
Advanced Framework for Programming
and Controlling Multi-Robot Systems

in Self-Driving Labs
Integrating Behavior Trees and Reinforcement Learning

for Automated Lab Procedures

Adshya Vasudavan Iyer Ibrahim Jad Masri

Robotics, Control and Automation
Master Thesis

Group 934, June 2023

S
T

U

D
E

N
T R E P O R T

Copyright © Aalborg University 2023

The report iswritten in LATEXviaOverleaf. Illustrations has beenmadeusingGIMP, diagrams.net,
eraser.io, code2flow.com, Weights and Biases, and Matplotlib.
The content of this report is freely available, but publication (with reference) may only be pursued due to agree-

ment with the author.

Department of Electronic Systems
Aalborg University

es.aau.dk

Title:
Advanced Framework for Programming
and Controlling Multi-Robot Systems in
Self-Driving Labs

Theme:
Master Thesis

Education:
Robotics
Control and Automation

Project period:
September 2022 to June 2023

Project group:
Group 934

Participants:
Adshya Vasudavan Iyer
Ibrahim Jad Masri

Supervisor(s):
Simon Bøgh

Pages: 78
Appendix included: 92

Date of completion:
June 2, 2023

Abstract:

The increasing deployment of robots
in factories demands cost-efficient and
non-expert programming approaches.
This project aims to develop an easy-to-
use solution for controlling and creating
robot tasks. The proposed approach uti-
lizes intuitive and visual programming
with Behavior Trees (BTs) and Reinforce-
ment Learning (RL) for control, based
on the principles of Skill-Based Systems
(SBS). The focus is on applying this sys-
tem in Material Acceleration Platforms
(MAPs), specifically for Self-Driving Labs
(SDLs). A Matrix Production System
(MPS) with shuttles and manipulators
served as a use case for validating the so-
lution. Research showed challenges in
automating lab procedures, such as task
transfer and lab layout limitations, hin-
der the automation of lab work. The so-
lution presented demonstrated capabili-
ties of creating and executing BTs on the
MPS and the RL agent successfully nav-
igated obstacle-free environments but
faced difficulties with multiple obstacles
due to control and behavior tendencies.
The system serves as a proof of concept
but requires further improvements be-
fore being put to use. Overall, the novel
combination of BT and RL for multi-
robot systems in MAPs shows promise,
in advancing the automation of lab tasks
and material discovery.

es.aau.dk

Contents

Preface iii

Acronyms iv

1 Introduction 1

2 Problem Analysis 3
2.1 Platform for Self-driving Lab . 3
2.2 Challenges in Self-Driving Labs . 5
2.3 Related Works . 7
2.4 Commercial Solutions . 15

3 Methods 19
3.1 Behavior Trees . 19
3.2 Learning-based Control . 20
3.3 Simulation Software . 26

4 Problem Formulation 29
4.1 Final Problem Statement . 29
4.2 Objectives . 29

5 Implementation 31
5.1 Design . 31
5.2 Software Stack and Architecture . 33
5.3 Device Manager . 36
5.4 Behavior Tree . 37
5.5 Skill Library . 40
5.6 Reinforcement Learning Agent . 45

6 Test and Results 55
6.1 Discrete Case . 55
6.2 Continuous Case . 61
6.3 Behavior Engine . 64
6.4 Deploying the RL agent . 66

7 Discussion 72
7.1 Evaluation of the Solution . 72
7.2 Improvements . 74

8 Conclusion 76

9 Future Work 77

i

Bibliography 79

A Appendix 83
A.1 What is a good user interface? . 83
A.2 Finite State Machines . 86
A.3 Exploration and Exploitation . 89
A.4 Behavior Tree Implementations . 90
A.5 XPlanar Library . 90
A.6 Homogeneous Transformation Matrix 91

Preface
We would like to lead this report by expressing our heartfelt gratitude to all those who
have contributed to the successful completion of this year-long master’s thesis. The
journey of this project has been as challenging as it has been giving, and in hindsight,
we feel proud to see the vision we had in our minds for this project come to fruition.
This research project would not have been possible without the invaluable support and
guidance of the following individuals.
First and foremost, we would like to extend our deepest appreciation to our supervisor,
Simon Bøgh1, for his exceptional expertise and commitment throughout this thesis.
His knowledge and passion for reinforcement learning have been influential in shap-
ing the direction of this project. We value the encouragement, guidance, and positive
attitude he has offered to us, which has made this thesis project both enjoyable and
a great learning experience. We would furthermore like to thank Associate Professor
Casper Steinmann2 for providing us with valuable insight on lab experimental work
procedures which has truly been helpful in analyzing the challenges posed when im-
plementing a self-driving lab. This has been key for understanding how to enable lab
workers to easily plan and execute lab experiments automatically. Finally, we would
like to thank Assistant Professor Casper Schou3 for sharing his knowledge within skill-
based systems and for inspiring us to create our own rendition of such a system.

It is our sincere hope that the research and findings presented in this report will con-
tribute to the existing knowledge and promote future work within the field of skill-
based systems and reinforcement learning. Videos of the solutions can be found on
this link.

1https://vbn.aau.dk/da/persons/118609
2https://vbn.aau.dk/da/persons/casper-steinmann-steinmann
3https://vbn.aau.dk/da/persons/127366

iii

https://www.youtube.com/playlist?list=PLAbckErPgknlLJoYSIWVMjyJpc8yp-4AP
https://vbn.aau.dk/da/persons/118609
https://vbn.aau.dk/da/persons/casper-steinmann-steinmann
https://vbn.aau.dk/da/persons/127366

Acronyms
MAP Material Acceleration Platform
SDL Self-Driving Lab
SBS Skill-Based Systems
BT Behavior Tree
UI User Interface
UX User Experience
LiDAR Light Detection and Ranging
SAC Soft Actor-Critic
MDP Markov Decision Process
RL Reinforcement Learning
DRL Deep Reinforcement Learning
FSM Finite State Machine
PPO Proximal Policy Optimization
ODE Open Dynamics Engine
ML Machine Learning
SLAM Simultaneous Localization and Mapping
PMS Process Management System
ROS Robot Operating System
PMC Planer Motor Controller
MPS Matrix Production System

iv

Signatures

Adshya Vasudavan Iyer Ibrahim Jad Masri

Chapter 1

Introduction
In the recent years there has been a clear uptick in the deployment of robots in facto-
ries, as the industry today are including more robots in manufacturing processes than
ever before. According to the World Robotics Report 2022, there has been a year-to-
year increase of 33%, with 2021 having a number as high as 517,385 robots [1]. With
the number of robots increasing the demand for new and easy alternatives for pro-
gramming them arises, as the traditional methods for setting up robot tasks are both
time consuming, costly, and requires expert knowledge [2]. While the idea of easy-
programming interfaces among collaborative robots has been around for a while, it is
still not a wide-spread practice in regard to industrial robots. Furthermore, program-
ming multi-robot systems can be challenging even for expert programmers, let alone
for non-technical users, which is why non-programming methods for robot task plan-
ning is interesting to explore to find solutions for this problem. This project presents
a novel approach for easy programming of multi-robot systems using Behavior Trees
(BTs) and Reinforcement Learning (RL) for task planning and control, respectively. The
project will focus on easy programming of experimental procedures in Self-Driving
Labs (SDLs), which keeps in tone with the current global interest in Material Accel-
eration Platforms (MAPs).

Material
Acceleration

Platforms
(MAPs)

Human Intuition AI Models

Orchestrator

Robotics Platforms

Databases

Figure 1.1: Illustration of the various modules combined which MAPs consist of.
This figure is adapted from [3].

In the context of this project, MAPs refer to self-driving labs for material discovery.
These labs commonly include robots and AI systems to help speed up experimental
procedures, resulting in 10-100x faster discovery rates [4]. Fig. 1.1 shows the different

1

CHAPTER 1. INTRODUCTION

aspects and modules which all combined creates MAPs in a closed-loop approach. The
AI models define and suggest the experiments which will be executed by the robotic
platform. The orchestrator manages the data gathered during execution and updates
the AImodel. The constraints of the system along with databasemanagement are han-
dled by the researchers. The researchers also use their prior knowledge as input to the
AI models [3].

Currently, Denmark is investing a lot in research in MAPs with the newly founded pi-
oneer center CaPeX. CaPeX is a project, which has eight universities (five national and
three international) collaborating, working on the research and development of new
materials [5]. The project presented in this report can be considered as pre-work for
the upcoming research projects on MAPs at Aalborg University, yielding some insight
within the area of automating lab processes. Thus, lay the grounds for other future re-
search within MAPs, in regards to the robotics aspect.

The goal of this project is to develop an advanced framework that combines behaviour
trees and reinforcement learning techniques to simplify robotic task planning and pro-
gramming, for enhancing the efficiency of experimental processes. The focus will be
on a task-level programming approach which will empower lab workers to efficiently
program and control multi-robot systems in SDLs. This leads to the following initial
problem formulation:

How can a multi-robot system be programmed and controlled using the capabilities
of behavior trees and reinforcement learning techniques in order to automate lab pro-
cedures?

2

Chapter 2

Problem Analysis
This chapter introduces the hardware used in this project and the challenges of SDLs.
Furthermore, it shows the current trend in robotic systems for task planning and con-
trol, leading up to the current state-of-the-art systems used today both in research and
commercially available solutions.

2.1 Platform for Self-driving Lab
As a precursor for the solution presented in this project a lab setup is needed. For this,
the Matrix Production System (MPS)[6] at AAU is used to simulate an SDL. The setup
will be used for testing the implementation of the skill-based system along with the
reinforcement learning control aspect.

Matrix Production System
The self-driving lab consists of an ACOPOS 6D planar motor system as well as 6 KUKA
robots mounted on a tabletop. The system can be seen in Fig. 2.1 below.

KUKA
Robot

Shuttle

Electromagnetic
motor segments

Figure 2.1: The MPS setup located in the AAU Smart Production Lab consists of a
B&R planar motor system called ACOPOS 6D and six KUKA robots [6].

The ACOPOS 6D system is developed by B&R Automation in collaboration with Planar
Motor. The system consists of magnetically levitated shuttles that can be moved in 6
degree-of-freedom on top of electromagnetic motor segments. The shuttles come in a
variety of sizes and can carry different payloads. Each shuttle has a unique ID making

3

2.1. PLATFORM FOR SELF-DRIVING LAB CHAPTER 2. PROBLEM ANALYSIS

it possible to keep track of them. In the lab, the smallest models are used with a size of
118 x 118 mm. The shuttles are capable of moving precisely with less than 5 microns
in repeatability with a maximum speed of 2m/s andmaximum acceleration of 20m/s2.
The motor segments are identical in size and modular in configuration allowing the
layout of the system to be changedwith ease [7]. As can be seen in Fig. 2.1, the ACOPOS
system at AAU, consist of 7 shuttles that canmove around on a platform consisting of 3
by 4 motor segments. Each motor segment has its coordinate system, but when daisy-
chained, a global reference frame is used instead.

This flexibility and scalability of the systemmake it a good choice for a self-driving lab.
Furthermore, as the system is magnetically levitated, the motion is contactless making
it maintenance-free. The shuttles are driven by a central controller given a position,
maximum velocity, maximum acceleration, and end velocity. The ACOPOS system is
controlled using a PLC configured to work with the Planar Motor system. Alternatively,
it is possible to use the Planar Motor API by connecting directly to the Planer Motor
Controller (PMC) [8].

There exist other solutions similar to the ACOPOS system, such as XPlanar which is
developed by Beckhoff Automation and offers similar system capabilities [9].

The KUKA robots are of two different types consisting of 4 KUKA KR3 R540 and 2 KUKA
KR4 R600. Each robot has its controller and can be interfaced with from a central PLC
which all the different robot controllers are connected to. Alternatively, each robot can
be controlled individually using a TCP/IP server running on each robot controller [10].

In this project, it is desired to make it easy to program robot tasks, control different
types of robots as well as use reinforcement learning to control the ACOPOS 6D system
to do local path planning and collision avoidance.

4

CHAPTER 2. PROBLEM ANALYSIS 2.2. CHALLENGES IN SELF-DRIVING LABS

2.2 Challenges in Self-Driving Labs
When researching the difficulties that may involve in developing a SDL, it uncovered
some relevant issues, that should be taken into consideration. The first is the lab con-
sisting of a heterogeneous system. Heterogeneous systems consist of multiple types
of processing units, which poses challenges due to each processing unit has its pro-
tocol and API to communicate with it [11]. Another major challenge, relevant to the
process of automating the experimental tasks in the lab, is the translation of manually
performed tasks which are complex. The translation of an experimental task designed
to be performed by a human is not directly transferable to a robot [12]. In the context of
automating the task, themanner of how the task is performedmay differ, with both the
setup and themotion planning, as theremay be amore optimal way of doing so. There-
fore a lot of thought should go into the design and planning of the experiments. Related
to this problem, is the issue of handling lab equipment, such as assembling and dis-
assembling equipment as well as utilizing the equipment for tasks such as dispensing
materials. According to the [12], automating the procedure of dispensing liquids is con-
sidered to be easier than dispensing solid substances (powder), especially in thematter
of dispensing really small quantities of powder substances. This can be explained, as
working with dispensing larger amounts of powders can resemble more fluid-like flow,
while working with smaller quantities, every single solid particle is significant, and re-
quires a high level of accuracy when dispensing. This makes it challenging to automate
many of the needed experimental tasks.

To further investigate the validity of the concerns and challenges mentioned above,
the project group was granted a lab tour by Casper Steinmann1, Associate Professor in
Computational chemistry at AAU. The tour gave some valuable insight into the pro-
cesses that go into performing experiments as well as improvements that can be made
to these. The procedure for performing experiments can be divided into 4 different
steps; the first step is preparation, which takes place before entering the lab. The
preparation can take days and consist of designing the experiments, writing down the
equipment needed, and making risk assessments according to the safety protocols for
the lab procedure. The second step is to prepare all equipment and substances when
entering the lab before starting the experiment, this involves measuring out the quan-
tities needed by hand. Once these steps are completed, one can move on to the third
step which is to perform the series of desired experiments, followed by the final step of
analyzing the results.

The information gathered from the lab suggests that the current state of today’s labs
concurswith the concerns and assumptions stated in the above section. Someof the key
points are the concerns around dispensingmaterials, as this is currently donemanually
today as seen in Fig. 2.2, which is considered to be a very difficult task to automate.
This is due to the fact that the amount needed is too marginal, measured in milligrams
down to micrograms, yet each particle has a significant impact on the experiments and
results.

1https://vbn.aau.dk/da/persons/casper-steinmann-steinmann

5

https://vbn.aau.dk/da/persons/casper-steinmann-steinmann

2.2. CHALLENGES IN SELF-DRIVING LABS CHAPTER 2. PROBLEM ANALYSIS

Another point in regards to dispensing is the lab has a large variety of containers in all
shapes and sizes, as seen in Fig. 2.2 (left) making it too complex for the robot to be able
to aidwith the preparation of the experiments. Therefore it could be concluded that the
more feasible area to introduce automation in the lab is in conducting the experiments,
and not in the design and preparation of it, as this requires human intervention.

Figure 2.2: Right figure showsCasper Steinmann, Associate Professor in Computa-
tional Chemistry at AAU, demonstrating how substances are still measured man-
ually today, during the lab tour at the Department of Chemistry and Bioscience.
The left figure, has Casper S. showing all the varieties of containers, that are found
in the lab.

In an attempt to break down the task of automating experiments, some of the main
issues that surface is the current layout and equipment of the lab designed for humans
operating in the workspace is not adaptable for robot integration. An example of this is
the fume hoods, seen in Fig. 2.3, which are too small to have a robot operating inside it,
furthermore, the fume hoods tend to become cluttered and cramped with equipment
and materials, which is not ideal for a robot setup. This has led to the conclusion that
the self-driving lab must have a less conventional setup with appropriate measures
concerning the robot workspace. Furthermore, it is determined that the most feasible
way to accelerate experimental procedures and provide results faster would be to aim
for multiple experiments running in parallel on the platform. With this in mind the
MPS platform presented earlier is well argued for.

6

CHAPTER 2. PROBLEM ANALYSIS 2.3. RELATED WORKS

Figure 2.3: Picture of one of the fumehoods found in the Chemistry andBioscience
lab, which shows how it would not be suitable having a robot operating inside of
it, due to the robot’s size and all the equipment inside of the hood.

2.3 Related Works
This section will present the findings of the research made on related projects, solu-
tions, and the development within the topics affiliated with this project. The section is
divided into three parts, research on MAPs, RL followed by research and current solu-
tions for skill-based systems.

2.3.1 Material Acceleration Platforms

To plan experiments in SDLs, Roch et al. (2020) [13] present a software package called
ChemOS. It is developed as a versatile agnostic software that supports the high-level
experimental scheduling of both fully autonomous workflows as well as experiments
with human intervention involved. The system uses Machine Learning (ML) to deduce
which experiments to proceed with based on feedback from previously conducted ex-
periments.

7

2.3. RELATED WORKS CHAPTER 2. PROBLEM ANALYSIS

Figure 2.4: The different modules of ChemOS showing the interface and the mod-
ule names [13].

ChemOS is compromised of different modules, shown in Fig. 2.4, that are commonly
needed in autonomous labs. The first module is the user interface for interacting with
the researchersmaking it possible to create new requests for experiments. Thismodule
also comes with a ChatBot which gives a predetermined response based on the cate-
gory of the message received. The second module is database handling and manage-
ment which is used to save and retrieve feedback, parameters, requests, and results in
different databases. The third module is the robotics module which acts as a bridge
between ChemOS and the hardware used in the experimentation. The fourth module
is the characterizationmodule which takes high-level instructions and translates them
to low-level elementary machine-oriented commands. The fifth module is the analysis
module which is used to visualize data to analyze it. Lastly, the learning module is the
key to creating autonomous experiments and is used for parameter space search and
decision-making. Even though ChemOS provides a robotics module, it has limitations
as it does not include any hardware drivers or communication protocols to ease the
integration of robotics in self-driving labs.

Mobilemanipulators are proven beneficial for automating chemical procedures. Burger
et al. (2020) [14] present a concept of a mobile chemist which is used to perform tasks
similar to a human lab worker. Here, Burger et al. used a platform known as KUKAMo-
bile Robotics (KMR) with a KUKA iiwa manipulator as shown in Fig. 2.5. Simultaneous
Localization and Mapping (SLAM) algorithms were used to map the lab and allow the
robot to navigate to target stations. The researchers mention that the positional capa-
bilities of the system were±10mmmaking it possible to navigate to different stations
but limiting fine manipulation capabilities. Therefore, the team added touch sensors
to make it more precise.

8

CHAPTER 2. PROBLEM ANALYSIS 2.3. RELATED WORKS

Figure 2.5: The KMR iiwa platform is used to automate chemical experimenta-
tion by going to different pre-defined locations, shown in orange on the map. The
locations correspond to different stations used for dispensing, loading, storing,
etc.[14]

The mobile robot moves to pre-defined locations on the map to get to the stations to
perform the scheduled tasks. The stations are controlled by a ProcessManagement Sys-
tem (PMS) over TCP/IP and RS-232 communication protocols. This made it possible to
schedule and execute tasks in parallel where the different machines are working simul-
taneously enabling the system to process more batches. Similar to ChemOS, different
search algorithms were used to learn which tasks to perform next in order to achieve
the desired material properties. It is worth noting that the researchers spent approx-
imately 2 years developing the solution most of which involved working on protocols
and software automation.

It can be seen that both ChemOS and the mobile chemist have similar needs. Both
systems have to communicate or bridge hardware and integrate it into the system and
plan the experiments along with optimizing the search space and storing the results,
either physically or digitally.

