
Aalborg University

MSc. in Biomedical Engineering and Informatics

Master’s thesis
10402

Using a CNN-LSTM Architecture to

Classify Chronic Pain Models based on

µECoG Recordings from S1 in large animal

models

Participants:

Nickolaj Ajay Atchuthan
Hjalte Færregård Clark
Mikkel Bjerre Danyar

Main supervisor:

Suzan Meijs

Co-supervisor:

Felipe Rettore Andreis

1st of June, 2023

Group 10402

Department of Health Science and Technology

Master’s thesis

Master of Science in Biomedical Engineering and Informatics

Selma Lagerløfs Vej 249

9260 Gistrup

http://hst.aau.dk

Title:

Using a CNN-LSTM Architecture

to Classify Chronic Pain Models

based on µECoG Recordings from

S1 in large animal models

Project:

Master’s Thesis

Project period:

02/02/2023 - 01/06/2023

Project group:

10402

Participant(s):

Hjalte Færregård Clark

Mikkel Bjerre Danyar

Nickolaj Ajay Atchuthan

Main supervisor :

Suzan Meijs

Co-supervisor:

Felipe Rettore Andreis

Report pages: 107

Appendices: 4

Date of completion: 01/06/2023

Abstract:
Background and aim: Chronic pain is a major healthcare

problem that affects one of every five adults in Europe.

Current diagnostic methods are suboptimal, and a variety

of methods have been tried to help diagnostics. We aim to

classify different chronic pain models in large animals using a

CNN-LSTM based on µECoG recordings from S1.

Methods and materials: In this study, we employed

16 Danish Landrace pigs to investigate the effects of high-

frequency stimulation (HFS) in inducing a temporary chronic

state and evoking long-term potentiation (LTP). Additionally,

some of the pigs underwent spared nerve injury (SNI) to

induce long-term chronic pain. Electrocorticography (ECoG)

recordings were conducted before and after the intervention,

with low-frequency stimulation (LFS) applied. The recorded

data were transformed using the continuous wavelet transform.

This spectrogram was utilized as input for a CNN-LSTM

neural network architecture, aiming to identify unique patterns

in the signal that could be correlated with specific pain model

groups (LTP, SNI, and control). The design of the model

focused on differentiating between these groups.

Results: An accuracy of 42.8% was achieved for the multiclass

model, and 52% for the binary model. Test results showed only

correct predictions for the control class for both models. The

validation accuracy was 63.9% and 84.0% for the multiclass

and binary models respectively. Model interpretability showed

differences between the location and patterns of feature

attribution from validation to test data.

Conclusion: The performance of the developed CNN-LSTM

model was found to be unsatisfactory for both multiclass and

binary classification tasks. To enhance its generalizability, it

is crucial to include a larger number of subjects, particularly

from the LTP and SNI groups. By incorporating a wider

range of inter-subject variance in the training process, it can

potentially improve the model’s performance and make it more

reliable for future use.

The content of the report is available for all, but publication (with source references) is only permitted in agreement

with the authors.

ii

http://hst.aau.dk

Preface

This project was the Master’s thesis by group 10402 from February 2nd, 2023, to June 1st,

2023. It was completed as part of the Biomedical Engineering and Informatics program at

Aalborg University. The project was carried out under the guidance of Suzan Meijs and

Felipe Rettore Andreis.

Reading Guide

This project consists of a description of the problem field within classifying chronic pain

and with various methods, followed by a structured literature review and a description

of the experimental protocol from the data used in this project. It then details the data

management, initial inspection, preprocessing, and as well as the input image for the model.

The development process of the deep learning algorithm, specifically a CNN-LSTM, is then

presented, including the results from the classification of the data. The project ends with

a discussion and conclusion on the study.

The appendix of this project contains theoretical background on the two chronic pain

models and low frequency stimulation. This is followed by model interperability, the time

series results, and lastly the time plan for this project.

The project follows the Harvard citation method, with references mentioned by the last

name of the author followed by the year of publication. A full list of references is included

at the end of the project.

Aim

How can a CNN-LSTM architecture classify between chronic pain models based on ERP

signals from µECoG recordings in S1?

iii

Contents

1 Problem Analysis 1

1.1 General Pain . 1

1.2 Neuropathic Pain . 5

1.3 Diagnosing Chronic Neuropathic Pain . 7

1.4 Overview of Different Diagnostic Imaging Methods 14

1.5 Classification of Pain . 14

1.6 Aim . 16

2 Structured Literature Search 17

2.1 The Initial Search . 17

2.2 AND/OR Table . 18

2.3 Structured Search on Machine Learning Models for EEG Classification . . . 21

3 Experimental Protocol 25

3.1 Protocol and Procedure of the Experiment 25

3.2 Measurement Protocol . 27

4 Pre-proccesing 29

4.1 Data Management & Signal Processing . 29

4.2 Initial Inspection of µECoG Data . 30

4.3 Pre-processing of µECoG Signals . 31

4.4 Wavelet Transform . 37

4.5 Temporal Window Length . 42

5 Neural Network Architecture 45

5.1 General CNN-LSTM architecture . 45

5.2 Convolutional Neural Network . 45

5.3 Long Short-Term Memory . 57

6 Model Interpretability, Evaluation, and Performance Metrics 63

6.1 Model Interperability . 63

6.2 Saliency . 63

6.3 Integrated Gradients . 64

6.4 DeepLIFT . 65

6.5 Occlusion . 67

6.6 Model Evaluation . 67

iv

Contents Aalborg University

6.7 Classification Performance Metrics . 69

7 Training and Validation of the Network 77

7.1 Development Strategy of the Network . 77

7.2 Separation of Data . 77

7.3 Training Process . 78

7.4 Structured Training Process . 80

7.5 Model Chosen for the Final Testing . 84

7.6 Final CNN-LSTM Architecture . 85

8 Results 87

8.1 Confusion Matrix . 87

8.2 Accuracy and F1-score . 88

8.3 Receiver Operating Characteristic Curve . 88

8.4 Model Interperability . 89

9 Discussion 101

9.1 Comparison of Results . 101

9.2 Methodological Considerations . 103

9.3 Future Work . 105

10 Conclusion 107

Bibliography 109

A Pain Models 121

A.1 Spared nerve injury (SNI) . 121

A.2 Electrically evoked acute pain . 123

A.3 Low-frequency stimulation (LFS) . 123

B Model Interperability 125

B.1 Multiclass model . 126

B.2 Binary model . 132

C Time Series 137

D Activity- and Time-plan 139

v

Problem Analysis 1
This chapter investigates the problem domain through the literature. The first two sections

explain different types of pain and the problem of diagnosing pain. Afterward, different

methods of diagnosing and evaluating pain will be explored. Lastly, the use of deep learning

as a diagnostic tool will be considered by discussing different architectures.

1.1 General Pain

Pain is defined by the International Association for the Study of Pain (IASP) as: "An

unpleasant sensory and emotional experience associated with, or resembling that associated

with actual or potential tissue damage." [IASP, 2023b]. Pain can be categorized according

to its duration as either acute or chronic, or in terms of mechanisms, such as nociceptive,

inflammatory, or neuropathic pain (NP). [Bennet, 2011; King et al., 2013]. Pain is however

not limited to physical pain, since psychological pain also occurs. This comes from

psychological stimuli, e.g. losing a loved one, just like physical pain manifests as a response

to noxious physical stimuli. [Mee et al., 2006]

1.1.1 Acute and Chronic Pain

Acute pain is short-term pain that happens suddenly with an intense or sharp feeling that

serves as an early warning system for the body. Therefore, pain plays an important role

in making the individual aware of impairment and responding appropriately. Response

includes withdrawal from the stimulus causing the pain, to avoid further impairment and

behaviors that reduce the effect of the impairment and facilitates recovery. Acute pain

often lasts a few minutes up to less than 6 months and ends when the underlying cause of

the pain has healed or been treated. [King et al., 2013; IASP, 2023a]

Chronic pain is persistent pain over 6 months or beyond the expected period of healing.

It is caused by damage to the tissue or nervous system that continues after the body has

recovered. The long-term component of chronic pain is not physiologically critical once

the injury has healed, but does inform animals or patients the location of the previously

injured area. Chronic pain can also spread to other areas than where the original injury first

occurred. Typical effects due to chronic pain are mood disorders, loss of sleep, emotional

1

Group 10402 1. Problem Analysis

suffering, and cognitive impairments. [Zhuo, 2011; Mouraux and Iannetti, 2018; Davis

et al., 2017]

Chronic pain can be further categorized into primary and secondary chronic pain. Primary

chronic pain is a type of pain that has persisted longer than 6 months and has had

significant emotional distress and/or functional disability, with no other condition that

can account for the pain. Secondary chronic pain refers to the presence of pain that

arises as a result of an underlying disability, such as spinal cord injury, cancer, or multiple

sclerosis.[Nicholas et al., 2019; Ehde et al., 2003] The prevalence of chronic pain in European

adults is 19% of moderate to severe intensity. Furthermore, 21% of chronic pain patients

got diagnosed with depression, 56% were less able to sleep, and 32% were no longer able

to work outside of their homes. [Breivik et al., 2006]. Since pain has a major impact on

people’s well-being, researchers try to develop novel treatments to reduce suffering and

improve the quality of life for pain patients. [Mouraux and Iannetti, 2018]

1.1.2 Nociceptive and Inflammatory Pain

There are three main pain mechanisms, nociceptive, inflammatory, and NP. Nociceptive

pain provides neural feedback from nociceptors in the skin, muscles, and joints, which

allows the central nervous system (CNS) to detect and avoid potentially damaging stimuli.

Nociceptive pain may persist due to tissue damage after surgery that does not restore

properly and as well as ongoing inflammation. Nociceptive pain can also develop over

time, either in parallel or independent from acute inflammation. [Finnerup et al., 2022;

Armstrong and Herr, 2019]

Nociceptors are branched-free nerve endings that detect heat, cold, mechanical force, or

chemical stimulation-induced pain. Primary afferent nerves are typically classified into

three types: Aβ, Aδ, and C-fibers, as seen in Table 1.1. [Armstrong and Herr, 2019; Bell,

2018]

Table 1.1. Classification of primary afferents by diameter, myelin, conduction velocity, and
sensory function. [Bell, 2018]

Classification Diameter(µm) Myelin Conduction velocity(m/s) Sensory function
Aβ 6–12 Yes >35 m/s Touch
Aδ 1–5 Thin 5–35 m/s ‘Fast’ pain
C 0.2–1.5 No <2.0 m/s ‘Slow’ pain

Most Aβ fibers are low-frequency mechanoreceptors that react to touch, pressure, or hair

movement but do not signal nociceptive stimuli. The nociceptors are divided into Aδ and

C-fibers. Aδ are medium-diameter myelinated afferents responsible for fast pain. This

type of pain is also well-localized meaning that if a person stubs the toe, a sharp intense

sensation is focused specifically on the toe. Aδ have two subgroups, type I and type II,

2

1.1. General Pain Aalborg University

where type I primarily is responsible for mechanical and chemical stimuli, whereas type II

primarily is responsible for thermal stimuli. C-fibers are unmyelinated slow pain fibers with

poor spatial localization. C-fibers carry information regarding mechanical, thermal and/or

chemical nociception, and become stimulated secondary to Aδ, and only if the painful

stimuli is persistent. Pain due to Aδ activation has been described as "pricking" pain,

while pain due to C-fibers activation is "dull" or "pressing" pain. Once the nociceptive

stimulus has been transduced it is transmitted to the central nervous system in the spinal

cord as trains of action potentials. The first synapse is in the dorsal horn of the spinal

cord, which is a site where the stimuli are processed and integrated. Projection cells cross

the midline (see Figure 1.1), up through the medulla to the thalamus, where the signal is

sent to the primary somatosensory cortex (S1). [Armstrong and Herr, 2019; Bell, 2018]

Inflammatory pain is a spontaneous hypersensitive pain in response to inflammation and

tissue damage, e.g. a surgical wound or inflamed joint. To reduce further risk of damage

and promote recovery, the body heightens the sensitivity in the injured area. Normally,

most C-fibers have little to no spontaneous activity and are only activated by intense

physical stimuli. When an injury occurs, these terminals are sensitized, resulting in both

increased responsiveness to normal input and spontaneous activity. This can cause the

activity of moderate physical stimuli to an allodynic state of heightened sensitivity. [Woller

et al., 2017; Woolf et al., 2010]

3

Group 10402 1. Problem Analysis

Figure 1.1. Illustration of the pathway from peripheral stimuli, either non-nociceptive (orange)
or nociceptive (brown), to the primary somatosensory cortex

Source: [Kandel et al., 2021]

4

1.2. Neuropathic Pain Aalborg University

1.2 Neuropathic Pain

NP is defined by IASP as "pain caused by a lesion or disease of the somatosensory nervous

system" [IASP, 2022]. Normally, pain is a warning about tissue damage signaled by

receptors and fibers from the periphery to the brain. When the pathway is damaged, the

immediate consequence is loss or reduction of function including pain. [Finnerup et al.,

2020].

Classic symptoms of NP are widespread pain not otherwise explainable, evidence of sensory

deficit, burning pain, pain to light stroking of the skin, and attacks of pain without seeming

provocation. A challenging aspect of NP is that the liability for pain appears to be different

from person to person, between males and females, from nerve to nerve, and with age. So

the same lesion can cause no pain for one individual, but for another, it can cause severe

pain. [Campbell and Meyer, 2006; Bennett, 2010] Due to the fact that NP can occur

at many different locations of the body with specific changes, the primary focus will be

on peripheral lesions and what peripheral and central changes would arise. A starting

point for understanding NP is what happens with injury to non-neural tissue. Skin injury

produces ongoing pain, but also two types of hyperalgesia; primary and secondary. Primary

hyperalgesia occurs on the spot of the injury, and it is partly caused by the sensitization

of the primary afferent nerves. This results in increased sensitivity to external stimuli e.g.

heat stimuli. Secondary hyperalgesia is located around the injured area, but not at the

site of the injury. Here there is an increased sensitivity to mechanical stimuli, but not heat

stimuli. This is due to sensitization in the central nervous system. Secondary hyperalgesia

is comparable to that seen in NP patients, where two types of mechanical hyperalgesia are

observed; pain to light-stroking stimuli which is known as allodynia, and increased level

of pain when exposed to punctate stimuli. NP can be developed immediately after the

injury or can have a delayed onset, typically no longer than 6 - 12 months. [Campbell and

Meyer, 2006; Bennett, 2010]

Some of the peripheral changes following the lesion is reduced thresholds in receptors by

pH changes. This can lead to a neuron constantly being partially or fully depolarized.

Therefore, the normal high-threshold neuron will fire with less intense stimuli. Another

peripheral change is the sodium channels which are responsible for spontaneous discharges

in damaged neurons, leading to spontaneous pain. Furthermore, abnormal neuronal

sprouting can lead to a growth of the receptive field which feeds the abnormal pain

transmission. These nerve endings can cross-talk with healthy nerves and alter them

to become abnormal and chaotic. The dorsal horn modulates normal pain signals and is

vital to the onward transmission of abnormal chaotic input from damaged and adjacent

non-damaged neurons. Normally Aδ and C fibers terminate predominantly in lamina I

and II of the dorsal horn, also Aδ in lamina V, and non-noxious Aβ fibers in lamina III.

5

Group 10402 1. Problem Analysis

Different hypotheses have been made, but it appears that C fibers take characteristics of

and express receptors that are normally confined to low-threshold Aβ fibers. [Campbell

and Meyer, 2006; Bennett, 2010]

Some of the changes in the spinal cord are the development of wind-up, central sensitization

as well as expansion of the receptive fields. Wind-up is an increase in pain intensity over

time due to repeated stimuli over a certain threshold to group C nerve fibers and lasts from

seconds to minutes. Central sensitization is a neurophysiological process characterized by

an enhancement of the functioning of neurons and circuits in the nociceptive pathways.

It is caused by an increase in membrane excitability, synaptic efficacy, and a reduction in

inhibitory control. Central sensitization has a several-hour duration and can be elicited by

high-frequency stimulation. The receptive field refers to the specific region in the sensory

periphery where stimuli can activate the sensory cell. This expansion of the receptive fields

means that a larger area of the body is perceived as painful or sensitive. Other changes

also occur like changes to transmitters and receptor systems within the spinal cord. Here,

neuropeptides are released abnormally after nerve injury, which can affect the ion channels

and growth of new axons. This contributes to long-term changes in the excitability of

dorsal horn cells in combination with central sensitization. [Price et al., 1977; Navarro

et al., 2007; Latremoliere and Woolf, 2009]

Also, the brain seems to change due to NP, which is called neuroplasticity. The S1

seems to undergo plastic changes due to peripheral inflammation or NP. This change

is related to the communication from the thalamus to S1. When looking into resting state

electroencephalography (EEG) changes, NP patients seem to have a statistically significant

increase in power for the theta (4-7 Hz) band in the left hemisphere, compared to healthy

controls. For the alpha (8-12 Hz) and beta (13-30 Hz) bands, controversial results were

found. [Mussigmann et al., 2022]. According to Pricope et al. [2022], increased activity

in the pain matrix, consisting of anterior cingulate cortex (ACC), amygdala (AMG),

brainstem, hippocampus (HPC), insula (INS), periaqueductal gray (PAG), prefrontal

cortex (PFC), posterior parietal cortex (PPC), S1, secondary somatosensory cortex (S2),

supplementary motor area (SMA), thalamus, and the cerebellum, has been strongly

endorsed.

