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Abstract:

Using collaborative robots in a workshop
environment can alleviate strains on work-
ers and increase productivity, but im-
provements are still required for workers
to want to work with them.
Pick-and-place tasks are one of the most
widespread applications for robots, but
they are still not as efficient as human
workers when it comes to selecting grasps
for different objects. In this thesis, a
method is presented that leverages the hu-
man worker’s intuition of optimal grasps
to teach the robot which grasp to use for
different objects.
A Convolutional Neural Network has
been developed to classify between 6 dif-
ferent grasps with an accuracy of 87.22%,
while objects are recognised using ORB
features with an accuracy of 56.61%.
The method has been tested with 9 test
subjects using a UR3 robot, and their feed-
back of the system in regards to comfort
and trust in the implementation resulted
in a score of 5.89 on a 7-point Likert scale,
showing that there is an interest in collab-
orating with a robot in this manner.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.
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plementation in regards to grasp classification, EMG control, robot communication and
object recognition, the scope of the project had to be reduced over time due to unforeseen
complications.

This reduced project, however, still shows the core concept that was explored and lays
a foundation for improving the Human-Robot Collaboration in regards to a human user
teaching optimal grasps to a robot system.

The author would like to thank the Supervisors for their valuable insights and sugges-
tions, which helped improving the final implementation greatly compared to the initial
solution.

Aalborg University, June 1, 2023

Christian Winther Rønnest
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Chapter 1

Introduction

The use of robots in industries provide a range of benefits compared to using human
workers [42]. The company-oriented benefits include things like reduced production time
and cost, higher precision, and extended production time, as a robot manipulator provide
fast, precise movements in a constant cycle. From a worker perspective, the robots take
over most of the monotonous and dangerous tasks that may put the worker’s health at
risk.

Using industrial robots may increase the efficiency and turnover for the company, but
each robot requires safety features and fencing that meets current safety standards in order
to be applied in the workshop [36]. This means that each robot cell take up some area
of floor space that could have been used for other equipment or stations instead, while
workers may become worried that their jobs will be replaced by the robots [19].

As a solution to these problems, collaborative robots (cobots) can be used in the work-
shop [1], as long as the tasks are not heavy duty. These robots require less space and
safety equipment, freeing up more space for other processes, and allowing humans to
work alongside with the robots.

This opens for a new kind of work condition in that the human workers need to col-
laborate with the robots in order to ensure the production flow. This collaboration can be
in the form of the robot performing some task and sending the product to a worker for
further processing, much like an industrial robot, or the robot may be used as a tool by
the human worker, such as in a collaborative lifting task, that may alleviate stresses on the
human worker as it helps carrying heavy objects.

In both cases, object manipulation is often required, and grasping objects are one of
the most widespread tasks for robots to perform, even though the robot system does not
have any intuition on how to grasp an object optimally.

This thesis presents a method for a human user to teach a robot system which grasp
to use for a certain object using an EMG grasp recognition method and a visual object
recognition method.
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Chapter 2

Problem Analysis

The implementation of this thesis focuses on robot manipulation of objects in collabora-
tion with a human user. This area of research is an extension of the notion of collaborative
robots, with the ultimate goal of humans and robots working together and alongside each
other. This thesis investigates the human and robot collaboration in an industrial object
manipulation task, with the human user controlling the interaction. Before the implemen-
tation is presented, the current state of research within Human-Robot Collaboration and
robot grasping is investigated.

2.1 Human-Robot Collaboration

Collaboration between a human user and a robot is a field of ongoing research. In essence,
Human-Robot Collaboration (HRC) is any task where a human user and a robot works
together to reach a certain goal. With the continuous growth of the industrial automation
market [35], the number of processes and tasks where humans and robots interact with
each other increases. This allows for the execution of a wide variety of tasks, such as
drilling, lifting, sawing, and hand-over. Incorporating a robot to do these tasks allows for
increased accuracy during execution and better ergonomics for the human workers, as the
handling of heavy objects and/or tools is greatly decreased.

For successful HRC, though, the implementation of a cobot alone is not enough: The
robot needs to be able to react according to the human user in order for the collaboration
to be successful. This requires some sort of communication between the participants. For
human-human collaboration, this can be done using gestural, tactile, and verbal cues,
which the other participant can use to determine the other’s intention.

Thus, in order to obtain proper HRC, external devices are required. This can be in the
form of cameras, Inertial Measurement Units (IMU’s), or biological signals from the user,
such as ElectroMyoGraphy (EMG).

Gowtham et al. [17] implemented control of a 5 Degree-of-Freedom (DoF) robot ma-
nipulator using EMG signals and accelerometers for detecting arm postures and gestures,

2



2.1. Human-Robot Collaboration 3

while Kaplanoglu et al. [24] implemented a gesture-based EMG control of a 7 DoF collab-
orative robot. EMG was also used by Zhang et al. [53] along with an IMU to make a robot
follow the human operator during a collaborative sawing task, and Lin and Peng [30] im-
plemented a teleoperation approach with the equipment, while Chico et al. [6] utilised the
same equipment to control the position and orientation of a robot manipulator in another
approach.

Treussart et al. [47] used EMG signals to control an exoskeleton for assisting in carrying
heavy loads. DelPreto and Rus [9] created a collaborative lifting framework using only the
EMG signals from the biceps and triceps muscles to control a robot manipulator, while
Bednarczyk et al. [3] used EMG to enable the robot to distinguish forces from the human
operator from other external forces, and Li et al. [29] used EMG to enable the human user
to regulate the robot’s compliance and force regulation.

A method for teleoperating a robot manipulator based solely on EMG signals were de-
vised by Dwivedi et al. [11], and combining fiducial markers with EMG signals, Dwiwedi
et al. [12] also created a control system for teleoperation of a dexterous robotic arm hand
system. Boru and Erin [5] used EMG and a Leap Motion Sensor for teleoperating a robot
manipulator.

Another approach to HRC has been implemented by Wang et al. [50], that used EMG
and IMU signals for the robot to determine the best approach in a human-to-robot and
robot-to-human hand-over.

HRC has already been applied to some degree, for example in the form of active pros-
theses, where there is some form of autonomy in the prosthesis, so the human user does
not have to control every movement of the prosthesis.

This is for example seen in the work of Satya Shree et al. [43] where they used EMG
signals to control a bionic hand for different types of grasps. Perera et al. [33] used
EMG and vision to increase the probability of correct grasp classification depending on
the object to be grasped, and Zandigohar et al. [52] used the same method, including eye
tracking as well.

For lower limb prostheses, the robot system can be trained to detect direction inten-
tions and robustness during walking, as implemented by Khiabani and Ahmadi [26], by
applying LDA to EMG signals of the subject’s lower limb muscles. In the work done by
Clark and Amor [7], the HRC is implemented in an imitation learning strategy used to
predict biomechanical variables in order to determine the correct strategy for minimising
stress on the body of the user. Karulkar [25] developed a predictive two-stage estimation
framework relating the human user’s gait speed and features, which can be used in a
lower limb exoskeleton to realise change in direction or speed.

Another central aspect in HRC is the overall control framework for the system. The
overall control of the system lies with the human user. The collaboration can vary from
the robot passively following or responding to commands from the human user, to the
robot actively predicting the intention of the user. These collaboration approaches have
each been implemented in different ways:
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In some papers, the robot is directly controlled by the human user, such as in tele-
operation as implemented in [11, 12], where the user’s arm configuration determine the
configuration of the robot manipulator, meaning that the robot is effectively imitating the
user’s movements. Another approach to teleoperation is done by [17, 24, 6], where arm
and hand gestures directly control the robot’s movements.

In other papers, the control is more indirect, such as in [3, 53], where the robot is
compliant to forces exerted on it by the human user, based on the measured EMG signals
from the user’s upper limb, or as in [50], where the signals are used to provide information
about the object and the cues given by the human operator. For lower limb prostheses and
exoskeletons, the control is usually based on intention prediction, based on measurements
of the human joints or of biological signals like EMG.

Most of the latest research done in HRC thus include the use of biological signals from
the human user, with EMG being particularly widespread.

2.2 Myoelectric control

As mentioned on several occasions in Section 2.1, EMG signals have been widely used as
a means of Human-Robot Interaction, and, by extension, Human-Robot Collaboration. By
using myoelectric signals, the interaction between the human user and a robot can appear
seamless, similar to that of Human-Human Interaction.

