden symbolsk løsning, som udnytter binære beslut-

ningsdiagrammer (BDD’er) til at konstruere den transitive lukning af over-

gangsrelation fra det diskrete tilstandsovergangssystem fra hjørnepunktsabstrak-

tion (corner-point abstraction). Desværre viser denne algoritme sig at have

elendig ydeevne.

Slutteligt laver vi en eksperimentel evaluering af vores to nyopfundne algorit-

mer, samt vores implementation af hjørnepunktsabstraktion fra et tidligere værk,

2

som vi kalder CP-MCR. Vi finder, at vores BDD metode slet ikke kan måle sig

med de to andre. Tilmed ser vi, at CP-MCR er bedst på modeller, hvor der er et

lille tidsrum, der skal ræsonneres over, hvorimod symbolic λ-deduction er up-

åvirket af størrelsen af konstanterne.

Acknowledgements

We would like to extend our sincere thanks to our supervisors, Kim Guldstrand

Larsen and Álvaro Torralba, for excellent, engaged and tenacious supervision. It

has really been a great pleasure working with you.

Pre-Specialisation

This report continues on our pre-specialisation project [1]. This report will be self-

contained, hence, various sections throughout the report have been copied from

the previous project. This includes the entirety of Sections 2 and 6 and also large

portions of Sections 1, 3 and 5. We have allowed ourselves the liberty to make

corrections to the copied sections.

3

1 Introduction

This introduction to our problem and model is copied from our pre-specialisation

project since we continue with the same problem using the same model. Sys-

tems often have behaviour that requires deliberate timing of both the global time

but also more complex timing of events intertwined between sub-processes. This

class of systems is called real-time systems. They make decisions and handle events

specifically by reacting to the timing of inputs or communications. These sys-

tems require both functional correctness in the sense that the logical ordering of

events. But for a real-time system, functional correctness does not suffice, hard

constraints on the timing between events must also be satisfied, e.g. an airbag in

a vehicle must activate with very precise timing shortly after a collision has taken

place.

Model-checking is a well-studied approach that has been extended to verify

the correct timings of real-time systems. For instance, it can be used to verify

whether a system can reach a state where communication has taken place cor-

rectly; or do synthesis of schedules optimising some objective.

One way to model real-time systems in the context of optimality is with

priced timed automata, which was introduced in [2] and simultaneously (and in-

dependently) in [3], which has been used to model and verify various real-world

problems [4, 5, 6, 7]. A further extension to double-priced timed automata was

presented in [8]. This type of automaton facilitates a wide variety of practical

real-time systems. For practical purposes, they can implement measures such as

money, production, time, flow, energy, and consumption, and also support ratios

between measures, e.g. energy/production.

Model-checking real-time systems is hard because of model-checking’s in-

herent obstacle of state-space explosion, additionally, because continuous time

makes the state-space infinite. There exists previous work combating these prob-

lems in the context of (double-)priced timed automata: discretisation of time val-

ues called corner-point abstraction [8], symbolic representation of states with so-

called regions [9] or zones, which are used in the formal verification tools UPPAAL

[10] and KRONOS [11], guided state space exploration (possibly symbolically) us-

4

ing on-the-fly branch-and-bound techniques to search only relevant parts of the

state space [12], and finally, introducing maximal time values for clocks [2].

In this paper, we study the problem of finding ratio-optimal infinite cycles in

cost-reward timed automata, which is proven to be PSPACE-complete by [8]. In

this paper, we use the measure names cost and reward, which both can represent

any of the aforementioned measures, and we focus on finding an infinite execu-

tion that optimises the limit ratio between the accumulated cost and reward.

Related work has previously studied ratio-optimal infinite cycles using var-

ious interesting approaches. In [8], they used corner-point abstraction to prove

that ratio-optimal infinite runs are computable, with the complexity class of

PSPACE-complete. Furthermore, discounting over time has been studied to model

cost-optimal problems for infinite traces in [13]. Also, population-based methods

have been used in [14] to approximate the optimal schedule. The problem has also

been studied in doubly priced timed automata restricted to only 1 clock in [15].

They use strong time-abstracting bisimulation to construct 1-clock zone graphs

and find the optimal cycle by using Lawler’s algorithm[16] on the underlying

doubly weighted graph. In [17] and [18], they conducted a complexity study on

finding feasible cycles in the more general model called energy timed automata,

which also supports negative rates and bounding constraints on the price. But

with such extensions, the problem of finding a feasible cycle becomes undecid-

able already with 4 clocks [19].

1.1 Our Contributions

This report is an extension of our pre-specialisation paper [1], which had its own

significant contributions: (i) it implemented a ground truth concrete algorithm

that is based on the corner-point abstraction by [8], solving the induced minimal

cycle ratio problem using Howard’s algorithm; (ii) it studied symbolic representa-

tions and showed some significant theoretical barriers through counter-examples

that arise in this setting; (iii) it proved that there is always a best concrete cycle

(of a symbolic cycle) that only passes through the symbolic cycle once.

5

In this report, we contribute to the related work by presenting an efficient

approach for finding ratio-optimal infinite executions in doubly-priced timed au-

tomata. As our main contribution, we present symbolic λ-deduction that uses

priced zones to incrementally improve the best found cycle. We prove that it con-

verges on an optimal solution by proving its correctness and termination. Addi-

tionally, we show how the change of the cost function of a symbolic state, from

traversing a path (or cycle), can be represented as an affine transformation matrix,

allowing us to efficiently determine whether a symbolic cycle is a better solution.

We also studied the application of binary decision diagrams to solve the prob-

lem. Here, we propose how to encode the discrete transition system of the au-

tomaton with its costs and rewards as a BDD. We find the optimal cycle by com-

puting the closure of the transition relation.

Finally, we provide an experimental evaluation of our proposed algorithms:

minimal-cost-ratio problem with Howard’s and symbolic λ-deduction, omitting

the BDD approach due to its wretched performance. We show that symbolic λ-

deduction outperforms the MCR problem with Howard’s on some problems. We

will also test the symbolic strength of being completely unaffected by large clock

values, and show that the concrete approach suffers an exponential slowdown

here.

In the remainder of the paper, the structure is as follows. In Section 2, we

present our model of cost-reward timed automata along with its semantics and

define the ratio-optimal cycle problem. In Section 3.2, we show the ground truth

algorithm from the pre-specialisation paper. In Section 4, we study BDDs to solve

the problem. In section 5, we formally introduce the symbolic representations.

In Section 6.1, we show the linear programming method for extracting the best

concrete cycle from a symbolic cycle, which is from the pre-specialisation paper.

In Section 7, we give our main contribution of symbolic λ-deduction through

an algorithm, with a formal proof of correctness and ideas for optimisations. We

provide an experimental evaluation of the ground truth algorithm and symbolic

λ-deduction. We conclude the report in Section 9 and give some ideas for future

work.

6

2 Cost-Reward Optimal Cycles

The vast majority of this section is copied from our pre-specialisation project for

the purpose of self-containment of this report.

In this section, we formalise the underlying model, a timed automaton with

cost and reward, and the semantics describing the transition system. Further-

more, we define the cost-reward ratio for an execution in the model, and we

present the problem statement that the rest of the paper will concentrate on.

2.1 Cost-Reward Timed Automata

The definitions used in this section are based on the work of [20]. A clock valuation

u ∈ RC
≥0 over the set of clocks C is a function u : C → R≥0 assigning a value to

each clock. For a delay δ ∈ R≥0, we use the notation u + δ to denote the updated

valuation, where (u + δ)(x) = u(x) + δ. Let R ⊆ C be a set of clocks to be reset

then u[R 7→ 0] is the new valuation u′ such that u′(x) = 0 if x ∈ R, otherwise,

u′(x) = u(x). Further, B(C) is the set of clock constraints over C obtained by

conjunction over atomic constraints x ▷◁ n for x ∈ C, ▷◁ ∈ {≤,=,≥}, and n ∈ N.

Let g ∈ B(C) be such a constraint, then we write u |= g when u satisfies the

constraint g.

Definition 1. A Cost-Reward Timed Automaton (CRTA) over a set of clocks C

is a tuple (L, ℓ0, E, I, c, r), where L is the set of locations, ℓ0 is the initial location,

E ⊆ L × B(C) × 2C × L is the set of edges between locations, I : L → B(C)

assigns invariants to locations, and lastly c : L ∪ E → Z and r : L ∪ E → N0 are,

respectively, cost and reward rates for locations and prices for edges. For edges,

we write ℓ
g,R−→ ℓ′ whenever (ℓ, g, R, ℓ′) ∈ E, where g is called the guard of the

edge and R is the set of clocks to be reset.

We point out an interesting subclass of CRTA where the reward corresponds

to the elapsing of time. This can be done by setting the reward rate at each location

to 1 and letting the transition rewards be 0.

Example 1 (Lawnmower) Consider the example CRTA shown in Figure 1. This

will be our running example. This automaton models a lawnmower, which job

7

short

x ≤ 3
c′ = 1

r′ = 10

long

x ≤ 5
c′ = 1
r′ = 3

slow
x ≤ 3
c′ = 1
r′ = 0

fast
x ≤ 3
c′ = 1
r′ = 0

e4

e5

x := 0

x := 0
y := 0

x ≥ 3

x ≥ 2

e1

x ≥ 1

e2

x := 0

e3

y ≥ 5
x := 0

Fig. 1: CRTA of a lawnmower example. Resets are denoted by "x := 0", cost incre-
ments by "c += n" (or reward by "r += n"), the cost/reward rates of delaying
in locations are denoted by "c′ = n" (and "r′ = n" for reward). The initial state is
marked by a sourceless incoming edge.

is to tend a lawn by keeping it nicely short. It has to decide when the grass has

become too long by transitioning to the long location. In the long location, it can

wait an additional 2 time units, but receives less reward as the lawn is in a poorer

state. Next, it has a choice of whether to mow fast or slow by going to their re-

spective location. The slow approach takes 3 units of time, and the fast approach

takes between 2 and 3 units of time. The reward models the quality of the lawn,

and the cost models the time. When the grass is short, the quality of the lawn is

high, and thus gives 10 reward each with each unit of time passing. The quality is

worse when the grass is long, and therefore, the location gives a lesser reward of

3 per unit of time passing. With these measures, the lawn quality per time can be

analysed. The robot must then perform the optimal cycle i.e. the one that yields

the most lawn quality per cost, or reversely, least cost per lawn quality. One ex-

ample of an infinite cycle is to delay 3 units of time in short, go to long, delay 2 in

long, go to fast, delay 3 in fast, and complete the cycle by returning to short. This

cycle accumulates 8 cost and 36 reward, and thus it has a ratio of 8
36 ≈ 0.22.

8

2.2 Semantics and Cost-Reward Optimal Cycles

The semantics of a CRTA is given by an underlying cost-reward weighted tran-

sition system. Intuitively, the cost and reward of both delay and edges in the

automaton constitute the cost-reward weightings of the transitions in the tran-

sition system. When using the term concrete we refer to items in the underlying

transition system.

Definition 2. A Cost-Reward Weighted Transition System (CR-WTS) is a tuple

T = (S, s0, T, cost, reward), where S is the set of concrete states, s0 is the initial

state, T ⊆ S × S is the transition function, and cost, reward : T → R assign cost

and reward to transitions, respectively. We write s → s′ whenever (s, s′) ∈ T, and

also s c,r−→ s′ whenever (s, s′) ∈ T, c = cost(s, s′) and r = reward(s, s′).

The semantics of an automaton A = (L, ℓ0, E, I, c, r) over a set of clocks C is

given by the underlying CR-WTS T = (L × RC
≥0, (ℓ0, 0), T, cost, reward), where 0

assigns 0 to all clocks, with the delay and edge transitions

(ℓ, u)
δ·c(ℓ), δ·r(ℓ)−−−−−−→(ℓ, u + δ) if ∀0 ≤ δ′ ≤ δ. u + δ′ |= I(ℓ)

and

(ℓ, u)
c(e), r(e)−−−−→(ℓ′, u[R 7→ 0]) if e = ℓ

g,R−→ ℓ′, e ∈ E, u |= g and u[R 7→ 0] |= I(ℓ′).

Let π = s0 → s1 → · · · → sn be a finite execution in a CR-WTS

(S, s0, T, cost, reward) consisting of concrete states. The cost and reward functions

extend to finite executions straightforwardly

Cost(π) =
n

∑
i=1

cost(si−1, si) and Reward(π) =
n

∑
i=1

reward(si−1, si).

We define the cost-reward ratio for a finite execution, where Reward(π) ̸= 0, as

Ratio(π) =
Cost(π)

Reward(π)
.

9

We now consider the case of an infinite execution, Π. Let Πn denote the finite prefix

execution of Π with length n. The ratio of the infinite execution Π is then defined

by

Ratio(Π) = lim
n→+∞

Ratio(Πn),

provided this limit exists. The optimal ratio for a CR-WTS A is denoted by θ∗

θ∗ = inf {Ratio(Π) | Π is an infinite execution in A} .

An infinite execution Π is said to be ratio-optimal if Ratio(Π) = θ∗.

Example 2 (Lawnmower - Semantics) We now continue with the example lawn-

mower automaton A = (L, ℓ0, E, I, c, r) over the clocks C from Figure 1. For con-

crete states in the underlying transition system, we apply the notational sugar :

(ℓ, n1, n2, . . . , n|C|) = (ℓ, u) if ni = u(xi) for all 1 ≤ i ≤ |C|. For example, the

initial state is written as (short, 0, 0). The infinite cycle from before is formulated

in the semantics as the infinite occurrence of

C = (short, 0, 0) 3,30−−→ (short, 3, 3) 0,0−→ (long, 3, 3) 2,6−→ (long, 5, 5) 0,0−→ (fast, 0, 5) 3,0−→ (fast, 3, 8).

0, 0

The ratio of C is given by Ratio(C) = 8
36 ≈ 0.22. The ratio-optimal infinite cycle of

A is to alternate between fast and slow. This makes sense as the robot can avoid

stalling in the less prosperous long location by immediately transitioning to slow,

and thus quickly returning to short, where the reward is highest, and the next

round it can transition to fast without having to stall in long. Formally, the ratio-

optimal cycle C∗ is

(short, 0, 0) 3,30−−→ (short, 3, 3) 0,0−→ (long, 3, 3) 0,0−→ (slow, 0, 3) 3,0−→ (slow, 3, 6)

(short, 0, 6) 3,30−−→ (short, 3, 9) 0,0−→ (long, 3, 9) 0,0−→ (fast, 0, 9) 2,0−→ (fast, 2, 11)

0, 0

0, 0

10

with Ratio(C∗) = 11
60 = θ∗ ≈ 0.18, which is better than the ratio of 0.19 from

the cycle utilising only the fast option, or, for the sake of completeness, the cycle

choosing only the slow option, which has a ratio of 6
30 = 0.2.

2.3 Restrictions

In this paper, we make the restriction that automata must not contain any so-

called Zeno-cycles, i.e. any infinite execution with an infinite number of discrete

edges must also use an infinite amount of time. Additionally, we also only con-

sider automata that are reward-diverging (detailed in [8]). Formally, let A be an

automaton, then it is reward-diverging if all infinite executions that are time-

divergent also result in an infinite accumulated reward. As a result of these re-

strictions, we also disconsider infinite executions that are either non-reward di-

verging or a Zeno-execution in the CR-WTS.