The changes in the central nervous system vary, depending on the condition and

symptoms. In unilateral NP, a decrease in activity was found in the thalamus, while

for mechanothermal allodynia, an increase was detected in the thalamic activity. Changes

outside the pain matrix due to NP are unique for each patient and most commonly affect

the dorsolateral frontal cortex, parietal association, and some of the brainstem nuclei

which lie in the pain modulatory systems. Furthermore, structural brain changes in grey

and white matter have been reported in ACC, PMC, S1, thalamus, PFC, SMA, dorsal

midbrain, and cingulate cortex. [Pricope et al., 2022] A summary of peripheral and central

6

1.3. Diagnosing Chronic Neuropathic Pain Aalborg University

changes that occur after a peripheral nerve injury can be seen in Figure 1.2.

Figure 1.2. Summary of the main plastic changes that can occur in the peripheral and central
nervous system after peripheral nerve injury. Examples of changes in (1) the injured peripheral
nerve, (2) the Dorsal Root Ganglion (DRG) neurons and ventral horn motor neurons, (3) the

spinal cord, and (4-6) in the brainstem, thalamic nuclei as well as the brain cortex.

Source: [Navarro et al., 2007]

1.3 Diagnosing Chronic Neuropathic Pain

1.3.1 Methods Used in Clinical Settings

In the existing literature, various approaches are employed to discern biomarkers that can

elucidate the underlying reasons and presence of chronic NP in individuals. Nevertheless,

the evaluation of pain poses a formidable task due to its inherently subjective nature, and

regrettably, there are presently no biomarkers accessible for the objective quantification

of pain. Consequently, the diagnosis heavily relies on subjective measures encompassing

pain scales, behavioral assessments, questionnaires, and quantitative sensory testing (QST)

[Wagemakers et al., 2019].

The self-report method remains widely regarded as the gold standard for assessing pain

intensity, commonly utilizing numerical rating scales (NRS) or visual analog scales (VAS).

Through these approaches, patients provide a subjective rating of their pain perception on a

scale of 0 - 10 or indicate the severity by marking a line between two points and measuring

its length. These methods are commonly employed during pain anamnesis, including

the evaluation of the effectiveness of current pain treatments. In Denmark, as outlined

7

Group 10402 1. Problem Analysis

by Sundhedsstyrelsen [2019], pain anamnesis entails gathering comprehensive information

about the patient’s pain experience. This includes factors such as the pain’s onset, location,

intensity (measured using NRS/VAS scales), type, patterns (continuous, intermittent,

diurnal variations), triggers, aggravating and alleviating factors, psychosocial conditions,

whether the pain aligns with current diagnostic findings, and the effects and potential side

effects of ongoing treatments. However, it is important to recognize that relying solely on

patients’ self-reports may introduce certain limitations, including interobserver bias and

subjectivity. It should also be noted that pain intensity assessment methods cannot be

used to directly compare pain levels among different patients [Davis et al., 2017; Elsayed

et al., 2020; Sundhedsstyrelsen, 2019].

QST is an additional tool used to diagnose chronic NP in clinical settings and is defined

by The Neuropathic Pain Research Consortium (NPRC) as a psychophysical method

that measures subjective experiences, such as loss or gain of sensation, in response to

particular thermal, mechanical, or vibratory stimuli. QST is a valuable tool in assessing

sensory abnormalities and NP, as it provides indirect information about underlying sensory

function abnormalities. It is designed to be non-invasive, using only small, portable tools

and requiring less time than other protocols. [Toth, 2013]

However, QST has a few caveats when it comes to diagnosing sensory abnormalities. There

is an overlap in some markers for different pain conditions, such as the loss of sensation to

touch or pinprick in areas that can be reported in non-NP such as muscle pain. Similar

overlaps are seen when comparing nociceptive pain and sunburn, reporting brush and

heat allodynia and heat hyperalgesia. Furthermore, pressure allodynia is common in both

neuropathic and nociceptive pain. The current evidence is inadequate to establish the

test-retest reliability and variance over time, and as a result, it cannot be relied upon

as a monitoring tool for documenting changes over time. The testing requires active

participation and directed attention on behalf of the patient, and both the examiner and

the patient require instruction and training in the testing procedures of QST. [Toth, 2013].

This can be especially difficult when dealing with patients who either have disorders of

consciousness, speech impairments, or those who are simply unable to communicate, like

infants [Schnakers and Zasler, 2007]. Without any objective indicator for pain, physicians

rely on self-report as the only means to evaluate and manage pain [Woolf et al., 2010].

However, using self-report alone can lead to inadequate pain management, misjudgments,

and miscommunications. [Elsayed et al., 2020; Wager et al., 2013]. Another challenge is

that NP is not always peripheral meaning that tests such as QSTs are not always applicable

since the manifestation of chronic pain could be due to alterations in the central nervous

system. See Section 1.2.

Incorporating objective measures of pain as complementary tools to self-report may

improve pain assessment and provide a better understanding of pain mechanisms. However,

8

1.3. Diagnosing Chronic Neuropathic Pain Aalborg University

this requires identifying pain through the activity of the brain itself [Elsayed et al., 2020].

1.3.2 Functional Magnetic Resonance Imaging

Most studies use functional magnetic resonance imaging (fMRI) with a high spatial

resolution, allowing for detecting changes in brain activity in specific brain regions. It

is based on the same technology as magnetic resonance imaging (MRI), which uses a

strong magnetic field and radio waves to create detailed images of the body. But instead

of creating images of organs and tissues like MRI, fMRI looks at blood flow in the brain

to detect areas of activity. This is because when a brain area is more active, it consumes

more oxygen, and blood flow increases to meet this increased demand. [Logothetis, 2008].

However, fMRI has a low temporal resolution, meaning that it is not able to accurately

detect changes in brain activity when looking at a narrow time scale. Furthermore, it

should be noted that hemodynamic techniques, such as blood oxygen level-dependent

(BOLD), do not directly quantify neuronal activity, but instead, they capture the changes

in blood flow dynamics that are related to neural activity. [Zolezzi et al., 2022].

In many studies, fMRI has been used to analyze the neural response of NP models and

to investigate the mechanism of NP. Hubbard et al. [2015] observed the longitudinal brain

changes associated with NP in rats. They found increased activity in somatosensory

regions; S1 and ventral posterolateral nucleus (VPL) in the early stages of the NP model.

Later on, there were changes in the activity of ACC (increased) and PAG (decreased).

Furthermore, there was a correlation between cold hypersensitivity and changes observed

via fMRI. A study has been conducted on non-human primates, before and after capsaicin

application, and significant increases in BOLD signals were observed in brain regions such

as the somatosensory, frontal, and cingulate cortices, as well as the cerebellum [Asad et al.,

2016].

Komaki et al. [2016] found that mice experiencing allodynia showed significantly higher

BOLD signals in the ACC and thalamus. The intact mice only exhibited activation in S1.

They did this by surgically injuring the L4 spinal nerve root using spinal ligation (SNL),

sensory nerve fibers were selectively stimulated, manifesting allodynia.

Furthermore, it has been shown that in humans, NP shows a distinct fMRI pattern. A

study by Baliki et al. [2006] on chronic back pain patients using fMRI found that increasing

pain activated classic pain matrix areas (see Figure 1.3) while high spontaneous pain

activated the PFC and ACC, suggesting different spatiotemporal neuronal mechanisms for

subjective pain compared to acute experimental pain.

The data that is currently accessible on the discriminative capabilities of fMRI is promising.

In a research study that involved individuals suffering from chronic lower back pain,

resting-state fMRI was used to differentiate them from healthy individuals, and the results

9

Group 10402 1. Problem Analysis

indicated an overall accuracy of 68%. [Mano et al., 2017]

While 68% accuracy may be promising, it is not particularly high for a diagnostic test

in a clinical setting. Ideally, a reliable diagnostic test should have a higher accuracy to

minimize false positive and false negative results. A 68% accuracy suggests that there is

a significant overlap in the brain activity patterns between individuals with chronic lower

back pain and healthy individuals, making it challenging to distinguish between the two

groups with certainty.

Figure 1.3. Categorisation of the different pain matrix areas and their specific functionalities.

Source: [Martucci and Mackey, 2018]

Different analysis/ feature extraction methods are used on top of BOLD in fMRI, these

include region of interest (ROI) and generalized linear model (GLM). ROI analysis in

fMRI involves selecting specific areas of the brain associated with a state, measuring the

neural response to the state, and comparing activity between regions or groups. It identifies

patterns of brain activity related to specific states [Hubbard et al., 2015; Song et al., 2021].

GLM is used in fMRI as a method for the statistical relation between brain regions and

specific states, which can provide valuable insights into the neural processes underlying

those states. [Song et al., 2021]

Because fMRI is a non-invasive technique it is suitable for clinical use. However,

it is expensive and requires complex methodological planning when considering the

development of an experiment. [Luck, 2014]

10

1.3. Diagnosing Chronic Neuropathic Pain Aalborg University

1.3.3 Positron Emission Tomography

Positron emission tomography (PET) has properties similar to fMRI when looking at the

resolution in both spatial and temporal domains. PET studies have also been employed

to investigate the mechanism of allodynia in NP, by measuring regional cerebral blood

flow (rCBF). rCBF is a method used in PET that measures how much blood is flowing

to different parts of the brain. This reflects the level of neuronal activity in different

brain regions since neurons need oxygen and glucose from the blood to function. This

reflection of blood flow is achieved by radioactive tracers. PET can measure rCBF by

injecting a tracer that emits positrons when it decays, such as H15
2 O. The positrons then

collide with electrons and produce gamma rays that can be detected by a scanner. By

measuring how much tracer accumulates in different brain regions over time, PET can

estimate how much blood flow those regions receive. The main advantage of PET is

its capability of using highly specialized radiopharmaceutical probes tailored for specific

indications [Pricope et al., 2022; de Natale et al., 2018].

Witting et al. [2006] found that patients with long-standing clinical brush-evoked allodynia

following upper or lower extremity traumatic nerve injury had abnormal thermal and

tactile sensitivity, hyperalgesia to pressure stimuli, and increased temporal summation (von

Frey hair). Using rCBF it was seen that allodynic stimulation activated the contralateral

orbitofrontal cortex (OFC) and ipsilateral insular cortex (IIC), while there was an absence

of activation in S1, ACC, and thalamus. The study suggests that the cortical network

responsible for sensory-discriminative processing of nociceptive pain is less active in NP,

while the OFC and IIC show increased activity. This could be explained by the emotional

impact of NP and the complexity of processing a mixed sensation of stimuli (brush) and

pain. [Witting et al., 2006].

The use of PET scans can be very expensive since it requires the need for injecting

radioactive tracers into the subject, thus also being a more invasive method. Similar

to fMRI, PET imaging also demands meticulous methodological planning when designing

an experiment. [Zolezzi et al., 2022].

1.3.4 Electrophysiological Neuroimaging

Scalp Electroencephalography

When trying to monitor NP one could use EEG, to measure the neural activity. The

main advantage of this modality is its temporal fidelity, which comes at a cost of a lower

spatial resolution. This is particularly important when studying pain, as neural activity

related to pain can occur very quickly. Temporal fidelity enables researchers to look at

time-critical event-related potential (ERP) responses in the brain, related to different pain

models. [Luck, 2014; Zolezzi et al., 2022]. Its spatial precision, resolution, and accuracy are

11

Group 10402 1. Problem Analysis

relatively low compared to high-spatial-resolution imaging techniques such as fMRI. The

spatial precision of EEG can be improved by spatial filters such as the surface Laplacian

or adaptive source-space-imaging techniques. The spatial accuracy of EEG is low since its

activity recorded from one electrode does not reflect only activity from neurons directly

below that electrode, but rather, from a complex mixture of activities from multiple brain

regions close to and distant from that electrode. [Cohen, 2014]. It is estimated that

EEG obtains signals from a summation of potentials of 10,000 - 50,000 neurons [Murakami

and Okada, 2006]. There are advantages when looking at the method’s complexity and

cost. EEG is rather cost-effective and is easier to implement in clinical and experimental

settings. It should be noted that PET and fMRI are advantageous if trying to examine

the subcortical structures which can be fundamental in NP research. [Luck, 2014; Zolezzi

et al., 2022].

Hemodynamic methods, such as PET and fMRI, measure neural activity indirectly,

whereas EEG directly measures electrical activity associated with neural potentials,

making it more appropriate as a direct measurement tool. EEG offers greater flexibility

when it comes to feature extraction. Since EEG signals have high dimensionality, non-

invasive nature, high temporal resolution, and multiple frequency bands, it provides many

possibilities for feature extraction. Thus a variety of signal-processing methods can be

employed to investigate specific aspects of neural activity. Segmenting the frequency bands

into classical categories such as delta, theta, alpha, beta, and gamma is one of the most

commonly used methods for extracting features from EEG signals. Of these bands, the

gamma frequency range has received considerable attention in the field of pain research,

especially when looking at S1. [Zhao and Wan, 2018]. For NP models there is evidence for

an increase in power and displacement of theta and delta frequencies [Zolezzi et al., 2022].

EEG has been applied in a variety of pain research with the aim of extracting useful

biomarkers. Different pain models have been used, these include; thermal pain [Nuñez-

Ibero et al., 2021; Savignac et al., 2022], chronic NP [Di Pietro et al., 2018; Alshelh et al.,

2016; Zolezzi et al., 2022], laser evoked pain [Liberati et al., 2016; Mouraux and Iannetti,

2009], hyperalgesia, and central sensitization [Baroni et al., 2020]. EEG has also been

used to compare modality-specific biomarkers, such as GABA content and resting cortical

oscillations in an NP model, finding an altered brain rhythm and thalamic inhibitory

neurotransmitter release [Di Pietro et al., 2018]. The specificity of laser-evoked local

field potentials (LFP) in relation to pain has been a topic of discussion. However, for

the purposes of this study, it is not a concern as pain models involving either injury or

electrical stimulation will be utilized. [Liberati et al., 2016; Mouraux and Iannetti, 2009]

12

1.3. Diagnosing Chronic Neuropathic Pain Aalborg University

Electrocorticography and Microelectrode Arrays

Some of the limitations of classic scalp electrode setups can be bypassed by the use of

electrocorticography (ECoG) or microelectrode arrays (MEA). This setup increases the

spatial resolution and allows for the recording of neuronal activity at a much finer scale,

making it possible to detect features that cannot be detected with traditional EEG. One

of the main advantages of ECoG is that it provides a higher spatial resolution than scalp

EEG. ECoG electrodes are placed on the dura or the brain and can therefore record from

a much smaller area of the cortex than scalp electrodes. This increased resolution allows

for the detection of more precise and localized neural activity, making it particularly useful

for studies of specific cortical regions in relation to e.g. chronic pain. [Fattahi et al., 2014]

One study compared acute and chronic pain in an animal rat model, and found increased

ECoG power in the theta range, with shorter effects after capsaicin injection and longer-

lasting effects after nerve injury. [LeBlanc et al., 2014]. ECoG typically records from

populations of neurons, detecting changes in the LFP. LFPs reflect the synchronous activity

of a large number of neurons and can provide information about overall patterns of neural

activity and has a range of <200 Hz. [Cohen, 2014; Fattahi et al., 2014]

MEA, on the other hand, provides even higher spatial resolution than ECoG. MEAs consist

of an array of tiny electrodes that can be implanted directly into the brain tissue. This

allows for the recording of the activity of individual neurons or small groups of neurons.

One potential downside of ECoG and MEA recordings is that they are invasive, requiring

the placement of electrodes directly on or in the brain which carries a risk of harming brain

tissue. [Keller et al., 2016; Fattahi et al., 2014]

Additionally, ECoG and MEA recordings are mostly performed in animal models, which

limits their applicability to human studies. Another important difference between ECoG

and MEA recordings is the type of neuronal activity that is recorded. MEA recordings

can also detect multiple unit activity (MUA) from individual neurons, allowing for a more

detailed understanding of the activity of specific neurons, and enabling high-frequency

feature extraction methods, such as spike counting. Spikes range from 250 - 10000 Hz

with some studies differentiating between low MUA (300 - 2000 Hz) and high MUA (2000

- 10000 Hz). The spiking activity is associated with the action potentials of individual

neurons or small groups of neurons (2 - 3 neurons). [Keller et al., 2016; Tøttrup, 2020]

13

Group 10402 1. Problem Analysis

Figure 1.4. Overview of EEG, ECoG and MEA and their respective measurement resolutions,
signal characteristics, and invasiveness.

Modified from: [Fattahi et al., 2014]

1.4 Overview of Different Diagnostic Imaging Methods

To condense all the specifications, advantages, and disadvantages of the different

modalities, a table was created for easier comparison between EEG, ECoG/MEA, fMRI,

and PET (see Table 1.2).