EMG signals are electric impulses that can be measured from muscle tissue by the use
of electrodes [31]. In essence, the control of the human body is done by electric signals
sent from the brain to the relevant skeletal muscle groups through the nervous system. By
using electrodes, these signals can be measured and processed by devices, which enables
the use of these signals for inputs to control a device such as a prosthesis, robot arm, or a
mobile robot.

The acquisition of myoelectric signals can be divided into two approaches: Surface
EMG (sEMG) and Intramuscular EMG (iEMG). Both approaches have both pros and cons,
so the determination of which method to use for a certain application is based on an
evaluation of these.

In order to acquire myoelectric signals of the best quality, iEMG is used. This approach
involves inserting an electrode under the skin of the subject and directly onto or into the
muscle tissue, from which signals are wanted [48]. This secures the electrode a stable
connection to the specific muscle and better measurement of the electric signals. Thus,
iEMG is also suitable for applications, where specific muscles are of interest, as the elec-
trodes can be inserted as deeply into the body as required [48]. This is especially useful
for determining the EMG signals produced from the different muscles responsible for the
extension and contraction of the individual fingers on the human hand, as they are placed
deep inside the forearm [22, 23].

The other approach, sEMG, is non-invasive, allowing for reading myoelectric signals
from the body without needing to inject electrodes into the muscle tissue. As such, sEMG
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has been used extensively in research and in commercial use, as the implementation is
not as extensive as that of iEMG [8]. Because of this, sEMG has already been adapted to
personal and industrial use, exemplified by prostheses and Human-Robot Collaboration.

However, sEMG control is not yet widespread, because of the many ways the mea-
surements can be impacted, compared to that of iEMG. The electrodes used for sEMG is
placed on the surface of the human body, i.e. the skin, which disturbs the measurement of
the myoelectric signals from the muscles. [31, 48]

Additionally, the skin tissue is elastic, allowing it to stretch and contract depending on
the motion of the body. This, however, displaces the surface electrodes placed on the skin,
resulting in disturbance of the signals due to, for example, motion artifacts. [48]

Because the measurements are made on the surface of the body, the most significant
signals measured are those of the muscles right beneath the skin. As such, signals mea-
sured from muscles located deeper in the body, such as, for example, Flexor Digitorum
Profundus and Flexor Pollicis Longus, are not as distinguishable, meaning that it is harder
to discern individual finger movements using sEMG signals than, for example, wrist move-
ments. [31]

In the context of HRC, the use of sEMG is particularly widespread, however, as it is
the primary means of acquiring EMG signals in most of the latest research. The utilisation
of these signals, however, are varying greatly:

The implementation by [17] was done on an Arduino UNO controller using EMG
signals and two accelerometers. The control recognised wrist rotation, left, right, up, and
down motions, and the accelerometers were used to determine the X and Y directions of
the movement, determining the position of the robot manipulator.

In [24], 7 hand gestures were classified based on EMG signals using a Finite State
Machine classification method. This allowed for the control of a 7 DoF cobot, with each
gesture representing different movements for different parts of the robot, such as gripper
open/close or left/right arm position.

In [53], the forces of the human operator were extracted from the EMG signals of the
upper part of the upper limb, which were used in a Long Short-Term Memory (LSTM)
neural network to estimate the three-dimensional forces of the upper limb, which were
used to make the robot compliant while the human user pulled or pushed on the end-
effector.

The solution of [30] used 3 IMUs for human arm posture recognition on the shoulder,
elbow, and wrist, while the EMG signals were used for hand gesture recognition to control
a 3 finger robotic gripper with the gestures open, close, and pinch. The classification was
done using a Cascade SVM, yielding a recognition rate between the four gestures of 99%.

Alternatively, the same equipment could be used and implemented as in [6], where the
hand gestures were used in another way than to recognise a grasp. The fist gesture was
used to activate and deactivate a paint gun at the virtual robot’s end-effector, while the
wrist flexion and extension were used to switch between 3 different orientation references
on the robot, using the pinch gesture to confirm the reference selection. The EMG signals
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were classified by an SVM with a mean performance of 81.3%. The IMU was used to
control the end-effector position, with roll, pitch, and yaw controlling movement along the
X, Z, and Y axis, respectively.

The EMG signals were implemented as assistance in [47], as a means of gravity com-
pensation in an exoskeleton to assist in carrying an unknown load. Signals from the biceps
and triceps muscles were used to estimate the intensities of the muscles, and whether the
user was flexing or extending the elbow. The implementation reached the ideal torque of
the exoskeleton with an error of 0.038 ± 0.012 N m.

In [9], EMG signals from the biceps and triceps of the human arm were used for
controlling a robot in a collaborative lifting task by classifying the hand height of the user
and the muscle contractions. A feedforward neural network was used to perform the
classification, resulting in an overall 68.8% classification accuracy during tests.

EMG signals from 8 muscles on the upper arm region were used in [3] to calculate the
forces and wrench exerted on the end-effector of a robot manipulator by the human user,
allowing the user to move around the end-effector.

In [29], the upper limb EMG signals were used in the control system to determine
whether the user wanted to move the robot end effector around. Based on a use case of
ultrasound scanning, the robot regulated the pressure on the tissue on its own, allowing
the user to focus on other tasks, but the user may adjust the end effector by exceeding a
force threshold in the control system, making the robot compliant.

The method for teleoperation implemented in [11] was based on a Random Forest
(RF) classification of EMG signals of the upper arm, chest and back muscles, that was
converted into the goal pose of a robot manipulator. The implementation yielded a cor-
relation between the human motion and the pose decoding of 92.8%, with a Normalised
Mean Square Error (NMSE) of 73.4%. A practical test of cleaning a whiteboard showed a
task completion of 90.6%.

In [12], the EMG signals were used to classify arm and hand postures and gestures,
while fiducial markers placed on the shoulder and hand of the human subject were used
to determine the trajectory of the robot based on tracking from a head-mounted camera.
The implementation included the identification of three different grasps as well as muscle
co-contraction and rest used for controlling the grasp of the dexterous gripper mounted
on the robot manipulator. Three classifiers were tested for the study: Linear Discriminant
Analysis (LDA), Random Forest (RF), and Support Vector Machine (SVM), with the RF
providing the highest prediction accuracy of > 97%, compared to the others yielding an
accuracy of > 93%.

In [5], a Leap Motion Sensor was used for controlling the robot arm positioning and
trajectories, while EMG was used to control the robot tool. Using the infrared cameras
of the Leap Motion Sensor, the finger positions were measured, from which the motions
could be calculated and used for controlling the positioning of the robot. The classification
of EMG data was tested on three different classifiers: SVM, RF, and K-Nearest Neighbour
(KNN), with RF proving the most efficient classifier.
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In [50], the EMG and IMU signals from a human user’s forearm were used to represent
high-level intentions in the HRC, so the robot was not directly controlled by the user.
Six different high-level commands were defined by EMG signals, while the IMU signals
were used as triggers for initiating the handover. To determine the intention of the user,
Hidden Markov Models (HMM) were used, and a Directed Acyclic Graph-SVM (DAG-
SVM) classification was implemented to determine the attributes of the object to be handed
over, used for the robot to actively decide to reject or accept the object.

For controlling a bionic arm, the solution done in [43] used EMG signals from 8 elec-
trodes and trained a computer to recognise 4 hand gestures: Hand open, hand close,
circular grasp, and fine squeeze. SVM, KNN, and a combination of SVM and KNN were
used for classification, with the SVM-KNN model giving the best performance of 96.33%
accuracy.

The work in [33] combined vision and EMG signals for determining the correct grasp
of an object. The EMG signals were classified using and Artificial Neural Network (ANN),
while a pre-trained You Only Look Once version 3 (YOLOv3) neural network was used
for object detection. Object recognition was used for determining grasping probabilities of
6 grasp patterns, based on a survey done on human subjects, allowing the system to rule
out false positives in the EMG grasp classification. The implementation achieved a mean
True Positive Rate (mTPR) of 73.1%.

In [52], vision and EMG were used together as well, but with a slightly different ap-
proach: The EMG-based grasp classification was based on the extra-trees method, and
the vision-based grasp classification was based on YOLOv4. The detected object located
closest to the gaze of the user was the target object of the vision-based grasp classification
system. The probabilities of predetermined grasps were determined for both EMG and
vision, as well as fused, yielding an accuracy of 41.85%, 81.46%, and 92.93%, respectively.

The implementation of the EMG detection varies throughout the research in that the
electrodes may be placed on certain areas of the human user’s body [9, 53, 12], or a series
of electrodes may be arranged on a wearable device [17, 24, 6, 5, 50].