2.4 Boundedness of Automata

In this work, we apply the notion of bounded time on automata by [2]. A timed

automaton A is bounded by M if all of the constraints in the guards and invari-

ants of A contain no constants greater than M. We can then transform an automa-

ton bounded by M into a timed-bisimilar automaton, where no clock’s value ex-

ceeds the maximal bound M + 2, and instead setting clock valuations to M + 1

when they hit M + 2. This means that when the value of a clock would normally

have increased above M + 2, it is instead kept between M + 1 and M + 2, which

is equivalent since all of the constraints cannot differentiate between these values

strictly greater than M.

Example 3 (Boundedness) Consider again the automaton in Figure 1. The maxi-

mum constant any clock is compared to in this example is 5. When cycling along

the locations short, long and slow, the y-clock is not reset, and would therefore

grow ad infinitum, however, by bounding the automaton with M, we get a cycle

like

(short, 0, 6) → (short, 1, 7) −−→
y:=6

(short, 1, 6) → (short, 2, 7) −−→
y:=6

(short, 2, 6) → · · ·

11

2.5 Problem Statement

Given reward-diverging CRTA with no Zeno-cycles, compute in the CR-

WTS a ratio-optimal infinite execution π, if it exists.

3 Concrete Minimum Cycle Ratio

In this section, we describe a method for solving the cost-reward optimal cycle

problem by analysing the concrete states of cost-reward timed automata. We ap-

ply the corner-point abstraction technique to reduce the number of concrete states

to a finite amount. Sections 3.1 and 3.2 are copied from our pre-specialisation

project for self-containment.

3.1 Corner-Point abstraction

Corner-point abstraction was introduced by Bouyer, Brinksma, and Larsen in [8];

this section is based on their work. The idea of corner-point abstraction is to re-

alise that the clock valuation space can be discretised by only considering points

that are exactly integer-valued. This can be done while still preserving optimal-

ity, i.e. at least one ratio-optimal infinite execution still exists. With the additional

boundedness assumption of timed automata, this means that the clock valuation

space is finite.

Corner-point abstraction is based on regions [9]. Regions are a way to parti-

tion the clock space into sets of valuations that are untimed bisimilar. Regions

partition the clock space to reason about fractional values for clocks, however,

since we only consider non-strict guards, we need not concern ourselves with

the fractional values of the clocks. Therefore, we will simplify the corner-point

abstraction here, to only care about integer-valued valuations, and therefore dis-

card the region information.

In the corner-point abstraction, we restrict the clock-space to only integer-

points. Fortunately, any execution in the corner-point abstraction Acp can be re-

constructed in the CRTA A with the same cost-reward ratio [8]. Wielding the

12

corner-point abstraction, we will constrain the solution space to only integer-

valued cycles.

Definition 3. A discrete cycle is a concrete cycle which uses only integer valued

delays.

A discrete cycle only uses integer valuations because all clock resets set the

clock value to an integer, and thus afterwards integer delays ensure integer valu-

ations.

We say a cycle is simple if no state is visited twice; otherwise, it is complex.

Theorem 1. A complex concrete cycle in a CRTA A cannot have a better ratio

than all of the simple cycles it is composed of.

Proof. Let Γ be a complex cycle. We partition Γ into a set of simple cycles

σ1, σ2, . . . , σn, and let c1
r1

, c2
r2

, . . . , cn
rn

be their ratios. Assume w.l.o.g. that c1
r1

≤ c2
r2

≤

· · · ≤ cn
rn

, we then show by induction on n, that this implies c1
r1
≤ c1+c2+···+cn

r1+r2+···+rn
≤ cn

rn
.

Basecase (n=1): Trivially, c1
r1
≤ c1

r1
.

Induction step: Assume that c1
r1

≤ c1+c2+···+cn
r1+r2+···+rn

. We then have that c1+c2+···+cn
r1+r2+···+rn

≤
cn
rn

≤ cn+1
rn+1

. Recall the property that a
b ≤ c

d =⇒ a
b ≤ a+c

b+d ≤ c
d . By applying this, we

get that c1
r1
≤ c1+c2+···+cn+cn+1

r1+r2+···+rn+rn+1
≤ cn+1

rn+1
.

Since Ratio(Γ) = c1+c2+···+cn
r1+r2+···+rn

, this proves that the lowest ratio simple cycle is

always at least as good.

From Theorem 1, it is evident that if there exists a cycle then there is a simple

cycle that is ratio-optimal. Therefore, we will constrain the solution space to only

simple discrete cycles.

3.2 Reduction to Minimum Cycle Ratio

In this section, we will show how to use corner-point abstraction to reduce the

problem of finding a cost-reward ratio-optimal infinite cycle in a CRTA to the

Minimum Cycle Ratio (MCR) problem.

13

The Minimum Cycle Ratio problem states that given a doubly weighted graph

G = (V , E , C,R), where V is a finite set of vertices, E ⊆ V × V a set of edges,

C : E → R a cost function, and R : E → R≥0 a reward function, find a cycle in G
where the ratio of accumulated cost to accumulated reward is minimal.

The reduction to MCR is achieved by using the semantics of corner-point ab-

straction and adding cost and reward weights. For a CRTA A = (L, ℓ0, E, I, c, r),

the doubly-weighted graph GAcp is constructed by expanding the states accord-

ing to the semantics. In this way, only the reachable part of the state space is

constructed. The vertices of the graph are tuples of a location and a corner point,

i.e. V ⊆ L × NC. To construct the graph, we apply the following procedure until

a fixed point is reached: for all (ℓ, u) ∈ V add edges

(ℓ, u)
c(e),r(e)−−−−→ (ℓ′, u[R 7→ 0]) if e = (ℓ, g, R, ℓ′) ∈ E,

representing a discrete edge in the automaton; and

(ℓ, r, α)
c(ℓ),r(ℓ)−−−−→ (ℓ, r, α ⊕M 1)

representing a unit delay, moving from one corner point to its unit time successor.

For an automaton bounded by M, we define

(u ⊕M 1)(x) =

u(x) + 1 if u(x) ≤ M

u(x) otherwise

as a bounded delay, limiting the value of a clock to at most M + 1. This com-

pounds the delay and boundedness reset explained in Section 2.4 into a single

edge.

Naturally, a solution to the MCR problem of GAcp always also constitutes a

solution to the infinite execution in the corner-point abstraction of Acp, because

the graph directly models its semantics.

14

In [21], they surveyed the numerous existing algorithms that solve the MCR

problem. In this paper, we will use the extended version of Howard’s algo-

rithm[22, 23] mentioned in [21].

4 Binary Decision Diagrams

Binary decision diagrams (BDDs) has been shown to be an efficient and com-

pact data structure with many practical applications. In this section, we describe

how the discretised cost-reward weight transition system can be encoded as a

BDD and used to solve the cost-reward optimal cycle problem. We achieve this

by constructing a BDD representing the transition relation s.t. a truth valuation

constitutes a transition from one state to another with a given cost and reward.

Then, we compute the transitive closure of this relation and then analyse it for

reflexive transitions, i.e. cycles.

In this section, we will use def
= to define operations in order to avoid confusion

with = used as the equality relation between BDDs.

4.1 Encoding States as a BDD

For a CRTA (L, ℓ0, E, I, c, r) with concrete states (ℓ, u) ∈ L × NC
0 , we encode dis-

crete states into a BDD by determining some binary encoding for each location

and clock valuation. We create a vector of BDD variables to encode locations

ℓ = (ℓ0, ℓ1, . . . , ℓk−1), where k = ⌈log2 |L|⌉, and clock values x = (x0, x1, . . . , xn−1)

for each clock x ∈ C, where n = ⌈log2 Cmax⌉ and Cmax is the maximum constant

that any clock is compared with (see Section 2.4 on boundedness). To also reason

about the cost and reward, we encode these as c and r, where the number of bits

needed is found by the upper bound ⌈log2

(
((Cmax)|C| · |L|) · maxa∈E∪L c(a)

)
⌉ for

the cost and similarly for the reward. Here (Cmax)|C| · |L| is an upper bound for

the number of concrete states, and thus the length of the longest simple cycle, and

maxa∈E∪L c(a) is the cost of the most expensive transition. To describe the transi-

tions, we will use non-primed variables for the from state and primed variables

for the to state, i.e. a transition between two states can be represented using the

15

variables l, x, l
′
, x′, c, r (for one clock x). We use s as shorthand for the variables

for location and clocks.

4.2 BDD operations

There are a couple of BDD operations we will need to reason about clock values

and costs/rewards. First, we need to model the constraints of the form x ≤ n and

x ≥ m, i.e. compare a clock with some constant. Secondly, we define the bounded

increment operation to model unit delays in a bounded automaton and finally

the increase in cost and reward c + k.

For the x ≤ n constraint, we create a BDD recursively by

LEQ(x, n, i) def
=


true if i < 0

¬xi ∨ LEQ(x, n, i − 1) if ni = 1

¬xi ∧ LEQ(x, n, i − 1) if ni = 0

,

where ni is the i’th bit in the binary representation of n. It is then constructed by

LEQ(x, n, |x|). Other comparison relations can be created similarly.

We also require operations for addition and multiplication of BDD variables

for defining bounded increment and computing the cost-reward ratio. This is

achieved by operations similar to the adding and array multiplication operations

from [24], which we will not reiterate here. The bounded delay—i.e. increment-

ing a clock value if it is less than the constant M, otherwise doing nothing (see

Section 2.4)—

DELAY(x, x′, M)
def
= (GEQ(x, M+ 1)∧ x = x′)∨ (¬GEQ(x, M+ 1)∧ x′ = x+ 1).

4.3 Computing the Transition Relation Closure

We now show how to define the transition relation closure as a BDD, that tells

which states can be reached in one or more steps and at what cost and reward.

Importantly, we want to preclude 0-step transitions, as these do not constitute a

valid cycle.

16

Although we will want to exclude 0-step transitions in the closure, we will

need 0-step transitions later when computing the closure. We define it as

TR0(s, s′, c, r) def
= s = s′ ∧ c = 0 ∧ r = 0,

as the identity relation, that stays in the same state and costs nothing and yields

no reward. For the 1-step transition relation, we encode the possible transitions

in the discrete semantics, namely unit delay

TR1
delay(s, s′, c, r) def

=
∨

(ℓ,g,R,ℓ′)∈E

ℓ = ℓ ∧ ℓ
′
= ℓ′ ∧ (

∧
x∈C

x |= g ∧ ((x ∈ R ∧ x′ = 0)∨

(x ̸∈ R ∧ x′ = x))) ∧ c = c(e) ∧ r = r(e),

and discrete edge

TR1
edge(s, s′, c, r) def

=
∨
ℓ∈L

ℓ = ℓ ∧ ℓ
′
= ℓ ∧ (

∧
x∈C

DELAY(x, x′, cmax(x)) ∧ x′ |= I(ℓ))∧

c = c(ℓ) ∧ r = r(ℓ).

Finally, the combination of these defines the 1-step transition relation

TR1(s, s′, c, r) def
= TR1

delay(s, s′, c, r) ∨ TR1
edge(s, s′, c, r).

In order to compute the closure of the transition relation, we will need to con-

catenate two transition relations describing a double step, i.e. doing a step in the

first and then a step in the second. We define the concatenation of two transition

relations as

(TR ◦ TR′)(s, s′, c, r) def
= ∃s′′, c′, c′′, r′, r′′. TR(s, s′′, c′, r′)

∧ TR′(s′′, s′, c′′, r′′) ∧ c = c′ + c′′ ∧ r = r′ + r′′.

Notice that the existential quantifier removes the variables s′′, c′, c′′, r′ and r′′, thus

these are only present in the intermediate computation. We can then define the

17

compounding operation, λ, which computes the transition relation for 1 to 2n

given the transition relation for 1 to n steps. This is given by

TR1−2n def
= λ(TR1−n) = TR1−n ◦ (TR1−n ∨ TR0)

We can then compute the fixed point of λ from the initial TR1 relation. We de-

note by λ∗(TR) the fixed point of λ when applied to some transition relation TR,

and additionally TR∗ = λ∗(TR1). This will happen when the cost and reward

maximum bounds are reached. Observe that the number of steps considered is

doubled at each application. However, we may instead use the upper bound on

the maximum length of a cycle, i.e. k = (Cmax)|C| · |L|, and only calculate TR1−k,

where TR∗ ⊇ TR1−k ⊆ λlog2 k(TR1), which will include all necessary cycles.

4.4 Finding Optimal Cycles

In this section, we show how to construct a BDD that contains all reachable opti-

mal simple cycles. The first step is to determine all of the concrete states that are

reachable from the initial state. This step is straightforward using the transition

relation closure

Reach(s) def
= ∃c, r. TR∗(0, s, c, r),

where 0 is the encoding of the state with the initial location of the automaton and

all clocks having the valuation 0.

We can now define the DBB representing the reachable cycles and the cost and

reward of traversing the cycle as

RCycle(s, c, r) def
= TR∗(s, s′, c, r) ∧ Reach(s) ∧ s = s′.

Informally, this finds the paths in the transition relation that begin and end in

the same discrete state and are reachable from the initial state. Recall that TR∗

contains no 0-step transitions, thus these are all actual cycles.

The final step is to find the optimal cycles among all of the reachable cycles.

We need to pick the cycles which have the minimum cost-reward ratios. To get

18

around the fractional numbers of the ratios when comparing two cycles, we ob-

serve that c
r ≤ c′

r′ ⇐⇒ c · r′ ≤ c′ · r. The BDD containing the optimal cycles is

then

BCycle(s, c, r) def
= RCycle(s, c, r) ∧ (∀s′, c′, r′. RCycle(s′, c′, r′) =⇒ c · r′ ≤ c′ · r).

Informally, it contains all reachable cycles where the cost-reward ratios of all other

reachable cycles are no better. Note, that this BDD contains all optimal simple

cycles, but also some optimal complex cycles. The next section describes how we

extract the optimal simple cycles from the BDD.

4.5 Extracting Optimal Simple Cycles

In the previous section, we defined the BDD BCycle(s, c, r) that describes cycles

from s to itself with optimal cost-reward ratios. In this section, we look into how

to extract an optimal cycle from this BDD. To this end, we create a new 1-step

transition relation TRopt, which only contains transitions that are used in any op-

timal cycle

TRopt(s, s′, c, r) = ∃c′, c′′, r′, r′′. TR1(s, s′, c, r) ∧ TR∗(s′, s, c′, r′) ∧ BCycle(s, c′′, r′′)∧

c + c′ = c′′ ∧ r + r′ = r′′.

It contains the 1-step transitions from s to s′ where it is possible to go back to s

again with exactly the same cost and reward as an optimal cycle in s.

Theorem 2. Let T = (S, s0, T, cost, reward) be a Cost-Reward Weighted Transition

System, with an optimal cost-reward ratio of θ, and let Tθ ⊆ T be the transitions

which are part of an optimal cycle. All cycles that use only transitions of Tθ are

optimal.

Proof. We do a proof by contradiction. Assume that there exists a cycle π =

s0
c0,r0−−→ · · · cn,rn−−→ s0 s.t. Ratio(π) = Cost(π)

Reward(π)
̸= θ and all transitions

ci,ri−−→ ∈ Tθ

for all 0 ≤ i ≤ n. Clearly, if Ratio(π) < θ, it is a contradiction, as then θ is not the

optimal cycle ratio. Thus, we study if Ratio(π) > θ. By the assumption that all

19

transitions in π are part of some optimal cycle, we observe that

ci + c′i
ri + r′i

= θ for all 0 ≤ i ≤ n,

where c′i and r′i are the cost and reward of the rest of an optimal cycle that the

transition
ci,ri−−→ is part of. We can then rewrite this expression to obtain

ci + c′i = θri + θr′i ⇐⇒ ci − θri = −(c′i − θr′i).

