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Abstract

This project presents a comprehensive approach
to anomaly detection in industrial screwdriving
processes using machine learning (ML) algorithms.
The primary hypothesis postulates that ML, ap-
plied to various process data from the screwdriv-
ing operation, can proficiently identify system per-
formance irregularities, serving as a dependable
anomaly detection instrument. The project fol-
lows several stages, beginning with data collection.
A dataset consisting of time-series sensor data
from the screwdriver, data from a UR10 robot,
and audio data from a microphone was amassed
to capture the aspects of the screwdriving pro-
cess. Following this, preprocessing was employed
to clean and format the data for further analy-
sis. Subsequently, feature selection techniques
were employed to identify the most informative
attributes from the data, strengthening the pre-
dictive power of the ML models. The final step
was the model-building phase, where classification
algorithms were devised to distinguish between
different classes of screws. This research is a col-
laborative effort carried out at Aalborg University,
with a partnership from VELUX. They provided
a real-world manufacturing context where this
anomaly detection approach was derived from. In
the future the aim is to enhance the quality and
efficiency of their automated screwdriving produc-
tion line by minimizing manufacturing anomalies.
The successful execution of this project would
validate the viability of integrating ML into in-
dustrial applications, but also sets the stage for
future research focused on optimizing the per-
formance of the algorithm and broadening its
applicability to other manufacturing sectors.
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The content of this report is freely available, but publication (with reference) may only be pursued due to agreement
with the author.
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1 Introduction

In today’s manufacturing industry, automated screwdriving is one of the most important parts of
the manufacturing process. It is used for assembly of a variety of different products, which include
electronic products, automotive components, different wood products etc. Recently, the American
magazine ASSEMBLY did an annual Capital Equipment Spending Survey, which included American
manufacturing companies that did assembly. The results showed that automated screwdriving was
included in 58% of the companies. [24]

The process of automated screwdriving involves the use of different robotic systems to pick up screws,
insert them into material or pre-drilled holes and tightening them to a specific torque value. When
doing this process in a larger volume efficiently, where automation of the process is a big upside,
there can be problems. The screwdriving process is prone to errors and anomalies that negative
impact product quality and production efficiency.

There are different reasons why anomalies arise in the automated screwdriving process. Some of
them include incorrect screw insertion, stripped or cross-threaded screws, over-tightening of the
screw, under-tightening of the screws, missing screws and many more. [4] All of this anomalies can
create product defects, rework, stop of production and even costly recalls. Because of this, there is a
growing need for effective methods to detect and mitigate anomalies in the automated screwdriving
process.

Detecting anomalies in the automated screwdriving process has some promising approaches trough
the use of anomaly detection techniques. Anomaly detection is a field of machine learning which
focuses on pattern identification and outliers in data. Algorithms can detect deviations from normal
screwdriving behaviour and alert operators to potential issues by analyzing data from the screwdriving
process. Current research on the topic focuses on developing novel algorithms and techniques for
anomaly detection in real-time. Some of the methods are statistical process control, machine learning
and deep learning approaches. Using different sensors that can detect the screwdriving force, torque,
angle in combination with this algorithms gave high levels of accuracy in anomaly detection in the
screwdriving process. [4]

Currently automated screwdriving is a critical aspect of manufacturing industry that is prone
to anomalies and errors. Implementation of anomaly detection techniques is proving to be a
promising approach to detecting anomalies in real time and improving the quality and efficiency
of the screwdriving process. Because of that, there is increasing need for additional research and
development to improve the effectiveness and accuracy of these techniques.

1.1 Part of a larger project

This thesis is a part of a bigger project from Aalborg University, run by PhD Candidate Mohammadali
Zakeriharandi, who is also the co-supervisor. This project called: "Data-Driven Anomaly Detection
in Industrial Robotic Processes" is done in collaboration with multiple companies shown in Figure
1.1 and focuses on anomaly detection in manufacturing processes.

1



1.1 Part of a larger project Group 14

Figure 1.1: Collaborators

Project focuses on collecting different types of data from the factory floor and/or from the AAU
laboratory, building machine/deep learning models, and deployment of those models. Some of the
processes that this project encompasses are:

• Automated Screwdriving Process

• Arc-Welding Process

• Robotized Press-Fitting Process

• Ultrasonic Welding Process

• PU Molding Process

Project of this report is based on one of the manufacturing plant from the company VELUX, which
is a international company that produces a variety of products, like windows. [26] VELUX wants to
automate their manufacturing further by implementing AI solutions to their production line. More
specifically regarding this report, for the screwdriving robots used to screw together wooden window
frames. The company wishes to achieve a better control of the quality of their products by the use
of AI solutions and avoid sending faulty windows to the costumers.

This report focuses on the task of automated screwdriving and anomaly detection of the screwdriving
process. A screwdriving cell was created in the AAU laboratory to mimic the factory floor setup
of the Velux manufacturing plant. Idea of the project is to collect different data types on the cell,
create a new dataset, process and analyse the data and build machine learning models to detect
types of anomalies that happen during the screwdriving process. The goal is to investigate how can
the collection of different data types influence the accuracy of the models, and see what models work
best for anomaly detection in the task of screwdriving.

2



2 Problem Analysis

To get a better understanding of the report problem, a problem analysis will be conducted. First,
as the focus of the project is the use of AI in manufacturing, it will be introduced together with
machine learning. Afterwards, the AAU screwdriving cell will be described in detail, together with
all of the parts in the process of screwdriving. As a conclusion, different problems that the report
will be covering will be presented as project challenges.

2.1 Introduction to AI

Artificial Intelligence (AI) is a branch of computer science that focuses on the development of
intelligent machines, which are capable of performing tasks which would require human intelligence.
[1] AI encompasses a lot of different areas that are shown in Figure 2.1. One of the bigger branches
is called machine learning, which is the focus of this project. To speak broadly, AI’s focus is in
development of algorithms and computer programs that can make informed decisions based on the
provided data used for learning. In this regard machine learning is particularly important, because
it involves the use of data in training computer programs to identify patterns and relationship in the
data. Afterwards, they use this information to take action or make predictions.

Figure 2.1: Branches of AI [1]

AI has the ability of automating routine and repetitive tasks, allowing humans to focus on more
complex work. That is one of the reasons why VELUX wants to use AI in their manufacturing
line. AI can be used to optimize their production processes, detect defects and predict equipment
failures. Another use of AI is in developing intelligent agents that interact with humans in natural
language and also exhibit human behaviour or emotions. The agents are usually named virtual
assistants or chatbots are common in today’s customer service and websites. While there are big
potential benefits of the usage of AI today, there are challenges and risks related to it. To train
the algorithms, you need good data sources. If the data is incomplete or problematic, there is a

3



2.1 Introduction to AI Group 14

potential for bias and discrimination. On the other hand, AI can be used for malicious purposes
involving cyber attacks and surveillance.

With further AI development the impact on different areas of our lives will increase. Whether AI is
shaping our education and work, or healthcare and transportation the difference will be noticeable.
It will be important to use this technology with caution and foresight. That way its benefits will be
maximized, with the minimum amount of risk.

AI in manufacturing

Short term impact in the business, with a positive impact on energy consumption and environmental
aspects of the global production are one of the reasons why companies look towards new AI
technologies. One of the leaders in the application of AI technology is the manufacturing sector,
where introduction of AI created significant cuts in unplanned downtime and better quality of
products and production. AI-powered analytic brings manufacturers new insights in to their
operations and improve efficiency of their companies and safety of the employees. [3]

AI algorithms are creating market demand estimations by finding patterns, which link socioeconomic
and macroeconomic factors, location, weather, consumer behaviour, political status and many
more. This information is proving to be invaluable as it allows manufacturers to optimize energy
consumption, staffing, inventory control and the supply of raw materials.

Introducing AI in manufacturing is providing massive leaps forward in productivity, environmental
friendliness, quality of production and safety of the employees, but current research shows that only
12% of manufacturers are implementing AI. 58% of manufacturers are expressing active interest, but
for different reasons decide not to. [3]

While AI holds the key to future growth and success in manufacturing, there are concerns about its
ethical implications, particularly in relation to job losses and algorithmic decision-making. However,
with proper regulation and ethical considerations, AI has the potential to revolutionize manufacturing
and improve efficiency, product quality, and employee safety. [3]

2.1.1 Machine learning

Figure 2.2: Categories of machine learning algorithms according to training data nature [6]

4



2 Problem Analysis Aalborg University

As a part of AI, Machine Learning (ML) is a way to emulate how human beings process sensory
(input) signals to process data. Machine learning algorithm represents a computational process that
builds its own architecture trough experience and not by being hard-coded for a specific outcome.
The process of "teaching" the algorithm and providing it experience is named training. In the
training input data is given together with the desired outcome, and the goal for the algorithm is to
learn and optimize itself to new and unseen data in predicting the desired outcome. [6]

There are several types of ML systems. Figure 2.2 shows the division of machine learning by the type
of training data provided to the training of the algorithm. The main division of machine learning is
to supervised and unsupervised ML.

Supervised learning

Supervised machine learning builds a model that will make predictions based on previous data
provided in training. A known set of input data and known responses to the data, also called
"labeled data" from the Figure 2.2, is taken by the supervised learning algorithm to train the model.
The goal of the model is to generate reasonable predictions when responding to new, unseen data.
Supervised learning is the focus of this project, because there is a large amount of known data for the
output which needs predictions. [11] In the case of automatic screwdriving input would be different
sensor measurements, and the output or the "label" would be if the screwdriving was successful or
not. This is a simple example of the "label" data, in the project different options will be explored.

Some of the techniques for building machine learning models in supervised learning are:

• Classification techniques: used for predicting discrete responses. A common example is
determining if the email is genuine or spam, or if a tumor is benign or cancerous. An example
of using classification in the screwdriving process would be to determine if the screw was
inserted correctly or not. This technique uses input data and classifies it into different categories.
If the data can be categorised, separated and tagged to fit different groups, classification is a
good way to achieve that. If there are only two classes, term used is binary classification.

• Regression techniques: used for predicting continuous responses. Often used for predictions of
hard-to-measure physical quantities, such as battery state of charge, load on the electricity
grid or prices. These techniques are used when working with a data range or if the nature
of the response is a real number. Examples of that are temperature and time until failure of
different pieces of equipment.

Unsupervised learning

Opposed to the mentioned supervised, unsupervised learning analyzes unlabeled datasets which
reduces the need for human involvement, also called a data-driven process. Some of the uses are to
identify meaningful structures and trends, grouping results, exploration and extraction of generative
features. The tasks of unsupervised learning include density estimation, dimensionality reduction,
looking for associations, anomaly detection, etc. [7]

Some of the techniques for building machine learning models in unsupervised learning are:

• Cluster analysis (clustering): used for grouping and identifying data points of large datasets
which are related based on similar metrics. The grouped objects are collected in categories
called clusters, in a way that they are similar to other data in the same cluster by some metrics.
This technique is used to find interesting correlations between the data, which would not be
simple to see otherwise. That is why this technique is often used in cybersecurity, behavioral
analysis, user modeling, consumer patterns, etc.

• Dimensionality Reduction and Feature Learning: common problem in data science and
machine learning is processing high-dimensional data. This is why dimensionality reduction is

5



2.1 Introduction to AI Group 14

a important tool to lower computational costs and avoid overfitting by simplifying the models.
The idea is to combine different sets of features and create new ones. Dimensionality reduction
can feature selection and feature extraction, with the distinction in the act that "feature
selection" keeps the subset of original features and "feature extraction" creates new features.

2.1.2 Machine learning pipeline

The machine learning pipeline of the bigger project, which this thesis is a part of consists of 3 steps,
shown in Figure 2.3. The first step called "Data Acquisition" refers to the collection of data from
the factory floor or the AAU screwdriving cell. Advantages of collecting the data in the AAU cell
are that here the anomalies can be forcefully generated, and a better dataset can be collected. This
is why it is important to have a good representation of the factory floor setup, so that the data
collected can be representative of the real-world. This project only includes the data from the AAU
cell, with a goal to collect data from different sensors and areas of the process.

Second step "Model building" refers to data handling, processing and machine learning model
building. After the data is collected and processed, features are extracted which are used as the
input to models in order to make predictions.

The last step "Model Deployment" refers to deploying the model in a real-world setup, to detect
anomalies and predict the outcomes on unseen data. This representation can be used for other
machine learning scenarios in general.

This thesis focuses on first two parts of the pipeline, "Data Acquisition" and "Model building".

Figure 2.3: Machine learning pipeline [10]

Model building

The different steps of building a model will be explained later in the project, since finding out
how the models are "built" is one of the purposes of this thesis. But as an introduction, different
terminology of the process will be described. [17]

Target function: When dealing with predictive modeling, the goal is to model a particular process.
This means that the idea is to approximate a specific, unknown function. The target function itself
(f(x) = y) is the function that needs to be approximated.
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Hypothesis: Hypothesis is the researchers estimated function, which is presumed to be close
or similar to the target function that needs to be modeled. In terms of classification, this is a
classification rule proposed that will allow the algorithm to separate data. More specific a rule on
which the screwdriving task is separated.

Model: Model and hypothesis are used sometimes interchangeably in the machine learning field. In
other sciences a hypothesis would be an estimation by the scientist, and the model the manifestation
of the hypothesis.

Learning algorithm: The purpose of the learning algorithm is to approximate or find the target
function. The learning algorithm consists of a set of instructions that will try to model the target
function with the use of the training data.

Hyperparameters: Hyperparameters are different parameters of a machine learning algorithm.
Exampl of a hyperparameter is the regularization strenght of an L2 penalty in the loss function of
logistic regression, or the number of neighbours in a KNN algorithm.

2.2 Screwdriving cell

Figure 2.4: Setup of the screw cell

Figure 2.4 shows the current setup of the screwdriving cell as a sketch. The cell was made as a
collaboration between Aalborg University and VELUX, where VELUX was responsible for providing
the parts and the university of assembly.

The setup includes a robotic arm with an automatic screwdriver attached on the end effector of the
robot as the tool. The automatic screwdriving system has an automatic feeder, which feeds the tool
with screws trough a pressurised tube system, screwdriver controller (RC), which is in charge of the
sensors, controls the screwdriver and the screw feeder. There is also a programmable logic controller
(PLC) which is connected with the robotic arm, SC and the pneumatic system. The pneumatic
system uses pressurised air to hold the wood test beam in place, and feeds the screws trough a tube
to the screwdriver. On the screwdriver there are different measuring sensors which will be elaborated
further later in the report.
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2.2.1 Robot arm

The robot arm set up in the cell is a Universal Robots robot UR10 shown in Figure 2.5. This model
of the collaborative industrial robot has 6 joints and a versatile range of motion. It has a high
payload (12.5 kg) and a long reach (1300 mm), making it suitable for a wide range of applications
within machine fitting, palletizing and packaging. [15] In the cell the purpose of UR10 is to carry
the automatic screwdriver and position it over each screwdriving point.

Figure 2.5: Universal Robots UR10 model

2.2.2 Automatic screwdriver

The tool of the UR10 is the automatic screwdriver. It consists of the screwdriver, screwdriver
controller (C30S) and step-feeder (model ZEL). All parts were produced by company Weber. [27]

(a) Screwdriver attached to
the robot arm

(b) C30S controller

(c) Automatic feeder

Figure 2.6: Parts of the automatic screwdriver setup

The screwdriver shown in Figure 2.6a is attached as the end effector of the UR10 robot and is
connected to the automatic feeder, shown in Figure 2.6c, by a white tube. Trough this tube the
screws are brought to the screwdriver before every screwing operation.