A wearable device is practical for commercial use, as it requires minimal time to set
up, compared to the separate electrodes that have to be placed on selected parts of the
body. Because of this, the wearable device might more likely be accepted as a workplace
tool due to its simplicity and user-friendliness.

2.3 Robot grasping

Grasping is one of the basic types of manipulation a robot can do, and it is used extensively
throughout industries. Pick and place tasks are one of the most common types of tasks that
a robot manipulator can perform, and often with greater speed and accuracy compared to
a human worker. Additionally, industrial robot manipulators can carry larger loads than
humans, allowing for the utilisation of robots in handling heavy or large objects more
efficiently compared to human workers [38].



2.3. Robot grasping 8

The task of grasping an object is however more complex than it may appear at first
glance. While it is simple to program a robot to move its end-effector to a certain point
and close its attached gripper, this implementation only allows for picking up an object at
that specific location. This approach may be suitable for industrial tasks where the robot
works within a fixed cell, but this approach makes the robot inflexible to change in the
environment. In order for the robot to be able to adjust to its environment, the robot needs
to be autonomous [37].

For a successful HRC, the robot should be able to adapt to a dynamic environment,
which includes grabbing objects that are not placed at a fixed position in the robot’s
workspace. The robot should thus be able to grab an object with intuition similar to a
human operator’s.

In order for a robot to successfully grasp objects in a ’human’ manner, two factors need
to be considered: The location of the object, and the optimal grasp for picking up this
object.

Locating objects to be grasped is an intuitive task for humans, but implementing it in
a robot system efficiently has been, and still is, subject to research [15]. Humans rely on
a range of modalities for locating objects in the environment, such as vision, propriocep-
tion, and haptic perception. These same modalities can be mimicked in a robotic system.
Proprioception is integral for the robot’s operation and is already implemented on a robot
manipulator. However, if the robot should be able to locate an object, proprioception
cannot be used alone, and thus, vision and/or haptic perception modalities need to be
implemented.

Vision has been the most used modality for object localisation in robotics, as it can
provide much information about the object and the environment, such as shapes, sizes,
distances, and locations.

In a review paper done by Fan et al. [15], the state of the art work for object localisation
is investigated, with the use of Convolutional Neural Networks (CNNs) being prevalent in
newer papers, but the use of conventional computer vision strategies such as background
subtraction and shapes and edges are still applied in industrial settings, due to the lack
of large datasets and Graphical Processing Units (GPUs) for effective implementation of
CNNs.

Shahid et al. [44] had a robot approach and grasp an object correctly based on Rein-
forcement Learning (RL) done in a simulation environment. The robot grasped the object
successfully in every trial with the object at a fixed position, and with extra training, the
robot successfully grasped the object at new locations in every trial.

Fang et al. [16] also used vision for object localisation, where a stereo camera was used.
By colour segmenting the shoulder, wrist, and gripper of the robot, as well as the target
object, the areas were located on the image plane, and the stereo camera was then used
to calculate the object and joint locations within the workspace. These locations are used
in two neural networks (NNs) for the robot to reach the object. The first NN is based on
Radial Basis Functions (RBFs) and is used for rough reaching movements toward the object



2.3. Robot grasping 9

location. When the gripper gets close to the object, a Brain Emotional Nesting Network
(BENN) is used to approach the object.

Once the object has been localised, the optimal grasping strategy needs to be found in
order for the robot to successfully grasp the object. This entails determining the optimal
direction to approach the object and determining the best grasp for the object, if the end
effector is equipped with a > 2-fingered gripper, or the best contact points for gripping
the object, if the gripper has 2 fingers or rely on, for example, vacuum for gripping.

Shi et al. [45] used a CNN to classify different daily objects into 4 different grasp
patterns for a dexterous hand prosthesis by using Red-Green-Blue-Depth (RGB-D) images,
reaching a classification accuracy of 98%.

Berscheid et al. [4] implemented a Fully Convolutional Neural Network (FCNN) com-
bined with a model-based controller for learning to estimate the 6 DoFs for the optimal
grasp policy for objects in a bin-picking task. The solution had a success rate of 92% for
picking known objects in a dense clutter.

It may also be relevant for the robot to adjust the force of the grasp so as to not destroy
or deform a fragile or delicate object. Such an implementation has been made by Wen et al.
[51], where a NN was used to estimate the forces of a human user based on EMG signals,
which was then used on a robot gripper to grasp delicate objects with the estimated force.
Every grasp were successful during the tests.

Tieck et al. [46] used a Spiking Neural Network (SNN) to mimic the compliance control
of an anthropomorphic robot hand to that of a human hand when handling delicate objects
using sphere, cylinder, and pinch grasps. The implementation combined two control loops,
with one controlling the motion primitives of the robot hand, and the other being the
compliance controller to adjust the grasp force.

Autonomous grasping is often difficult to implement efficiently, especially if it should
mimic a human user. Therefore, in a HRC context, it is often practical to include the
human in the control loop, as this reduces the complexity of the robot program. The
simplest approach is to build the system around teleoperation, where the human user
controls the robot manipulator’s movements, as done by [5, 12]. Another approach is to
have the human user provide the grasp type for the robot using EMG signals, as in [43, 33],
while the object localisation can be done by detecting the human user’s gaze, as presented
in [52].

One could also implement a solution similar to that of Kim et al. [27] that created a
pipeline where one CNN was used to locate a hand in real-time images, while another
CNN was used to classify the grasp of the hand. This could remove the need to use any
biological signals in the control system, which would enable the HRC to resemble more
closely the collaboration between humans.



Chapter 3

Project Scope

Based on the findings in Chapter 2, the concept of myoelectric control in HRC is widely
used. This may be in combination with other external sensors, such as cameras, in order to
provide an efficient control. Additionally, the term of Human-Robot Collaboration can be
used for two implementations: A robot manipulator performing tasks alongside a human
user; and an active prosthesis assisting in the tasks of the human user.

This thesis focuses on implementing a novel approach of HRC on a robot manipulator.
By the help of a human user, the robot is to learn the optimal type of grasp for objects,
which it can then use for autonomous manipulation or for cooperative lifting tasks with
the human user.

The implementation thus have 2 states:

1. The learning state where the robot learns features of a new object and correlates the
optimal grasp to it as provided by the human user.

2. The collaboration state where the robot grasps the objects with the learned grasps
and moves it around based on the human user’s commands.

This implementation is based on the argument that humans have a keen sense of de-
termining the optimal grasp of an object, which is a major challenge for robots. This work
seeks to utilise this ability for teaching the optimal grasps for a robot manipulator.

Because grasping is central in this implementation, forearm surface EMG signals are
used as the primary control interface between the human user and the robot, as it provides
information about the grasp configuration of the human hand.

In order for this implementation to be viable in a real world HRC scenario, the work
in this thesis will be assessed based on the following requirements:

1. The implementation must have an EMG grasp recognition accuracy of at least 90%,
based on the results presented by the State of the Art in Section 2.2

2. The implementation must be able to correctly recognise learned objects at least 95%
of the time, as this will prove a viable base for future implementations

10
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3. The implementation must be able to localise the object within a margin of 5% in
order to ensure stable manipulation of the object

4. The implementation must be able to grasp an object without dropping it with a
success rate of at least 90% to prove that the chosen grasp can be correctly applied in
a real-world environment

5. The implementation must score at least 4.5 out of 7 on a Likert scale in terms of
the perceived comfort and trust by human test subjects, as this is a good basis for
determining its suitability for HRC

This implementation is developed focusing on a use case in an industrial environment.
It is therefore meant to be used as an assistance to factory workers during lifting tasks,
actively helping them. As such, the implementation has to be comfortable for human
users, which is best measured in a test scenario and using a questionnaire with Likert
scales for measurement.

A Likert scale offers a range of choices, typically between 5 and 7, for a given statement,
allowing for a more nuanced answer to a statement rather than ’yes’ or ’no’ [2]. The scale
can be formulated to measure a range of different attitudes such as agreement, frequency,
acceptability, priority, and many others, spanning from one extreme to the other, such as
an agree/disagree scale [49].

As such, this is a widely used method for quantifying otherwise qualitative data, which
can be used to determine aspects such as the comfort of human users around a robot
during HRC.

It must be noted, that in this project, the different grasps cannot be executed by the
robot manipulator, as such dexterous grippers are not accessible for the project. As such,
the physical grasping will not be a part of this implementation, and the choice of grasp
will be simulated as a text display.



Chapter 4

Solution Concept

This chapter describes the concept of the implementation and provides an overview of
the 2 states as well as how these states are implemented. A concept description of the
solution’s 2 states is presented in Section 4.1, giving an overview of the task approach and
system architecture. For a successful HRC, the implementation consists of several parts
and modalities, and the software and hardware used for the implementation are described
in Sections 4.2 and 4.3.