We now construct a new cycle π′ by replacing each transition si
ci,ri−−→ si+1 with

the sequence of transitions that constitute the rest of an optimal cycle that the

transition appears in, i.e. si+1
c′i ,r

′
i⇝ si.

c0, r0 c1, r1 c2, r2 c3, r3

c′0, r′0 c′1, r′1 c′2, r′2 c′3, r′3

We then show that if Ratio(π) > θ then Ratio(π′) < θ. First, we have that

c0 + · · ·+ cn

r0 + · · ·+ rn
> θ,

which we can be rewritten, similarly as before, to

(c0 − θr0) + · · ·+ (cn − θrn) > θ.

We can then substitute ci − θri with −(c′i − θr′i)

−(c′0 − θr′0)− · · · − (c′n − θr′n) > θ.

Then we multiply both sides by −1, flipping the inequality, and rewrite to

c′0 + · · ·+ c′n
r′0 + · · · r′n

< θ.

20

Which is of course the ratio of π′, thus again creating a contradiction, since π′

would have a ratio lower than the optimal.

Finding an optimal cycle can now be done by starting with an arbitrary tran-

sition in TRopt(s, s′, c, r) (i.e. a minterm) and continue following connected transi-

tions until some state is visited again, at which point a cycle is found. These tran-

sitions between states are then decoded which results in an optimal cost-reward

concrete cycle.

5 Symbolic Representation

Sections 5.1, 5.3 and the counter-examples in 5.2 are copied from our pre-

specialisation project for self-containment of this report.

In this section, we will describe the symbolic structures, zones and priced

zones, which have proved to be efficient in symbolic reachability analysis for

timed automata [25]. In Section 5.2, we summarise complications regarding the

discovery of cost-reward optimal cycles in the symbolic state space. The problem

of extracting the best concrete cycle from a symbolic cycle will be discussed in

Section 6.

5.1 Zones and Symbolic States

A zone is a symbolic structure abstracting over a subset of the clock space [10,

11]. Zones is an extension of the idea of regions by considering convex unions of

clock regions. A zone is defined by a conjunction of clock constraints, which can

either be upper or lower bounds on clocks or bounds on differences between two

clocks. For a Cost-Reward Timed Automata (CRTA) over a set of clocks C, a zone

is a convex set in the |C|-dimensional Euclidean space. In Figure 2 a diagram of a

zone is shown.

We require four operations on zones to model the semantics of a CRTA.

The first operation is the up operation, Z↑ = { u + d | u ∈ Z, d ∈ R≥0 }, which

removes the upper bounds of the zone Z. Similarly, we have the down oper-

ation, Z↓ = { u − d | u ∈ Z, d ∈ R≥0, ∀x ∈ C. u(x) ≥ d }, which sets the lower

21

y

x
0 1 2 3 4 5

0

1

2

3

4

5 x − y ≥ 0

y ≤ 3

x ≥ 1 x ≤ 4

Fig. 2: Diagram of a zone induced by 4 clock constraints. The zone is the green
area, which is the clock valuation that satisfy the constraints.

bounds of a zone to 0. The third operation is the project operation, which we

denote by {R}Z, where R is a set of clocks to project the zone onto, {R}Z =

{ u[R 7→ 0] | u ∈ Z }, where every clock in R set to 0. Finally, the reverse projec-

tion, {R}−1Z = { u′ ∈ RC
≥0 | ∃u ∈ Z ∀x ̸∈ R. u(x) = u′(x) }, frees the clocks in R

to have any value. Note that zones are closed under these operations.

For a cost-reward timed automaton A = (L, ℓ0, E, I, c, r), the symbolic state-

space is S = L × Z, where Z is the set of all zones over the clocks.

In the semantics of a cost-reward timed automaton, we use two types of tran-

sitions for discrete edges and delays. We use dual operations on symbolic states

called Poste and Postϵ, which together give the symbolic transitions, given by

Poste((ℓ, Z)) = (ℓ′, ({R}(Z ∧ g)) ∧ I(ℓ′)), where e = (ℓ, g, r, ℓ′)

and

Postϵ((ℓ, Z)) = (ℓ, Z↑ ∧ I(ℓ)).

We say that a concrete state s = (ℓ, u) is in a symbolic state S = (ℓ, Z), denoted

by s ∈ S, iff u ∈ Z. We write S ϵ−→ S′ whenever S′ ∈ Postϵ(S) and S e−→ S′ when-

ever S′ ∈ Poste(S). A non-annotated transition, S → S′, is defined if either Poste or

22

Postϵ leads to S′. A symbolic path Π = S0
ϵ−→ S′

0
e0−→ S1

ϵ−→ · · · ei−1−−→ Si
ϵ−→ S′

i
ei−→ · · ·

is a possibly infinite sequence of symbolic transitions, alternating between Postϵ

and Poste transitions. When the states of a symbolic path are distinct, we call it

simple. We use the notation S0 ⇝ Sn whenever there exists a symbolic path from

S0 to Sn.

Definition 4 (Symbolic Cycle). A symbolic path Π is a symbolic cycle if there ex-

ists a concrete cycle π ∈ Π.

Similarly to a simple path, a simple cycle is a cycle wherein each state is visited

at most once per revolution, except the initial state, which is visited exactly twice.

We say that a symbolic transition S −→ S′ is forward stable if for all concrete

states s′ ∈ S′ there exists s ∈ S s.t. s −→ s′, and it is backwards stable if for all

s ∈ S there exists s′ ∈ S′ s.t. s −→ s′. We say that a symbolic path is stable if

all of its transitions are both forward and backwards stable. Symbolic transitions

are created by the Post-operations and are therefore already forward stable. To

backwards stabilise a symbolic transition, we introduce the Pre-operations

Preϵ((ℓ, Z)) = (ℓ, Z↓ ∧ I(ℓ)),

and

Pree((ℓ, Z)) = (ℓ, ({R}−1Z) ∧ g ∧ I(ℓ)), where e = (ℓ, g, R, ℓ′)

These operations compute the pre-states of delay and discrete edge transitions. A

forward stable transition S α−→ S′, is stabilised by (S ∩ Preα(S′))
α−→ S′. A forward

stable symbolic path can be stabilised by stabilising each transition until a fixed

point is reached. Each stabilisation step on a transition always yields a new state

that is a subset of the previous, therefore, at some point, the stabilisation will

come to a fixed point.

5.2 Pitfalls of Symbolic Representation

In the pre-specialisation project, we proposed a simple symbolic on-the-fly algo-

rithm to find symbolic cycles in a Cost-Reward Timed Automaton. Starting in the

23

initial state, it explores all symbolic paths in a depth-first manner, as per the post

operations of zones, until a non-specified stopping criterion is reached.

One stopping criterion, we looked into, was to stop the search of the branch

when we reached a symbolic state that was a zone-wise subset of an already vis-

ited symbolic state, in the current trace. We say that a symbolic state S = (ℓ, Z)

is a subset of another symbolic state S′ = (ℓ′, Z′) if ℓ = ℓ′ and Z ⊆ Z′. Unfor-

tunately, this approach is not complete as it is possible to miss optimal concrete

cycles as shown in the following example.

Counter-Example 1 (Early Stopping) In this example, we will show an automa-

ton where the optimal cycle is missed when a superset state has already been

seen. Consider the automaton:

ax ≤ 1
c′ = 1 b

y ≤ 3
c′ = 5

e1

x ≥ 1
r += 1

e2

x := 0

e3

x := 0, y := 0
y ≥ 3, r += 5

Below is the graph of the symbolic states where the ⇒ edges denote the successor

state after applying first a discrete edge transition by Poste and then the delay by

Postϵ. The e1 successor for S5 has been omitted for brevity.

24

S0

y

x
0 1 2 3

0

1

2

3

4

a S1

y

x
0 1 2 3

0

1

2

3

4

b

S2

y

x
0 1 2 3

0

1

2

3

4

aS3

y

x
0 1 2 3

0

1

2

3

4

bS4

y

x
0 1 2 3

0

1

2

3

4

a

S5

y

x
0 1 2 3

0

1

2

3

4

b

e1

e2

e3

e1e2

e3e1

e3

From this, we can see that S4 is a subset of S2. However, if the search for cycles

is stopped here already, we will only get the cycles S0 → S1 → S0, S0 → S1 →
S2 → S3 → S0, and S2 → S3 → S4; each having optimal ratios of 11

6 , 7
6 , and 1

1 .

The latter cycle is where the problem occurs: due to the stopping criterion, the

optimal cycle S0 → S1 → S2 → S3 → S4 → S5 → S0 is not found, which has

an optimal ratio of 3
8 . The others are much worse than the optimal because they

require delaying in the expensive location b.

This problem can be solved by changing the stopping criterion to only stop-

ping when the exact same symbolic state has been visited again, i.e. zone-wise

subset is replaced with equals. By doing this, the approach will find all simple

symbolic cycles. We know that simple concrete cycles are sufficient, but that is

unfortunately not the case for simple symbolic cycles. The following counter-

example shows this.

25

Counter-Example 2 (No Optimal Simple Symbolic Cycle) In this example, we

show a cost-reward timed automaton, where the optimal concrete cycle is not in

any simple symbolic cycle. Consider the automaton:

ax ≤ 1
r′ = 5 b

x ≤ 2
c′ = 100

c
x ≤ 2
r′ = 1
c′ = 1

e1

x = 1
e2

x := 0

e3

x ≥ 1

e4

x ≥ 2
x := 0

The symbolic state space is illustrated here:
S0 a

x
0 1 2 3

S1 a

x
0 1 2 3

S2 b

x
0 1 2 3

S3 b

x
0 1 2 3

S4 c

x
0 1 2 3

S5 c

x
0 1 2 3

ϵ

e1

ϵ

e2

ϵe3

e4

Each of the 6 smaller diagrams represents a zone, where the red line represents

the range of values the x-clock can have. The ⇒ edges point to the symbolic state

that is achieved by applying either Poste or Postϵ.

The optimal concrete cycle is

(a, 0) 1−→ (a, 1)
e1−→ (b, 1)

e2−→ (c, 0) 2−→ (c, 2)
e3−→ (b, 2),

e4

which has a cost-reward ratio of 2
7 . However, this concrete cycle is in the non-

simple symbolic cycle S0 → S1 → S2 → S3 → S4 → S5 → S3 → S0, with both S0

and S3 appearing twice. There are two simple symbolic cycles S0 → S1 → S2 →
S3 → S0 and S3 → S4 → S5 → S3, however, the optimal concrete cycles in these

only achieve a cost-reward ratio of 100
5 and 1

1 , respectively.

26

5.3 Priced Zones

This section is copied from our pre-specialisation report. Priced zones were in-

troduced by Larsen et al. [20], and the definitions of this section is based on their

work. However, we generalise the zones to include rational-valued costs instead

of just non-negative integers. Priced zones will be used later as the symbolic data

structure in our main algorithm, symbolic λ-deduction in Section 7. This is also

why we only consider single-priced zones, and not doubly-priced zones that ac-

commodate both cost and reward.

Definition 5 (Priced Zone). A priced zone is a 3-tuple Z = (Z, c, r), where Z ⊆
RC

≥0 is a zone and is a convex set of clock valuations with a unique minimal

(by componentwise order) value ∆Z ∈ Z, c is the cost of ∆Z, and r : C → Q

assigns a cost rate to each clock. We write u ∈ Z whenever u ∈ Z. For any

u ∈ Z , the cost of u is cost(u,Z) = c + ∑x∈C r(x) · (u(x)− ∆Z(x)). We denote by

Z = 2RC
≥0 × N × NC the set of all priced zones.

Contrary to normal zones, priced zones are not closed under the Poste and

Postϵ operations; since the cost function is affine, it cannot capture the difference

in cost rates that occur when a point in a zone is reached by using two delays

with different cost rates.

To this end, we instead split the zones to represent this discrepancy. In order

to determine the optimal splitting points, we use the notion of facets. Let x ▷◁ n

(or x − y ▷◁ m) be a constraint of the zone Z, then the "border" zone Z ∧ (x = n)

(or Z ∧ (x − y = m) is a facet of Z. Facets derived from lower bound constraints

(using x ≥ n) are classified as lower facets, and we denote by LF(Z) all the lower

facets. Likewise, upper bound constraints on the form x ≤ n are the upper facets

and are denoted by UF(Z). We classify the facets relating to x, i.e. that are derived

from the forms x ≥ n and x − y ≥ m as the lower relative facets w.r.t. x. The

collection of lower relative facets of Z w.r.t. x is denoted by LFx(Z). The collection

of upper relative facets w.r.t. x, UFx(Z) is expectedly derived using the forms

x ≤ n and x − y ≤ m.

27

Definition 6. Let Z = (F, c, r) be a priced zone, where F is a relative facet w.r.t. y

s.t. y − x = m is a constraint of F. Then Z↓{y} = (F′, c′, r′), where F′ = F↓{y}, c′ =

c, r′(x) = r(x) + r(y), r′(z) = r(z) for all z ̸= x. If y = n is a constraint of F then

Z↓{y} = (F′, c, r) with F′ = F↓{y}.

(Z, c, r)↓R =


(Z↓R, c, r[x 7→ r(x) + r(y)]) if y − x = m is a constraint of Z, x ̸∈ R

and y ∈ R

(Z↓R, c, r) otherwise

(Z, c, r)↑p = (Z↑, c, r[y 7→ p − ∑
x ̸=y

r(x)]) where y = n is a constraint of Z

Conjunctions with constraints on priced zones can be achieved by simply

addressing the change in the offset. Formally let Z = (Z, c, r) be a priced

zone and let g ∈ B(C). Then Z ∧ g is the priced zone Z ′ = (Z′, c′, r), where

Z′ = Z ∧ g and c′ = cost(∆Z′ ,Z). Also, for Z = (Z, c, r) we introduce the opera-

tion Z + n = (Z, c + n, r) for any number n ∈ N.

Definition 7. Let Z = (F, c, r) be a priced zone, where F is a lower or upper

facet in the sense that y = n is a constraint of F. Let p ∈ N be a cost-rate. Then

Z↑p = (F′, c, r′), where F′ = F↑, r′(y) = p − ∑z ̸=y r(z) and r′(z) = r(z) for all

z ̸= y.

We are now ready to define the Poste and Postϵ operations for priced zones

using their facets.

28

Definition 8. Let A = (L, ℓ0, E, I, P) be a PTA, and e = (ℓ, g, {y}, ℓ′) ∈ E and

Z = (Z, c, r) be priced zone. Then:

Poste((ℓ,Z)) =

{ (ℓ′, Q↓{y} + P(e)) | Q ∈ LFy(Z ∧ g) } if r(y) ≥ 0

{ (ℓ′, Q↓{y} + P(e)) | Q ∈ UFy(Z ∧ g) } if r(y) ≤ 0

Postϵ((ℓ,Z)) =

{ (ℓ,Z) } ∪ { (ℓ, Q↑P(ℓ) ∧ I(ℓ) | Q ∈ UF(Z ∧ I(ℓ)) } if p ≥ ∑x∈C r(x)

{ (ℓ, Q↑P(ℓ) ∧ I(ℓ) | Q ∈ LF(Z ∧ I(ℓ) } if p ≤ ∑x∈C r(x)

Any priced zone Z = (Z, c, r) can also be more intuitively rewritten as the

pair Z and c, where Z is its unpriced zone and c is the induced cost plane s.t.

c(u) = c + ∑x∈C r(x) · (u(x)− ∆Z(x)). A priced symbolic state is then a location,

zone and a cost plane. Similarly to (unpriced) symbolic states, we define a priced

symbolic path Π = S0
ϵ−→ S′

0
e0−→ S1

ϵ−→ · · · ei−1−−→ Si
ϵ−→ S′

i
ei−→ · · · as a possibly

infinite sequence of priced symbolic states, alternating between Postϵ and Poste

transitions. As with unpriced symbolic paths, we apply the following equivalent

notations for priced symbolic paths. When the states of a priced symbolic path

are distinct, we call it simple. We use the notation S0 ⇝ Sn whenever there exists

a priced symbolic path from S0 to Sn.