Table 1.2. Table overview of capabilities of different systems. Colors indicate the relative
advantages and disadvantages of the different modalities, from the perspective of imaging neural

activity. [Zolezzi et al., 2022; Seixas et al., 2013; Logothetis, 2008; Luck, 2014; Cohen, 2014;
Murakami and Okada, 2006]

fMRI PET EEG ECoG/MEA

Neural Representation
Indirect

(Blood flow
Oxygenation)

Indirect
Metabolic activity

Neurotransmitter receptors

Direct
Electrical activity

Direct
Electrical activity

Temporal Resolution Moderate to high (seconds) Low (seconds) Very high (milliseconds) Very high (milliseconds)
Spatial Resolution High resolution (1-2 mm) Moderate to low resolution (4-6 mm) Low resolution (10-20 mm) Moderate

Degree of Invasiveness Low High Low High
Cost Expensive Very expensive Inexpensive Expensive

Features BOLD rCBF δ to γ − bands LFP and MUA

1.5 Classification of Pain

In the search for an objective pain biomarker, machine learning and deep learning

algorithms could be a useful tool. If given pain-related data, the algorithms are capable

of learning complex features specific to a known class. This enables them to identify cases

of the same pain-related data, even when introduced to new instances. This makes it

very useful when working with EEG signals that have a complex nature and are therefore

not intuitively interpreted. In this case the algorithm can be seen as a tool for data

14

1.5. Classification of Pain Aalborg University

exploration, where the assumption is that if a feature is repeatedly used by the machine,

then it is probably important for the related problem. [Lötsch and Ultsch, 2018]

Deep learning is a subset of machine learning based on artificial neural networks. It works

by using multiple layers of interconnected nodes to analyse data, similar to how the human

brain functions. Its main advantage to regular machine learning is its ability to extract

patterns and features from large amounts of data without any manual feature engineering.

Because of this, many neuroscience problems are being tackled with deep learning with the

purpose of finding new information from the data. [Pathak and Kashyap, 2021]. Typically

one of three algorithms are being used when trying to decode EEG signals; Convolutional

Neural Network (CNN), Deep Belief Network (DBN) or Recurrent Neural Network (RNN)

[Livezey and Glaser, 2021; Vallabhaneni et al., 2021; Craik et al., 2019].

All three models work differently but have the same purpose of extracting patterns in

the data. CNN uses convolutional layers to learn spatial features in the data, which are

then downsampled through pooling layers to reduce the complexity. In the context of

EEG signals, the CNN is often used to learn features from time-frequency plots such

as spectrograms or raw EEG signals. [Craik et al., 2019]. DBN is a neural network

consisting of multiple restricted Boltzmann machines, which is a type of unsupervised

learning model. This gives the model an advantage when working with unlabeled data.

The RNN is normally used to process sequential data. It has both a feed forward and

backwards connection, which makes the model robust and very suitable for time series

data. [Vallabhaneni et al., 2021]

Choosing which algorithm to use can be difficult since they all show good results in

decoding EEG signals. When looking at review studies, it is clear that CNN is by far the

most used algorithm. This makes sense because of its ability to detect localized features

and translation invariant features and is good at handling noise and variability in the

data. It is also a more computationally efficient model than most, because of its use of

sparse interactions and parameter sharing. [Livezey and Glaser, 2021]. The downside of

CNN is that because it is translation invariant, the model does not have any temporal

memory of where the features are extracted from the signal. This can be a problem when

working with time-dependent data such as EEG, where temporal patterns could be seen

as an important feature. This can be taken into account by combining CNN with other

models. A good combination could be CNN and the RNN model called Long Short-Term

Memory (LSTM) since the CNN is great at spatial features while LSTM is good at finding

temporal dependencies in the data. [Amrani et al., 2021; Ghosh et al., 2021]

A combination model like the CNN-LSTM model could reduce some of the shortcomings

of one model alone and therefore be better suited for the complex problem of classifying

chronic pain. However, the drawbacks of the combination are a furthering in the typical

15

Group 10402 1. Problem Analysis

concerns with deep learning algorithms. The computational complexity will be increased,

with added training time and a large number of parameters. The interpretability of the

model gets worsened, since it becomes harder to interpret what features the model learned

and how it uses them to make a classification.

1.6 Aim

The aim of this project is to address the challenges associated with diagnosing chronic pain

patients by developing objective biomarkers. Specifically, the project aims to differentiate

between chronic pain models. Given the complexity of analyzing pain-related ERPs,

the project intends to employ a deep learning model to identify and establish reliable

biomarkers for this purpose.

How can a CNN-LSTM architecture classify between chronic pain models based on ERP

signals from µECoG recordings in S1?

16

Structured Literature

Search 2
This chapter provides insights into the process of structuring two literature searches: one

on diagnosis of chronic pain and another on machine learning models for EEG State

Classification. It delves into the initial search, keyword structuring, and the screening

process, elucidating the methodology employed to conduct both searches. Furthermore, it

presents the results obtained from the screening process for each search.

2.1 The Initial Search

Before conducting the structured literature search, an initial research question was devised

as follows: What problems are associated with the diagnosis of chronic pain? This question

was chosen since the purpose of this literature search was to get a broader understanding

of the problem domain, that is diagnosing chronic pain.

To start with, an initial search was done to get a general overview of the available literature

on the topic. This search was performed as a free search in scientific databases such as

PubMed and IEEE, where the following keywords were used: EEG, MRI, biomarker,

diagnostics, neuropathic pain, and chronic pain. The most relevant studies were used to

identify common search terms/keywords for the AND/OR table used in the structured

literature search. With new information gained from the initial search, a new research

question was made for the structured literature search: How can brain activity be used as

a biomarker for chronic pain? With this new question, the objective of the structured

literature search was to explore the known biomarkers for chronic pain or NP that can be

found when solely looking at brain activity.

17

Group 10402 2. Structured Literature Search

2.2 AND/OR Table

From the initial search, an AND/OR table was constructed with four categories:

’Neuroscience’ (the area of interest), ’Physiology’, ’Type of experiment’, and ’Type of

measurement’. The AND/OR table was then used on the databases PubMed and Embase

using their specific search syntaxes. The database IEEE was also tried, but no new articles

were found and therefore the database were excluded. The AND/OR table can be seen in

Table 2.1.

Table 2.1. The AND/OR table shows the combination of keywords used in the structured
literature search.

Time of search:
10-02-2023 AND

Neuroscience
(area of interest) Physiology Type of experiment Type of measurement

Diagnostic[tw] “Neuropathic pain”[tw] “Peripheral Nerve Injuries”
[MeSH]

Electroencephalography
[MeSH]

Biomarkers[Mesh] “Chronic pain” [MeSH] Evoked potentials
[MeSH] eeg[tw]

“Neural activity”
[tw]

“Nociceptive Pain”
[MeSH]

Evoked response
[tw]

Magnetic Resonance
Imaging [MeSH]

Neuronal oscillation
[tw]

“Chronic neuropathic
pain”
[tw]

Electrical stimulation
[MeSH]

Magnetoencephalograph
[tw]

Nociception [tw] “pain-eliciting stimulus”
[tw]

"Electrocorticography"
[MeSH Terms]

"Hyperalgesia" [MeSH] “pain stimulation intensity”
[tw]

"microelectrodes"
[MeSH]

“Allodynia” [tw] “Long-Term Potentiation”
[MeSH]
“Somatosensory evoked
potential”
[tw]
Laser-Evoked Potentials
[MeSH]

OR

Nerve injury[tw]
NOT: Diabetes Mellitus, Drug

Filters: 2000-2023, english, full-text available, NOT conference abstract.
Conference papers from 2020 - 2023

Results Pubmed: 150
Results Embase: 122

To guarantee the inclusion of relevant, accessible, and readable studies, various screening

criteria were used. Initially, a full-text filter was utilized to only include articles that

could be accessed in their entirety. Additionally, an English filter was implemented to

only incorporate articles written in English. Furthermore, the time frame of the search

was restricted to journal articles published between 2000 and 2023, and conference papers

published between 2020 and 2023. The search was carried out on the PubMed and Embase

databases, resulting in the identification of 150 and 122 articles, respectively.

2.2.1 Screening Process

Screening the studies found using the keywords using the AND/OR table was carried out in

two parts, the first was an abstract screening, and the second full-text reading. The search

18

2.2. AND/OR Table Aalborg University

yielded a total of 272 articles, of which 17 duplicates were identified and subsequently

eliminated. As a result, 255 articles remained for abstract screening. The full screening

process can be seen in Figure 2.1.

Records identified through
database searching

(n = 272)

Id
en

tif
ic
at
io
n

Records after duplicates
removed
(n = 255)

Abstract screening
(n = 255)

Full-text articles assessed for
eligibility
(n = 78)

Studies included
(n = 45)

Sc
re
en

in
g

El
ig
ib
ili
ty

In
cl
ud

ed

Abstract articles removed
(n = 177)

Full-text articles excluded
(n = 33)

Duplicates removed
(n = 17)

Figure 2.1. PRISMA-flowchart showing the screening process. The left column shows the steps
and the number of articles left, whereas the right column shows the number of articles and at

which step in the process they where removed.

To ensure all articles were judged on the same basis, inclusion and exclusion criteria

were used throughout the screening process. These criteria can be seen in Table 2.2.

Furthermore, to ensure thoroughness and minimize bias, a minimum of two reviewers

were required to agree on whether an article should be included or excluded. In case of

disagreement, a third reviewer was brought in to make the final decision.

19

Group 10402 2. Structured Literature Search

Table 2.2. Table of inclusion and exclusion criteria for the screening process. I and E denote
inclusion and exclusion criteria, respectively.

Criteria Index Criteria
I1 Biomarkers for chronic/neuropathic pain
I2 Diagnosis of chronic/neuropathic pain
I3 Chronic/neuropathic pain model
E1 Studies from before 2000
E2 Non-English studies
E3 Duplications
E4 No full-text access
E5 Drug effect
E6 Solely regarding a sickness
E7 BCI studies
E8 Out of scope
E9 Case report/study
E10 Stimulation as treatment
E11 Receptor focus
E12 Behaviour/empathy studies
E13 Spinal cord/nerve imaging
E14 Migraine
E15 Acupuncture
E16 Anticipatory pain
E17 Transcranial magnetic stimulation

After the abstract-based screening, 126 articles were excluded where the primary reasons

were: solely regarding a sickness, stimulation as treatment, migraine, and out of scope.

This left a total of 78 articles to be considered for the full-text screening. During the

full-text screening process, each reviewer had access to the complete article to make an

informed judgment of it. Of the 78 articles, 33 were excluded where the main reasons

for exclusions were: out of scope, not biomarkers for chronic/neuropathic pain, no full-

text access, and transcranial magnetic stimulation. The majority of the excluded studies

based on out-of-scope were studies that focused on visceral pain, pain perception without

stimulation, and a single study that was retracted. The remaining 45 studies were included.

During the process of full-text screening, each reviewer wrote a summary of the articles

they thought to be included, where they noted the following: title, aim, biomarkers and

pain model, and an argument for why the article should be included. The template for the

full-text screening table is shown in Figure 2.2.

20

2.3. Structured Search on Machine Learning Models for EEG ClassificationAalborg University

Figure 2.2. Full text table for included articles that was written for each included article.

Reused from: [Clark et al., 2022]

2.3 Structured Search on Machine Learning Models for

EEG Classification

After finishing the first structured literature search, a new question emerged about what

types of algorithms, and how they are used to classify based on EEG signals. A search

question was formulated as: What machine learning models are used in the classification

of different EEG states? The reason for looking into "EEG states" instead of e.g. "EEG

in pain research" was because the use of machine learning in pain research is fairly limited

when comparing it to the use of it in EEG research in general. Another argument is that

EEG is a very complex signal, so if one field of EEG research has great experience with a

type of model, it could also be valuable in other fields. The AND/OR table constructed

for the literature search can be seen in Table 2.3. In this search, only reviews were wanted,

since the purpose of the search was to get a general overview of which types of models

could be useful for classifying EEG signals. Furthermore, only reviews from the last 10

years were wanted, since it is a field that is developing a lot.

Table 2.3. The AND/OR table shows the combination of keywords use in the structured
literature search.

Time of search:
03-03-2023 AND

Neuroscience (area of interest) Type of experiment Type of measurement
Electroencephalography [MeSH]/[Emtree]/[Index] “Machine Learning” [tw] Classification [tw]

“Deep Learning” [tw] "Signal analysis" [tw]
Artificial Intelligence [MeSH] Features [tw]
“Artificial Neural Network” [tw] Decoding [tw]

OR

“Neural Network” [tw]
NOT: Survey
Filters: 2013-2023, english, full-text available, conference papers from 2020-2023, review
Total results PubMed: 64
Total results IEEE: 104
Total results Embase: 174

2.3.1 Screening process

The screening process was similar to one from Section 2.2.1, with first an abstract screening

and then afterward a full-text screening. In total 342 studies were found through the search

of which 45 were duplicates. This gave a total of 297 studies to be screened. The full process

can be seen in Figure 2.3.

21

Group 10402 2. Structured Literature Search

Records identified through
database searching

(n = 342)
Id
en

tif
ic
at
io
n

Records after duplicates
removed
(n = 297)

Abstract screening
(n = 297)

Full-text articles assessed for
eligibility
(n = 29)

Studies included
(n = 17)

Sc
re
en

in
g

El
ig
ib
ili
ty

In
cl
ud

ed

Abstract articles removed
(n = 268)

Full-text articles excluded
(n = 12)

Duplicates removed
(n = 45)

Figure 2.3. PRISMA-flowchart of the screening process. The left column shows the steps and
the number of articles left, whereas the right column shows the number of articles and at which

step in the process they were removed.

After the abstract screening, 268 articles were excluded, leaving a total of 29 articles to

be considered for the full-text screening. From the full-text screening of the 29 articles, 12

were excluded and the remaining 17 were included. The exclusion of the studies were based

on the inclusion and exclusion criteria seen in Table 2.4. The main reasons for exclusion

were BCI, epileptic, or seizure studies.

22

2.3. Structured Search on Machine Learning Models for EEG ClassificationAalborg University

Table 2.4. Table of inclusion and exclusion criteria for the screening process. I and E denote
inclusion and exclusion criteria, respectively.

Criteria Index Criteria
I1 Review on EEG classification with machine learning
E1 Studies from before 2013
E2 Non-English studies
E3 Duplications
E4 No full-text access
E5 Survey study
E6 Focus on a specific disease/disorder/state
E7 Imagery
E8 BCI
E9 Sleep classification
E10 Speech classification
E11 Out of scope
E12 Emotion
E13 MRI, CT or PET

23

Experimental Protocol 3
In this chapter the protocol and procedure of the experiment will be explained from which

the data used in this project were acquired. This includes the experimental setup and

stimulation protocol.

3.1 Protocol and Procedure of the Experiment

The experiment was conceived and carried out by the Center for Neuroplasticity and

Pain (CNAP) at Aalborg University. It had approval from the Danish Veterinary and

Food Administration under the Ministry of Environment and Food of Denmark (protocol

number: 2020-15-0201-00514).

The experiment involved 16 Danish landrace pigs that were subjected to different

conditions. Some encountered a spared-nerve injury (SNI) model, others were exposed to

high-frequency stimuli (HFS), and a subset served as the control group. Before commencing

the surgical procedures, measurements were set up using the Synapse software developed

by Tucker-Davis Technologies (TDT).

Once anesthetized and ready for surgery, a cranial window was carefully formed via an

incision just above the S1 region. Anatomical landmarks; bregma, midline suture, and

coronal suture were used to locate S1. The µECoG electrode was subsequently positioned

on the dura mater. Figure 3.1 provides a visual representation of the cranial window’s

placement over the S1 area.

25

Group 10402 3. Experimental Protocol

Figure 3.1. Cranial window placed above S1 in one of the subjects.

The ulnar nerve (n. ulnaris) of the pig was subjected to electrical stimulation through a pair

of cooner wires, implanted subcutaneously. Before placing these wires, an identification

process was performed to accurately locate and orient the nerve. During the phase of

continuous stimulation, the wires were situated over the nerve.

Ascertaining the motor threshold involved a systematic modification of the stimulation

amplitude. The process began at 50 µA, followed by stepwise increases of 200 µA until

a distinct movement was noticeable. Subsequently, the amplitude was decreased in 50

µA steps until the absence of movement, after which it was boosted by another 50 µA to

confirm the threshold.

The stimulation pattern used was an asymmetrical, rectangular, biphasic pulse with charge

balance, where the second phase amplitude was 10% that of the primary phase. A

programmable stimulator (STG4008, Multichannel Systems, Reutlingen, Germany) was

employed for the delivery of stimulation.

The stimulation amplitudes fell into two categories: non-noxious and noxious. The non-

noxious stimulation was set at twice the motor threshold, while the noxious stimulation

was defined as ten times the motor threshold. The experiment also included a procedure

to induce long-term potentiation (LTP). This procedure involved setting the stimulation

amplitude (maintaining a 1:1 biphasic ratio) at 20 times the motor threshold, applied at

a frequency of 100 Hz for 1 second, repeated 10 times.

26

3.2. Measurement Protocol Aalborg University

3.2 Measurement Protocol

Each experimental trial was structured into four separate measurement periods and an

intervention phase. Each of these measurement segments spanned 30 minutes and was

subdivided into three data collection sets, separated by three pauses. In each data

collection set, 100 instances of both non-noxious and noxious stimulations were applied,

over a duration of 6 minutes, followed by a pause of 4 minutes. At the onset of each

measurement, a 30-second baseline recording was made. The participants who were part

of the intervention group received the LTP or SNI directed at the radial nerve during

the intermission between the initial two measurement segments. The collected data was

sampled at a rate of 6.1 kHz.