4.1 Concept

Before giving a detailed description of the different parts used in the implementation in
this thesis, an overview of the general execution of the two states is given. This provides
a reference for how the different parts are used in the solution and how they interact with
each other.

4.1.1 Learning state

For every object new to the robot, the learning state needs to be executed before the
collaboration with the human user can begin. This essentially consists of the robot learning
the correct grasp for a given object based on input from the human user. The architecture
of the learning state is pictured in Figure 4.1.

Using a camera, the robot learns the type of the object by comparing the image to a
library of reference images, and based on EMG signals from the forearm of the human
user, the robot learns which grasp to pair with this object. This information is stored in a
Comma-Separated Values (CSV) file, which serves as the grasp database for the robot in
the collaboration state.

12
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Figure 4.1: A diagram of the architecture of the learning state. The blue boxes represent hardware, the yellow
ellipses represent programs, and the green rounded box represents a file.

4.1.2 Collaboration state

When the robot has learned how to grasp an object, the collaboration state can be used,
the system architecture of which can be seen pictured in Figure 4.2.

Figure 4.2: A diagram of the architecture of the collaboration state. The blue boxes represent hardware, the
yellow ellipses represent programs, and the green rounded box represents a file.

The process consists of the robot detecting the object using vision and finding the
corresponding object in the CSV file based on the object type, where the robot can find
information about which grasp to use, as learned in the learning state.

The robot picks up the object with the learned grasp when the human user gives the
cue based on EMG signals, and the user then gives another cue for the robot to proceed
with the manipulation task.

When the object has been moved to the target place, the robot lets go of the object and
moves to its home position, ready for the next task.
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4.2 Software

The solution has been implemented using the Robot Operating System (ROS) [39], so the
implementation consists of programs developed specifically for this solution, as well as
freely accessible software for interfacing with the camera, the EMG armband, and the
robot. This section gives an overview of the software used in this implementation.

4.2.1 Object detection

For both the learning and the collaboration states, information about the object is required.
Features such as the location, size and shape of the object are relevant information for
recognising the object and thus determine the optimal grasp.

For this project, a RealSense D455 camera [21] has been used, and as such, both Red-
Green-Blue (RGB) images and depth images are used for extracting features.

Because the solution is implemented in ROS, the realsense2_camera ROS node [10] is
used for interfacing with the camera. The object detection module then extracts a Binary
Large Object (BLOB) from the RGB image after blurring and binarising the image, as well
as doing some morphological opening. From this image, features such as the X and Y
position of the object’s centre are extracted and sent via an object message for further
use, while the object recognition is done by extracting Oriented FAST and Rotated BRIEF
(ORB) features from the processed images from the camera stream and comparing it with a
processed reference image of objects to determine the most likely match. This recognition
is used to determine the object type, which is also published in the object message.

The depth image is used to determine the distance between the camera and the object,
which is useful for determining the height of the object as well as assessing how far down
the robot should move in order to reach the object. This information is also sent via the
object message.

4.2.2 EMG interface

The interface for collaboration between the robot system and a human user is done us-
ing a myoelectric armband. As such, a communication interface between the myoelectric
armband and ROS is required for obtaining the myoelectric signals. For this project, the
ros_myo package [34] is used that sets up a ROS node which allows for transferring the
EMG signals as ROS messages.

The package can be used to obtain EMG measurements from the myoelectric armband,
but one can also obtain IMU information from the armband, and predefined gestures and
which arm is being used, if the armband is calibrated before use.
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Figure 4.3: An overview of the developed neural network.

4.2.3 Grasp detection

In order for the implementation to be feasible, a method for grasp detection is needed.
Based on the literature discussed in Chapter 2, Neural Networks are widely used for
classifying grasps based on EMG signals and/or their features. As such, a novel Neural
Network has been developed for this implementation to determine the grasps based on
the EMG signals from the human user’s forearm.

The developed network is a Convolutional Neural Network consisting of an input layer,
and output layer, as well as 4 hidden layers. The input is an array of 10 means, each of 10
EMG measurements containing with measurements from 8 electrodes, while the output
can be one of 6 possibilities, with 5 different grasps and a detection of no grasp.

More specifically, the network and this project is based on the classification of 5 differ-
ent grasp: Power/fist grasp, key grasp, pinch grasp, tripod grasp, and spherical grasp. A
visual depiction of these grasps can be seen in Figure 4.4.

A graphical representation of the developed neural network can be seen in Figure 4.3.
The layers of the neural network comprises of an initial dense layer of 80 nodes with ReLU
activation, which feeds a convolutional layer of 160 nodes with a 3 × 3 kernel and a stride
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(a) No grasp (b) Power/fist grasp (c) Key grasp

(d) Pinch grasp (e) Tripod grasp (f) Spherical grasp

Figure 4.4: The 6 classes used in the CNN as seen from above.

of 1, along with at ReLU activation function. The network then consists of a dense layer of
80 nodes with ReLU activation, followed by a dropout layer with a dropout rate of 30%.
This is connected to the final dense layer of 6 nodes with the Softmax activation function.

The output is an array of grasp probabilities for each of the EMG measurements, so
the most probable grasp for each of these measurements are used to determine the most
probable grasp for the entire input array based on the grasp prediction most prevalent in
the array of 10 means.

4.2.4 Learning grasps

Using the object detection and grasp detection, the learning state is implemented to com-
bine the results of these two nodes. This node only runs once, as opposed to the others
that run continuously. This is based on the assumption that the the learning is only done
on 1 object at a time.

The program is visualised in the flow diagram in Figure 4.5. First, the program accesses
a CSV file to determine the number of already learned object, so that the new object can
be given a unique ID in the file.

The object message and grasp message are then received, and the script loops for 4
times in order to ensure that data from both messages are received, as well as the human
user has determined the grasp for the object.

The object features and the grasp are then written to the CSV file, which serves as the
database of the learned objects and grasps for the robot system.
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Figure 4.5: A flow diagram of the learning program. The video processing and grasp recognition nodes are
inputs from the other processes required for the program to run.

4.2.5 UR driver for ROS

The solution is implemented using a UR3 robot from Universal Robots (UR) [41], so a ROS
to UR interface is required for external control from the PC. This can be obtained using the
Universal_Robots_ROS_Driver [14] installed on the PC and the externalcontrol-1.0.5.urcap
[13] installed on the robot controller.

Once the communication has been established between the robot and the PC, the robot
can be controlled using ROS with the ROS-industrial universal_robot package [32], which
allows a ROS PC to control a UR manipulator using the MoveIt planner.

4.2.6 Collaboration

Once the system has learned features of an object along with the corresponding grasp as
demonstrated by the human user, the collaboration program can be executed.

The robot receives data about the object on the table from the camera, providing the
location and type of the object, and it also subscribes to the ros_myo node for the user to
give prompts to the robot.

The collaboration program is visualised in a flow diagram in Figure 4.6. At the start of
the program, all relevant controllers for the robot manipulator are set up.

When the object type is received from the object message from the camera, the program
accesses the CSV-file containing information about the learned objects and the correspond-
ing grasps to find an object of the received type. If the object type is found in the CSV file,
the program finds the corresponding learned grasp for the object.

When the object has been identified, the robot waits for the human user to prompt
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Figure 4.6: A flow diagram of the collaboration program. The video processing and EMG signals nodes are
inputs from the other processes required for the program to run.

the robot to start the task execution. This is done using the EMG signals from the user’s
forearm.

The robot then moves to the object location and picks up the object with the corre-
sponding grasp, and with a new prompt from the user, the robot proceeds with the task
and moves the object to a predetermined goal position.

4.3 Hardware

The collaboration is implemented using a UR3 robot from Universal Robots, a myoelectric
armband for collecting muscle signals from the user, and a camera for object recognition
and localisation. The setup used for testing the implementation can be seen in Figure 4.7,
using the hardware described in this section.

4.3.1 Camera

For object recognition, the Intel RealSense D455 depth camera [21] is used (see Figure 4.8).
It is a camera equipped with an RGB module as well as a stereo depth module, which has
a depth error of less than 2% at a distance of 4m. The camera is efficient in distance ranges
between 0.6m and 6m.

The depth imaging has a field of view of 87◦ × 58◦, with a maximum resolution of
1280 × 720 and a frame rate of up to 90 fps.
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Figure 4.7: The test setup with the different hardware components and their connections to the PC.