8



2 Problem Analysis Aalborg University

The screwing operation starts with the robot moving to the programmed location. The feeder then
feeds the screwdriver with a screw, where the spindle moves down until the bit connects to the screw
head. Inside of the spindle a vacuum is made to keep the screw in place on the bit. After the screw
is secured and in position, the spindle moves to the wooden plank to the insertion point. Screw
is then screwed in to the plank with a specified torque, which can be adjusted on the screwdriver
controller, shown in Figure 2.6b. After the operation is done, the spindle moves back, the robot
changes the position of the screwdriver and the process is repeated.

As the idea is to replicate real-world wooden frame manufacturing, experiment will include test
wooden beams, which will be used for screwdriving of the screws. Figure 2.7 shows the test beams,
and the pattern in which they are screwed in.

Figure 2.7: Test beams for screwdriving

The feeder, shown in Figure 2.8. Is used for automation of the process, by bringing the screws to
the screwdriver in a regulated time intervals. That way the screwdriver always has a screw to start
the screwdriving process.

Figure 2.8: Test beams for screwdriving

This system has a screw holder (1.) where the screws are placed. A slider transfers the screws to
the moving belt (2.). This belt transfers the screws to the alignment track (3.) This track either
corrects the screws and aligns them, or blows them to the screw holder if they are not in a good
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position. The screws that are aligned move to the partition unit (4.) by the use of vibration. This
unit is in charge of sending the screws one by one in a correct time interval to avoid overloading of
the screwdriver. The screws are transferred to the screwdriver by the use of pneumatic pressure.

2.2.3 PLC and safety features

Figure 2.9: Programmable logic controler (PLC)

To synchronise all of the different parts in the setup, there is a need for a control system. The SC
uses a programmable logic controller (PLC) for that task, shown in Figure 2.9. It is connected to
every part of the process, and controls when to activate and deactivate different system components.
Together with the different electrical components, it also controls the pneumatic system. As a safety
precaution, there is a cage around the robot cell. When the cage opens and the contact is lost, PLC
stops everything until the door is closed again.

2.2.4 Sensors

On the screwdriver there are different sensors for measuring data of the screwdriving process. This
data is transmitted to the SC. Here are the sensor measurements that are currently collected over
the screwdriving controller:

• Torque: The force used to screwdrive a screw into the wood

• Nset: the RPM of the spindle

• Current: the current that the screwdriver receives

• Angle: angle of the screwdriver

• Depth: how deep is the screwdriver on the Z-axes
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2.3 Project challenges

This section is describing what will be the challenges in different areas of the project. That will
later be used as a basis for the problem description.

Problems that this report will focus on are:

1. Data collection and storage:

What will be the important data to detect anomalies in the screwdriving process? How will
this data be collected, stored and managed? What are the challenges associated with collecting
data in real-time from the automated screwdriving process?

2. Data processing:

How will the collected data be preprocessed and cleaned to prepare it for analysis? How
will outliers, missing values and noise be handled in the data? How will different data types
(intrinsic, extrinsic and task data) be combined and normalised?

3. Feature selection and engineering:

After data processing, what features will be extracted to later be used as input into a machine
learning model? How will different features be combined and selected to maximize the models
success?

4. Model selection:

What machine learning model(s) will be best in detecting anomalies in the process? How will
the performance be evaluated?

2.3.1 Data collection and storage

When talking about the data collection and storage, there is a lot to consider. For anomaly detection
the type of data collected which will be used for the algorithm will have a big impact on the
outcome. Getting the relevant data in a proper format is important to give the user easy access
to the information and processing. After the metrics and data types are determined, a problem of
collecting them arises. Collection of data is specific for different data types and different setups of
experiments. Collection of different data types in real time can be complicated task. Dealing with
system integration will be of big importance of the quality of data that will be collected.

Relevant metrics of the screwdriving process

As touched upon in the introduction, anomaly detection is one of the ways to improve the man-
ufacturing process of automated screwdriving. To achieve this it is important to find and collect
the correct data, which has direct influence on the screwdriving process and that can predict the
outcome of the screwdriving quality. There are a lot of different types of data that can be collected
for this problem. As an example three monitoring methods of the insertion process were proposed in
Smith’s paper. [23] They include the use of torque and/or the use of insertion depth.

1. "Torque-only" method includes the use of high-low torque band within which the signature
signal is required to finish

2. "Torque-angle" method includes the use of the maximum and minimum torque and rotation
angle (or insertion depth), where the correct scenarios are measured with experiments and
compared to subsequent fastenings

11



2.3 Project challenges Group 14

3. "Torque-rate" method is similar to torque-angle method, where it looks into torque and angular
rate signals, creating boundaries and comparing it to subsequent insertions

In more recent papers as [9], focus is put on using the data regarding the electrical current of the
screwdriver in combination with torque, as a more cost effective method of determining the quality
of screwdriving. It is a more cost effective method, because in the torque-current relationship there
is no need for a additional sensor which will measure the angle. However, this method showed that
the relationship between the torque and current is not linear in all instances.

Another option would be to analyse the screwdriving process with computer vision to detect anomalies.
This would be done by implementing camera(s) that would record the process and detect anomalies
by image analysis or machine/deep learning. However, by using this approach it is hard to detect
screws that are under or over-tightened, with problems related to setting up the camera.

Anomaly types of the screwdriving process

When a screw is screwed in to the wood, different outcomes can occur. The screw can be screwdrived
successfully, or anomalies can happen. Research paper [14], classifies events specific for their setup
as:

• Success: Screw successfully driven into hole and tightened

• No screw: Failed to acquire screw

• No hole found: Screw acquired but never dropped into hole

• Crossthreaded: Screw entered hole but threads crossed so current limit hit before rundown
completed

• Stripped: Screw successfully run down into hole but bit slip-page prevented full tightening

• Partial: Screw driven partly into hole but time limit reached before operation completed

• Stripped (no engage): Screw was so stripped it never engaged hole

In the case of the AAU cell, a different set of outcomes will be needed to describe the events of the
screwdriving process. Outcomes that are not wanted, for example over and under-tightened screws,
can cause delays in production, problems with quality of the end product and also a safety hazard.
If the screws are under-tightened, different parts can get loose and ruin the product. If the screws
are over-tightened, they can cause damage to the wood and be hard to remove which will also cause
problems in production. When a whole batch of screws are defective, this can cause the stop of
production for a longer period of time and create a big loss for the company. Because of that, it is
important for manufacturing companies to regularly do quality control checks, which takes time and
resources to do.

If an automated detection tool, that could detect the problematic screws instantly would be
implemented, this would relieve the quality control part of the process, increase efficiency and quality
of products.
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Types of Real-World Data

The data availability is considered key in the construction of a machine learning model. Data comes
in different forms and formats, notably as structured, semi-structured, unstructured and metadata.
[7]

• Structured: data with a well-defined structure. This type of data is following a standard order
which is organized and can be easily accessed. It comes in well-defined schemes and is usually
stored in a tabular format containing names, addresses, dates, time and more.

• Unstructured: for this type of data there is no pre-defined format or organization. Because of
that it is more difficult to work with, process and analyze. Best example of this are texts and
different multimedia formats.

• Semi-structured: unlike the structured data, this data format is not stored in a relation
database, but it contains certain organization structure, which helps in analysis. Some of
examples are of semi-structured data is XML, kXML, JSON, HTML, NoSQL databases, etc.
The robot controller in the screwdriving cell outputs a kXML data format, which will have
to be converted to a structured format in order to work with it. Figure 2.10 shows a picture
opened in VS code, from the data received by the robot controller in kXML file format.

Figure 2.10: kXML data data from the robot controller

• Metadata: referred to as the "data about data", this data is not the same as the data types
above. While the data is material that measures, classifies and documents relevant information,
metadata is used to give the user better understanding of the data. The types of information
in metadata would be the author, file size, date generated, etc.

Data management and storage

After the collection of the data, data needs to be properly managed and stored. Every screw has
to have its proper ID for labeling and backtracking. It is important to later check which data
correlates to which screw, and to properly identify it. When anomalies occur, this has to be correctly
represented in the data as labels.
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Data collection challenges of the screwdriving process

One of the critical steps in anomaly detection is the data collection. There are several reasons why
it can be a challenge.

For starters, sensors can generate a large volume of data, which requires carefully management and
processing. Additionally, noisy data can contain irrelevant information and errors related to sensor
malfunctions and the environment.

Further on, choosing the correct sensors which will not be affected by factors such as vibration,
temperature, outside noise, electromagnetic interference etc. All of these factors can alter the relia-
bility and accuracy of the data. The data collected needs to be accurate, reliable, and synchronized,
enabling efficient and effective anomaly detection. With the use of machine learning algorithms, the
system integration can help manufacturers ensure the consistency and quality of their products by
detecting anomalies.

Lastly, if the data is distributed across different devices, such as the PLC, robot and the sensors, it
can be a challenge to integrate simultaneous data collection and cohesive data analysis. To do data
collection correctly, there has to be a careful planning of the process and execution. This includes
choosing the appropriate sensors, signal processing techniques and data integration methods.

2.3.2 Data processing

There are various steps involved in data processing and cleaning in preparation for analysis. The
outliers, missing values and noise need to be addressed. The data also needs to be normalized and
combined to be used as the input in to the machine learning algorithms. [16]

Preprocessing and cleaning

The data needs to be preprocessed and cleaned to achieve a reliable analysis. These are the problems
that this report will face:

• Data format conversion: the output from the screwdriver controller is in a semi-structured
data format, shown in Section 2.3.1. This data will need to be transformed to a structured
format in order to work with them

• Removing the non-relevant features: if the data contains features that are not relevant, they
have to be removed

• Handling missing values and outliers: if the data contains missing values, they need to be
removed or filled with different values. Outliers can be removed by the use of different
techniques like Z-score or IQR

• Removing noise: noise in the data can happen because of different sensor errors and fluctuations
in the data. If sound is recorded, a good approach would be to filter the outside noise when
handling the files

Combining and Normalizing Different Data Types

When collecting data from different data sources, especially data that is collected in a time series, it
is important to correlate. This can be done in the data collection phase, by recording the data in the
same time. If there is a misalignment, to properly combine the data later it needs to be corrected.

14



2 Problem Analysis Aalborg University

In terms of data normalization it is important to note that different data come in different unit
measurements, so they will need to be transformed and scaled to fit together. This is done in order
to ensure that one feature does not dominate the analysis. One of the ways to do that is to scale
every feature to have a mean of 0 and standard deviation of 1. This can be done with the use of
different techniques, like Min-Max scaling.

2.3.3 Feature selection and engineering

Different definitions of feature selection exist. On of them is provided by Hall: "Feature subset
selection is a process of identifying and removing as much irrelevant and redundant information as
possible." [16] Based on this definition the goal of feature selection is to gather a subset of features
that will represent the problem appropriately. In this case features that will describe the screwdriving
process and anomalies that happen in it. Some of the benifits of feature selection are:

• More accurate models: features that are redundant and irrelevant can cause accidental
correlations in the algorithm, which will result in poor generalization capabilites. Removing
this features will improve the models.

• Reduction of the search space: all features together make the search space of an algorithm,
which it explores. With the use of dimensionality reduction, mentioned in Section 2.1, the
research space is reduced, and a quicker learning process is achieved

• Saving storage: without the unnecessary features, the storage requirements are reduced. In
this project, this will not be a problem

• Reduction of costs: this step is important for the data collection task. If some features are not
important, this will lead to reduction in the need for sensors, workers and time consumption,
which will lead to the reduction of cost

• Better understanding and visualization of data: with less features the models are simpler and
with them results are easier to percieve

• Decrease of the over-fitting risk: the problem of over-fitting occurs when the ML algorithm
adjusts to the training data too well, and achieves bad results on unseen cases

2.3.4 Model selection

When talking about the model selection, we need to first answer the question: "How do we estimate
the performance of a machine learning model?" A simplified answer would be to collect and process
the data. The data is then fed to a machine learning model and the labels of our test set are predicted.
The correct and wrong predictions are counted and the accuracy of the model is determined. In
reality this process has a lot of different sub-steps. To select the best option for the given hypothesis
space, and determining the appropriate algorithms to use can be a challenging task which requires
experimentation.

Using an ML algorithm with different hyperparameters will result in a different model, with different
accuracy scores. Also, the usual approach is not to use only one "best" model, but more of them
and compare their results and computational expenses.

The main points in evaluating the performance of the model [17]:

1. Estimation of the generalization performance, or the predictive performance of our model on
future (unseen) data
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2. Increasing the predictive performance of the model with changing the hyperparameters of the
learning algorithm and selecting the model with the best performance in the given hypothesis
space

3. Identifying the algorithm that is "best" for the problem. This requires comparison of different
algorithms, selection of the algorithms by performance and selection of the best performing
model
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3 Problem Definition

After the problem analysis, where the setup of the screwdriving cell was presented, together with
different problems and challenges that the report will face, the problem statement will be described.
This will include a summary of the problem analysis, the main hypothesis of the report, the
requirements of the project and the limitations. To create introduction to the solution phases of the
project, as the final part of the problem definition, section called project solution workflow will show
in what way will the problem be solved, together with the different solution phases.

3.1 Summary of the problem analysis

This thesis is made as a part of a bigger project which uses data from the AAU smart lab and data
from the factory floor in hopes to improve the manufacturing process of a company. In this case AI
tools are used as a anomaly detection tool, and it’s goal is to detect irregularities and mistakes in
the screwdriving process, to ensure better quality control of the products and improve efficiency
of the manufacturing process. A screwdriving cell was created in the university’s laboratory, in
hopes to force the gathering of anomaly data which will be later used for machine learning purposes.
The report deals with the data collection and machine learning model building, but not with the
deployment of the model. The goal of the project is to collect a new dataset containing different
available process data, build machine learning models and compare them.

3.2 Problem statement

Promising approach to detect anomalies in automated screwdriving is trough the use of various
data types, which will in this case be collected on the robot screwing cell during the experiments.
This data types will include information from the sensors on the screwdriver which is considered as
intrinsic process data. There will also be an effort, to collect additional data that can be collected.
Approach to detect anomalies will be trough the use of classification with machine learning. To start
of with the problem statement, a hypothesis is made:

„By utilizing machine learning on the different process data of the
automated screwdriving process it is possible to effectively identify
deviations, irregularities in the performance of the system, and use

this information as a reliable anomaly detection tool."

This statement will try to be answered by conducting a comprehensive analysis of the different data
types collected during the screwdriving process and developing different machine learning models.
The models will be compared by results that will be gathered. To achieve this goal, different research
objectives have to be achieved.
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3.3 Requirements

Table 3.1 will present the main research objectives and tasks included in each one of them:

Table 3.1: Project requirements

3.3.1 Detailed description of the requirements

RO1: Design and implement a data collection and storage system for the robot screwing
cell and create a new dataset which will be used for ML model training

Idea is to create a system for gathering the relevant intrinsic, extrinsic and task data from the
cell, that will be used later to train machine learning models. Goal is to create a new dataset
for analysis and training.
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-find what process data can be collected (intrinsic, extrinsic, task) and decide on which will be
collected

There is a large amount of data that can be collected during the screwdriving process. It is
important to find out what data can describe the process best and be used for ML purposes.
The data will be divided into intrinsic, extrinsic, task data and explained later.

-decide on the anomaly types that will be looked into

To use supervised machine learning, we need to label the data. In this case the labels will be
different anomalies that happen during the screwdriving process.

-create a data collection system

To collect the data from different sources of the robot screwdriving cell, a data collection
procedure has to be configured, to collect the data simultaneously in the proper format. It
is important to find a way of integrating different parts of the system for a structured and
smooth data collection.

-create a labeling and backtracking structure for the data gathering

Data from every screw has to have a unique ID and location of storage. It also has to later be
properly labeled and backtracked. This will help if there will be errors in the data, so that it
can later be checked and corrected if there will be errors.

-create a new dataset by conducting a series of experiments, that will be used as the basis for
training of the machine learning models

The end product of the data collection will be a new dataset, which will be properly structured,
labeled and stored.

