
Printfarm Management System
- Communication Technology 10th semester -

Master Thesis

Alexander Aagren

Aalborg University
Communication Technology

Networks and Distributed Systems

Copyright © Aalborg University 2015

This report is written in LATEX and compiled in Overleaf. Figures are made using MATLAB R2021b, Dia-
grams.net 18.1.2 and Tikz. MATLAB R2021b has been used for the majority of the calculations performed.

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Printfarm Management System

Theme:
Master Thesis

Project Period:
Spring Semester 2023

Project Group:
CT10-1023

Participant(s):
Alexander Aagren

Supervisor(s):
Henrik Schiøler

Copies: 1

Page Numbers: 48

Date of Completion:
June 1, 2023

Abstract:

This thesis is written in collaboration with the
3D printing company Create it REAL. The chal-
lenges of managing a 3D printer farm are inves-
tigated, both from the hardware perspective as
well as the network connectivity perspective. It
was found that the print jobs sent over WiFi to
a printer, using Hardware and Firmware made
by Create it REAL, use AES128 encryption. A
Printfarm Management System is designed to
give the capability of queuing multiple print
jobs to printers. The Printfarm Management
System is designed in a way where it consid-
ers the printing time of a print job in order to
know whether or not the print job can finish
within working hours. It also takes the esti-
mated amount of filament left on the printer
into consideration in order to know if the ad-
ministrator is to be notified about a needed fil-
ament change. A set of queuing algorithms is
investigated and simulated in order to choose
the one best suited for the system. The cho-
sen queuing algorithm was Modified Maxi-
mum Urgency First, as it gives the possibility
of prioritising specific print jobs, which can be
used for error handling of failed print jobs.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author.

http://www.aau.dk

Contents

Preface vii

Nomenclature ix

1 Introduction 1

2 Problem Analysis 3
2.1 Analysing the printing process . 3
2.2 Error handling . 6
2.3 Controlling the printers over the network . 7
2.4 Network discovery of 3D printers . 9
2.5 Transmitting a print job . 10

2.5.1 Security . 10
2.6 Queueing Algorithms . 12

2.6.1 First-In-First-Out . 12
2.6.2 Round Robin . 12
2.6.3 Shortest Job First . 13
2.6.4 Priority Queuing . 14
2.6.5 Earliest Deadline First . 15
2.6.6 Least Laxity First Scheduling Algorithm . 16
2.6.7 Maximum Urgency First . 18
2.6.8 Modified Maximum Urgency First . 19

2.7 Problem Formulation . 19

3 Requirements 21

4 System Design 23
4.1 The Combination of Queuing Algorithms . 23
4.2 Running out of filament . 25

5 Simulations 29
5.1 Simulation Results . 31

5.1.1 Ranking the algorithms . 32
5.1.2 Simulations with random deadlines for print jobs with priority 2 33

6 Final Design 37

7 Discussion 41

8 Conclusion 43

Bibliography 47

Page v of 48

Preface

This master thesis is written by a 10th semester student, studying Communication Technology -
Networks and Distributed Systems by the name of Alexander Aagren. It is expected that the reader
has a general knowledge of communication systems.

Source references in this report appear according to the numerical source-referencing method.
Sources are referenced by numerical order in which they appear. Figures, tables, and equations
are inserted and numerated according to chapter and order of insertion. Explanatory text and ref-
erences are inserted immediately before or after the figure, table or equation. Abbreviations or
acronyms, that are not commonly recognised, are written in full followed by the abbreviation or
acronym in parenthesis. After the first reference, the words are only referenced by the acronym or
abbreviation.

Aalborg University, June 1, 2023

Alexander Aagren
<aaagre18@student.aau.dk>

Page vii of 48

mailto:aaagre18@student.aau.dk

Nomenclature

This page contains common abbreviations and terms used throughout this report.

Abbreviation Meaning
ABS Acrylonitrile Butadiene Styrene
AES Advance Encryption Standard
DNS-SD DNS Service Discovery
EDF Earliest Deadline First
FCFS First-Come-First-Serve
FDM Fused Deposition Modelling
FIFO First-In-First-Out
IoT Internet of Things
LLF Least Laxity First
mDNS multicast Domain Name System
MLLF Modified Least Laxity First
MMUF Modified Maximum Urgency First
MUF Maximum Urgency First
PLA PolyLactic Acid
RM Rate Monotonic
SJF Shortest Job First
TPU Thermoplastic Polyurethane

Page ix of 48

1 Introduction

There are many forms of 3D printing. One of the widely used 3D printing techniques is material
extrusion-based 3D printing. This technique is widely used due to its low prices and the fact that
the products can be fully functional parts.[1] Fused Deposition Modelling (FDM) is an example of
material extrusion-based 3D printing. It was developed in the early 1990 and was the first example
of material extrusion-based 3D printing.[1]

A common procedure for 3D printing is to import the 3D model into a program on the computer
called a slicer. In the slicer, a user can then orient a model, add support for a model and more. The
slicer is also the program used to set the settings for a printer, and when a user is done, the user
can export the print file. This print file is often given in G-code format for FDM printers.
FDM works by having a filament that is heated up to a semi-liquid state and extruded on a print
plate. If support is needed for the model, the 3D printer will extrude material for the support in
a way that results in a weaker end result for the support in order to make the support possible to
remove from the print.

As FDM can be used for fully functional parts and is relatively low cost, it has been looked into
having multiple printers, also called a printer farm, in order to have the finished product faster,
especially for a multipart product.
Another reason for having multiple printers can be to make a factory, where the amount of printers
directly correlates with the number of finished parts that can then be shipped. Furthermore, using
a 3D printer farm for manufacturing parts gives versatility in the sense of switching from one part
to another is as simple as slicing the new part, adding the G-code to the storage drive, and starting
the new print on the printer. If a part is to be printed in another material, then the material needs
to be changed before starting a new print. However, this process is considerably faster than if the
part for example was manufactured by the use of moulds.
These are just two examples of applications of a printer farm.

When talking about print farms, there is a challenge that the printers are made for manual work,
which means that the majority of the printers require the user to save the g-code to a flash drive
and then plug this into the printer before starting the print. When the print is complete, the user
then has to remove the print from the print plate. When this is done, the user can then start the
procedure again with the next part. Furthermore, the printed result might need post-processing,
such as the removal of the supports.
As the technology improves, so has 3D printing. It is no longer only hard materials such as Poly-
Lactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) that are being used as filament, but
also softer materials such as Thermoplastic Polyurethane (TPU).

One of many companies that has 3D printers that can print with TPU is Create it REAL. Create it
REAL is making the electronics, the firmware and the software for the 3D printers. Some of the
electronics they make are their motherboards for 3D printers called Bluefin. [2] When looking into
the software they make, they have an online slicer called REALvision Online, and they have an of-
fline version called REALvision Pro.[3] Some of Create it REAL’s customers are orthopaedic doctors
making shoe insoles. These insoles are 3D printed and can be handed to customers in a relatively
short time. A challenge that these orthopaedic doctors experience is recruiting manual labour to
start the printers and removing the finished print. For that reason, an automatic print farm man-

Page 1 of 48

CHAPTER 1. INTRODUCTION

agement system would be advantageous.

Thereby, an initial problem formulation can be constructed as:

How can a 3D printing farm be automated to reduce the amount of manual labour needed?

Page 2 of 48

2 Problem Analysis

This master thesis is written in collaboration with Create it REAL, who have already begun looking
into the problem stated in Chapter 1. In order to automate a 3D printing farm it is important to
understand which steps are usually present. From the common procedure mentioned in Chapter 1,
a set of steps can be defined:

• Slice the model

• Transfer the G-code to the printer

• Start the print

• Remove the print when finished

• Verify that the print plate is empty

• Start a new print

• Post-process the finished print

The next section will be used for analysing the different steps and their possibilities for automation.

2.1 Analysing the printing process

When looking into 3D printers it is important to remember that not all printers are as advanced
as the ones made by Create it REAL. If looking into the most used printer model in a Create it
REAL slicer product, a printer by the name of Ender 3, made by the company Creality, runs with the
title. One notable thing about the Ender 3 is that it does not have the capability of having WiFi or
Ethernet.

Figure 2.1: Diagram of the used printers in a Create it REAL slicer product from April 9, 2019, to April 11 2023.

Page 3 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.1. ANALYSING THE PRINTING PROCESS

Printer Model Amount of users Percentage of total
Creality Ender 3 7931 36.34%
Creality Ender 3 Pro 3647 16.71%
Creality Ender 3 V2 3001 13.75%
undefined 2096 9.60%
Anycubic i3 Mega 1438 6.59%
Prusa i3 MK3 602 2.76%
Creality Ender 5 Plus 492 2.25%
Creality CR-10 418 1.92%
FlashForge Creator Pro (Beta) 406 1.86%
Creality CR-10 S 337 1.54%
Ultimaker 2+ 329 1.51%
Monoprice Select Mini V2 (Beta) 216 0.99%
IdeaWerk-Speed 186 0.85%
Monoprice Voxel (Beta) 159 0.73%
Monoprice Mini Delta (Beta) 114 0.52%
Monoprice Select Mini (Beta) 93 0.43%
Creality CR-20 Pro 80 0.37%
Ultimaker 2 Extended+ 73 0.33%
Creality CR-10 Mini (Beta) 61 0.28%
Speedy 47 0.22%
TEVO Tornado (Beta) 42 0.19%
TEVO Tarantula Pro 34 0.16%
Dood S 21 0.10%

Table 2.1: A Create it REAL slicer product statistics from April 9, 2019, to April 11 2023.

It is unknown why some printers have been defined as "undefined". But if these were all added to
the second most used printer, the Anycubic i3 Mega, the most used printer would still be the Creality
Ender 3. The Creality Ender 3 and its different versions do not have the ability for WiFi or Ethernet
without upgrading the hardware. [4]It is possible to make modifications to 3D printers, giving them
the capability of network connectivity, however, this requires modifying the firmware and is not a
simple plug-and-play solution in most cases. One solution for adding network capabilities to the
printers was investigated in [5]. Their solution was to equip each printer with a Raspberry Pi 3,
which has WiFi capabilities. This was chosen in order to have an OctoPrint instance for each of the
printers.[5]
OctoPrint will be investigated further in Section 2.3.

This is where Create it REAL stands out on the market as their motherboards already have WiFi
enabled [2], giving the advantage of being able to send a G-code to the printer without getting up
from a chair. Thereby, the process of transferring the G-code to the printer has been simplified, but
not automated. At the time of writing, if all the printers are occupied, there is no system in place
to handle the queue. The manual initiation of print jobs imposes a restriction on the maximum
number of print jobs that can be executed overnight, as the absence of employees during that time
precludes the commencement of print operations.
Taking this into consideration, one thing that could help to automate the printing process could be
to design a queue manager. If a queue manager was designed and implemented, this could possibly
help in ensuring that there is at least one print job per printer that is printing after the employees

Page 4 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.1. ANALYSING THE PRINTING PROCESS

have left the premises. However, when this print job has been completed, the finished print would
have to be removed from the print plate, before the next print could be started.