An illustration of the different measurement phases can be seen in Figure 3.2.

Non-noxious
Target: Peripheral nerve
Amplitude: 1-2 x motor

threshold
No stimuli: 100

Intervention (LTP/SNI)
or control Post intervention

SNI: Cut the radial
nerve

LTP: 10 x 100 Hz
for 1 second at 20
x motor threshold

30 minutes 30 minutes 30 minutes

Noxious
Target: Peripheral nerve
Amplitude: 10 x motor

threshold
No. stimuli: 100

30 minutes

Pre intervention

Figure 3.2. Protocol for stimulation for pre intervention, intervention/control, and post
intervention. The blue and red squares are non-noxious and noxious stimuli, respectively.

27

Pre-proccesing 4
This chapter will include a description of how much data was available and how it was

stored. Afterward, the steps of the pre-processing is explained. The purpose of this process

is to convert the raw data files into spectrograms based on continuous wavelet transforms.

4.1 Data Management & Signal Processing

The data was in folders of measurements in a file format from TDT. The µECoG recordings

were sampled with a frequency of 6103 Hz, using 32 electrode array. The data was then

opened in Matlab (Version 2019b), to extract the time series data and onset timer for the

stimuli for each experiment and saved as a .mat file. In order to minimize the size of the

data, it was downsampled by a factor of three, resulting in a sampling frequency of 2034

Hz. The factor of three was found based on the highest expected frequency of interest

(200 Hz), where 10 times the highest frequency of interest would be more than sufficient to

accurately represent the signal without introducing aliasing, thereby satisfying the Nyquist

theorem.

The .mat files were saved as a dictionary with 2 elements. First the time series data:

Stimuli type (NonnoxERP or NoxERP), channels (0-31), blocks (0-3), and a 2D array

containing the stimulations and time series data. The second element was the onset timers

of when in the time signal, the stimulations were given.

Data from a total of 22 experiments were included in this project, where the majority had

four blocks of data. The full list of data can be seen in Table 4.1. A total of 49806 epochs

each measured with 32 channels gives a total of approximately 1.6 million epochs. Note

that for the LTP and SNI experiments, the first 600 epochs were only used as control data

since the intervention was performed after the first block of measurements.

29

Group 10402 4. Pre-proccesing

Table 4.1. Overview of the available data for the three groups: LTP, control, and SNI. Note
that the first block in LTP and SNI experiments, which contains 600 epochs, was control and was

not used as an intervention group.

Experiment Number of epochs available
LTP1 2400
LTP2 2400
LTP3 2400
LTP4 2400
LTP5 2462
LTP6 2400

Control1 2400
Control2 2400
Control3 2400
Control4 1800
Control5 2400
Control6 2400
Control7 2400
Control8 1800
Control9 2400

SNI1 2400
SNI2 2400
SNI3 2400
SNI4 2400
SNI5 2400
SNI6 2400
Total 49806

4.2 Initial Inspection of µECoG Data

To perform the initial inspection of the µECoG data the dictionary was loaded into

Python (version 3.10.6) with scipy (version 1.9.3) function ’scipy.io.loadmat()’. To plot

the time series data, the Python package matplotlib’s ’pyplot’ was used. As seen in

Figure 4.1, the data had extensive noise, which needed to be removed. To this end, a

frequency analysis of the initial inspection was performed using Magnetoencephalography

and Electroencephalography (MNE) Python (version 1.2.2) which is an open-source

Python package for analyzing, visualizing, and processing EEG and MEG data. [MNE,

2023a]. To plot the power spectral density (PSD) of the original time series data, MNE’s

’mne.viz.plot_raw_psd’ function, as seen in Figure 4.2, was used. The majority of the

noise was found at 50 Hz including harmonics.

30

4.3. Pre-processing of µECoG Signals Aalborg University

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

100

50

0

50

100
Am

pl
itu

de
 (µ

V)

Figure 4.1. Time series signal of the original data before filtering. The noise in the signal is
mostly 50 Hz.

Figure 4.2. Power spectral density of the original unfiltered data from 0 - 300 Hz. Note the
extensive noise at 50 Hz and the following harmonics every 50 Hz.

4.3 Pre-processing of µECoG Signals

One of the challenges when working with µECoG signals is noise and artifacts because

of the low amplitude of the brain signals. Typically these include environmental,

instrumental, and physiological noise which is noise from the body that is not relevant

to the experiment like muscle, eye, and heart signals. For this purpose, filters are used.

Filters are a function that can attenuate unwanted frequencies or parts of a signal by

weighting several inputs to produce an altered output. [de Cheveigné and Nelken, 2019]

The equation for a digital filter is seen in 4.1.

y(t) =

N∑
n=0

h(n)x(t− n) (4.1)

31

Group 10402 4. Pre-proccesing

Where t is the analysis point in time, and h(n) is the impulse response of the filter for each

point from n to N.

There are typically four different types of filters; low-pass, high-pass, band-pass, and notch,

which can be seen in Figure 4.3

Figure 4.3. Examples of low-pass, high-pass, band-pass and notch filters. The low-pass,
high-pass, and bandpass filters are 4th order (blue) or 16th order (red) Butterworth filters. The

notch filters are second-order filters with Q-factors of 1 (blue) and 10 (red).

Modified from: [de Cheveigné and Nelken, 2019]

The low-pass filter attenuates higher frequencies than the band allows. This is often used on

EEG signals since high-frequency variance can often be seen as irrelevant to the information

in the signals. Low-pass filters can also be used to smoothen the signal so the longer-term

trends in the signal become explicit. The high-pass filter attenuates lower frequencies than

the band allows. This is relevant for neuroelectrical signals since they are susceptible to

DC shifts and low drifts. The band-pass filter is a combination of a low-pass and high-pass

filter and attenuates frequencies outside the band. This is practical to isolate a specific

band or to attenuate noise outside of a targeted band. A notch filter attenuates frequencies

in a narrow band. This is often used in signal-processing to attenuate 50 or 60 Hz power

line noise and harmonics of this. Notch filters have a Q-factor which is a ratio of bandwidth

to center frequency. It is used to determine how many Hz around the center frequency to

attenuate. Notch filters are ineffective in removing noise at the end of a signal, which is

why applying the notch filter on the whole time series signal is recommended rather than

on epoched data. To ensure that the phase of the signal is not changed during filtering, the

filter can be applied forwards and backwards, in which the effective filter order is doubled.

This way, the filter becomes a zero-phase filter. [de Cheveigné and Nelken, 2019]

4.3.1 Filter Implementation

To design the band-pass filter, MNE’s filter method was used. The band-pass filter is

a zero-phase symmetric linear-phase FIR filter, where the FIR design was made with

’scipy.signal.firwin’. The FIR design had a windowed time domain, where the hamming

window was chosen. This window type was chosen based on its stable nature and low

spectral leakage [Gupta and Panghal, 2012]. The band-pass cutoff frequency was chosen

32

4.3. Pre-processing of µECoG Signals Aalborg University

to be 1 - 200 Hz since the expected signal frequencies in an µECoG on dura are less than

200 Hz. [Fattahi et al., 2014]. The notch filter is based on the same method as MNE’s

filter method. The center frequency was chosen to be 50 Hz with a 2 Hz cutoff frequency

on each side, making the stop-band of the notch filter from 48- 52 Hz. Since the initial

inspection showed noise in harmonics of 50 Hz, the same filter was applied at 100, 150,

and 200 Hz with the same cutoff around the center frequencies. As seen in Figure 4.4,

the filters had the desired effect since the noise is attenuated notably compared to the

remaining frequencies.

Figure 4.4. The power spectral density of the signal after filtering. The 50 Hz including
harmonics have been attenuated, as well as the frequencies outside the bandpass from 1 - 200 Hz.

In order to check if the stimulation response was clear in the time series data, a mean of 20

epochs was calculated after band-pass and notch filtering. This can be seen in Figure 4.5,

where there is a clear response after 200 ms.

Figure 4.5. An example of 20 epochs averaged together after band-pass and notch filtering.
The stimulation response can be seen just after 200 ms in the epoch.

33

Group 10402 4. Pre-proccesing

4.3.2 Removal of Noisy Channels & Epochs

After filtering the data, it was epoched into 200 ms before the stimulation and 500 ms

after stimulation, resulting in a 700 ms signal for each epoch. The identification of noisy

channels and epochs were needed to ensure that only good quality data was given to the

network. This was done by plotting the 32 channels using MNE’s visualization tool. The

channels were plotted on the y-axis, whereas the epochs were plotted on the x-axis. This

way, only the noisy channels, and epochs were removed while maintaining as much of the

data as possible. An example of two noisy channels can be seen in Figure 4.6 whereas

noisy epochs can be seen in Figure 4.7

Figure 4.6. Examples of noisy channels. Channels 28 and 30 were noisy, which can be seen as
spiky even after filtering the signals.

34

4.3. Pre-processing of µECoG Signals Aalborg University

Figure 4.7. Examples of noisy epochs from epoch number 900 and forwards. The noise can be
seen in the spikes of the signal that occur after filtering.

The noisy channels and epochs identified from the available data can be seen in Table 4.2.

Note that the total number of epochs at the end of the table was for each channel that was

not removed. The cumulative count of noisy epochs entailed eliminating the individual

epochs across all 32 channels. The total number of epochs used in the project was:

• LTP intervention: 232.203 epochs

• Control: 530.712 epochs

• SNI intervention: 199.176 epochs

35

Group 10402 4. Pre-proccesing

Table 4.2. Overview of the noisy channels and epochs in the available data. At the end of the
table is the total number of removed channels and epochs, as well as the included epochs in each
group (Control, LTP intervention, and SNI intervention. Note that the total number of included

epochs is for each of the included channels for the respective experiment.

Experiment Noisy channels/epochs Number of epochs used(NI/I)

LTP1 Noisy channels: None
Noisy epochs: 280

Control: 599
Intervention: 1521

LTP2 Noisy channels: 26,28,30
Noisy epochs: 692

Control: 87
Intervention: 1631

LTP3 Noisy channels: All
Noisy epochs: All

Control: 0
Intervention: 0

LTP4 Noisy channels: 1,13,17,19,22
Noisy epochs: 0

Control: 600
Intervention: 1800

LTP5 Noisy channels: 1,13,16,17,18,19,20,22,25
Noisy epochs: 3

Control: 600
Intervention: 1859

LTP6 Noisy channels: 13,16,17,18,19,20,22,25
Noisy epochs: 4

Control: 600
Intervention: 1795

Control1 Noisy channels: All
Noisy epochs: All

Control: 0
Intervention: 0

Control2 Noisy channels: 15,17,19,22,28
Noisy epochs: 234 Control: 2166

Control3 Noisy channels: 17,19,22
Noisy epochs: 52 Control: 2348

Control4 Noisy channels: 11,15,17,19,22
Noisy epochs: 7 Control: 1793

Control5 Noisy channels:0:15,17,19,22
Noisy epochs: 2 Control: 2398

Control6 Noisy channels: 16,17,18,19,20,22,25
Noisy epochs: 1 Control:2399

Control7 Noisy channels: 16,17,18,19,20,22,25
Noisy epochs: 2 Control:2398

Control8 Noisy channels: 15,17,19,22
Noisy epochs: 3 Control: 1797

Control9 Noisy channels: 8,13,15:31
Noisy epochs: 0 Control:2400

SNI1 Noisy channels: 16,17,18,19,20,22
Noisy epochs: 399

Control: 200
Intervention: 1799

SNI2 Noisy channels: 16,17,18,19,20,22
Noisy epochs: 6

Control: 595
Intervention: 1798

SNI3 Noisy channels: 14,15,16,17,19,22,28
Noisy epochs: 232

Control: 445
Intervention: 1723

SNI4 Noisy channels:13,16,17,18,19,20,22,25
Noisy epochs: 23

Control: 600
Intervention: 1633

SNI5 Noisy channels:All
Noisy epochs: All

Control: 0
Intervention: 0

SNI6 Noisy channels: 0:15,17,19,22
Noisy epochs: 0

Control: 600
Intervention: 1800

Total Noisy channels: 236
Noisy epochs: 9140

Control: 22626
LTP Intervention: 8606
SNI Intervention: 8752

36

4.4. Wavelet Transform Aalborg University

4.4 Wavelet Transform

The wavelet transform is one of the most commonly used spectrogram methods when using

EEG signals in conjunction with a CNN architecture. It transforms a time-domain signal

into a time-frequency signal in the form of a spectrogram, which is a suitable input for the

CNN. The wavelet has the advantage that it can have a high frequency resolution at low

frequencies and a high time resolution at high frequencies. [Saeidi et al., 2021] This is an

important property for signals like the EEG, since it contains high frequency components

within short time periods and low frequency components within long time periods. [Mane

et al., 2015]

An example of a wavelet is the Morlet wavelet. A Morlet is defined as a sine wave tapered

by a Gaussian. For time-frequency analysis, a complex Morlet is used where the real-valued

Gaussian tapers a complex-valued sine wave. [Cohen, 2019]

ψ0 (η) = π
−1/4eiω0ηe−η2/2 (4.2)

Where ω0 is the nondimensional frequency [Torrence and Compo, 1998].

The continuous wavelet transform (CWT) of a sequence xn is the sequence convoluted

with a scaled and translated version of the wavelet.

Wn (s) =
N−1∑
n′=0

xn′ψ ∗


(
n

′ − n
)
δt

s

 (4.3)

Where s is wavelet scale, n is a localized time index, xn is a discrete sequence and ψ is the

wavelet [Torrence and Compo, 1998].

The scale parameter is a term for the width of the wavelet. This means a large scale

corresponds to a wide wavelet, which is advantageous for low frequencies, while a small

scale means a narrow wavelet which is advantageous for high frequencies. The translation

is used to determine the location of the wavelet along the time axis. Shifting the translation

positively or negatively, the wavelet can be moved forward or backwards in time to analyze

the signal. By using different translations the signal can be analyzed in different time

resolutions [Torrence and Compo, 1998]. Visualization of the scale and translation effect

on the wavelet can be seen in Figure 4.8.

The wavelet does however have limitations for how well the resolution can be in both time

and frequency. This is because of the uncertainty principle, which states that a trade-off

always has to be made between the frequency resolution and the time resolution. This

means that a wavelet with a high frequency resolution will have a poor time resolution

and vice versa. This is important to remember when choosing the scales. [Woyczynski,

2011]

37

Group 10402 4. Pre-proccesing

Figure 4.8. The figure shows a Morlet wavelet and the properties of scaling and translation.
When the translations changes in time the frequency remains the same. When the scale changes

the frequency domain changes while the time domain remains the same.

The Morlet wavelet has some advantages that make it a good choice for time-frequency

analysis. For one it is Gaussian shaped in the frequency domain, which means there are

not any sharp edges to create ripples. Secondly, the Morlet wavelet convolution retains

the temporal resolution of the signal. Thirdly it is not as computationally heavy as some

of the other wavelets, which is advantageous when working with large datasets. [Cohen,

2019]

4.4.1 Implementation of Continuous Wavelet Transform

The MNE package to Python was used to create the Morlet wavelets, through the function

"mne.time_frequency.tfr_morlet(data, freqs, n_cycles)". The function is based on Mike

Cohen’s description of the temporal smoothing parameter of the wavelet called full width

at half-maximum (FWHM) [Cohen, 2019]. This temporal smoothing parameter is defined

as:

FWHM =
n_cycles×

√
2ln2

π × freq
(4.4)

Where n_cycles is the number of cycles and freq is the center frequency of the wavelet.

To implement the CWT for the project, the frequency range of interest and the number of

cycles for each frequency were defined. The CWT was initially plotted with a frequency

range of 0.5 - 200 Hz in steps of 1 Hz, aligning with the bandpass filter’s settings of 0.5 -

200 Hz. This can be seen in Figure 4.9.

38

4.4. Wavelet Transform Aalborg University

Figure 4.9. Shows a plot of the CWT with a frequency range from 0.5 - 200 Hz. Baseline
(before the stimulation) of the signal is from 0 - 0.15 s. The colour bar shows the values of the

pixels in the image.

The number of cycles is the trade-off parameter between the temporal and frequency

resolution. A smaller number produces are higher temporal resolution while a higher

number will result in high frequency resolution. To determine the number of cycles,

multiple values were compared, as seen in Figure 4.10.

(a) Number of cycles: 66 (b) Number of cycles: 50

(c) Number of cycles: 20 (d) Number of cycles: 10

Figure 4.10. The figures shows plots of CWT where the number of cycles are different and
thereby changes the time and frequency resolutions. The colour bars shows the values of the

pixels in the images

39

Group 10402 4. Pre-proccesing

By trying different number of cycles this trade-off between the time and frequency

resolution could be evaluated. The number of cycles were therefore chosen to be 20,

which can be seen in Figure 4.10a.

The resulting CWT was normalized with 1/f by using the baseline before the stimulation

(the first 150 ms of the signal) to calculate a mean frequency vector. There are various

methods for 1/f normalization. The chosen implementation was percentage change from

the mean of the baseline, as this is one of the two methods recommended by Cohen [2014].