Figure 4.8: The Intel RealSense D455 camera[20].
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Figure 4.9: The Myo armband from Thalmic Labs [28].

The RGB imaging has a field of view of 90◦ × 65◦, with a maximum resolution of
1280 × 800 and a frame rate of up to 30 fps.

For this application, an image resolution of 640 × 480 is used for both the colour and
the depth imaging, as this provides faster processing and is sufficient for demonstration
purposes.

The camera interfaces with a PC using a USB-C cable for both power supply as well as
data transfer.

The camera is also equipped with an IMU, that allows for improved depth perception,
which is useful for mobile robotic applications, but for this implementation, the camera is
static, so the IMU data with not be relevant.

4.3.2 Myoelectric armband

For this project, the Myo armband [18] developed by Thalmic Labs is used, which com-
prises of 8 surface EMG electrodes joined together in a plastic casing (see Figure 4.9) for
fitting around the forearm of a human user. The armband can be stretched and retained
to fit on the forearm of a wide variety of users.

The Myo armband is furthermore equipped with a 9 DoF Inertial Measurement Unit
(IMU), which comprises of a 3-axis gyroscope, 3-axis accelerometer, and a 3-axis magne-
tometer.

The signals are processed by the armband’s ARM Cortex M4 processor, which pub-
lishes the EMG measurements via Bluetooth Low-Energy at a rate of 200Hz. The connec-
tion is done using a USB dongle which can be inserted in the PC.

The Myo Armband is powered by a rechargeable lithium-ion battery, which is recharged
using a micro-USB cable.
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4.3.3 Robot

The UR3 robot [41], seen i Figure 4.10 is a 6 DoF robot manipulator designed for use in
collaborative applications. It comprises of 6 rotational joints and has a reach of 500mm
with a repeatability of ±0.1mm. It is the smallest model of manipulators from Universal
Robots, weighing 11kg and having a payload of up to 3kg.

Figure 4.10: The UR3 robot from Universal Robots[40].

As such, the UR3 is not the type of robot that would be used in a practical applica-
tion, given the small range and relatively low payload, but for demonstration and testing
purposes, this manipulator is sufficient.



Chapter 5

Testing

In order to verify the developed solution described in Chapter 4, the different parts and
the implementation as a whole needs to be tested. Therefore, 3 tests have been defined for
this project, focusing on different aspects of the solution.

The test described in Section 5.1 is used to assess the performance of the developed
neural network, in order to determine how well it performs based on some of the State of
the Art implementations within the field of HRC described in Chapter 2.

In Section 5.2, the performance and stability of the developed object recognition im-
plementation is assessed, while in Section 5.3, the entire solution is tested as a whole,
with test subjects using the implementation and assessing their experience of it in terms
of comfort and trust, which are central aspects to consider in HRC.

5.1 Grasp detection performance

The neural network has been trained on a dataset of 9, 000 averages of 10 EMG measure-
ments, resulting in 150 measurements of each grasp classification from 6 individuals. The
network has been trained for 40 epochs with a batch size of 30 and validated on a sepa-
rate test dataset containing 1, 800 averages of 10 measurements. The test dataset contains
30 averages of each grasp classification from the same 6 individuals used in the training
dataset.

The CNN is trained using the Nesterov-accelerated Adaptive Moment Estimation op-
timiser (Nadam), which is done using the Categorical Cross-Entropy loss function. In
Figure 5.1, the loss convergence of the CNN can be seen for both the training set and the
validation set.

Along with the loss function, the accuracy of the model is tracked as well, which can
be seen in Figure 5.2 for both the training and the validation set.

The model finished the training with an accuracy of 93.39% on the training dataset and
84.22% on the validation set, with the corresponding losses being 0.1761 and 0.5981 on the
training and validation datasets, respectively.
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Figure 5.1: The training and validation loss for the CNN over the 40 epochs of training.

Figure 5.2: The training and validation accuracy for the CNN over the 40 epochs of training.
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To further assess the accuracy of the model, the CNN is applied to the test dataset to
predict the different grasps, from which a more detailed overview of the model’s perfor-
mance can be obtained.

5.2 Object recognition

As the object recognition is an essential part for the implementation, the solution’s perfor-
mance in this regard should be evaluated. As such, this will be tested using a range of
different objects with different features.

Furthermore, it is also needed to investigate the performance of the object recognition
with the object placed on different areas of the image with respect to the camera, as this
has an influence on the camera’s perception of the object due to perspective distortion.

Additionally, it is relevant to investigate how the lighting of the environment affects
the object recognition.

The objects that will be used in the tests are a black 3D-printed box of 10 × 5 × 5 cm,
a black water bottle, and a sheet of black cloth. Both the box and the water bottle can be
either standing or lying down, giving 5 different types of objects in total. The objects are
purposefully black in order to ensure object detection for the tests.

5.3 Comfort and trust in the implementation

This implementation is meant to be used by a person in a collaboration with the robot.
Therefore, in order to assess a human user’s perception of the robot and implementa-

tion, test subjects are tasked with teaching the robot a grasp for at least 3 different object
types in the learning state, and to see the robot move and interact with the object in the
collaboration state.

In total, 9 test subjects have been used for this test. 5 of the test subjects were male,
while 4 were female, while the age for both males and females were between 20 and 50
years.

Before the test subject begins teaching grasps, a dataset of 1.200 means of 10 EMG
measurements is recorded, giving in total 20 instances of each grasp. The CNN is then
trained on this dataset, and the test subject is allowed some time to familiarise him-/herself
with the CNN’s grasp prediction according to their hand gestures.

When the test subject is familiar with the grasp prediction, the test subject is asked to
pick an object to put on the table under the camera and make a grasp with which the robot
should pick up the object. Once it is prompted that a certain grasp has been chosen for
a given object, the test subject is asked to pick a new object and make the grasp for that
object.

Once at least 3 objects and grasp relations have been taught, the collaboration state is
tested, where the robot moves to the object, displays the grasp it has chosen for the object
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on the screen, moves to a new position to drop off the object, and then moves back to its
home position.

This is done for at least 2 of the learned objects, where the test subject gets an impres-
sion of the collaboration with the robot. The robot waits for a command to begin moving
to the object, and again when moving to the next point. This command is given by the test
subject by flexing the muscles in the forearm.

After this, the test subject is asked to fill out a questionnaire containing 5 questions
relating to his/her comfort regarding the implementation, and 5 questions relating to
his/her trust in the implementation. Furthermore, the test subject is given the opportunity
to leave comments or suggestions for the implementation in the questionnaire. A print of
the questionnaire can be seen in Appendix A.

It must be noted, though, that in this setup, the robot does not grasp the test objects,
as connection to the gripper from the PC controlling the robot could not be obtained in
time. The robot therefore simulated the gripping by printing the chosen grasp on the PC,
and the robot moves to the object, then to a drop-off point, and then to the home position,
simulating a pick and place task without gripping.

Additionally, the vision processing of the implementation in the collaboration state is
not used, due to the simultaneous connection and running of both the camera, the robot
and the Myo armband resulting in unstable communication between the robot and the
PC and the Myo armband and the PC. Therefore, the vision processing is simulated by a
prompt on the PC where the object type can be entered, and the robot moves to a fixed
point at the beginning when moving to the object.



Chapter 6

Results

This chapter carries over from Chapter 5, describing and analysing on the data and results
from the tests described in the previous chapter.

For each of the tests, a requirement set in Chapter 3 is used as the reference, on which
the success of the implementation depends.

Due to the limitations in time and equipment, not all requirements are tested. The
requirements that are tested in this project are requirements 1, 2, and 5, while requirements
3 and 4 can be investigated in future work.

6.1 Grasp detection

In order to gain more insight into the performance of the developed CNN for grasp de-
tection, the results of the predictions from the test datset can be seen in Table 6.1. In this
table, every entry on the diagonal is the true correct prediction, while every other entry is
erroneous. A total of 30 instances for each grasp has been used in the test.

From Table 6.1, the overall accuracy of the model’s performance can be found by di-
viding the number of correct classifications by the total number of classifications:

Actual\Predicted No grasp
Power
grasp

Key
grasp

Pinch
grasp

Tripod
grasp

Spherical
grasp

No grasp 29 1
Power grasp 25 5

Key grasp 2 8 18 2
Pinch grasp 1 29

Tripod grasp 3 1 26
Spherical grasp 30

Table 6.1: A table showing how the CNN performed in predicting the different grasps.
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No grasp
Power
grasp

Key
grasp

Pinch
grasp

Tripod
grasp

Spherical
grasp

Mean

Precision 93.55% 73.52% 85.71% 80.56% 100% 93.75% 87.85%
Recall 96.67% 83.33% 60% 96.67% 86.67% 100% 87.22%

Table 6.2: A table showing the precision an recall of the CNN for each grasp.