The process of removing a finished print from the print plate can be done in multiple ways. The
manual process commonly consists of a person going to the printer and separating the print job
from the print plate.
Create it REAL has invented its own procedure for removing the finished prints from the print
plate. This is done by having a "fork" next to the print head, which after finishing printing, grabs
the print, and lifts it up to ensure that the print detaches from the print plate. Then it moves the
print to the edge of the print plate and lowers the finished print while moving the print head away
from the finished print, making it fall off. A demo of this process can be seen in the video in [6].
Another demo can be seen in Figure 2.2

(a) Fork catching the print. (b) The print plate starts to descend.

(c) The print is free from the print plate. (d) The print head moves to the edge of the print plate.

Figure 2.2: The procedure of removing the print from the print plate

After the print has been removed from the print plate, it is necessary to verify whether or not the
print plate is indeed empty. This can be done by either manually going to the printer and inspecting
it, or by manually inspecting the printer remotely with the use of a camera mounted on the printer.
A third way to do it could be to automate this by the use of computer vision and machine learning

Page 5 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.2. ERROR HANDLING

together with a camera mounted on the printer.
A simple check using computer vision and machine learning could be to have an image of an empty
print plate which is used for the reference model and then have the printer check if the feed from
the camera is identical to the reference image. If they are not identical, the printer is then to report
that the print plate is not empty.
More advanced versions of verification can be developed where the printer could possibly check
if the print plate was empty and if not, whether or not this would affect the upcoming print, and
only report an error if it is estimated that the leftover material is in the way of the next print.
Another advanced version could be that the check could be done during printing, to ensure that
the printing is progressing as expected. This would require significantly more computational power
as the machine learning would need to calculate how the print was to look at the given time and
then compare. At the time of writing Create it REAL does not have computer vision and machine
learning implemented. However, they are in the process of developing it, and for that reason, this
will not be the focus of this master thesis.

2.2 Error handling

The printing process is not flawless and printing errors can happen. One such error can be the
print loosening itself from the print plate and becoming a loose object on the print plate, this can
affect other parts on the print plate if the print job was a combination of multiple parts. Some slicer
programs have the option of sequential printing, which means that if there are multiple parts in
the print job, the printer will complete one part before printing the next part. This differs from the
standard procedure where the printer prints one layer at a time on each part but does come with
limitations in terms of the number of parts on the print plate as the software must allocate extra
space per model to ensure that there is space enough for the print head.

Another error that can happen could be running out of filament before the print job is complete.
One common way to mitigate the damage of running out of filament is to install a filament run-out
sensor. These sensors can come in a variety of designs, but some of the simplest ones are literally
just a switch that is being pressed down when there is a filament, such as the one seen in Figure 2.3,
and can thereby be used to see when there is no filament.

Figure 2.3: Triangle-lab filament run-out sensor with filament.

In the case of no filament, the printers can be programmed to pause the ongoing print, giving the

Page 6 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.3. CONTROLLING THE PRINTERS OVER THE NETWORK

possibility of changing the filament before resuming the print and thereby ensuring that the print
job does not critically fail. A critical failure could be the printer believing that the print job is com-
plete even though the finished print job actually is only half finished due to running out of filament
without the printer knowing and pausing.

(a) The printer did not notice it ran out of filament and believed it
finished the print job, however, the print is only half finished.

(b) The printer did run out of filament, but it was detected and the
filament was changed, so that the print job could finish.

Figure 2.4: A visualisation of the difference between having a filament run-out sensor and not having one.

2.3 Controlling the printers over the network

OctoPrint is an open-source software that is used to control a 3D printer on the local network. This
printer is controlled over a web interface.[7] It is often installed on a Raspberry Pi or another single-
board computer, by installing a specific Linux distribution called OctoPi. [5]
OctoPrint gives the possibility of accessing a webcam feed, in order to monitor the printer remotely.
Other than visually being able to monitor the printer through the webcam it also gives constant
feedback on the progress of the current print job, as well as gives information on the different tem-
peratures and gives the possibility to change them during printing. It also gives the possibility of
starting, stopping and pausing the current print job. [8]
Adding the Raspberry Pi with OctoPrint to a printer such as the Ender 3 makes it capable of the
same as Create it REALs printers in terms of connectivity. However, Create it REAL has the printer
connection integrated into their slicer, REALvision Pro, making it easy to send the sliced file to the
printers. However, using OctoPrint, the user would first have to slice the file in a slicer, then save the
G-code, open OctoPrint in the browser, and then send the G-code to the printer. The difference is
also visible in that OctoPrint will only show you the information for a single printer, which means
the user will have to open multiple windows to have an overview of all the printers that have a
Raspberry Pi with OctoPrint connected. In REALvision Pro, the user can see all the printers on the
WiFi, see their statuses as well as start, pause or stop print jobs.

Page 7 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.3. CONTROLLING THE PRINTERS OVER THE NETWORK

Figure 2.5: The WiFi menu in REALvision Pro. As the menu was opened without having sliced a model, the start button
on 3D_CiR_F88B is greyed out, if a model had been sliced it would not have been greyed out.

One advantage of OctoPrint is that there is a community making plugins, one such plugin is called
OctoPrint-Queue. [9] This plugin was designed to work in a library and gives the option of adding
print jobs to a queue while sorting the print jobs depending on priority. The priority categories
are: Urgent, Customer, Student, Internal, and Other. [9] As the printers made by Create it REAL
all have WiFi connectivity, the main advantage of adding a Raspberry Pi to each printer, giving
them WiFi connectivity falls to the ground. However, using a Raspberry Pi as a queuing server
could possibly be a way to handle information of all the printers and the different client computers,
it would however be recommended to run the queuing server on an already existing server if
available. The reason for implementing on dedicated server hardware is due to the reliability of the
hardware. A possible diagram for this can be seen in Figure 2.6. In the figure, it can be seen that
the communication with each of the printers will be reduced compared to how the current system
works, where each computer has to communicate with each printer. This can be seen in Figure 2.7.

Page 8 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.4. NETWORK DISCOVERY OF 3D PRINTERS

Figure 2.6: The figure shows the scenario where multiple computers communicate to a queuing server, which then
communicates to the 3D printers.

Figure 2.7: The figure shows how the current system works. Where each computer has to communicate to each 3D
printer.

As Figure 2.7 visualises the current system, where all the computers communicate to all the printers
and this is all done over WiFi, it is of interest to investigate how this communication actually takes
place.

2.4 Network discovery of 3D printers

The current solution used by Create it REAL is using a multicast Domain Name System (mDNS) to
discover the printers. One application where mDNS is also used is Bonjour. In Bonjour, it is used
to enable computers to communicate ad hoc. [10] Bonjour is used when two Apple devices want to
communicate by AirDrop, as it is used to create the peer-to-peer WiFi network. [11] This protocol
is often used in Internet of Things (IoT) applications as it has proven to have a light footprint and
good scalability. [12] Each of the printers in this case can be seen as an IoT device. As multicasting
uses UDP packets for communication, there is a risk of packet loss. The effect of packet loss can be
mitigated by re-transmitting the packets. The way mDNS functions is by a client sending a UDP
packet to the IPv4 multicast address 224.0.0.251 or the IPv6 multicast address ff02::fb both on port
5353.[10]

Page 9 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.5. TRANSMITTING A PRINT JOB

Then the devices listening to that multicast IP address respond to the multicast IP address with
their DNS resource records, resulting in the client receiving the record. [10] As the response was
transmitted by multicasting, the other devices on the network also receive the records from the
device that responds. Thereby they can update their records as well. This protocol is often used
together with something called DNS Service Discovery (DNS-SD). [10] The combination of mDNS
and DNS-SD works by using mDNS as the communication protocol and using DNS-SD for the ser-
vice discovery and service description.[12]

In the implementation of mDNS that Create it REAL has made, they scan for devices running a
specific service. The service they are scanning for is only running on their 3D printers, ensuring
that they only discover the IP addresses of their own 3D printers.
The query for a given service is called a PTR Query. The response to this query is called an SRV
Response. Due to confidentiality, an example of the request and response has been created and can
be seen in Table 2.2.
In the table it can be seen that the IP address of 10.0.0.133 sends out a query to the multicast IP
224.0.0.251, expecting a multicast response from any devices running the service _aagren3dprinter._tcp.local.
It can also be seen that there in fact are five devices running this service on the network. As the ser-
vice is using UDP packets where there is a risk of packet loss, this request for devices is transmitted
multiple times. The table only shows one retransmission of the request, however in reality Create
it REAL requests a total of four times, in order to ensure that all the devices have had a chance to
respond. As only one response is needed during the four attempts, and thereby the failure is only
when there is no response from any of the four attempts, the calculation for the probability of a
failure would be:

P(X = 0) = p0 ∗ q4 = q4 (2.1)

where:
P is the Probability of no answer for all the requests.
p is the probability of an answer.
q is the probability of no answer.

Thereby, if there is an 80% probability of an answer and 20% probability of no answer. Then the
probability of no answer in all 4 attempts would be equal to 0.16%.

Now having established that the 3D printers made by Create it REAL has WiFi connectivity and
they use mDNS to discover the printers. The next section will investigate further how the print jobs
are sent to the printers, what kind of encryption is needed, and how a queuing system possibly
could be implemented.

2.5 Transmitting a print job

As mentioned in Chapter 1, some of Create it REAL’s customers are orthopaedic doctors, which
makes it fair to assume that there could be some sort of personal data connected to the print jobs.
For that reason, it is important to encrypt the print jobs. Furthermore, encrypting the print jobs has
the advantage of complicating the theft of a print job.