9

2.3. RELATED WORKS CHAPTER 2. PROBLEM ANALYSIS

2.3.2 Reinforcement Learning

Although there aremany different path-planning algorithms that can be used for man-
aging the shuttles in the ACOPOS system, many of these traditional algorithms cannot
adapt to changes in the environment, which can make it hard to move around in an
unknown environment, while avoiding obstacles.
In recent years, a lot of research revolving around the use of reinforcement learning
for control and obstacle avoidance has been made, for applications such as self-driving
cars, trajectory planning for robot manipulators, and path planning of mobile robots,
to name a few. In Choi et al. (2021) [15], an approach for dynamic obstacle avoidance
using reinforcement learning for mobile robots is presented. The research combines
Deep Reinforcement Learning (DRL) and the integration of path planning, for optimal
control. What is of interest in this study is how the collision is defined as an RL prob-
lem. To uncover this it is relevant to look into how the states, actions, and rewards are
defined.

st = [slidart , sgoalt , sspeedt] (2.1)

According to [15] the state is defined as seen in Eq. (2.1) which also corresponds to the
observations given to the mobile robot (agent). The observation is the data received
from a Light Detection and Ranging (LiDAR) scanner, which consist of the distance to
its surroundings and potential obstacles, the relative distance to the goal position in x
and y, as well as the forward- and rotational velocity v and ω, respectively.

at = [v, ω] (2.2)

The agent action is described as continuous behavior as it was desired to have more
smooth control and is consideredmore advantageouswhendealingwith obstacle avoid-
ance. The actions, Eq. (2.2), are based on the two components themobile robot receives
at each time step, one being the forward velocity, v, and the second rotational velocity,
ω.

R = Rg +Rc +Rω (2.3)

The reward function, Eq. (2.3), given in [15] is based on a sparse reward system and
gives an intuition of how to design a reward function for the shuttles. The rewards
consistRg which is the completion reward of +10 when reaching the goal position com-
bined with a smaller positive reward when being in the vicinity of the goal. Rc is the
-10 penalty for colliding with obstacles, which also causes the episode to terminate.
Rω is the penalty that the mobile robot receives when exceeding the rotational velocity
above a certain set threshold.
The RL agent is based on the Soft Actor-Critic (SAC) and the actor-network can be seen
below in 2.6. The actor-network is a multi-input CNN that takes the observation data

10

CHAPTER 2. PROBLEM ANALYSIS 2.3. RELATED WORKS

(LiDAR data, distance to goal, and velocity) as input and outputs the probable action
as velocities.

Figure 2.6: The diagram shows an overview of the actor-network of collision avoid-
ance learning using SAC. The network takes 3 inputs, LiDAR data, distance to the
goal, and velocity. It outputs an action consisting of velocities [15].

2.3.3 Skill-Based Systems

Important research that has laid the groundwork for Skill-Based Systems (SBS) is the
project presented by Rath Pedersen et al. (2015) [16], which has inspired many deriva-
tive works in recent years. The paper describes how to use robotic skills for task plan-
ning. According to the research, any task can be defined as a set of skills. A skill can be
a sub-task such as ’pick up’, ’place’, or ’assemble’. A robot skill is described as an object-
oriented ability, in parameterized form, which can be composed into tasks. The skill
construction itself is considered generic but can be configured to be task-dependent
using the parameters.

Figure 2.7: Diagram showing the structure of a robot skill with all its sub-elements
as presented in Rath Pedersen et al. [16]

Fig. 2.7 shows how a robot skill is defined. A skill takes an input parameter such as
object location, and the current state of the robot. Before the skill can be executed the
systemwill checkwhether the pre-condition for the given skill ismet. The performance

11

2.3. RELATED WORKS CHAPTER 2. PROBLEM ANALYSIS

of the skill is constantly evaluated during execution and is validated by a post-condition
check, once the skill is completed before the system will move on to update the states.
The system uses state machines to transition between states.
The general architecture of the system is shown in Fig. 2.8, which consists of three
abstract layers. The bottom layer contains the device primitives, which are the low-
level control enabling the control of the hardware, gaining data, and communicating
with the actuators, sensors, and other devices. A device primitive exposes the hardware
capabilities to the skill layer, which can be combined into a robot skill.

Figure 2.8: The figure shows the three abstract layers that the SBS commonly con-
sist of as presented in [16]. At the bottom are the device primitives, the second
layer is the skill layer, and above those two is the task layer.

The skill layer is the layer relevant for being able to configure tasks and reconfigure
them as desired for different production tasks. While the functionality of the robot task
is still implemented manually today, having robot skills can ease the process of having
to program the robot system and task from scratch. The task level shows the sequences
of skills created and gives an overview of the general task setup for the system, but
it is the skills that determine the functionality and the behavior of the robot, which is
why the skills are also the system component that is responsible for updating the states
of the robot and the world (environment). This research is considered a pivotal point
for automating robot programming, making it easy for both integrators and employees
that play a direct role in the use of production lines e.g. operators to be able to plan
new robot tasks or setups, with existing hardware. This alleviates the redundancy and
time spent on robot task planning for customization needs in the industry. Some of
the authors connected to the research, had continued to develop the above-mentioned
system, publishing the Schou et al. (2018) [17].

Andersen et al. (2017) [18] have used a system similar to themobile chemist [14], called
Little Helper, with a focus on Industry 4.0 by integrating the skill-based system. The
platformused aMiR100 basewith aUR5 as themanipulator. Unlike themobile chemist,
the Little Helper uses skills to create and execute tasks along with a device manager
making its deployment quicker compared to the mobile chemist.

12

CHAPTER 2. PROBLEM ANALYSIS 2.3. RELATED WORKS

Mayr et al. (2021) [19] take the concept of SBS one step further. The research uses rein-
forcement learning to learn the optimal parameters needed as input for a task. Unlike
[16], this work uses Behavior Trees (BTs) to represent a policy that determines the be-
havior of the robot at a task instead of state machines. The system proposed in this
paper is divided into 3 main components, behavior trees based on movement skills,
policy parameter optimization, and domain randomization.

Figure 2.9: Visual representation of a peg-in-hole task consisting of three goals
in different areas. The goal of the robot is selected based on which area the end-
effector is in [19].

Fig. 2.9 shows a peg-in-hole task with different goals to avoid collision with the red
square, representing an engine block, as well as to perform the peg insertion. The task
has been described in terms of a behavior tree, where the robot starts at point s and has
to go to target g1 if the end-effector’s position is in area p1. Otherwise, the robot has
to go to g2 if its end-effector’s position is in area p2. Finally, the main goal the robot
had to reach is g3 in area p3. The reactivity of the behavior tree allows for periodically
checking the position of the end-effector to determinewhich target goal the robotmust
move to. This differs from the skill-based system where continuous evaluation is done
in the skill itself. Here, the conditions are not a part of the skill, but rather their own
component.

13

2.3. RELATED WORKS CHAPTER 2. PROBLEM ANALYSIS

Figure 2.10: Diagram showing the behavior tree structure for the peg-in-hole task
represented in [19].

As it can be seen in Fig. 2.10, the tree has three condition nodes to check the end-
effector position. If the position is close to the obstacle, the goal for the robot will be a
point that is far from the object. However, when the robot is close to the hole, it starts
the peg insertion task (green box). In the figure, changing the tasks of peg insertion to
another task can be done by replacing the peg insertion subtree with another one. This
demonstrates the capabilities of the BT approach to task planning.

14

CHAPTER 2. PROBLEM ANALYSIS 2.4. COMMERCIAL SOLUTIONS

2.4 Commercial Solutions
The following section investigates the commercially available solutions, covering their
capabilities. This section is used to draw inspiration for designing the solution pre-
sented in this project.

2.4.1 ForgeOS

ForgeOS is a commercially available solution that is developed by the US-based com-
pany Ready Robotics. The solution combines easy robot programming and task plan-
ning on a common platform that supports robots from various robot manufacturers,
sensors, and cameras. ForgeOS consist of flowchart-based programming that comes
along with a teach pendant, with the concept of plug-and-play. It enables the user to
easily program robot taskswith the approachof visual programming (block-programming),
without the difficulty of integrating hardware into the system manually. The system
is based on state machines and is the first universal operating system for industrial
robots. It is built on Qt and C++ making it available across platforms. The main com-
ponents of the system are the Task Canvas where the robot tasks can be created, Device
Control which enables the user to seamlessly control the devices connected to the sys-
tem in real-time, and the Device Configuration where the user can add and configure
the desired robot and additional hardware to their work-cell [20].

Figure 2.11: Image showing the user interface of ForgeOS developed by Ready
Robotics, which uses finite-state-machines for programming of robots and sup-
ports a large variety of robot manufacturers [20]

15

2.4. COMMERCIAL SOLUTIONS CHAPTER 2. PROBLEM ANALYSIS

ForgeOS comes with different blocks that can be dragged and dropped. These blocks
consist of high- and low level skills such as open and close gripper (high), and read and
write IO signals for a specific device (low) [21].

2.4.2 MoveIt Studio

MoveIt Studio is developed by PickNik Robotics, another US-based company. MoveIt
studio, shown in Fig. 2.12, is a software framework that enables the user to programand
test robot hardware remotely and to easily perform task planning andmotion planning.
The software targets both non-experts and experts and supports easy debugging and
inspections of trajectories for recovery. One of the advantages of MoveIt Studio is its
integration with Robot Operating System (ROS). This enables the user to design robot
behaviors and use many of ROS and MoveIt capabilities with an easy-to-use graphical
interface based on behavior trees. Since the software supports ROS, it means many of
the features supported by ROS are also supported such as navigation for mobile robots
andmanipulator trajectory planning. Additionally, the hardware supported by ROS can
also be used and configured to work withMoveIt Studio. The software also supports re-
mote access, to program and command the robot. Furthermore, it supports debugging
andmonitoring the state of the behavior tree as well as other monitoring systemsmet-
rics such as CPU load, network usage, and RAM usage [22].

Figure 2.12: TheMoveIt Studio user interface, developed byPicknik. MoveIt Studio
uses behavior trees where the nodes can be dragged and dropped from a side panel
[22]

MoveIt Studio is based on an open-source behavior tree implementation called Behav-
iorTree.CPP2 written in C++. This implementation is designed in a way that makes it
easy to create new nodes which is done by inheriting from base classes depending on
the needed functionality. These nodes have to be registered in a behavior tree factory
which thenmakes them available to be used. The execution nodes in this behavior tree

2https://www.behaviortree.dev/

16

https://www.behaviortree.dev/

CHAPTER 2. PROBLEM ANALYSIS 2.4. COMMERCIAL SOLUTIONS

implementation are asynchronous allowing concurrent execution of nodes. The differ-
ent variables have to be defined on a blackboard. A blackboard is a dictionary of keys
and values, where the user is responsible for creating the blackboard and adding the
required keys and values to use them later as an input to or output from other nodes.
This is done in the same manner in MoveIt Studio. Furthermore, the execution nodes
have ports, which are a way to make sure that variable types are checked along with
whether it is an input, output, or inout variable.

2.4.3 RiFLEX

Similar to the above-mentioned solution, RiACT, a Danish-based startup, offers a com-
mon platform called RiFLEX to program robot tasks that supports many robot manu-
facturers, in the form of a skill-based system. They focus on visual programming that
enables the user with no programming skills to be able to create new tasks. Fig. 2.13
shows the user interface of their software with a component sidebar as well as different
skills to program the robot. Similar to MoveIt Studio, RiFLEX is also integrated with
ROS leveraging its capabilities as a robotics middleware. The system core functions,
referred to by the company as the three c’s are; connect, configure and coordinate. The
capabilities of connecting robots and other hardware in the work cell, configuring the
connected hardware to create tasks with the help of generic skills, and coordinating
the system so it seamlessly integrates into the production line. Unlike ForgeOS, Ri-
FLEX uses extended behavior trees to construct tasks consisting of skills. The solution
comes with an HMI with their software which allows the user to connect it to the hard-
ware setup in the production line. The system also supports simulation with a digital
twin setup for learning, planning, and knowledge sharing [23].

Figure 2.13: The user interface for the RiFLEX software developed by RiACT. Ri-
FLEX is based on behavior trees, providing easy programming of robots [23].

17

2.4. COMMERCIAL SOLUTIONS CHAPTER 2. PROBLEM ANALYSIS

RiFLEX software is based on a project called Skiros23, which is written in Python. In
this implementation, the skill designer creates a new skill by extending a base class and
defining different pre-, hold- andpost-conditions for the skill. UnlikeBehaviorTree.CPP,
the conditions are not separate nodes by themselves but are integrated into the skill
itself. Similar to BehaviorTree.CPP, the execution of the nodes is done asynchronously.

2.4.4 Summary

It can be seen that all the commercial solutions have a well-designed user interface
allowing the user to create tasks easily. Additionally, hardware configuration seems to
be an important aspect of the solutions where both RiFLEX andMoveIt Studio leverage
the power of ROS to integrate more hardware into their solutions. On the other hand,
ForgeOS uses other methods to configure hardware. RiFLEX and MoveIt Studio use
different implementations of behavior trees with similar core capabilities. RiFLEX uses
only high-level skills based on a strictly defined structure, while MoveIt Studio and
ForgeOS give more freedom in how to design the task by providing both high- and low
level nodes.

3https://github.com/RVMI/skiros2

18

https://github.com/RVMI/skiros2

Chapter 3

Methods
This chapter will introduce the reader to the fundamental theory and methods con-
sidered when implementing the solution presented in the following chapters. The first
section describes the idea behind behavior trees followed by the learning-based control
section which dives into the Markov Decision Process (MDP) which forms the basis for
RL, used for controlling the shuttles in the self-driving lab.

3.1 Behavior Trees
Behavior trees are a powerful tool that can be used to describe the complex behavior of
agents much more easily. BTs were originally used in game development for designing
the behavior of non-playable characters but have gained a wide interest in themwithin
robotics. BTs are composed of nodes connected by edges forming a tree structure. The
tree starts with a root node that is connected to control nodes, ending with the leaf
nodes which are known as execution nodes. Control nodes are made of 4 categories of
nodes, sequence, fallback, parallel, and decorators. The execution nodes are made of
2 categories, action, and condition nodes. The execution of a BT starts when a tick is
sent to the root node, which routes this tick to its children until they reach the exe-
cution nodes. Each node returns a state corresponding to success, failure, or running,
depending on the state of execution. This state is then propagated back to the parent
node. The tick is sent at a specific interval which makes the tree reactive to changes
[24]. The behavior of the flow control nodes is explained below:

Sequence:
This node ticks its children in a specific order. If one of the children fails, the
sequence is terminated and the sequence node also fails. This node needs all
children to succeed to execute successfully [24].

Fallback:
This node ticks its children in a specific order. Unlike the sequence, if a child fails,
the fallback ticks the next child. If all children fail, then this node fails too. This
node needs only one child to succeed in order to execute successfully [24].

Parallel:
This node ticks all of its children at once. It is similar to a sequence node in which
all children have to succeed for the parallel node to return success. Otherwise, it
returns failure if one of its children fails [24].

Decorators:
These nodes have one single child and they behave according to a user-defined
rule. An example of this is an inverter node which could be implemented in a way
such that if a node returns failure, it inverts it and returns success instead. The

19

3.2. LEARNING-BASED CONTROL CHAPTER 3. METHODS

inverter node can be useful when used with condition nodes [24].

BTs are easier to understand based on their graphical representation. They are also
composable where the user can plug an entire tree as a sub-branch of another tree.
Furthermore, BTs ensures reusability where different behaviors can be made into sub-
trees to be used with another tree [24]. An alternative for BTs is Finite State Machines
(FSMs) which are described in Appendix A.2, where a comparison of the two is also
presented.

3.2 Learning-based Control
RL is built upon the principles of MDP. This section will briefly explain the fundamen-
tals of MDPs, followed by the theory relevant to understanding RL, and finally ending
with Proximal Policy Optimization (PPO), which will be used in this project.

3.2.1 Markov Decision Process

MDP is a mathematical abstraction commonly used to describe an RL problem. It is
used to describe the relationship between a decisionmaker, referred to as an agent, and
its environment through states and actions. MDPs describe the sequential decision-
making in an environment assumed to be fully observable. The importance ofMDPs for
RL is that they can be used to define states and their transition probabilities. Another
relevant principle is the Markov property, also known as the memory-less property of a
stochastic process, which determines that the future states only depend on the current
state. In other words, any future state only depends on its prior state [25].

MDP principles

MDPs [25] are described as 5-tuple (S,A,Ta,Ra,γ):

• S consists of a finite set of possible states in the given environment.

• A is the finite set of possible actions in a state.

• Ta represents the state transition matrix, which is the probability of transition
from state S to state S′ for a given action a at a time t.

• Ra is the reward obtained after transition from state S to state S′ for an action a.

• γ is considered the discount factor that determines how the current and future
rewards should be weighted, γ ∈ [0,1].

3.2.2 Reinforcement Learning

To dive deeper into the understanding of MDP and RL certain terminology must be
presented. As mentioned these methodologies consist of agents, states, actions, and
rewards, which will be explained further in the following sections.

20

CHAPTER 3. METHODS 3.2. LEARNING-BASED CONTROL

Agent and Environment
The agent is an entity that will interact with the environment and has to achieve some
desired goal. The RL agent is inserted into the environment and will learn how to per-
form the specified task optimally by observing the environment. The agent will achieve
its goal by trial and error and will be rewarded based on behavior and performance,
which it will try and optimize through actions. In other words, the agent will try and
maximize the sum of rewards to achieve the optimal behavior for the given task. As
for the environment, it can be based on a certain given model, so the environment is
known, or the environment can be unknown. The relationship between the agent and
the environment is illustrated in Fig. 3.1 below [26].

Figure 3.1: Illustration of the relationship between the agent (robot) and the en-
vironment, which can be translated into states, actions, and rewards.

As shown in the figure, the interaction between the agent and the environment can
be described as a discrete case. At every time step t the agent receives an observation
from the environment, based on this observation it performs an action a. Once the
agent performs the action, the state of the environment will be updated and the agent
will again receive a new observation in the form of the state and reward, based on the
action taken.

Rewards
Asmentioned above the reward can be a part of the observation that the agent receives
once an action is performed. The rewards tell how well the agent is performing a cer-
tain task and is used by the agent to determine its future action during training. In
other words, the agent learns how to performwell andmaximize the accumulative sum
of rewards commonly referred to as the return, through rewards. The rewards can be
positive or negative (penalty) and are received at each time step. The return is denoted
as Gt and can be derived from the following Eq. (3.1) for each time step:

21

3.2. LEARNING-BASED CONTROL CHAPTER 3. METHODS

Gt = Rt+1 +Rt+2 +Rt+3 + ... (3.1)

To maximize the return another term called value function, Vs, must be introduced.
The value function is used to determine potential future rewards in the current state.
The value of a state is seen as the sum of the probability of reaching that state times
the reward for that state. More precisely, the value of a given state is merely the sum
of all the next states’ probability multiplied by the reward for reaching that state [27].
The value function, Vs, can be further defined as the following equation:

v(s) = E[Gt|St = s] (3.2)

= E[Rt+1 +Rt+2 +Rt+3 + ...|St = s] (3.3)

Eq. (3.2) defines the value at state s at time t determined by the expected return in that
given state s.

The return and the value term should not be considered supervised feedback, as it does
not decide what action the agent must take. It is only used to inform the agent of
the profitability of each state and action. How the agent will make use of the received
information is based on the idea of exploration and exploitation [27]. The explanation
of the exploration and exploitation can be found in Appendix A.3.

States and Actions
The state and the actions depend on each other. The state can be considered as the
observation that includes the information on the current status of the environment,
which is received by the agent. The actions determine what the agent can do in the
current state. When the agent performs an action and the environment will receive the
action taken and update its state and the agent will get a new observation, with a new
set of possible actions that can be taken in the new state. The agent may seek more
immediate rewards, which will lead to it choosing actions with the highest reward in
the current state. But this strategy may have a negative impact on the rewards long-
term which can prevent it in achieving the global maximum of the rewards. To avoid
this problem it is important to be able to define the agent’s behavior, which is why
policies are essential for reinforcement learning [26].

Policy
While value functions determine the value of a given state, meaning how good it is to
be in a certain state, the policy determines the probability of reaching that state. The
value function is therefore tightly correlated to the policy that the agent follows. The
policy can be seen as the strategy that the agent uses to reach its goal, and the actions
taken can be described as the function of the agent’s state and the environment [28].