RO2: Preprocess and clean the data collected

To achieve a reliable analysis the data needs to be cleaned and preprocessed and converted to
the right format. The key in further data analysis will be combining the data with different
sampling frequencies and delays.

-convert the kXML files to a more manageable data format

As mentioned in Section 2.3.1, the data from the screwdriver controller comes in a kXML file
format, which is a semi-structured format. This data needs to be converted to a proper format
for further analysis.

-find a way to combine different data types with different sampling frequencies and delays in
the data collection process

After the data is collected, if there will be differences between the data in terms of sampling
frequency or delays, there will be problems in combining the data for the machine learning.
Ways to mitigate this will be explored.

-remove the unnecessary data from the dataset

If there is data in the dataset which is not needed for the training of the machine learning
algorithms, it will be removed.

-remove the noise from the data

Noisy data can create problems in the performance of a model, so it will be processed and
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removed. Good example of that is background noise of a sound recording.

-handle missing values from the data

If the datasets are missing values, or differ in length, the missing values have to be filled or
removed.

-visualise the data

In order to better understand the data presented, visualisation of the data will be presented.

RO3: From the data collected, extract the relevant features and make different dataframes
which will be used for ML

Depending on the type of ML model, extract the features necessary to achieve effective results
in the models.

-from intrinsic, extrinsic and task data, extract the features relevant to the process

Different sensor measurements collect raw process data. To be able to use classification,
features need to be extracted from some of the measures. This features need to represent the
process of screwdriving effectively.

-create different combinations of features and find the ones which give best results in the ML
algorithms

The choice of features and data that will be used for training of the ML models will effect how
the models perform. With experimentation the goal will be to find the best combinations of
data and features to achieve the most accurate models.

-label the data

To train the model, the dataset which is used for training has to be labeled correctly.

RO4: Develop a classification ML/DL models using the data from the screwing cell

After the data collection, the idea is to create a set of machine learning algorithms, use them
for classification of anomalies and compare the results.

-decide on the algorithms that will be used in classification

When building the model, the choice of the algorithms will be important. Based on the data
and purpose, multiple ML algorithms will be trained, tested and compared based on the
performance.

-create a system for measuring the results of different ML models

After the models are trained and tested in classification of the anomalies, a system on which
they will be compared has to be devised. This will help in determining which metrics are
important and which model performes "best".

-test separate intrinsic, extrinsic and task data and compare the accuracy results of classification
with different ML algorithms

The data comes from 3 different sources. In order to determine which source is better for
classification purposes, ML models will be trained with separate data, and compared based on
the performance.
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-test different combinations of features, and find the best "fit" for classification

Will combination of different features or sources of data yield with better model accuracy?

-create a deep learning model with separate or combined data types and measure the results
gathered

After testing different supervised machine learning models, an effort will be put into creating a
deep learning model which will take into account the time-series data from the screwdriving
operation.

3.4 Limitations

Do better describe the scope of the project, together with the different constraints which occurred, a
section will be dedicated to explaining the limitations of the process.

Screwdriver controller

The setup of the screwdriving cell was made with the help of companies, outside of university by
experts. While some modifications to the cell were made, focusing more on the software side of
the process, there are some constraints. One of the bigger ones is that the sensory data, which is
monitoring different sensors on the automatic screwdriver is transmitted to the screwdriver controller.
The only way currently to receive this data with a device is trough a USB cable using a program
from the company Weber called WSK3, which is a software for screwdriving graphs. Without the
knowledge of the complicated setup which includes the controller and the PLC, idea was to find a
different path in data collection from different sources, which comes with a price of a small delay in
the different data collected.

UR10 robot

The robotic arm used on this project, referenced in Section 2.2.1, is an older version of the robot
with an older operating system CB2. This will limit the data that can be gathered from it, together
with the speed of communication between devices. This means that the data collected from the
robot will be recorded in a smaller sampling frequency then the rest of the data. Also, this limited
the amount of different measurements that can be recorded from the robot.

Audio recording

The location of the screwdriving cell in the AAU Smart Lab is next to the 5G internet servers, which
produce noise. Also, the pneumatic system of the cell produces a lot of noise created by the air
inside of the tubes and the screwdriver. This can create problems when recording sound with the
microphone which is not specified for industrial use. Normally in the production plant there will be
outside noise, so one of the problems report will face is how to deal with this noise.

Available wood for the dataset creation

The screwdriving cell operates with specific type of wooden beams, and the lab assistant adjusted
the robot to operate based on the specific wood frames. There is a finite amount of wood left for
dataset creation and testing, and implementation of new wood will require additional time and
resources. Implementation of new wood will require time and also it could influence the dataset,
since the new wood could have different specifications then the old one. For now, the plan is to
create the dataset on the old wood frames.
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3.5 Project solution workflow

As the transition from the problem analysis and definition to the solution phase of the project, this
chapter will give an overview of the different operations and parts in the solution of the project. The
solution of the project will come in 3 different phases:

A) Data collection

Figure 3.1: Data collection phase

The first phase builds a data collection system which will create a time-series dataset. It will
integrate data from different sources, and create a dataset which will be used in classification.
This part of the project will answer questions from the first research objective (RO1).

B) Preprocessing and feature selection

Figure 3.2: Preprocessing and feature selection phase

Second phase will deal with preprocessing of the data and feature extraction, which will come
in raw sensory format and audio format, to achieve research objectives RO2 and RO3. The goal
of this faze is to process and adjust the time-series dataset received from the data collection
faze and prepare it for ML applications.
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C) Model building and results

Figure 3.3: Model building phase

The final phase of the solution will involve using the clean database in building machine
learning models. Different data sources will be used in models, and afterwards the data sources
will be combined to create meta ML models. Model building process will be explained together
with thee results of the models. This will answer the questions of the final research objective
(RO4).

After the solution phase, there will be discussion based on the results of the research. The discussion
will include the overview of the project research objectives.
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4 Data collection

As the first part of the solution process, this chapter will explain the different data sources, define
the test parameters of the experiment and explain the data collection procedure with all of the
specifications. As the final product of the data collection step, the final dataset will be presented.

The data collection procedure includes the process of collection different data types, sorting and
storage, by creating a program which receives information and creates dataframes and audio files.
The data will be collected from 3 different sources. Afterwards, a ID and backtracking system will
be implemented and explained in the report. Every screw will have a unique ID, and every data
source will also be properly labeled. The data will be stored based on the screw type. Figure 4.1
shows the overview of the process.

Figure 4.1: Diagram of the data collection workflow

The data collection will happen in two fazes. The first will be collection of data in the raw format
from different sources. Afterwards, an algorithm will be made that will make sure to convert the data
in the required format for later use, properly store the data, label the data and enable backtracking.

The end result of the data collection will be a full dataset containing the 3 data sources which will
be visualised and analysed. The code for the data analysis will be provided in a gitub repository.

4.1 Test parameters

Before going into the data collection procedure different parameters of the screwdriving operation
must be defined. It is important to know which screw types will be analysed, and what anomalies
can occur. Different failure types will be described, together with explanations on how this modes
can be artificially produced.
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4.1.1 Screw types

This was not the first project on the screwdriving cell, so there was multiple examples of the screws
in the wood beams. Based on them and scientific literature [14], different types of screwdriving have
been determined. There is more classes of anomalies that could be looked into, but this list is based
on the size of the dataset. To go deeper in classification of the screwdriving task, preferably we
would have a larger amount of data.

To get an overview of the screw types that will be selected for classification a Table 4.1 shows the
names of the different types and the abbreviations of them.

Screw type Abbreviation
Normal screw N
Over-Tightened screw OT
Under-Tightened screw UT
Pose anomaly P
No-screw NS

Table 4.1: Table of screw types

Normal screwdriving

In the process of normal screwdriving, the screw head comes directly in contact with the wood, the
threading stays intact, and the screw position is aligned with the axis perpendicular to the wood’s
surface.

(a) Normal screw image (b) Normal screw sketch

Figure 4.2: Normal screw

Over-Tightening

In the process of over-tightening, the screw head does come directly in contact with the wood and
sometimes brake the wood surface, the threading is broken, and the screw position is aligned with
the axis perpendicular to the wood’s surface. The broken threading means that the screw is lose
inside of the hole for the torque momentum.
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(a) Over-Tightened screw image (b) Over-Tightened screw sketch

Figure 4.3: Over-Tightened screw

Under-Tightening

In the process of under-tightening, the screw head does not come directly in contact with the wood
while the threading stays intact. A misalignment can happen, but if the screw was screwed in it is
also considered a under-tightened screw as shown in the following Figures 4.4.

(a) Under-
Tightened
screw
image 1.

(b) Under-
Tightened
screw
image 2.

(c) Under-
Tightened
screw
image 3.

(d) Under-Tightened screw
sketch 1.

(e) Under-Tightened screw
sketch 2.

Figure 4.4: Under-Tightened screw

Pose anomaly

When the screw "slips" during the screwdriving process it is classified as pose anomaly. This means
that the screw penetrated the wood, but did not penetrate significantly and was left on the surface
of the wood, causing the drill bit to go out of position.
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(a) Pose anomaly image 1.

(b) Pose anomaly image 2.
(c) Pose anomaly sketch

Figure 4.5: Pose anomaly

No-screw

When after screwdriving there is no-screw, it means that the screw was not part of the screwdriving
operation and did not penetrate the wood. The wood will not have marks on it. This often occurs
when the feeder gets jammed, and no screws gets fed into the screwdriver.

(a) No-screw image
(b) No-screw sketch

Figure 4.6: No-screw

4.1.2 Settings of the screwdriver controller

To achieve different screw types and artificially create anomalies, the screwdriver controller (C30S)
was set up with different values of torque. There were different tests done on the screwdriving cell,
from which these torque values were established and explained by the lab assistant. The controller
is set up in 3 different screwdriving modes, also shown in Table 4.2:

Screwdriving type Normal Under-Tightening Over-Tightening
Torque settings 1.1 Nm 0.5 Nm 2 Nm

Table 4.2: Screwdriving modes

These modes differ in the torque value that the screwdriver will produce during the screwdriving
process. From these 3 modes, all of the screwdriving types can be achieved. It is also worth
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mentioning that for screw tipe where the screw is stuck in the feeder, there is no need for one of
these modes. The Out-of-Plane screw can not be generated forcefully, but can happen in any of
these 3 modes.

4.2 Data sources

Figure 4.7 shows different sources of data that were used in the experiment. They are intrinsic, task
and extrinsic sources.

Figure 4.7: Diagram of the data collection workflow

Intrinsic data

Intrinsic data sources refer to the inherent information withing the process. In this case the different
sensor measurement of the automatic screwdriver are considered intrinsic or native. This data should
yield with the best basis for the analysis, because it is the most accurate, precise and derives from
the process itself. With intrinsic data the potential of biases or external influences is minimized.

Intrinsic data comes from sensors which send the data to the screwdriver controller (C30S). This
data is then sent with a USB cable to the laptop with the help of the WSK3 program. The sensors
record 5 different measurements in a time-series format. Table 4.3 shows those measurements with
units:

Time Nset Torque Current Angle Depth
(ms) (1/min) (Nm) (V) (rad) (mm)

Table 4.3: Screwdriver sensor measurements

The Nset values represent the rotation of the screwdriver per minute, the Torque represents the torque
value of the screwdriver in Newton meters, the Current represents the current to the screwdriver in
Volts, the Angle represents the rotation angle of the screwdriver which is used to control the precision
and accuracy of the torque applied by the screwdriver during tightening or loosening operations in
radians and the Depth value which represents the depth of the screwdriver in millimeters.

Task data

Task data refers to the data received from the robotic arm (UR10), that holds the automatic
screwdriver. As mentioned in the Section 3.4 there were limitations with the amount of data that
that can be collected. After consultation with the supervisors, it was decided to prioritise the
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sampling frequency over the number of measurements that will be collected. Table 4.4 shows the
measurements of the task data with the units:

Time TCP_x TCP_y TCP_z TCP_rx TCP_ry TCP_rz Robot_I
(ms) (mm) (mm) (mm) (rad) (rad) (rad) (A)

Table 4.4: Robot data measurements

The TCP stands for Tool Center Point. The TCP is a reference point on the tool or end-effector
that the robot uses to perform tasks. Te TCP_x, TCP_y and TCP_z represent the location in the
3D robot base coordinate system in millimeters and the TCP_rx, TCP_ry, and TCP_rz represent
the rotation components of the Tool Center Point with respect to the robot base coordinate system
in radians. Robot_I is the current that the robot is receiving in Ampers.

Extrinsic data

As the extrinsic data source, it was decided to record sound of the screwdriving process. There were
different options which included using images and image recognition and recording the vibrations of
the process, but with discussions with the sensors and available recording devices, it was decided
to record sound. The microphone of the Azure Kinect DK was selected as the device for recording
sound, shown in Figure 4.8.

Figure 4.8: Azure Kinect DK

Azure Kinect DK is a spatial computing developer kit with sophisticated computer vision and speech
models, advanced AI sensors, and a range of powerful SDKs that can be connected to Azure cognitive
services. [2] In case of this project this was the best microphone available.

4.3 Data collection procedure

Before going in to the procedure of the data collection the setup of the experiment will be explained.
First, the parts of the setup are:

• The robot screwdriving cell

• Laptop with the data collection program

• Wood and screws

• Azure Kinect DK microphone
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• Automatic feeder and screwdriver

After consulting the supervisors, and also with limitations on the amount of wood available, it was
decided to collect at least information about 1000 screws in total. This data should include the 3
different modes mentioned in Section 4.1.2.

The data collection happens in two phases:

1. Data collection phase

2. Data sorting phase

This process is divided in two phases based on the implementation of the data collection. First the
data is recorded in the data collection phase and then the data is sorted in the data sorting phase.

4.3.1 Data collection phase

Data was collected from 3 sources: robot, screwdriver and microphone. Task data, which is the data
from the UR10 robot, and extrinsic data, which is recorded by the microphone data, is received by
the use of a python script.

Screwdriver (intrinsic) data

The data from the screwdriver comes with a USB cable from the screwdriver controller directly to
the laptop. As explained earlier, it comes trough a program called WSK3, shown in the following
Figure 4.9.

Figure 4.9: WSK3 program recieving data

When the program is started, the screwdriver controller automatically sends the data to the laptop
for each screw separately, and saves them in the .KXML file format as _000, _001, _002 and so on.
This process happens separately from the data collection of the robot and the microphone. This
data is named intrinsic process data.

UR10 (task) data

The UR10 robot was connected to the laptop trough Modbus. Modbus is a serial communication
protocol, which was developed by Mdoicon in 1979. for use with its programmable logic controllers
(PLCs). As a description, Modbus is a method for transmitting information trough serial lines
between different electronic devices. There is Modbus Client, device which requests the information
and Modbus Server, device which supplies information. Usually there is one Modbus Client and
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multiple Modbus Servers. The purpose of Modbus is to transmit signals and data from control
devices and instrumentation back to the main controller or data gathering system, in this case from
the UR10 robotic arm to the Laptop. [5]

The data is stored in a .csv format, with the information mentioned in Table 4.4. It is stored in
tabular format, with a time mark for every data point.

Microphone (extrinsic) data

Sound information from the screwdriving operations is received by the microphone. To achieve a
more standardised, fixed position, frames for the microphone were 3d printed and screwed in to the
table. Because the robot already had troubles with handling the weight of the automatic screwdriver,
it was decided that fixing the microphone to the tool would not be feasible, even if this would be the
most standardised location for it. Figure 4.10 shows the 3d model of the microphone frame, and the
microphone setup.

(a) Setup of the microphone
(b) Microphone stand

Figure 4.10: Microphone setup

In Figure 4.10a, the microphone is on the right stand. As the screwdriving operation is moving
the microphone is recording the process. After the screws enter the zone of the next stand, the
microphone is removed from the first one and transferred to the next one. That way the distance
between the screw and the microphone is relatively consistent.