Accuracy =
correct classi f cations

all classi f ications
=

29 + 25 + 18 + 29 + 26 + 30
30 · 6

=
157
180

= 0.8722 (6.1)

Multiplying the result by 100, the accuracy is shown in percent, giving a 87.22% accu-
racy for the model.

Other performance measures can be calculated, such as the precision and recall of the
model, which can give a more detailed picture of its performance. For calculating precision
and recall for the model, this can be done by calculating these measures for each of the
classes separately and then calculate the mean of these scores.

The precision and recall measures are calculated using true positives (grasps of a cer-
tain class being classified correctly), false positives (grasps of other classes classified as the
certain grasp), and false negatives (grasps of the certain class classified as another grasp).

To calculate precision, the following equation is used:

Precision =
true positive

true positive + f alse positive
(6.2)

And the following equation is used to calculate recall:

Recall =
true positive

true positive + f alse negative
(6.3)

In Table 6.2, the precision and recall for each grasp, as well as the mean precision and
recall for the neural network’s performance, can be seen. The precision metric gives an
overview of how many of the predictions done by the CNN are correct, while the recall is
a measure of how well the CNN is able to correctly predict a given grasp type. As such,
recall is the same as accuracy, which is also seen in the mean recall in Table 6.2, but applied
to each class individually.

From Table 6.2, it can be seen that the power grasp, key grasp, and pinch grasp all
have a precision below 90%. The key grasp precision can be explained by the overall
few classifications of the grasp in the first place, leading to greater significance for each
prediction.

For the power and the pinch grasps, more than 30 predictions were made, as can be
seen in Table 6.1, which implies that the trained model has developed a bias towards these
grasps, or that the measurements from the test dataset vary from the training dataset to
such a degree that the measurements of one grasp is more similar to that of another grasp.
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For recall, it can be seen that the power grasp, key grasp and tripod grasp are below
90%. As such, the CNN misclassified more than 10% of the certain classes. Looking at
Table 6.1, the key grasp is especially hard for the network to correctly classify, while the
power grasp is sometimes misclassified as a pinch grasp, and the tripod grasp is sometimes
misclassified as a key or a pinch grasp.

These misclassifications are most likely due to the EMG measurements being more
similar to the other grasps, showing the variance in signal measurements between humans,
where one may use high forces for their grasps, while others prefer using softer grasps.

The power grasp and key grasp are very similar, both physically and in EMG mea-
surements, while the pinch and tripod grasps are similar as well, with only the position of
the middle finger being the difference. Furthermore, if one uses enough pressure on the
thumb and index finger, the tripod grasp and the key grasp may also be similar in EMG
measurements, explaining why the tripod grasp has been misclassified as a key grasp.

It is most notable, however, that the key grasp is the hardest for the CNN to correctly
classify. The high similarity to the power grasp may have prompted the users to lower
or increase the flexion of the key grasp in order to make it stand out, which resulted in
misclassifications as no grasp and as spherical grasp, as well as the misclassification as
power grasp.

The tripod grasp has a precision of 100%, meaning that the model does not misclassify
other grasps as a tripod grasp. As such, the tripod grasp is distinctly different enough
from the other grasps for the network not to mistake other grasps as a tripod grasp.

Only the spherical grasp has a recall of 100%, meaning that the model always correctly
classifies this grasp type. Given that this grasp requires flexing every finger on the hand,
the EMG measurements are likely the largest in the dataset, allowing for the model to
easily distinguish these grasps from the other classes.

Comparing with the performances of the State of the Art implementations, the derived
model performed better than the model in [33] and the separate EMG and vision models
in [52].

However, the presented model does not perform better than any of the classification
models in [12], [43], and [30] in terms of accuracy, and it does not meet the requirement of
having an accuracy of at least 90% set for this project.

6.2 Object recognition

For testing the object recognition, the table surface is divided into a 3 × 3 grid, giving 9
different general positions. This is done in order to investigate the performance of the
recognition based on the angle at which the camera detects the object. For each position,
20 recognitions are made for every object, giving a total of 900 object recognitions for the
entire table area.

Additionally, the test is done twice: 1 time in the afternoon, and 1 time before noon. In
the setup, no constant light source has been used, meaning that the camera is reliant on the
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Top left Top centre Top right
Real\Detect 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 20 20 20
2 17 3 12 4 4 15 3 2
3 3 13 4 6 6 8 1 19
4 19 1 12 6 2 17 3
5 20 20 20

Middle left Middle centre Middle right
Real\Detect 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 20 20 15
2 18 2 20 17 3
3 20 17 3 20
4 1 19 20 13 7
5 20 20 20

Bottom left Bottom centre Bottom right
Real\Detect 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 18 2 9 1 10 19 1
2 10 10 20 7 1 12
3 20 10 5 5 20
4 2 2 16 15 5 4 2 14
5 20 20 20

Table 6.3: The object recognition performance at different areas of the table relative to the camera after noon.
The objects are enumerated as follows: 1: Lying bottle, 2: Standing bottle, 3: Lying box, 4: Standing box, and
5: Cloth.

lighting from the environment where it is set up. In this environment, ceiling lights and
aerial windows provide the lighting, which may have an effect on the object recognition as
the time of day changes.

The results of the test done in the afternoon can be seen in Table 6.3, while the classifi-
cation results for the test done before noon can be seen in Table 6.4.

The accuracy for the test done in the afternoon is found to be 56.33%, while the accu-
racy for the test done before noon is found to be 56.89%, using the same formula as in
Equation 6.1.

Overall, the tables show a tendency for the object identification to prefer objects 1, 3,
and 5, being lying bottle, lying box, and cloth, respectively. These objects are the ones
that have the largest areas in the binary images that are used for extracting ORB features,
which allows for more features to be found for comparison with the reference images.

Additionally, the standing bottle and the standing box are frequently identified as a
lying bottle or a lying box, with the least erroneous identifications being done in the middle
centre field of the table. This is primarily suspected to be the because of the perspective
distortion in the camera’s perception of the object. The reference images are used with the
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Top left Top centre Top right
Real\Detect 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 20 20 20
2 2 7 11 20 15 1 2 3
3 2 16 2 20 4 16
4 20 18 2 20
5 20 20 20

Middle left Middle centre Middle right
Real\Detect 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 20 20 20 5
2 17 3 19 1 20
3 9 8 3 20 11 9
4 13 7 20 2 4 14
5 20 20 20

Bottom left Bottom centre Bottom right
Real\Detect 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 9 11 20 20
2 5 15 3 6 11 20
3 2 5 13 6 13 1 12 7 1
4 20 12 8 5 15
5 20 20 20

Table 6.4: The object recognition performance at different areas of the table relative to the camera before noon.
The objects are enumerated as follows: 1: Lying bottle, 2: Standing bottle, 3: Lying box, 4: Standing box, and
5: Cloth.

object being placed directly beneath the camera, while in reality, the object may be placed
anywhere on the table. With the object being placed closer to the edge of the field of view
of the camera, standing objects are elongated as the camera perceives some of the sides of
the objects as well, leading to more feature matches for the lying objects rather than the
standing objects.

In regards to accuracy, this object identification method performs better at times before
noon, based on these tests, and the overall accuracy of the current implementation can be
calculated to be 56, 61%. The best accuracy is achieved in the middle centre field of the
table for both tests, being 97% and 99% for the afternoon and the before noon tests, re-
spectively. Thus, in order to provide the most authentic experience for testing the comfort
and trust of test subjects in regards to this implementation, only the middle centre field is
used for object recognition.

As such, the object identification does not meet the set requirement in this project of
having an accuracy of at least 95%, and it does not trump accuracies from the State of the
Art classification methods, such as that in [45] and [4].
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6.3 Comfort and trust

After completing the test as described in Section 5.3, several observations can be made
about the implementation. The test subjects answered a questionnaire regarding their
experience of the implementation, and the answers for the comfort measure can be seen
in Figure 6.1, while Figure 6.2 shows the answers regarding the test subjects’ trust in the
setup.

Figure 6.1: The response distribution on the 5 questions regarding comfort in regards to the system.

The responses are distributed throughout a 7-point Likert scale, where ’Strongly dis-
agree’ has a value of 1, and ’Strongly agree’ has a value of 7. In order for this implemen-
tation to be viable for future Human-Robot Collaboration, the overall score of the solution
should be 4.5 or above, implying that there is a potential interest in such an implementa-
tion.