22

CHAPTER 3. METHODS 3.2. LEARNING-BASED CONTROL

Behavior policy Target policy

Figure 3.2: The figures illustrate behavior policy and target policy to explain the
principle of on - and off policy. With On-policy the behavior - and target policy
are the same, while with off-policy the agent follows a behavior policy in order to
obtain an optimal policy (target policy).

Thepolicy denoted asπ decides on the agent’s behavior by either following anon-policy
or off-policy approach. A simple way of understanding the principles of on-policy and
off-policy is to get familiarized with these two terms; behavior policy and target policy.
The behavior policy is the policy that determines the agent’s actions in each state while
the target policy is the policy that the agent uses to learn from the received rewards
based on the actions taken. This policy is used to update the Q-value (overall expected
rewards). When an algorithm is on-policy the behavior policy and the target policy are
the same, which means that the agent evaluates and updates the same policy it uses
to optimize it. With off-policy algorithms, the agent uses a behavior policy to learn to
explore the environment through actions but may be independent of the target policy
which is being learned and optimized [28][26]. The two terms; behavior - and target
policy, are illustrated in Fig. 3.2 for a more intuitive understanding [26].

3.2.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is one of the more commonly used algorithms for
RL, which can be used for both discrete and continuous actions. The PPO algorithm is
based on actor-critic architecture, which uses two separate models. One is the actor
model which learns the actions to take based on the current state of the environment,
and the second is the critic model which learns to evaluate the quality of the chosen
actions. The PPO algorithm uses a novel approach to updating the actor policy, which
has an improvement in the stability of the training. PPO is mainly used for its ability
to constrain the policy update, such that deviation between the new and the old policy
is not too large [29] [30].

23

3.2. LEARNING-BASED CONTROL CHAPTER 3. METHODS

Ratio function Clipped Objective

Unclipped term

Figure 3.3: The Surrogate objective function

The equation given in Fig. 3.3 shows how PPO uses a surrogate objective function to
constrain the policy update. The surrogate objective consists of two terms, the proba-
bility ratio, and the clipped objective.

rt(θ) =
πθ(at | st)
πθold(at | st)

(3.4)

The probability can be defined as Eq. (3.4). The probability ratio term determines how
much the new policy deviates from the old policy, by looking at the ratio between the
probability of the action taken by the agent under the new policy divided by the same
action under the old policy [29, 30].

πθ(at | st)
πθold(at | st)

Ât (3.5)

The ratio is then multiplied by the advantage of the action, which is the difference
between the expected cumulative reward to the value function estimate of the state.
This term is known as the unclipped part of the surrogate objective function and can
be seen written out in Eq. (3.5). The clipped Surrogate Objective function, has two
probability ratios, an unclipped and a clipped which ranges between [1 − ϵ,1 + ϵ][29].
The clipped objective term ensures that the policy update is within the trust region of
the old policy. This is achieved by taking the minimum of the clipped and unclipped
objective which is then multiplied by a clipping factor. The clipping factor determines
the size of the trust region, and is a hyperparameter that can be defined when tuning
the agent.
As seen in Fig. 3.4 the surrogate objective is clipped based on the advantage, if the
advantage is positive, it means that the action taken by the agent had a better outcome
than expected, meaning it perform well under the current policy and the objective will
be clipped at 1 + ϵ to prevent a large action update. If the advantage is negative, it
means that the performed action is worse than expected and is more probable under a
new policy and the objective will be clipped at 1− ϵ.

24

CHAPTER 3. METHODS 3.2. LEARNING-BASED CONTROL

Figure 3.4: The clipped objective function [30]

Hyperparameter:
The following hyperparameters are used to tune an RL agent, where some are common
parameters for RL, while others are specific to PPO.

n_envs:
The number of environments running in parallel during training. It is always
recommended to use multiple environments to learn faster and to have a robust
model [31].

n_steps:
Refers to the number of steps to run for each environment per update [31].

batch_size:
Determines the number of experiences in each iteration of gradient descent. This
number should be multiple times smaller than buffer_size [31].

gae_lambda:
Is known as the Regularization parameter, which is used to calculate the General-
ized Advantage Estimate (GAE). This parameter determines how much the agent
will rely on the current value estimate when updating the value estimate. When
lambda is low the agent relies more on the current value estimate, while if the
lambda value is set lower it is considered that the agent relies more on the actual
rewards received. It is important to find a value that has a good trade-off between
the two, to ensure stable training [31].

gamma:
It is the discount factor for the future rewards received by the agent from the
environment. This parameter determines how far into the future should the agent
care about in regard to future possible rewards. This value is set in accordance to
if the rewards are more immediate or further away in the future [31].

normalize_advantage:
A boolean value which is set to true or false depending on whether the advantage
should be normalized or not [32].

25

3.3. SIMULATION SOFTWARE CHAPTER 3. METHODS

n_epochs:
Is the number of epochs when optimizing the surrogate loss, one epoch can be
defined as one pass through all the training data, which means that all data has
had the opportunity to update [31].

ent_coef:
Determines the value function coefficient for the loss calculation. The entropy
coefficient is a regularisation parameter, which helps prevent premature conver-
gence, which ultimately hinders the agent in exploring, as one action probability
may become dominating for the policy [33].

learning_rate:
The learning rate determines the initial rate of the gradient descentwhen training
starts. This value corresponds to the strength of each gradient descent update
step. It is recommended to decrease this value if the increase in rewards is not
consistent, or the training is unstable [31].

clip_range:
As previously defined the clip_range determines the size of the trust region, ulti-
mately determining the size of the policy update [31].

The value range for each hyperparameter can be found 3.1.

Hyperparamter Range
n_envs -
n_steps 32 - 5000
batch_size continuous actions: 512 - 5120

discrete action: 32 - 512
gae_lambd 0.9 - 0.95
gamma 0.8 - 0.9997

normalize_adv. true/false
n_epochs 3 - 30
ent_coef 0 - 0.01

learning_rate 1e-5 - 1e-3
clip_range 0.1, 0.2, 0.3

Table 3.1: The table shows the different hyperparameters that can be tuned, along
with their typical value range.

3.3 Simulation Software
The use of simulation to test is preferred for several reasons including safety, cost, re-
producibility, and flexibility. This is especially the case when it comes to training and
testing RL agents.
There exists many different simulation software with each their capabilities. An anal-
ysis is done to determine which software to use. Only software related to solid bodies
is considered.

26

CHAPTER 3. METHODS 3.3. SIMULATION SOFTWARE

Isaac sim
It is one of the most popular simulation software at the moment. It is proprietary
software developed by Nvidia and uses the PhysX engine and has photo-realistic
rendering. Its extension Isaac Gym is widely used for RL due to its ability to run
the environments in parallel, synthetic data generation, and offload the work to
the GPU. It requires anNvidia RTX graphics card to run it and it supports headless
mode [34].

MuJoCo
It is another popular simulation software. It is an open-source software devel-
oped by DeepMind and is widely used for model-based control and to test and
benchmark RL agents and algorithms. It is accurate, cross-platform, and runs on
the CPU. Furthermore, it allows the modeling and programming of the environ-
ment using a Python API. MuJoCo uses OpenGL to render its GUI and can run
headlessly. RL applications can be developed by using the dm_control software
stack whichwas also released byDeepMind and usesMuJoCo as its physics engine
[35].

Webots
It is an open-source robot simulator developed by Cyberbotics Ltd. It is easy to
use and cross-platform which allows for fast prototyping. It supports multiple
programming languages such as C++, Python, Java, and more. It is gaining more
popularity with RL applications with the introduction of OpenDR, which is a DRL
platform developed for it. Webots uses a fork of Open Dynamics Engine (ODE)
and can run headlessly but requires an X-server to be configured, unlike other
solutions. Unlike Isaac Sim andMuJoCo, which only run on GPU and CPU respec-
tively, Webots can run and render using both CPU and GPU [36].

Gazebo
It is an open-source robot simulator developed by Open Robotics. It is widely
used in robotics applications with ROS. However, its use for RL applications is
limited as it is slow compared to other simulators. It is cross-platform and uses
ODE as its default physics engine. It also supports other physics engines such
as Bullet and DART. Gazebo (now known as Gazebo Classic) will have its end-
of-life in 2025 in favor of Ignition Gazebo which mitigates some of the issues
with Gazebo Classic such as strongly coupled software design. Similar to Gazebo
Classic, Ignition Gazebo is not widely used with RL applications [37][38].

Simulator Headless Hardware Requirements OS Supported License
Isaac Sim Yes Nvidia RTX GPU Windows and Linux Proprietary
MuJoCo Yes CPU (x86 or x64) Windows, Linux, Mac Open-source
Webots Yes 1 CPU (x86 or x64) or GPU Windows, Linux, Mac Open-source

Gazebo Classic Yes CPU (x86 or x64) or GPU Linux Open-source
Ignition Gazebo Yes CPU (x86 or x64) or GPU Windows, Linux, Mac Open-source

Table 3.2: Comparison between different robotics simulators in terms of the ability
to run headlessly, hardware requirements, OS support, and license requirements.

27

3.3. SIMULATION SOFTWARE CHAPTER 3. METHODS

Based on Tab. 3.2, which shows a comparison between the different robotic simulators,
MuJoCo has been selected to be used in this project. It was chosen due to its open-
source nature and the availability of a software stack that supports running RL agents.
Even though Isaac Sim comes with a vast array of features, its hardware and license
requirements are the reasonwhy it is not chosen to work with. Both Gazebo Classic and
Ignition Gazebo are known to be slower than other simulators and therefore their use
with RL is limited and the reason why they have been excluded. Even though MuJoCo
andWebots offer similar functionalities, Webots is GUI-boundmaking running parallel
RL agents more complicated and it requires more configuration to run headlessly [39].

1Requires an x-server to be running locally as it is GUI-bound

28

Chapter 4

Problem Formulation
As presented in the problem analysis, the conventional lab designs utilized today are
outdated making them inadequate to support adaptation of robotics and automation.
Thus, the need to re-thinking the current lab setups arises. Today all experimental pro-
cedures and lab tasks are done manually by humans and are not directly transferable
to a robot, which forms the motivation for self-driving labs. Based on the information
gathered from the research on current labs, it was found that the equipment and cer-
tain procedures for the preparation of experiments do not allow for the inclusion of
robots due to the complexity and intricacy of the task. Therefore it is decided to focus
on the planning and execution phases of experiments. This led to the investigation of
current research projects, one such project presented is ChemOS. This project attempts
to tackle the challenges faced in self-driving labs by designing a software stack that can
be used to perform experiments, record data in databases and learn from the results.
The robotics module in ChemOS only acts as a bridge between the devices and ChemOS
but does not provide any drivers or protocol implementation to ease hardware integra-
tion. Other projects, such as the mobile chemist have integrated a mobile manipulator
in a lab while providing capabilities similar to ChemOS. However, a significant amount
of time was spent on integrating the software automation and communication proto-
cols. The research into skill-based systems gave insight into how to compose skills and
create tasks at a higher level. Similarly, current research on the use of RL agents for
control contributed to the understanding of how to define the control of shuttles as an
RL problem. With this in mind, it was decided to focus on the hardware integration
and control of self-driving labs enabling intuitive task planning and execution using
behavior trees.

4.1 Final Problem Statement
How can planning and execution of lab-related tasks be done using BTs in the MPS
enabling easy programming and system reconfiguration, while achieving control of
the shuttles with the help of an RL agent?

4.2 Objectives
Inspired by the presented research works and solutions currently available, the solu-
tion presented in this project will focus on the development of a skill-based system
using behavior trees for the easy creation of lab tasks. Furthermore, for the control of
the shuttles in the MPS system, RL will be used. The objectives are derived from the
final problem statement, which is broken into smaller tangible tasks. As the solution
proposed consists of multiple components the objectives are divided into 2 parts; one
for the skill-based system and another for the RL agent. The objectives are used to

29

4.2. OBJECTIVES CHAPTER 4. PROBLEM FORMULATION

assess the solution in connection with the tests performed in this project.

4.2.1 Behavior Engine

Easy programming of lab task:
The system must provide a user-friendly interface for the visual programming of
robot tasks. The system must have a skill library containing lab-oriented skills,
which can be combined to create experiments. This can be done by creating a
skill-based system using BTs.

Tasks in parallel:
The system must allow the creation of tasks as well as provide the option of per-
forming multiple tasks in parallel. The BT implementation must support the use
of parallel nodes.

Feedback:
The systemmust provide the userwith feedback in the formof visualization of the
state of the nodes in the behavior trees, during execution. This can be achieved
by providing feedback on the user interface in the form of color indicators.

4.2.2 RL Agent

Shuttle control:
The agent must be deployable on multiple shuttles. It must be able to control
the shuttles and complete any given task within the reachable space. The PPO
algorithm will be used for training the agent and tuned using Weight and Biases.
The performance of the agent will be assessed based on time and accuracy.

Collision avoidance:
The agent must complete its task without colliding with other shuttles or going
out of bounds. This can be achieved by designing a reward function that penalizes
the agent for collision.

Physical setup:
The agent must be transferable to a physical setup and validated on the MPS sys-
tem. This can be done by using the actions that the agent takes and giving it as
an input to the PMC.

30

Chapter 5

Implementation
This chapter takes the reader through the process of implementing the presented so-
lution. The chapter is divided into the following sections, design, software stack and
architecture, device manager, behavior tree, skill library, and RL agent.

5.1 Design
The design section presents an overview of the overall system architecture showing
how all the components of the solution are interconnected. This section gives the
reader an intuitive understanding of the solutionwhich helps to ease into the following
sections that go more in-depth with the technicalities of implementing each compo-
nent. The second part of the design gives a walk-through of the interface.

5.1.1 System Architecture

Based on the requirements of the system, the following design has been made.

Users

GraphQL
Server

Query
- Node list

Mutation
- Create tree
- Save tree

Subsribers
- Node updates

Behavior Tree
Engine

Control nodes
- Fallback
- Sequence
- Parallel
- Decorator

Execution
nodes

- Action node
- Condition

Root node

USB devices

- Cameras
- Grippers
- Sensors

Device
Manager

Ethernet devices
- Network cameras
- Robots
- ACOPOS 6D

SQLite

BackendClients Devices

Database

Figure 5.1: System overview showcasing the components of the backend and how
data is sent between devices and users.

Fig. 5.1 shows that the system is split into four different parts; clients, backend and
devices, and database. The user interacts with the system using the clients to program

31

5.1. DESIGN CHAPTER 5. IMPLEMENTATION

the desired device andmonitor the systemusing a behavior tree frontend. The interface
runs a GraphQL client which connects to a GraphQL server running on the backend.
The GraphQL server is used by the frontend to query, mutate and subscribe to data
changes. The backend handles the execution of behavior trees and the interaction with
the connected devices. Lastly, a database is used to store the behavior tree and its
parameters. The different components are designed based on the single responsibility
principle. This allows the system to bemodular and the components to be independent
in their design and implementation.

5.1.2 User Interface

The user interface for the behavior tree system was implemented based on some of
the findings on UI and UX which can be seen in Appendix A.1, combined with knowl-
edge from studying the current solutions and common color trends. Fig. 5.2 shows
the overview of the interface. Drawing knowledge from current solutions presented in
Chapter 2, the commonality found between them is the simplistic and dark monochro-
matic interface design. This design seemed to draw attention away from all the un-
wanted things and focus on the functionality of the system. It was therefore decided
to adopt similar design principles for the solution in this project. For the colors, it was
decided to go with the color blue, as blue is known for representing calmness, and trust
and is many UI designers’ go-to color, hence seen in many applications and websites
(e.g. Linkedin, Facebook, Twitter).

Figure 5.2: The user interface showing the general features, such as the sidebar
with nodes, the top menu consisting of buttons to run, pause, stop, save, etc.

Fig. 5.2 shows an overview of the user interface showing all the general features, such
as the sidebar with nodes that the user can drag and drop to create BTs, the top menu
with all essential buttons (run, stop, etc.) which also contain a load button for loading
exciting trees.

32

CHAPTER 5. IMPLEMENTATION 5.2. SOFTWARE STACK AND ARCHITECTURE

Figure 5.3: Screenshot showing the active colors of the nodes when the BT is run-
ning. Yellow for running, red for failure, and green for success.

When running a BT as shown in Fig. 5.3, the colors become active according to the
status of the nodes, yellow for running, green for succeeded, and red when the node
execution fails. This gives the user an indication of what is occurring during runtime,
this also makes it easier to debug in case of errors.

Custumizable icon

I/0 port

Toggle button

Info button

Global variable
dropdown menu

Connector

Figure 5.4: The figure shows an example of a BTnode that describes all the features
implemented, for more details see 5.2 for code snippet.

The node itself 5.4 has many customizable features such as toggle buttons, icons, and
I/O port. All of these values are defined in the backend and rendered in the frontend.
See 5.2 for a code example.

5.2 Software Stack and Architecture
Themainpart that the user interactswith is the interface of the systemwhich is referred
to as a behavior engine. This section describes the software stack and architecture used
in the backend and frontend.

33

5.2. SOFTWARE STACK AND ARCHITECTURE CHAPTER 5. IMPLEMENTATION

5.2.1 Backend

The backend is built using ASP.NET which is a cross-platform framework for building
server applications using .NET and C#. It provides access to services in a simple API to
add functionalities to the server, such as database management. It also allows manag-
ing custom services in an inversion of control containers [40]. This makes it possible to
use the dependency injection design pattern as the system’s capabilities differ based
on the configured devices.
The responsibility of the backend is to provide a node list of the behavior tree that the
system is capable of running based on the configured devices and services. All nodes
inherit from an INode interface making it possible to determine which nodes should
be sent to the frontend for rendering. This is done using a computer science principle
known as reflection which allows the program to examine objects and determine types
at runtime.
The backend provides different services that can be used to perform a variety of tasks.
Some services include protocols to communicate with PLCs such as ADS (Automation
Device Specification) and OPC UA (Open Platform Communications Unified Architec-
ture) protocol. Furthermore, the backend is used to run behavior trees and has an im-
plementation of different nodes, and allows the user to create their own nodes. Lastly,
the backend is used to create different databases based on a code-first approach using
Entity Framework [41].
The behavior tree implementation is designed in such a way that it is possible to create
a tree and run it from the code using a Fluent API. This means that the user can run
a behavior tree without the use of the frontend. Alternatively, the user can create a
behavior tree using the frontend which sends the tree structure to the GraphQL server
running on the backend.

A sequence diagram, seen in Fig. 5.5, shows the communication between the server
and client, along with the devices connected to the system.

34

CHAPTER 5. IMPLEMENTATION 5.2. SOFTWARE STACK AND ARCHITECTURE

Figure 5.5: Sequence diagram showing the communication between the GraphQL
clients with the ASP.NET server. The diagram also shows the connection to the
different devices along with the data provided by them.

GraphQL is chosen to design the API as it is more flexible than other APIs such as REST.
Unlike REST APIs which request predefined data models, GraphQLmakes it possible to
request the exact data needed making it more efficient. Furthermore, GraphQL sup-
ports subscribing to data changes such that it will send updates to the clients [42].

5.2.2 Frontend

It is desired to have a frontend that supportsmultiple platforms, giving the user the op-
tion to work on existing hardware. This can be achieved in different ways, one of which
is to write different native clients for each platform (Windows, Linux, Mac, Android,
iOS). The other way is to use web technologies to make a cross-platform client which
can be used with any different platform. Of the two options, the latter was chosen as
the client is written only once, saving time and making the code more consistent with
all the clients [43].