The data is stored in a .wav format.

Python data collection script

At first, recording the data from the robot and microphone together presented a problem, because
the sampling frequency was low (data from the robot was received at a sampling frequency of 100Hz).
This was happening because the program was using a lot of resources to read the different register
values with the Modbus protocol. To mitigate this, threading was introduced.

Threading in Python is a technique that creates multiple threads of execution, which run concurrently
together within a single process. The threads are lightweight and independent units of execution that
share the same memory space. This allows the script to multitask and improves it’s performance.
[13]
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In the context of the project, threading was used to read the data from the registers and data from
the microphone separately from the main process of data collection. By separating these two tasks,
both operations were performed in parallel, without one process blocking another. After threading
was introduced, the sampling frequency of the UR10 was consistent, at around 400Hz.

The script reads the Modbus register values from the PLC and records the sound from the microphone.
The register values are saved in a Pandas dataframe, and stored to a .csv file. The values that are
recorded are shown in Table 4.4. The task dataframes and sound recordings are saved after every
screwdriving process.

To be able to synchronise collecting the data from different sources, a signal from the PLC was used.
In the PLC programming, a function was inputted which is sending notifications on the status of
the screwdriving process. A Boolean value of True is set when the screwdriving is happening and
False when it is not. This location of the strobe signal is shown in the following Figure 4.11.

Figure 4.11: Strobe signal in the PLC

The screwdriver starts the operation with the instructions from the PLC. With this signal, together
with the intrinsic data, the robot data and the microphone data were recorded in unison.

4.3.2 Data sorting phase

After the data collection phase, where the laptop was connected to the different data sources and
recorded the relevant process data, a second phase called data sorting starts. This phase includes
the inspection of screws, storage of the data and labeling.

After the screwdriving is done and the data is collected, the operator comes to the test wood beam
and inspects it. By a simple visual inspection it is clear which screw belongs to which category.

Over-tightened screws have to be checked with the help of a screwdriver, because the broken thread is
not visible with the visual inspection. If the screw does not resist when screwing it in, the threading
is broken.

Labeling, backtracking and storage

As mentioned in Section 2.3.1, it is important to be able to identify each individual screw, with the
information regarding it (metadata). Intrinsic, task and extrinsic data is recorded for each screw
separately. To be able to keep track of the data related to the process, the data about every screw
has a unique ID number. This was done to later work with this data and to enable backtracking of
the data in case of mistakes. Figure 4.12 shows how was a unique ID made for every screw.
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Figure 4.12: Data ID and storage

Every data source has a folder, where it is saved. Every folder has sub folders which represent the
anomaly class of the screwdriving, and they are named with the abbreviations of the classes. The
sorting algorithm saves the appropriate screw data to the class folders.

The screw ID contains a letter which describes the data type, a date, number of the wood and
number of the pin. Later, when the data will be inputted to ML models, this ID will be correlated
to the specific class folder as the label or "grand truth", mentioned in Section 2.1.2.

Python data sorting script

Figure 4.13: Sorting program input
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When running a python script to sort the data, input is the wood number, and the classes, shown
in Figure 4.13. After the screwdriving on the whole piece of wood is finished, the operator checks
the wood and the screws and writes down the pins with anomalies. This is used as the input of the
program. After the inputs, the program takes all of the recorded files, renames them and distributes
them in the proper folders.

It is important to mention that the data from the screwdriver comes in a semi-structured format
mentioned in Section 2.3.1. The script automatically converts all of the semi-structured .KXML files
to .csv format, before the files are distributed to the proper folders.

4.4 Data collection results

As the final result of the data collection, a dataset was created. This dataset contains 1341 recorded
screwdriving operations. This section will show the distribution of the different classes in the dataset,
together with the visualisation of the data collected.

The goal was to gather enough relevant and diverse data to effectively train, validate, and test a
model that can predict outcomes or identify patterns in the screwdriving process. The data collected
must be of good quality, meaning it should be accurate, consistent, and free from noise or errors
as much as possible. Poor quality data can lead to poor model performance or misleading results.
Machine learning models often require large amounts of data to learn effectively, so it is preferable
to collect as much data as feasible. If some classes are over-represented in the dataset, the model
might become biased towards predicting those classes. It’s important to have a balanced dataset, or
to use techniques to handle imbalanced data effectively.

4.4.1 Final dataset

As mentioned, the final dataset contains 1341 screwdriving files, for each of the 3 data sources. There
is 5 classes in the dataset shown in Figure 4.14. This figure shows the class distribution and the
number of screws in each class.

Figure 4.14: Dataset class distribution

The balance of the dataset is logical, because the N (normal screwdriving), UT (under-tightened)
and OT (over tightened) classes are forcefully created and have a similar amount of representative
data. Classes NS (no-screw) and P (pose anomaly) are not created forcefully, which is why there is
a smaller amount of the representative operations.
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The dataset was created on 17 different wood beams, and the class distribution of the every beam
can be seen in Appendix A.

Figure 4.15: Screwdriving process average process time

Figure 4.16: Screwdriving process average torque

Figure 4.15 shows the average time it takes to screwdrive each class of screws. It can be noticed that
on average class N and class UT have the same length of approximately 2 seconds, and class NS,
class OT and class P length of approximately 4 seconds. This will be a problem if the ML model
will take time-series dataframes, because every input will have to be of the same length.

Figure 4.16 shows the average torque that the screwdriver produces for each class of screws. It can
be noticed that on average class OT has the highest average torque, together with N. This correlates
to the settings and the setup of the experiment. Also, class NS and P has the smallest torque value,
which is also correlating correctly.

Data from these graphs can be an indication that the general classification of screws in different
classes shows results that correlate to the class definitions and screwdriver controller setup.
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4.4.2 Data visualisation

To get a visualisation of the sensory data collected from all data sources, this section will show the
graphs of the recorded data.

Intrinsic sensor data by class

Figure 4.17 shows the sensor measurements of the screwdriver. Every graph contains data about 5
different screws, each representing a one screwdriving type or class.

(a) Torque graph as a function of time of the
different classes

(b) Current graph as a function of time of the different
classes

(c) RPM graph as a function of time of the
different classes

(d) Angle graph as a function of time of the
different classes

(e) Depth graph as a function of time of the different classes

Figure 4.17: Intrinsic sensor data visualisation

Figure 4.17a shows a variation in the torque data. It is noticable that the value of torque for the
over-tightening class (OT) comes to a maximum torque value, after which it falls off. This effect
happens when the threading is destroyed and the friction of the wood decreases together with the
torque. "Normal screwdriving" (N) and "under-tightening" (UT) raises to the specified torque and
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does not fall off, because the threading is not destroyed. The "no-screw" (NS) and "pose anomaly"
(P) class does not show a increase in the torque value, because the bit of the screwdriver does not
come in to contact with the screw, or comes in a weak contact.

Figure 4.17b shows the variation of the current to the screwdriver. As the value of torque, the
current shows a similar behaviour.

Figue 4.17c and Figure 4.17d show that the RPM is the same for every screwdriving type and that
the angle follows the same line for every screwdriving type. This correlates, probably because when
rotation is constant, then the rotation angle of the screw increases linearly with time.

Task data visualisation

Data from the robot is straightforward. Figure 4.18 shows the movement of the robots Tool Center
Point in x, y and z axis, for 5 different screw types. The movement of the robots TCP is not long,
and as can be seen from the figure it is messy for every screw class, instead of the no-screw class.
No-screw class obviously shows movement which is less sporadic the the rest of the classes, which is
to be expected, since no screw is used.

Figure 4.18: TCP 3D position of the classes

In the Figure, TCP_z represents the horizontal axis, which means the axis which is parallel with the
table and the beam. Because the screw values diverge in the values of TCP_z, it will be important
to somehow get the different screws in the same frame. One way of doing that would be to look at
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offset in the axes, instead of the positions.

Figure 4.19: Current to the robot as a function of time

Another value that can be visualised is the current received by the robot. Figure 4.19 shows the
current that the robot received during the 5 different screwdriving processes, and 5 different classes.
The current is fluctuating, and does not have a visible pattern. In the figure it is hard to find
patterns and correlations of different classes. This will be the task of machine learning algorithms.

A case could be made for the over-tightening, where the current was stronger during the screwdriving
process after the 2 second mark. The reason for that could be the fact that the screw types were
randomly selected from the dataset, so no conclusive evidence can be derived from the figure.

Extrinsic data visualisation

Figure 4.20 shows the recorded sound of one screwdriving process in a Mel spectrogram and
waveformat. Mel spectrogram is a type of spectrogram where the frequency scale is converted to Mel
scale. This scale is the perceptual scale of different pitches, who’s idea is to approximate the human
ear response of different frequencies. It is computed by the usage of Fast Fourier Transformation
(FFT) of a signal, which creates the frequency spectrum. Afterwards, a set of filters is used to
sum the energy. Using this spectrogram can be useful to use as a feature for different audio signal
processing tasks.

Figure 4.20: Representation of the audio recording as Mel spectrogram (top), and waveform (bottom)
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From the visualisation of the sound, it is clear that the audio has a lot of noise. This is due to
outside noise from the server and air from the pneumatic system, mentioned in Section 3.4. To work
with the sound information, it will be a good idea to clean this noise.
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After the data collection, where the final dataset for ML was created and analysed, data has to
be preprocessed, cleaned, organized, and structured and the features for the algorithm have to be
selected. This chapter will show what was done to the data, and what are the features extraced for
the models.

As shown in Figure 5.1, the data will be separated in 3 sources, and combined between them. This
will result in dataframes which will be ready for the stage of feature selection.Since the data gathered
is in raw sensory time-series or audio format, for machine learning purposes the relevant features
will be extracted using different libraries.

Together with the dataframes, there will be a dataframe containing the labels and metadata, that
will correlate screwdriving classes with the individual screws.

Figure 5.1: Diagram of preprocessing and feature selection

5.1 Preprocessing

A large part of prepreocessing happened in the data collecting phase. The data from the screwdriver
was immediately converted with the python sorting script to a manageable table .csv format. Also,
the robot data was during the collection converted to units that match the data from the screwdriver
controller:

• TCP position to millimeters

• TCP rotation to radians

• current to the robot to amperes

The task data from the robot and extrinsic data from the microphone was recorded in the same
time-frame as the data from the screwdriver explained in Section 4.3.1. In the extrinsic data example,
one of the way would be to record a long audio segment of screwdriving different screws, which would
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follow by cutting the audio on segments that would match every screw specifically. By implementing
the strobe signal to start and stop the recording, this was avoided.

Ideally, all of the data collected would be collected trough a data collection system or program. In
case of this project, data from the screwdriver controller was collected with a different program then
the robot and microphone data. This resulted in a time dilation of the different sources of data by
200ms on average. Usually the task and extrinsic data is recorded for 200ms more then intrinsic
data. The reason for this is unknown and it is hard to decide why did this happen, but it could have
to do with the laptop operating system and the delays in the python script. However, with keeping
this in mind, it should not have a big influence on the final results of the classification.

5.1.1 Robot TCP position calibration

During the data collection, the UR10 robot is used to position the automatic screwdriver in position
for every screwdriving operation. This means that every screw has a different starting position in
the 3D space, as TCP position in x, y and z axis. Before the feature extraction, there was a need to
uniform this data from the robot. A way to do that was to make every screw’s starting position as
0, by subtracting every TCP position column by the first data point in the respective column. The
before and after data is shown in Figure 5.2.

(a) TCP position before calibration (b) TCP position after calibration

Figure 5.2: TCP position calibration

5.1.2 Dataset management

The data for this project was collected from 3 sources: intinsic data, extrinsic data and task data.
After all of the separate data was collected in the data collection process and the final dataset was
made, a new file containing intrinsic and task data was created. As shown in Figure 6.1, this file
contains all of the separate screw measurements of the screwdriver and the robot, with the screw ID
("Source") connected to the sensor type ("Type"), with the time and value. This dataframe was
saved as a Hierarchical Data Format version 5 (HDF5). HDF5 is an open source file format that
supports large, complex, heterogeneous data.

Since extrinsic data comes in the waveform format, it will be connected with the intrinsic and task
data after the feature selection process if needed.
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Figure 5.3: Combined dataframe

One of the requirements of this project, shown in Table 3.1, is to test different data on the machine
learning algorithms. This can be an indicator on how using different sensory data can influence the
classification of anomalies. The following data combinations will be used in building the models:

1. Intrinsic data

2. Task data

3. Extrinsic data

4. Intrinsic data + Task data

5. Intrinsic data + Task data + Extrinsic data

5.1.3 Data cleaning

After the data is collected and after features are extracted, there can be problems and errors. During
the data cleaning of the intrinsic, task and extrinsic data some measures were taken to clean the
data of these problems. Most notable measures are:

1. Check for missing (NaN) values: checking if there is missing values in the dataframe by
the use of numpy ’isna()’ command

2. Check for infinite values: checking if there is infinite values in the dataframe by the use of
numpy ’isinf()’ command

3. Check for values too large for ’float64’: the maximum finite presentable floating-point
number in ’float64’ is approximately 1.8e308. There is a check on if the dataframe contains
values larger than this

After the measures check the data for the problems, there is a question on dealing with them. No
errors or missing values have been found in the data received from the sensors.

Cleaning noise from the audio

As mentioned in Section 3.4, audio was recorded in a environment that contains a large amount
of external noise. This "noisy" audio is not the part the process itself, hence it is labeled as noise.
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Every day during the data collection a 10 minute audio recordings of the external noise were recorded.
This "noise" audio files will be used in the noise reduction process.

Implementation of noise reduction is conducted with the following steps:

1. The Short-Time Fourier Transformation (STFT) is calculated from the "noise",
10 minute audio recordings.

STFT as a sequence of Fourier transforms of a windowed signal, it provides a time-localized
frequency information in situations where frequency components of a signal vary over time.
[12] This allows us to see how the frequency content of the signal changes over time, which is
helpful in identifying and removing time-varying noise.

2. Calculating the average frequency range.

3. Applying a low pass filter.

4. Noise reduction of the audio dataset.

Figure 5.4 shows a example of a screwdriving audio file before and after noise reduction. It is visible
how the noise audio which occupies the higher frequency range is removed from the audio file, while
the important middle and lower frequency range stays.

Figure 5.4: Mel spectrograms before and after the noise removal process

5.2 Feature selection

After the datasets that we want to use for machine learning are selected and preprocessed, the
next step is to select features. Currently the data from the sensors of the screwdriver and data
from the robot is in raw sensory format. Every screw has a time-series dataframe which shows the
sensor measurements trough the screwdriving process. Raw time series data can often be noisy,
high-dimensional, and contain complex temporal dependencies, making it challenging for machine
learning models to learn from directly. Feature extraction can help alleviate these challenges.
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5.2.1 Intinsic and task data features (TSFresh)

The features can be extracted manually, but there are different libraries that help with this process.
One of them is called TSFresh. It is a python library designed for automatic feature extraction
from a time-series dataset. It extract the relevant data and provides a comprehensive set of features.
Some of feature extraction methods are basic statistics (like mean, variance), trends, seasonality and
temporal dependencies.

Advantage of using a library like TSFresh is the ability to automatically select relevant features,
shown with Figure 5.5. The library uses a hypothesis test to determine what is the best selection of
features for the given problem. This reduces the risk of overfitting and removes the need for manual
feature selection.

Figure 5.5: Automatic feature extraction

When using automatic feature extraction there are different settings that can be selected in the
TSFresh library. The two settings that are selected are:

• MinimalFCParameters: (Intrinsic data - 50 features, task data - 70 features)

• EfficientFCParameters: (Intrinsic data - 3885 features, task data - 5439 features)

These two settings specify how many features will be extracted from the dataset. There are settings
with a even larger amount of features, but extracting larger number of features would require stronger
hardware then the one used for this project. THat is the reason of only using these settings.