Definition 9 (Priced Symbolic Cycle). A priced symbolic path Π = (ℓ, Z, c) ⇝

(ℓ′, Z′, c′) is a priced symbolic cycle if the unpriced path (ℓ, Z) ⇝ (ℓ′, Z′) is a sym-

bolic cycle.

6 Extracting the Optimal Concrete Cycle from a Symbolic Cycle

The entirety of this section is copied from our pre-specialisation project due to the

purpose of self-containment of this report.

In this section, we will present a method for finding the optimal concrete cycle

from a symbolic cycle using linear-fractional programming. Essentially, this con-

sists of finding optimal concrete delays for the symbolic delays. However, it is

not obvious that there is an optimal concrete simple cycle that only goes through

29

the symbolic cycle once. Given a symbolic cycle Π, we want to find the optimal

concrete cycle π s.t. there exists a k for which π ∈ Πk, where Πk is Π concatenated

onto itself k times.

Theorem 3. Let Π = (ℓ, Z1) ⇝ (ℓ, Zn) be a symbolic cycle. Then for all k > 1,

the optimal concrete cycle in Π1 is exactly as good as the optimal concrete cycle

in Πk.

Proof. Let πk be a cycle in Πk. We will then show how to construct a cycle π1 ∈ Π1

that has the same ratio. Let π1π2 · · ·πk = πk be the partitioning of πk s.t. πi ∈ Π

for 0 < i ≤ k. We then construct π1 as a convex combination of all πi. For a scalar

α ∈ R≥0 and a valuation u ∈ RC
≥0, we define (α · u)(x) = α · u(x) for x ∈ C. Also,

we define (u + u′)(x) = u(x) + u′(x) for x ∈ C.

Let (αi)i=1..k be non-negative real scalars s.t. ∑k
i=1 αi = 1 and πi = (ℓ0, ui

0) →
(ℓ1, ui

1) → · · · → (ℓn, ui
n). We then construct π1 = (ℓ0, v0) → (ℓ1, v1) → · · · →

(ℓn, vn), where vj = ∑k
i=0 αiui

j, i.e. the valuations of πi is the convex combination

of the valuations of all πi. Also, whenever → is a delay transition, (ℓj, vj)
dj−→

(ℓj+1, vj+1), we let dj = ∑k
i=1 αiδ

i
j, i.e. the convex combination of the delays of πi.

We now show that there exists (αi)i=1..k s.t. π1 is a valid cycle. Specifically, we

want to show that (i) each valuation satisfies the invariant of the location, (ii) the

start and end valuations are the same (it is a cycle), and (iii) the delay and (iv)

edge transitions are correct.

Firstly, (i) holds because the zones are convex, therefore any convex combina-

tion of valuations in a zone yields a valuation in the zone. For (ii) we know that

ui
n = u(i+1 mod k)

0 , since π(i+1 mod k) starts directly where πi ends, and therefore, if

we choose all αi to be equal, i.e. αi =
1
k , we have that

v0 =
1
k

u1
0 +

1
k

u2
0 + · · ·+ 1

k
uk

0 =
1
k

uk
n +

1
k

u1
n + · · ·+ 1

k
uk−1

n = vn.

30

For (iii) a delay transition (ℓj, vj)
dj−→ (ℓj+1, uj+1) we have that

vj + dj =
k

∑
i=1

αiui
j +

k

∑
i=1

δi
j =

k

∑
i=1

αiui
j + δi

j =
k

∑
i=1

αiui
j+1 = vj+1.

And finally, for (iv) a discrete edge transition (ℓj, vj)
ej−→ (ℓj+1, uj+1), where ej =

(ℓj, R, g, ℓj+1), the guard is satisfied for the same reason (i), and

vj[R 7→ 0] =

(
k

∑
i=1

αiui
j

)
[R 7→ 0] =

k

∑
i=1

αiui
j[R 7→ 0] =

k

∑
i=1

αiui
j+1 = vj+1.

To see that the reset operation distributes over a sum of valuations, we observe

that (
k

∑
i=1

νi

)
[R 7→ 0](x) =

0 if x ∈ R

∑k
i=1 νi(x) otherwise

=

(
k

∑
i=1

νi[R 7→ 0]

)
(x).

Finally, we will show that π1 is indeed at least as good as πk. The ratio of πk

is

Ratio(πk) =
∑k

i=1

(
∑n−1

j=0 δi
j · c(ℓj) + ce

)
∑k

i=1

(
∑n−1

j=0 δi
j · r(ℓj) + re

) =
∑k

i=1 ∑n−1
j=0 δi

j · c(ℓj) + k · ce

∑k
i=1 ∑n−1

j=0 δi
j · r(ℓj) + k · re

where ce = ∑n−1
j=0 c(ej) and re = ∑n−1

j=0 r(ej). We then rewrite this by swapping the

order of the summation

=
∑n−1

j=0 ∑k
i=1 δi

j · c(ℓj) + k · ce

∑n−1
j=0 ∑k

i=1 δi
j · r(ℓj) + k · re

,

and applying the definition of dj = ∑k
i=1 αiδ

i
j for αi =

1
k

=
∑n−1

j=0 k · 1
k ∑k

i=1 δi
j · c(ℓj) + k · ce

∑n−1
j=0 k · 1

k ∑k
i=1 δi

j · r(ℓj) + k · re
=

k · ∑n−1
j=0 dj · c(ℓj) + k · ce

k · ∑n−1
j=0 dj · r(ℓj) + k · re

,

31

and by removing the common factor k we get

=
∑n−1

j=0 dj · c(ℓj) + ce

∑n−1
j=0 dj · r(ℓj) + re)

= Ratio(π1).

Corollary 4. Let Π = (ℓ, Z1) ⇝ (ℓ, Zn) be a symbolic cycle in a single weight

timed automata. Then for all k > 1, there exists a concrete cycle with weight w in

Π1 if and only if there exists a concrete cycle with weight w · k in Πk.

Proof. This follows easily from Theorem 3. We can simply pretend that

Reward(Π) = 1, and then let π ∈ Π be a minimum ratio cycle, and Ratio(π) = w
1 ,

then π is also the minimum weight cycle in Π and has weight w. This is be-

cause when the reward is fixed, the only objective is to minimise cost. Now, let

πk ∈ Πk be a minimum ratio cycle of Πk, we then know from Theorem 3 that

Ratio(πk) = k·w
k , and thus has weight k · w.

6.1 Linear-Fractional Programming

In this section, we will describe a method for finding the optimal concrete cycle in

a symbolic cycle by utilising linear-fractional programming. This technique was

introduced by Tolonen et al. [14].

Let Π = (ℓ0, Z0)
ϵ0−→ (ℓ0, Z′

0)
e0−→ (ℓ1, Z1)

ϵ1−→ . . . en−→ (ℓn, Zn) be a symbolic cy-

cle. To formulate the linear-fractional program we will use timestamps. A times-

tamp is the total time that has occurred since the start of the cycle to the point

of an event. We will create n time stamps t = (t1, . . . , tn) specifying the time at

which the state (ℓi, Zi) was reached. Additionally, we have the zero timestamp

t0 = 0. We can extract the value of a clock x ∈ C in a timestamp ti by the differ-

ence between ti and the latest timestamp tj at which x was reset. Here we define

LASTRESET(i, x) =

max { j ≤ i | x ∈ Rj } if such j exists

max { j > i | x ∈ Rj } otherwise
,

32

where ej = (ℓj−1, g, Rj, ℓj), as the index of the latest edge where x was reset before

i. By using the boundedness technique we guarantee that all clocks are reset in

the cycle, however, for this section we will assume that all resets are to 0 to sim-

plify matters. Notice that because we are working with cycles, the second case is

needed because the index of the last reset of the clock might be larger than i. We

can now give the value of a clock at each index before delay

vb(i, x) =

ti − tLASTRESET(i,x) if LASTRESET(i, x) ≤ i

(ti + tn)− tLASTRESET(i,x) otherwise

and after delay

va(i, x) =

ti+1 − tLASTRESET(i,x) if LASTRESET(i, x) ≤ i

(ti+1 + tn)− tLASTRESET(i,x) otherwise
.

With this notation in order, we can now state the objective function in terms

of t and the constraints. Firstly, the objective function is the cost-reward ratio but

rewritten as timestamps. The definition of Ratio from Section 2.2, can be rewritten

by defining cost(si, si+1) = (ti+1 − ti) · c(ℓi) and reward(si, si+1) = (ti+1 − ti) · r(ℓi).

This way we get the ratio as

Ratio(t) =
∑n−1

i=0 (ti+1 − ti) · c(ℓn) + ∑n
i=0 c(en)

∑n−1
i=0 (ti+1 − ti) · r(ℓn) + ∑n

i=0 r(en)
.

Firstly, we add constraints on the timestamps to ensure that there are no negative

delays, i.e.

ti ≤ ti+1 and 0 ≤ ti.

The constraints can then be extracted from the zones. For each before-delay zone

Zi and each constraint x − y ≤ m of Zi in the DBM representation, we add the

constraint

vb(i, x)− vb(i, y) ≤ m,

33

where we define vb(i, 0) = 0, with 0 being the 0-clock. Similarly, for each after-

delay zone Z′
i and each constraint x − y ≤ m we add the constraint

va(i, x)− va(i, y) ≤ m.

Since the symbolic cycle is stable, the zones represent exactly the set of al-

lowed valuations in each state, therefore any assignment of t that satisfies these

constraints corresponds exactly to the set of concrete cycles in the symbolic cycle.

The linear-fractional programming formulation is usually given as

minimize
cTt + c
rTt + r

subject to At ≤ b.

The cost vector c needs to represent the difference in cost between the times-

tamps. This can be seen by observing that the cost should be calculated as

c0(t1 − t0) + c1(t2 − t1) + · · ·+ cn−1(tn − tn−1) =

t0(0 − c0) + t1(c0 − c1) + t2(c1 − c2) + · · · tn−1(cn−2 − cn−1) + tn(cn−1 − 0).

Therefore,

ci = c(ℓi−1)− c(ℓi)

for 1 ≤ i < n and cn = c(ℓn−1). And dually for r. Also, c and r are simply the

sums of the cost and reward of discrete edges, respectively. The matrix A is of the

form J × n, where J is the number of constraints, and the vector b is of length n.

The j′th row in A and b corresponds to the j’th constraint. Let the j’th constraint

be vb(i, x)− vb(i, y) ≤ m, then substitute each ti with 1i, where 1i is the one-hot

vector 1i
h = 0 for all h ̸= i and 1i

i = 1, and compute vb(i, x)− vb(i, y) as a the j’th

row of A and let bj = m.

34

The linear-fractional program can be transformed into a linear program by the

Charnes-Cooper transformation[26]. This yields the linear program

minimize cTy + c · d

subject to Ay ≤ bd

rTy + r · d = 1

d ≥ 0.

where

y =
1

rTt + r
· t and d =

1
rTt + r

.

From the solution to the transformed linear program, we can extract the linear-

fractional program solutions as t = 1
d y.

7 Symbolic λ-deduction

In this section, we give our main contribution, symbolic λ-deduction—an algo-

rithm for finding ratio-optimal cycles in CRTA that is based on an abstract algo-

rithm presented in [27]. They show how ratio-style problems can be solved by

incrementally finding better solutions until the optimal is found. This style of

algorithm works by maintaining a λ value that is the ratio of the best solution

found so far. It uses this λ value to reduce the problem of finding ratio-optimal

solutions to finding negative weight solutions, by replacing cost and reward with

a single λ-deducted weight. For a solution x ∈ X, the λ-deducted weight is

wλ(x) = Cost(x)− λ · Reward(x).

Proposition 5. A solution x ∈ X has negative λ-deducted weight if and only if
Cost(x)

Reward(x) < λ.

Proof. Cost(x)− λ · Reward(x) < 0 ⇐⇒ Cost(x)
Reward(x) < λ.

The above proposition suggests a method using the following principle: First,

pick an element x from the solution space X, and let λ := Cost(x)
Reward(x) . For a solution

x′ ∈ X, we call wλ(x′) = Cost(x′) − λ · Reward(x′) the λ-deducted weight of

35

x′. Then, find a solution x′ ∈ X s.t. Cost(x′) − λ · Reward(x′) < 0, and update

λ := Cost(x′)
Reward(x′) . This is repeated until no such x′ exists, at which point an optimal

solution has been found.

In order to use this approach in our setting, we need to devise a method for

finding cycles that have a negative λ-deducted weight. We therefore introduce

a transformation of the original cost-reward automaton into a λ-deducted single

priced timed automaton.

Definition 10. Let A = (L, ℓ0, E, I, c, r) be a CRTA. The λ-deducted single priced

timed automata of A is Aλ = (L, ℓ0, E, I, wλ), where

wλ(a) = c(a)− λ · r(a) for a ∈ L ∪ E.

Notice that the weight of any path in Aλ corresponds to the λ-deducted

weight of the path in A. This follows from the semantics of A and the additive

nature of the λ-deducted weight. We say a cycle in Aλ is a negative-weight concrete

cycle if the summed weight of the path is negative.

Algorithm 1 shows an abstract algorithm for finding ratio-optimal cycles us-

ing the λ-deducted automaton. The value of λ is the ratio of the so far best found

cycle. The intuition is to initialise λ to ∞, which causes any cycle incurring some

reward to be negative, and then iteratively improve it by finding negative cycles

in Aλ. Algorithm 1 terminates only when there no longer exists a negative cycle

in Aλ, which happens only when the value of λ is exactly the optimal ratio. For

this algorithm, we need only one operation: find any negative-weight concrete

cycle in Aλ if one exists.

Theorem 6. Algorithm 1 terminates, and returns a ratio-optimal concrete cycle, if

one exists, otherwise NO CYCLE.

Proof. First, realise that, for any λ ∈ Q (rational numbers), Aλ has identical valu-

ations and paths as A (only the pricing differs). We know from the corner-point

abstraction [8], that we can discretise the state space into only considering integer-

valued points with at least one ratio-optimal cycle being kept. Then, together with

36

Algorithm 1: Abstract algorithm for finding ratio optimal concrete cycle
by improving λ.

input : A bounded and strongly reward-divergent CRTA
A = (L, ℓ0, E, I, c, r) over the clocks C.

output: A ratio-optimal concrete cycle, if one exists, otherwise NO CYCLE.
1 λ := ∞
2 Cλ := NO CYCLE
3 while Aλ has negative-weight simple discrete cycle C do
4 λ := Ratio(C)
5 Cλ := C

6 return Cλ

Aλ begin bounded, there is only a finite amount of simple concrete cycles in Aλ,

i.e. the considered solution space is finite.