2.5.1 Security

In the scenario where a competitor has gained access to the WiFi of an orthopaedic doctor and
is listening on the network for print jobs, the encryption needs to be difficult enough to decrypt

Page 10 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.5. TRANSMITTING A PRINT JOB

T S D P L Info

16.741 10.0.0.133 224.0.0.251 MDNS 84
Standard query 0x0000 PTR _aa-
gren3dprinter._tcp.local, "QM" question

17.017 10.0.0.203 10.0.0.133 MDNS 239

Standard query response 0x0000 PTR AA-
GREN_3D_1094._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_1094.local TXT A
10.0.0.203

17.058 10.0.0.234 10.0.0.133 MDNS 189

Standard query response 0x0000 PTR AA-
GREN_3D_16A4._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_16A4.local TXT A
10.0.0.234

17.103 10.0.0.112 10.0.0.133 MDNS 210

Standard query response 0x0000 PTR AA-
GREN_3D_1AC0._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_1AC0.local TXT A
10.0.0.112

17.103 10.0.0.242 10.0.0.133 MDNS 213

Standard query response 0x0000 PTR AA-
GREN_3D_FA51._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_FA51.local TXT A
10.0.0.242

17.507 10.0.0.111 10.0.0.133 MDNS 239

Standard query response 0x0000 PTR AA-
GREN_3D_36E6._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_36E6.local TXT A
10.0.0.111

18.243 10.0.0.133 224.0.0.251 MDNS 84
Standard query 0x0000 PTR _aa-
gren3dprinter._tcp.local, "QM" question

18.541 10.0.0.111 10.0.0.133 MDNS 239

Standard query response 0x0000 PTR AA-
GREN_3D_36E6._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_36E6.local TXT A
10.0.0.111

18.553 10.0.0.112 10.0.0.133 MDNS 210

Standard query response 0x0000 PTR AA-
GREN_3D_1AC0._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_1AC0.local TXT A
10.0.0.112

18.554 10.0.0.242 10.0.0.133 MDNS 213

Standard query response 0x0000 PTR AA-
GREN_3D_FA51._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_FA51.local TXT A
10.0.0.242

18.598 10.0.0.234 10.0.0.133 MDNS 189

Standard query response 0x0000 PTR AA-
GREN_3D_16A4._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_16A4.local TXT A
10.0.0.234

18.615 10.0.0.203 10.0.0.133 MDNS 239

Standard query response 0x0000 PTR AA-
GREN_3D_1094._aagren3dprinter._tcp.local
SRV 0 0 80 AAGREN_3D_1094.local TXT A
10.0.0.203

Table 2.2: The table shows a snippet of how the communication could look. The services and hostnames have been
anonymised by using a similar structure but with the author’s surname. T = Time, S = Source, D = Destination, P =
Protocol, L = Length.

Page 11 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

without the pre-determined information, to ensure that the thief cannot manage to print the print
job and contact the customer before the doctor has sold it to the customer. Encrypting the print
job also complicates the theft of any printing technique used by Create it REAL that might be their
intellectual property. The approach taken by Create it REAL to prevent a thief to print the print
job immediately after a theft is that they encrypt all the print jobs by using Advanced Encryption
Standard (AES) with a key size of 128, this is often written as AES128. Furthermore, each print job
is encrypted separately, which results in that even if someone manages to crack the encryption, then
that encryption key is only valid for that one print job and will be useless for the next print job.
AES uses the encryption algorithm called Rijndael [13], the description and definition of Rijndael is
described in [14].

2.6 Queueing Algorithms

One way to look at the system could be to look at the 3D printers as multiple processors. However,
it is important to remember that the print jobs are physical products as soon as the printing process
has started and for that reason when thinking of the print jobs as processes, they are not preemptive.
Common queuing algorithms that will be investigated are First-In-First-Out (FIFO), Round Robin,
Shortest Job First (SJF), Priority Queuing, Least Laxity First (LLF), Earliest Deadline First (EDF),
Maximum Urgency First (MUF), and Modified Maximum Urgency First (MMUF).

2.6.1 First-In-First-Out

The first and simplest algorithm is called First-In-First-Out (FIFO), also called First-Come-First-
Serve (FCFS). This algorithm is used when as the name gives, the first input would be the first
output.[15] This algorithm could easily be used in a setup with just one printer as the first print job
could be sent to the printer and the next print jobs would queue up to be sent.

A
Dequeue

BCD
Enqueue

E

Figure 2.8: FIFO queue, where print job one has been sent to the printer, three print jobs have been queued already and
a fifth print job is in the process of getting queued

In the case where there are multiple printers, FIFO can still be used, but would need additional
instructions, as to which printer each print job should be sent to. One approach could be to use
FIFO for the print jobs, while then use Round Robin for the printers.

2.6.2 Round Robin

This algorithm is meant to assign processes a time interval. [15] However, in the case of a 3D printer
farm it is possible to look at it as the printers being assigned a time interval. Thereby, Printer A has
X amount of time to receive print job 1 if it does not respond inside the time interval, then Printer

Page 12 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

B has X amount of time to receive print job 1, and so on. At the time of writing the printer does
have the possibility to respond while printing, but the WiFi communication has a low priority in
the firmware to ensure that the communication does not cause errors during the printing. Thereby,
the printers do not always respond. If Printer A manages to respond within the time interval then
the algorithm would continue on to printer B with print job 2.
Thereby, making a Round Robin on the printers and a FIFO on the Print jobs. The challenges with
using the Round Robin for the printers could be difficulties predicting when a print job, in reality,
would be finished. Another issue could be determining the size of this time interval, if the window
is too small, the printers will not manage to respond in time, and if it is too large, time might be
wasted waiting for multiple printers to respond even though they are known to not answer as they
are in the process of printing.
This could happen if the print job was sent to an empty queue, but where printers 1, 2, and 3 are
printing and printer 4 is vacant. The print job arrived in the queue right after the time window for
printer 4, thereby Round Robin would have the print job wait out the time for printers 1, 2, and 3
before it could send the print job to printer 4.

2.6.3 Shortest Job First

This algorithm assumes that run times are known in advance, and in fact, for 3D printing, there is
an estimated print time which could be used as the run time. The algorithm is a batch algorithm,
which means that it will run best if there is a batch of print jobs that is run through the algorithm.
An example given in [15] shows how four jobs have different average turnaround times whether or
not SJF is used or not. Using the five print jobs from Figure 2.8 and adding the expected print time
for these print jobs, an example of this can be shown.

Hours: 1 4 6 2 3
Print jobs: A B C D E

Table 2.3: The print jobs without using SJF, where A is the first and E is the last.

The turnaround time for each of the print jobs is calculated by:

TAn =
n

∑
m=0

Tm (2.2)

where:
TAn is the turnaround time of print job n.
Tm is the printing time of print job m.
m is the first print job in the queue.
n is the last print job in the queue.

Seen from Table 2.3, the turnaround time for print job A would be 1 hour, print job B 5 hours (the
sum of the printing time of print job A and B), print job C 11 hours, print job D 13 hours, print job
E 16 hours, giving an average of 9.2 hours. If SJF was used, then the order would be A, D, E, B, and
C. This order would make the turnaround times for the print lower, as they would be: 1 hour for
print job A, 3 hours for D, 6 hours for E, 10 hours for B, and 16 hours for C, giving an average of 7.2
hours. Mathematically, it can be shown that choosing the shortest job first brings the average print

Page 13 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

time down. This can be seen by the formula for turnaround time given in [15]:

TAAvg =
TAA + TAB + TAC + TAD

4

=
(TA) + (TB + TA) + (TC + TB + TA) + (TD + TC + TB + TA)

4

=
(4TA + 3TB + 2TC + TD)

4

(2.3)

where:
TAAvg is the average turnaround time of the print jobs.
TAA is the turnaround time of print job A.
TAB is the turnaround time of print job B.
TAC is the turnaround time of print job C.
TAD is the turnaround time of print job D.
TA is the print time of print job A.
TB is the print time of print job B.
TC is the print time of print job C.
TD is the print time of print job D.

It can be seen that the first job has a significantly higher impact on the average than the fourth,
which is why the largest job should be the last and the shortest be the first.
In the case of a 3D printing farm, the jobs are not expected to arrive in batches, which does cause
some difficulties. In [15] it is mentioned that SJF is optimal only when all the jobs are available
simultaneously. With this knowledge and with the assumption that all the print jobs are not sent
to the queuing system in one big batch. It is possible to come up with a scenario where a print job
keeps being pushed backwards in the queue.
The scenario goes: The printer is vacant, and the queue is empty. Then print job A is sent to the
queue and the queue automatically sends to the vacant printer. Print job B estimated to have a print
time of 5 hours is sent to the queue and as there are no other prints it is first in the queue. Then
print job C is sent to the queue, print job C is estimated to take 3 hours and for that reason is put in
front of B. Then print job D arrives in the queue and as it is estimated to take 3.5 hours it is put in
front of B, but behind C. This can then continue as long as a print job with a lower estimated time
than 5 hours arrives, and as long as the print job arrives in the queue before print job B starts.
For the reason of possibly trapping a print job in queue for eternities, this algorithm will not be
considered viable for the print jobs as a standalone, but could possibly be used in combination with
other algorithms.
One way this algorithm possibly could be used could be to choose the printer to which the next
print job should be sent. It can be assumed that all the printers are discovered when a print is to be
sent to a printer. Thereby the group of printers could be seen as the input batch to the algorithm,
their individual times could be the remaining print time of the print jobs on the printers. If multiple
printers are tied for the shortest time, then priority queuing could be used.

2.6.4 Priority Queuing

This algorithm stands out from the others as both FIFO, Round Robin, and SJF do not assume a
certain print job is more important than another. SJF did prioritise one print job over another, but
the prioritisation was done depending on the printing time of a print job, rather than a user-defined
prioritisation. The idea of prioritising print jobs is rather simple. The base queuing could be done
on for example FIFO or SJF, but where it is done in multiple sections. A scenario for this could be,

Page 14 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

5 print jobs that are to be sorted based on priority and FIFO. The print jobs arrive alphabetically
in the queuing system but are not sent to any of the printers before sorting. Print job A, C, and E
have low priority, while print job B and D has high priority. Thereby, the order in the queue would
be B, D, A, C, E. One case where priority could be needed would be in the case of failed prints. In
this case, it is important that the print is restarted on the next available printer as to have the best
chance of living up to the initial expected completion time.

If expanding the scenario to a print job F with high priority arrives after the prioritisation of the
initial 5 print jobs, then it is needed to run the algorithm again. However, practically speaking, the
print job would be put to the end of the high-priority queue, and the low-priority queue print jobs
will have their estimated completion time extended.

Priorities can also be dynamically assigned as mentioned in [15]. The goal could be to print the
print job within 24 hours.
The procedure would then be:

• Add print job to the queue, with a chosen priority.

• The algorithm would then queue it following the priority, but check whether the expected
starting time added with the expected printing time is more than 24 hours after the print was
added to the queue. If that is the case, move the print job to a higher priority.

• Every time a print job is added to the queue that moves the print jobs, then a check needs to
be run.

This does come with the challenge that if the queue becomes too long, all print jobs might get
moved to high priority, causing the priority queuing to be unnecessary. This can be mitigated by
adding more printers to the print farm, or by loosening the goal to for example 48 hours. This way
of dynamically assigning priorities is similar to the scheduling algorithms called Earliest Deadline
First and Least Laxity First.

2.6.5 Earliest Deadline First

This algorithm is fairly simple, the base of the algorithm is priority queuing, but with dynamic
priorities. EDF gives the highest priority to the jobs with the earliest deadlines. [16] An example
with five print jobs and one printer can be made, the important part to remember is that print jobs
are assumed to not be preemptive.

Print job Arrival time Execution time Deadline
1 0 1 10
2 1 2 12
3 1 4 11
4 2 2 9
5 2 3 13

Table 2.4: The table shows the 5 print jobs with their different parameters.