In case of the time-series data, TSFresh is capable of handling multivariate time series and can
automatically extract features from each variable. This is useful in this scenario, where the time
series is characterized with multiple parallel streams of data from different sensors. [25]

Here are some examples of the data that the TSFresh features cover:

• Distribution of the time series: statistical properties including mean, median, standard
deviation, variance, skewness, kurtosis, quantiles, etc.

• Linear trends: features related to a linear regression model fitted to the series

• Non-linear trends: features obtained by fitting a variety of non-linear models to the time
series data

• Complexity of the time series: features that show the time-series complexity, including
number of fluctuations, number of crossings above and below the mean, etc.

• Stochastic properties: features founded on autoregressive models, including autocorrelation,
partial autocorrelation, etc.

• Fourier Transform coefficients: features derived from the coefficients of the Fourier Trans-
form

• Seasonality: time-series seasonal decomposition

• Statistical tests: outcomes of various statistical tests, including Augmented Dickey-Fuller
test (stationarity), The Anderson-Darling test (normality), etc.

• Change detection: capturing fast changes in the time-series

45



5.2 Feature selection Group 14

• Wavelet Transform coefficients: time-series at various scales

5.2.2 Extrinsic data features

For the audio extrinsic data, extracting features has to be configured separately. TSFresh can only
automatically extract features from a specific format, and is not adjusted to extract features from
audio files. The extrinsic data is recorded in .wav format, so it first needs to be converted, after
which the features are extracted.

To extract features from the audio "librosa" library was used. Librosa is a Python open-source
library, which is used for audio and music processing and analysis. This library provides necessary
tools to retrieve and create audio and music information with a user-friendly interface. [8] Key
features of the librosa library are:

• Audio feature extraction

• Audio visualization

• Audio manipulation

• Integration with other Python libraries

After research, these are the features that were extracted from the audio:

1. ’chroma_stft’: Chroma features can be used as a tool for representation of music audio,
where the entire spectrum of the audio file is projected onto 12 bins which represent 12
semitones (or chroma) of the musical octave. In music theory, notes that are one octave apart
are perceived as similar, so knowing the distribution of pitch class can be a good feature.

2. ’spec_contrast’: Spectral contrast is used to show the difference in amplitude between peaks
and valleys inside of the sound spectrum. High and low contrast indicate clear harmonic
structure and inharmonic structure (noise). This contrast is used as a tool in quantifying
prominence of the harmonic peaks.

3. ’tonnetz’: Tonnetz is a feature that presents a geometric representation of musical pitch
classes (notes), often used to visualize tonal relationships in music. This can indicate harmonic
relations of different notes and is often used in music analysis.

4. ’spectral_bandwidth’: Spectral bandwidth refers to the width of the band of frequencies
in a sound. While a sound having a wider bandwidth usually means that the sound is "noisy"
or complex, if a sound has a more narrow bandwidth might indicate a more pure tone.

5. ’zero_crossing_rate’: Zero crossing rate is the rate at which a signal changes from positive
to zero to negative, or from negative to zero to positive. It’s often used as a simple measure of
the perceptual ’pitch’ of a sound - higher zero crossing rates can often be indicative of higher
pitch.

6. ’spectral_rolloff’: Spectral rolloff is a specific frequency, underneath which is a specified
percentage of the total spectral energy. If the roloff is at 85%, this is the frequency below
which 85% of the energy is contained. This is a good indicator for harmonic (low roloff) and
noisy (high roloff) sounds. The best way to describe it is as the ’brightness’ of the sound.

7. ’mfcc’: Mel-frequency cepstral coefficients (MFCCs) are a set of features (40 features) which
are used to concisely describe the overall shape of a spectral envelope. They provide a high-level
representation of the power spectrum of an audio signal in a way where they capture the
phonetic content carrying elements of the signal.
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5.3 Feature normalisation

The extraction of features results with different features from the data which are diverse in the
format and scale. Because of that feature normalisation can be an important step in the preprocesing
stage, because it brings all features to a similar scale or distribution. Normalisation helps in
avoiding problems, which arise by varying units, ranges and magintudes between features. That can
have a negative influence on the performance of different ML algorithms. In the project the main
normalisation technique is the popular sikit-learn StandardScaler. [21]

The StandardScaler is a widely used feature normalisation technique, which works with a simple
principle forcing features to have a zero mean and unit variance. It functions by independently
scaling each feature and transforming the data in a way that it has a mean of zero and a standard
deviation of one. This is achieved by the following mathematical equation:

Xscaled =
X −mean(X)

std(X)

The X is representing original values of features, mean(X) is the mean of these values and std(X) is
the standard deviation of the feature values. By subtracting X with the mean of X, StandardScaler
creates transformed feature vales with a mean of zero and a standard deviation of one.

In conclusion, the benefits of using the feature normalisation techniques are:

1. Preserving information by keeping the distribution and shape of the original feature while
forcing them to the same scale.

2. Model improvement, because some machine learning algorithms perform better and converge
faster with the use of normalised features. By using normalisation technique like StandardScaler,
the model is not biased towards the features with larger ranges and scales.

3. Features are more interpretive, since they are all on the same scale. Because of this their
coefficients and feature importance can be compared directly.

Another thing to note is that ensemble methods have a built-in mechanisms which are making them
robust varying scales and distributions. Internal processes like relative comparisons and model
aggregation can enable them to not need feature normalisation.
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As the final chapter of the solution phase, model building and results will show how do different
models deal with the classification of the data that was collected. This report has specified the
different screwdriving types or classes that will be used as the "label" in classification. The goal
will be to see how accurate are the different models in recognising which screw belongs to which
screwdriving type. As a starting point, this chapter will give an overview of the method in which
the results will be compared and interpreted.

6.1 Researched models

This chapter will use the finalised sets of features and data to build machine learning models
which will classify the data as the result. After the preprocessing and feature selection, different
combinations of features are created. Models will use these feature combinations and show the
results of the classification. Figure 6.1 shows how different sources of data will be used in creating
the models. The models are divided in 3 stages:

Figure 6.1: Diagram of model building

1. Baseline models: this models will be created from every data source separately. There will
be 3 models from intrinsic, task and extrinsic data. Baseline models will be used as the basis
for further model building. On the baseline models different algorithms are tested, with only
small hyperparameter changes to achieve the optimal model accuracy’s.

2. Intrinsic + Task model: this model will combine the intrinsic screwdriver data and task
robot data together. The goal is to see if there are improvements on the accuracy of classification
using these two data sources in combination.
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3. Combined "meta" model: this final model will include all of the data sources together and
explore how do they work together. The best algorithm will be explored together with the
best hyperparameters.

6.2 Splitting the data

After the data needed for classification including the training data and the "grand truth" labels is
loaded, it needs to be separated in data for model training (training set) and data for model testing
(test set). It is sparted using the sikit-learn’s train-test-split function shown in Figure 6.2.

Figure 6.2: Train-test-split function

To keep results of different models comparable it is decided to split the data in 60% - 40% ratio.
This ratio was decided based on the smaller size of the dataset. The parameter "random_state",
keeps the data combination same every time the model is trained, so the results can be replicated.
As the result, Table 6.1 shows how the test data is distributed based on the 5 classes.

N NS OT P UT TEST SET
165 66 138 59 109 537

Table 6.1: Training set distribution by class

6.3 Algorithm selection

When building the models, different ML algorithms are used. The selected algorithms are tested
on the baseline models, to achieve the optimal results of the classification. Most of the machine
learning algorithms are created with the scikit-learn library. [19] The selected algorithms are:

1. K-Nearest Neighbours (KNN): KNN algorithm belongs to the group of algorithms using
instance-based or memory-based learning. This algorithm does not learn a model from training
data but memorizes the dataset instead. The classification of new instances is made based
on similarity measures (like distance) with instances stored in memory. The distance of the
neighbors can be calculated using different metrics like Euclidean, Manhattan, or Minkowski,
which correlates to the specific problem. Because the KNN algorithm makes no assumptions
about the distribution of underlying data, it is suitable for non-linear data. [18]

2. Support Vector Machines (SVM): SVM algorithms are supervised learning algorithms
primarily used for classification. Main goal of an SVM is finding a hyperplane in an N-
dimensional space (N - the number of features) that separates and classifies the data points.
If the dataset is separable linearly, SVM will find the optimal hyperplane from the margin
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of the nearest data point of all classes, also known as support vectors. Usually SVM is good
in dealing with high dimensional data. If the data is non-linear, SVM can use a kernel trick
by transforming the data into a higher-dimensional feature space. It is important to carefully
select the kernel function and associated parameters. [22]

3. Random Forrest (RF): RF is a machine learning algorithm often used that builds on the
simpler decision tree algorithm. It belongs to a group of ensemble learning methods, meaning
that it takes the concept of a single decision tree and creates a group of them ’forest’ and
arrives at the best solution. RF works on the principle of generating multiple decision trees
and aggregating their results. Every sample is drawn with replacement (bootrstrap sample)
from the training set and builds a tree in the forest. When splitting each node during the tree
construction, the best split is found from a random subset of features size m, or from all input
features. The randomness makes the model more robust then a single decision tree which helps
with overfitting problems. In classification the final prediction is based on the majority voting
principle in a way where the class with most votes from all trees in the forest becomes the
prediction of the algorithm. Ensemble learning models do not require feature scaling, and the
key parameter is the adjustment of the number of trees, number of features sampled at each
split and the depth of the trees. [20]

6.3.1 Algorithm settings

Adjusting the hyperparameters of the algorithms to improve their ability of classification is one of
the important steps in building machine learning models. The models selected do not have a large
amount of parameters that can be changed, but the most notable ones are:

KNN:

• N-Neighbours - the number of neighbours is a parameter of the KNN algorithm which sets the
number of data points that the target data point will look for when selecting a class it belongs
to. Often, it is a good practice to use the KNN algorithm with different number of neighbours
to see which number gives the best algorithm precision.

SVM:

• Kernel - kernel, or the kernel function is used to transform the input data into a higher-
dimensional space which allows easier classification with the linear classifier. Often used choices
for the kernel function are "linear", "rbf" (Radial basis function), "sigmoid" and "poly".

• Gamma - parameter used in ’rbf’, ’poly’ and ’sigmoid’ kernels. As an example in "rbf" kernel,
it defines the influence of a single training data point. Low values have bigger influence, and
high values lower.

• C - regularization parameter, also named cost parameter. The purpose of this parameter is
determining the trade-off between achieving low error on the training data and minimizing
the model complexity. Lower C creates a smoother decision surface and the large C tries to
classify all training data points correctly, in a way of giving the model more freedom to select
more samples as support vectors.

RF:

• N_estimators - this value defines the number of decision trees in the random forest algorithm.
By increasing the number of estimators, the model’s performance increases with an increase in
computational requirements.
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• min_samples_split - this value represents the minimum number of samples that is required to
split an internal node. If the node has less then this value, it is not split and it is turned to
a leaf node by default. This hyperparameter is often used to help in the overfitting control.
Small value of this parameter makes the model more complex, which could cause oferfitting.
Larger value of this parameter leads to a simpler model, which could cause underfitting.

• max_depth - this parameter shows the maximum depth of the tree. This measure is the
maximum distance between the root and any leaf. By not specifying this parameter, nodes
will be expanded until all leaves are pure or containing lessthen ’min_sample_split’ samples.
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As shown, there are 3 model divisions in machine learning. Basic models, Intrinsic + Task model
and Combined "meta" model. This divisions include different models created, so the results will give
information about the accuracy of every model, and the ranking of the models in the division. In the
Results section, the most important information is presented. The classification reports, confusion
matrix and other relevant data for the models are presented in the Appendix.

7.1 Results format

The main format of the machine learning results of models will be a confusion matrix. Confusion
matrix is presented as a table used in evaluation of the performance of a classification model, usually
in supervised learning. In summary it represents the model’s predictions compared to the true
values.

7.1.1 Binary classification problem

As an example of a binary classification, Table 7.1 shows the following measurements:

Actual Positive Actual Negative
Predicted Positive TP FP
Predicted Negative FN TN

Table 7.1: Confusion matrix for binary classification

• True positive (TP): this measure shows the number of instances where the positive class is
predicted correctly as a positive

• False positive (FP): this measure shows the number of instances where the positive class is
predicted incorrectly as positive.

• False negative (FN): this measure shows the number of instances where the negative class
is predicted incorrectly

• Negative (TN): this measure shows the number of instances where the negative class is
predicted correctly

From the classes presented, the metrics that are needed to express the model’s performance are
calculated:

Recall: indicator of the model’s ability to identify all instances of the positive class correctly

Recall = TP
TP+FN

Precision: indicator of the model’s ability to classify the positive class correctly

Precision = TP
TP+FP
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F1 Score: metric that combines recall and precision. It is defined as the harmonic mean of precision
and recall

F1 = 2 · Precision·Recall
Precision+Recall

7.1.2 Multi-class classification problem

In the case of this project the confusion matrix will have 5 classes, shown in Table 7.2.

Actual class A B C D E
Predicted Class A AA AB AC AD AE

B BA BB BC BD BE
C CA CB CC CD CE
D DA DB DC DD DE
E EA EB EC ED EE

Table 7.2: Confusion matrix with 5 classes

• The top-left diagonal to bottom-right (AA, BB, CC, DD, EE) shows the number of instances
predicted correctly for each class. AA is the number of instances in class A that are correctly
predicted as class A, BB is the number of class B instances that are correctly predicted as
class B, and so on. This is the same as True Positives in the binary matrix, but for each class
separately.

• Off-diagonal elements show the instances which are missclassified. AB represents the instances
which are of class A but were predicted incorrectly as class B by the classifier.

To better understand and visualise different model results, Figure 7.1 shows two diagnostic curves
which help in the visualisation and comparison of different classification models. During the results
the ROC curve and Precision-Recall curve are presented for every model.

(a) ROC curve
(b) Precision-Recall curve

Figure 7.1: Model diagnostic curves
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Receiver Operating Characteristic (ROC)

ROC curve is a graphical plot often used in diagnostics of a machine learning model. It illustrates
the classification model’s diagnostic ability as its discrimination threshold is varied. It is created
by plotting the rate of the true positives (recall) against the rate of the false positives (fall-out)
at various threshold settings. Area under the ROC curve is called AUC (Are Under the Curve).
It summarises the overall model performance as a single scalar value. 1.0 is ideal and it indicates
that the classifier shows the prefect discriminatory ability. The closer the curve is following the left
border and the top border of the plot, the more accurate the model.

Precision-Recall

A Precision-Recall curve is a graphical plot of the precision (y-axis) against the recall (x-axis), similar
to the ROC curve. This diagnostic tool shows the tradeoff between recall and precision. Bigger area
under the curve shows a high recall and high precision.

7.2 Baseline models

First results are based on the baseline models containing data types separated by the source of data.
The results of different models are presented in the Appendix B, and contain information on the
KNN, SVM and RF model for every data source in a form of classification reports and confusion
matrices.

Table 7.3 shows the accuracy comparisons of every model based on the algorithm used and data
source provided. The intrinsic baseline model and the task baseline model performed the best with
the RF algorithm, while the extrinsic baseline model performed the best with the SVM model.

Table 7.3: Combined baseline model results

7.2.1 Intrinsic baseline model

From the results, the Random Forest algorithm was best in classification of the screwdriver intrinsic
data. The algorithm showed an accuracy of 97% which shows the classification was successfully in
general. Model shows strong performance with high precision, recall, and F1 score across multiple
classes. Model is able to classify the majority of instances correctly. For a deeper look in to the
results of different algorithms, data of the algorithms is available in Appendix B.1.

Algorithm settings:

• KNN: number of neighbours sekected in the KNN algorithm is n=3. Figure B.1 shows how
does the algorithm perform with different number of neighbours.