With λ = ∞, any cycle C in Aλ will have negative weight. This is because

the automaton is reward-divergent, and therefore Reward(C) > 0, which gives

Cost(C) − ∞ · Reward(C) < 0. Thus, Algorithm 1 only returns NO CYCLE if and

only if A contains no cycle.

Assume A contains a simple discrete cycle C, and recall that Cost(C) − λ ·
Reward(C) < 0 ⇐⇒ Cost(C)

Reward(C) < λ. Thus, at each iteration of the while loop,

λ is decreased. The value of λ can only be decreased a finite amount of times

because the solution space is finite. When Aλ contains no negative-weight cycle,

Algorithm 1 terminates, and Cλ is returned with the optimal ratio of λ.

The λ-deducted automaton has only a single weight function (as opposed to

the two of cost and reward), and we can therefore use techniques similar to those

of cost-optimal reachability for priced timed automata [20], namely priced zones.

The only difference being that we will extend the domain for prices from non-

negative integers to rational numbers, because the weights of the λ-deducted au-

tomaton may be a rational number. Fortunately, this does not impact any of the

formal definitions of the operations on priced zones.

37

7.1 Finding Negative-Weight Concrete Cycles

In this section, we elaborate on how to find a negative-weight concrete cycle in

λ-deducted automata. Specifically, how to compute "Aλ has negative-weight con-

crete cycle C" on line 3 in Algorithm 1. This section will conclude with a complete

non-abstract algorithm for symbolic λ-deduction.

In a finite weighted graph, the most prevalent approach for detecting negative

cycles is to maintain some type of information about the shortest path between

nodes. For example, the Bellman-Ford shortest path algorithm works by main-

taining, for each vertex, a parent pointer s.t. for a source vertex s and a vertex v,

the shortest path from s to v found has parent(v) as its second-to-last vertex. When

the main part of the Bellman-Ford algorithm is completed, the parent pointer, for

any vertex, contains a shortest path predecessor. In order to detect a negative cy-

cle, we can then follow the parent pointer backwards and if it contains a cycle this

is a negative-weight cycle. A cycle in the parent pointer implies that the cheapest

way to reach a vertex v (in the parent cycle) is to start in v itself, therefore the

weight of the cycle must be non-positive. By also adding the constraint that the

parent pointer is only updated whenever a strictly cheaper path has been found,

the cycle in the parent pointer must be negative, because the second time v is

found it is strictly cheaper.

Example 4 Below we show a simple weighted directed graph, where the solid

black arrows show the edges of the graph and the dashed blue arrows show the

parent pointer. On the left, we see the state of the parent pointers before checking

edge g → e. On the right, we see the state of the parent pointers after exploring

the edge g → e. Observe how the parent pointer now contains a cycle, as the

shortest path to e is a → b → e → c → f → g → e.

38

a

b c

d

e f

g

2 1

4

3 -5

-1 2

-30

a

b c

d

e f

g

2 1

4

3 -5

-1 2

-30

We can apply the parent function to the single-priced λ-deducted automata

setting. By using corner-point abstraction together with boundedness, this will

directly reduce to the finite weighted graph problem. However, as a possibly

more efficient approach, we propose to instead use symbolic priced zones to find

negative concrete cycles. Searching symbolically will yield symbolic cycles, which

abstract over many concrete cycles.

Definition 11 (Negative-Weight Symbolic Cycle). A priced symbolic cycle Π is

a negative -weight symbolic cycle if there exists a negative-weight concrete cycle

π ∈ Π.

We shall often refer to a negative-weight symbolic cycle as simply a negative

cycle, when it is clear from the context. It is non-trivial to determine whether or

not a priced symbolic cycle is negative. One method is to use linear programming,

as described in Section 6, to compute the optimal concrete cycle contained in the

symbolic cycle, and then check whether it has negative weight.

In this symbolic version, we also maintain a Parent pointer function as our

method of detecting cycles. The Parent pointer maps each symbolic state S to

either a pair of the predecessor state S′ and an action α ∈ E ∪ {ϵ}, s.t. S′ α−→ S, or

the special symbol NIL. The NIL symbol is used as the parent of the initial state.

Similarly to the finite weighted graph case, we are only interested in the cheapest

way to reach a state. Therefore, we are not interested in exploring paths where

we have already found a cheaper way of getting to the same state.

39

Definition 12 (Domination Between Priced Symbolic States). A priced sym-

bolic state S = (ℓ, Z, w) dominates another state S′ = (ℓ′, Z′, w′), denoted by

S ⊑ S′, if and only if (i) ℓ = ℓ′, (ii) Z ⊇ Z′, and (iii) w(u) ≤ w′(u) for all u ∈ Z′.

In the finite weighted graph case, if the parent pointer function composes a

concrete cycle, then it is guaranteed to be a cycle with a non-positive ratio. Con-

trarily, a symbolic cycle formed by the Parent pointer function has no such guar-

antees. Therefore, we must always check whether the cycle contains a negative-

weight concrete cycle. We will discuss a more efficient method of doing this in

Section 7.3. There is an important difference between cycles in the Parent pointer

in the symbolic case and the parent pointer in the concrete case. Namely, in the

concrete case the formed cycle will visit the exact same states, whereas, the sym-

bolic cycles include cost-information of reaching the underlying state, wherefore,

there can be a cycle without visiting the exact same state again. Importantly, there

can be no negative-weight symbolic cycle where the exact same state is visited

again, because this implies that in each revolution the price stays the same—

whereas a negative cycle would cause it to become cheaper and cheaper.

Algorithm 2 shows symbolic λ-deduction: a best-first-search style algorithm

that uses priced zones to find negative concrete cycles in a single-priced timed

automaton. We use the function dom(f) = X to give the domain of a (partial)

function f : X ⇀ Y. On lines 1-3 the algorithm initialises the λ-value, the concrete

cycle that produces the given λ-value, and a Waiting set with states that are yet to

be explored, which is initialised to the initial symbolic state.

The main while loop on line 4 is equivalent to the abstract Algorithm 1. At

each iteration, a new negative cycle is returned by FIND-NEGATIVE-CYCLE with

a better ratio than Cλ. Then λ and Cλ are updated to reflect the new best cycle.

The subroutine FIND-NEGATIVE-CYCLE returns a negative-weight symbolic

cycle in Aλ, if one exists, otherwise NO CYCLE. It extracts and expands a min-

imum element from Waiting on line 12, according to some ordering. The order

chosen has no consequence on termination and correctness of the algorithm, but

it may affect the efficiency. We suggest the minimum to be the state containing

minimum weight valuation—i.e. the valuation which is smaller than all other

40

valuations in all other states—from the intuition that cheap valuations are more

likely to produce negative cycles. On line 14, the algorithm avoids expanding suc-

cessors where a dominating variant has already been expanded—this is needed

for termination so that we do not follow cycles that become more and more ex-

pensive each revolution in the cycle. Here we only do a fast comparison, i.e. we

do not check if any combination of cost planes is cheaper—e.g. a state S may

not be dominated by neither S′ nor S′′, but S could be partitioned s.t. one parti-

tion is dominated by S′ and the other is dominated by S′′. If the successor is not

dominated, the parent of the successor is set, and it is added to the Waiting list.

We finally check whether a negative-weight concrete cycle is present in the par-

ent function on line 17 by calling the subroutine Find-Negative-Cycle. This re-

cursive subroutine follows the Parent pointer backwards, reconstructing the path

taken to the state until a negative-weight symbolic cycle is found (if one exists).

41

Algorithm 2: Symbolic λ-deduction.
input : A bounded and strongly reward-divergent CRTA

A = (L, ℓ0, E, I, c, r) over the clocks C.
output: A ratio-optimal concrete cycle, if one exists, otherwise NO CYCLE.

1 λ := ∞
2 Cλ := NO CYCLE

3 Waiting := { S0 } // initial state

4 while Find-Negative-Cycle() returns a negative concrete cycle C do
5 λ := Ratio(C)
6 Cλ := C

7 return Cλ

8 Function Find-Negative-Cycle()
9 Waiting := { S0 }

10 Parent := ∅[S0 7→ NIL]// function mapping S0 to nil
11 while Waiting ̸= ∅ do
12 S := EXTRACT-MIN(Waiting)
13 forall S′ ∈ Postα(S) for all α ∈ E ∪ {ϵ} do
14 if ∀S′′ ∈ dom(Parent). S′′ ̸⊑ S′ then
15 Parent(S′) := (S, α)

16 insert S′ into Waiting
/* Recursively follow parent to check for cycle */

17 if Parent-Negative-Cycle(S α−→ S′) returns cycle C then
18 return C

19 return NO CYCLE

20 Function Parent-Negative-Cycle(S1
α2−→ · · · αn−→ Sn)

21 if S1
α2−→ · · · αn−→ Sn is a negative-weight symbolic cycle then

22 return best concrete cycle in S1
α2−→ · · · αn−→ Sn

23 if S1 ∈ dom(Parent) then
24 (S, α) := Parent(S1)

25 return Parent-Negative-Cycle(S α−→ S1
α2−→ · · · αn−→ Sn)

26 else
27 return NO CYCLE

42

7.2 Proof of Correctness

Theorem 7. Algorithm 2 terminates, and it returns a ratio-optimal concrete cycle,

if one exists, otherwise NO CYCLE.

Proof. First, realise that the main while loop on line 4 follows the exact same struc-

ture as in Algorithm 1, which is correct and terminates (Theorem 6). Therefore, it

suffices to show that Find-Negative-Cycle is correct and terminates. We divide

this proof into several lemmas and prove them individually. We prove termina-

tion in Lemma 9. We then prove the correctness by soundness in Lemma 10 and

completeness in Lemma 11.

In order to prove that Find-Negative-Cycle terminates, we first prove that

Parent-Negative-Cycle always terminates when called in Find-Negative-Cycle

on line 21. This is done by proving that it always forms a tree structure because

then recursively following the pointer backwards stops once the root is reached.

Lemma 8. The while-loop on line 11 in Find-Negative-Cycle has the loop-

invariant: the Parent pointer always forms an in-tree (all nodes lead to the root-

node).

Proof. A directed graph is an in-tree if it satisfies the property that for all nodes

there exists a unique walk to the root. A walk is a sequence of not-necessarily

distinct edges, which form a sequence of not-necessarily distinct nodes.

Trivially, Parent := (NIL, S0) initialises it as an in-tree with NIL as the root-

node, thus the loop starts with the invariant satisfied. The statement Parent(S′) :=

(S, α) on 15 is the only place that the Parent pointer is altered. We prove that this

statement does not break the invariant. A state is added to Waiting only if it is

defined in Parent (lines 15 and 16). On line 14, it is ensured that a successor state

S′ of S is only added to Parent if it is not already a state in Parent, because the

equality relation is a subset of the domination relation. There is a unique walk

from S to NIL and a unique walk from S′ to S (single edge), and therefore also a

unique walk from S′ to NIL via S. Conclusively, it maintains that the walk from

any node to the root is unique.

43

Lemma 9. The subroutine Find-Negative-Cycle in Algorithm 2 terminates.

Proof. We first argue that there exists a constant wmin for Aλ s.t. any symbolic path

that contains a concrete path with weight less than wmin must contain a negative-

weight concrete cycle. Let GAcp = (V , E , C,R) be the finite doubly weighted

graph induced by the corner point abstraction of the automaton A, then

wmin = ∑ {wλ(e) | e ∈ E , wλ(e) < 0 } ,

where wλ(e) = C(e) − λ · R(e), i.e. the sum of all of the negative λ-deducted

edges. Any concrete path with weight less than wmin must use at least one neg-

ative edge more than once, and therefore, it contains at least one concrete cycle.

At least one of these cycles must be negative, otherwise the weight of the acyclic

part of the path is less than wmin, which cannot happen because some negative

edge must be used twice.

Now, let S be the set of all priced symbolic states and S≥wmin =

{ (ℓ, Z, c) ∈ S | ∀u ∈ Z. c(u) ≥ wmin }. We now argue that (S≥wmin ,⊑) is a well-

quasi order, i.e. there exists no infinite descending sequence where the states are

not dominated by a previous state. For a bounded priced timed automaton, there

is only a finite number of (unpriced) zones, thus a zone must eventually repeat

in an infinite sequence. The minimum of a priced zone is attained in an integer

point, therefore, we can limit ourselves to study the cost plane only in the finite

number of integer points. Let u ∈ Z be an integer point of zone Z and λ = a
b for

a ∈ Z and b ∈ N+, then the λ-deducted weight of reaching the integer point is

wλ(u) = Cost(u)− a
b
· Reward(u) =

Cost(u) · b − a · Reward(u)
b

.

Since Cost(u) and Reward(u) are integer-valued, the λ-deducted weight of integer

points can be written as a rational with b as a constant denominator. We observe

that we can scale the cost-plane by b,

wλ(u) ≥ wmin ⇐⇒ Cost(u) · b − a · Reward(u) ≥ wmin · b,

44

where Cost(u) · b − a · Reward(u) is integer-valued. Thus, the cost-plane can-

not keep improving ad infinitum, since the integer points can be considered to

have integer-valued weights greater than wmin · b, and there are only finitely

many integer points in zone Z. This, in conjunction with the finiteness of zones,

shows that (S≥wmin ,⊑) is a well-quasi order. The argument is similar to Dick-

son’s Lemma[28], but instead of dealing with natural numbers, we have lower

bounded integers.

We now argue that these properties guarantee that our algorithm terminates.

Firstly, the subroutine Find-Negative-Cycle terminates either when Waiting =

∅ or when Parent-Negative-Cycle returns a cycle. The if-statement on line 14

ensures that we never expand a state that is dominated by a previously expanded

state. If no state is ever expanded that contains a point cheaper than wmin, then

there exists no infinite descending sequence for ⊑, and thus the algorithm will

terminate. Otherwise, whenever any state containing a point cheaper than wmin

is expanded, then there must be a negative cycle present in the parent pointer.

We now argue that whenever the parent pointer contains a suffix that constitutes

a negative symbolic cycle, Parent-Negative-Cycle returns a negative concrete

cycle.

By Lemma 8, the Parent pointer always forms an in-tree, thus the recursive

subroutine Parent-Negative-Cycle terminates because it keeps following the fi-

nite (as in |dom(Parent)| ̸= ∞) parent function backwards, growing it until it

either forms a negative-weight symbolic cycle or reaches the initial state, whence

the recursion stops. Since Parent-Negative-Cycle checks all suffixes to see if they

constitute a negative symbolic cycle, it will find a negative symbolic cycle if it ex-

ists.

Lemma 10. The subroutine Find-Negative-Cycle in Algorithm 2 is sound, i.e.

if there does not exist a negative-weight concrete cycle in Aλ then it returns

NO CYCLE.

Proof. We prove the contrapositive, i.e. if it returns a cycle then there exists a

negative-weight concrete cycle in Aλ. We do this by showing that any cycle re-

turned by Find-Negative-Cycle is a reachable negative-weight concrete cycle.

45

Whenever Find-Negative-Cycle is called, the Waiting list contains exactly the

initial state. The successor states generated by the Post operation implies that

there exists a concrete path to any point in the successor state from some point

in the predecessor state. Since the initial state is the only state in Waiting in the

beginning, all concrete states contained in a generated symbolic state are reach-

able. When assuming that the concrete cycle found in line 22 is a negative-weight

concrete cycle, then when Algorithm 2 returns a cycle, it is a reachable negative-

weight concrete cycle.

Lemma 11. The subroutine Find-Negative-Cycle of Algorithm 2 is complete, i.e.

if it returns NO CYCLE then there does not exist a negative cycle in Aλ.