Percentage normalization can be calculated as seen in Equation (4.5).

Percent Change =
Bf −Xf

Bf
(4.5)

Where Xf is the value in the CWT for a given time and frequency value, and Bf is the

average of the baseline for a given frequency.

This was implemented with MNEs’ "apply_baseline" function using the percent baseline

method.

The 1/f normalization’s effect can be seen in Figure 4.11.

40

4.4. Wavelet Transform Aalborg University

(a) CWT before using the baseline as normalization

(b) CWT after using the baseline as normalization

Figure 4.11. The figures shows the effect of using the baseline to normalise the frequencies in
the rest of the CWT. The colour bars shows the values of the pixels in the images

The CWTs are then normalized further between 0 - 1, to simplify the image and

downsampled to reduce the array size. The downsampling was necessary since the data

files would be too large for the computers used, to be able to train the deep learning

algorithm. This resulted in a reduced frequency scale of factor 2, and the time scale was

reduced with a scale of 16, resulting in an 82 x 100 image.

To further reduce the training time of the network and highlight the stimulation peak, the

average of epochs was used. Figure 4.12 shows different numbers of epochs used for the

averaging. The one used as the input was chosen to be the CWT where 20 epochs were

averaged. This was chosen since there was a trade-off between the number of means that

reduced the amount of data available and a stimulation response.

41

Group 10402 4. Pre-proccesing

(a) Average epochs: 10 (b) Average epochs: 20

(c) Average epochs: 50 (d) Average epochs: 100

Figure 4.12. The figures shows different plots of a CWT of a channel with different averages of
epochs. The colour bars shows the values of the pixels in the images

4.5 Temporal Window Length

As written in Section 4.4, wavelet has the advantage that it can have high frequency

resolution at low frequencies and high time resolution at high frequencies. This can be

implemented by decreasing the length of the temporal window. This can be calculated

as seen in Equation (4.6), where the n_cycles is divided by the center frequency of the

wavelet freq.

Window length =
n_cycles
freq

(4.6)

If the window length is constant, this means that the time and frequency resolution remains

constant, whereas if the window length decreases, the time and frequency resolutions are

scaled throughout the spectrogram. This can be seen in Figure 4.13

42

4.5. Temporal Window Length Aalborg University

Figure 4.13. Illustration of fixed (a) or decreasing length (b) of the temporal window of the
CWT.

Source: [MNE, 2023b]

The lowest frequency chosen for the wavelets was set to 0.5 Hz, which means that it

takes the wavelet 2 seconds to complete one cycle. However since the epoch length was

0.7 seconds, this could not be calculated, since the whole cycle cannot be completed.

Therefore, one of two options could be used. Either choose the lowest frequency possible

for the signal to complete the specified number of cycles, or choose a lower number of

cycles. Here decimal numbers can be used as the number of cycles. Both of these options

were tested on the data.

(a) Center frequency from 25 - 200 Hz (b) n_cycles = 0.2

Figure 4.14. This figure shows the two different methods for implementing decreasing window
length in the CWT. (a) shows the method where the center frequency ranges from 25 - 200 Hz.

(b) shows where n_cycles was set to 0.2. The color bars show the values of the pixels in the
images

Both of these options were tested on the data, as seen in Figure 4.14. In Figure 4.14a, the

decreasing window length improved the frequency resolution at the lower frequencies and

increased time resolution in higher frequencies which was preferred. However, the lowest

frequency was 25 Hz, which cuts the majority of the traditional frequency bands off. In

43

Group 10402 4. Pre-proccesing

Figure 4.14b, the number of cycles was 0.2, which resulted in better frequency resolution

at the lowest frequencies, however at the cost of poor frequency resolution from around 20

Hz and upwards. This indicates that a decimal n_cycle results in an unstable transition

in resolution between frequency and time.

As both methods resulted in suboptimal results, this was not implemented in this project.

44

Neural Network

Architecture 5
This chapter will introduce the general idea of the final network. Furthermore, an overview

of the fundamental concepts related to CNN and LSTM will be provided. To begin with,

the overall architecture will be described, followed by a comprehensive explanation of the

various layers within the network. The chapter also includes considerations in regards to

the current literature of ERP based CNN applications.

5.1 General CNN-LSTM architecture

The study aims to construct a CNN-LSTM architecture, as described in Section 1.5, which

leverages spectrograms as input to extract relevant features using convolution and achieve

classification through fully connected layers. The following sections will provide a detailed

explanation of the various modules comprising the overall architecture (CNN, LSTM, and

fully connected). The proposed general network architecture is depicted in Figure 5.1.

Input layer Convolution
+ activation function Pooling Fully

connected Output layer

Feature learning Classification

Flatten

SNI

LTP

Control

BI-LSTM

Figure 5.1. The general architecture of the CNN-LSTM model, showing the CWT as input,
convolutional, LSTM and fully connected layers.

5.2 Convolutional Neural Network

5.2.1 General CNN Architecture

Designing the network architecture is a crucial step in developing any neural network as

it significantly affects its classification performance. However, there is no one-size-fits-

all solution for creating an optimal CNN architecture since it heavily depends on the

application and the input to the neural network. Hence, it is crucial to evaluate various

45

Group 10402 5. Neural Network Architecture

hyperparameters and select the architecture that best fits the problem. [Duda et al., 2000;

Nielsen, 2018]

The architecture of a CNN has three primary parts: the input layer, hidden layers, and

output layer. In a CNN, the hidden layers serve two primary functions: they extract

features from the input data through the use of convolutional blocks, and they classify

these extracted features via fully connected layers. The design of the network’s structure

starts at the input layer. This is followed by a chain of convolutional blocks, which lead

to a flattening layer. Following this, a number of fully connected layers are incorporated,

all converging to the output layer. The design of this output layer is tailored to match

the particular classification problem being addressed, which involves having an amount

of neurons equivalent to the number of required classifications. Figure 5.2 illustrates the

general CNN architecture. [Duda et al., 2000; Nielsen, 2018]

Input layer Convolution
+ activation function Pooling Fully

connected Output layer

Feature learning Classification

Flatten

Figure 5.2. General CNN architecture that serves as the basis for the final design. This setup
comprises of an input layer, convolutional layer(s), pooling layer(s), flattening layer, fully

connected layer(s), and an output layer.

Reused from: [Clark et al., 2022]

5.2.2 Feature Learning

The feature learning of the CNN consist of three blocks: Convolutional layer, activation

function, and pooling. The convolutional layer applies learned filters to the input image

to create feature maps that summarize the presence of those features. The activation

function and pooling layer are used to downsample the feature maps and make them more

robust to changes in the position of the features. A review of deep learning for EEG

classification tasks suggests that two convolutional blocks are commonly used for ERP

and CNN classification. [Craik et al., 2019]

46

5.2. Convolutional Neural Network Aalborg University

Convolutional Layer

After the input is given to the network, the next layer is the convolutional layer. The

convolutional layer is the layer that learns features by using a local receptive field. The

local receptive field is an n x m sized mask that is slid over the image with trainable weights

and biases. This way, the input image’s values are cross correlated with the weights and

biases, creating a hidden neuron. These weights and biases are shared weight and biases,

meaning that these values are not changed when the local receptive field is slid over the

image, but are only updated in the optimization process. The local receptive field is then

moved with a given stride, which is how many spaces it is moved before the next hidden

neuron is calculated. When the local receptive field has been slid around the whole input,

all the hidden neurons for the given receptive field are now a feature map that contains

features for the specific values in the receptive field. For each convolutional layer, several

different feature maps are usually made, each with different weights and biases. A CNN

typically has multiple convolutional layers to detect higher order of features. [LeCun et al.,

1998]

An example of an input image and a local receptive field with size of 3 x 3 pixels can be

seen in Figure 5.3

Local receptive field

Hidden neuron

Figure 5.3. Representation of the convolutional approach with a 3 x 3 size receptive field. At
each step, the mask performs an element wise multiplication with the corresponding pixels of the
input, sums to a single output value. After each stride, the sums are added as hidden neurons,

which results in a feature map.

Reused from: [Clark et al., 2022]

Activation Functions

The activation function determines the output of a neuron in an artificial neural network,

based on its input or a set of inputs. Non-linearity is introduced by the activation function,

which is essential for the neural network to learn complex patterns. Without non-linearity,

the network would just be a complex linear model. Depending on the role of the layers,

different activation functions can be used throughout the network. Usually, the hidden

layers and the output layer have other functions, because the goal in the hidden layers

is to enhance training, while the goal in the output is typically to perform classification.

47

Group 10402 5. Neural Network Architecture

Several activation functions are often used in deep neural networks, such as Sigmoid,

Tanh, Softmax, and Rectified Linear Unit (ReLU), which will be described in the following

sections. [Duda et al., 2000; Nielsen, 2018]

ReLU The ReLU activation function is a simple nonlinear function that outputs the

input if it is positive and zero otherwise. It is widely used in deep neural networks because

it is easy to implement, computationally efficient, and can overcome the vanishing gradient

problem. [Nielsen, 2018] The vanishing gradient problem is a problem that arises when the

gradient in the loss function approaches zero. This causes the parameters of the network,

which is updated using the gradient in order to take the next step, to stagnate. This

happens primarily to the layers closest to the input since backpropagation starts at the

last layer and works its way backward from there. This also means that the more complex

network, meaning more layers, the vanishing gradient problem worsens. [Roodschild et al.,

2020]

The ReLU activation function is illustrated in Figure 5.4, which shows how it filters out

negative values and preserves positive values.

Figure 5.4. Rectified Linear Unit (ReLU) activation function. The input is seen on the z-axis,
where only values above zero are positive, and input values below zero are zero.

Source: [Nielsen, 2018]

The ReLU activation function can be expressed mathematically as:

ReLU(x) = max(0, x) (5.1)

In Equation (5.1) x denotes the net activation. The ReLU function is mostly used on the

hidden layers of both the convolutional and linear layers. [Nielsen, 2018]

Sigmoid The sigmoid function is a mathematical function that maps any input value to

a corresponding output value within the range of 0 to 1. When this function is plotted,

it takes on the characteristic shape of an "s". This distinct visual feature is illustrated in

48

5.2. Convolutional Neural Network Aalborg University

Figure 5.5, where the sigmoid curve can be seen gradually increasing from 0 to 1, with its

steepest slope occurring at the midpoint of the curve.

Figure 5.5. Sigmoid activation function. It is shown for all input values, the output of the
sigmoid is between 0 and 1.

Source: [Nielsen, 2018]

The sigmoid function is mathematically defined as:

sigmoid(x) =
1

1 + e−x
(5.2)

The variable x in Equation (5.2) represents the net activation, and the sigmoid function

can be used in both hidden and output layers of neural networks. However, its use in

hidden layers can sometimes lead to numerical instability which can generate exploding

or vanishing gradients during learning, as noted in [Nielsen, 2018]. This has led to the

development and adoption of alternative activation functions, such as ReLU.

Tanh The hyperbolic tangent function (tanh) shares similarities with the sigmoid

activation function, but it has a distinct interval ranging from -1 to 1, with its center

at 0. The function is visualized in Figure 5.6.

Figure 5.6. Tanh activation function. It is shown for all input values, the output of the tanh is
between -1 and 1.

Source: [Nielsen, 2018]

49

Group 10402 5. Neural Network Architecture

Mathematically, the tanh function is defined as:

tanh(x) =
ex − e−x

ex + e−x
(5.3)

In Equation 5.3 , the variable x represents the net activation. Moreover, a visual

representation of the Tanh activation function can be observed in Figure 5.6. [Nielsen,

2018]

Softmax The softmax activation function computes the posterior probabilities by

normalizing the output. Employing an exponential function effectively constrains the

output values within the desirable range of 0 to 1 for every class. Moreover, it ensures

that the sum of all class probabilities always equals 1, making it a vital component in the

output layer of neural networks. [Nielsen, 2018]

The softmax function is mathematically defined as:

softmax(x) =
ex

exm∑
m=1

(5.4)

In Equation 5.4 [Nielsen, 2018], the variable x represents the net activation, and m denotes

the number of neurons.

Pooling

After the convolution layer and activation function, pooling of the feature maps is often

used. Pooling is a simplification of the feature maps so the needed calculations in later

layers are lowered. This is done by sliding a window function over the feature maps with

a given stride, which condenses the information. Since the information is condensed, the

size of the feature map after a pooling is reduced, relative the to size of the window.

A common method is max-pooling, in which the pooling layer’s output is the window’s

maximum value. An example of max-pooling with a window size of 2 x 2 can be seen

in Figure 5.7. Another common method is L2 pooling, in which the squared root of the

sum of the window is calculated. Common for each method is pooling to see whether the

network has found a certain feature in the image. It then throws away the exact location

of this, but the relative location is still known. [Nielsen, 2018]

50

5.2. Convolutional Neural Network Aalborg University

3 8

19 11

18 27

2 5

6

5525

14

6 13

25 3

25

2 x 2

max pooling 2719

55

Figure 5.7. Max pooling with a window size of 2 x 2 of the input on the left, and the output of
the max-pooling on the right. The stride in this example is 2.

Reused from: [Clark et al., 2022]

5.2.3 Classification

Once the features have been extracted from the input, the subsequent step is the

classification. The classification segment of the network consists of a flattening layer,

one or more fully connected layers, and lastly, the output layer as seen in Figure 5.8.

Pooling Fully
connected Output layer

Classification

Flatten

Figure 5.8. The classification segment of the CNN network consists of the flattening layer, fully
connected layer(s), and the output layer.

Reused from: [Clark et al., 2022]

Flattening

The flattening layer is the layer that connects the pooling layer and the fully connected

layer. The pooling layer is an n x m sized array of intensities, whereas the fully connected

layer is a one column vector. In order to connect these layers, a flattening method is used.

If the pooling layer is three feature maps, each with 2 x 2 pixels, then the flattening layer

would be a column vector with 12 values, as seen in Figure 5.9.

51

Group 10402 5. Neural Network Architecture

Feature map 1

Feature map 2

Feature map 3

Pooling layer Flattening

3 8

19 11

3

8

19

11

18 27

2 5

6 13

25 3

18

27

2

5

6

13

25

3

Figure 5.9. Flattening approach of three feature maps with size 2 x 2, resulting in 12 entries in
the flattening layers.

Reused from: [Clark et al., 2022]

Fully Connected Layers

The purpose of the fully connected layers is to classify the right label of the sample. This

is done by connecting all the neurons from one layer to the next layer. [Duda et al., 2000]

The architecture of a fully connected layer that is generally used can be seen in Figure 5.10.

Fully
connected Output layerFlatten

Figure 5.10. Fully connected layers with the flattening layer, fully connected layer(s), and the
output layer with three neurons.

Reused from: [Clark et al., 2022]

The output of the fully connected layers depends on different parameters; The value of

the input neuron, weights, biases, and activation function. The weight is a parameter

52

5.2. Convolutional Neural Network Aalborg University

that scales the input value of a neuron. The greater the weight, the more influence the

corresponding neuron’s value has in the network’s computations. The bias shifts the

activation functions x-axis, in which a positive bias would increase the output of the

activation function, whereas a negative bias would decrease the output of the activation

function. Lastly, the activation function results in a non-linear modelling between the

layers. A graphical illustration of the parameters can be seen in Figure 5.11. The

weights and biases for each hidden neuron is a trainable parameter, meaning that by

doing backpropagation, the model can change the values of each weight and bias. [Duda

et al., 2000; Nielsen, 2018]

The number of hidden neurons in each of the fully connected layers is dependent on how

well separated the patterns in features are. The more complex of a separation, the more

neurons are needed. Since this is unknown before the training process, the number of

hidden neurons is decided based on trial and error [Duda et al., 2000]. The number of fully

connected layers that is recommended for ERP-based classification in a CNN model is 1-2

layers [Craik et al., 2019].

Bias (b0)

w1 * x1

w2 * x2

wi * xi

Output

Figure 5.11. The calculation of the hidden neurons output is determined from the weights
(wi), the value of the input neuron (xi), the bias (b0), and the activation function (σ).

Reused from: [Clark et al., 2022]

5.2.4 Dropout

The CNN contains non-linear hidden layers, that enable them to decipher complex

correlations and patterns. This can lead to something called overfitting, where the model

learns to fit too close to the training data, which makes it fail to generalize to unseen data.

Several methods have been made to try and prevent overfitting, with dropout being one

of them. Dropout is a method where neurons are dropped, which can include neurons in

both hidden and visible layers. When a neuron is dropped, it means that the neuron is

temporally removed (the value is set to zero) from the network. This help overfitting, since

the model can not rely on a few neurons, but is forced to use other neurons to base the

classification on. The choice of which neurons are dropped for each training is random,

which is often implemented with a fixed percentage of all the neurons in a specific layer.

The dropout rate is a hyperparameter that can be changed between the training runs, but

53

Group 10402 5. Neural Network Architecture

around 0.5 seems close to optimal for most networks and tasks. [Srivastava et al., 2014].

A visual illustration of dropout can be seen in Figure 5.12

Figure 5.12. The effect of dropout on a network. (a) a standard neural network with 2 fully
connected hidden layers. (b) is the same size as (a), but with a thinned number of neurons due

to dropout.