• SVM: kernel selected for the SVM algorithm is "rbf".

• RF: N-estimators was selected to be N=100.
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Results:

Figure 7.2: ROC and Precision-Recall graph for intrinsic data

Figure 7.2 shows the ROC and Precision-Recall curves for algorithms that are using intrinsic data.
An important metric is the area under these curves, where it is also visible that RF models shows
the best results. RF and SVM results show similar classification accuracy, while the KNN algorithm
has a lower accuracy. All of the algorithms have good performance.

Figure 7.3: Feature importance of the intrinsic
baseline model

Figure 7.4: Confusion matrix of intrinsic
RF model

Figure 7.3 shows the feature importance of the trained Random Forest algorithm. The bar graph
contains a set of top 20 best performing features of this model. Feature importance’s are calculated
using the .feature_importance’s attribute and they represent the relative importance of each feature
in the classification process. The feature importance can be used to adjust the models and reduce
overfitting by using only the important features, but it was not done for the baseline models. All of
the top 20 features include torque, current and angle features.

Figure 7.4 shows the confusion matrix for the best algorithm, which is in this case RF. The algorithm
showed a good classification capability, with the only notable mistakes are 3.03% predictions of the
normal screwdriving as under-tightening and 2.9% predictions of over-tightening as under tightening.
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7.2.2 Task baseline model

From the results, the Random Forest algorithm was best in classification of the robot task data.
The algorithm showed an accuracy of 95% which shows the classification accuracy was a little lower
then the accuracy of the intrinsic dataset, but is still successful in general. Model shows strong
performance with high precision, recall, and F1 score across multiple classes. It is able to classify
the majority of instances correctly. Specific results of the algorithms are available in Appendix B.2.

Algorithm settings:

• KNN: number of neighbours selected in the KNN algorithm is n=10. Figure B.5 shows how
does the algorithm perform with different number of neighbours.

• SVM: kernel selected for the SVM algorithm is "rbf".

• RF: N-estimators was selected to be N=100.

Results:

Figure 7.5: ROC and Precision-Recall graph for task data

Figure 7.5 shows the ROC and Precision-Recall curves for algorithms that are using task data. As
in the case of intrinsic data, the RF and SVM algorithm are closer together in the AUC.

Figure 7.6: Feature importance of the task
baseline model

Figure 7.7: Confusion matrix of the task
RF model
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Figure 7.6 shows the feature importance of the trained Random Forest algorithm with task data. The
bar graph contains a set of top 20 best performing features of the task RF model. Tool Centerpoint
Position (TCP) features in z axis occupy the majority of the top 20 features. One feature has close
to double influence of the other features, and it is TCP_z index mass quantile. This tsfresh feature,
gives insights into the distribution and concentration of values in the TCP_z data of the robot. It
is giving information about the index value below which 80% of the mass or weight of the data is
located.

Figure 7.7 shows the confusion matrix for the best algorithm, which is in this case again RF. The
algorithm showed a good classification capability, with the only notable mistakes are the 5.45%
predictions of the normal screwdriving as over-tightening. This makes sense, because the robots
position should stay in a similar position, without an offset, during these 2 screwdriving types.

7.2.3 Extrinsic baseline model

Before presenting the results of the extrinsic baseline model, metrics of the data before and after
cleaning will be presented. The goal was to clean the audio data from noise in the preprocessing
stage, explained in Section 5.1.3. The following results in Table 7.4, show how successful was the
cleaning process by comparing the results of the RF algorithm on audio data before and after "noise"
removal process. Figures 7.8 show the confusion matrices of data before and after noise removal.

RF algorithm accuracy precision recall F1-score
"Noisy" audio data pre-cleaning 70.95 72.98 70.95 70.04
"Clean" audio data after-cleaning 78.03 80.25 78.03 77.59

Table 7.4: Comparison of the RF algorithms for extrinsic data before and after cleaning

(a) "Noisy" data confusion matrix (b) "Clean" data confusion matrix

Figure 7.8: Comparison of RF algorithm’s confusion matrices of extrinsic data

From the results of classification, there is an increase in RF algorithm accuracy on "clean" audio
data of around 8% compared to the "noisy" data. This is a good indicator that the noise removal
process was successfully in removing the outside noise, and the result is audio files which provide
better data for classification.

From the main results in Table 7.3, the Support Vector Machines algorithm was best in classification of
the robot extrinsic data. The algorithm showed an accuracy of 78.21% which shows the classification
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accuracy was a significantly lower then the accuracy of the intrinsic and task dataset, but still
has promising results, when all the problems with recording sound of the process are taken into
consideration. Specific results of the algorithms are available in Appendix B.3.

Algorithm settings:

• KNN: number of neighbours selected in the KNN algorithm is n=4. Figure B.9 shows how
does the algorithm perform with different number of neighbours.

• SVM: kernel selected for the SVM algorithm is "rbf".

• RF: N-estimators was selected to be N=100.

Results:

Figure 7.9: ROC and Precision-Recall graph for extrinsic data

Figure 7.9 shows the ROC and Precision-Recall curves for algorithms that are using extrinsic data.
Extrinsic data source gave best results of the classification with the SVM algorithm, together with
the RF algorithm. KNN algorithm showed worse results by a big margin.

Figure 7.10: Feature importance of the extrinsic
baseline model

Figure 7.11: Confusion matrix of the extrinsic
SVM model

Figure 7.6 shows the feature importance of the trained Random Forest algorithm with extrinsic data.
The bar graph contains a set of top 20 best performing features of the extrinsic RF model. The
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features with the most influence are the different MFCC features, mentioned in the Section 5.2.2.
They provide a compact representation of the spectral characteristics of audio signals, making them
effective for audio classification tasks. Also, all of the features extracted from the audio data are
providing an influence in classification.

Figure 7.11 shows the confusion matrix for the best algorithm, which is in this case SVM. The
algorithm showed a worse classification capability compared to the other data sources. This
makes sense, because the audio was not recorded in the ideal conditions. Biggest problems in the
classification were during the classification of the under-tightening, pose anomaly and over-tightening
screw as the normal screw type. Other predictions showed better results.

7.3 Intrinsic + Task model

All of the baseline models show that the KNN algorithm unperformed during the classification
compared to the rest. Intrinsic and Task models showed best performance with the use of SVM
and RF algorithm, with RF algorithm giving the best results. Because of that the Intrinsic + Task
model will focus on maximizing these algorithm’s performance. As mentioned, this model includes
the screwdriver intrinsic data and robot task data combined.

7.3.1 Random forest algorithm (intrinsic + task)

To achieve the most optimal results with the RF algorithm, a process called grid search was conducted.
By using grid search, the optimal hyperparameters of the RF algorithm are determined. Figure
7.12 shows the 3D visual representation on how do different hyperparameters influence the model
accuracy. Specific metrics of this model can be found in Appendix C.

Figure 7.12: 3D graph of hyperparameter grid search of the RF model
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Algorithm settings:

From the grid search the following hyperparameter values were decided:

• N-estimators = 100

• max_depth = None

• min_samples_split = 2

This showed that using the default hyperparameters of the RF algorithm gave the best results from
the start, and there is no need for further tuning.

Results

Figure 7.13: Feature importance of the
intrinsic + task model

Figure 7.14: Confusion matrix of the
intrinsic + task RF model

Figure 7.13 shows the feature importance of the trained Random Forest algorithm with intrinsic
and task data combined. The bar graph contains a set of top 20 best performing features of the
intrinsic + task RF model. From the features shown it is important to notice that all of the 20
features belong to intrinsic data source. This means that the data from does not have a big influence
on the model, resulting in a similar accuracy score to the intrinsic model.

Figure 7.14 shows the confusion matrix for the RF algorithm. The algorithm showed a good
classification capability, similar to the intrinsic model. As an example, even some missclassifications
are of the same percentage, like the wrong classification of over-tightening to under-tightening of
2.9%. This can be seen by comparing the RF confusion matrix of intrinsic and task data in Figure
7.14 and RF confusion matrix of intrinsic data in Figure 7.4

7.3.2 TSFresh feature extraction settings

Since the results of the Intrinsic + Task model are giving good classification results, without making
big improvements on the best performing intrinsic data baseline model, this section will explore how
using a smaller number of features extracted from the TSFresh package influences the classification.

As mentioned in Section 5.2.1, the features were extracted with two TSFresh setting instances,
MinimalFCParameters and EfficientFCParameters. Since the results show that for intrinsic and task
data, big amount of features have little or no importance in the model performance, the plan is to

61



7.4 Combined model Group 14

test what results would a smaller set of features provide in terms of the classification ability of the
RF algorithm.

RF algorithm was trained with minimal and efficient features and the results are shown in the Table
7.5, together with the confusion matrices in Figure 7.15.

RF algorithm accuracy precision recall F1Score
MinimalFCParameters 97.02 97.02 97.02 97.01
EfficientFCParameters 97.21 97.23 97.21 97.20

Table 7.5: Comparison of the RF algorithms for intrinsic + task model before and after cleaning

(a) Model with minimal features (b) Model with efficient features

Figure 7.15: Comparison of RF algorithm’s confusion matrices of Intrinsic + Task model with different
feature sets

The models perform good in both cases, showing a strong classification capability. Since the difference
in the number of features is big, this is an indicator how a vast amount of efficient features have no
impact on the performance in classification.

7.4 Combined model

As the final model, the Combined model includes all of the data sources combined. This was done
by combining the features of all 3 data sources together. Since intrinsic and task data performed
the best on the RF algorithm, and audio data on SVM algorithm, both of them are tested with the
combined data. Further information on the different algorithms can be found in Appendix D.

Before going into the models, ROC and Precision-Recall graph is presented in Figure 7.16, for the
KNN, SVM and RF algorithm of the combined model.
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Figure 7.16: ROC and Precision-Recall graph for combined data

Since all of the algorithms performed good, as can be seen in the AUC measure from the curves,
only the RF algorithm will be presented in the report.

7.4.1 RF algorithm (combined)

The RF algorithm again performed similar to the intrinsic baseline model. From that it can be
concluded that the screwdriver data intrinsic to the process has such a big impact on the models,
that other sources of data do not bring a big impact on the model’s performance. Confusion matrix
of the algorithm is shown in Figure 7.18.

Algorithm settings:

From the grid search the following hyperparameter values were decided:

• N-estimators = 100

• max_depth = None

• min_samples_split = 2

Results:

Figure 7.17: Feature importance of the
combined model

Figure 7.18: Confusion matrix of the combined
RF model
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From the Figure 7.17 it is again clear how much influence do intrinsic features provide. However
one feature has a big impact, which is TCP_z energy ratio by chunks. The energy ratio could
refers to the ratio of the energy in one chunk to the energy in another chunk, or to the total energy.
For example, it could be used to identify whether certain periods of time (chunks) contain more
"activity" (higher energy) than others. In this case it refers to the sum of the squares of the signal
values.

With the results of the models, often times features related to the Tool Centerpoint Position in
z-axis have a impact comparable to the intrinsic screwdriver data. This is a good indicator that
from the task dataset, TCP_z is the most important value recorded.

7.5 Results summary

After presenting the results of different ML models, a summary will show what can be concluded
from the results provided after the model building. The results encompassed models with different
data sources and data combinations, algorithms and algorithm hyperparameters.

7.5.1 Baseline models

The baseline models tested how different algorithms classify screw classes by the use of different
sources of data. All of the models showed a good classification capability, with some outperforming
the others.

The best performing model, intrinsic baseline model, gave the best results with only wrongly
classifying a few of the screw classes. This was to be expected, since the data intrinsic to the
process should be best in giving information about the screwdriving process itself. Also, the sensors
mounted on the screwdriver gave precise measurements of the torque, current and similar values.
The algorithm that worked best with this data was a RF algorithm, although other algorithms also
showed a good performance. After calculating the feature importance, it was concluded that a lot of
features extracted with the TSFresh package did not have a big impact on the model’s performance.
The best performing features were features related to the torque, current and angle.

The second best performing model was the task baseline model. This model showed surprisings
results with a good classification accuracy, especially with the RF algorithm. Again similar to the
intrinsic baseline model, task model was able to classify the majority of instances correctly. When
looking trough the top 20 features by feature importance, It was concluded that the most important
feature was TCP_z, or the robots Tool Center Point in z-axis.

The third performing model was the extrinsic baseline model. This model showed a decent classifica-
tion capability, but unlike the task and intrinsic models, extrinsic baseline model showed best results
with the SVM algorithm. During the model building, this model was tested with the raw unprocessed
"noisy" data and audio data after processing. This showed a substantial improvement on the model’s
performance which showed that the preprocessing was done successfully. After feature importance
calculation, it was clear that the features related to the mel-frequency cepstral coefficients (MFCCs),
were the most influential in the model’s performance.

7.5.2 Intrinsic + Task model

This model included data from the screwdriver (intrinsic data) and data from the UR10 robot (task
data) in combination. This combination was achieved by combining the two sets of features. The
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main algorithm used in this model was the RF algorithm, where the hyperparameters were tuned to
achieve the best performance, but it was concluded that the initial default parameters showed the
best results. The results of this RF algorithm were close to same to the intrinsic baseline model.
Also, the most important features included only the intrinsic screwdriver data features. This means
that the features from the robot have a small impact on the final classification precision.

Because there was a large amount of features that had zero to no importance on the model, a new
approach was to use a smaller subset of features from the TSFresh package. The MinimalFCPa-
rameters with less features and EfficientFCParameters with more features models were created and
compared. The results showed that the model with minimal features provides a strong performance,
close to the model with more features.

7.5.3 Combined model

The final models created were the combined "meta" models. These models included features of
all 3 data sources with 3 algorithms, which resulted in 3 models. Again all of the models showed
an excellent performance during classification, with the RF model performing best. Like it was
the case with the Intrinsic + Task model, the intrinsic screwdriver data features were the most
important features during classification and dictated the results of the algorithms. Because of that
the performance of the combined model is similar to the performance of the intrinsic baseline model.
Only one feature from the task robot data was in the top 20 features by importance, and it is
again related to the TCP_z. This shows how the TCP_z feature can benefit even the models with
intrinsic data source.
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8 Conclusion

This chapter will give a discussion and overview on the completion of the project, by answering the
Research Objectives. This will include answering the different sub questions for every objective and
summarise the steps of the project. Afterwards, a final conclusion of the project will be presented,
with the thoughts on the discussion and results.

As the final part of the project, further steps and improvements will be presented in project
continuation segment. This segment is meant to show what could be the further uses with this
project and results.

8.1 Research objectives completion

As a start of the conclusion the answers and completion of the Research Objectives, that are
introduced in the Section 3.3, are provided.

Research Objective 1 (RO1)

The first research objective was to design and implement a data collection and storage system for the
screwdriving cell and create a dataset for ML purposes. The majority of objectives were completed,
with an exception of the simultaneous data collection. Table 8.1 shows the completion of RO1.

Table 8.1: Completion of Research Objectives 1

-find what process data can be collected (intrinsic, extrinsic, task) and decide on which will be collected

The sources of data collection were screwdriver sensors (intrinsic data), UR10 robot (task data)
and Azure microphone (extrinsic data). It was decided to collect data from all 3 sources after
consideration. There were other possibilities, like images or vibration sensors, but the data that was
decided to collect was the best fit for this project, when the available resources and timeframe are
taken into account.
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-decide on the anomaly types that will be looked into

The goal was to use classification for different types of screwdriving that happen during the
manufacturing process. In the first iteration, there was 7 screw types, but in the end it was decided
to have 5 classes of screw types, by combining three classes in to one. This was agreed upon by
discussion with the supervisors. The reason for this number of anomaly types was the size of the
dataset. If the dataset is expanded, more anomalies can be included into classification. The classes
selected were normal screwdriving, over-tightening, under-tightening, under tightening, pose anomaly
and no-screw.