If EDF is used to queue these print jobs, then the queue can be displayed in three steps.
Step 1:

1. Print job 1

Page 15 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

As print job one comes in first and only takes one time unit it will be complete when step 2 starts
and will not be shown further.
Step 2:

1. Print job 3

2. Print job 2

It can be seen that print job 3 will be prioritised higher than print job 2, as it has a lower deadline
than print job 2. At step 3 two more print jobs arrive, however, as print job 3 is in progress this will
stay as the highest priority.
Step3:

1. Print job 3

2. Print job 4

3. Print job 2

4. Print job 5

Thereby the total queue would have been:

Print job Arrival time Execution time Deadline Time to complete
1 0 1 10 1
3 1 4 11 5
4 2 2 9 7
2 1 2 12 9
5 2 3 13 11

Table 2.5: The table shows the finished print queue of the 5 print jobs with their different parameters.

If checking if all the print jobs are completed within their deadlines, it can be seen that they all do.
However, this is a coincidence as it has been shown in [16], that it is not always the case that EDF
delivers a queue where all the jobs complete within the deadline if they are not preemptive.
Furthermore, if the definition of deadline is set too simple, as in for example the deadline is always
24 hours after the print job is added to the queue, then EDF will basically become FIFO. Another
way this could be used could be to have different deadline times depending on whether it is a
premium customer or a standard customer, where the premium customer would have a deadline of
12 hours from the time the print job is added to the queue and the standard customer would have
a deadline of 24 hours from the time the print job is added to the queue.

2.6.6 Least Laxity First Scheduling Algorithm

This algorithm is also known by the name Least Slack Time First Algorithm. The principle idea of this
algorithm is that uses the deadline, the execution time, and the current time to calculate the Laxity.
[17]

L = D − E − Tnow (2.4)

where:

Page 16 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

L is the laxity of the job.
D is the deadline for the job.
E is the execution time of the job.
Tnow is the time when laxity is being calculated.

Then the algorithm prioritises the print job with the lowest laxity. [16]
Then the updating of the laxity would be done at chosen times or could be done every time some-
thing is added to the queue.

Least Laxity First is also expecting the jobs to be preemptive, but can possibly be modified in the
same way as EDF, so assuming that the print job in process is not preemptive, and using the example
jobs from EDF, the steps of the Algorithm would be:

Print job Arrival time Execution time Deadline
1 0 1 10
2 1 2 12
3 1 4 11
4 2 2 9
5 2 3 13

Table 2.6: The table shows the 5 print jobs with their different parameters.

Step 1:

1. Print job 1 which has a laxity of 9

Print job one comes in first and only takes one time unit it will be complete when step 2 starts and
it will not be shown further. However, the time is still counted in for when calculating laxity for the
coming jobs. Step 2:

1. Print job 3 which has a laxity of 6

2. Print job 2 which has a laxity of 9

It can be seen that print job 3 will be prioritised higher than print job 2, as it has a lower laxity than
print job 2. At step 3 two more print jobs arrive, however, as print job 3 is in progress this will stay
as the highest priority. Step3:

1. Print job 3 which has a laxity of 5

2. Print job 4 which has a laxity of 5

3. Print job 2 which has a laxity of 8

4. Print job 5 which has a laxity of 8

The example used happens to give the same queue order as EDF did. This could be due to that the
print jobs are non-preemptive as soon as they have started.
The main difference between EDF and LLF is that EDF only uses the deadline to prioritise, while
LLF also uses the Execution time to calculate the Laxity, and that way prioritises based on the
laxity.[17]

Page 17 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.6. QUEUEING ALGORITHMS

2.6.7 Maximum Urgency First

There is an algorithm that combines the advantages of EDF, LLF and Rate Monotonic algorithm
(RM). This algorithm is called Maximum Urgency First (MUF).[17]
RM is a fixed priority scheduling algorithm, where the tasks with the highest frequency are assigned
the highest priority and the lowest frequency - the lowest priority.[17] In the case of 3D printing
this algorithm could possibly be used if there are specific models that are sent to the print queue
frequently, and some less frequently. However, this is not considered further as each print job
is assumed to be unique and only needs to be printed once, and RM does not support dynamic
priority [17].
As mentioned, MUF combines the advantages of EDF, LLF, and RM. It does that by mixing three
levels of priorities, the first level is fixed priority and is called Criticality, the second level is dynamic
and is based on LLF, and the third is fixed and is called User priority. This kind of priority is called
Mixed priority. The order of precedence is Criticality over LLF over User priority. [17]
The assignment of criticality in the original design is done with RM [17], but in the context of 3D
printing where each print job would be a task, the criticality could be determined by the user. The
criticality values could possibly be:

1. Print error

2. Premium customer

3. Standard customer

Here the highest priority would be the lowest number. The user should only be able to choose
between 2 and 3, while if the printer detects an error during printing and therefore re-schedules the
print, then priority 1 should be used.
The assignment of user priority must also be chosen, this could possibly be the employee ID or the
time it was added to the queue.
The assignment of the dynamic priority is done during run-time, but before adding print jobs to the
queue some parameters must be set, these are:

• Desired start time.

• Deadline time.

• Worst-case execution time.

These parameters are used to calculate the laxity of the print jobs. [17] In the 3D printing setting,
the desired start time could be automatically chosen to be the time the print job was added to the
queue. The deadline time could be chosen to be 24 hours after the print was added to the queue,
and the worst-case execution time could be found from the G-code as the estimated printing time.
The way that MUF selects which print job is to be printed is done in these steps:

1. Select the print job with the highest criticality, there by any print job with the value of 1 (Print
Error).

2. If there are no print jobs with 1 then it will choose 2 and if none with 2 then 3.

3. If there are two or more print jobs with the highest criticality, then it will choose the one with
the lowest laxity.

4. If there are two or more that have the same criticality and the same laxity, it will choose the
print job with the highest user priority.

Page 18 of 48

CHAPTER 2. PROBLEM ANALYSIS 2.7. PROBLEM FORMULATION

5. If there after running these three checks still are two or more print jobs, then it chooses by the
FIFO principle

With the unique user priority it is claimed in [17] that the scheduler never reaches step 5 and is
therefore a deterministic scheduling algorithm.[17]
MUF does stand strong as a contender for the queuing algorithm used for this system as it does
provide a method of prioritising re-prints of a failed print job over newly added print jobs. Further-
more, it does provide a possible way of handling the prioritisation of print jobs with different sizes
without the risk of suffocating one specific size of print jobs. Furthermore, the user priority gives
the possibility of choosing priority depending on the time the print job was added to the queue, or
simply by the employee ID.

2.6.8 Modified Maximum Urgency First

Having looked into MUF, it is interesting to look at a modified version of MUF. A Modified Max-
imum Urgency First (MMUF) algorithm was presented in [18]. They do show that MUF in some
cases can fail to execute a task before the deadline, due to how LLF is defined.[18] The example
they used was:

Task Arrival time Execution time Deadline Laxity
1 0 4 6 2
2 0 1 4 3

Table 2.7: The table shows the example from [18].

In this example task 1 will execute for four time units, causing task 2 to miss the deadline, this is
due to when the LLF would update the laxity number.[18] Some of the modifications introduced
were to use EDF or a Modified Least Laxity First (MLLF) instead of LLF for the second check. MLLF
is in essence a non-preemptive version of LLF. [18] Another modification is that if there in any of
the checks are a tie and one of the print jobs are already printing, this one will continue and the
other will be printed afterwards. [18].

As the modifications in MMUF are introducing a non-preemptive version to MUF, and the main
difference on the two are the second check, where MUF uses LLF and MMUF suggests to use either
EDF or MLLF. This algorithm will be considered viable for the system as well as MUF.
Now having investigated some of the common queuing algorithms and challenges of automating a
3D printing farm, a problem formulation can be made.

2.7 Problem Formulation

How can a queuing system be made that considers the amount of filament left on each printer, the
working hours of the company, and that multiple computers might want to add print jobs to the
queue?

Page 19 of 48

3 Requirements

In order to verify the design of the Printfarm Management System, a set of requirements is estab-
lished.

Requirement Explanation

The system must be able to group printers de-
pending on their printer model.

This requirement is set with the assumption
that all the printers of the same model have the
same hardware and firmware installed.

The system must be able to group the printers
depending on both the printer model and the
installed filament.

This requirement is set in order to ensure that
a print job meant for one material does not ac-
cidentally get sent to a printer with a different
material.

The system must be able to queue a print job to
a group of printers.

This requirement is set in order to give the
queuing algorithm freedom to choose which
printer of the chosen printer model can com-
plete the print fastest.

The system should show the estimated print
time for the print job on the chosen printer
group.

This requirement is set in order to give the user
an idea of when the print job earliest can be
ready for delivery to the customer.

The system should be able to allocate the print
jobs in queues for each separate printer.

This requirement is set in order for the system
to make a more precise estimate of completion
time.

The system must be able to change the queues,
in order to adapt to errors during printing.

This requirement is set in order to do error han-
dling. In the case of running out of filament
or other errors that were not detected during
printing and are only caught by the visual in-
spection, then the print job needs to be sent to
another printer and started as soon as possible.

If a queue manager is on the network, this
must be the only device communicating with
the printers.

This requirement is set in order to ensure that
no other device interrupts the queuing system.

If there is no queue manager on the network,
the communication to the printers will work as
previously.

This requirement is set in order to ensure that
the present functionalities in REALvision do
not rely on the queue manager being present.

The queuing algorithm should be able to han-
dle multiple factors, such as priorities, opening
hours, estimated print time, and the expected
amount of filament left.

This requirement is set to provide an advanced
queuing algorithm that provides the fastest
print times, where the time for a change of fil-
ament is calculated into the print time.

The system must give an alert if an error hap-
pens during print.

This requirement is set in order to alert the ad-
ministrator to change filament or other physical
tasks.

Table 3.1: Requirements for the Printfarm Management System

Page 21 of 48

4 System Design

The system will consist of two computers, one server, and three 3D printers. The computers and
printers will be connected to a router by the use of WiFi, while the server will be connected by
Ethernet. The computers will then communicate to the server, which will then communicate to the
printers.

Figure 4.1: System Overview, with two computers, one router, one server and three 3D printers

The server will be running the queuing system and will be the centralised way to communicate
with the printers.
The three printers chosen for this project are made by Create it REAL and are of the model Insole-
Maker.

4.1 The Combination of Queuing Algorithms

When designing the system it is important to remember that there are two things that need to be
sorted, the print jobs and the printers to print on.
A set of simple scenarios that can be seen as the fundamental parts are made. These scenarios must
be handled by the algorithms for the system to be functional.

1. All printers are vacant.

2. Some printers are in the process of printing, but at least one printer is vacant.

3. All printers are in the process of printing, and there are no printers vacant, there are no print
jobs in queue for any printer.