Source: [Srivastava et al., 2014]

5.2.5 Output

The output layer is the last layer in the network and is where the classification between

the classes happens. However, this process does not imply absolute certainty about the

predicted class. To handle this uncertainty, a softmax activation function is used to make

the prediction into a probability. As described in Section 5.2.2, the softmax ensures that

the predicted probabilities are non-negative and sum up to one. This way, softmax ensures

that the network outputs probabilities for each class, in which the highest probability is

the class the network has predicted. [Grandini et al., 2020]

5.2.6 Backpropagation

Backpropagration is a method used when training artificial neural networks. It is part of

the training that is called the backward pass, where the output of the network is compared

to the desired output quantified by the loss function. The parameters are then adjusted

by the gradients which are calculated for each neuron by applying the chain rule in the

direction from the output to the input, implemented using an optimizer.

Cross Entropy Loss Function

The learning process of a neural network heavily relies on loss functions, which quantify

the error between predicted and target values. In the case of classification-based

architectures, a classifier loss function is used. Among them, the widely used and highly

effective choice is cross-entropy loss. This loss function calculates the disparity between

probability distributions of predicted and target values, providing insights into the model’s

performance. [Hart et al., 2000]

54

5.2. Convolutional Neural Network Aalborg University

The mathematical formulation of cross-entropy loss is depicted in Equation 5.5:

Loss = − (y log(p) + (1− y) log(1− p)) (5.5)

Where y represents the label (0 or 1), and p denotes the predicted probability. When

dealing with multiclass classification, the loss for each class label is calculated and sums

up to the results, as shown in Equation 5.6:

Loss = −
M∑
c=1

yc log(pc) (5.6)

Here, M refers to the number of classes, which in our case is M = 3. The variables yc and

pc denote the target and predicted probabilities, respectively, for class c. It is worth noting

that cross-entropy loss severely penalizes confident yet incorrect predictions. For instance,

when the label is 1, the second half of the function vanishes, and the same applies to the

first half when the label is 0. This loss function enables us to measure the dissimilarity

between the predicted probability distribution and the true distribution across all three

classes.

Utilizing cross-entropy loss in this project’s deep learning architecture will help guide the

training process and optimize the model’s performance in distinguishing between control,

LTP, and SNI stimuli. [Hart et al., 2000]. To incorporate cross-entropy loss into the neural

network, the default parameterization recommended by the PyTorch documentation was

used [Paszke et al., 2019]. This implementation includes a softmax activation function in

the input of the loss function.

5.2.7 Gradient Descent and Nesterov-accelerated Adaptive Moment

Estimation Optimizer

To make use of the information provided by the loss function, an optimizer is needed to

update the weights and biases of the network. The optimizer’s goal is to locate the global

minima in the optimization space while using the measure of the loss function to navigate

the space and find the optimal or near-optimal solution. Gradient descent is widely used

as an optimization method to find the minima of a loss function. The method works by

taking steps in the opposite direction of the gradient since the gradient’s movement is

toward the maxima. When the minima are found, the parameters of the neural network

are updated in the backward pass [Ruder, 2016].

The mathematical formula for gradient descent is shown in Equation (5.7).

θt+1 = θt − α · ∇θtJ(θt) (5.7)

55

Group 10402 5. Neural Network Architecture

Where, θ represents the parameter at iteration t, α is the learning rate, and ∇θtJ(θt)

denotes the gradient of the objective function with respect to the parameter θt. This

optimizer starts with an initial parameter value and updates it based on the negative

gradient direction multiplied by the learning rate. While gradient descent is a fundamental

optimizer, it has some limitations. It updates the parameters only after going through an

entire epoch, which can be slow and resource-intensive. Additionally, it uses a constant

learning rate for all parameters, which makes it less robust and slower in converging to an

optimal solution [Ruder, 2016]. This can be overcome by implementing a scheduler that

updates the learning rate after each iteration. Nonetheless, this still has the disadvantage

of each parameter being updated at the same rate.

To address the limitations of the homogeneous parameter update rate, the Nesterov-

accelerated Adaptive Moment Estimation (NAdam) optimizer is chosen. NAdam is an

extension of the widely used Adaptive Moment Estimation (Adam) optimizer, commonly

employed as the default optimization algorithm in neural networks. The forthcoming

sections will revolve around Adam, as the fundamental theory of NAdam is rooted in this

concept. Adam has several advantages, including computational efficiency, low memory

requirements, and invariance to diagonal rescaling of gradients. It performs well in large-

scale problems that involve a substantial amount of data and parameters, as stated in

Kingma and Ba [2014].

Adam achieves more frequent parameter updates by optimizing the learning process for

small batches in each epoch and for each parameter θ. It adapts the learning rate based

on the parameters, allowing for smaller updates for frequently occurring features and

larger updates for infrequent features. [Ruder, 2016]. To achieve this, Adam introduces

additional hyperparameters, such as first and second-order moments [Choi et al., 2019;

Kingma and Ba, 2014]. The adaptive parameter updates are based on both of these

moments. It maintains an exponentially decaying average of past squared gradients vt
and an exponentially decaying average of past gradients mt, similar to the concept of

momentum. [Ruder, 2016]

The Nesterov accelerated gradient (NAG) is incorporated into Adam by modifying the mt

term. This modification updates the gradient one step ahead by replacing the previous

moment, m̂t−1, with the current m̂t. The mathematical formula for NAdam is as follows:

θt+1 = θt −
α√
v̂t + ϵ

(β1m̂t +
(1− β1)

1− βt1
) · ∇θtJ(θt) (5.8)

Where

m̂t =
mt

1− βt1
and v̂t =

vt
1− βt2

(5.9)

56

5.3. Long Short-Term Memory Aalborg University

In Equation (5.8), the difference between NAdam and Adam is that the gradient is updated

one step ahead by replacing the previous moment, m̂t − 1, with the current m̂t. The first

(m̂t) and second order (v̂t) moments have the decay rates β1 and β2 . m̂t and v̂t represent

the corrected moments of mt and vt, respectively. The correction factor ensures unbiased

estimates of the moments so that they are not biased toward zero. t denotes an iteration.

The term ϵ is a small constant used for numerical stability.

By incorporating the NAG, NAdam improves upon the original Adam optimizer. It

updates the gradient using the projected new position rather than the current position,

resulting in accelerated convergence. The NAdam optimizer provides faster and more

efficient optimization compared to simple gradient descent, as well as improved adaptability

to different parameters by dynamically adjusting the learning rate.

For the implementation of the NAdam optimizer, the default parameters recommended in

the PyTorch documentation were adopted. [Paszke et al., 2019]

5.3 Long Short-Term Memory

This section will provide insight into the benefits of utilizing LSTM and delves into the

architectural structure of the network. Subsequently, a comprehensive explanation of the

distinct gates within the LSTM cell will be presented.

5.3.1 Advantages of LSTM

LSTM is a type of RNN developed to overcome the problem of exploding and vanishing

gradients. LSTM is also great for sequential data and the identification of long-term

dependencies.

RNNs are flexible in handling sequential data of varying lengths due to their feedback

loops. These loops create new inputs that match the length of the data. RNNs have

shared weights and biases across all rows, keeping complexity constant. However, this also

causes the vanishing/exploding gradient problem.

The exploding and vanishing gradient problem refers to the difficulty of training RNNs to

learn long-term dependencies, where the input or output at a certain time step depends

on the information from many previous or future time steps. In such cases, the gradients

of the error function with respect to the network parameters can either grow or decay

exponentially as they propagate through the network during backpropagation. This poses

a significant challenge in maintaining stable updates to the weights and biases of the

network. Therefore the LSTM was implemented to minimize the gradient problem and

exploit its ability to extract long-term dependencies. LSTM networks incorporate memory

cells and gating mechanisms that allow them to selectively retain or forget information

57

Group 10402 5. Neural Network Architecture

over long sequences. This helps address the vanishing gradient problem by preserving

important information over time and mitigating the effects of gradient decay. [Van Houdt

et al., 2020; Sak et al., 2014]

5.3.2 General LSTM Architecture

LSTM is a type of neural network that introduces a memory cell and three gates: an

input gate, an output gate, and a forget gate. The memory cell stores relevant information

from past and present inputs, while the gates control how much information is added or

removed from the cell and how much is passed to the next cell. This way, LSTM can

learn to preserve or forget long-term dependencies in the data and avoid the exploding

and vanishing gradient problem. Unlike traditional RNN, LSTM has two paths: one

for short-term memory and one for long-term. The long-term memory path, also known

as the cell state, has a straight connection to the output and is only manipulated by

multiplication and sum. Its main purpose is to avoid exploding or vanishing gradients.

The short-term memory path, also known as the hidden state, includes multiple weights,

biases, and activation functions, such as sigmoid and tanh, which are a part of the cell

state. (see Section 5.2.2). An LSTM cell contains both a cell state and a hidden state,

which are unrolled according to the size of the sequential data. [Van Houdt et al., 2020;

Sak et al., 2014]

Forget gate Output gate

X

Input gate

+LTM (Ct-1)

STM (ht-1)

Input (xt)

Sigmoid Sigmoid Tanh Sigmoid Tanh

STM (ht)

LTM (Ct)

ft it

ot

Figure 5.13. LSTM architecture with the forget (blue), input (grey), and output gate (green).
LTM is the long-term memory, while STM is the short-term memory.

58

5.3. Long Short-Term Memory Aalborg University

5.3.3 Forget Gate

The first stage in the LSTM is called the forget gate and it decides how much of the

previous hidden state, which represents the long-term memory of the network, should be

kept or discarded for the current input. The forget gate uses a sigmoid function, which

is a mathematical function that maps any real number to a value between 0 and 1. The

output of the sigmoid function can be interpreted as a probability or a percentage. For

example, if the forget gate outputs 0.8 for a certain element of the hidden state, it means

that 80% of that element will be retained and 20% will be forgotten. The forget gate allows

the network to selectively remember or forget information that is relevant or irrelevant.

[Van Houdt et al., 2020; Sak et al., 2014]

The parameters of the network are called weights and biases, which will be denoted as

W and b respectively. The weights multiply the inputs and the biases are added to the

multiplication. The formula for the forget gate is:

ft = sigmoid(Wf · [ht−1, xt] + bf) (5.10)

where ft is the output of the forget gate with a time step t, Wf is the weight, [ht−1, xt] is

the concatenation of the previously hidden state output and the current time input, bf is

the bias for the forget gate, and sigmoid is the sigmoid activation function. [Van Houdt

et al., 2020; Sak et al., 2014]

The output of the forget gate ft is then used to update the cell state ct, which is another

parameter that stores information over time. The cell state is updated by multiplying it by

ft. This means that ct is either kept or forgotten depending on the corresponding element

of ft. The formula for updating the cell state is:

ct = ct−1 · ft (5.11)

where ct is the cell state at time step t, ct−1 is the cell state at time step t− 1, and ft is

the output of the forget gate at time step t. The cell state ct is then used by two other

gates: the input gate and the output gate. [Van Houdt et al., 2020; Sak et al., 2014]

5.3.4 Input and Output Gate

The second stage is the input gate which is divided into two blocks. One of the blocks

combines the input with the short-term memory, to create a potential long-term memory.

The other block determines what percentage of the candidate should be remembered. The

third stage is the output gate which is similar to the input gate, except that this updates

the short-term memory instead of the long-term.

59

Group 10402 5. Neural Network Architecture

The input gate decides what new information to add to ct based on ht−1 and xt, and the

output gate decides what part of ct to output as ht based on ht−1 and xt. These two gates

also use weights, biases, and sigmoid functions similar to the forget gate. The formulas for

these gates are:

it = sigmoid(Wi · [ht−1, xt] + bi) (5.12)

ot = sigmoid(Wo · [ht−1, xt] + bo) (5.13)

where it is the output of the input gate at time step t, ot is the output of the output gate

at time step t, Wi is the weight for the input gate, Wo is the weight for the output gate,

bi is the bias for the input gate, bo is the bias for the output gate. [ht−1, xt] is as defined

in Equation (5.10).

The input gate it also uses the tanh activation function. The tanh function produces a

candidate gt that contains potential new information extracted from the input to add to

ct. The formula for gt is:

gt = tanh(Wg · [ht−1, xt] + bg) (5.14)

where gt is the candidate at time step t, Wg is the weight for the candidate, and bg is the

bias for the candidate. [ht−1, xt] is as defined in Equation (5.10).

The input gate it is a percentage that decides how much of gt to add to ct by multiplication.

The formula for updating ct with new information is:

ct = ct + it · gt (5.15)

where ct is the updated cell state at time step t, it is the output of the input gate at time

step t, and gt is the candidate at time step t.

The output gate ot decides what part of ct to output as ht by multiplying them element-

wise after applying a tanh function to ct. The formula for computing ht is:

ht = ot · tanh(ct) (5.16)

where ht is the hidden state at time step t, ot is the output of the output gate at time step

t, and ct is the cell state at time step t.

60

5.3. Long Short-Term Memory Aalborg University

5.3.5 Bidirectional LSTM

A Bidirectional LSTM (BI-LSTM) (see Figure 5.14) is a type of architecture that follows

the ground principles of a normal LSTM. The difference of this network is that it passes

data forwards and backward so that both past and future data are considered when making

the prediction. This can be useful for tasks that require context from both sides of a

sequence, such as natural language processing (Sak et al. [2014]) or time series analysis

(Van Houdt et al. [2020]). A BI-LSTM consists of two LSTM layers that operate in opposite

directions and concatenate their outputs at each time step. Furthermore, Bi-LSTM has

shown a superior ability to learn from time-series EEG data [Wu et al., 2022; Zhang et al.,

2018].

The complexity of the network can be increased by implementing multiple layers. This

means that the output of one LSTM layer can be fed as the input of another LSTM layer,

creating a deeper network that can learn more complex patterns and dependencies in the

data. [Wu et al., 2022]

The chosen architecture for this project will feature a baseline LSTM model, incorporating

a bidirectional multilayer design. This approach ensures that dependencies in both

directions are carefully considered, while also allowing for the implementation of

multiple layers of bidirectional LSTMs. This enables the extraction of intricate features

and dependencies, contributing to a comprehensive and deeper model. The baseline

bidirectional multilayer LSTM module for the final architecture can be seen on Figure 5.14.

Flatten BI-LSTM FlattenBI-LSTM

Forward pass

Backward pass

Figure 5.14. Illustration of a BI-LSTM two-layer architecture, demonstrating the
interconnected feedforward and backward layers. The forward pass from the initial layer is linked
to the forward pass of the subsequent layer, similarly to the backward pass. The forward pass is

depicted with a solid black outline, whereas the backward pass is outlined in gray.

61

Model Interpretability,

Evaluation, and

Performance Metrics 6
This chapter will explain the general methods used to understand and assess the

performance of the neural network. This includes the model interpretability, evaluation,

and lastly performance metrics.

6.1 Model Interperability

In order to gain a comprehensive understanding of the underlying feature importance

within the architecture, diverse interpretability methods are employed. Multiple methods

are utilized to mitigate any biases that might arise from relying solely on a single approach.

The focus lies on primary attribution methods, as they provide a holistic overview of

the network’s feature extraction and weighting. These methods are carefully selected to

ensure a varied range of frameworks is utilized. The Noise Tunnel is implemented in every

method. This technique serves as an additional layer for various attribution methods.

By incorporating Gaussian noise into the input multiple times, Noise Tunnel computes

attributions repeatedly and then combines the resulting values using the specified method.

The feature attribution methods were implemented using the Python package Captum.

[Kokhlikyan et al., 2020]

6.2 Saliency

Saliency maps are a baseline method for investigating network attention. This method

involves recalculating the network’s gradients by backpropagating from the output to the

input. By harnessing these gradients, it becomes possible to accentuate individual pixels

within an image, resulting in a final score that accurately reflects the network’s attention

given to a specific class. During the gradient backpropagation process, each pixel of the

image is assigned a relevance score, signifying its contribution to the final prediction.

63

Group 10402 6. Model Interpretability, Evaluation, and Performance Metrics

One way to interpret this approach is by considering it as an approximation using a first-

order Taylor expansion of the network with respect to the input. The gradients, in this

case, correspond to the coefficients assigned to each feature in the linear representation of

the model.

This mechanism effectively highlights the pixels with the greatest influence on the network’s

output, revealing where the network is directing its attention. When these relevance scores

are aggregated, they form a saliency map, which visually portrays the distribution of

attention across the input image. [Simonyan et al., 2013]

An example of the saliency method used on a spectrogram can be seen on Figure 6.1. This

method exhibits a higher level of sensitivity to input data, as the model demonstrates

strong attributes across multiple locations in the spectrogram.

Figure 6.1. Example of a Captum-generated saliency map applied to an EEG spectrogram.
Lighter pixels indicate more important features, while darker pixels indicate less important

features

Input data from: [Atchuthan et al., 2023]

Saliency was implemented using the Captum function ’captum.attr.Saliency’.

6.3 Integrated Gradients

Integrated gradients is another gradient-based method similar to saliency that examines the

integral of gradients from the output with respect to the input. This approach utilizes an

attribution baseline, which serves as a reference point for assigning importance scores. In

Integrated Gradients, the baseline is commonly selected as a point in the input space where

all feature values are set to zero or a neutral value. The fundament of this method is based

on the axioms; feature sensitivity and implementation invariance. Feature sensitivity refers

to the importance score given to a specific feature that should reflect its actual contribution.