The overall score of the implementation is taken as the mean of the score of both the
comfort and the trust aspect of the questionnaire. The scores for the comfort and the trust
parts are in turn means of the scores of each of the 5 statements. These scores are the mean
values of the given responses.

Put into formula, the score for each statement can be calculated based on a summation
of the responses Sr and their prevalence nr in each statement, divided by the total number
of responses ntot:

Scorestatement =
∑7

r=1 Sr · nr

ntot
(6.4)

Based on these calculated scores, the scores for the comfort and the trust aspects of the
Human-Robot Collaboration can be calculated. The score for the comfort aspect is found
to be:
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Figure 6.2: The response distribution on the 5 questions regarding trust in regards to the system.

Scorecom f ort =
∑5

statement=1 Scorestatement

5
=

6.33 + 6 + 6.11 + 5.89 + 5.78
9

= 6.02 (6.5)

And the score for the trust aspect is found to be:

Scoretrust =
∑5

statement=1 Scorestatement

5
=

5.89 + 5.22 + 6.56 + 6.22 + 4.88
9

= 5.75 (6.6)

Each of the topics covered in the questionnaire regarding HRC score higher than the set
requirement of 4.5. The average score for the implementation, considering both comfort
and trust, amounts to 5.89. This shows that there is a potential interest in using this
application in a real-world environment.

However, adjustments are still required: The test subjects had the opportunity to pro-
vide comments and suggestions for the implementation at the end of the questionnaire,
and 1 one of them provided a comment, suggesting that it would be more comfortable if
it was known that the robot manipulator would plan a valid path beforehand.

Looking at the responses in Figures 6.1 and 6.2, the statement ’The robot moved in
a predictable manner’ scored particularly low, aside from the statement ’I would let the
robot work based on what I taught it’, which in part is related to the former. The planning
done using the ROS controller is not consistent between task executions, in the way that
the robot may move perfectly as intended in one task, while a completely different and/or
impossible configuration are used in another task, making the robot manipulator executing
the tasks unpredictably. This happened in 6 out of 9 tests.

Aside from assessing the robot’s movements, the grasp classification and object identi-
fication has also been monitored to evaluate the performance in practice.
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Grasp type TS 1 TS 2 TS 3 TS 4 TS 5 TS 6 TS 7 TS 8 TS 9
0
1 2, 5
2 5, 1, 4 1,3 1, 0 0, 1, 4 0, 1 4, 1 0, 1
3 4 4 4, 2
4 3, 5 2, 3, 5 3 3, 5 3
5 1, 4, 2

Table 6.5: Grasp misclassifications for the initially trained CNN for each test subject (TS). The grasps are
enumerated as follows: 0: No grasp, 1: Power grasp, 2: Key grasp, 3: Pinch grasp, 4: Tripod grasp, and 5:
Spherical grasp.

In Table 6.5, the observed misclassifications of the different grasps can be seen, based
on the performance of the initial CNN trained on the test subjects EMG signals. This
shows a clear connection in the model’s difficulty in distinguishing the key grasp and the
tripod grasp, as they are similar to some of the other grasps based on EMG measurements.

As such, the test subject was allowed to figure out, how he/she should flex the forearm
muscles to obtain the intended classification, or a retraining of the model could be done
with new data on the grasps that had proved particularly hard for the model to correctly
classify.

On only 2 occasions did the implementation learn the wrong grasp for an object, mean-
ing that the solution registered a grasp that deviated from the one that the test subject
showed, and on 1 occasion, the test subject intended to teach one grasp, but was aware of
the mismatch in the grasp classification of the CNN, making another grasp intentionally,
resulting in this other grasp being learnt by the implementation.

For the 2 wrong grasps learned, both of them involved the pinch grasp. On the first
occasion, a test subject intended to use a pinch grasp on the object, but the model classified
the shown grasp as a key grasp, while on the second occasion, another test user intended
to use the pinch grasp, but the model classified it as a spherical grasp.

The test subjects were free to use the grasp that they best saw fit for an object, and most
of them tended to avoid using the key grasp, in part because they did not see any use for
the grasp, while some refrained from using it because it is the hardest grasp to classify for
the CNN.

For the object recognition, a total of 4 misclassifications were noted. For one test subject,
the lying bottle was misclassified as a lying box, while for another test subject, the standing
bottle and the lying box were both misclassified as a standing box, and lastly, for a third
test subject, the standing bottle was misclassified as a lying bottle.

All of these objects were placed on the middle centre field of the table, giving the small-
est amount of distortion to the camera perception. As such, the only varying factor for the
misclassification of the objects are the lighting source that may have changed through-
out the tests, resulting in another light reflection from the objects, and thus altering the
resulting processed images and ORB features for matching.



Chapter 7

Discussion

Based on the results found in Chapter 6, both the developed neural network and object
recognition approach do not meet the requirements set in this project. As such, these parts
need to be modified and improved upon, before the developed implementation can be put
to use in a real world environment.

For the gesture recognition, other classification models can be investigated and tested,
in order to determine which model would be the most accurate. Other classification meth-
ods to investigate can be an SVM or RF classifier, which in the State of the Art has proven
to be highly accurate for grasp classification and yielding higher accuracy compared to the
CNN developed in this project.

Another approach for possibly improving the grasp recognition may be to extract other
or additional features from the collected EMG signals. This could be features such as
integrals of the measurements and Root Mean Square, which could be used along with
means to provide a more detailed view of the collected EMG measurements, potentially
allowing for a classification model to better distinguish the different grasps from each
other.

Combining the EMG measurements with visual inputs may be another approach to
improve the classification performance, giving 2 modalities for classification, and as a
camera is already used in the implementation for object recognition, it may be possible to
use the same camera for recognising grasps as well.

While grasps are intuitive for most humans to form with their hands, they may not
always be the most optimal hand configurations for classification based on EMG signals.
One could instead investigate the use of different distinct gestures instead for the classi-
fication, which may yield a better accuracy overall. This approach is viable to consider
in further implementations focused on the human-robot collaboration, as gestures can be
used to guide the robot’s movements in the workspace. Grasps can be used in this regard
as well, however if the human user is doing a collaborative lifting task with the robot, it
is possible that the hand is already grasping an object, rendering control by grasp classifi-
cation inefficient. Instead, changes in wrist position and orientation using EMG and IMU
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signals could be used, allowing the user to guide the robot manipulator by moving the
hand.

The performance of the developed neural network is also influenced by the data on
which it is trained. As such, it is important to provide the model with enough data for
each grasp, as well as making the different grasps distinct enough from each other for the
model to not misclassify the grasps. Thus, it is relevant to test the performance of the
CNN when it has been trained on a larger dataset for each test subject.

On the same thread, the selection of grasps may be revisited in order to find a set of
grasps that are more distinct from each other naturally, as the largest prevalence of mis-
classifications are seen for the key and tripod grasps, which share similarities in configu-
ration with the other grasps used. An investigation of the most used grasps in day-to-day
activities can provide a background for the choice of grasp selection available in the imple-
mentation, and determining the specific hand configuration for each grasp may provide a
better classification accuracy.

However, the overall performance of the implementation and the robot’s manipulation
of objects are highly reliant on the decisions made by the human user during the learning
state. While the solution is based on the reasoning that humans have an intuitive under-
standing of how to grasp an object optimally, this intuition is not necessarily the same
across individuals. As such, if the human user teaches the robot to use a suboptimal grasp
for an object, the robot’s manipulation of said object may also be suboptimal. Implement-
ing a demonstration of the grasp during the learning state will provide visual feedback for
the user and show how good the chosen grasp performs on the object, which can give the
user incentive to reteach the robot with a new and more optimal grasp for the object. This
may in part reduce the chance of failed grasps for the robot, ensuring a more efficient task
execution.

One relevant aspect to consider for future work in this area is the possibility that an
object can be picked up by more than 1 grasp optimally. This is especially true for objects of
irregular shapes, where the grasp orientation may result in different grasps being optimal.
Thus, in order to ensure the most optimal grasping of an object every time for the robot,
the orientation of the object and the gripper need to be considered when teaching grasps.

Another point of discussion is that this implementation assumes that the robot always
needs grasps the object from the top. When doing collaborative lifting tasks, this will
rarely be the case, unless the objects are provided with a handle for grasping. In the real
world, human users may grasp different objects from other angles than from the top, such
as a standing bottle, for example, and when lifting large objects, the grasping most often
are done on the sides of the objects. Therefore, in order for the solution to be optimised for
collaborative lifting tasks and provide a more human-like learning approach in regards to
grasping, it is viable to research grasping objects from more than 1 angle and teaching the
grasps for these.