-create a data collection system which will:

• collect different types of data

The data collection system was created which included collection of data from 3 sources by
the use of computer WSK3 program and python scripts.

• collect the data simultaneously

In the ideal situation all of the data collection would happen trough the same python program.
On this project, because of the setup complications and the older version of the UR10 robot’s
operating system this was not possible without making modifications to the screwdriving cell.
To avoid that a signal from the PLC was used to synchronize the collection of the data with
multiple programs. The data from the robot and microphone was collected simultaneously,
but the intrinsic data from the screwdriver was collected with a separate computer program.
This resulted in a small delay between the data and different sampling frequencies, but it did
not have a big impact on the project results.

• collect the data in a proper format

The data collection system was implemented in two stages, where the data was collected and
stored in different formats. Screwdriver data is collected in a .KXML format, robot data in
.csv format and audio data in .wav format. All of the formats functioned as ML training data
after processing.

• collect the data automatically

The data was not collected automatically. The whole process of data collection had to include
a operator, which would have to step in multiple times into the process. Because of the robot
often malfunctioning, implementing a automatic data collection system would not be possible.

-create a labeling and backtracking structure for the data gathering

The second stage of the data collection system included formatting, labeling and storage based on
the screw ID and anomaly type. After every beam was screwdrived, the operator had to inspect
every screw and provide input to the data sorting python script. This metadata can be used to
backtrack to every individual screw if needed.

-create a new dataset by conducting a series of experiments, that will be used as the basis for training
of the machine learning models

As the final part of the RO1, a state-of-art dataset including screwdriver, robot and microphone
data was created. This was the most time-consuming part of the process, because it included a lot
of trial an error during the screwdriving process. The final result was a dataset which included 1341
recorded screws with 3 sources of data for each screw.
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Research Objective 2 (RO2)

The second research objective was to preprocess and clean the data which was collected in the data
collection. All of the objectives were completed. Table 8.2 shows the completion of RO2.

Table 8.2: Completion of Research Objectives 2

-convert the kXML files to a more manageable data format

During the data sorting phase of data collection, the .KXML files were converted to a more managable
tabular .csv format by the data sorting script. This turned to semi-structured data format to a
structured tabular format, where every column of the table belonged to a sensor measurement. The
data was carefully renamed and saved so that it represents the screws appropriately.

-find a way to combine different data types with different sampling frequencies and delays in the data
collection process

These problems were resolved by the use of the feature extraction process. The ML algorithms are
taking input in terms of values that describe the time-series dataset, and not the values in the raw
format. Because of this the sampling frequency and delays had little effect on the end results of the
classification with machine learning.

-remove the unnecessary data from the dataset

During the preprocessing stage, the data was cleaned and prepared for feature extraction and
classification. Robot data was configured to be fixed in the same point for every screw. From the
audio data the unnecessary outside "noise"was removed. All of the data was checked for irregularities
and errors. Also, during the ML process, models were tested with only the relevant features, by
removing the features of low importance.

-remove the noise from the data

By the use of a low-pass filter, the audio was cleaned from the background noise generated by servers
and other factors. This noise was recorded, averaged and then removed from the dataset.

-handle missing values from the data

All of the data was checked for missing values or infinite values during the preprocessing stage. Also,
during the feature extraction with TSFresh package, the missing values created by the program were
also filled or removed, before inputing them to a ML algorithm.

-visualise the data

At the end of the data collection phase, together with during the preprocessing and feature selection
phase, the data was properly visualised and analysed. This was done to check the data for problems
and errors, and to analyse if there can be improvements.
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Research Objective 3 (RO3)

The third research objective was to extract the relevant features and make different dataframes from
the data collected for ML applications. All of the objectives were completed. Table 8.3 shows the
completion of RO3.

Table 8.3: Completion of Research Objectives 3

-from intrinsic, extrinsic and task data, extract the features relevant to the process

Intrinsic screwdriver data and task robot data had the same feature extraction procedure. Since the
data was time dependant, a package for feature selection from time-series data called TSFresh was
used. This resulted in automatic feature extraction of intrinsic and task data.

Extrinsic data had feature extracted as a separate process, where features that are used in speech
recognition and audio analysis were extracted.

-create different combinations of features and find the ones which give best results in the ML algorithms

The features were combined in different ways, to test how do they influence the ML models. Every
data source was tested as a standalone set of features for the model. Afterwards, data sources were
combined together. As the final model, features of all 3 data sources were combined in to one set.

-label the data

During the data collection process, more specifically data sorting phase, the files of different sensors
and data sources were stored by the class they belong to. Afterwards, a dataframe which consisted
of the screw names, which also acted as metadata, and class labels was created. This dataset was
used as labels for the ML models.

Research Objective 4 (RO4)

The fourth research objective was to develop a classification ML/DL models by the use of the
collected data. The majority of objectives were completed, with an exception of the creation of deep
learning models. Table 8.4 shows the completion of RO4.

Table 8.4: Completion of Research Objectives 4
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-decide on the algorithms that will be used in classification

For the classification task 3 different ML algorithms were implemented for all of the models. The
algorithms are K-Nearest Neighbours (KNN), Support Vector Machines (SVM) and Random Forest
(RF). These algorithms all belong to a different class of ML algorithms.

-create a system for measuring the results of different ML models

In the beginning of the Results chapter, a system for measuring results was elaborated. The most
important metrics for the comparisons were the confusion matrices in combination with areas under
the ROC and Precision-Recall curves.

-test separate intrinsic, extrinsic and task data and compare the accuracy results of classification with
different ML algorithms

Every data source had 3 models containing different ML algorithms. This resulted in 9 baseline
models. After testing it was concluded that intrinsic data source provided the best accuracy during
classification, which was followed by task data source as second and extrinsic data source as the third.
During the baseline models creation different parameters were used to improve models performance,
but with not a lot of changes. By doing this the influence of different data sources on the accuracy
of classification was tested.

-test different combinations of features, and find the best "fit" for classification

By combining the features of different data sources, the models yielded a minimal improvements
in accuracy. In general, when data sources were combined, the data source that presented better
accuracy by itself benchmarked the accuracy of combined models. For that reason the model that
combines all 3 features had a similar outcome as the best performing intrinsic baseline model.

-create a deep learning model with separate or combined data types and measure the results gathered

After the results gathered from machine learning, there was not time to develop deep learning models.
Part of the reason for that was that the whole structure of the report focused on multiple aspects of
the whole data collection to machine model building process. The deep learning models were tested,
but not introduced to the report, but they did show a promising start to the further development of
the anomaly detection systems, especially on the audio data.

8.2 Discussion

After the research objectives, a discussion will cover the project segments, including the data
collection, machine learning and results. Toughs on every segment will be presented, ending with
the result interpretation.

8.2.1 Data collection

Data collection was one of the most important parts of the project, and also the most time-consuming
part. Getting the correct data and building a dataset which is properly labeled is one of the key
goals of a project like this that involves classification machine learning.

Screwdriving cell setup

The setup of the screwdriving cell is complicated, including a lot of different parts. The UR10
robot created a lot of problems with the connection and malfunctions. As a start the screwdriver
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mounted on the robot is too heavy, which during the screwdriving operations often causes the robot
to displace and shut down. The older operating system of the robot only allowed collection of 7
sensor measurements, by the use of Modbus. This proved to be sufficient, but the newer models can
use more advanced communication protocols, which would yield more data with a higher sampling
frequency. Also, the robot moves during the screwdriving process across the beam. The further
the robot moves away from it’s base, the more displacement it presents. This could be a problem
in classification, if the algorithms recognise this displacement and classify the data based on that.
However, this is just an observation and it is possible that it has no influence. A robot with a more
advanced operating system and a higher payload capability could yield a dataset which represents
the manufacturing process better.

Microphone setup

As mentioned, the robot already had problems with the screwdriver weight, so placing the microphone
on it was not a possibility. The current microphone setup with 3D printed stands proved to be
an effective solution for audio collection. However, the placed of the microphone on robot would
provide a fixed position of the microphone for every screw to be the same. Currently every screw was
distanced from the microphone, depending on its position on the wood beam. Also, Azure Kinect
microphone is used for speech recognition and computer vision since it is primarily a camera. Using
an industrial microphone for recording screwdriving audio would be a better solution, but also a
more expensive one.

Simultaneous data collection

As explained in the report, the data collection of 3 sources was synchronised with the use of a strobe
signal from the PLC. This resulted in a small delay between the screwdriver intrinsic data and the
robot and microphone data. Currently intrinsic data is recorded over the WSK3 program, and task
and extrinsic data is recorded over a python script. To collect all of the data over the python script,
a reconfiguration of the setup should be made, by sending the data from the screwdriver controller
to the PLC, and getting it from the PLC together with the task data.

Final dataset

In general final dataset creation was successful, considering the different challenges during the data
collection process. The final dataset contains 1341 screws, with 3 data sources for each one of them.
Collecting a bigger dataset would give a better representation of the different classes, but since the
classes were properly balanced, the results of ML should be representative.

The dataset contains 5 screw classes. For bigger class variance, there could be additional screw types
introduced to the dataset. The current dataset of 1341 screws should be enhanced with new screws,
to introduce new classes, or there will be not enough examples for classification.

8.2.2 Machine learning

This discussion segment includes the preprocessing, feature selection and machine learning segments
of the report. After the final dataset was collected, properly labeled and checked, it was time for
data analysis by the use of ML/DL.

Preprocessing and data cleaning

The data from the sensors, robot and microphone was already collected in a proper format in the
final dataset. It also did not require a lot of preprocessing and cleaning before the feature extraction
process. The most important part of the preprocessing was cleaning the audio from the outside noise
that was created by the scrwdriving cell’s proximity to 5G server, together with the noise created by
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the pneumatic system of the screwdriver and test beam setup. This noise is also expected in the
industrial environment, so dealing with this noise will be a standard process in the manufacturing
process.

Feature selection

Features of the intrinsic and task data were selected and extracted by the TSFresh library. This
library provided a comprehensive set of features for both datasets, which reflected in the results.
This is just one of many options for feature extraction, but it contains the usual features used in
describing time-series data.

Librosa python library was selected for feature extraction of extrinsic audio data. The features were
extracted, based on features often used for sound analysis, especially speech recognition.

Model building

Models were build with separate data sources or combinations between different data sources. There
is a vast amount of different algorithms for machine learning, and this report only encompasses 3 of
them. Since the results of the models gave high accuracy, the only model that would need more
improvement would be the extrinsic model that analyses and classifies the audio.

With the current algorithms, changing their hyperparameters did not yields better performances of
the models. The reason for this was that the available computational power was not sufficient in
testing a lot of different parameter variations. If there was more time, a lot of different parameters
could be tested to improve model performance, but it would not guaranty the improvement.

The next step would be to build deep learning models. No deep learning model has been introduced
to this project, but they did show promising results, especially a Convolutional Neural Network
(CNN) model of extrinsic data.

8.2.3 Results

All of the algorithms provided a good classification capability, with the combined model providing
the best accuracy across the board. It showed best results, but almost the same as the Intrinsic +
Task model and intrinsic model. This is due to intrinsic features having a overwhelming importance
in classification.

Baseline models

In the baseline models, intrinsic model as mentioned showed the best results which was to be
expected. The model is using precise data intrinsic to the process, with a high sampling frequency.
The surprises in the results come with the task model and extrinsic model.

The task model results are surprising, because the UR10 robot had a lot of problems and malfunctions
during the process of screwdriving, and could only output data in a sampling frequency of 400 Hz.
With this high accuracy, the need for all of the sensors on the screwdriver becomes redundant, since
gathering the data from the robot is free compared to the installation of expensive sensors. Because
of this, it will be a good idea to create additional experiments on a different robots, which would
confirm that the classification was successful, and that the algorithms are not recognising something
in the data related to the experiment setup, and not the screw class.

The extrinsic models showed good results, when the microphone setup and the microphone are taken
in to consideration. Like with the task data it will be important to test this in a different setup or
environment. Implementation of microphones would also be a cheaper option for anomaly detection
if successful, then the installation of sensors.
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Intrinsic + Task model

When combining two data sources, the results of the classification will end up similar to the baseline
model of the data source which had better accuracy. Even if this is true, the model did outpreform
its baseline counterparts by a small margin, so combining the data would not be a bad practise,
especially if the implementation would have little or no cost. If the dataset is larger and there is
more classes, using more sources of data would make the model more robust and possibly better.

Using the RF algorithm provided the best results, but setting different hyperparameters on the
algorithm ,then the basic ones, just lowered the accuracy of the model.

By the use of MinimalFCParameters, it was shown that a smaller subset of basic features worked
similarly to the EfficientFCParameters set of TSFresh features. For the model implementation this
would mean less computational power will be needed when extracting features from the incoming
data. It is important to find a balance where the best results are achieved without the need for a vast
amount of features, which is done by the use of feature importance. With the feature importance,
the features that have zero to none influence in the model can be discarted.

Combined model

The final results provided were for the combined model which included 3 data sources combined.
Again all of the algorithms performed exceptionally well on the classification task, with the RF
algorithm providing the best classification results. This model provided the best classification
accuracy, but by a slim margin more then its intrinsic baseline model counterpart. Like the Intrinsic
+ Task model, this model showed that the intrinsic features provide best classification and overwhelm
the other data sources.

Even if intrinsic data provided most of the models performance, an observation after the calculation
of the feature importances of different models was that the Tool Center Point in z-axis (TCP_z)
measurement, and it’s features from the task data source are of big importance even when combined
with the intrinsic data. For the extrinsic data that feature is the mel-frequency cepstral coefficients
(MFCCs).

8.3 Final conclusion

The goal of this thesis was to create anomaly detection models with machine learning, which will be
able to classify different types of anomalies that happen during the automated screwdriving process.
Idea was to enter a replica of the VELUX manufacturing screwdriving cell, with similar setup to the
setup of the company, pass the machine learning pipeline where the data is collected from different
sources, processed and inputted into different machine learning algorithms as anomaly detection
tools in classification. The hypothesis of the project was:

„By utilizing machine learning on the different process data of the
automated screwdriving process it is possible to effectively identify
deviations, irregularities in the performance of the system, and use

this information as a reliable anomaly detection tool."

The hypothesis is proved with the results of classification. In the end algorithms were successful in
recognising which anomaly belongs to which class of the screw.

This project gives an overview on the different parts of the machine learning pipeline. The data
collection part yileded a diverse dataset containing 1341 screws, with the each screw containing 3
data sources. This data was visualised and analysed.
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Afterwards, different steps needed to preprocess and clean the data were implemented. This resulted
in a clean dataset, whic is ready for machine or deep learning applications. For the machine learning
a way to select features was provided for every data source.

As the final result, the classification of the screw types was conducted by the use of machine learning
algorithms. The results showed that the use of any data source tested would give good classification
results. Intrinsic and task data showed an excellent anomaly detection capability, while the extrinsic
data is able to classify a majority of the screws to a correct class.

8.4 Project continuation

This section will give an overview on what could be done to improve upon the results of the project,
and what would that mean for the anomaly detection of the VELUX manufacturing, and research of
anomaly detection with different data sources.

8.4.1 Expanding the data sources

In this report only 3 sources have been touched upon. Inside of these sources of data additional
information could be gathered, especially from the UR10 robot. The current data was collected with
keeping in mind the robot communication limitations. For newer version of the robots operating
system a lot more data could be collected.

When thinking about additional data sources that could be collected there is a variety of options.
The one that would seem beneficial for the process of screwdriving would be collection of data with
vibration sensors. Vibration sensors are not expensive, but could provide an excellent information
regarding the process of screwdriving.

Implementation of computer vision systems, where the use of blob detection from the screw images
could give additional information on the screw types. Images however would not be able to distinguish
if the threading has been broken in case of over-tightening, so most likely it would missclassify
normal screws as over-tightened and vice-versa. This would mean that this data source should be
combined with some other type of data.