For this JavaScript, HTML, CSS, and Vue.js have been used. Vue.js is an open-source
framework used to develop web applications and user interfaces [44]. Vue.js uses a
model-view-viewmodel architecturewhich allows the creation of reusable components.
Furthermore, its two-way data binding feature, which automatically synchronizes the

35

5.3. DEVICE MANAGER CHAPTER 5. IMPLEMENTATION

data and the interface whenever either of them changes, is one of the reasons why
Vue.js has been chosen to work with rather than other frontend frameworks such as
React. To enable the use of multiple desktop platforms (Windows, Linux, and MAC),
Electron.js is used. Electron.js uses the Chromium web browser engine to render the
user interface and is usedwidely in the community to build cross-platform applications
[45].
To support mobile devices such as Android and iOS phones and tablets, Capacitor is
used. Capacitor acts as a bridge between the web application and the Webview of the
native operating systemof themobile device. Both Electron andCapacitor provideAPIs
to allow the user to access the devices’ capabilities such as cameras, file systems, no-
tifications, and more [46]. The frontend is the main part that the user interacts with.
It provides the user the ability to create, run, load, save, and debug behavior trees in
addition to giving feedback on its status.

5.3 Device Manager
The device manager handles the connections to the devices and robots by providing
clients and protocols to send and retrieve data. To work with the ACOPOS 6D shuttles,
a client was made supporting OPC UA. An OPC UA server must be configured in the
PLC with desired authentication method. Moreover, the variables of interest must be
configured in the server to expose them to the clients. The client, which runs on the
backend, is used to send commands to the shuttles. It has methods to read, write and
subscribe to the exposed variables by specifying their location (path and namespace)
in the server [47].

As this setup requires the configuration of the OPC UA server and designing data struc-
tures to store and manipulate the shuttles, the Planar Motor API is used instead. Pla-
nar Motor provides C# and Python APIs to control the shuttles by giving access to the
Planer Motor Controllers (PMCs). The system also supports the use of the XPlanar
system which was developed by Beckhoff Automation. A library to communicate with
the PLC that controls the XPlanar shuttles were created. Details about this library are
included in Appendix A.5.

To control the robots, RoboDK has been used. The lab setup has been modeled in Ro-
boDK as shown in Fig. 5.6. The different robots along with the tabletop have been
added to the environment to ensure that the robot’s trajectory is collision-free. More-
over, different reference frames have been set in the environment such as a base frame
for each robot as well as a reference frame similar to the shuttle position reference. This
simplifies the transformation of the shuttle position from the shuttle reference to the
robot reference frame. RoboDK can find the inverse kinematics solutions for a given
pose in a given reference frame. This way, the robots can be controlled to move in the
Cartesian space with the same coordinates as the shuttles.

36

CHAPTER 5. IMPLEMENTATION 5.4. BEHAVIOR TREE

Figure 5.6: Lab setup in RoboDK showing the KUKA robots, shuttles alongwith the
shuttle reference frame which is placed in the bottom left corner of the ACOPOS
platform.

RoboDK requires a TCP/IP server to be running on the robot controller. Using the Ro-
boDK API, it is possible to connect to each robot using its IP address and port [10].

To support the vision system using Ethernet cameras, the GigE Vision interface is sup-
ported. This interface is standardized and allows interfacing with various brands of
Ethernet cameras. It has multiple features such as the automatic discovery of cameras
on the network, device configurator, and requesting image streams [48]. In addition to
supporting the GigE Vision interface, the system has support for Intel RealSense cam-
eras. Intel provides SDKs for accessing their cameras and enabling different streams. In
this project, the Intel RealSense D435 is used, which has two streams for RGB images as
well as depth images. Similar to GigE Vision, the RealSense cameras can be discovered
when plugged into the system using the SDK.

5.4 Behavior Tree
Unlike other behavior tree implementations, which give the user the responsibility to
create blackboards (dictionaries to store and retrieve variables) and manage them, this
implementation makes it seamless. Here, each node has its local blackboard called
link which is used when values are saved as an input. Furthermore, a global link is
created and shared among all the nodes. The global link is used to save the values of
the output and the values of the inout port. When an inout port is used, the ID of the
node is concatenated with the key and saved in the global link allowing other nodes
to access it and modify it. Similar to MoveIt Studio, the conditions nodes and action
nodes are separate. This makes it possible to check the condition once in a sequence
where multiple nodes have that specific condition. This also means that the condition
node can be used as a pre or post-condition depending on where it is positioned in the
tree.

37

5.4. BEHAVIOR TREE CHAPTER 5. IMPLEMENTATION

1 publ ic i n t e r f a c e INode
2 {
3 Guid Id { get ; set ; }
4 s t r ing Name { get ; }
5 s t r ing Descr ipt ion { get ; }
6 s t r ing Icon { get ; }
7 NodeType Type { get ; }
8 NodeCategory Category { get ; }
9 NodeState State { get ; }
10 in t MaxChildren { get ; }
11 Action <Guid , NodeState > OnNodeStateChanged { get ; }
12 INode Parent { get ; set ; }
13 NodeLink LocalLink { get ; }
14 L is t <LinkPort > Ports { get ; }
15 L is t <INode> Children { get ; }
16 Task TickAsync (TreeLink globalL ink) ;
17 }

Listing 5.1: The INode interface which all BT nodes inherit from.

Listing 5.1 shows the INode interface which all BT nodes inherit from. It can be seen
that additional properties are defined such as name, description, and icon. These prop-
erties are used when rendering the frontend which is sent during runtime. Each node
has a state which can be success, failure, running, or idle. It can also be seen that each
node has an event that gets triggered whenever the node state is changed. This event
can be subscribed to allowing sending feedback on the current node execution, which
is done to send data to the GraphQL clients. Furthermore, each node must specify a
list of ports, which are used to render the node in the frontend. Based on the type of
variable in the port, different options are shown to the user.

1 publ ic overr ide s t r ing Name => " Dispense l i qu i d " ;
2 publ ic overr ide s t r ing Descr ipt ion => " Stat ion for dispensing l i qu i d " ;
3 / / publ ic overr ide s t r i ng Icon => " precis ion_manufactur ing " ;
4
5 publ ic overr ide L is t <LinkPort > Ports => new ()
6 {
7 new LinkInOutPort < int >(" Shutt le Id " , " Shutt le id " , " id ") ,
8 new LinkInputPort <bool >(" Closest ava i l ab l e shut t l e " , " c l o se s t shut t l e " , "

↪→ i sC lo se s t ") ,
9 } ;

Listing 5.2: Code snippet of the dispense liquid node showing the name,
description, icon, and ports.

Listing 5.2 shows an example of a dispensing node. It shows that one port is created
with the type int and another with the type bool. In the frontend, they will be rendered
as an input box and a toggle button, respectively, as shown in Fig. 5.4. Type checks
will be performed on the ports ensuring that the other types cannot be inputted. Enum
types will be rendered as a dropdown menu showing the enum values.

Similar to other implementations of BT, different categories are defined. The cate-
gories are root, control, decorator, and execution. Here, different classes implement

38

CHAPTER 5. IMPLEMENTATION 5.4. BEHAVIOR TREE

the INode interface defining the common functionality in the specified categories. This
includes defining howmany children the node in the specific category can have. It also
includes defining events to allow debugging the trees among other things. For the con-
trol nodes, sequence, fallback, parallel, reactive sequence, reactive fallback, and reac-
tive parallel nodes have been implemented. The reactive nodes are the nodes that are
ticked to ensure reactivity. They differ from the normal nodes by the continuous ticking
of their children when the tick is propagated to them. An example of the tick function
for the sequence node can be seen in Algo. 1. Other implementations for different
nodes are shown in Appendix A.4.

Algorithm 1: Implementation of the Tick function for a sequence node
Data: globalLink

1 async Task TickAsync(globalLink):
2 State← NodeState.Running;
3 await Children[CurrentChildIndex].TickAsync(globalLink);
4 switch Children[CurrentChildIndex].State do
5 case NodeState.Success do
6 CurrentChildIndex++; break;
7 end
8 case NodeState.Running do
9 State← NodeState.Running; return;
10 end
11 case NodeState.Failure do
12 State← NodeState.Failure; return;
13 end
14 end
15 if CurrentChildIndex ≥ Children.Count then
16 CurrentChildIndex← 0;
17 State← NodeState.Success;
18 end

Similar toBehaviorTree.CPP1 used inMoveIt Studio, this implementation is asynchronous
by default. This is beneficial when working with parallel nodes which allow executing
different actions and conditions simultaneously. Even though the node is parallel, it is
not truly parallel. A true parallel would require a CPU core for each child the node has,
making it use all system resources quickly.

1https://www.behaviortree.dev

39

5.5. SKILL LIBRARY CHAPTER 5. IMPLEMENTATION

5.5 Skill Library
The behavior tree itself helps to orchestrate different actions. However, a well-thought
action and condition library is needed to help the user accomplish their desired tasks.
Based on the objectives the system must accomplish, different actions and conditions
nodes were created. This section goes in-depth with the different skills and the reason
for implementing them. Skills other than the ones mentioned in this section are also
available. These skills expose lower-level commands such as moving to x and y for a
specific shuttle as well as moving to x, y, and z for manipulators.

5.5.1 Decorators

Some functionalities are desired in many different applications. For example, invert-
ing an output, repeating a task, retrying when failing as well as waiting for a specified
amount of time. These are known as decorators that allow the user to create more ef-
ficient and resilient behavior trees. For example, it is possible to check for a condition
when a specific value must be met to succeed. However, if it is desired to check that a
condition is not true, an inverter can be used. The inverter node inverts a failure status
to success. The retry node is used to retry an action or condition for a number of times
that can be specified. When the child node returns success, then the retry node also
returns success. If the number of retries is exceeded, the node returns failure. Unlike
the retry node, the repeat node ticks a child node multiple times. A flowchart of the
repeater node can be seen in Fig. 5.7. The wait node is designed to be asynchronous,
allowing the user to wait without blocking the thread. This is useful when combined
with a parallel node.

Get Node Input

Tick Child

Child State

Increase Internal Counter

 NodeState.Success

NodeState.Failure

 NodeState.Failure

NodeState.Running

 NodeState.Running

Counter < Desired Count

NodeState.Success

 False

Figure 5.7: Flowchart of the tick function implementation of the repeater node.

5.5.2 Start-up Shuttles

To be able to communicate with the Planar Motor Controller, a connection has to be
made to it. This skill runs a procedure starting by connecting to the controller, then

40

CHAPTER 5. IMPLEMENTATION 5.5. SKILL LIBRARY

gainingmastership of the system to allow sending commands and controlling the shut-
tles. This is done as only one master can use the system at a time. Afterward, the shut-
tles have to be activated if they are disabled. If any shuttle is moving, it will be stopped.
When all shuttles are active and not in motion, then a command is issued to start levi-
tating. These steps are done using an action node that has no input. If any of the steps
fail, this node fails. A flowchart of the startup node can be seen in Fig. 5.8.

Connect to PMC

Connected

NodeState.Failure

 False

Gain Mastership

 True

Mastership Gained

 False

Activate Shuttles

 True

Activated

 False

Levitate Shuttles

 True

Levitated

 False

NodeState.Success

 True

Figure 5.8: Flowchart of the tick function implementation of the startup node.

5.5.3 Homing

Beforemoving the robots to different positions, itmay bepreferable to home the robots.
This node has a dropdown to select a robot among the available ones. Even though
there are two types of robots, the joint configuration for their home position is the
same. This is why it was chosen to home the robots using joint space by providing the
angles for each joint. The angles are sent to RoboDKwhich creates a trajectory tomove
the robots to the desired joint configuration. A flowchart of the homing node can be
seen in Fig. 5.9.

41

5.5. SKILL LIBRARY CHAPTER 5. IMPLEMENTATION

Get Node Input

Robot Done

NodeState.Success

 True

Robot Moving

 False

NodeState.Running

 True

Select Robot

 False

Move Joints to Home Position

Command Accepted

 True

NodeState.Failure

 False

 robot is selected based on
 user input

Figure 5.9: Flowchart of the tick function implementation of the homing node.

5.5.4 Stirring

This skill is used to rotate a shuttle, selected by the user, with a desired frequency for a
specified amount of time. The designer chooses a rotational frequency, indicating the
number of rotations per second, as well as a designated duration for the rotation. The
skill uses a functionality in the Planar Motor API which is used to rotate a shuttle with
a specific rotational velocity and duration. A flowchart of the stirring node can be seen
in Fig. 5.10.

Get Node Input

IsRunning?

Shuttle Status

 True

Rotate Shuttle

 False

NodeState.Success

 Idle

NodeState.Running

Shuttle Status

IsRunning = True

 Motion

NodeState.Failure

 rotation based on input
 id, frequency and time

Figure 5.10: Flowchart of the tick function implementation of the stirring node.

42

CHAPTER 5. IMPLEMENTATION 5.5. SKILL LIBRARY

5.5.5 Dispensing

As the test setup is not an actual lab, the dispensing is not performed. However, to
imitate that a robot is dispensing, the robot moves to a position above the shuttle.
The user can choose a shuttle by ID, or select the nearest shuttle automatically. The
chosen shuttle thenmoves to the designated station using the PlanarMotor API.When
the shuttle has reached its goal, the robot gets the current position of the shuttle and
moves in Cartesian space to its location with a specific height. The orientation of the
gripper is chosen to be perpendicular to the shuttle. To transform from the shuttle
reference frame to the robot’s reference a homogeneous transformationmatrix is used,
the derivation of the matrix can be found in Appendix A.6. When the robot reaches the
shuttle, a waiting function is used to imitate the time it takes to dispense. A flowchart
of the dispensing node can be seen in Fig. 5.11. Two different dispense functions were
created, one for liquid and one for powder. The two skills only differ from each other
by the waiting time and the station location. If the robot or the shuttle fails to get to
the desired position, the action fails, otherwise the action succeeds.

Robot Done

Wait

 True

Robot Moving

 False

NodeState.Success

NodeState.Running

 True

Shuttle Done

 False

Move Robot to Shuttle

 True

Shuttle Moving

 False

 True

Move Shuttle to Position

 False

 position is set depending on
 the station

Figure 5.11: Flowchart of the tick function implementation of the dispense skill.

5.5.6 Color Detection

At the visit to the chemistry lab, the extent of task automation within experiments was
discussed. It was found that during certain experiments some chemical compounds
change color when mixed and this color change may have an indication of the progress
of the experiments. Mixtures that turn yellow or brown are usually a sign of something
wrong or that the experiment is unsuccessful. It was therefore decided to implement
a vision skill that can be added in the BT when planning a task that can detect these
color alterations. It was decided to use a simple color detection algorithmwith 3 colors
to choose from, either yellow, red, or blue. This is done by using OpenCV (Open-source
Computer Vision Library) and defining the color range based on the HSV color space
seen in Fig. 5.12. HSV consists of Hue which determines the color, and Saturation tells
how strong the color is, which is commonly defined as how much gray is mixed in the
color. Value is the brightness level of the color.

43

5.5. SKILL LIBRARY CHAPTER 5. IMPLEMENTATION

Figure 5.12: Figure illustration of the HSV color spectrum defined in degrees.[49],
ranging from 0 to 360.

HSV is defined in degrees ranging from 0 to 360, however, OpenCV color ranges from
0 to 180 to fit into the uchar datatype which only encodes numbers from 0 to 255. So
any color defined is divided by two, to get the color range in OpenCV [50]. A flowchart
of the color detection node can be seen in Fig. 5.13.

Get Node Input

Get Image

Convert Image to HSV

Color

LowerRange = (90, 100, 20)

 Blue

LowerRange = (0, 100, 20)

 Red

LowerRange = (15, 100, 20)

 Yellow

UpperRange = (140, 255, 255)

Find Pixels in Range

Pixel Count > 2000

UpperRange = (10, 255, 255) UpperRange = (40, 255, 255)

NodeState.Success

 True

NodeState.False

 False

Figure 5.13: Flowchart of the tick function implementation of the color detection
condition.

The color detection algorithm approach simply converts the RGB image from a real-
sense camera into HSV color space to detect the specified colors. The vision node al-
lows the user to choose a color from a dropdown menu, which detects and filters away

44

CHAPTER 5. IMPLEMENTATION 5.6. REINFORCEMENT LEARNING AGENT

any other color in the image. In Fig. 5.14 the first image shows the actual RGB image
followed by the color detection of the chosen colors, blue, red, and yellow, respectively.
The vision skill has proven feasible for real-time detection of colors and can therefore
be used to monitor experimental procedures.

Figure 5.14: Figure showing the RGB image from the real-sense camera, alongwith
the color detection images for each color detected.

5.6 Reinforcement Learning Agent
For the training of theRL agent, PPOwith Stable-baselines3was used. Stable-baselines3
is an open-source library that contains different RL algorithms and tools that can be
used for training [51]. The library is built upon PyTorch which is widely known within
the machine learning community. Stable-baselines3 comes with many features which
ease the training of reinforcement learning agents. It complies with the OpenAI Gym
environment structure making it compatible with many environments. Furthermore,
it has integration with TensorBoard, which is a visualization tool that helps in under-
standing the model and its performance by looking at the logged metrics. In addition
to that, it has integration with Weights and Biases, which is a tool similar to Tensor-
Board but with other benefits such as parallel training for the purpose of automatic
hyperparameter tuning.

The RL agent interacts with the environment created, through the rewards and obser-
vations it receives. To understand their relationship, the observation space and action
space have been described in this section. In addition to these two components, the
reward function for the agent is determined. It was decided to define the problem as
one RL agent controlling all shuttles, commonly referred to as a multi-armed bandit
problem, compared to the alternative of defining it as a multi-agent system. An agent
for both discrete actions and continuous action will be implemented to analyze how
they learn during training.

5.6.1 Discrete Case

This section describes the thoughts and processes that went into the implementation
of the discrete case, divided into the essential components of the RL agent, namely the
observation space, action space along with the reward system.

Observation space
The observation is based on the environment being described as a grid system, due to
the actions being discrete. In Fig. 5.15 below, the grid world is visualized. The figure

45

5.6. REINFORCEMENT LEARNING AGENT CHAPTER 5. IMPLEMENTATION

displays a hypothetical environment based on the ACOPOS system where the goal is
represented as a red dot, and the shuttles are shown as green squares. It is considered
that at each timestep the shuttles move 1 grid space. The grey spaces marked with an
x are the padding added to the environment, so the agent always has the same number
of actions.

X XX

XXXX

XXXXX

XXXX
X
X
X
X
X
X
X
X X

X
X

X
X

X
X
X

Figure 5.15: Figure illustrating the environment for the discrete actions which is
based on a grid world. This environment is the basis for the observation space
given to the agent.

The observation space consists of 6 values, the first 4 being the availability in the dif-
ferent directions (up, down, left, and right), 0 indicates that the grid space in the cor-
responding direction is available. If the value is 1, it means that the space in that di-
rection is occupied due to another shuttle being there or the shuttles being next to the
boundary. The last two values of the observation space are a directional vector from
the current position of the shuttle to the goal, one value in the x direction and one in
y.

Action space
Initially, the intention was to have one agent control all shuttles during training, but
this led to poor results and did not give representative data of the shuttles’ individ-
ual performance as all rewards were pooled together as a sum of rewards. This gave a
false representation of the performance which made it hard to analyze and locate the
problem in the shuttles’ behaviors. Due to this, it was decided to train one single agent
and use the other shuttles as static obstacles. This model could then, in theory, be de-
ployed on each shuttle making them able to reach their assigned goal, while avoiding
other shuttles placed in the environment.

In the first iteration of the action space, it was determined to have 9 actions available
for the agent, as it was meant to be able to move in all directions both straight and

46

CHAPTER 5. IMPLEMENTATION 5.6. REINFORCEMENT LEARNING AGENT

diagonally, and have the option to stay in its current position. Even though in the
discrete actions, the agent can avoid obstacles when moving diagonally, in real life it
would collide with the obstacle. Another issue is that the distance moved diagonally
is larger than the distance moved along x or y. This makes it more complex to transfer
the learned agent to the real setup.

X XX

XXXX

XXXXX

XXXX
X
X
X
X
X
X
X
X X

X
X

X
X

X
X
X

X

X

Figure 5.16: Illustration of the action space for the discrete actions. These are the
actions that the agent can choose from at each timestep.