Implementation invariance refers to the attribution score that should not be affected by

the method of implementation of the architecture. This means that the attribution score

should solely rely on the performance of the model and not on which layers and activation

functions are implemented. This is handled by making use of continuous gradients instead

64

6.4. DeepLIFT Aalborg University

of discrete ones since these are affected by the model implementation. [Sundararajan et al.,

2017]

Computationally this method approximates the integral of the gradients from the output

to the input and multiplies this with the difference between the input and baseline. This

is also seen in Equation (6.1)

IntegratedGradients(x) = (x−xbaseline)×
∫ 1

α=0

∂F (xbaseline + α× (x− xbaseline))

∂x
dα (6.1)

x represents the input data point of interest. xbaseline is a reference input used for

comparison. F is the analyzed function or model. α is a weighting factor that interpolates

between the baseline and the input. ∂F (xbaseline+α·(x−xbaseline))
∂x calculates how F changes

with respect to x along the path from the baseline to the input. The integral
∫ 1
α=0 integrates

the changes in F with respect to x along the path. dα represents the infinitesimal change

in α used in the integration.

An example of Integrated Gradients used on a spectrogram can be seen on Figure 6.2.

Figure 6.2. Example of a Captum-generated Integrated Gradients map applied to an EEG
spectrogram. Lighter pixels indicate more important features, while darker pixels indicate less

important features

Input data from: [Atchuthan et al., 2023]

Integrated Gradients was implemented using the Captum function ’captum.attr.IntegratedGradients’,

employing a zero array baseline with identical input size.

6.4 DeepLIFT

DeepLIFT is a backpropagation-based approach that calculates importance scores by

tracing a path from the output to the input. Unlike integrated gradients, DeepLIFT

effectively addresses the computational overhead issue by deriving importance scores

from the difference between the reference activation and the input activation, without

using integrals. This involves using a baseline input to establish a reference activation,

which is then compared to the activation of the input. DeepLIFT employs the concept

65

Group 10402 6. Model Interpretability, Evaluation, and Performance Metrics

of multipliers, to "blame" neurons for differences in the output. By multiplying the

importance scores by these multipliers and propagating them backward through the

network, DeepLIFT ensures that the importance scores are allocated to the input features

in a way that considers the interactions and dependencies between layers. The multiplier

effectively captures how changes in the input are amplified or attenuated as they pass

through the network. [Shrikumar et al., 2017]

The multiplier is calculated as such:

m∆x∆t =
C∆x∆t

∆x
(6.2)

x is the input neuron with a difference from reference ∆x, and t is the target neuron with

a difference from reference ∆t. C is then the contribution of ∆x to ∆t.

The significance of this approach lies in its ability to generate negative activation scores

for neurons, overcoming problems related to saturation. [Shrikumar et al., 2017]

In addition to its computational advantages, DeepLIFT also resolves the problem of

thresholding by incorporating negative values. The thresholding problem arises when

computing importance using gradients multiplied by the input, such as in saliency. In this

case, even a tiny change in the input can lead to a significant shift in the gradients due to

the bias term. By utilizing the difference from the reference activation, DeepLIFT achieves

a more seamless and continuous importance scoring, effectively eliminating the disruptions

caused by the bias term. [Shrikumar et al., 2017]

An example of DeepLIFT used on a spectrogram can be seen on Figure 6.3.

Figure 6.3. Example of a Captum-generated DeepLIFT map applied to an EEG spectrogram.
Lighter pixels indicate more important features, while darker pixels indicate less important

features

Input data from: [Atchuthan et al., 2023]

DeepLIFT was implemented using the Captum function ’captum.attr.DeepLift’, employing

a zero array baseline with identical input size.

66

6.5. Occlusion Aalborg University

6.5 Occlusion

Occlusion is a pertubation based technique employed to compute attribution. It employs

sliding windows to selectively occlude various sections of the input with a baseline, enabling

the evaluation of their impact on the network’s classification accuracy. If a significant

alteration in accuracy occurs, it signifies the importance of the corresponding features,

which are then emphasized in the resulting attribution map. By aggregating the attribution

maps obtained from each occluded image, a comprehensive representation of the model’s

feature attribution map is generated. [Zeiler and Fergus, 2013]

Figure 6.4. Example of a Captum-generated Occlusion map applied to an EEG spectrogram.
Lighter pixels indicate more important features, while darker pixels indicate less important

features

Input data from: [Atchuthan et al., 2023]

Occlusion was implemented using the Captum function ’captum.attr.Occlusion’, employing

a zero array baseline with identical input size, for the occluding window.

6.6 Model Evaluation

6.6.1 Learning Curves

In this project, the learning curve was used as a tool to evaluate various hyperparameters

throughout each training session in order to determine the model’s fit to the data. The

training loss curves depict the model’s performance on the training dataset, whereas the

validation loss curve describes its performance on the validation dataset, indicating the

model’s generalizability to new data. The learning curves were generated using cross-

entropy, which calculated the loss for both the training and validation datasets. The losses

were plotted for each epoch, and the resulting curves for training and validation loss were

visually represented based on the cross-entropy result. The curve of training loss tends to

have a gentler decline, in contrast to the more fluctuating pattern seen in the validation

loss curve. An illustration of different learning curve outcomes can be found in Figure 6.5,

where the blue curve represents training loss, and the orange curve represents validation

loss. [Brownlee, 2019]

67

Group 10402 6. Model Interpretability, Evaluation, and Performance Metrics

Underfit Good fit Overfit

Figure 6.5. Three types of learning curves, showing underfit, good fit, and overfit. The images
includes the training loss (blue) and validation loss (orange).

Source: [Brownlee, 2019]

Typically a model’s performance can be categorized as overfit, underfit, or a good fit.

Overfitting occurs when the model’s too complex, resulting in the validation loss diverging

away from the training loss curve. Underfitting is when both the model’s complexity and

the training duration are insufficient, causing the validation loss to not converge with the

training loss curve. A good fit is when the validation and training loss curves converge

and keep the same trends. [Brownlee, 2019]

To improve the model, adjustments can be made by modifying its complexity based on

the learning curve assessment. For instance, if the model is underfitting due to its low

complexity, additional hidden layers, larger layer sizes, or more advanced architectures can

be added. Conversely, if the model is overfitting due to its high complexity, layers can be

removed, layer sizes can be reduced, or less advanced architectures can be employed. This

is an iterative process, where the trial-and-error approach is used. [Brownlee, 2019]

6.6.2 Model Checkpoint and Early Stopping

Throughout the training process, the performance of the model gradually improves as

it learns from the training data. Model checkpoints save the model, which includes the

structure of the model, as well as the weights and biases. This is done when the current

validation loss is better than the previous validation loss. This way, the model that was

most generalizable, which is typically based on the validation loss, gets saved for later

evaluation on the test data. Early stopping is a technique that helps against overfitting

a neural network to the training data. Normally during the training process, the network

seems to get better and better due to its lowering training loss. But at some point, the

networks start to worsen, where the error on validation data starts to increase. This is

where early stopping can help stop the training process before reaching a point where

the model is overfitting [Orr and Müller, 1998]. Early stopping was implemented so that

the training process would break when a certain number of epochs have gone by without

lowering the best performed validation loss. This parameter is called patience and was

set to 30, meaning that after 30 epochs of not improving validation loss, the model would

68

6.7. Classification Performance Metrics Aalborg University

break the training loop. A patience of 30 was chosen based on the training of 500 epochs,

as seen in Figure 6.6, where the validation loss drops and then starts to rise, a patience of

30 should be sufficient in stopping the model if it is not improving.

Figure 6.6. Trained model with 500 epochs where the training loss (blue) and validation loss
(orange) are shown. Note that using model checkpoint, the model would have stopped around 40

epochs, before an increase in validation loss, and there preventing overfitting.

6.7 Classification Performance Metrics

In order to decide how well a classification algorithm has performed, a confusion matrix

can be used. A confusion matrix is a matrix in which the predicted values of the test

data are compared to the actual values. When considering a two class problem, there are

four possible outcomes: if the instance is positive, and the classifier predicted positive, it

is counted as a true positive (TP). If the classifier predicted negative it is counted as a

false negative (FN). If the instance is negative, and the classifier predicted negative, it is

counted as a true negative (TN). If the classifier predicted positive, it is counted as a false

positive (FP). Then the values from the four scenarios are then plotted in a 2 x 2 matrix

as seen in Figure 6.7.

69

Group 10402 6. Model Interpretability, Evaluation, and Performance Metrics

Figure 6.7. Confusion matrix for binary classification with true positive (TP), true negative
(TN), false positive (FP), and false negative (FN).

Reused from: [Clark et al., 2022]

However, in the case of multiclass classification, with three classes, the confusion matrix

would be a 3 x 3 matrix, where each cell represents the count of instances for a specific

combination. The class is listed in the same order in the rows and columns, and the

correctly predicted instances are located in the main diagonal. According to Markoulidakis

et al. [2021], when using a confusion matrix with multiclass classification, the use of TP,

TN, FP, and FN is not applicable. Instead, they use TP along the diagonal for the correctly

predicted instances, and intragroup mismatch (IM), which is a falsely predicted instance

for instances predicted elsewhere than the main diagonal. The confusion matrix encloses

relevant information about the classifier and the performance of the classification rule,

which is often used for further analysis of the performance. [Grandini et al., 2020]. A

confusion matrix for multiclass classification can be seen in Figure 6.8.

70

6.7. Classification Performance Metrics Aalborg University

Figure 6.8. Confusion matrix with three classes with true positive (TP) and intragroup
mismatch (IM). The actual values are listed in the rows, whereas the predicted values are listed

in the columns.

6.7.1 Accuracy

Accuracy is one of the most used performance metrics for classification and measures the

number of correct predictions compared to the total amount of predictions. It is calculated

from the confusion matrix by the correct prediction instances in the main diagonal divided

by all instances in the confusion matrix as seen in Equation (6.3). The accuracy weights

the classes equally, which means that if the amount of data in the different classes

are unbalanced, this can give a wrongful conclusion about the network’s performance.

[Grandini et al., 2020]

Accuracy =
TP

TP + IM
(6.3)

TP is the sum of all the true positives, and IM is the sum of all intragroup mismatches.

6.7.2 F1-score

An alternative to accuracy is the F1-score to measure the performance of the network

which takes class imbalance into account. This is done by calculating precision and recall.

Precision is a measure of the TP predictions of the network, while recall is the probability

that the positive predicted values are actually true. Precision and recall measures under

the concept of harmonic mean, which is a type of mean that gives a result that favors the

lower values in the dataset. This way, the F1-score is low if either the precision or recall

is low, but increases if both parameters are similar. [Grandini et al., 2020]

The F1-score can range from 0 to 1 where 1 means a perfect classification between the

classes, and can be calculated from the confusion matrix as seen in Equation (6.4)

71

Group 10402 6. Model Interpretability, Evaluation, and Performance Metrics

F1 = 2 · Precision ·Recall
Precision+Recall

=
2TP

2TP + FP + FN
(6.4)

The F1-score for multiclass classification has to be calculated with an adjustment. Here

the TP, FP, and FN must be found for each class, and thereby calculate the individual

F1-score and thereafter calculate the final F1-score. When calculating the F1-score for

each class, the TP score is one of the values along the diagonal, depending on which class

is calculated. Then the FN values are found by the remaining values in the row of the TP

value. The FP values are found by the column of the respective TP value. [Shickel et al.,

2020; Grandini et al., 2020]. This is shown for the first class C1 in Figure 6.9

Figure 6.9. This figure shows how to find true positive (TP), false positive (FP), and false
negative values from the confusion matrix when calculating the F1-score for the C1 class.

After the F1-score is calculated for each class, multiple ways of finding the average F1-score

are used. Here the macro, micro, and weighted F1-score will be presented. Macro F1-score

is the multiplied F1-scores of the individual classes divided by the total number of classes,

as seen in Equation (6.5). This way, each class is weighted equally and is therefore often

used for balanced datasets. [Shickel et al., 2020; Grandini et al., 2020]

Macro F1-score =
F1c1 + F1c2 · · ·F1cn

K
(6.5)

F1cn is the F1-score of a given class, and K is the total number of classes.

The idea behind the micro F1-score is to calculate all the different classes together without

considering possible differences between the classes. This is done by taking the TP for a

specific class divided by the column of the TP value. This is done for all the classes and

ends up giving the same result as accuracy, as shown in Equation (6.6). [Shickel et al.,

72

6.7. Classification Performance Metrics Aalborg University

2020; Grandini et al., 2020].

Micro F1-score =

K∑
c=1

TPc

K∑
c=1

Total Columnc

(6.6)

K is the total number of classes, and c is the given class.

The weighted F1-score is weighted based on the number of samples each class contributes

to the whole dataset. This way, if a class containing the majority of the samples is correctly

predicted, it weighs more than the minor classes. This is calculated by taking the F1-score

of the individual classes and multiplying it by a weight, which is the percentage of the

whole dataset that class contribute. This calculation is shown in Equation (6.7). [Shickel

et al., 2020; Grandini et al., 2020]

Weighted F1 = F1c1 ·Wc1 + F1c2 ·Wc2 · · ·F1cn ·Wcn (6.7)

where F1cn is the calculated F1-score for the specific class, and Wcn is the weight assigned

to each class based on how much the specific class contributes to the total dataset. Based

on these methods, and the fact that data used in this project is imbalanced, the weighted

F1-score was chosen as the method in this project, since it weights the classes depending

on their contribution to the total amount of instances in the dataset.

6.7.3 Receiver Operating Characteristic Area Under the Curve

Another common method for evaluating the performance of classifiers is the receiver

operating characteristic (ROC) curve, which is a curve of sensitivity versus 1 - specificity

of the test data. Sensitivity is a measure of the ability of the classifier to detect TP when

it is actually a TP instance. Specificity is a measure of how well the classifier can detect

TN in all instances of TN. [Mandrekar, 2010b,a]

Sensitivity and specificity can be calculated from the confusion matrix as seen in

Equations (6.8) and (6.9).

TPR =
TP

TP + FN
(6.8)

TNR =
TN

TN + FP
(6.9)

The ROC curve is made by plotting the sensitivity on the y-axis and 1 - specificity on

the x-axis, where each point on the ROC curve corresponds to different threshold values.

73

Group 10402 6. Model Interpretability, Evaluation, and Performance Metrics

If the algorithm classifies based on pure chance, it will follow the diagonal line from the

lower left corner to the top right corner which is called the line of no discrimination. An

example of the ROC curve can be seen in Figure 8.2

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

ROC curve

0.0 0.5 1.0

0.5

1.0

Ran
do

m C
las

sif
ier

Better

Worse

Figure 6.10. Example of ROC curves with a line of no discrimination along the diagonal.
Classifiers with a ROC curve close to 0,1 is better than classifiers closer to 1,0.

Reused from: [Clark et al., 2022]

ROC curves from different classifiers can be difficult to compare. For this purpose, the area

under the curve (AUC) is often used which is a method that is calculated by numerical

integration. This way, a value between 0 and 1, where 1 is a perfect classification, can

be used to compare classifiers. An AUC score of 0.5 suggests that the model does not

discriminate between classes effectively. A score in the range of 0.7 to 0.8 is deemed

acceptable, a score from 0.8 to 0.9 is viewed as excellent, and a score exceeding 0.9 is

regarded as exceptional in terms of the model’s classification performance. [Mandrekar,

2010a].

When using multiclass classification, a problem arises regarding the AUC since there are

multiple classes, and getting one AUC for each class can only inform about the individual

class, but not about the overall performance. In order to calculate an overall AUC, two

methods are often used: macro and micro AUC. Macro AUC is a method in which the

percentage of the correctly predicted samples for each class is divided by the number of

classes as seen in Equation (6.10). This method is often used on balanced data since it

weights the classes equally.

MacroPR =
Pra + Prb + Prc

nclasses
(6.10)

Prn is the percentage of correctly predicted samples for class n.

74

6.7. Classification Performance Metrics Aalborg University

If the dataset is imbalanced, the micro method is often used, since it takes the number of

correctly predicted samples from each class divided by the total number of samples from

all classes, as seen in Equation (6.11). Due to the imbalanced nature of the dataset in this

project, with the control group comprising approximately 55% of the total data, the micro

method was employed to calculate the average AUC.

MicroPR =
Cpa + Cpb + Cpc

np
(6.11)

Cpn is the number of correctly predicted samples for class n.

75

Training and Validation of

the Network 7
This chapter starts with an introduction of the overall strategy for the model development

process. This is then followed by a structured description of the different optimizations

used on the model to improve the performance.

7.1 Development Strategy of the Network

The dataset was initially partitioned into training, validation, and testing subsets. The

training and validation set were used to train and validate the models through an iterative

process, where different architectures and model parameters were tested. The models with

the best validation curves and accuracy were saved as candidates for the final valuation

with the test set. The model’s performance was evaluated by using the classification

performance metrics discussed in Section 6.7. Due to difficulties with training a model

with acceptable performance, the planned duration for the training process was extended

in hopes of finding a more robust model. The time planning for this project can be read

in Appendix D.