There is more possibilities that would for example involve the use of x-ray images. But this, like the
implementation of cameras, would require a lot of adjustments and fine-tuning of the manufacturing
environment. It would also require a lot of expenses for the equipment.

8.4.2 Creation of deep learning models

Developement and use of deep learning models on time-series data, expecially convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), has provent to be exceptionally effective
at discovering and understanding of complex patterns within the data. This means that the models
could potentially uncover deeper and intricate relationships between the different data sources tha
the simpler machine learning models might have overlook. First looks into these models is proving
to be likely capable of enhancing the accuracy of the screw type classification.

As an example, using Long-Short-Term Memory (LSTM), which is a variant of RNN, could allow
the system to learn not just from the current data point, but also from the points before it, which
would create a memory of past patterns. In a process like screwdriving, a time dependant process
where it is important to capture different parts of the process in time, this could be beneficial.
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Using deep learning could also open the possibility of transfer learning. This would give an
opportunity of the use of pre-trained models on a vast amount of datasets on this specific case. This
way an extensive dataset would not be needed.

The problem with deep learning from the dataset currently amased is that deep learning models
ofter require big datasets compared to simpler machine learning models, so implementation of deep
learning will depend on the resources available.

8.4.3 Use of unsupervised learning

By the use of unsupervised learning models, like dimensionality reduction techniques and clustering
algorithms, could provide a new approach in understanding the data from the process. It could be
used in detection of latent structures, patterns or groups in the data. This could be used to refine
the screw type classification. As an example, the use of clustering could help to identify previously
unknown anomalies or types of screws. This would lead to improvements on the classification.

Another use of unsupervised learning is in feature learning or extraction. The algorithms have a
capability to learn new sets of features from the input data, which could prove more informative for
classification then the current features. This would include techniques like autoencoders.

8.4.4 Model deployment

Deploying the models involves a process where the trained models become available for use in broader
systems and applications. To do that the model would need to be put into an application program
interface (API) that would allow it to receive data, process data and create predictions.

For a manufacturing setting like VELUX’s manufacturing line, deploying the model could involve
embedding the model into the existing industrial control systems. To achieve this, a collaboration
with control engineers and IT professionals would be needed to ensure the model can operate in
real-time and that it has the necessary computational resources, and can interface correctly with
other systems.

Model deployment is not the end of the process. After the model is in use, it will require continual
monitoring of performance. Sometimes models may degrade because of the change of the underlying
process, which is known as concept drift. A robust monitoring system would allow the operator to
track the performance of the model and tune it if or when needed.

76



Bibliography

[1] A. Lele. “Artificial Intelligence (AI). In: Disruptive Technologies for the Militaries and Security.
Smart Innovation, Systems and Technologies”. In: vol 132. Springer (2019).

[2] Azure. Azure Kinect DK. https://azure.microsoft.com/en-us/products/kinect-dk.
Accessed on 2023-08-05. May 2023.

[3] B. Buchmeister, I. Palcic, R. Ojstersek. Artificial Intelligence in Manufacturing Companies
and Broader: An Overview. 2019.

[4] A. L. Blazej Leporovski Daniella Tola. “AURSAD: Universal Robot Screwdriving Anomaly
Detection Dataset”. In: Research Gate (2021).

[5] S. Electric. What is Modbus and How does it work? https://www.se.com/us/en/faqs/
FA168406/. Accessed on 2023-11-05. May 2023.

[6] I. El Naqa, M.J. Murphy. Machine Learning in Radiation Oncology. 2015.

[7] I. H. Sarker. “Machine Learning: Algorithms, Real-World Applications and Research Directions”.
In: SN Computer Science (2021).

[8] Librosa. Librosa. https://librosa.org/doc/latest/index.html. Accessed on 2023-23-05.
May 2023.

[9] M. Matsumura, S. Itou, H. Hibi. “Tightening torque estimation of a screw tightening robot”.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
(1995).

[10] M. Zakeriharandi. Powerpoint slides provided by supervisor. 2023.

[11] MathWorks. How Machine Learning Works. https://www.mathworks.com/discovery/
machine-learning.html. Accessed on 2023-25-04. Apr. 2023.

[12] N. Kehtarnavaz. Digital Signal Processing System Design (Second Edition). 2008.

[13] Python. threading — Thread-based parallelism. https://docs.python.org/3/library/
threading.html. Accessed on 2023-11-05. May 2023.

[14] Reuben M. Aronson, Ankit Bhatia, Zhenzhong Jia. “Data-driven Classification of Screwdriving
Operations”. In: Robotics Institute, Carnegie Mellon Universit ().

[15] U. Robots. UR10e. https://www.universal-robots.com/da/produkter/ur10-robot/.
Accessed on 2023-20-04. Apr. 2023.

[16] S. García, J. Luengo, F. Herrera. “Tutorial on practical tips of the most influential data
preprocessing algorithms in data mining”. In: Knowledge-Based Systems (2016).

[17] S. Raschka. “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning”.
In: University of Wisconsin–Madison (2018).

[18] Scikit-learn.KNeighborsClassifier. https://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KNeighborsClassifier.html. Accessed on 2023-26-05. May 2023.

[19] Scikit-learn. Machine Learning in Python. https://scikit-learn.org/stable/. Accessed
on 2023-30-05. May 2023.

77

https://azure.microsoft.com/en-us/products/kinect-dk
https://www.se.com/us/en/faqs/FA168406/
https://www.se.com/us/en/faqs/FA168406/
https://librosa.org/doc/latest/index.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://www.universal-robots.com/da/produkter/ur10-robot/
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/


Bibliography Group 14

[20] Scikit-learn. RandomForestClassifier. https : / / scikit - learn . org / stable / modules /
generated/sklearn.ensemble.RandomForestClassifier.html. Accessed on 2023-26-05.
May 2023.

[21] Scikit-learn. StandardScaler. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html. Accessed on 2023-29-05. May 2023.

[22] Scikit-learn. SVC. https://scikit-learn.org/stable/modules/generated/sklearn.svm.
SVC.html. Accessed on 2023-26-05. May 2023.

[23] S. K. Smith. “Use of microprocessor in the control and monitoring of air tools while tightening
thread fasteners”. In: In Proceedings of the Society of Manufacturing Engineers (1980).

[24] J. Sprovieri. New technology for automatic screwdriving. https://www.mathworks.com/
discovery/machine-learning.html. Accessed on 2023-25-04. Apr. 2023.

[25] tsfresh. tsfresh. https://tsfresh.readthedocs.io/en/latest/text/introduction.html.
Accessed on 2023-22-05. May 2023.

[26] VELUX. https://www.velux.dk/. Accessed on 2023-19-04. Apr. 2023.

[27] Weber. Weber ZEL Feeding system. https://www.weber-online.com/en/feeding-systems/
step-feeder-zel/. Accessed on 2023-20-04. Apr. 2023.

78

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://tsfresh.readthedocs.io/en/latest/text/introduction.html
https://www.velux.dk/
https://www.weber-online.com/en/feeding-systems/step-feeder-zel/
https://www.weber-online.com/en/feeding-systems/step-feeder-zel/


A Class distribution of wood profiles

(a) Wood 1 class distribution (b) Wood 2 class distribution

(c) Wood 3 class distribution (d) Wood 4 class distribution

(e) Wood 5 class distribution (f) Wood 6 class distribution

(g) Wood 7 class distribution (h) Wood 8 class distribution
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Group 14

(a) Wood 9 class distribution (b) Wood 10 class distribution

(c) Wood 11 class distribution (d) Wood 12 class distribution

(e) Wood 13 class distribution (f) Wood 14 class distribution

(g) Wood 15 class distribution (h) Wood 16 class distribution

(i) Wood 17 class distribution
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B Baseline models

The accuracy of the confusion matrices is shown in instances of true or false predictions and not in
percentages, like the matrices from the report Results Chapter.

B.1 Intrinsic baseline model

B.1.1 KNN algorithm (intrinsic)

precision recall F1-score support
N 0.98 0.93 0.96 165
NS 0.88 0.98 0.93 66
OT 0.92 0.96 0.94 138
P 0.96 0.86 0.91 59
UT 0.94 0.94 0.94 109
accuracy 0.94 537
macro average 0.94 0.94 0.94 537
weighted average 0.94 0.94 0.94 537

Table B.1: KNN classification report of intrinsic model

Figure B.1: Cross-validation of the
optimal neighbor number (n=3)

Figure B.2: Confusion matrix of intrinsic KNN model

Accuracy: 94.04%
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B.1 Intrinsic baseline model Group 14

B.1.2 SVM algorithm (intrinsic)

precision recall F1-score support
N 0.98 0.94 0.96 165
NS 0.97 1.00 0.99 66
OT 0.94 0.94 0.94 138
P 0.97 0.98 0.97 59
UT 0.93 0.96 0.95 109
accuracy 0.94 537
macro avg 0.96 0.97 0.96 537
weighted avg 0.96 0.96 0.96 537

Table B.2: SVM classification report of intrinsic model

Figure B.3: Confusion matrix of intrinsic SVM model

Accuracy: 95.71%
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B Baseline models Aalborg University

B.1.3 RF algorithm (intrinsic)

precision recall F1-score support
N 0.99 0.96 0.98 165
NS 0.99 1.00 0.99 66
OT 0.98 0.94 0.96 138
P 0.97 1.00 0.98 59
UT 0.92 0.97 0.95 109
accuracy 0.97 537
macro avg 0.97 0.98 0.97 537
weighted avg 0.97 0.97 0.97 537

Table B.3: RF classification report of intrinsic model

Figure B.4: Confusion matrix of intrinsic RF model

Accuracy: 96.83%
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B.2 Task baseline model Group 14

B.2 Task baseline model

B.2.1 KNN algorithm (task)

precision recall F1-score support
N 0.92 0.92 0.92 165
NS 0.98 0.98 0.98 66
OT 0.88 0.92 0.90 138
P 0.97 0.98 0.97 59
UT 0.97 0.90 0.93 109
accuracy 0.93 537
macro avg 0.94 0.94 0.94 537
weighted avg 0.93 0.93 0.93 537

Table B.4: KNN classification report of task model

Figure B.5: Cross-validation of the
optimal neighbor number (n=10)

Figure B.6: Confusion matrix of task KNN model

Accuracy: 93.11%
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B Baseline models Aalborg University

B.2.2 SVM algorithm (task)

precision recall F1-score support
N 0.97 0.89 0.93 165
NS 0.98 0.95 0.97 66
OT 0.85 0.93 0.89 138
P 0.89 1.00 0.94 59
UT 0.96 0.91 0.93 109
accuracy 0.93 537
macro avg 0.93 0.94 0.93 537
weighted avg 0.93 0.93 0.93 537

Table B.5: SVM classification report of task model

Figure B.7: Confusion matrix of task SVM model

Accuracy: 92.55%
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B.2 Task baseline model Group 14

B.2.3 RF algorithm (task)

precision recall F1-score support
N 0.95 0.94 0.95 165
NS 0.98 0.97 0.98 66
OT 0.92 0.93 0.93 138
P 0.97 0.98 0.97 59
UT 0.94 0.94 0.94 109
accuracy 0.95 537
macro avg 0.95 0.95 0.95 537
weighted avg 0.95 0.95 0.95 537

Table B.6: RF classification report of task model

Figure B.8: Confusion matrix of task RF model

Accuracy: 94.78%
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B Baseline models Aalborg University

B.3 Extrinsic baseline model

B.3.1 KNN algorithm (extrinsic)

precision recall F1-score support
N 0.56 0.83 0.67 162
NS 0.84 0.75 0.80 65
OT 0.59 0.66 0.63 125
P 0.68 0.29 0.41 58
UT 0.82 0.47 0.60 127
accuracy 0.64 537
macro avg 0.70 0.60 0.62 537
weighted avg 0.68 0.64 0.63 537

Table B.7: KNN classification report of extrinsic model

Figure B.9: Cross-validation of the
optimal neighbor number (n=4)

Figure B.10: Confusion matrix of extrinsic KNN model

Accuracy: 65.04%
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B.3 Extrinsic baseline model Group 14

B.3.2 SVM algorithm (extrinsic)

precision recall F1-score support
N 0.69 0.92 0.79 162
NS 1.00 0.71 0.83 65
OT 0.75 0.81 0.78 125
P 0.90 0.47 0.61 58
UT 0.87 0.76 0.82 127
accuracy 0.78 537
macro avg 0.84 0.73 0.77 537
weighted avg 0.81 0.78 0.78 537

Table B.8: SVM classification report of extrinsic model

Figure B.11: Confusion matrix of extrinsic SVM model

Accuracy: 78.21%
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B Baseline models Aalborg University

B.3.3 RF algorithm (extrinsic)

precision recall F1-score support
N 0.70 0.91 0.79 162
NS 1.00 0.69 0.82 65
OT 0.72 0.74 0.73 125
P 0.90 0.45 0.60 58
UT 0.87 0.85 0.86 127
accuracy 0.78 537
macro avg 0.84 0.73 0.76 537
weighted avg 0.80 0.78 0.78 537

Table B.9: RF classification report of extrinsic model

Figure B.12: Confusion matrix of extrinsic RF model

Accuracy: 78.03%
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C Intrinsic + Task model

The accuracy of the confusion matrices is shown in instances of true or false predictions and not in
percentages, like the matrices from the report Results Chapter.

C.1 RF algorithm (intrinsic + task)

precision recall F1-score support
N 0.98 0.98 0.98 165
NS 0.98 0.97 0.98 66
OT 0.98 0.95 0.96 138
P 0.97 1.00 0.98 59
UT 0.95 0.97 0.96 109
accuracy 0.97 537
macro avg 0.97 0.97 0.97 537
weighted avg 0.97 0.97 0.97 537

Table C.1: RF classification report of intrinsic + task model

Figure C.1: Confusion matrix of intrinsic + task RF model
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C.1 RF algorithm (intrinsic + task) Group 14

Accuracy: 97.21%

Cross validation accuracy: 96.64%
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D Combined model

The accuracy of the confusion matrices is shown in instances of true or false predictions and not in
percentages, like the matrices from the report Results Chapter.

D.1 KNN algorithm (combined)

precision recall F1-score support
N 0.96 0.93 0.94 165
NS 0.98 0.97 0.98 66
OT 0.92 0.94 0.93 138
P 0.97 1.00 0.98 59
UT 0.95 0.95 0.95 109
accuracy 0.95 537
macro avg 0.96 0.96 0.96 537
weighted avg 0.95 0.95 0.95 537

Table D.1: KNN classification report of combined model

Figure D.1: Cross-validation of the
optimal neighbor number (n=3)

Figure D.2: Confusion matrix of combined KNN model

Accuracy: 94.97%
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D.2 SVM algorithm (combined) Group 14

D.2 SVM algorithm (combined)

precision recall F1-score support
N 1.00 0.92 0.96 165
NS 0.98 0.98 0.98 66
OT 0.94 0.94 0.94 138
P 0.88 1.00 0.94 59
UT 0.93 0.96 0.95 109
accuracy 0.95 537
macro avg 0.95 0.96 0.95 537
weighted avg 0.95 0.95 0.95 537

Table D.2: SVM classification report of combined model

Figure D.3: Confusion matrix of combined SVM model

Accuracy: 95.16%
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D Combined model Aalborg University

D.3 RF algorithm (combined)

precision recall F1-score support
N 0.98 0.98 0.98 165
NS 0.98 0.97 0.98 66
OT 0.97 0.95 0.96 138
P 0.97 1.00 0.98 59
UT 0.95 0.97 0.96 109
accuracy 0.97 537
macro avg 0.97 0.97 0.97 537
weighted avg 0.97 0.97 0.97 537

Table D.3: RF classification report of combined model

Figure D.4: Confusion matrix of combined RF model

Accuracy: 97.02%
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