In the following and final approach, the action space was reduced to 5 possible actions,
as illustrated in Fig. 5.16, restricting the shuttle’s actions, so that they will be unable to
move diagonally. This helped alleviate the problems described above. At each timestep,
the agent will send one action to the shuttle to perform. This value would be a number
between 0-4 as seen in Fig. 5.17, each corresponds to an action (up, down, left, right,
and stay).

STAY RIGHT DOWNLEFTUP

0 4321

Figure 5.17: Actions which can be taken by the agent; up, down, left, right, and
stay. Each action corresponds to a number value which is sent to the shuttles as a
command.

47

5.6. REINFORCEMENT LEARNING AGENT CHAPTER 5. IMPLEMENTATION

Reward system
The first implementation of the rewards given to the agent was based on the principles
of a dense rewards system. When implementing a dense reward system, it was observed
that during training the agent would try and move to the goal position given regard-
less of obstacles, meaning that it would ignore the collision penalty and move straight
towards the goal. This caused the shuttle to repeatedly collide with the obstacles it
encountered on its path, which resulted in the length of the episodes being very short,
not giving the agent time to learn or explore. It was speculated that the behavior was
caused by the high reward assigned when reaching the goal, so it was decided to reduce
the completion reward (reaching the goal) and to increase the penalty for a collision.
With the revised rewards the agent learned to avoid the edges and other obstacles. But
as the reward for reaching the goal was not too high and the penalty was now higher
than said reward the agent prioritized collision avoidance. It is observed that the agent
did not seem to move towards the goal but just avoided obstacles at all cost. In some
cases the episode never ended as the agent did not collide nor did it complete its task,
and the training had to be terminated manually. It was then decided to add a small
positive reward for moving closer to the goal to motivate the agent to move and com-
plete the task. This had a very negative impact on the training, as the agent became
greedy and decided to not end the episode andwas collecting all the immediate rewards
it received for closing in on the goal, without going to the goal to end the episode.

Rewards
- Discrete actions

Completing
task Collison Time_step

penalty

+5 -40 -0.1

Figure 5.18: Final rewards for the agent based on discrete actions. The rewards are
based on a sparse reward system.

After a few more iterations, it was finally decided to change to a simple sparse reward
system, as it was considered that having too many types of rewards and penalties was
a distraction for the agent, and hindered learning. The rewards defined for the sparse
reward system can be seen in Fig. 5.18. The training results achieved with the final
rewards are documented in Chapter 6.

When running the real shuttles it is desired to not have any rigid movements or un-
stable trajectories, which can occur when using a model which was trained based on
discrete actions. Therefore, continuous actions are preferred as it relates better to the
physical setup.

48

CHAPTER 5. IMPLEMENTATION 5.6. REINFORCEMENT LEARNING AGENT

5.6.2 Continuous Case

This section delves into the implementation of the agent with continuous action space.
Unlike the discrete case, the continuous case environment is built with MuJoCo using
Python bindings. The positions of the shuttles and the goals were randomized to give
a more robust model that can adapt to changes. Furthermore, it was decided to set the
number of shuttles to four to reduce the complexity of the training.

As it is desired to deploy the trained model on the actual system, the capabilities of
the Planar Motor system had to be investigated. The Planar Motor API connects to
the PMC and allows the user to access the IDs, positions, and statuses of the shuttles.
Additionally, the API allows sending position commands in the form of x and y coordi-
nates along with a max velocity, max acceleration, and an end velocity. Therefore, the
observation space and action space will be influenced by these factors.

Observation space
The observation space is defined to let the agent learn to go to the desired goal while
avoiding collision with other shuttles and boundaries. A directional vector from the
current shuttle position to the goal is given in the observation space. This vector is
calculated as follows:

v⃗ =

[
x2− x1
y2− y1

]
(5.1)

Additionally, the relative position of the other shuttles is also given in the observation
space enabling the agent to learn when it gets close to another shuttle. This makes a
total of six values, two for each shuttle other than the one being controlled.
The observation space also includes the distances to the boundaries of the environ-
ment. As discussed previously, the ACOPOS 6D system setup is moving along motor
segments, adding a constraint to the agent, hence this observation. The distances are
represented as follows:

boundarymaxx = maxx − positionx (5.2)

boundaryminx = positionx −minx (5.3)

boundarymaxy = maxy − positiony (5.4)

boundaryminy = positiony −miny (5.5)

Lastly, the difference between the current action and the previous action is given as
an observation. This allows it to observe the rate of change of the velocities to help
prevent oscillation.

49

5.6. REINFORCEMENT LEARNING AGENT CHAPTER 5. IMPLEMENTATION

Action space
The action space is represented as a vector of size 2 defined in the range of -2 and 2.
This range has been chosen so the agent can determine the direction of where shuttle’s
movement. Furthermore, as the maximum speed of the ACOPOS 6D system is 2 m/s,
the bounded range of 2 is selected.

Figure 5.19: MuJoCo environment showing the simulation of the ACOPOS system
used for training the reinforcement learning agent.

In MuJoCo, when an environment is created, a controller can be set which has access
to all the objects in the environment. The action taken by the agent is given to the
controller and is used to change the velocity of the shuttle.

Linear velocity
in y-direction

Linear velocity
in x-direction

Direction and magnitude
of the velocity (action)

Figure 5.20: Shuttle model showing the action, representing linear velocity in x
and y. The vector in red shows the sum of the two action vectors which determines
the direction and the speed.

50

CHAPTER 5. IMPLEMENTATION 5.6. REINFORCEMENT LEARNING AGENT

The shuttle model showing the action taken by the agent can be seen in Fig. 5.20. The
figure shows the two actions, in blue and light blue, representing the linear velocity
in x and y, respectively. The sum of the two vectors is shown in red determining the
direction and the speed of the shuttle.

Reward system
Several rewards have been defined in the environment to train the agent to reach its
desired goal, avoid collision and getting out of bounds. Both sparse and dense rewards
have been defined in the environment. Different weights were defined for the reward
functions to adjust their importance. A reward is given to the agent for reaching its
desired goal. This reward is defined as:

rgr = ωgr (5.6)

To motivate the agent to move towards its desired goal, a dense reward based on the
distance to the goal was defined, seen in Eq. (5.7).

rgc = exp

(
− 1

2σ2
(∥Pshuttle −P⋆∥+ dg)

)
(5.7)

Both σ and dg are constant values used to adjust how steep the slope is for getting to
the goal. Pshuttle and P⋆ are 2-dimensional vectors representing the positions of the
shuttle and the goal, respectively. ∥·∥ denotes the norm of the relative distance to the
goal calculated as Pshuttle −P⋆.

Another dense rewardwas defined to encourage the shuttle to end the episode as quickly
as possible by penalizing each timestep. This reward is defined as:

rq = −ωq (5.8)

In this case, it was decided to set ωs to 1, which makes 0 the maximum dense reward
the agent can receive since the goal attraction reward has a maximum of 1.
Additionally, colliding with other shuttles and going out of bounds is penalized. This
reward is defined as follows:

rcol = −ωs (5.9)

The agent is also penalized for for getting close to an obstacle if the distance to the
obstacle is closer than a defined range.

rob =

{
exp

(
− 1

2σ2 · (dobstacle + dg)
)

if dobstacle < 0.3

0 otherwise
(5.10)

Where dobstacle is the distance to the obstacle (shuttle). This is calculated for each shut-
tle and the reward is summed.

51

5.6. REINFORCEMENT LEARNING AGENT CHAPTER 5. IMPLEMENTATION

Since the actions are defined as velocities, it is important to make sure that the agent
gives stable output so no oscillation occurs. Therefore, sudden changes in the actions
taken are penalized. The penalty is defined as follows:

ros =

{
−ωos if

∥∥acurrent − aprevious∥∥ < 0.1

0 otherwise
(5.11)

Where acurrent is the current action and aprevious is the previous action taken by the
agent. Furthermore, to ensure that the speed does not exceed 2 m/s, the agent is pe-
nalized if the action taken exceeds that. This is done in a similar way to the oscillation
penalty as shown below:

rms =

{
−ωos if

∥∥acurrent − aprevious∥∥ > 2

0 otherwise
(5.12)

All of these rewards and penalties makes up for the reward function, seen in Eq. (5.13).

rtotal = rgr + rgc + rq + rcol + rob + ros + rms (5.13)

5.6.3 Tuning

The tuning of the different parameters has been donewithWeights and Biases. Weights
and Biases offer a Sweep functionality, allowing the user to sweep the search space for
the parameters defined in a configuration file. In this case, the configuration chosen is
listed below:

Parameter Values
learning_rate [0.0005, 0.001]
gamma [0.99, 0.9]
n_steps [64, 128]
ent_coef [0.01, 0.001]
clip_range [0.1, 0.2, 0.3]
gae_lambda [0.9, 0.95]
n_epochs [1, 5, 10]
batch_size [16, 32, 64]

Table 5.1: Sweep Configuration

Here, it was decided to try the randommethod where the weights will be sampled ran-
domly based on a uniform distribution. This is selected in favor of the other methods
(grid and Bayes) as the grid method will iterate over all combinations of the defined
configuration. The Bayes method was excluded as it requires a metric to be defined to
optimize it. The sweep configurationmakes it possible to select only onemetric such as

52

CHAPTER 5. IMPLEMENTATION 5.6. REINFORCEMENT LEARNING AGENT

reward or episode length. In this case, it is desired to maximize the reward and shorten
the episode length, therefore, it is decided to run the random method.

5.6.4 Deployment

To deploy the agent model on the real system, it had to be exported first to another
format that can be read in C#. Therefore, the agent has been exported to ONNX format
and the ONNX runtime was used to run the agent by loading the exported model.

Figure 5.21: A view of the exported neural network showing the inputs, outputs,
and their sizes along with the operations performed.

As seen in Fig. 5.21, the model expects an observation of size 14 in the same order as
it was defined in the agent. This observation is then saved as a tensor and inputted
into the network. The critic network then outputs the expected cumulative reward (Q-
value) while the actor outputs the actions. The actions, representing velocities, were
integrated to get the x and y coordinates that the shuttle must move to. The norm of
the actions was then used to set the end velocity for the shuttles. Both the maximum
velocity and maximum acceleration were defined similarly to the trained agent. The
maximum velocity is 2m/s and the maximum acceleration is 20m/s2.

A BT action node has been implementedwhich uses thismodel to command the shuttle

53

5.6. REINFORCEMENT LEARNING AGENT CHAPTER 5. IMPLEMENTATION

to move to its desired goal. The node accepts a shuttle ID as an input along with a
desired goal in the form of x and y coordinates.

Get Node Input

Connect To PMC

Get Shuttle Positions

Calculate The Observation Matrix

RL Model Predict Action Based On Observation

Integrate Action To Get Position

Send Position To PMC To Move Shuttle

Shuttle Status

NodeState.Running

 Motion

NodeState.Failure

 Obstacle Detected

Action Norm > 0.2

 True

Goal Reached

 False

 False

NodeState.Success

 True

Figure 5.22: A flowchart showing the implementation of the RL agent node used
to command the shuttle.

Fig. 5.22 shows how the RL agent node is implemented in the BT. It shows that the
velocities given by the agent get routed through the PMC which is used for positional
control. The PMC gives access to the position of all the shuttles. These positions will be
used to create the observation matrix which will be inputted to the RL agent to predict
the action the shuttle should take. This will be done until either the action is too small,
indicating the agent is at the goal, or a collision occurred indicating failure.

Train RL agent
in simulation

Export
trained model

Use RL
agent node

Send position
to PMC

Move shuttle
on MPS

Create MuJoCo
environment

Create RL
node in BT

Figure 5.23: Pipeline of going from simulation to deployable RL model using BT.

With all the implementation now described, the full solution pipeline going from sim-
ulation to deployment, as seen in Fig. 5.23, is presented.

54

Chapter 6

Test and Results
This chapter will cover the results of the RL agent training as well as the test cases for
both the behavior engine and the deployment of the RL agent on theMPS. The training
results presented are divided into two part, discrete case and continuous case. This is
followed by the tests performed, which are divided into 2 main parts, behavior engine,
where the BT system is tested, and deployment of RL agent.

6.1 Discrete Case
The discrete case was the first step in the implementation which was treated as part of
the learning process onhow to train the agent and construct rewards. The initial testing
with no obstacles is presented, followed by training and testing in an environment with
obstacles. The results from the training with no obstacles and with obstacles are both
shown through the mean episodic reward, which is averaged over each 100 episodes.
These results are presented in graphs further below.

6.1.1 Initial Testing

This section describes the process and outcome of the initial testing phase with having
one single shuttle and training it with different goals. For each episode in the training,
a new random goal and start position is given to the shuttle, as seen in the example in
Fig. 6.1.

Episode 1

X XX

XXXX

XXXXX

XXXX
X
X
X
X
X
X
X
X X

X
X

X
X

X
X
X

Episode 2

X XX

XXXX

XXXXX

XXXX
X
X
X
X
X
X
X
X X

X
X

X
X

X
X
X

Episode 3

X XX

XXXX

XXXXX

XXXX
X
X
X
X
X
X
X
X X

X
X

X
X

X
X
X

Figure 6.1: Figures illustrating examples for each training episode, where the shut-
tle and the target goal are assigned at random locations, based on x and y coordi-
nates.

Training and tuning
Fig. 6.2 shows the test performance of the different runs during the initial training, with
one shuttle and no obstacles, based on the mean reward. The graph shows 3 different
plots of training, one with the initial hyperparameters values and 2 tuned ones. The
graph has a smoothing factor of 75, which makes it easier to compare them, visually.

55

6.1. DISCRETE CASE CHAPTER 6. TEST AND RESULTS

As it can be seen in the graph 6.2, even though that the all runs depicted are different
from each other, the commonality the agents shared was the fast learning, converging
at around the 40k timestepmark and was considered a sufficient model past said point.
The difference between them was the stability of the training. These runs aimed to
find parameters that gave fast learningwhile still being stable during training, avoiding
large dips in the rewards received.

Training and Tuning - Episodic Reward

Figure 6.2: Training sessions based on the episodic mean reward, one with initial
values for the hyperparameters (blue), and 2 tuned ones (red and pink).

Figure 6.3: Hyperparameters values chosen during manual tuning of the agent.

In Fig. 6.3 the table shows the corresponding hyperparameter values used for each
training. The values in the first training (blue) had a high learning rate which made
it learn fast and converged sooner than the other two but performed unstably causing
large dips in the rewards received. The values decided upon tuning were grounded in
the desire to have a more stable and reliable model. As can be seen in the second train-
ing (red), the learning_rate, which determines the rate of change at each timestep, was
reduced from 0.001 to 0.0001 to have a more conventional learning curve. Gamma was
also increased to ideally let the agent weigh the future rewards more, which is more
beneficial for it since the rewards are based on a sparse system. This yielded some
desired effects on the training and the agent learned more steadily as can be seen in
the rewards achieved, but was slower at arriving at the maximum mean reward and to
converge. To keep the stability of the second run while still aiming to learn faster, the

56

CHAPTER 6. TEST AND RESULTS 6.1. DISCRETE CASE

learning_ratewas slightly increased and the gammaand the other parameters remained
the same, the performance of these hyperparameters can be seen depicted in the last
run (pink). These were the values that were decided to proceed with for the next phase
of training with obstacles in the environment, as it had a preferable trade-off between
stability and fast learning.

The results from the training (pink) are shown statistically in Fig. 6.4. The bar chart
shows the number of times that the shuttle went out of bounds resulting in the episode
terminating, against the number of times the shuttle succeed to reach its goal. It can
be seen that the shuttle goes out of bounds several times in the beginning, but im-
proves rapidly in avoiding the edges. The model converges to an optimal model after
the halfway checkpoint in the training, which conforms with the graph in 6.2, which
shows that the model converges around 40k.

20k 40k 60k 80k
Number of Episodes

0

100

200

300

400

500

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Occurrences of Out of Bounds, and Goal Reached

Out of Bounds
Goal Reached

Figure 6.4: Training results with discrete actions and no obstacles. The bar chart
shows the number of times the agent went out of bounds and the number of times
that the agent reached the goal.

6.1.2 Obstacles

In the following training phase, random shuttles were put into the environment to act
as obstacles. These were static obstacles and had no properties of their own, but were
only for training the shuttle in obstacle avoidance, which is one of the objectives set for
the agent in Chapter 4. At each timestep, a random number of obstacles between 2-10
were generated and assigned a random position in the environment. This was done to
ensure a robust model, that could avoid obstacles. The rewards used for the training

57

6.1. DISCRETE CASE CHAPTER 6. TEST AND RESULTS

with obstacles are the ones stated in Section 5.6.1.

The graph in Fig. 6.5 shows the performance of each model with obstacles. As labeled,
0-NO is the training model from the initial testing that had no obstacles in the envi-
ronment. 1-B acts as a baseline as it is the first run with obstacles and just one environ-
ment, 2-ME is the same training consisting of the same values for the hyperparameters
but with multiple environments running in parallel. The last training 3-ME-T is the
same as 2-ME but with tuned hyperparameters. By reading the graph, the model that
is considered to perform the best is 3-ME-T with obstacles, given the reduced training
time to converge and almost reach the maximum reward. The model reached a mean
reward of approximately 3.5 out of a maximum of 5. The results from this training
model can be seen below.

0K 20K 40K 60K 80K
Timesteps

40

30

20

10

0

M
ea

n
Re

w
ar

d

Training Episodic Reward

Training 1-B
Training 2-ME
Training 3-ME-T
Training 0-NO

Figure 6.5: The different training are labeled as 0-NO)NoObstacles, 1-B) Baseline,
2-ME) Multi-Environment, and 3-ME-T) Multi-Environment Tuned.

As previously shown in the bar chart of the model trained with no obstacles, the graph
below, in Fig. 6.6 shows the statistics for model 3-ME-T.

58

CHAPTER 6. TEST AND RESULTS 6.1. DISCRETE CASE

20k 40k 60k 80k
Number of Episodes

0

100

200

300

400

N
um

be
r

of
 O

cc
ur

re
nc

es
Number of Occurrences of Collision, Out of Bounds, and Goal Reached

Collision
Out of Bounds
Goal Reached

Figure 6.6: Training results based on the number of times the agent collided, was
out of bounds, and reached the goal. The figure shows statistics at every 20k check-
point.

The chart shows the number of times the shuttle collided with other shuttles (red),
how many times it went out of bounds (blue), and lastly how many times it succeeded
to reach the goal (green). As seen through the training the agent learns very early on
in the training that it should not go out of bounds. Through the training the agent
improves on avoiding the other shuttles but does not achieve the maximum reward.
This is due to the agent still receiving some collision penalties, at the 80k checkpoint,
showing that the agent struggles to avoid the other shuttles in some cases.

Fig. 6.7 shows the trainedmodel navigating to its goal at points (5, 4) without colliding
with the obstacles. The environment, represented by a matrix, has been plotted with
Matplotlib. The dark blue cells show the boundaries as well as the other shuttles. The
agent is represented by a yellow cellmoving inside thematrix. The agent can onlymove
on the cyan-colored cells. The trained models show that an agent can be successfully
trained to navigate and avoid other shuttles. This shows the feasibility of having an RL
agent to control shuttles to desired positions, which can be used in lab-related tasks.

59

6.1. DISCRETE CASE CHAPTER 6. TEST AND RESULTS

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 1
0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 2

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 3

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 4

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 5

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 6

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 7

0 1 2 3 4 5 6 7

0

2

4

6

8

Timestep 8

Figure 6.7: An example of the trained agentmoving to its goal position at points (5,
4) as seen in timestep 8. The agent successfully reaches its goal without colliding
with obstacles. The agent is represented by the yellow cell while the obstacles are
represented by the dark blue cells.

Using discrete actions on the physical system would not provide the desired level of
control, which is why it was decided to improve on the current concept and move for-
ward with continuous actions. The following sections show the results obtained from
the training of agents with continuous actions.