4. All printers are in the process of printing, and there are no printers vacant, there is a print job
in queue for all printers.

The pairing of algorithms for the printers and print jobs for the four scenarios are as follows:

Page 23 of 48

CHAPTER 4. SYSTEM DESIGN 4.1. THE COMBINATION OF QUEUING ALGORITHMS

Scenario Printers Print jobs

1
Fixed priority, where the priority is equal
to the model number.

FIFO.

2 Fixed priority on the vacant printers. FIFO.

3
SJF, where the values used are the current
print job’s print time.

The chosen algorithm depends on the re-
sults from simulations.

4

SJF, where the values used are the sum of
the current print job’s print time and the
print time of all the print jobs queued for
the printer.

The chosen algorithm depends on the re-
sults from simulations.

Table 4.1: The pairing of algorithms used for the printers and the print jobs for the four basic scenarios.

In the first two simple scenarios, the choice of which printer the print job should be sent to is rel-
atively simple as the important part is that a vacant printer is chosen. In scenarios three and four
where there are no vacant printers, SJF can be used. As all the printers are printing a print job, SJF
can be used to find the printer that is expected to become vacant first. The next time a print job is
scheduled and SJF is run, the value for "time before vacant" for the previously chosen printer would
be the sum of the print time of the print job in process and the print job in the queue for the printer.

For the more advanced case where the opening hours and the remaining amount of filament are
considered, another set of scenarios can be made.

1. All printers are in the process of printing, and there is more time left of the workday than the
print time.

2. All printers are in the process of printing, and there is not enough time left in the workday to
complete the print on some of the printers.

3. All printers are in the process of printing, and there is not enough time left in the workday to
complete the print on any of the printers.

4. All printers are in the process of printing, and there is more time left of the workday than the
print time, but there is not enough filament to complete the print on some of the printers.

5. All printers are in the process of printing, and there is more time left of the workday than the
print time, but there is not enough filament to complete the print on any of the printers.

6. All printers are in the process of printing, and there is not enough time left in the workday to
complete the print, and there is not enough filament to complete the print.

With these advanced cases, the algorithm combination becomes complex and decisions have to be
taken, however, the first one is similar to the third and fourth of the simple scenarios:

Page 24 of 48

CHAPTER 4. SYSTEM DESIGN 4.2. RUNNING OUT OF FILAMENT

Scenario Printers Print jobs

1

SJF, where the values used are the sum of
the current print job’s print time and the
print time of all the print jobs queued for
the printer.

The chosen algorithm depends on the re-
sults from simulations.

2

Filter the printers so only those that can
manage are used for the algorithm. Then
SJF, where the values used are the sum of
the current print job’s print time and the
print time of all the print jobs queued for
the printer.

The chosen algorithm depends on the re-
sults from simulations.

3

SJF, where the values used are the sum of
the current print job’s print time and the
print time of all the print jobs queued for
the printer.

The chosen algorithm depends on the re-
sults from simulations.

4

Filter the printers so only those with
enough filament are used for the algo-
rithm. Then SJF, where the values used
are the sum of the current print job’s print
time and the print time of all the print
jobs queued for the printer.

The chosen algorithm depends on the re-
sults from simulations.

5

Notify the user that the printer will run
out of filament during printing. Then
SJF, where the values used are the sum
of the current print job’s print time and
the print time of all the print jobs queued
for the printer.

The chosen algorithm depends on the re-
sults from simulations.

6

Notify the user that the printer will run
out of filament during printing, and that
this will happen outside working hours.
Then SJF, where the values used are the
sum of the current print job’s print time
and the print time of all the print jobs
queued for the printer. Send a reminder
10 minutes before closing time to change
the filament, if it has not run out before.

The chosen algorithm depends on the re-
sults from simulations.

Table 4.2: The pairing of algorithms used for the printers and the print jobs for the advanced scenarios.

In order to be able to filter the printer depending on whether or not they have filament enough,
calculations are made to determine the minimum length of filament on a roll.

4.2 Running out of filament

In REALvision, it is possible to see the estimated printing time, and estimated material use both in
grams and meters. The rolls of filament used do not directly provide the length of the filament, but
it does provide the weight, density and diameter, from this it is possible to calculate the length of

Page 25 of 48

CHAPTER 4. SYSTEM DESIGN 4.2. RUNNING OUT OF FILAMENT

the filament with the formula given:

L =
W/ρ

π ∗
(
(D

2)
2
) (4.1)

where:
L is the length of the filament.
W is the weight of the filament.
ρ is the density of the filament.
D is the diameter of the filament.

Thereby, the length of 1Kg filament with a density of 1.25 and a diameter of 1.75mm is around
332.60 meters, however, the precision of the diameter is ± 0.05mm. Thereby, the length is some-
where between 314.38 meters and 352.45 meters. With the imperfection of the diameter in mind,
the algorithm should count for a roll of filament to be equal to 314.38 meters. This does bring the
possibility of changing filament before running out and safeguards against running out of filament
during the hours when there is no administrator present to change the filament. However, it does
come with the challenge of rolls of filament that are not empty but not being used.

An approach to deal with these non-empty rolls of filament could be to use them next time a printer
needs filament change during the morning, as these would be used up during the work day and
the printers would then detect out-of-filament before the administrator goes home. This is fair to
assume as the maximum amount of filament on these changed rolls would be 38.07 meters, and
the sample insole provided by Create it REAL takes 2 hours and 7 minutes to print while using
approximately 21.71 meters of filament. Thereby, it can be calculated that to print 38.07 meters
approximately takes 3 hours and 43 minutes, which means that if the non-empty roll was changed to
be used in the morning, then a new roll of filament could be changed to be used around lunchtime.
Furthermore, a full roll of filament should be able to print for around 30 hours and 39 minutes,
without counting time for transferring the print jobs, auto bed levelling, heating up, extracting the
finished prints, and validating the empty print plate.
The calculation where these additional things are counted in for the estimated minimum time the
printer can print with a new roll of filament could be:

TTotal = TRoll + ⌈ TRoll

TPrint
⌉ ∗ TTrans + TInitProc +

(
⌈ TRoll

TPrint
⌉ − 1

)
∗ TContProc + ⌊ TRoll

TPrint
⌋ ∗ (TExtra + TVal)

(4.2)

where:
TTotal is the total time before a filament change is needed.
TRoll is the time it would take to print the whole filament roll in one go.
TPrint is the time the demo insole takes to print.
TTrans is the time it takes to transfer the print job to the printer.
TInitProc is the time it takes for the initial process of auto bed levelling and heat up.
TContProc is the time it takes for doing the continued process of auto bed levelling and heat.
TExtra is the time it takes to extract the print from the printer.
TVal is the time it takes to validate that the print plate is empty.

Using this, it is possible to estimate that if the transfer takes 3 minutes, the initial process takes
4 minutes, the continued process takes, 2.5 minutes, the extraction and validation each takes 0.5
minutes, and the printer can print for approximately 32 hours and 17 minutes. If the working hours

Page 26 of 48

CHAPTER 4. SYSTEM DESIGN 4.2. RUNNING OUT OF FILAMENT

are from 8:00 to 16:00, and the change to the new roll of filament happens at 12:00, then the roll
would run out of filament around 20:17 the next day. With that knowledge it could possibly be ad-
vantageous to change the filament at 8:00 as then the next filament change would be 16:17 the next
day and the next after that would be around 00:34. Thereby, it can be seen that changing filament
once per day would be needed in order to have as little downtime as possible.

If, however, Create it REAL had a device that could switch between multiple rolls of filament
automatically, then the uptime of a printer could grow substantially. If the device used 3 minutes
to change between the filament, then a time plan for the different filaments could look like this:

Day 1 Day 2 Day 3 Day 4 Day 5
Roll 1 08:00 16:17
Change 3 min
Roll 2 16:20 00:37
Change 3 min
Roll 3 00:40 08:57

Table 4.3: Time plan for use of 3 rolls of filament

From the time plan in Table 4.3 it can be seen that on Day 3 the administrator can at any point of
the day change filament roll 1 out with a new roll, and if the administrator wanted to utilise that
there are 3 rolls, then the administrator could wait until Day 4 and then change both Roll 1 and Roll
2, without disturbing the continuous printing.

Now knowing the minimum length of the filament on a roll, and how having the capability of
changing between the rolls can contribute to less amount of manual interactions with the printers, it
is time to determine which of the algorithms investigated in Chapter 2 is best suited for the sorting
of the print jobs.

Page 27 of 48

5 Simulations

In order to verify which of the algorithms investigated is best suited for a 3D printing farm, a set of
simulations is made. The purpose of the simulations is to investigate the average turnaround time
of the print jobs, the number of print jobs finishing within their deadline, and to investigate the
total print time of all the print jobs.
The simulations will have these parameters:

Attribute Value
Number of print jobs 100
Number of printers 3

Printing time 30min - 150min
Priority 2 - 3

Deadline 24 hours after the print job has been created
Initial Laxity Deadline - Creation time - Printing time

Update Laxity Deadline - Current time - Printing time
Employee ID 1 - 10

Print job creation interval 5 min

Table 5.1: Common parameters of all the simulations

The algorithms that will be tested are FIFO, SJF, Priority Queuing, LLF, MUF, and MMUF with EDF
as the second check. As the deadline for each of the print jobs is 24 hours after being created, the
EDF will not be simulated alone as the results would be the same as FIFO. Furthermore, SJF and
Priority Queuing will have FIFO as the second check in case they are comparing to print jobs with
equal values for their respective checks. It is therefore expected that Priority Queuing and MMUF
with EDF as the second check will perform exactly the same, but will be simulated in order to
confirm this.

The simulations will be run 100 times with each of the algorithms, and their results will be com-
pared. The aim is to determine which algorithm has the lowest average turnaround time of the print
jobs while having the highest amount of print jobs that finished within their deadline and used the
lowest amount of time to print all the print jobs.
The results for each algorithm will be the average from all 100 times the simulation was run.
The structure of the simulations will be as follows:

1. Initial steps:

(a) Create a print job.

(b) Add the print job to the queue.

(c) Sort the print jobs in the queue.

(d) Check if there is a printer vacant.

(e) If there is a printer vacant, send the first print job in the queue to the printer.

(f) If there is no printer vacant, check if a print job has finished on a printer.

(g) Increment the current time by 5 minutes.

(h) Update the laxity of all the print jobs in the queue.

Page 29 of 48

CHAPTER 5. SIMULATIONS

(i) Sort the print jobs in the queue.

2. When all the print jobs have been created, and there are still print jobs in the queue:

(a) Check if a print job has finished on a printer.

(b) If a printer is vacant, send the first print job in the queue to the printer.

(c) Increment the current time by 1 second.

(d) Update the laxity of all the print jobs in the queue.

(e) Sort the print jobs in the queue.

3. When all the print jobs have been created, and there are no more print jobs in the queue:

(a) Check if a print job has finished on a printer.