Proof. Again, we prove the contrapositive, i.e. if there exists a negative cycle in

Aλ then Find-Negative-Cycle returns a cycle. Let π be a negative-weight simple

concrete cycle in Aλ. Construct from π the symbolic simple cycle Π by replacing

all concrete delays with symbolic delays. Now, let Π′ be the smallest, in length,

subcycle s.t. Π = (Π′)k, for some k > 0. Since π ∈ Π and π is a negative-weight

cycle, by Corollary 4 there also exists a negative-weight cycle π′ ∈ Π′. We will

now show that Find-Negative-Cycle, if it does not find some other negative cy-

cle, will find a negative cycle in Π′.

The core principle of the algorithm is that the Parent function maintains a

dominating (w.r.t. ⊑) predecessor for all concrete states that have been explored

through a symbolic state. In other words, a cheapest path from the initial state to

any expanded state is reconstructible from the Parent function by following the

states backwards. Observe that since Π′ is a negative-weight symbolic cycle, if

S Π′
⇝ S′ then there is at least one concrete state that is cheaper to reach in S′ than

in S, therefore S ̸⊑ S′. Thus, when S′ is generated, it will pass the if-statement on

line 14, and Parent-Negative-Cycle will look for a cycle ending in S′, and return

a negative-weight concrete cycle.

46

7.3 Efficiently Determining Whether a Symbolic Cycle is Negative

We will now discuss an efficient approach for determining whether or not a

priced symbolic cycle is a negative weight symbolic cycle. Specifically in Al-

gorithm 2, it is done in the function PARENT-NEGATIVE-CYCLE. Whenever the

Parent pointer contains a priced symbolic cycle, it is checked whether that cy-

cle is negative. Checking for such negativity is non-trivial; we need an efficient

method of doing so since this check may be executed many times in Algorithm

2. We already know we can check this using linear programming (described in

Section 6), however, this is undesirable since constructing and solving the linear

program is rather slow. In this section, we show a less computationally expensive

method to determine if a symbolic cycle has negative weight.

The core idea is motivated by the fact that a negative weight symbolic cy-

cle must have some point in the starting/ending zone that becomes cheaper after

each application. Let that point be u, then the cost of u is cost(u) = o +∑x∈C r(x) ·
(u(x) − ∆Z). However, simply checking that some point becomes cheaper is a

weak necessary condition, as this is very likely despite there not being a negative

cycle. What we want to know is that no matter the initial cost plane values, ap-

plying the cycle will cause some point to be cheaper. Observe that this must be

the case for negative cycles, because irrespective of the cost to reach that point,

taking the negative concrete weight cycle will decrease the cost.

The cost plane can be defined by a pair (o, r) being the cost of the offset and the

rates of the clocks, respectively. Recall the 4 operations needed on the cost-plane

from Section 5.3:

(o, r)
↑w,x−−→ (o, r[x 7→ w − ∑

y∈C\{x}
r(y)]) (Delay)

(o, r) ∆k,x−−→ (o + r(x) · k, r) (Continous Offset)

(o, r) ∆w−→ (o + w, r) (Discrete Offset)

(o, r)
↓x,y−−→ (o, r[y 7→ r(y) + r(x), x 7→ 0]) (Reset Relative).

47

These represent (in order), a delay on a facet of x ∈ C with a delay rate w; an

application of a guard x ≥ n s.t. k is the amount that the lower constraint on x

increases; add a discrete cost increment w to the offset; resetting a facet of x ∈ C

that is relative to y ∈ C.

We observe that the operations on the cost plane are affine, therefore, we can

represent them as an affine transformation matrix. In this interpretation, the cost

plane is a vector c⃗ = (r(x0), r(x1), · · · , r(xn), o, 1), where xi ∈ C for all 0 ≤ i ≤ n,

o is the cost of the offset point, and 1 is the constant used for affine transformation.

The affine transformation matrix for a cost plane operation is then a (|C|+ 2)×
(|C|+ 2) matrix. The cost plane operations can then all be translated into affine

transformation matrices. The transformation matrix for two clocks x and y is of

the form 
a b c d

e f g h

i j k l

0 0 0 1




r(x)

r(y)

o

1

 =


a · r(x) + b · r(y) + c · o + d

e · r(x) + f · r(y) + g · o + h

i · r(x) + j · r(y) + k · o + l

1

 .

The matrix representation of the operations, for a cost plane with 2 clocks, are

↑w,x−−→
0 −1 0 w

0 1 0 0

0 0 1 0

0 0 0 1



∆k,x−−→
1 0 0 0

0 1 0 0

k 0 1 0

0 0 0 1



∆w−→
1 0 0 0

0 1 0 0

0 0 1 w

0 0 0 1



↓x,y−−→
0 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1

 .

From a given symbolic cycle Π, we can extract the sequence of cost plane op-

erations used. We can then compute the product of all of the matrices to find the

matrix representing the application of the entire cycle. Let there be n cost-plane

operations of Π and M1, M2, . . . , Mn be their respective matrix representations, in

the order they appear, then

MΠ =
n−1

∏
i=0

Mn−i

48

is the compound matrix representing the cost-plane transformation after apply-

ing the entire cycle.

Theorem 12. Let Π be a symbolic cycle starting in S = (ℓ, Z, w), and let S′ =

(ℓ′, Z′, w′) and S′′ = (ℓ′′, Z′′, w′′) be priced symbolic states s.t. S Πi
⇝ S′, S Πi+1

⇝ S′′,

and Z = Z′ = Z′′. Then, Π is a negative weight symbolic cycle only if S′ ̸⊑ S′′,

and if i ≥ N, then Π is a negative weight symbolic cycle if S′ ̸⊑ S′′, where N is

the number of integer points in Z.

Proof. We first show that Π is a negative weight symbolic cycle only if S′ ̸⊑ S′′

for all i ∈ N. By definition of a negative weight symbolic cycle, there exists a

negative weight concrete cycle π ∈ Π going through a valuation u ∈ Z ∩ Z′,

where w′′(u) < w′(u). Thus, S′ ̸⊑ S′′.

We now show that if i ≥ N, then Π is a negative weight symbolic cycle if

S′ ̸⊑ S′′. First note that due to the precondition Z = Z′ = Z′′, this is the same

as showing Π is a negative weight symbolic cycle if there exists a valuation u,

s.t. w′′(u) < w′(u). We prove the contrapositive, i.e. if there is no negative cycle

then w′(u) ≤ w′′. We abstract away whatever happens inside of the cycle and

only concern ourselves with the states between applications, i.e. only the states

S0, S1, . . . , Si+1 where S0
Π
⇝ S1

Π
⇝ · · · Π

⇝ Si+1.

Firstly, recall that there always exists a minimum cost path between two inte-

ger valuations that is discrete (i.e. integer valued). Let π ∈ Πi+1 be a discrete con-

crete path that obtains the minimum weight w′′(u). Since i ≥ N, we know that π

must contain a concrete cycle, because it needs to go through the same zone more

times than it has integer points. Therefore, we write π = π1σπ2, where σ is the

concrete cycle that it contains. By the assumption that there is no negative weight

concrete cycle, we have that w(σ) > 0. Now let k be the number of revolutions σ

makes in Π, i.e. σ ∈ Πk. From Corollary 4, we know that there is also a σ1 ∈ Π1,

where w(σ1) = 1
k σ. By applying this k − 1 times we can get a cycle σk−1 ∈ Πk−1

with w(σk−1) = k−1
k w(σ). We then construct a new path π∗ = π1σk−1π2. Impor-

tantly, π∗ ∈ Πi and will also end up in the valuation u, but in S′. The weight of

π∗ is w(π∗) = w(π) − 1
k w(σ), and since we know that w(σ) > 0, this leads to

49

the conclusion that w(π∗) < w(π), and thus w′(u) < w′′(u), which proves the

contrapositive statement.

Below is an illustrated example of this principle. Here we show the states as

ellipses with their discrete points inside. The blue/solid arrows are the path π

and the red/dashed arrows are the path π∗.

S0 S1 S2 S3 S4

π

π∗

Π Π Π Π

π1 σ π2

u

We can calculate the states S′ and S′′ by raising the compound transfor-

mation matrix to the power of N and N + 1, respectively. Particularly, from

a stabilised cycle S0 Π
⇝ S1, where S = (ℓ, Z, c), then SN = (ℓ, Z, MN

Πc) and

SN+1 = (ℓ, Z, MN+1
Π c), where MN

Πc means the translation of the cost-plane into

the affine vector representation, then multiplying by the matrix MN
Π and finally

translating it back to the normal cost-plane representation.

The complexity of calculating SN and SN+1 is O((|Π| + log N) · |C|3). This

comes from first creating the matrix MΠ, which can be done in O(|Π| · |C|3) op-

erations. Each transition in Π may have O(|C|) cost-plane operations, however,

these can be constructed efficiently in O(|C|3) operations, by constructing several

cost-plane operation in the same matrix. Then the |Π| cost-plane operation matri-

ces are multiplied—assuming matrix multiplication in O(n3) for a n × n matrix.

Finally, raising M to the power of N can be done in log2(N) matrix multiplica-

tions, meaning this can be done in O(log N · |C|3) operations.

Example 5 Consider the cost-reward timed automaton below.

50

ax ≤ 1 b

y ≤ 1
c′ = 1

c x ≤ 1
c′ = −1e1

x := 0 e2

y = 1
y := 0

e3

x = 1
x := 0

An exploration of the state-space is shown below, where each arrow shows

the result of applying Poste and afterwards Postϵ for the edge e.

y

x
0 1

0

1
a

r(x) = 0

r(y) = 0

c = 0

S0
y

x
0 1

0

1
b

r(x) = 1

r(y) = 0

c = 0

S1
y

x
0 1

0

1
c

r(x) = 1

r(y) = −2

c = 0

S2
y

x
0 1

0

1
b

r(x) = 3

r(y) = −2

c = 1

S3

e1 e2 e3

We can identify the symbolic cycle S1 → S2 → S3. From this cycle, we can

then extract the cost-plane operations

∆y,1−−→ ↑−1,y−−−→ ∆x,1−−→ ↑1,x−−→ .

These represent, respectively, the guard y ≥ 1 increasing the offset by 1 in the y

direction; delaying from a y-facet with rate −1; the guard x ≥ 1 increasing the

offset by 1 in the x direction; and delaying from an x-facet with rate −1. From

these, we can construct the affine transformation matrices (appearing in reverse

51

order)

M =


0 −1 0 1

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1




1 0 0 0

−1 0 0 −1

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1

 =


1 0 0 2

−1 0 0 −1

1 1 1 0

0 0 0 1

 .

As a sanity check, we can see that if we apply this matrix on the cost-plane

of the first state at b, i.e. r(x) = 1, r(y) = 0, o = 0, we get the cost-plane of the

second state at b, as expected, i.e.
1 0 0 2

−1 0 0 −1

1 1 1 0

0 0 0 1




1

0

0

1

 =


3

−2

1

1

 .

Now we calculate the matrices MN and MN+1, where, by counting the integer-

valued points in S1, N = 3,

M3 =


1 0 0 6

−1 0 0 −5

1 1 1 2

0 0 0 1

 and M4 =


1 0 0 8

−1 0 0 −7

1 1 1 3

0 0 0 1

 .

Applying these matrices yields the cost-planes

c3 = M3c =


1 0 0 6

−1 0 0 −5

1 1 1 2

0 0 0 1




1

0

0

1

 =


7

−6

3

1

 and c4 = M4c =


9

−8

4

1

 =


9

−8

4

1

 .

We can now study the states S3 and S4, i.e. S1 after applying the cycle 3 and 4

times.

52

y

x
0 1

0

1
b

r(x) = 7

r(y) = −6

o = 3

S3
y

x
0 1

0

1
b

r(x) = 9

r(y) = −8

o = 4

S4

We can now observe that the valuation (0, 1)—the blue dot—has cost −3 in

S3 and −4 in S4. Thus, S3 ̸⊑ S4 and, by Theorem 12, there is a negative weight

concrete cycle. By analysing the symbolic cycle, we can then surmise that (0, 1)
e2−→

(0, 0) 1−→ (1, 1)
e3−→ (0, 1) is a negative weight concrete cycle, with weight −1.

7.4 Optimisations

In this section, we will describe two optimisation techniques for Algorithm 2.

7.4.1 Continuing With the Same Waiting List

We propose the idea of reusing the waiting list between calls of

Find-Negative-Cycle of Algorithm 2, instead of re-exploring from the ini-

tial state anew. Concretely, we remove the reset of the waiting list on line 9 in

Algorithm 2. This still guarantees that all negative cycles will be found.

Theorem 13. Algorithm 2 without line 9 still terminates and returns a ratio-

optimal cycle, if one exists, otherwise NO CYCLE.

Proof. For termination, the only difference in Lemma 9 (on termination) is that

Lemma 8 (on Parent comprising a directed in-tree) no longer holds, because there

is not necessarily a single root of the parent. However, it is still a directed in-

forest, i.e. consisting of one or more mutually disconnected in-trees. Therefore,

the Parent-Negative-Cycle subroutine still terminates, as all paths in Parent lead

to a (non-unique) root node.

53

The proof for soundness is the same as before (Lemma 10), so we now

just need to prove completeness. We do this by showing that at each call to

Find-Negative-Cycle, if there is a reachable negative cycle, then there is a state

in Waiting that can reach the negative cycle. In the base case, this is true because

by definition all reachable negative cycles can be reached from the initial state.

Now, assuming all negative cycles are reachable from Waiting before the call,

then we show that all negative cycles are still reachable after updating λ to λ′

with λ′ < λ. Exploration is only stopped by not passing the if-statement on line

14, when it is dominated by a previously seen state. A cycle is therefore only

stopped being explored when it does not become any cheaper, which means it

is a non-negative cycle. Observe that when λ′ < λ then any non-negative cycle

in the λ-deducted automaton is also non-negative in the λ′-deducted automaton.

Thus, any cycle that has been explored and concluded to be non-negative, will

still be non-negative with the new, smaller λ′-value. Conclusively, all negative

cycles will still be reachable.

7.4.2 Pruning the Parent Pointer

We now propose to prune the states in the Parent pointer to reduce the memory

usage. The idea is that we do not need to store all of the explored states in the

Parent pointer; we can remove those where we have found a cheaper state because

we might as well explore that state instead of the latter. Formally, we prune the

Parent function s.t. ∀S, S′ ∈ dom(Parent). S ⊑ S′ =⇒ S = S′. In order to

maintain this invariant, we only insert a state S into the parent if S′ ̸⊑ S for all

S′ ∈ dom(Parent), and after inserting S we remove from Parent all states S′′ where

S ⊑ S′′.

Specifically, we include the following lines, 14a and 14b, inserted into Algo-

rithm 2:

54

Function Find-Negative-Cycle()

Parent := ∅;

11 while Waiting ̸= ∅ do

12 S := EXTRACT-MIN(Waiting);

13 forall S′ ∈ Postα(S) for all α ∈ E ∪ {ϵ} do

14 if ∀S′′ ∈ dom(Parent). S′′ ̸⊑ S′ then

14a forall S′′ ∈ dom(Parent) where S′ ⊑ S′′ do

14b undefine Parent(S′′);

15 Parent(S′) := (S, α);

16 insert S′ into Waiting;

17 if Parent-Negative-Cycle(S α−→ S′) returns cycle C then

18 return C;

return NO CYCLE;They are inserted in the Find-Negative-Cycle subroutine after checking that

the successor S′ of S (the expanded state from the Waiting list) is not dominated

in Parent. It undefines all S′′ ∈ dom(Parent) that S′ dominates, i.e. it removes

Parent(S′′) s.t. now S′′ ̸∈ dom(Parent).