60

CHAPTER 6. TEST AND RESULTS 6.2. CONTINUOUS CASE

6.2 Continuous Case
The continuous case of the reinforcement learning agent, which uses the environment
simulated inMuJoCo to train the agent, ismore suitable for deploying on the real setup.
The results of the tuning using Weights and Biases are shown in this section. Based on
those results a model was selected for testing the agent on the MPS setup. Unlike the
discrete case, where the number of shuttles were generated at random, here only the
initial position of the shuttles and the goal position were randomized. The training, in
this case, consist of 4 shuttles, one being controlled by the agent, while the others act
as obstacles.

6.2.1 Training and Tuning

Figure 6.8: Results of the hyperparameter sweep obtained fromWeights andBiases
showing different hyperparameters along with the mean reward.

Fig. 6.8 shows the results of the hyperparameter sweep. One of the things to notice
is that when the value of Gamma is high, the mean reward is also high. The other
parameters did not affect the mean reward as much. This corresponds well from the
findings in the discrete case.
This can also be seen when looking at Fig. 6.9 showing the impact of gamma on the
mean reward. It also shows that the episode mean length is inversely proportional to
the reward mean. This correlation is logical as the design of the reward penalizes the
agent for taking more time to reach the desired goal.

61

6.2. CONTINUOUS CASE CHAPTER 6. TEST AND RESULTS

Figure 6.9: Impact of the value gamma on the episode mean length and mean
reward.

The value of gamma represents the discount factor, which determines the importance
of the future reward compared to the immediate reward. The results indicate that the
agent requires longer-term planning to achieve its goal. This aligns with the objective
of making the agent.

Figure 6.10: Episode mean reward at different timesteps of the best 10 runs.

To select a model to test and deploy on the real system, the results of the runs were
compared. Fig. 6.10 shows the rewards of the 10 best models at different timesteps. It
can be seen that sweep 64, 103, 90, 82, and 93 converge to a high reward much faster
than the other models. Therefore, these models will be tested against each other to see

62

CHAPTER 6. TEST AND RESULTS 6.2. CONTINUOUS CASE

which one is best to avoid collision and going out of bounds.

6.2.2 Model Performance

The results from the sweeps showed only the reward mean as a metric to determine
which model to use. Fig. 6.11 shows the results from the 4 best performing mod-
els, found during tuning, based on the number of collisions with other shuttles, out
of bounds, and goal reached. The result of sweep 90 has been omitted as it was similar
to sweep 64. The results show small differences between the models where sweep 93,
outperforms the other models when compared to the number of collisions with other
shuttles, however, it lacks when compared to going out of bounds. A screen recording
of the performance of sweep 64 in simulation can be seen in this link.

Number of Occurrences of Collision, Out of Bounds, and Goal Reached

150k 300k 450k 600k 750k 900k 1050k 1200k 1350k 1500k
Number of Episodes

0

100

200

300

400

500

600

700

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Occurrences of Collisions, Out of Bounds, and Goal Reached

Collision
Out of Bounds
Goal Reached

(a) Sweep 64

150k 300k 450k 600k 750k 900k 1050k 1200k 1350k 1500k
Number of Episodes

0

100

200

300

400

500

600

700
N

um
be

r
of

 O
cc

ur
re

nc
es

Number of Occurrences of Collisions, Out of Bounds, and Goal Reached

Collision
Out of Bounds
Goal Reached

(b) Sweep 82

150k 300k 450k 600k 750k 900k 1050k 1200k 1350k 1500k
Number of Episodes

0

100

200

300

400

500

600

700

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Occurrences of Collisions, Out of Bounds, and Goal Reached

Collision
Out of Bounds
Goal Reached

(c) Sweep 93

150k 300k 450k 600k 750k 900k 1050k 1200k 1350k 1500k
Number of Episodes

0

100

200

300

400

500

600

700

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Occurrences of Collisions, Out of Bounds, and Goal Reached

Collision
Out of Bounds
Goal Reached

(d) Sweep 103

Figure 6.11: Training results of the 4 best-performing sweeps based on the number
of times the agent collided, was out of bounds, and reached the goal. The figure
shows statistics at every 150k checkpoint. It is seen that figure (c) outperforms the
other figures in terms of collision with other obstacles.

The results show that the agent is capable of learning to avoid obstacles and to stay
within its bounded area while still reaching its goal successfully. To determine which
model to use between the 4 models, they will be compared to each other on the real
setup in terms of oscillation and performance.

63

https://youtu.be/OLUT5buuI9o

6.3. BEHAVIOR ENGINE CHAPTER 6. TEST AND RESULTS

6.3 Behavior Engine
As mentioned previously in Chapter 2, the MPS setup is used for testing. In Fig. 6.12
the lab setup is illustrated.

Station 6

Station 5

Station 4

Station 1

Station 2

Station 3

KUKA 4

KUKA 1

KUKA 3

KUKA 2KUKA 5

Figure 6.12: Illustration of an autonomous lab setup, which contains 6 boxed areas
each representing a station, and 5 squares showing the placement of the robots.

The platform has areas for stations that contain hypothetical lab-related procedures
in each, which will be the base of the sequences that the shuttles will be tested on. In
Tab. 6.1 the stations are described according to the procedures and are only referenced
in terms of their coordinates along with waiting time, which simulates time to perform
the procedure, before the shuttle moves on to the next station.

Station Coordinates (mm) Procedure Waiting
no. X Y description time
1 600 120 Vision inspection 05 s
2 600 480 Dispensing powder 05 s
3 600 840 Stirring 10 s
4 120 840 Buffer 05 s
5 120 480 Dispense liquid 03 s
6 120 120 Manual station 05 s

Table 6.1: The station overview shows the procedures for each given station along
with the wait time which simulates the procedure time when a shuttle arrives at
the station.

64

CHAPTER 6. TEST AND RESULTS 6.3. BEHAVIOR ENGINE

A random sequence, shown in Tab. 6.2, was selected to show whether the behavior
engine can be used to accomplish a task. In this sequence, 2 robots and 2 shuttles will
be used. To do that, two parallel sequences will be created consisting of a parallel node
along with two sequence nodes. Each shuttle is then moved in a separate sequence
going to different stations.

Station 6

Station 5

Station 4

Station 1

Station 2

Station 3

Shuttle 1

Shuttle 2

KUKA 4

KUKA 1

KUKA 3

KUKA 2KUKA 5

Figure 6.13: The area is divided into different stations, each having its own proce-
dure. The figure illustrates the number of shuttles in the test case and their initial
position.

SEQUENCES
Shuttle 1 Shuttle 2
Station 1 Station 6
Station 2 Station 1
Station 3 Station 5
Station 6 Station 6

Table 6.2: Random sequence for 2 shuttles where each one will move to different
stations from their starting position and ending in the same station.

A behavior tree is built and tested to see if this is feasible to accomplish. The test
was a success where the shuttles moved correctly to their goal stations. Moreover, the
parallel execution of nodes worked as expected, but due to one of the function calls
blocking the calling thread, one of the shuttles waited for a longer time than expected.
Furthermore, the KUKA robots at the designated stations succeeded to move to where
the shuttles are. However, during the initial test, one of the robots collided with the
camera stand. This is due to RoboDK not having the stand in its model. It also seems

65

6.4. DEPLOYING THE RL AGENT CHAPTER 6. TEST AND RESULTS

that RoboDK selected a different configuration for the robot to go to the goal resulting
in the collision.
One of the challenges of moving the shuttles to their target station is scheduling their
movements. This is necessary as the shuttle would otherwise collide, therefore, the
path each shuttle takes was carefully selected. The paths selected were always either
moving along X then Y, or vice versa. A video recording of the performed test can be
seen in this link.

6.4 Deploying the RL agent
The test that follows is divided into two parts; an accuracy test and an obstacle avoid-
ance test. The obstacle avoidance test is a three-part test, ranging from easy to difficult
in level based on the placement of the obstacles, which must be avoided to reach the
goal.

6.4.1 Accuracy Test

The motivation for this test is to assess the performance of the shuttle control of the
trained RL models shown in Fig. 6.11. The test will be verify whether the shuttle can
reach a given goal within an environment with no obstacles. These tests will be held
up against the performance of the PMC of the same test case.

Test criteria
The test setup with the shuttle position and goal is seen in Fig. 6.14 followed by the
criteria which the test should fulfill.

Station 6

Station 5

Station 4

Station 1

Station 2

Station 3Shuttle 1

KUKA 4

KUKA 1

KUKA 3

KUKA 2KUKA 5

Figure 6.14: Figure illustrating the test case, where the shuttle has tomove to from
the initial position to the goal position which is marked in red.

66

https://youtu.be/hq2h_zMu7Mg

CHAPTER 6. TEST AND RESULTS 6.4. DEPLOYING THE RL AGENT

• The test will consist of 10 trails for each RL model.

• The test will consist of the same goal and shuttle start position.

• The test will be timed and the average time for each agent will be determined.

• The deviation of the shuttle from the goal will be recorded and the mean deter-
mined.

Success criteria
The test case was performed using the PMC controller and it took the shuttle 1.293
seconds to reach the goal with no deviation from the set goal. This test result will be
used as a baseline. The agents must fulfill the criteria stated below.

• Must reach the goal within 3 seconds.

• Must reach the goal with a maximum deviation of +/- 0.1 meters.

Results
The test data can be seen in Tab. 6.3, where the data shows that all controllersmanaged
to get the shuttle to the goal on all counts during the tests. The table shows that the
time to reach the goal vary between the 4 agents, with the fastest being RL-a82, with
a mean time of 8.722 seconds, and the slowest being RL-a64, which took a mean time
of 10.99 seconds. While RL-a82 may be the one to take the shortest time to the goal
it is not the most accurate of the four. Although RL-a64 is the slowest of the agent to
get reach the goal it is the most accurate one, with a mean deviation of 0.0359 meters,
and the least accurate one being RL-a103 with amean deviation of 0.540meters. Based
on the test results it is clear that the agents are significantly slower than the PMC and
they exceed the time limit of 3 seconds. Therefore, the agents fail this criterion. When
addressing the second criterion of accuracy the agents make up for its fallibility and
succeed to stay within the deviation threshold, thus passing said criterion. The reason
for the shuttle being slower when deploying the RL agents is due to the oscillation
which makes the shuttle pace back and forth. This test shows the feasibility of using
an RL agent for controlling the shuttles, although the oscillation must be alleviated.
Based on the results, it was decided to use RL-a64 for the obstacle test, as it is the most
accurate while still being able to avoid collision and avoid getting out of bound as seen
in Fig. 6.11.

Controller Mean t_goal Max t_goal Mean_dev Max_dev C1 C2
PMC 1.293 s 1.293 s 0 0 Passed Passed
RL-a64 10.99 s 11.27 s 0.0359 m 0.0364 m Failed Passed
RL-a82 8.772 s 9.191 s 0.0467 m 0.0478 m Failed Passed
RL-a93 10.25 s 10.44 s 0.0515 m 0.0522 m Failed Passed
RL-a103 8.983 s 9.170 s 0.0540 m 0.0543 m Failed Passed

Table 6.3: PMC and RL agents test results. The results show that the RL agents are
significantly slower compared to the PMC, although they reach the goal, staying
within the threshold.

67

6.4. DEPLOYING THE RL AGENT CHAPTER 6. TEST AND RESULTS

6.4.2 Obstacle Avoidance Test

The purpose of this test is to verify and assess the agent’s obstacle-avoidance capa-
bilities. The test consists of controlling one shuttle to reach a given goal, while the
remaining shuttles will serve as obstacles in the environment. The obstacle avoidance
test is divided into three levels, easy, intermediate, and difficult. The level of complex-
ity is based on the placement of the shuttles and the goal position. The test will have
simple PASS or FAIL criteria based on whether the shuttle reaches the goal or collides
during its course. The shuttle placement is specified under each test case, along with
the test results.

Easy
The placement of the shuttles, seen in Fig. 6.15, are contained in the middle of the
platform tomake it an easy scenario. This scenario allows the for the shuttle to surpass
the obstacles to reach the goal in the upper right corner, as multiple paths can be taken
to arrive at the goal. The test was performed 10 times to determine the success rate of
the agent in this given scenario. A video of one of these test runs can be seen via this
link.

Station 6

Station 5

Station 4

Station 1

Station 2

Station 3

Shuttle 4

Shuttle 1

KUKA 4

KUKA 1

KUKA 3

KUKA 2KUKA 5

Shuttle 3

Shuttle 2

Figure 6.15: Illustration of the test case showing the placement of the obstacles
along with the start position of the shuttle and the goal position marked in red.

The test video shows that the agent manages to reach the goal. The agent succeeds in
all 10 trials. According to the recorded test data, it reaches the goal with a mean time
of 16.57 seconds with a mean deviation of 0.0313 meters to the goal. Although the
maneuvering of the shuttle oscillates it completes the test showing that it can operate
in the current environment confidently, proving that it is a functional model.

68

https://youtu.be/CY1rY0kgBKk

CHAPTER 6. TEST AND RESULTS 6.4. DEPLOYING THE RL AGENT

Intermediate
In this test, the obstacles are arranged similarly to the previous one but further apart
increasing the difficulty in reaching the goal. The initial position of the shuttle and the
goal can be seen in Fig. 6.16. This scenario requires the agent to either go all the way
around shuttle 4 (top obstacle) and to the goal or to go straight down towards the goal,
but where is more difficult to get past shuttle 2 due to the narrow space. This test case
consisted of 10 trials.

Station 6

Station 5

Station 4

Station 1

Station 2

Station 3

Shuttle 4

Shuttle 1

KUKA 4

KUKA 1

KUKA 3

KUKA 2KUKA 5

Shuttle 3

Shuttle 2

Figure 6.16: Illustration showing the obstacle placement for the intermediate test
with the initial position of the shuttle and the goal position.

As anticipated the agent collides with shuttle 2 (bottom obstacles) as it attempts to
move alongside it to get to the goal. During the test, the agent fails all 10 trials and
collides each time at the same position. This is due to the oscillation which makes it
challenging for the shuttle to move through narrow areas, making it collide with an
obstacle when being side-by-side with it. This behavior can be seen in this link for the
test video. It was decided to try and shift shuttle 2 to the left by 15mm to see if the
agent would be capable of reaching the goal with a bit more space to maneuver. As
expected the agent reached the goal in this particular trial which can be seen in this
link.

69

https://youtu.be/59KYpbbX0Us
https://youtu.be/ayGPI-7_y28

6.4. DEPLOYING THE RL AGENT CHAPTER 6. TEST AND RESULTS

Difficult
For the last test, it was decided to arrange the obstacles in another configuration which
increases the difficulty significantly. In this scenario, the shuttle only has one way
to reach the goal compared to the previous two cases. Here, the goal position is sur-
rounded by the obstacles, partially shielded, as can be seen in Fig. 6.17. Although the
"intermediate" test failed it was decided to proceed with the "difficult" test to see how
the agent will navigate in situations such as these. This will help to further analyze the
agent model and look for any behavior tendencies. The test is performed 10 times as
the preceding ones.

Station 6

Station 5

Station 4

Station 1

Station 2

Station 3

Shuttle 4

Shuttle 1

KUKA 4

KUKA 1

KUKA 3

KUKA 2KUKA 5

Shuttle 3

Shuttle 2

Figure 6.17: Illustration showing the obstacle placement for the difficult test with
the initial position of the shuttle along with the goal position.

During the test it could be observed that the agent moves down effortlessly until it
reaches shuttle 2 (obstacle) where it collides with it in an attempt to navigate around
it. A recording of this can be seen in this link. This happens in all 10 trials performed,
making the agent fail this test.

What is noteworthy in these 3 test cases is the observation of the agent’s behavior. It
was noticed that the agent tends to move along the sides, meaning that the shuttle
would always seek to go around the obstacles as opposed to going in between them.
Furthermore, it was observed that the agent moves in close proximity to the obstacles
when moving around them to avoid them, which made it prone to colliding with the
obstacles. These behavior tendencies create issues when trying to reach a goal in sce-
narios such as the one portrayed in the "difficult" test case. In the mentioned test the
agent only had one path to reach the goal as it could not go around them all to get to
the goal, which forces it to go towards the obstacles to get to the goal. Due to its ten-

70

https://youtu.be/7oXA0h5fihA

CHAPTER 6. TEST AND RESULTS 6.4. DEPLOYING THE RL AGENT

dency of moving very close to the obstacles, it ends up colliding with them instead.
These behaviors of the agent have led to the belief that it would struggle in environ-
ments where there are many obstacles, as there is a high probability that it will be
unable to navigate in between due to its preference for moving around obstacles.

71

Chapter 7

Discussion
This chapter presents the evaluation of the solution implemented in this project, high-
lighting its strengths, weaknesses, and overall effectiveness, to determine if it meets
the desired objectives stated in Chapter 4. Furthermore, to mitigate the issues uncov-
ered during testing, it is decided to explore areas of the solution that can be improved.

7.1 Evaluation of the Solution
The solution presented in this project consists of 2major components, a SBS referred to
as the behavior engine and the RL agent which both are tested out on a physical setup,
the MPS, as a proof of concept to show the feasibility of the solution. The following
evaluation is used to validate the capabilities of the solution and to target areas in
need of improvement, which will be discussed in the section after.

7.1.1 Behavior Engine

The evaluation will be based on the objectives previously stated for the Behavior en-
gine. Each objective will be discussed to determine if the system fulfills them.

Easy programming of lab task
One of the main objectives for this project was to develop a system that provides the
lab workers with a user-friendly system allowing visual programming of robots for set-
ting up experiments. In addition to this it was desired to follow a SBS approach by also
implementing a skill library with relevant lab-related skills. The system implemented
achieved these goals by creating a SBS by using behavior trees. Furthermore, a user in-
terface was created that allowed for visual programming in the form of drag-and-drop
of skill nodes to create tasks. The skill library implemented consists of skills such as
stirring, dispensing, color detection, and moving. In addition to this, the user could
also add wait nodes, inverters, and other similar functions to plan out their task. The
overall use of the behavior engine was tested out by creating a BT with a task for two
shuttles with different sequences. This was done to see the capabilities of the BT as
well as determine how manageable it is to use the interface, based on intuition. De-
spite the test proving the fulfillment of this objective, it can be argued that in regards
to determining the user-friendliness of the interface, it is difficult to express an unbi-
ased opinion due to the authors of this project having crucial insight into the system’s
functionality and prior knowledge of BTs. Therefore it can be concluded that a survey
with non-technical individuals (preferably lab workers) must be conducted to properly
validate the benefits of the solution.

72

CHAPTER 7. DISCUSSION 7.1. EVALUATION OF THE SOLUTION

Tasks in parallel
Asmentioned in Section 2.2, to accelerate experiments for material discovery, it would
be beneficial to be able to run experiments in parallel, which would cut down the ex-
periment time significantly. Therefore, it was decided to aim for a system that allows
for creating parallel skill sequences to run multiple experimental procedures simulta-
neously. This is successfully implemented in the project to a reasonable extent. The
behavior engine makes it possible to run things in parallel. However, due to the imple-
mentation being asynchronous, this limits what can be run in parallel. This can cause
unreal expectations of the system behavior if the calling threadwill get blocked. There-
fore, it should be made clear which actions and conditions can be run asynchronously
allowing the user to utilize the system capabilities to their full potential.

Feedback
As described in Appendix A.1, the user must have feedback from the User Interface (UI)
to follow what is going on in the system. With no feedback, the user may feel confused
or unsure of the proper use of the system. It was therefore decided that one of the
objectives for the behavior engine is to have some feedback to the user. One of themore
crucial feedback thatwas implemented is the visual active color change during runtime.
When running a BT the colors changes according to its status. Inactive nodes are blue,
nodes that are running becomes yellow, completed (succeeded) nodes are green, and
nodes that fail turn red, which can be seen in Fig. 5.3. This gives the user an indication
ofwhich node is currently running andwhere the BT stopped in case of an error, making
it easy to debug or make changes in the tree.

7.1.2 Reinforcement Learning Agent

The evaluation will be based on the objectives previously stated for the RL agent. Each
objective will be discussed to determine if the agent fulfills them and to which extent.
Furthermore, the performance of the agent will be discussed in comparison to the ex-
isting PMC, to determine the overall feasibility of the agent controller.