(b) Increment the current time by 1 second.

By generating the print jobs one at a time, and then checking if it is possible to send a print job to a
printer, it is expected that some time might get lost between when a print job is finished and when
a print job can be sent to the printer. The maximum amount of time lost per generation of print jobs
would be 4 minutes. This is due to that a print job is generated every five minutes and the printing
time of a print job is given in minutes. Thereby, if the printing time of a print job is 31 minutes and
other print jobs are being generated every 5 minutes, then there will be a check at time 0, 5, 10, 15,
20, 25, 30, and 35. It is only at the check at time 35 that the check would be positive for that the
print job finished even though it finished 4 minutes earlier. As soon as all the print jobs have been
generated, the check comes every second, causing a maximum time lost of 1 second per check.

Page 30 of 48

CHAPTER 5. SIMULATIONS 5.1. SIMULATION RESULTS

5.1 Simulation Results

A visualisation of the result from a simulation of each of the algorithms can be seen in Figure 5.1

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

Time

1

2

3

Pr
in

te
r

1

2

3 4

5

6

7

8

9

10

11 12

13

14

15

16

17 18

19 20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64 65

66

67

68

69 70

71

72

73

74

75

76

77

78

79

80

81

82

83

84 85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

First In First Out
 Printer-Job Assignments. Seed 42

(a) FIFO scheduling.

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

Time

1

2

3

Pr
in

te
r

1

2

3

4

5

6

7

8

9

10

11 12

13 14

15

1617

18

19

20

21

22

23 242526

27

28

29

30

31

32

33

34

35 36

3738

39 40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

5556

57 5859

60

61

62

63

64

65

66

676869

70 71

72

73

74

75

76

77

78 79

80

81

82

838485

86

87

88 89

90

91

92

93

94

95

96

97 98

99

100

Shortest Job First
 Printer-Job Assignments. Seed 42

(b) SJF scheduling.

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

Time

1

2

3

Pr
in

te
r

1

2

3 45 6

7

8

9

10

11

12

13 14

15

16

17

18

1920

21

22

23

24

25

26

2728

2930

31 3233

34 35

36

3738

39

40

41

42

43

4445 46

47

48

49

50

51

52

53 54

55

56

57 58

5960

61

62

63

64

65 66

67

68

69

70

71

7273

7475 76

77 78

7980

81

82 83

84

85

86

87

8889

90

91 92

93

94

95

96

97

98

99100

Priority Sorting
 Printer-Job Assignments. Seed 42

(c) Priority scheduling.

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

Time

1

2

3

Pr
in

te
r

1

2

3 4 56

7 89

10

11

12

13

14

15

16 17

18 19 20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 4142

43

44

45

46 47

48

49

50

51

52 53

54

55

56 57

58

59

60

61

62

63

64 65

66

67

68

69 70

71

72

73

74

75

76

77

7879

80

8182

83

84

8586

87

888990 91

92

93

9495

96 97

98

99

100

Least Laxity First
 Printer-Job Assignments. Seed 42

(d) LLF scheduling.

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

Time

1

2

3

Pr
in

te
r

1

2

3

4

5

6

7 8

9 1011

12 13 14

15

16

1718

19

20

21

22

23

24

25

26

2728

2930

31

3233

34

35

36

37

38

3940

41

42 43

444546 47

48

49

50

51

52

53

54

55

56

57

58

59

60

6162

63

64

65

66

67

68

6970 71

72

73

74

75 76

77

78 79

80

81

82 8384

85 86

87 88

89

90

91

92

93

94

95

9697

98

99100

Maximum Urgency First
 Printer-Job Assignments. Seed 42

(e) MUF scheduling.

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

Time

1

2

3

Pr
in

te
r

1

2

3 45 6

7

8

9

10

11

12

13 14

15

16

17

18

1920

21

22

23

24

25

26

2728

2930

31 3233

34 35

36

3738

39

40

41

42

43

4445 46

47

48

49

50

51

52

53 54

55

56

57 58

5960

61

62

63

64

65 66

67

68

69

70

71

7273

7475 76

77 78

7980

81

82 83

84

85

86

87

8889

90

91 92

93

94

95

96

97

98

99100

Modified Maximum Urgency First
 Printer-Job Assignments. Seed 42

(f) MMUF scheduling.

Figure 5.1: A visual representation of the different algorithms with 3 printers and 100 randomly generated print jobs
with a seed value of 42.

The average results of all the simulations of the algorithms were found and organised in Table 5.2.

Page 31 of 48

CHAPTER 5. SIMULATIONS 5.1. SIMULATION RESULTS

Algorithm Total printing time # of print jobs missing deadline Average turnaround time
FIFO 2 days, 2:55:11.04 44.96 21 hours 54 minutes
SJF 2 days, 3:17:12.32 32.22 16 hours 58 minutes

Priority Queuing 2 days, 2:48:24.01 47.46 21 hours 49 minutes
LLF 2 days, 2:29:07.44 47.86 23 hours 1 minute

MUF 2 days, 2:33:33.52 47.73 22 hours 22 minutes
MMUF 2 days, 2:48:24.01 47.46 21 hours 49 minutes

Table 5.2: Average results from 100 simulations of each of the algorithms used for queuing

Analysing the results from the simulations, it is possible to rank the algorithms and then after
ranking all the algorithms for the three attributes sum the rankings up and give them an overall
ranking.

5.1.1 Ranking the algorithms

When ranking the algorithms depending on the total printing time, the highest rank is the algorithm
with the lowest total printing time.
Printing time ranking

1. LLF with a total printing time of 2 days, 2:29:07.44

2. MUF with a total printing time of 2 days, 2:33:33.52

3. MMUF and Priority Queuing with a total printing time of 2 days, 2:48:24.01

4. FIFO with a total printing time of 2 days, 2:55:11.04

5. SJF with a total printing time of 2 days, 3:17:12.32

It is interesting to see that SJF performed worse than FIFO on the total printing time, as FIFO was
expected to perform worst.
When ranking the algorithms depending on the number of print jobs missing their deadline, the
lowest value is again the best result and will be ranked the highest.
Print jobs missing their deadlines

1. SJF with an average of 32.22 print jobs missing their deadlines

2. FIFO with an average of 44.96 print jobs missing their deadlines

3. MMUF and Priority Queuing with an average of 47.46 print jobs missing their deadlines

4. MUF with an average of 47.73 print jobs missing their deadlines

5. LLF with an average of 47.86 print jobs missing their deadlines

It was expected that SJF would rank highest for jobs missing their deadlines as it prioritises the
smaller print jobs and waits with the longest print jobs to the end, thereby it can be assumed that
the majority if not all the print jobs that missed their deadlines are print jobs taking a long time
to print. However, it was not expected that MMUF would perform better than MUF. As the main
difference between the simulation implementation of MMUF and MUF was that MMUF was using
the deadline to sort with instead of laxity which was used in MUF, it was expected that MUF would
perform better.

Page 32 of 48

CHAPTER 5. SIMULATIONS 5.1. SIMULATION RESULTS

When ranking the algorithms depending on the average turnaround time, the lowest value will
again be ranked the highest.
Average turnaround time

1. SJF with an average turnaround time of 16 hours and 58 minutes

2. MMUF and Priority Queuing with an average turnaround time of 21 hours and 49 minutes

3. FIFO with an average turnaround time of 21 hours and 54 minutes

4. MUF with an average turnaround time of 22 hours and 22 minutes

5. LLF with an average turnaround time of 23 hours and 1 minute

Once again SJF runs off with the best ranking, this is expected though as SJF prioritises the shortest
jobs, which affects the turnaround time for the next jobs as explained in Equation (2.3).
In order to visualise the algorithms and their rankings, a table can be made. The sum of the rankings
can then be used to determine which of the algorithms would possibly be best for the system.

Algorithm Printing time Print jobs missing deadline Turnaround time Total ranking
FIFO 4 2 3 9
SJF 5 1 1 7

Priority Queuing 3 3 2 8
LLF 1 5 5 11

MUF 2 4 4 10
MMUF 3 3 2 8

Table 5.3: Rankings of the algorithms.

It can be seen from Table 5.3 that SJF is the best performing for the system, but taking into account
the risk of starvation of print jobs with a long print time, this will not be chosen. Thereby, Priority
Queuing and MMUF are the best scoring algorithms. The difference between the two is that the
second check on Priority Queuing was the timestamp for the creation of the print jobs, while on
MMUF it was the deadline for the print jobs. If the deadline had been randomly chosen between
some time intervals, these two algorithms would not have performed the same. It is expected that
the MMUF would perform better than Priority Queuing in that case, as it would sort the list de-
pending on the deadline, rather than a FIFO approach.

5.1.2 Simulations with random deadlines for print jobs with priority 2

In order to verify which of the two algorithms actually performs best, another set of simulations is
run. The difference between these simulations and the previous ones is that the deadline of each
print job depends now on the priority. Thereby, if a print job has the priority of 2, the deadline is
set to be:

Deadline = TCreation + TPrinting + TMaxPrinting + TRandom (5.1)

where:
TCreation is the timestamp of when the print job was created
TPrinting is the printing time of the print job
TMaxPrinting is the maximum printing time of a print job
TRandom is a randomly chosen amount of time in hours between 1 and 24

Page 33 of 48

CHAPTER 5. SIMULATIONS 5.1. SIMULATION RESULTS

The idea of adding the maximum printing time of a print job to the deadline calculation is to ensure
that at least one other print job can be printed before the print job must be started for it to manage
within the deadline. If a print job has a priority of 3, the deadline is set as in the previous simulation:

Deadline = TCreation + TDeadlineHours (5.2)

where:
TCreation is the timestamp of when the print job was created
TDeadlineHours is 24 hours

The simulations were run for all the algorithms, but it is expected that the 2 of importance are
Priority Queuing and MMUF. The average results of all the simulations of the algorithms were
found and organised in Table 5.4.

Algorithm Total printing time # of print jobs missing deadline Average turnaround time
FIFO 2 days, 2:39:30.47 52.02 21 hours 47 minutes
SJF 2 days, 3:03:45.69 38.38 16 hours 52 minutes

Priority Queuing 2 days, 2:42:20.15 66.18 21 hours 45 minutes
LLF 2 days, 2:44:10.64 51.94 21 hours 49 minutes

MUF 2 days, 2:42:01.85 55.69 21 hours 46 minutes
MMUF 2 days, 2:49:28.68 53.78 21 hours 20 minutes

Table 5.4: Average results from 100 simulations of each of the algorithms used for queuing

Once again the algorithms will be ranked where the lowest number is best.
Printing time ranking

1. FIFO with a total printing time of 2 days, 2:39:30.47

2. MUF with a total printing time of 2 days, 2:42:01.85

3. Priority Queuing with a total printing time of 2 days, 2:42:20.15

4. LLF with a total printing time of 2 days, 2:44:10.46

5. MMUF with a total printing time of 2 days, 2:49:28.68

6. SJF with a total printing time of 2 days, 3:03:45.69

It is interesting to see that FIFO in this run of simulations is the fastest, and only about 10 minutes
slower than LLF in the previous simulation. However, SJF once again was the slowest just as in the
previous simulations.