We leave the correctness of this optimisation as a conjecture, as we have not

yet been able to find a counter-example nor a proof of its correctness. The main

conundrum is whether this pruning can cause an infinite sequence of pruning in

the Parent s.t. no cycle is left intact whenever Parent-Negative-Cycle is called.

Conjecture 14. Adding the lines 14a and 14b to Algorithm 2, which prune the

Parent function, preserves its correctness.

8 Experimental Evaluation

In this section, we present our experimental evaluation of the approaches pre-

sented in the paper. First, the models used for the experiments are presented.

Next, we discuss some problems with the BDD algorithm from Section 4 that

makes it perform poorly, and why it is not present in the remaining results. Lastly,

the results of the evaluation of symbolic λ-deduction from Section 7 and corner-

point minimal cycle ratio solving with Howard’s from Section 3.2 are presented

and discussed. As a shorthand in the figures and tables, we will refer to the 3 al-

gorithms as CP-BDD for corner-point BDD, S-λD for symbolic λ-deduction, and

55

CP-MCR for the ground truth corner-point minimum cycle ratio technique using

Howard’s algorithm.

8.1 Methodology

The algorithms have been implemented on top of UPPAAL 4.1 [10]. The data from

the experiments and the scripts for generating the figures and tables are available

on Github1.

All experiments were conducted on a compute cluster with an AMD EPYC

7551 32-core Processor running Debian with a Linux 5.8 kernel. All experiments

were conducted with a 30-minute time limit and 10GB memory limit. The exper-

iments include three different scheduling problems: surveillance, job scheduling

and strandvejen.

The problems are modelled in UPPAAL as networks of timed automata. We

have extended the UPPAAL model parsing module to allow for both costs and re-

wards. In [10], they give a thorough description of the syntax they use. A network

of timed automata consists of template modules, which can be instantiated into

actual automata, allowing also parameters for constants. A regular cost-reward

weighted timed automaton can be constructed as the cross-product of the indi-

vidual automata. Additionally, synchronisation between instances is achieved by

synchronisation channels. For a synchronisation channel c, the synchronisation

is shown on edges as c! and c?, and it means that a c!−→ edge can only be fired in

conjunction with a c?−→ edge. Additionally, these can be represented as arrays of

channels, s.t. the i’th channel of a channel array a is a[i]. The initial state is marked

as a double circle.

8.1.1 Surveillance

The surveillance scheduling problem has one or more agents that must surveil

different places. Figure 3 shows the two templates of the model. If a place has

not been surveilled for 10 units of time, the cost of the place is increased. The

agents can either be waiting or surveilling, with the former giving more reward.

1 https://github.com/Slorup/uppaal_roc_artefact

56

https://github.com/Slorup/uppaal_roc_artefact

At some point the agent can surveil a place which takes between 5 and 10 units

of time and resets the cost of the place to its initial value.

(a) Place. (b) Agent.

Fig. 3: Surveillance scheduling problem.

8.1.2 Job Scheduling

Our job scheduling problem is a small extension to the scheduling problem pre-

sented in [29]. The model consists of two templates, machines and jobs, and con-

cerns with scheduling jobs on specific machines. The templates are shown in Fig-

ure 4. The machine template only consists of two states that indicate whether it

is in use or not. The cost of the machine is higher if it is currently in use. Each

job needs to serially perform two tasks on two specific machines, m1 and m2. The

time to perform the tasks are specified by time1 and time2, respectively. Each job

needs to be repeated at least every deadline units of time, and completing the

task results in jobreward amount of reward.

8.1.3 Strandvejen

Strandvejen is a scheduling problem which concerns volunteers balancing their

university work while maintaining a supply of cold drinks in the refrigerators.

The UPPAAL model consists of three templates: Volunteer, Consumer and Refrig-

erator. The templates are shown in Figure 5.

The refrigerator can store up to 4 items, which can be withdrawn by the con-

sumers and volunteers. Withdrawing an item gives a reward specified by value.

It is also possible for a volunteer to fully refill a refrigerator.

The consumers have two possible states. They start in the active state, which

indicates they are a part of the social group at the university. Here they are able

57

(a) Machine. (b) Job.

Fig. 4: Job scheduling problem.

(a) Refrigerator.

(b) Volunteer. (c) Consumer.

Fig. 5: Strandvejen scheduling problem.

58

to withdraw items from the refrigerator. If they do not receive an item within the

interval of [min_time, max_time], they leave the social group, which results in a

lower reward rate and them no longer being able to withdraw items.

The volunteers are the core of the scheduling problem. They earn reward by

working in their group room, where they are also able to withdraw items ev-

ery min_time units of time. Every so often, they can travel to Strandvejen to refill

the refrigerators. Travelling time is based on the volunteer’s distance to Strandve-

jen, which is indicated by transit_time. Traversing and refilling the refrigerators

adds to the cost.

8.1.4 Benchmark Suite

For our experiments, we created a collective benchmark with instances from the

three scheduling problems presented in Section 8.1. This benchmark includes 7

instances of the job scheduling problem, 9 instances of the strandvejen problem

and 14 instances of the surveillance scheduling problem, totalling 30 instances.

The job scheduling instances vary in the number of jobs and machines, the time

to execute the jobs on each machine is 3 units of time and the deadline for each

job is between 12 and 15 units of time. The number of components is indicated

in the instance names, i.e. the instance name job_j3_m2 is run with 3 jobs and 2

machines. In Strandvejen, the highest constant is 13 and all templates are scaled.

The surveillance instances are scaled in the number of agents and places, and the

constants remain as depicted in Figure 3.

8.2 BDD Approach

In Section 4, we described an approach to solve the cost-reward optimal cycle

problem using BDDs. However, during initial experiments, we found that it is

extremely slow, and takes too long on even very small problems.

One of the main culprits is the BDD multiplication and BDD addition of the

many cost and reward variables. Here we tried multiple things to speed up the

operations such as changing the variable ordering and doing conjunctions mid-

way to avoid large intermediate BDDs. This did give improvements, but the op-

erations remained too heavy.

59

Another problem with the approach was the compounding of the transition

relation. This step in itself showed to perform slowly due to the large number

of variables. To improve on the compounding of the transition relation, we de-

veloped a reduction method, where we restrict the relation to only deal with a

subset of states that has the property that for all infinite executions, at least one

of them is visited infinitely often in that execution. This technique was a great

improvement, but unfortunately, it was not enough to render the BDD algorithm

remotely applicable.

In the rest of this section, we will not include the BDD algorithm as severely

under-performs compared to CP-MCR and symbolic λ-deduction.

8.3 Results

This section contains the results of our experimental evaluation. First, we present

the results of symbolic λ-deduction and its various optimisations. Afterwards,

we compare symbolic λ-deduction to CP-MCR . Lastly, we analyse how the algo-

rithms perform when the clock space is up-scaled.

8.3.1 Symbolic λ-deduction Optimisations

We now present and compare the different versions of symbolic λ-deduction.

This includes the idea in Section 7.4.1 of reusing the same waiting list through

iterations, the pruning of the parent pointer from Section 7.4.2, and the transfor-

mation matrix technique from Section 7.3 to efficiently determine if a symbolic

cycle is negative.

60

0 5 10 15 20
0.001

0.01

0.1

1

10

100

1000

Instance

Ti
m

e
[s

]

S-λD - No opt.
S-λD - Parent Pruning
S-λD - Reuse Waiting
S-λD - All opt.
S-λD - Matrices

0 5 10 15 20
10

100

1000

Instance

M
em

or
y

U
sa

ge
[M

B]

S-λD - No opt.
S-λD - Parent Pruning
S-λD - Reuse Waiting
S-λD - All opt.
S-λD - Matrices

Fig. 6: Cactus plots of the time and memory it took for symbolic λ-deduction and
its variants to prove the optimal ratio of the instances. All variants solved 22 of
the 30 instances.

Figure 6 shows the time and memory usage of the different versions of sym-

bolic λ-deduction, respectively. This includes a variant without any optimisa-

tions, three variants for each optimisation enabled individually, and a variant

with all three optimisation techniques enabled together. In the two figures, the

instances are ordered by time and memory usage, respectively, for each version

of the algorithm. If a variant did not finish on an instance, then the data point is

not showed in the cactus plot.

61

All variants of symbolic λ-deduction terminate with the optimal cycle ratio

in 22 of the 30 instances. Pruning of the parent pointers shows a tiny increase

in speed at median, but at median reduces the memory usage by 2.1%, how-

ever, in the best cases, it achieves a reduction of 42.1%. In the majority of the

instances, the use of transformation matrices improves the performance of sym-

bolic λ-deduction and it has a median time reduction of 12.9%.

Reusing the waiting list through iterations shows a large variance in perfor-

mance. On some instances, it decreases the total time spent by up to 67%, while

on other instances it triples the total time. The median time improvement of en-

abling the technique is exactly 0%. A similar story is seen for memory usage,

ranging from 55.0% memory reductions on some instances while increasing the

memory usage with up to 71.5% in other cases, with a median memory reduc-

tion of 1.4%. This large variance is likely due to the technique changing the order

of which the symbolic states are expanded from the waiting list. The problems

instances we have run on do not present a lot of gain from this optimisation, be-

cause in many cases it is always possible to reach back to the initial state, which

means there will not be much opportunity for pruning.

The version with all optimisations techniques enabled shows that the tech-

niques can be combined into an improved version of the algorithm with great

effect. Here we get a 38.2% median decrease in time and a 6.5% decrease in mem-

ory usage compared to the version without any optimisations.

8.3.2 Comparison Between Symbolic λ-deduction and CP-MCR

In this section, we compare the results of CP-MCR and symbolic λ-deduction on

our benchmark. First, we present the results of scaling the number of components

in our model, and afterwards by scaling the size of the constants in the models.

We consider only the version of symbolic λ-deduction with parent pruning and

transformation matrices enabled, and leave the technique of reusing the waiting

list disabled due to its chaotic performance.

Figure 7 show two scatter plots comparing the time and memory usage for

CP-MCR and symbolic λ-deduction. A table with all the results is shown in Ta-

ble 1. On two instances, symbolic λ-deduction terminates with the optimal value

62

where Concrete-MCR does not find any cycle. Contrarily, there are three instances

on which Concrete-MCR terminates where symbolic λ-deduction did not. How-

ever, on these instances, symbolic λ-deduction was able to find a near-optimal

ratio before running out of time. We also note that on surveil_a1_p7, symbolic λ-

deduction finds that there is no cycle as a single agent cannot surveil seven places

within the time constraints.

10−3 10−2 10−1 100 101 102 103 uns.
10−3

10−2

10−1

100

101

102

103

uns.

S-λD

C
P-

M
C

R

101 102 103 104 uns.

101

102

103

104

uns.

S-λD

C
P-

M
C

R

(a) Total time (s). (b) Memory usage (MB).

Job Strandvejen Surveil

Fig. 7: Scatter plots comparing the performance of symbolic λ-deduction and CP-
MCR both in total time and memory usage.

On the surveillance and job scheduling instances, symbolic λ-deduction

clearly performs better in both time and memory. In contrast, CP-MCR out-

performs symbolic λ-deduction in time on all strandvejen instances (except for

strdvj_f1_v2_c3 where neither algorithm terminates). At median, the time of

CP-MCR is 4.17 times greater than symbolic λ-deduction and the memory us-

age is 2.10 times greater. Notice that symbolic λ-deduction always found a cycle

within time limit. This is an advantage of symbolic λ-deduction as it immedi-

63

CP-MCR S-λD
Instance Time (s) Memory (MB) Ratio RatioTime (s) Time (s) Memory (MB) Ratio RatioTime (s)

job_m2_j1 0.001 11.024 48.0000 0.001 0.000 12.320 48.0000 0.000
job_m2_j2 0.296 32.664 36.0000 0.235 0.071 13.172 36.0000 0.027
job_m2_j3 168.044 2427.576 30.0000 149.242 112.782 185.044 30.0000 0.023
job_m2_j4 - OOM - - OOT - 24.0000 0.076
job_m3_j2 0.487 39.800 42.0000 0.350 0.053 12.952 42.0000 0.008
job_m3_j3 651.253 4583.680 42.0000 623.498 533.127 291.316 42.0000 0.492
job_m3_j4 - OOM - - OOT - 37.5000 142.466

strdvj_f1_v1_c1 0.026 13.164 0.0814 0.026 0.138 13.712 0.0814 0.099
strdvj_f1_v1_c2 1.096 34.728 0.0598 1.047 30.360 68.548 0.0598 18.246
strdvj_f1_v1_c3 145.386 685.652 0.0486 138.633 OOT - 0.1034 531.575
strdvj_f1_v2_c1 4.566 84.644 0.0980 3.504 56.174 91.396 0.0980 25.440
strdvj_f1_v2_c2 286.337 909.528 0.0796 253.417 OOT - 0.0821 1514.877
strdvj_f1_v2_c3 OOT - - - OOT - 0.0843 335.026
strdvj_f2_v1_c1 0.217 22.616 0.0533 0.194 0.560 17.616 0.0533 0.440
strdvj_f2_v1_c2 10.699 154.328 0.0398 9.998 231.075 368.192 0.0398 169.301
strdvj_f2_v1_c3 1265.142 4524.200 0.0329 1195.115 OOT - 0.1034 524.100
surveil_a1_p1 0.000 11.024 0.7500 0.000 0.000 11.940 0.7500 0.000
surveil_a1_p2 0.040 14.152 1.7500 0.037 0.004 12.520 1.7500 0.003
surveil_a1_p3 1.699 79.096 3.5000 1.482 0.198 14.800 3.5000 0.009
surveil_a1_p4 62.441 688.844 6.8000 56.719 9.302 40.140 6.8000 0.005
surveil_a1_p5 604.830 3624.020 10.6250 582.922 47.719 148.308 10.6250 0.033
surveil_a1_p6 OOT - - - 33.827 301.364 17.0000 3.175
surveil_a1_p7 OOT - - - 61.034 658.200 No sol. -
surveil_a2_p1 0.010 12.052 0.7500 0.010 0.001 12.320 0.7500 0.000
surveil_a2_p2 1.841 69.432 0.7500 1.639 0.138 13.648 0.7500 0.001
surveil_a2_p3 770.296 2330.464 1.2500 743.820 71.859 88.572 1.2500 0.005
surveil_a2_p4 OOT - - - OOT - 1.7500 0.183
surveil_a3_p1 0.358 26.828 0.7500 0.299 0.042 12.764 0.7500 0.001
surveil_a3_p2 326.750 960.452 0.7500 319.026 30.381 48.384 0.7500 0.002
surveil_a3_p3 OOT - - - OOT - 0.7500 0.003

Table 1: Results comparison between symbolic λ-deduction and CP-MCR . Run
with a 30-minute time limit and 10GB memory limit—OOT and OOM mean that
these were exceeded, respectively. Ratio is the best ratio that the algorithm found.
Note that this may not be optimal in the case that the algorithm did not finish
due to exceeding the time or memory limit. RatioTime is the time it took for the
algorithm to find Ratio.

ately starts searching for cycles. CP-MCR also incrementally improves on the best

found ratio, however before being able to do so, it needs to spend a lot of time

expanding the entire state-space.

64

8.3.3 Scaling the Size of the Clock Space

The previous results showed how the algorithms scaled in the number of loca-

tions, components and clocks on our three scheduling models. The constants in

these models are relatively small with the highest being 15. We now study the

performance of the algorithms when scaling the size of the constants.