Shuttle control
This objective was set to create an RL model to control the shuttle to move to a goal
within the reachable space. This model should be deployable on any shuttle to achieve
control of a multi-robot system. Following the implementation of the RL agent the
model was tested, without obstacles along its path, on the MPS to show whether it can
be used to reach a given goal. The agent was assessed based on time and accuracy. A
tolerance of 0.1 meters was set to ensure that the agent can reach the goal and does
not stray too far from it. The shuttle needs to be accurate for it to be reachable by the
robot assigned to the given station. The test results show that the agent is capable of
commanding the shuttle to the given position with a mean deviation of 0.0359 meters,
fulfilling the set test criterion. However, due to oscillation, the shuttle took a mean
time of 10.99 seconds, which is significantly higher than the PMC, which took 1.293
seconds.
It is suspected that the oscillation is caused by the integration of the actions given from
the RL model, which has been routed through the PMC. The RL model outputs the ac-

73

7.2. IMPROVEMENTS CHAPTER 7. DISCUSSION

tion as a vector of 2 dimensions representing linear velocity in x and y. These velocities
were integrated into a position and the magnitude of the velocity vector was given as
an end speed in the PMC. This means that updating the position must happen at a
fixed rate ensuring that the PMC receives another position update before the shuttles
reaches the current given position.

Collision avoidance
Theobjective of collision avoidancewas set due to the desire of havingmultiple shuttles
operating in the same space without colliding or going out of bounds. The obstacle
avoidance test in Chapter 6 shows that the trained agentmanaged to avoid all obstacles
in some scenarios while it lacked in others. The repeated collisions occurred in the
intermediate and difficult tests. In these cases, the shuttle attempts to move closer to
the goal even if a collision might occur. This can be caused by not rewarding the agent
based on the best strategy to follow. Moreover, the tuning of the parameters could have
included metrics such as the number of collisions, out-of-bounds, and goals reached
to optimize the parameters. Therefore, the collision avoidance capabilities must be
improved before the model is usable in a real system.

Physical setup
The objective was to be able to train any model which was transferable to the real MPS.
This was achieved by training the model with stable_baselines3 and exporting it to an
ONNX format that can be used in combination with the behavior engine. Although the
solution is implemented with scalability in mind, it should be noted that deployment
of the model is only possible on systems identical to the one trained on. This means
that the number of shuttles has to be identical making the current implementation not
scalable or adaptable without further training of the model.

7.2 Improvements
When implementing the solution, many decisions weremade shaping the solution into
its current version. Naturally, whenmaking choices, it is inherent that selecting certain
things automatically means the deselection of others. This section covers the reflec-
tion of the implemented solution. It dives into the features and improvements that, in
hindsight, would have been a great addition to the solution and what could have been
done differently.

7.2.1 Behavior Engine

As previously mentioned the purpose of the behavior engine is to enable lab-workers
to effortlessly create robot tasks for experiments. This was kept in mind when design-
ing and implementing the system, which lead to the use of behavior trees and more
graphic-based programming, to keep the creation of tasks at a higher level. Although
the system seems intuitive, it can be argued whether it caters well to the intended user.
This is because it is still required of the user to have someunderstanding or prior knowl-
edge of behavior trees to make use of them. This may make the non-technical user re-
frain from using the system. One way to help the user with this is to have the interface

74

CHAPTER 7. DISCUSSION 7.2. IMPROVEMENTS

provide hints and interactive messages to guide them to create tree designs to accom-
plish different tasks. Another feature that could have been added was the possibility
to customize the behavior engine, allowing the user to name node types (actions, root,
decorators, etc.) according to their theme, which would make the experience and use
of the interface more intuitive for the user. During the test of the behavior engine, it
was noticed that even small tasks could require large trees, increasing the complexity.
One way to avoid this, and to ensure that the structure of the tree is comprehensible
for the user, would be to incorporate the use of subtrees.

7.2.2 Reinforcement Learning Agent

Even though the agent can reach its goal while avoiding obstacles, the agent still com-
mands the shuttle tomove closer to the goal even if it will cause a collision. This should
be mitigated by rewarding the agent based on the best strategy it should use instead of
always rewarding it based on reaching the goal. Furthermore, the reward weights can
be tuned using Weights and Biases along with the other hyperparameters by minimiz-
ing the number of collisions and maximizing the number of times to reach the goal.
Another limitation of the current implementation is the observation space which can
only observe 3 shuttles. This limits the generalization ability of the model, requiring
retraining if the need arises to deploymore shuttles. Therefore, alternative approaches
must be investigated to determine how this observation can be given to the agent.

75

Chapter 8

Conclusion
The increase in the deployment of robots in factories has led to the need for alternative
programming approaches that aremore cost-efficient and do not require expert knowl-
edge. It has therefore been the motivation behind this project to develop a solution for
easy control and creation of robot tasks. The approach presented in this project offers
several advantages over traditional programmingmethods. A systemwith intuitive and
visual programming utilizing both BT and RL for control has been implemented mak-
ing it more accessible for the non-technical user. The scope of this project was focused
on the use of such a system in the context of MAPs, more specifically for the orchestra-
tion of self-driving labs. To validate the full solution pipeline it was decided to focus
on a use case tailored to the MPS, which is a multi-robot system, consisting of shuttles
and robot manipulators. The research done in regards to self-driving labs uncovered
the common challenges in automating lab procedures. This included the complexity
of transferring tasks, manually performed by humans to robots, due to differences in
dexterity, as well as the current layout of labs not providing the means for automating
experiments. It was concluded that to support MAPs it was important to re-invent the
design of today’s lab environment and provide a system that could run experiments in
parallel and be easy to program and reconfigure. This lead to the following problem
statement.

How can planning and execution of lab-related tasks be done using BTs in the MPS
system enabling easy programming and system reconfiguration, while achieving con-
trol of the shuttles with the help of an RL agent?

With this in mind, a behavior engine was implemented using the principles of BTs for
high-level task planning with the integration of a RL agent for the use of control and
collision avoidance for the shuttles. The tests included in Chapter 6 prove the feasibil-
ity of the solution, as the creation and execution of a BT through the behavior engine
are accomplished, making it a viable solution for robot task planning. Furthermore,
it was shown that the trained RL model is capable of navigating around the environ-
ment to get to the desired goal, when there are no obstacles. However, the RL agent
seems to lack when meeting many obstacles on its course to the goal. This was due
to the oscillation and behavior tendencies of the model. Despite this, the agent still
shows potential and may be suitable for self-driving labs by improving the reward sys-
tem and performing more vigorous training to ensure a robust model. In general, the
system acts as a proof of concept showing that it is possible to implement such gen-
eralized system, but has more room for improvement before it can be presented as a
potential solution. In conclusion, our novel approach combining BT and RL for easy
programming of multi-robot systems in MAPs shows promising results. The advance-
ments made in this project contribute to the overall goal of automating lab processes
leading to the acceleration of material discovery.

76

Chapter 9

Future Work
This chapter contains the relevant future work that the solution could benefit from,
focusing on aspects such as increasing the usability and overall effectiveness of the
system.

Preview of the Robot’s Movement
The features of the behavior engine allow the user to create complex tasks and execute
themon the real setup. However, the lack of visualization options to preview the robot’s
movement before execution makes designing the task more challenging. Therefore,
adding the option to view the current state of the robot and the planned behavior would
make it more suitable for deployment.

Behavior Tree Assistant
To assist the user with designing the tree, a Large Language Model (LLM) can be used,
which offers more capabilities than the ChatBot used in ChemOS. The integration of
an LLM would allow the user to query the system about how to accomplish a specific
task and learn more about behavior trees and their capabilities. This can be done by
providing the language model with the system capabilities along with which skills are
implemented in addition to their description and ports.

Automatic Behavior Tree Creation
Using an LLM, it would be possible to create the tree automatically and give the user
the ability to edit it before executing it, an example of this can be seen in [52]. Other
algorithms also exist which can assist to create a behavior tree automatically such as
the Planning and Acting using Behavior Trees (PA-BT) approach [24]. This algorithm
uses an iterative approach to build the tree by starting with the goal and then moving
backward to find a sequence to accomplish the goal.

Global Path Planning
Currently, the reinforcement learning agent acts as a local planner and requires global
planning to find the path to reach its goal. The use of a global planner is needed when
the environment is more complicated or when the goal is unreachable.

Task Scheduling
It was observed during the testing on the physical setup that scheduling themovement
of the shuttles to accomplish a specific sequence becomes more complicated with the
increase of the number of shuttles. The use of a task scheduler ensures that no deadlock
occurs in the system, where two shuttles would wait for each other to move.

Hardware Configuration
The implemented skills work only on the current setup and adding hardware requires
changing the skills themselves. Therefore, adding the option to configure the hardware
from the frontend makes it easier for the user.

77

CHAPTER 9. FUTURE WORK

ROS support
Supporting ROS is beneficial due to the wide array of features and robots supported by
it. This includes mobile robots’ and manipulators’ drivers as well as packages used for
perception, navigation, control and visualization. Furthermore, a variety of grippers
and sensors are integrated with it, making ROS beneficial for hardware abstraction.

78

Bibliography
[1] International federation of Robotics.World Robotics Report: “All-Time High” with

Half a Million Robots Installed in one Year. URL: https://ifr.org/ifr-
press-releases/news/wr-report-all-time-high-with-half-a-
million-robots-installed.

[2] CongyuZhang Sprenger andThomasRibeaud. “Robotic ProcessAutomationwith
Ontology-enabled Skill-based Robot TaskModel and Notation (RTMN)”. In: 2022
2nd International Conference onRobotics, Automation andArtificial Intelligence (RAAI).
2022, pp. 15–20. DOI: 10.1109/RAAI56146.2022.10092996.

[3] Martha M. Flores-Leonar et al. “Materials Acceleration Platforms: On the way to
autonomous experimentation”. eng. In: Current opinion in green and sustainable
chemistry 25 (2020), pp. 100370–. ISSN: 2452-2236.

[4] Toronto University. Accelerating the discovery of materials and molecules needed
for a sustainable future. URL: https://acceleration.utoronto.ca/.

[5] DTU Capex. PIONEERING HOW SUSTAINABLE MATERIALS FOR POWER-TO-X
ARE INVENTED. URL: https://www.dtu.dk/capex.

[6] AAU. Smart production - Aalborg University. URL: https://www.mp.aau.
dk/research/research-areas/robotics-and-automation/smart-
production.

[7] B&R Industrial Automation. B&R heralds the beginning of multidimensional man-
ufacturing with ACOPOS 6D. URL: https://www.br-automation.com/en/
products/mechatronic-systems/acopos-6d/.

[8] PlanarMotor Incorporated.PlanarMotor System. URL:https://www.planarmotor.
com/en/products.

[9] Beckhoff Automation. XPlanar | Planar motor system. URL: https : / / www .
beckhoff.com/en-en/products/motion/xplanar-planar-motor-
system/.

[10] RoboDK. RoboDK driver for KUKA. URL: https://robodk.com/doc/en/
Robots-KUKA-RoboDK-driver-KUKA.html.

[11] Sarvanan Chidambaram - Vikas Sajjan. How Heterogeneous Systems Evolved and
the Challenges, Going Forward. URL: https://www.mp.aau.dk/research/
research-areas/robotics-and-automation/smart-production.

[12] “Autonomous Chemical Experiments: Challenges and Perspectives on Establish-
ing a Self-Driving Lab”. eng. In:Accounts of chemical research 55.17 (2022), pp. 2454–
2466. ISSN: 0001-4842.

[13] LoicM.Roch et al. “ChemOS:Anorchestration software to democratize autonomous
discovery”. eng. In: PloS one 15.4 (2020), e0229862–e0229862. ISSN: 1932-6203.

79

https://ifr.org/ifr-press-releases/news/wr-report-all-time-high-with-half-a-million-robots-installed
https://ifr.org/ifr-press-releases/news/wr-report-all-time-high-with-half-a-million-robots-installed
https://ifr.org/ifr-press-releases/news/wr-report-all-time-high-with-half-a-million-robots-installed
https://doi.org/10.1109/RAAI56146.2022.10092996
https://acceleration.utoronto.ca/
https://www.dtu.dk/capex
https://www.mp.aau.dk/research/research-areas/robotics-and-automation/smart-production
https://www.mp.aau.dk/research/research-areas/robotics-and-automation/smart-production
https://www.mp.aau.dk/research/research-areas/robotics-and-automation/smart-production
https://www.br-automation.com/en/products/mechatronic-systems/acopos-6d/
https://www.br-automation.com/en/products/mechatronic-systems/acopos-6d/
https://www.planarmotor.com/en/products
https://www.planarmotor.com/en/products
https://www.beckhoff.com/en-en/products/motion/xplanar-planar-motor-system/
https://www.beckhoff.com/en-en/products/motion/xplanar-planar-motor-system/
https://www.beckhoff.com/en-en/products/motion/xplanar-planar-motor-system/
https://robodk.com/doc/en/Robots-KUKA-RoboDK-driver-KUKA.html
https://robodk.com/doc/en/Robots-KUKA-RoboDK-driver-KUKA.html
https://www.mp.aau.dk/research/research-areas/robotics-and-automation/smart-production
https://www.mp.aau.dk/research/research-areas/robotics-and-automation/smart-production

BIBLIOGRAPHY BIBLIOGRAPHY

[14] BenjaminBurger et al. “Amobile robotic chemist”. eng. In:Nature (London) 583.7815
(2020), pp. 237–241. ISSN: 0028-0836.

[15] Chibum Lee Jaewan Choi Geonhee Lee. “Reinforcement learning-based dynamic
obstacle avoidance and integration of path planning”. In: (2021). DOI: https:
//doi.org/10.1007/s11370-021-00387-2.

[16] Mikkel Rath Pedersen et al. “Robot skills for manufacturing: From concept to
industrial deployment”. In: Robotics and computer-integrated manufacturing 37
(2016), pp. 282–291. ISSN: 0736-5845.

[17] Casper Schou et al. “Skill-based instruction of collaborative robots in industrial
settings”. In: Robotics and computer-integrated manufacturing 53 (2018), pp. 72–
80. ISSN: 0736-5845.

[18] Rasmus Eckholdt Andersen et al. Integration of a Skill-based Collaborative Mobile
Robot in a Smart Cyber-Physical Environment. eng. 2017.

[19] Matthias Mayr et al. “Learning of Parameters in Behavior Trees for Movement
Skills”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2021, pp. 7572–7579. ISBN: 1665417145.

[20] Ready Robotics. ForgeOS. URL: https : / / www . ready - robotics . com /
solutions/upskill-your-people.

[21] Ready Robotics. Documentation. URL: https://www.ready-robotics.com/
support/documentation.

[22] Picknik. Picknik homepage. URL: https://picknik.ai/studio/.

[23] RiACT. RiACT homepage. URL: https://www.riact.eu/.

[24] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An
Introduction. eng. Ithaca: Cornell University Library, arXiv.org, 2018.

[25] Aske Plaat. Deep Reinforcement Learning. eng. Singapore: Springer, 2022. ISBN:
9789811906374.

[26] Google Deepmind. DeepMind x UCL RL Lecture Series - Introduction to Reinforce-
ment Learning [1/13]. URL:https://www.youtube.com/watch?v=TCCjZe0y4Qc.

[27] Jingles (Hong Jing). Reinforcement Learning — The Value Function. Ed. by towards
science. URL: https : / / towardsdatascience . com / reinforcement -
learning-value-function-57b04e911152.

[28] RenuKhandelwal).Reinforcement Learning:OnPolicy andOff Policy. URL:https:
//arshren.medium.com/reinforcement-learning-on-policy-and-
off-policy-5587dd5417e1.

[29] (Hugging face courses). Introducing the Clipped Surrogate Objective Function. URL:
https://huggingface.co/learn/deep-rl-course/unit8/clipped-
surrogate-objective?fw=pt.

[30] John Schulman et al. “Proximal PolicyOptimizationAlgorithms”. eng. In: (2017).

80

https://doi.org/https://doi.org/10.1007/s11370-021-00387-2
https://doi.org/https://doi.org/10.1007/s11370-021-00387-2
https://www.ready-robotics.com/solutions/upskill-your-people
https://www.ready-robotics.com/solutions/upskill-your-people
https://www.ready-robotics.com/support/documentation
https://www.ready-robotics.com/support/documentation
https://picknik.ai/studio/
https://www.riact.eu/
https://www.youtube.com/watch?v=TCCjZe0y4Qc
https://towardsdatascience.com/reinforcement-learning-value-function-57b04e911152
https://towardsdatascience.com/reinforcement-learning-value-function-57b04e911152
https://arshren.medium.com/reinforcement-learning-on-policy-and-off-policy-5587dd5417e1
https://arshren.medium.com/reinforcement-learning-on-policy-and-off-policy-5587dd5417e1
https://arshren.medium.com/reinforcement-learning-on-policy-and-off-policy-5587dd5417e1
https://huggingface.co/learn/deep-rl-course/unit8/clipped-surrogate-objective?fw=pt
https://huggingface.co/learn/deep-rl-course/unit8/clipped-surrogate-objective?fw=pt

BIBLIOGRAPHY BIBLIOGRAPHY

[31] Unity technologies. Training Configuration File. URL: https://github.com/
Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-
File.md.

[32] Stablebaseline3. PPO. URL: https://stable-baselines3.readthedocs.
io/en/master/modules/ppo.html.

[33] AurelianTactics. PPO Hyperparameters and Ranges. URL: https://medium.
com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe.

[34] Open Robotics. What is Isaac Sim? – Omniverse Robotics Documentation. URL:
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/
overview.html.

[35] Deepmind.Overview -MuJoCoDocumentation. URL:https://mujoco.readthedocs.
io/en/stable/overview.html.

[36] Cyberbotics. Webots documentation - Introduction to Webots. URL: https://
cyberbotics.com/doc/guide/introduction-to-webots.

[37] OpenSourceRobotics Foundation.Gazebo. URL:https://classic.gazebosim.
org/.

[38] Open Robotics. Gazebo - Docs: Get Started. URL: https://gazebosim.org/
docs.

[39] Marian Körber et al. “Comparing Popular Simulation Environments in the Scope
of Robotics and Reinforcement Learning”. eng. In: (2021).

[40] Microsoft. Architectural principles. URL: https://learn.microsoft.com/
en-us/dotnet/architecture/modern-web-apps-azure/architectural-
principles.

[41] Microsoft.Get startedwith Entity Framework 6. URL:https://learn.microsoft.
com/en-us/ef/ef6/get-started.

[42] GraphQL. Frequently Asked Questions (FAQ). URL: https://graphql.org/
faq/#does-graphql-use-http.

[43] Microsoft.Common client-sideweb technologies. URL:https://learn.microsoft.
com/en-us/dotnet/architecture/modern-web-apps-azure/common-
client-side-web-technologies.

[44] Vue.js. Introduction. URL: https://vuejs.org/guide/introduction.
html.

[45] OpenJS Foundation. Build cross-platform desktop apps with JavaScript, HTML, and
CSS. URL: https://www.electronjs.org/.

[46] Ionic. Capacitor: Cross-platform Native Runtime for Web Apps. URL: https://
capacitorjs.com/docs.

[47] OPC Foundation. Unified Architecture. URL: https://opcfoundation.org/
about/opc-technologies/opc-ua/.

[48] Association for Advancing Automation (A3). GigE Vision. URL: https://www.
automate.org/a3-content/vision-standards-gige-vision.

81

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
https://mujoco.readthedocs.io/en/stable/overview.html
https://mujoco.readthedocs.io/en/stable/overview.html
https://cyberbotics.com/doc/guide/introduction-to-webots
https://cyberbotics.com/doc/guide/introduction-to-webots
https://classic.gazebosim.org/
https://classic.gazebosim.org/
https://gazebosim.org/docs
https://gazebosim.org/docs
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/ef/ef6/get-started
https://learn.microsoft.com/en-us/ef/ef6/get-started
https://graphql.org/faq/#does-graphql-use-http
https://graphql.org/faq/#does-graphql-use-http
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-client-side-web-technologies
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-client-side-web-technologies
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-client-side-web-technologies
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://www.electronjs.org/
https://capacitorjs.com/docs
https://capacitorjs.com/docs
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.automate.org/a3-content/vision-standards-gige-vision
https://www.automate.org/a3-content/vision-standards-gige-vision

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Wikipedia. HSV color solid cylinder. URL: https://commons.wikimedia.
org/wiki/File:HSV_color_solid_cylinder.png.