Print jobs missing their deadlines

1. SJF with an average of 38.38 print jobs missing their deadlines

2. LLF with an average of 51.94 print jobs missing their deadlines

3. FIFO with an average of 52.02 print jobs missing their deadlines

4. MMUF with an average of 53.78 print jobs missing their deadlines

5. MUF with an average of 55.69 print jobs missing their deadlines

Page 34 of 48

CHAPTER 5. SIMULATIONS 5.1. SIMULATION RESULTS

6. Priority Queuing with an average of 66.18 print jobs missing their deadlines

Once again it is no surprise that SJF performs best here, and seeing that LLF performs better than the
rest is also expected as the different print jobs now have different deadlines and the LLF algorithm
can really shine. However, the difference between LLF, MMUF, and MUF is not significant as they
all use the deadline at one point or another.
Average turnaround time

1. SJF with an average turnaround time of 16 hours and 52 minutes

2. MMUF with an average turnaround time of 21 hours and 20 minutes

3. Priority Queuing with an average turnaround time of 21 hours and 45 minutes

4. MUF with an average turnaround time of 21 hours and 46 minutes

5. FIFO with an average turnaround time of 21 hours and 47 minutes

6. LLF with an average turnaround time of 21 hours and 49 minutes

The algorithm that once again performs best is the SJF, which does not come as a surprise, however,
what does come as a surprise is the difference or lack of difference for Priority Queuing, MUF, FIFO,
and LLF the difference is insignificant.
As previously the algorithms’ ranks will be summed to find the algorithm best performing.

Algorithm Printing time Print jobs missing deadline Turnaround time Total ranking
FIFO 1 3 5 9
SJF 6 1 1 8

Priority Queuing 3 6 3 12
LLF 4 2 6 12

MUF 2 5 4 11
MMUF 5 4 2 11

Table 5.5: Rankings of the algorithms with random deadlines for priority 2.

If the algorithm is to be chosen by the rankings alone, then SJF once again should be chosen, then
FIFO. However, SJF and FIFO both face the challenge of dealing with print errors as there is no direct
way of prioritising a failed print job over the queue that is already there. Thereby, FIFO and SJF
are not seen as viable solutions. There are two algorithms tieing for the third place, these are MUF
and MMUF. However, if the ranks for both deadline simulations are summed to a total ranking, and
keeping in mind that the second simulation was run in order to verify which algorithm of either
Priority Queuing or MMUF was to be used, the table would be:

Algorithm Fixed Deadlines Random Deadlines Total Rank
FIFO 9 9 18
SJF 7 8 15

Priority Queuing 8 12 20
LLF 11 12 23

MUF 10 11 21
MMUF 8 11 19

Table 5.6: Total Ranking is a sum of the first simulation ranks and the second simulation ranks.

Page 35 of 48

CHAPTER 5. SIMULATIONS 5.1. SIMULATION RESULTS

It can be seen from Table 5.6 that the first place goes to SJF, then FIFO and then MMUF. As MMUF
gives the possibility to have priorities, which can be used for error handling of print jobs. As well
as MMUF performed relatively well, this is chosen as the algorithm for the system.

Page 36 of 48

6 Final Design

Now having investigated different algorithms for print job queuing, simulated them, and chosen
the one best suited for the Printfarm Management System. The system design can be completed
and a flowchart diagram can be made showing how the system should act:

Print job sent to
queue system

Yes

NoIs there a
vacant printer?

Send print job to
printer

Yes

NoIs the queue
empty?

No

Yes

Enough time
to finish before

closing?

Yes

NoEnough
filament to

finish?

Filter printers with
enough time

Filter printers with
enough filament

Yes

NoIs there at
least one possible

printer?

Yes

NoIs there
only one possible

printer?

Yes

No Enough
filament to

finish?

Notify the user about
filament change
during printing

Yes

NoIs there
only one possible

printer?

Sort printers by
printer ID and select

the printer with lowest
ID

Add print job to queue Allocate a printer to
the print job

Yes

NoEnough time
to finish before

closing?

Filter printers with
enough time

Yes

NoIs there at
least one possible

printer?

NoIs there
only one possible

printer?

Yes

NoEnough
filament to

finish?

Filter printers with
enough filament

No

Yes

Is there
only one possible

printer?
Sort printers by SJF

Yes

Allocate the printer to
the print job

Yes

Is the printer
vacant?

No

Add print job to queue

For each print job

Sort the print jobs
using MMUF

Notify the user about
filament change
needed before

printing

Figure 6.1: The figure shows a flowchart of how the queuing should act.

Seen from Figure 6.1, the first check is to verify if the queue is empty, as if the queue is empty
there is no reason to sort the queue. Then the algorithm checks if there is a vacant printer, or if
the print has to be added to the queue. The next check is to determine whether or not the print
job can finish within working hours. This is important to know as the next check is to determine
whether or not there is enough filament for the print job. If the print job can finish within working
hours, but it is not expected that there would be enough filament to finish the print job, then the
user or administrator could change the filament during printing. If, however, the print job cannot

Page 37 of 48

CHAPTER 6. FINAL DESIGN

finish printing within working hours and there is not enough filament to finish, then the user or
administrator needs to change the filament before starting the print job.

The steps for when a print job finishes on a printer are relatively simple, and can be seen in the
flowchart in Figure 6.2

Print job completed
on a printer

Yes

NoIs the queue
empty?

Select the next print
job that had this
printer allocated

Wait for print job to be
added to the queue

Send the next print
job that was allocated

to this printer

No

Yes

Enough time
to finish before

closing?

Yes

Enough
filament to

finish?

Yes

No Enough
filament to

finish?

Notify the
administrator about

filament change
during printing

Prompt administrator
for a filament change

No

Yes

Has filament
been changed?

Wait for administrator
to finish filament

change

Figure 6.2: The figure shows a flowchart of how the Printfarm Management System is to act when a print job finishes on
a printer.

As the system is to run task-driven, the algorithm needs to react when a print job is completed
on a printer. If there are print jobs in the queue, then the print job that had this printer allocated
will have to run through the same checks as in the previous flowchart. The first check is if there is
enough time to finish the print job within working hours. Then if there is enough filament to finish
the print job.

The design of MMUF used in the project will first be sorting the queue for criticality also called
priority, then deadline, then employee ID, and then FIFO. A flowchart diagram of this process can
be seen in Figure 6.3.

Page 38 of 48

CHAPTER 6. FINAL DESIGN

Add print job to the
queue

Sort queue by
criticality

Yes

No

Are there
two or more print

jobs with the same
criticality

Yes

No

Are there
two or more print

jobs with the same
deadline

Sort the print jobs by
Earliest Deadline

First

Sorting of the queue
is complete

Sort the print jobs by
employee ID

Yes

No

Are there
two or more print

jobs with the same
employee ID

Sort the print jobs by
FIFO

Print job left the
queue

Figure 6.3: The figure shows a flowchart of how the sorting of the print job queue is to be carried out using MMUF.

The third step, where the queue is sorted depending on the employee ID of the print jobs, is chosen
as it is expected that the chance of two print jobs having the same criticality, the same deadline,
and being sent to the queuing system by the same employee is relatively low, but if it happens then
these will be sorted using FIFO.

Page 39 of 48

7 Discussion

Now having designed the Printfarm Management System it can be discussed whether or not the
amount of simulations and the way they were set up is sufficient for taking the decision of queuing
algorithm for the print jobs. Furthermore, it can be discussed if SJF actually would be the best
queuing algorithm for the print jobs if there were more printers in the simulation. One of the main
reasons why MMUF was chosen over SJF and FIFO was the possibility of having different prior-
ities. These priorities could be used for standard customers and premium customers, but more
importantly, could be used if an error happened during printing. So in order to better handle print
errors, the only algorithms that were actually up for discussion were Priority Queuing, LLF, MUF
and MMUF.
Prioritisation is important for handling printing errors, as a printing job that has failed on a printer
needs to be restarted as soon as possible on another printer. This can be done by adding the print
job to the queue again, but with a priority that ensures that no ordinary print job is being started
before this print job is started. Another way to attempt this could be to add the print job to the
queue again but with a laxity equal to 0. Thereby, LLF could start this print job again as one of the
next print jobs. However, there is no guarantee that the print job will be prioritised over regular
print jobs as these can also have a laxity of 0. If that is the case then the failed print job would
actually be prioritised worse than the regular print jobs.
Another algorithm that could have been tested in the second run of simulations would have been
EDF. However, as EDF does not take priority into account this was chosen not to be simulated. One
could, however, implement error handling while still using EDF, by simply queuing the failed print
job again, but with a deadline of 0 or the time when the print job was added to the queue.

When discussing error handling by either priorities or by deadline = 0, then it is important to note
that this must be automated, in order to mitigate user errors. One way to mitigate user errors could
be to ensure that the user cannot assign the same values as a print error would have and only allow
the printers or the Printfarm Management System to allocate these values to a print job.

A user error that has not been handled in the thesis is if a user physically plugs in a USB drive and
starts a print on a printer instead of using the Printfarm Management System. This error would
cause the system to have to sort the print jobs in the queue again, and re-allocate print jobs to the
printers that are available.
Looking at the initial problem formulation it can be discussed if a Printfarm Management System
actually reduces the amount of manual labour compared to the current solution? In the current
solution, it is possible to send a print job to the printer by WiFi, and the printer can automatically
remove the print from the print plate. The improvements presented by the Printfarm Management
System are that it is possible to queue up multiple print jobs causing the downtime of the printers
to be lower as the downtime does not depend on the user interaction of sending another print job
to the printer.
Furthermore, the Printfarm Management System is designed to notify the user about filament
changes, which the user else would not know was needed unless the user physically inspected
the printer and estimated whether or not there is enough filament for the print job. This, however,
comes with the cost of changing out filament rolls that might have a significant amount of filament
left. Thereby, the amount of manual labour of checking up on filament before sending the print job
has been reduced.

Page 41 of 48

CHAPTER 7. DISCUSSION

As the simulations ran for the print job queuing algorithms did not calculate an estimate of the
material usage of the print jobs, and did not consider working hours, it can be discussed if further
simulations are needed in order to determine which algorithm is actually best suited for the system.
However, those simulations would be closer to a simulation of the system as a whole than a simu-
lation of the queuing algorithms. Furthermore, the difference in average turnaround time between
MMUF and Priority Queuing in the second simulation case was 25 minutes, and the difference be-
tween Priority Queuing and LLF was only 4 minutes. It is with great confidence that MMUF was
chosen as the algorithm for the print job queue. FIFO and SJF did perform better than MMUF in
the simulations, but would not be able to satisfy the challenge of printing errors that would need to
be reprinted.