Figure 8 shows the run-time of CP-MCR and symbolic λ-deduction when scal-

ing all the constants in the model. Additionally, after scaling we add 1 to the con-

stants to remove large common divisors, which means that the problem can no

longer be reduced to the original by simply dividing by the scaling factor. The

experiment shows that CP-MCR suffers an exponential increase in time w.r.t. to

the scaling factor. In contrast, this barely affects the time of symbolic λ-deduction.

This is not surprising as scaling can result in an exponential increase in the num-

ber of discrete states in the underlying transition system, which has a direct pro-

portional increase in the number of vertices in the doubly weighted graph of

CP-MCR . From Figure 8c, we can see how CP-MCR scales linearly w.r.t. the ratio

of discrete states to locations. Contrarily, scaling the size of the constants does

not have any impact on the number of symbolic states and instead only increases

the size of the zones. However, adding 1 to the constants after scaling sometimes

changes the solution space, thus we also see some fluctuations for symbolic λ-

deduction.

65

1 3 5 7 9 11 13 15 17 19
10−3

10−2

10−1

1

10

100

1000

Unsol.

Scaling factor

Ti
m

e
(s

)

1 3 5 7 9 11 13 15 17 19
10−3

10−2

10−1

1

10

100

1000

Unsol.

Scaling factor
Ti

m
e

(s
)

102 103 104 105 106
10−3

10−2

10−1

1

10

100

1000

#discrete states
#locations

Ti
m

e
(s

)

102 103 104 105 106
10−3

10−2

10−1

1

10

100

1000

#discrete states
#locations

Ti
m

e
(s

)
(a) CP-MCR. (b) S-λD.

(c) CP-MCR. (d) S-λD.

Job Strandvejen Surveil

Fig. 8: Figure 8a and 8b shows the time of CP-MCR and symbolic λ-deduction
on job_m2_j2, strandvejen_f1_v1_c2 and surveil_a1_p2 when scaling all con-
stants in the models with a factor and afterwards adding 1. Similarly, Figure 8c
and 8d shows the time as a function of the average number of discrete states per
location (by scaling constants as before).

66

9 Conclusion

In this report, we studied two novel symbolic approaches for finding ratio-

optimal cycles in cost-reward priced timed automata (CRTA), namely, using bi-

nary decision diagrams (BDDs) and using priced zones. We implemented both

algorithms in UPPAAL, and conducted an experimental evaluation.

We showed how to encode the transition relation of the underlying discrete

transition system as a BDD, and how it can be used to find optimal cycles. We

compute the closure of this relation, which is then used to determine the states

that are in an optimal cycle. Finally, we construct a transition relation consist-

ing only of transitions that are in an optimal cycle and proved that any cycle

in this transition relation is optimal. Unfortunately, the experimental evaluation

unveiled that this algorithm has atrocious performance.

As our main contribution, we developed symbolic λ-deduction: an algorithm

that merges the cost and reward of edges and rates into a single-priced timed au-

tomaton, circumventing some significant theoretical barriers that arise in the dou-

bly priced setting. It incrementally improves the best found cycle, searching with

priced clock zones. We proved that it converges on an optimal solution by prov-

ing its correctness and termination. Additionally, we showed how the change of

the cost function of a symbolic state, from traversing a path (or cycle), can be rep-

resented as an affine transformation matrix, allowing us to efficiently determine

whether a symbolic cycle is a better solution. The experimental evaluation for this

algorithm was far more prosperous: it showed that symbolic λ-deduction outper-

forms the concrete MCR algorithm using Howard’s on some problems. We also

experimentally validated the symbolic strength of being completely unaffected

by large clock values, where the concrete approach suffers an exponential slow-

down. For example, the median for symbolic λ-deduction is ~3.5 times faster

than the median for the concrete approach over all experiments. On the other

hand, symbolic λ-deduction likely performs poorer than the concrete algorithm

if the clock space is small and the different cycles are plenty.

In future work, we believe there can be a lot of gain in using heuristics to de-

cide the order of exploring states in symbolic λ-deduction. We also believe there

67

can be better ways to avoid information loss when finding a new λ-value. We

have already explored this, by reusing the waiting list, however, we believe there

can be more benefit by also somehow keeping the parent pointer information.

References

[1] Nicklas Slorup Johansen, Kristian Ødum Nielsen, and Rasmus Tollund.

“Towards Efficiently Computing Optimal Infinite Cycles in Cost-Reward

Timed Automata”. In: (2023).

[2] Gerd Behrmann et al. “Minimum-Cost Reachability for Priced Timed Au-

tomata”. In: Hybrid Systems: Computation and Control, 4th International Work-

shop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings. Ed. by Maria

Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli. Vol. 2034.

Lecture Notes in Computer Science. Springer, 2001, pp. 147–161. DOI: 10.

1007/3-540-45351-2_15.

[3] Rajeev Alur, Salvatore La Torre, and George J. Pappas. “Optimal paths in

weighted timed automata”. In: Theor. Comput. Sci. 318.3 (2004), pp. 297–322.

DOI: 10.1016/j.tcs.2003.10.038.

[4] Thomas Hune, Kim Guldstrand Larsen, and Paul Pettersson. “Guided Syn-

thesis of Control Programs Using UPPAAL”. In: Nord. J. Comput. 8.1 (2001),

pp. 43–64.

[5] Ansgar Fehnker. “Scheduling a Steel Plant with Timed Automata”. In: 6th

International Workshop on Real-Time Computing and Applications Symposium

(RTCSA ’99), 13-16 December 1999, Hong Kong, China. IEEE Computer Soci-

ety, 1999, pp. 280–286. DOI: 10.1109/RTCSA.1999.811256.

[6] Peter Niebert and Sergio Yovine. “Computing Efficient Operation Schemes

for Chemical Plants in Multi-batch Mode”. In: Eur. J. Control 7.4 (2001),

pp. 440–454. DOI: 10.3166/ejc.7.440-454.

[7] Ed Brinksma, Angelika Mader, and Ansgar Fehnker. “Verification and op-

timization of a PLC control schedule”. In: Int. J. Softw. Tools Technol. Transf.

4.1 (2002), pp. 21–33. DOI: 10.1007/s10009-002-0079-0.

68

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/10.1109/RTCSA.1999.811256
https://doi.org/10.3166/ejc.7.440-454
https://doi.org/10.1007/s10009-002-0079-0

[8] Patricia Bouyer, Ed Brinksma, and Kim Guldstrand Larsen. “Staying Alive

as Cheaply as Possible”. In: Hybrid Systems: Computation and Control, 7th

International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27, 2004,

Proceedings. Ed. by Rajeev Alur and George J. Pappas. Vol. 2993. Lecture

Notes in Computer Science. Springer, 2004, pp. 203–218. DOI: 10.1007/978-

3-540-24743-2_14.

[9] Rajeev Alur and David Dill. “Automata for modeling real-time systems”.

In: Automata, Languages and Programming. Ed. by Michael S. Paterson.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 322–335.

[10] Kim G Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a nutshell”. In:

International journal on software tools for technology transfer 1.1 (1997), pp. 134–

152.

[11] Conrado Daws et al. “The tool KRONOS”. In: International Hybrid Systems

Workshop. Springer. 1995, pp. 208–219.

[12] Gerd Behrmann et al. “Efficient guiding towards cost-optimality in UP-

PAAL”. In: International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems. Springer. 2001, pp. 174–188.

[13] Ulrich Fahrenberg and Kim Guldstrand Larsen. “Discount-Optimal Infinite

Runs in Priced Timed Automata”. In: Joint Proceedings of the 8th, 9th, and

10th International Workshops on Verification of Infinite-State Systems, INFINITY

2006 / 2007 / 2008. Ed. by Peter Habermehl and Tomás Vojnar. Vol. 239.

Electronic Notes in Theoretical Computer Science. Elsevier, 2009, pp. 179–

191. DOI: 10.1016/j.entcs.2009.05.039.

[14] Lewis Tolonen, Tim French, and Mark Reynolds. “Population Based Meth-

ods for Optimising Infinite Behaviours of Timed Automata”. In: 25th Inter-

national Symposium on Temporal Representation and Reasoning (TIME 2018).

Ed. by Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek. Vol. 120.

Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-

many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 22:1–

22:22. ISBN: 978-3-95977-089-7. DOI: 10.4230/LIPIcs.TIME.2018.22.

69

https://doi.org/10.1007/978-3-540-24743-2_14
https://doi.org/10.1007/978-3-540-24743-2_14
https://doi.org/10.1016/j.entcs.2009.05.039
https://doi.org/10.4230/LIPIcs.TIME.2018.22

[15] Alexandre David et al. “Optimal Infinite Runs in One-Clock Priced Timed

Automata”. English. In: Annual Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS); null ; Conference

date: 14-10-2011 Through 16-10-2011. 2011.

[16] E.L. Lawler. “Combinatorial Optimization: Networks and Matroids”. In:

Holt, Rinehart and Winston, 1976. Chap. 13.

[17] Patricia Bouyer et al. “Infinite Runs in Weighted Timed Automata with En-

ergy Constraints”. In: Formal Modeling and Analysis of Timed Systems, 6th In-

ternational Conference, FORMATS 2008, Saint Malo, France, September 15-17,

2008. Proceedings. Ed. by Franck Cassez and Claude Jard. Vol. 5215. Lecture

Notes in Computer Science. Springer, 2008, pp. 33–47. DOI: 10.1007/978-

3-540-85778-5_4.

[18] Patricia Bouyer et al. “Average-energy games”. In: Acta Informatica 55.2

(2018), pp. 91–127. DOI: 10.1007/s00236-016-0274-1.

[19] Patricia Bouyer, Kim G. Larsen, and Nicolas Markey. “Lower-bound-

constrained runs in weighted timed automata”. In: Perform. Evaluation 73

(2014), pp. 91–109. DOI: 10.1016/j.peva.2013.11.002.

[20] Kim Larsen et al. “As Cheap as Possible: Efficient Cost-Optimal Reachabil-

ity for Priced Timed Automata”. In: vol. 2102. July 2001, pp. 493–505. ISBN:

978-3-540-42345-4. DOI: 10.1007/3-540-44585-4_47.

[21] Ali Dasdan. “Experimental Analysis of the Fastest Optimum Cycle Ratio

and Mean Algorithms”. In: ACM Trans. Des. Autom. Electron. Syst. 9.4 (Oct.

2004), pp. 385–418. ISSN: 1084-4309. DOI: 10.1145/1027084.1027085.

[22] Ali Dasdan, Sandy S Irani, and Rajesh K Gupta. “Efficient algorithms for

optimum cycle mean and optimum cost to time ratio problems”. In: Pro-

ceedings of the 36th Annual ACM/IEEE Design Automation Conference. 1999,

pp. 37–42.

[23] Jean Cochet-Terrasson et al. “Numerical Computation of Spectral Elements

in Max-Plus Algebra”. In: IFAC Proceedings Volumes 31.18 (1998). 5th IFAC

Conference on System Structure and Control 1998 (SSC’98), Nantes, France,

70

https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1016/j.peva.2013.11.002
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1145/1027084.1027085

8-10 July, pp. 667–674. ISSN: 1474-6670. DOI: https://doi.org/10.1016/

S1474-6670(17)42067-2.

[24] Ramón Béjar, César Fernández, and Francesc Guitart. “Encoding Basic

Arithmetic Operations for SAT-Solvers”. In: Artificial Intelligence Research

and Development - Proceedings of the 13th International Conference of the Catalan

Association for Artificial Intelligence, l’Espluga de Francolí, Tarragona, Spain, 20-

22 October 2010. Ed. by René Alquézar, Antonio Moreno, and Josep Aguilar-

Martin. Vol. 210. Frontiers in Artificial Intelligence and Applications. IOS

Press, 2010, pp. 239–248. DOI: 10.3233/978-1-60750-643-0-239. URL:

https://doi.org/10.3233/978-1-60750-643-0-239.

[25] Kim Guldstrand Larsen et al. “As Cheap as Possible: Efficient Cost-Optimal

Reachability for Priced Timed Automata”. In: Computer Aided Verification,

13th International Conference, CAV 2001, Paris, France, July 18-22, 2001, Pro-

ceedings. Ed. by Gérard Berry, Hubert Comon, and Alain Finkel. Vol. 2102.

Lecture Notes in Computer Science. Springer, 2001, pp. 493–505. DOI: 10.

1007/3-540-44585-4_47.

[26] A. Charnes and W. W. Cooper. “Programming with linear fractional func-

tionals”. In: Naval Research Logistics Quarterly 9.3-4 (1962), pp. 181–186. DOI:

https://doi.org/10.1002/nav.3800090303.

[27] Michel Gondran and Michel Minoux. “Appendix 5”. In: Graphs and algo-

rithms. John Wiley & Sons, 1995.

[28] Joseph B Kruskal. “The theory of well-quasi-ordering: A frequently dis-

covered concept”. In: Journal of Combinatorial Theory, Series A 13.3 (1972),

pp. 297–305. ISSN: 0097-3165. DOI: https : / / doi . org / 10 . 1016 / 0097 -

3165(72) 90063 - 5. URL: https : / / www . sciencedirect . com / science /

article/pii/0097316572900635.

[29] Gerd Behrmann, Kim G Larsen, and Jacob I Rasmussen. “Optimal schedul-

ing using priced timed automata”. In: ACM SIGMETRICS Performance Eval-

uation Review 32.4 (2005), pp. 34–40.

71

https://doi.org/https://doi.org/10.1016/S1474-6670(17)42067-2
https://doi.org/https://doi.org/10.1016/S1474-6670(17)42067-2
https://doi.org/10.3233/978-1-60750-643-0-239
https://doi.org/10.3233/978-1-60750-643-0-239
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/https://doi.org/10.1002/nav.3800090303
https://doi.org/https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/https://doi.org/10.1016/0097-3165(72)90063-5
https://www.sciencedirect.com/science/article/pii/0097316572900635
https://www.sciencedirect.com/science/article/pii/0097316572900635

	Efficiently Finding Ratio-Optimal Infinite Cycles in Doubly-Priced Timed Automata
	Introduction
	Our Contributions

	Cost-Reward Optimal Cycles
	Cost-Reward Timed Automata
	Semantics and Cost-Reward Optimal Cycles
	Restrictions
	Boundedness of Automata
	Problem Statement

	Concrete Minimum Cycle Ratio
	Corner-Point abstraction
	Reduction to Minimum Cycle Ratio

	Binary Decision Diagrams
	Encoding States as a BDD
	BDD operations
	Computing the Transition Relation Closure
	Finding Optimal Cycles
	Extracting Optimal Simple Cycles

	Symbolic Representation
	Zones and Symbolic States
	Pitfalls of Symbolic Representation
	Priced Zones

	Extracting the Optimal Concrete Cycle from a Symbolic Cycle
	Linear-Fractional Programming

	Symbolic -deduction
	Finding Negative-Weight Concrete Cycles
	Proof of Correctness
	Efficiently Determining Whether a Symbolic Cycle is Negative
	Optimisations
	Continuing With the Same Waiting List
	Pruning the Parent Pointer

	Experimental Evaluation
	Methodology
	Surveillance
	Job Scheduling
	Strandvejen
	Benchmark Suite

	BDD Approach
	Results
	Symbolic -deduction Optimisations
	Comparison Between Symbolic -deduction and CP-MCR
	Scaling the Size of the Clock Space

	Conclusion