[50] Packt. Object detection using color in HSV. URL: https://subscription.
packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-
detection-using-color-in-hsv.

[51] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Im-
plementations”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8.
URL: http://jmlr.org/papers/v22/20-1364.html.

[52] Yue Cao and C. S. George Lee. “Robot Behavior-Tree-Based Task Generation with
Large Language Models”. eng. In: (2023).

[53] Ivan Schneiders. Bad design: Deconstructing the Norman door. URL: https://
ivanschneiders.medium.com/bad-design-deconstructing-the-
norman-door-4420fd84b960.

[54] Anton Nikolov. Design principle: Consistency. URL: https://uxdesign.cc/
design-principle-consistency-6b0cf7e7339f.

[55] RILEYROTH. 3Key Elements for Great UXDesign: Affordances, Signifiers, and Feed-
back. URL:https://careerfoundry.com/en/blog/ux-design/affordances-
signifiers-feedback/.

[56] Pratyush Pandab. “Ingredients of Good Design: Affordance, Emotion and Com-
plexity”. In: (May 2013).

[57] Zeerek Ahmad. State Machines vs Behavior Trees: designing a decision-making ar-
chitecture for robotics. URL: https://www.polymathrobotics.com/blog/
state-machines-vs-behavior-trees.

[58] Priyam basu. Part 4 — Exploration and Exploitation. URL: https://medium.
com/iecse-hashtag/rl-part-4-exploration-and-exploitation-
859bc294e2b0.

[59] Beckhoff Automation.ADS-Communication. URL:https://infosys.beckhoff.
com/english.php?content=../content/1033/cx8190_hw/5091854987.
html.

82

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://subscription.packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-using-color-in-hsv
https://subscription.packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-using-color-in-hsv
https://subscription.packtpub.com/book/data/9781789537147/1/ch01lvl1sec09/object-detection-using-color-in-hsv
http://jmlr.org/papers/v22/20-1364.html
https://ivanschneiders.medium.com/bad-design-deconstructing-the-norman-door-4420fd84b960
https://ivanschneiders.medium.com/bad-design-deconstructing-the-norman-door-4420fd84b960
https://ivanschneiders.medium.com/bad-design-deconstructing-the-norman-door-4420fd84b960
https://uxdesign.cc/design-principle-consistency-6b0cf7e7339f
https://uxdesign.cc/design-principle-consistency-6b0cf7e7339f
https://careerfoundry.com/en/blog/ux-design/affordances-signifiers-feedback/
https://careerfoundry.com/en/blog/ux-design/affordances-signifiers-feedback/
https://www.polymathrobotics.com/blog/state-machines-vs-behavior-trees
https://www.polymathrobotics.com/blog/state-machines-vs-behavior-trees
https://medium.com/iecse-hashtag/rl-part-4-exploration-and-exploitation-859bc294e2b0
https://medium.com/iecse-hashtag/rl-part-4-exploration-and-exploitation-859bc294e2b0
https://medium.com/iecse-hashtag/rl-part-4-exploration-and-exploitation-859bc294e2b0
https://infosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html
https://infosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html
https://infosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html

Appendix A

Appendix

A.1 What is a good user interface?
It should be emphasized that the importance of a good user interface is paramount, as
the solution aims to make the programming of robot tasks easy and more intuitive for
the user. To achieve this it is relevant to understand the intricacies involved in design-
ing an UI. UI design is a whole field on its own and consists of muchmore than creating
the visuals of a product. When determining the best way for the user to interact with
a product and how the message of said item is conveyed to the user there is one other
element that plays a major role, that is User Experience (UX). UI - and UI design go
hand-in-hand, as both are equally important for the user to understand and benefit
from the solution as intended.
In simple terms, UI embodies all the physical attributes, such as buttons, size, icons,
and colors, which enables the user to interact with the product. While UX the users
interact with the product as a whole, including how they feel when using it. It is possi-
ble to have a fully functional product based on UI design but without considering what
good UX is, it is possible to leave the user feeling confused and unhappy with their ex-
perience. A widely known example of this is the concept of the Norman door, named
after Don Norman who is considered to be the founder of UX. It is a term used for any
door that is confusing to use and is a concept that can be transferred to other objects
when considering the design and user experience [53].

In Fig. A.1 two doors are shown, both of which may lead the user to be unsatisfied.
When ignoring the signs on the door and only looking at the doors themselves, they
may be counter-intuitive. The door to the right has the handle shape that is commonly
associated with a "pull" door, and the one to the left looks like a "push" door. This may
lead the user to operate the door incorrectly based on their intuition. Although the
doors themselves are fully functional the design can lead to the user having a negative
experience. In the example above the doors are equipped with signs that work as in-
dicators to help the user, but in general good UI is considered to be easy and intuitive
[53].
To further understand these two principles (UI and UX) and how they impact the solu-
tion, the following sections will dive into both, to derive the knowledge needed for the
implementation phase.

83

A.1. WHAT IS A GOOD USER INTERFACE? APPENDIX A. APPENDIX

PUSHPULL

PULL DOOR PUSH DOOR

Figure A.1: Example of two doors demonstrating the ’Norman door’ concept re-
garding how bad UX design can lead to confusion and unsatisfactory experience
for users.

A.1.1 User Interface design

When designing a UI, consistency is key, as consistency leads to more intuitive design.
This is due to the element of familiarity, whichmakes it easier for the user to learn. Hu-
mans naturally learn by looking for patterns so staying consistent throughout (menus,
buttons, etc.) increases the learnability, due to the predictability of the interface [54].
There are for types of consistency:

Visual consistency
Being consistent with the visual components across the entire platform, such as
buttons, fonts, labeling, and colors. This increases the learnability of the inter-
face and provides less distraction for the user[54].

Functional consistency
With functional consistency it is important to keep the control functions such
as return buttons, slider, toggle buttons, and general control flow in the system
should function the sameway throughout the platform. In othermeans of it looks
like a button it should act like one too. Thiswill increase the predictabilitymaking
the user feel safe and confident with the interface [54].

Internal consistency
This term refers to the previous two as a combination. Which improves the usabil-
ity of the interface, making it easier for the user to get introduced to new features
[54].

External consistency This term refers to when the internal consistency is extended

84

APPENDIX A. APPENDIX A.1. WHAT IS A GOOD USER INTERFACE?

to more or all products. This makes it easier for the user to transfer their acquired
knowledge to a new product. This eliminates the tediousness of learning an in-
terface all over again[54].

A.1.2 User Experience design

When referring to good UX it can be described as a product having affordance. Affor-
dance can be used as a way to qualify howwell a product can communicate its function.
A Product with good affordance will make the user know right away what it does and
how to use it, without the user having to think about it. This is due to the product
feeling natural and following logical associations. There are simple ways to enhance
the affordance of a product. This can be done by using signifiers and feedbacks [55][56].

Signifiers and feedbacks
Signifiers are used as indicators to let the user know what affordance the product has.
Affordance should not be understood as a physical property that a product possesses
but can be described as the relationship between the product and the user. Signifiers are
also known as perceived affordance, defined by Don Norman according to [56]. There
are many simple examples of affordance and signifiers found in everyday items, such
as a thermo-mug that has a thumb-shaped button, which is affordance as the user im-
mediately knows that it can be pressed based on the shape of it, and the lock/unlock
icons on it usually serves at indicators, telling the user that it is possible to lock the
mug spout. In the digital world, signifiers are more important as there is no physical
feel to the interface. On webpages or other interfaces, it is commonly seen that when
you hover over a button with the mouse it usually changes in color, this is considered
a signifier as it indicates to the user that it is possible to click on the button. In other
cases, the mouse arrow becomes a pointer indicating that it is a button, or when click-
ing on a text field the arrow becomes a cursor, letting the user know that it is possible
to type here.
Another important thing related to signifiers and affordance in feedback. A simple ex-
ample of feedback is the small LED found on a monitor, the LED itself is a signifier, and
the color it emits is the feedback, as the user will know if the monitor is powered or
not based on the light. Feedback is a very important element to increase affordance.
It is important that when a user interacts with an interface they always receive some
feedback when performing an action, this makes the user know what is going on and
avoids confusion. This is why feedback should be given even in case of an error or an
unsuccessful action. Imagine logging into an email account and typing the wrong pass-
word but not receiving a message notifying you that the password was wrong. This cre-
ates confusion and uncertainty in the user, making them have a negative experience.
According to psychologist Alice Isen in [56], users tend to overlook flaws and minor
inconveniences when being in a good mood but have more attention to details when
being stressed or unhappy. This has a big impact on how the user perceives a product
or a UI, as a small error when being relaxed and happy may go unnoticed, but when
being in a stressful situation the same error may feel like a major inconvenience and

85

A.2. FINITE STATE MACHINES APPENDIX A. APPENDIX

make the experience upsetting and hinder the learnability of the product [56].

As explained in the above sections, Both good design for UI and UX is vital for having
an interface that the user will be able to benefit from. As the user interface will be con-
cerning making skill-based programming easy and comprehensible for non-technical
users it will be beneficial to follow the principles explained above. This will ensure that
the UI is intuitive and the user will be able to focus on learning how to program tasks
and succeeding at it. In Chapter 5, all decisions and considerations in regard to design
choices will be described in depth.

A.2 Finite State Machines
In automata theory, FSMs are defined as a finite number of states that are in a predeter-
mined sequence that run automatically. FSMs are a mathematical modeling tool that
describes the relationship between different states and their transitions. States de-
scribe the system status whereas a transition is the action to take. Transition happens
either by checking if a condition ismet or by an event that triggers the action. This type
of system has gained popularity in engineering to describe system behaviors. FSMs are
categorized into deterministic, where every state has only one possible transition, and
non-deterministic where states can have one or more transitions or no transition at
all. FSMs are divided into 4 different classes; acceptors, classifiers, transducers and
sequencers.

Acceptor FSMs

Acceptors are used to transition between states producing only two outputs,
accepting or rejecting, or more formally a binary output.

Classifier FSMs

Classifiers are similar to acceptors but have a strict condition for having
more than 2 outputs.

Transducer FSMs

Transducers are most commonly used in control applications, defined by
two different types; Moore machine and Mealy machine. In Moore ma-
chines, the output is only dependent on the state and gets triggered by an
entry action. Mealy machines are similar to Moore machines in that they
depend on the state, but they also depend on inputs.

Sequencer FSMs

A special case of classifiers or transducers. The states in a sequencer FSMdo
not change thus generating a fixed sequence. As previously stated, Moore
and Mealy’s machines are commonly used for control architecture. These
machines have a few advantages:

• Intuitive and straightforward

86

APPENDIX A. APPENDIX A.2. FINITE STATE MACHINES

• Simple to implement

• Well-known and widely used in the industry

Despite those advantages of FSMs, there are some drawbacks when the model’s com-
plexity increases. Some of these drawbacks are listed below:

• Susceptible to errors when adding or removing states, since it might require re-
evaluating the whole state machine

• Difficult to scale when the system grows in complexity and the number of transi-
tions increases

• Re-purposing existing FSMs is impractical when transitions depend on internal
variables

To mitigate some of these drawbacks, hierarchical FSMs (HFSMs) were developed. A
concept of a superstate was defined in HFSMs, which is a state that has multiple sub-
states allowing for a more complex andmodular representation of a system. In HFSMs,
a parent state can have multiple child states, where the transition can be defined at
both the child and parent levels.

FSM versus BT

As both FSM and BT are described, the advantage and disadvantages can be discussed,
to determine which is preferable for the solution implemented in this project. For sim-
ple systemswith few states needed FSM is ideal as it is efficient and rigid, but as soon as
the need for many states occurs, FSM can become complex and incomprehensible due
to its many transitions and conditions. When dealing with robotics tasks with a large
amount of decision-making, requiring complex behaviors, then BT is considered to be
more beneficial to use. BT differs from FSM as a ’tick’ is propagated through the tree in
the order determined by the control nodes. BTs do not have explicit states as FSM and
are therefore also more agile and easy to add changes to. Furthermore, BTs are easier
when it comes to error handling as the tree is more comprehensible as the execution
order of the nodes is determined based on the control nodes.

87

A.2. FINITE STATE MACHINES APPENDIX A. APPENDIX

Finite State Machine Behavior Tree

Figure A.2: The figures show an example of a finite-state machine and a behavior
tree side-by-side to show the difference in characteristics of both structures. [57]

In the Fig. A.2 an example is shown of the same type of task implemented as both
FSM and BTs. As can be seen FSMs, quickly tend to become unorganized and hard to
comprehend with all the transition connections between the different states, while as
for the BTs, the structure stays simple due to the tree-like structure, making it easy
to follow regardless of the complexity of the task. In the following table A.1 the char-
acteristics of FSM and BT are summarized to get an overview of the advantages and
disadvantages of the two, to determine which should be used for the project.

Finite State Machines Behavior Trees

- Modular - Modular
- Rigid - Flexible
- Simple - Complex
- Require many states - Good for debugging
- Explicit states and conditions - No need for explicit states

- Error handling (fallback)
- More transparent

Table A.1: Comparing the characteristics of FSM and BT to provide an overview of
their advantage and disadvantage in regards to the solution.

As stated in the table, BT provides amore flexible and agile system, which is needed for
easy robot task creation, and gives the transparency during runtime that is needed for
debugging. Due to these properties, it was decided to use BT for the skill-based system
which is to be implemented in the solution for this project.

88

APPENDIX A. APPENDIX A.3. EXPLORATION AND EXPLOITATION

A.3 Exploration and Exploitation
For optimized learning, it is important to have a balance between exploration and ex-
ploitation. Exploration is when the agent explores the environment, while exploitation
is when the agent uses the information obtained from the environment. During the
initial state of training an agent usually benefits from exploring as the environment
remains unknown, the more observations the agent receives it will able to exploit the
information from the environment. To balance these two, the epsilon (ϵ) greedy strat-
egy is introduced. This strategy ensures that the agent starts learning once enough
information is gathered. It is implemented with the help of an exploration rate, where
ϵ refers to the probability that the agent will explore [58].

Exploration

Exploitation

Epsilon rate

A lot is known about the environment
The agent should only do exploitation

No information about the environment
The agent should only do exploration

Figure A.3: The graph illustrates the epsilon rate which decays over time as the
agent gets to know the environment more

As seen in Fig. A.3, epsilon decays over time. At the start of the training ϵ is initial-
ized as 1.0, as it is desired to make the agent explore as much as possible, due to the
environment being unknown. At each time step a random number between 0 and 1 is
generated, if the number is smaller than ϵ the agent will explore. If the random number
generated is larger than ϵ the agent will base its next action on exploitation. As epsilon
decays over time, the agent is considered to bemore "greedy" bymostly exploiting, and
there is enough information about the environment [58].

89

A.4. BEHAVIOR TREE IMPLEMENTATIONS APPENDIX A. APPENDIX

A.4 Behavior Tree Implementations

Algorithm 2: Implementation of the Tick function for a fallback node
Data: globalLink

1 async Task TickAsync(globalLink):
2 State← NodeState.Running;
3 await Children[CurrentChildIndex].TickAsync(globalLink);
4 switch Children[CurrentChildIndex].State do
5 case NodeState.Success do
6 CurrentChildIndex← 0;
7 State← NodeState.Success; return;
8 end
9 case NodeState.Running do
10 State← NodeState.Running; return;
11 end
12 case NodeState.Failure do
13 CurrentChildIndex++; break;
14 end
15 end
16 if CurrentChildIndex ≥ Children.Count then
17 CurrentChildIndex← 0;
18 State← NodeState.Failure;
19 end

A.5 XPlanar Library
To control the XPlanar motors, a client was implemented enabling the communication
with the ADS protocol. This client allows sending and retrieving data from Beckhoff
PLCs, which are connected to the XPlanar. The client requires an ADS address and port
to connect to the server. It gives access to all of the variables in the PLC program used
to control the XPlanar shuttles [59]. To communicate and program the XPlanars, a PLC
library is designed that contains a message buffer. This message buffer gets updated
with the desired command giving access to control the shuttles to move.
The ADS client updates the message buffer in the PLC program when an XPlanar com-
mand is sent. To determine which action to perform, a protocol has been designed to
communicate with the PLC. This protocol describes the message structure between the
ADS client and the PLC and ensures that themessages are decoded correctly in the PLC.

Header 1 Header 2 Header 3 Reserved Num of commands Commands
0xFF 0xFF 0x42 0x00 Num of commands Commands array

Table A.2: PLC message structure.

Table A.2 shows how a message structure is defined allowing the user to send multiple

90

APPENDIX A. APPENDIX A.6. HOMOGENEOUS TRANSFORMATION MATRIX

commands to perform in the same PLC cycle. The commands have a predefined length
to encode and decode messages. Therefore, the length should match the message sent
to the PLC to ensure the correct decoding of the messages.

Different types of commands are supported such as enable, disable, and reset planar.
Additionally, move commands are supported requiring a shuttle index, target position,
velocity, and acceleration.

Furthermore, the PLC library exposes different variables which store the position, ve-
locity, status, and feedback of the shuttles. The ADS client uses those variables to read
and update shuttle properties. The ADS protocol makes it possible to subscribe to PLC
variable changes and call a callback function whenever the values get updated.

A.6 Homogeneous Transformation Matrix
Thehomogeneous transformationmatrix representing rotations and translation is given
by the following equation:

T =

[
R d

0 1

]
(A.1)

whereR is the rotation matrix and d is the translation vector. In this case d represents
the position of the shuttle in x and y along with a desired z component as shown in the
following equation:

d =
[
dx dy dz

]T
(A.2)

The rotation matrix R can be represented as a composition of rotations about x,y,z
axes. The x-axis, y-axis and z-axis rotations are represented by the angle θ, ϕ, and ψ,
respectively. The individual rotation matrices are defined as follows:

Rx(θ) =

1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 (A.3)

Ry(ϕ) =

 cos(ϕ) 0 sin(ϕ)

0 1 0

− sin(ϕ) 0 cos(ϕ)

 (A.4)

Rz(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (A.5)

The rotation matrices are multiplied together to obtain the rotation matrix R:

91

A.6. HOMOGENEOUS TRANSFORMATION MATRIX APPENDIX A. APPENDIX

R = Rz(ψ) ·Ry(ϕ) ·Rx(θ) (A.6)

After obtaining the homogeneous transformationmatrix in the shuttle reference frame
T goal
shuttleorigin, it has to be transformed into the robot’s reference frame. This is done by
using the following equation:

T goal
base = Tworld

base · T
shuttleorigin
world · T goal

shuttleorigin (A.7)

The base frame represents the robot’s base frame and the shuttle origin frame repre-
sents the reference frame of the shuttles.

This matrix is given to RoboDK which will perform inverse kinematics on it to get the
joint variables for the robot.

92

	Preface
	Acronyms
	Introduction
	Problem Analysis
	Platform for Self-driving Lab
	Challenges in Self-Driving Labs
	Related Works
	Commercial Solutions

	Methods
	Behavior Trees
	Learning-based Control
	Simulation Software

	Problem Formulation
	Final Problem Statement
	Objectives

	Implementation
	Design
	Software Stack and Architecture
	Device Manager
	Behavior Tree
	Skill Library
	Reinforcement Learning Agent

	Test and Results
	Discrete Case
	Continuous Case
	Behavior Engine
	Deploying the RL agent

	Discussion
	Evaluation of the Solution
	Improvements

	Conclusion
	Future Work
	Bibliography
	Appendix
	What is a good user interface?
	Finite State Machines
	Exploration and Exploitation
	Behavior Tree Implementations
	XPlanar Library
	Homogeneous Transformation Matrix