The implemented object recognition method did not meet the set requirement in re-
gards to accuracy. The reasons for this have been touched upon in Chapter 6 and include
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the perspective distortion based on the object’s placement in the image and the lighting
from the environment. In order to get a more stable object recognition, a constant light
source can be implemented so that the environment and time of day does not affect the
images obtained from the camera.

For the perspective distortion, image rectification can be used to align the object plane
with the plane of the reference object, allowing for more feature matches in theory. This
can be seen in the accuracy of the recognition in the centre of the image, with 97% in the
afternoon and 99% before noon. Having the object constantly aligned in the image as the
objects in the centre, the overall accuracy may grow to these numbers, thus meeting the
requirement set for the object recognition in Chapter 3.

The current object recognition method is comparing input images to reference images
of each object. This means that for every new object that the solution should recognise, a
new reference image needs to be provided and used in feature matching for every input
image. This poses a potential bottleneck in the image processing, as a system needed to
be able to recognise a large range of objects would need to calculate ORB features and
compare every input image with all the reference images every time.

By extension, the system does not learn new objects in the learning state, as the refer-
ence images need to be present in the system beforehand in the current implementation,
but this can be adjusted, so that a reference image can be saved in the system and accessed
by the implementation during the collaboration state. This, however, does not remove the
potential bottleneck as discussed above.

Lastly, the image recognition is currently done on morphed binary images, providing
BLOBs of the objects to be recognised. This only provides outer edges of the objects for
feature matching. Using background subtracted images would provide an RGB image
representation of the object, potentially allowing the ORB detector to distinguish more
features for matching. This approach, however, requires completely constant and diffuse
lighting in order for the object not to change visual appearance due to reflection, as this
may lead to poorer performance in feature matching and object recognition than using
BLOB images.

Generally, the test on comfort and trust in the system shows a positive trend, with the
main issue being the grasp classification and the movement of the robot during the tests.
These movements lowered the trust and predictability of the robot, as the test subjects
were unable to anticipate how the robot would move from one point to another. One of
the primary reasons for the robot’s unexpected paths may be in the choice of target posi-
tions for the robot, leading to configurations that result in other path plans than initially
anticipated. The target positions may thus have been placed on the edge of the robot’s
workspace or too close to a singularity, requiring the robot to change configuration in or-
der to reach the target position. The target positions were thus changed between tests, in
order to find a combination of points that resulted in a straightforward path constantly.

This proves that for the current implementation, a UR3 robot has too small a range for
covering the entire area of the table covered by the camera, as the manipulator reached a
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singularity close to middle of the table area. Ideally the robot should be able to approach
the object anywhere on the table and grasp it, but the test implementation currently only
covers around half of the area within the image.

In order for the UR3 to be viable for this implementation, the robot should be placed
in another position relative to the camera, for example at the top of the image instead of
to the left of the area, or the area could be reduced, allowing the robot to be able to cover
it entirely.

In Chapter 3, 5 requirements has been defined for the project, but only 3 of them has
been tested in this thesis.

The requirement of localising object correctly within a margin of 5% has been ignored
in this project due to the challenges in maintaining stable communication between the
computer, the camera, the robot, and the Myo armband. As such, the camera is not
used in the collaboration state, where the robot is moving between predetermined target
points instead, so determining the localisation accuracy has been irrelevant. Using better
computing equipment, a stable connection to every part of the setup may be maintained,
allowing for the camera to be used alongside the robot and the Myo armband. This will
allow for proper testing of the localisation of the object.

The other ignored requirement is the one focusing on the grasping success rate of at
least 90% as a means to prove that learnt grasp is sufficient to use. This requirement has
been ignored primarily because of the lack of a dexterous 5-finger gripper, rendering it
impossible for the robot to imitate most of the grasps used in this project. Even though
the system may be unable to localise the object due to lack of visual information, this
requirement can be tested by having the objects placed on a certain spot where the robot
is set to move to and pick up the object. However, doing this test with a 2-finger gripper,
which has been the only gripper readily available, can only demonstrate the grasping
success rate for the pinch grasp.



Chapter 8

Conclusion

This thesis investigates a method for human users to teach a robot system the optimal
grasps for different objects. A CNN is developed for grasp classification based only on
means of EMG signals gathered using surface EMG on the forearm of a human user,
which combined with an object recognition method using ORB features is used to teach
the system which grasp to use for at certain object.

The solution comprises of a learning state, using the developed CNN and object recog-
nition method to remember which grasp to use for an object, and a collaboration state,
where the robot recognises the object and chooses the grasp that it has learned by the
human user in the learning state.

The developed grasp classification model proved to have an accuracy of 87.22% on a
test dataset containing 30 instances of the 6 grasp types used in the implementation: No
grasp, power/fist grasp, pinch grasp, tripod grasp, and spherical grasp. Having set a
requirement of 90% accuracy, the model fails to meet the goal and thus needs to be revised
and retrained, in order to be viable for a real-world implementation.

The object recognition has an overall accuracy of 56.61%, with a remarkable difference
in performance depending on the location of the object in the image. In the centre of
the image, the recognition accuracy is 97% and 99% in the afternoon and before noon,
respectively. As such, the current implementation of object recognition does not meet the
set requirement of 95% accuracy, but looking at the centre area of the image, this method
succeeds, giving reason to believe that further work can raise the overall accuracy to meet
the requirement.

A test of the entire setup is done with 9 test subject in order to determine the overall
comfort and trust of the users relating to the system. Both comfort and trust are measured
using a Likert scale-based questionnaire. The comfort of the implementation scored on
average 6.02 on the Likert scale, while the trust scored 5.75. The overall score for the
system averages to 5.89, meeting the requirement set of the implementation scoring 4.5
or above. This proves that there is an interest in such an implementation in a real-world
environment and that this topic of research may be worth pursuing in the future.
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As discussed in Chapter 7, the different parts of the implementation can be improved
and expanded in different ways, such as redefining the grasps used in the project for
grasp classification; teaching different grasp approaches to the robot, so as to grasp an
object from either the top or the side; rectifying and/or background-subtracting images
for improving object recognition; and the reconfiguration of the setup to allow the robot
to cover the entire area covered by the camera.

The other requirements set in this thesis, being the object localisation with a margin of
error of 5% and the grasp success rate of at least 90%, can be the basis for future work, as
these needed to be ignored in this project due to limitation in equipment, but are otherwise
important to ensure successful task execution in the real world.
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Appendix A

Questionnaire

On the following pages, the questionnaire used during the HRC tests can be seen. The first
prompt regarding the test number is entered by the tester and is only for keeping track of
the tests and responses.

The questionnaire is developed using SurveyXact, and contains 5 agree/disagree state-
ments regarding the comfort and 5 agree/disagree statements regarding the trust of the
test subject in relation to the implementation.

Lastly, the test subject is given the opportunity to provide feedback and suggestions to
the implementation, after which the questionnaire, and thereby the test, is concluded.
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Please enter Test number

 

Welcome to the last part of the test.

This survey is intended to evaluate your experience of the
collaboration with the robot you have just completed.

You will therefore be asked to answer 10 questions about your
thoughts and feelings about the experience.

The survey is meant for assessing the robot implementation, so
your response is anonymous.

If you have any doubts regarding a question or statement, feel
free to reach out to the attendant.

Thank you for participating in the test. Press NEXT to begin.

Please rate how much you agree or disagree with the following
statements

 
Strongly

disagree

Mostly

disagree

Somewhat

disagree
Neutral

Somewhat

agree

Mostly

agree

Strongly

agree

The armband setup was easy

to use

The gestures I used were

comfortable

I did not need to put in too

much effort when teaching

grasps to the robot

The robot moved at a fitting

speed

I would like this setup if I had

to move objects every day

Please rate how much you agree or disagree with the following
statements

Strongly

disagree

Mostly

disagree

Somewhat

disagree
Neutral

Somewhat

agree

Mostly

agree

Strongly

agree

The robot understood my

intended grasps

Firefox https://www.survey-xact.dk/servlet/com.pls.morpheus...
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The robot moved in a

predictable manner

The robot remembered the

grasps I taught it

I would use this method if I

needed to teach robots

I would let the robot work

based on what I taught it

If you have any suggestions to the implementation you have just
tested, please leave a comment here (optional)

Thank you for your input.

You have finished the survey, so the test have concluded.

Press FINISH to submit your response.

Firefox https://www.survey-xact.dk/servlet/com.pls.morpheus...
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