When looking at the network communication of Create it REAL’s 3D printers, it can be discussed
whether or not mDNS is implemented optimally. One of the benefits of mDNS is that all the de-
vices listening can update their DNS tables, which then could result in fewer retransmissions of
the discovery process of devices. This could be done by having all the devices listening for the
mDNS request also listen for responses, when a response is received, the device then stores the
information. When the next request is sent the device can then respond with its DNS table, which
includes information about itself and other devices. This could help in discovering devices that for
one reason or another do not respond, but did respond on an earlier request. Thereby, the number
of times a request is sent could be brought from four times down to possibly two times or even one
time. However, this does come with the cost of memory on the devices, storing the DNS record,
which at the time of writing is a sparse resource.

Furthermore, lowering the number of transmissions of the discovery request can possibly impact
the amount of discovered devices for the first users sending their request, but as time goes on and
the DNS records on the devices have been fully created, one request could possibly be enough to
get the whole record as only one response is necessary from one of the devices in order to have the
full record.

A possible way to utilise the capabilities of mDNS could be to have the computers on the network,
that has REALvision open, listen for the request and send their DNS record as a response as well
as the printers would respond, thereby, the computers could help each other and rely less on the
printers to answer.

Page 42 of 48

8 Conclusion

From this thesis it can be concluded that a Printfarm Management System has been designed to
reduce the manual labour of running a 3D printer farm. The manual labour was reduced by de-
signing a centralised queuing system, so there is no longer a need for manually plugging a storage
device into the printers. The queuing system also gave the possibility of having the printers start
print jobs outside working hours, potentially increasing the production with up to 3X the number
of finished products.

Furthermore, it can be concluded that the design of the Printfarm Management System considers
the estimated amount of filament left on each printer when selecting which printer each print job
should be allocated to. The Printfarm Management System also considers the printing time of the
print job, to determine whether a filament change is needed before starting the print job or if a
change can happen during printing.
Moreover, MMUF has shown itself to be a favourable algorithm for sorting the print job queue,
especially when looking at the average turnaround time of a print job. One of the key benefits of
MMUF is the possibility of prioritisation, which can be used for error handling of print jobs.

It can also be concluded that by implementing the Printfarm Management System on a server and
that being the only device communicating with the 3D printers, the amount of mDNS discovery
requests for printers can be decreased dramatically as the Printfarm Management System can store
the information about the 3D printers and would only need to make an mDNS discovery request
if a printer was turned on and had not been on while the Printfarm Management System had been
running. Furthermore, the computers on the network would only need to discover the Printfarm
Management System, which should have a higher chance of responding than the 3D printers.

Future work could go into researching a way to ensure that a user cannot start a print job from a
USB drive if there is a Printfarm Management System on the network. This must be investigated
and implemented in a way such that the printers can still be used if the Printfarm Management
System is nonoperational for a given amount of time.
Another direction further research could go would be looking into the firmware of the 3D print-
ers and possibly finding another way for them to be discovered on the network, or to investigate
whether or not the implementation of WiFi can be improved.

Page 43 of 48

Acknowledgements

I would like to thank Create it REAL for the possibility of writing a thesis with them. It has been a
learning experience in many fields both inside the topic of this master thesis, but also in other topics.

Furthermore, I would like to send a thank you to the first teacher believing in me, she saw a young
boy who did not speak, read, or write any English and taught him how to believe in himself and
taught him all the English he should have learned before she met him and what he should have
learned that year. This teacher’s name is Rohda Christensen.

Another person who shows a similar willingness to improve young people’s lives is Henrik Schiøler.
Henrik was willing to brainstorm the project proposal and support the idea of the project. He was
there right when he was needed.

If more teachers and professors were like Rohda and Henrik, then the coming youth could go far in
this world.

Page 45 of 48

Bibliography

[1] N. Shahrubudin, T. Lee, and R. Ramlan, “An overview on 3d printing technology: Techno-
logical, materials, and applications,” Procedia Manufacturing, vol. 35, pp. 1286–1296, 2019, The
2nd International Conference on Sustainable Materials Processing and Manufacturing, SMPM
2019, 8-10 March 2019, Sun City, South Africa, issn: 2351-9789. doi: https://doi.org/10.101
6/j.promfg.2019.06.089. [Online]. Available: https://www.sciencedirect.com/science/ar
ticle/pii/S2351978919308169.

[2] C. it REAL, 3d printer electronics, Date visited 17-03-2023, 2022. [Online]. Available: https://w
ww.createitreal.com/3d-printer-electronics/.

[3] C. it REAL, 3d printer slicer software - overview, Date visited 26-04-2023, 2022. [Online]. Avail-
able: https://www.createitreal.com/3d-printer-slicer-software/.

[4] Creality, Ender-3 s1 pro 3d printer, Date visited 11-04-2023, 2023. [Online]. Available: https:
//www.creality.com/products/creality-ender-3-s1-pro-fdm-3d-printer?spm=..index
.header_1.1.

[5] C. Thierauf, “Networking 3d printers with printfarmer,” in 2018 IEEE MIT Undergraduate
Research Technology Conference (URTC), 2018, pp. 1–4. doi: 10.1109/URTC45901.2018.9244818.

[6] C. i. R. Lene Jensen, Is 24-7 mass-customisation really possible with fdm print? -yes! Date visited
11-04-2023, 2023. [Online]. Available: https://www.linkedin.com/posts/jensenlene_techn
ology-3dprinting-activity-7042058820197457920-GUr-/?utm_source=share&utm_medium
=member_ios.

[7] M. Radaviciute, “3d printing farm set-up: Printers and software,” 2022.

[8] G. Häußge, Octoprint, Date visited 11-04-2023, 2023. [Online]. Available: https://octoprint
.org/.

[9] P. L. S. Chris Hennes, Octoprint-queue, Date visited 11-04-2023, 2022. [Online]. Available: http
s://plugins.octoprint.org/plugins/queue/.

[10] R. Klauck and M. Kirsche, “Bonjour contiki: A case study of a dns-based discovery service
for the internet of things,” in Ad-hoc, Mobile, and Wireless Networks, X.-Y. Li, S. Papavassiliou,
and S. Ruehrup, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 316–329, isbn:
978-3-642-31638-8.

[11] A. Inc., Ios security - ios 12.1, Date visited 11-04-2023, 2018. [Online]. Available: https://web
.archive.org/web/20200220214656/https://www.apple.com/chde/business/docs/site/i
OS_Security_Guide.pdf.

[12] M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien, and N. Buchina, “Context based service discovery in
unmanaged networks using mdns/dns-sd,” in 2016 IEEE International Conference on Consumer
Electronics (ICCE), 2016, pp. 163–165. doi: 10.1109/ICCE.2016.7430565.

[13] N. C. S. D. (CSD), Fips 197, announcing the advanced encryption standard (aes), Date visited 19-
04-2023, 2001. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.1
97.pdf.

[14] J. Daemen and V. Rijmen, The Design of Rijndael The Advanced Encryption Standard (AES) (In-
formation Security and Cryptography), eng, 2nd ed. 2020. Berlin, Heidelberg: Springer Berlin
Heidelberg, isbn: 3-662-60769-7.

Page 47 of 48

https://doi.org/https://doi.org/10.1016/j.promfg.2019.06.089
https://doi.org/https://doi.org/10.1016/j.promfg.2019.06.089
https://www.sciencedirect.com/science/article/pii/S2351978919308169
https://www.sciencedirect.com/science/article/pii/S2351978919308169
https://www.createitreal.com/3d-printer-electronics/
https://www.createitreal.com/3d-printer-electronics/
https://www.createitreal.com/3d-printer-slicer-software/
https://www.creality.com/products/creality-ender-3-s1-pro-fdm-3d-printer?spm=..index.header_1.1
https://www.creality.com/products/creality-ender-3-s1-pro-fdm-3d-printer?spm=..index.header_1.1
https://www.creality.com/products/creality-ender-3-s1-pro-fdm-3d-printer?spm=..index.header_1.1
https://doi.org/10.1109/URTC45901.2018.9244818
https://www.linkedin.com/posts/jensenlene_technology-3dprinting-activity-7042058820197457920-GUr-/?utm_source=share&utm_medium=member_ios
https://www.linkedin.com/posts/jensenlene_technology-3dprinting-activity-7042058820197457920-GUr-/?utm_source=share&utm_medium=member_ios
https://www.linkedin.com/posts/jensenlene_technology-3dprinting-activity-7042058820197457920-GUr-/?utm_source=share&utm_medium=member_ios
https://octoprint.org/
https://octoprint.org/
https://plugins.octoprint.org/plugins/queue/
https://plugins.octoprint.org/plugins/queue/
https://web.archive.org/web/20200220214656/https://www.apple.com/chde/business/docs/site/iOS_Security_Guide.pdf
https://web.archive.org/web/20200220214656/https://www.apple.com/chde/business/docs/site/iOS_Security_Guide.pdf
https://web.archive.org/web/20200220214656/https://www.apple.com/chde/business/docs/site/iOS_Security_Guide.pdf
https://doi.org/10.1109/ICCE.2016.7430565
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[15] A. S. Tanenbaum and H. Bos, Modern Operating Systems, eng, 4rd edition. Pearson Education
Limited, 2014, isbn: 9781292061429.

[16] K. C. S. Murti, Design principles for embedded systems (Transactions on Computer Systems and
Networks), eng. Singapore: Springer, 2022, isbn: 981-16-3293-6.

[17] Stewart and Khosla, “Real-time scheduling of dynamically reconfigurable systems,” in IEEE
1991 International Conference on Systems Engineering, 1991, pp. 139–142. doi: 10.1109/ICSYSE.1
991.161098.

[18] V. Salmani, S. Taghavi Zargar, and M. Naghibzadeh, “A modified maximum urgency first
scheduling algorithm for real-time tasks,” Proc. Seventh World Enformatika Conference, Jan. 2005.

Page 48 of 48

https://doi.org/10.1109/ICSYSE.1991.161098
https://doi.org/10.1109/ICSYSE.1991.161098

	Front page
	English title page
	Contents
	Preface
	Nomenclature
	Introduction
	Problem Analysis
	Analysing the printing process
	Error handling
	Controlling the printers over the network
	Network discovery of 3D printers
	Transmitting a print job
	Security

	Queueing Algorithms
	First-In-First-Out
	Round Robin
	Shortest Job First
	Priority Queuing
	Earliest Deadline First
	Least Laxity First Scheduling Algorithm
	Maximum Urgency First
	Modified Maximum Urgency First

	Problem Formulation

	Requirements
	System Design
	The Combination of Queuing Algorithms
	Running out of filament

	Simulations
	Simulation Results
	Ranking the algorithms
	Simulations with random deadlines for print jobs with priority 2

	Final Design
	Discussion
	Conclusion
	Bibliography