7.2 Separation of Data

The first step of the process was the separation of the data, which was chosen to be a

60/20/20 split, where 60% of the data were used as the training set and 20% were used for

both the validation and test sets. For the separation of the data, it was ensured that data

belonging to the same experiment always was in the same dataset. This ensured that data

from the same experiment was not used for both training and validation. One drawback

of this method was the inability to achieve a perfect 60/20/20 split due to the allocation

of the entire experiment into either the training, validation, or test set. Consequently,

the resulting groups comprised 62.2%, 20.7%, and 17.1% respectively. In Table 7.1, the

number of experiments from each class in the training, validation, and test split is shown.

77

Group 10402 7. Training and Validation of the Network

Table 7.1. Division of dataset into training, validation, and test. Each row consist of how many
subjects were in each of the data splits. Note that for the control, the value included the first

measurement block of both the SNI and LTP subjects in the given split.

Training Validation Test
Control 11 4 3

LTP 3 1 1
SNI 3 1 1

7.3 Training Process

Following the data partitioning, an iterative training cycle was performed, where the

architecture and parameters of the CNN-LSTM were adjusted to achieve the best

converging and accurate model. To start with some general architectures with 1-3

convolutional layers, 1-3 fully connected layers, max pooling, and ReLU for the CNN

were used to find a good starting point. [Craik et al., 2019; Atchuthan et al., 2023]. The

LSTM was tested with 2 layers with a size between 50-200 neurons for each layer. An

overview of the iterative training process can be seen in Table 7.2.

Table 7.2. Plan for training the CNN. The training parameters have been divided into input
layer, hidden layers, and backpropagation. The second column represents the range of changes to

parameters that were performed.

Plan for iterative training process
Input layer

Image CWT as input → 1-200 Hz (82 x 100 pixels)
Gaussian noise On/Off

Hidden layers
Convolutional layers
No. of convolutional layers 1, 2, 3
No. of filters (features) 8, 16, 32, 64
Activation function Convolutional layer: ReLU
No of pooling layers Number of poolings = number of convolutional layers
No. of fully connected layers 1, 2, 3
Kernel size 2x2, 3x3, 4x4, 5x5, 6x6
Padding 0, 1 and 2
Pooling method Max pooling
Pooling size 2x2, 3x3, 4x4, 5x5
Pooling stride 2,3,4,5
Dropout Between 0.2-0.8
Fully connected layer
No. of hidden neurons in fully connected layer 2 - 200
Dropout 0.2-0.8

Backpropagation
Optimizer NAdam
Loss function Cross Entropy
L2 regulation On/Off
Batch size 6 - 64
Learning rate 0.02, 0.002, 0.005, 0.001, 0.0001
Scheduler On/Off

78

7.3. Training Process Aalborg University

From this iterative training process, the best performing model was chosen to be a base

model, from which a structured optimization was made. The base model consisted of three

3 x 3 kernel size convolutional layers with 8, 32, and 64 feature maps, respectively. To this,

one max pooling with 5 x 5 kernel with stride 5, and 2 max pooling layers with kernel size

2 x 2 with stride 2. The dropout was 0.7 for all layers, and the LSTM was bidirectional

and had two layers each with a hidden size of 75. There were two fully connected layers

with input sizes 150 and 75, respectively. Finally, Gaussian noise was added to the input,

and L2 regulation was added to the loss function. The confusion matrix of the base model

can be seen in Figure 7.1, where the accuracy was 63.57%. Additionally, the model was

best at predicting the control group, whereas the SNI group was the hardest to predict.

Figure 7.1. Confusion matrix showing the predictions for the base model on validation data.
The values in the confusion matrix are shown in percentages.

From the learning curve, which can be seen in Figure 7.2, it can be seen that the training

and validation loss follows each other until around epoch 15. Here the validation loss hit

a plateau while the training loss kept dropping.

Figure 7.2. Learning curve of the base model, with the blue line being the training loss and the
orange line the validation loss.

79

Group 10402 7. Training and Validation of the Network

7.4 Structured Training Process

The base model served as the fundamental framework upon which the network’s final

tuning was built. A myriad of iterations were carried out for optimizing the model. This

section will highlight the various transformative enhancements, including modifications in

complexity, input variations, the incorporation of model binarization, and regularization

and scheduling.

7.4.1 Changing the Complexity of the Network

Based on the observations in the base model, where it overfitted to the training data,

changing the complexity of the network seemed intuitive. In order to reduce the complexity,

two models were made. One where the number of convolutional layers was reduced to two,

and another where the LSTM was removed. As seen in Figure 7.3, the confusion matrix

showed that the network with two convolutional layers predicted SNI more than the base

model, which resulted in fewer correctly predicted control instances. The learning curve

showed the training loss dropped the more epochs it went through, whereas the validation

loss dropped some in the beginning, but then started to slowly increase. When decreasing

the complexity of the model, it resulted in including all three classes, however the training

and validation loss did not follow each other and the accuracy dropped. Another approach

to reduce the complexity was to remove the LSTM. As seen in Figure 7.3, the confusion

matrix for the network without LSTM exclusively predicted the control class which was not

desired. The learning curve showed little to no improvement for the training and validation

loss. Since decreasing the complexity of the network did not improve the learning curve or

accuracy, an increase in the complexity was tested. As seen in Figure 7.3, four convolutional

layers were tested. The confusion matrix showed that the network was unable to predict

SNI, as well as a weaker performance of differentiating between control and LTP. The

learning curve converged validation and training loss in the beginning, but then they

started to diverge after the 5th epoch.

80

7.4. Structured Training Process Aalborg University

2 convolutional layers
(60.28 %)

4 convolutional layers
(59.3 %)

LSTM removed
(55.6 %)

Figure 7.3. Learning curve of the base model, with the blue line being the training loss and the
orange line the validation loss. The accuracies of the two models are written underneath the

respective model names. The values in the confusion matrix are shown in percentages.

7.4.2 Balanced Classes

Based on the analysis of the confusion matrices, it became evident that there was a notable

disparity in the classification of the different classes. The model exhibited a tendency

to favor the control class, presumably due to its higher representation in the dataset.

Additionally, the number of epochs for the LTP and SNI classes were approximately equal.

In order to address this issue, a weighting scheme was implemented, taking into account

the distribution of each class in the datasets. By modifying the cross-entropy loss function

and assigning weights to each class, the model’s bias towards underrepresented classes were

mitigated. This approach effectively balances the datasets while preserving their inherent

variance, by not having to remove any data to balance it. Evening out the dataset was

also done for comparison. On Figure 7.4 the confusion matrix and the learning curve can

be seen for both methods.

81

Group 10402 7. Training and Validation of the Network

Even classes
(60.1 %)

Weighted classes
(41.1 %)

Figure 7.4. Confusion matrix and learning curve for both class balancing methods. The blue
line represents the training loss curve, while the orange line represents the validation loss curve.
The accuracies of the two models are written underneath the respective model names. The values

in the confusion matrix are shown in percentages.

Both classes exhibited a decline in performance when evaluating accuracy. Additionally,

the confusion matrix analysis confirmed the initial hypothesis that the model tended

to predict the overrepresented class. Employing the methods of even dataset or class

weighting resulted in a notable increase in predictions for the SNI class, while fewer

predictions were made for the control class. However, this improvement came at the

cost of both models where control were predicted as either LTP or SNI. When examining

the learning curves, it became evident that the evened dataset started to diverge at around

5 epochs, indicating a pronounced overfitting to the training data. On the other hand,

the weighted method demonstrated learning curves that better aligned with each other,

converging at approximately 50-60 epochs, albeit with generally higher loss values.

Based on these findings, it was determined that neither of these models were suitable for

further utilization in the subsequent stages of the structural training process.

7.4.3 Regularization & Scheduling

In the search for a better model, the L2 regularization and the scheduler for the learning

rate were looked into. Therefore an attempt was made using the base model without

the L2 regularization and one with the scheduler added. As seen in Figure 7.5, the model

without L2 regularization had a higher accuracy of 63.9% which was 0.3% points more than

the base model. The correct predictions for each class were similar to the base model, in

which the model could not predict SNI correctly. The learning curve of the training and

validation loss follows each other better than the base model until around epoch 65 where

82

7.4. Structured Training Process Aalborg University

they start to diverge. The model with scheduler achieved an accuracy of 63.0% accuracy

and had the same classification problems as the base model, where SNI was predicted as

control. The learning curve showed a convergence until epoch 30, where the validation

and training loss started to diverge. These two models were both better than the majority

of the tested models. However, the model without L2 regularization performed the best,

which is why this was chosen for further consideration.

Without L2
regularization

(63.9 %)

With scheduler
 (63.0 %)

Figure 7.5. Learning curve and confusion matrix of the base model without L2 regularization
and one with a scheduler. The blue and orange lines are the training and validation loss,

respectively. The accuracies of the two models are written underneath the respective model
names. The values in the confusion matrix are shown in percentages.

7.4.4 Binary Classification

Since multiclass classification did not perform sufficiently, it was needed to test whether

binary classification was a possibility. Here a one versus one approach was tested, which

is a binary classification between each pair of groups. It was clear from the previous

networks that it was possible to classify between LTP and control, but not between SNI

and control. To this end, only the control versus LTP model was included in the project.

Additionally, a binary classification model between control versus intervention was also

tested. Both of these models were tested with the base model structure with Gaussian

noise, L2 regularization, scheduler on, as well as the output layer had two neurons instead

of three. For this purpose, the data was structured with respect to the desired binary

classification. As seen in Figure 7.6, the confusion matrix for control versus LTP had a

good classification rate between the classes with an accuracy of 81.7%. The learning curve

of this model was promising compared to earlier models since the validation and training

loss followed each other for a while throughout the training process until the validation loss

flattened out. The confusion matrix for the model with control versus intervention, which

83

Group 10402 7. Training and Validation of the Network

can be seen in Figure 7.6, did not predict sufficiently. The accuracy of 62.9% was lower

than the base model with three classes. The learning curve exhibited diverging trends,

with the validation loss increasing while the training loss decreased.

Based on these findings, it was determined that control versus LTP was suitable for further

utilization in the subsequent stages of the structural training process. However, the control

versus intervention model was not explored further.

Control vs LTP
(81.7 %)

Control vs intervention
(62.9 %)

Figure 7.6. Learning curve and confusion matrix of control vs LTP and control vs intervention.
The blue and orange lines are the training and validation loss, respectively. The accuracies of the

two models are written underneath the respective model names. The values in the confusion
matrix are shown in percentages.

7.5 Model Chosen for the Final Testing

After extensive evaluation, the best-performing models were identified for further

utilization. Among the various approaches and modifications explored, two models have

emerged as the top performers: the base model without L2 regularization as well as

the binary model between control and LTP. The best models using these architectures

were determined by employing a comprehensive training methodology. Each architecture

underwent ten training iterations, with different initialization schemes. This allowed us to

asses, models performance across multiple trials and mitigate the potential bias introduced

by only training once. After the ten runs were completed, performance from the different

models was analyzed based on the confusion matrix and learning curve to assess accuracy

and robustness. The best version of each model based on the validation data is shown in

Figure 7.7, where the model was saved with the lowest validation loss due to the model

checkpoint. For the model without L2 regularization, the best performing model was the

original model. For the binary model between control and LTP, a higher performing model

84

7.6. Final CNN-LSTM Architecture Aalborg University

with 84.0% accuracy was achieved, as well as a learning curve with better convergence.

The chosen instances of the multiclass and binary model were used for further evaluation

of the test data.

Without L2
regularization

(63.9 %)

Control vs LTP
(84.0 %)

Figure 7.7. Learning curve and confusion matrix of the base model without L2 regularization
and one with a scheduler. The blue and orange lines are the training and validation loss,

respectively. The accuracies of the two models are written underneath the respective model
names. The red lines indicate when the model was saved with the model checkpoint. The values

in the confusion matrix are shown in percentages.

7.6 Final CNN-LSTM Architecture

The final CNN-LSTM architectures for the multiclass classification model and for the

binary can be seen in Figure 7.8. The model consisted of 3 convolutional layers with

kernel size 3 x 3 with ReLU as activation function and dropout of 70%. Each of the

convolutional layers was connected to max pooling layers where the first max pooling layer

had a kernel size of 5 x 5, where the rest had 2 x 2 kernel size. This was followed by a

flattening layer with, two layer bidirectional LSTM with 75 cells and dropout of 50%, two

fully connected layers with 50% dropout on the input layer, and finally the output layer

with softmax activation function that had either 3 classes for the multiclass classification

or 2 classes for the binary model.

85

Group 10402 7. Training and Validation of the Network

In
pu

t l
ay

er

8
m

ap
s

(8
0

x
98

 x
 8

)

C
on

vo
lu

tio
n

1
3

x
3

ke
rn

el
Pa

dd
in

g
=

0
St

rid
e

=
1

R
eL

U

(8
2

x
10

0)

M
ax

 p
oo

lin
g

1
5

x
5

ke
rn

el
St

rid
e

=
5

8
m

ap
s

(1
6

x
20

 x
 8

)
32

 m
ap

s
(1

4
x

18
 x

 3
2)

C
on

vo
lu

tio
n

2
3

x
3

ke
rn

el
Pa

dd
in

g
=

0
St

rid
e

=
1

R
eL

U

M
ax

 p
oo

lin
g

2
2

x
2

ke
rn

el
St

rid
e

=
2

32
 m

ap
s

(7
 x

 9
 x

 3
2)

M
ax

 p
oo

lin
g

3
2

x
2

ke
rn

el
St

rid
e

=
2

64
 m

ap
s

(2
 x

 3
 x

 6
4)

64
 m

ap
s

(5
 x

 7
 x

 6
4)

C
on

vo
lu

tio
n

3
3

x
3

ke
rn

el
Pa

dd
in

g
=

0
St

rid
e

=
1

R
eL

U

Fl
at

te
ni

ng
la

ye
r

(3
84

 x
 1

)

Fu
lly

co
nn

ec
te

d
1

SN
I

LT
P

C
on

tr
ol

B
I-L

ST
M

C
el

ls
 =

 7
5

La
ye

rs
 =

 2

(7
5

x
2)

(1
50

 x
 1

)

Fu
lly

co
nn

ec
te

d
2

(7
5

x
1)

O
ut

pu
t l

ay
er

So
ftm

ax

(3
 x

 1
)

Figure 7.8. Illustration of the final architecture of the CNN-LSTM. The model consisted of 3
convolutional layers each with max pooling layers afterwards. This was followed by a flattening

layer, two layer bidirectional LSTM, two fully connected layers, and finally the output layer with
softmax activation function that had either 3 classes for the multiclass classification or 2 classes

for the binary model.

86

Results 8
This chapter shows the results of the two chosen CNN-LSTM models, which were performed

on the test data. The results are shown in the form of performance metrics, which

quantify the performance of the CNN-LSTM model. Furthermore, the results of model

interpretability is also presented for both models

8.1 Confusion Matrix

The confusion matrix in Figure 8.1 shows how well the models were able to predict on

the test data. For the multiclass classification, it was clear that the model was unable to

learn generalizable features based on the training data since the model only had correct

predictions from the control class. The SNI class did not receive a single prediction, which

indicates that the SNI data in the training set did not have similar features as the SNI

data from the test set. The LTP class was predicted multiple times, however, no correct

predictions were made. For the binary classification, the model predicted LTP but did not

get any correct predictions. Although the control group was classified correctly more often

than not, it did predict all the LTP instances as control. To this end, the same problem

as the multiclass occurred where it predicted LTP but did not get any instances right.

87

Group 10402 8. Results

Without L2
regularization

(42.8 %)

Control vs LTP
(52.0 %)

Figure 8.1. Confusion matrix for the model chosen for multiclass classification and binary
classification. The accuracy for each model is listed beneath their respective names. The values

in the confusion matrix are shown in percentages.

8.2 Accuracy and F1-score

For the multiclass classification only the control class had correct predictions resulting in

an accuracy of 42.8%. Since the test data had an imbalance of the three classes, where

50% of the data were from the control class, the F1-score is a more suitable measure of the

accuracy. Calculated based on Equation (6.7) the F1-score of 34.9% was achieved. For the

binary classification, an accuracy of 52.0% was achieved. The F1-score was also calculated

since the binary classification had an imbalance between the two classes, where the control

class constituted 65% of the total dataset. The F1-score score of 44.6% was achieved.

8.3 Receiver Operating Characteristic Curve

The ROC curve would normally be used as another performance metric of the model,

but is not a suitable metric for this instance, since two of the three classes did not have

correct predictions for the multiclass classification, and no correct predictions for LTP in

the binary classification. Therefore the ROC curve was only calculated for the control

class in the multiclass classification. As seen in Figure 8.2, and as for the accuracy shown

above, the model was poor at predicting correctly with an AUC of 0.48, which is below

the line of no discrimination.

88

8.4. Model Interperability Aalborg University

Figure 8.2. ROC curve with a line of no discrimination along the diagonal. The blue line is the
ROC curve of the control class, with an AUC of 0.48

8.4 Model Interperability

This section aimed to present the outcomes obtained by applying diverse model

interpretability methods. The primary objective was to compare the classification results

of the validation and test datasets to identify significant discrepancies. This was because it

was observed that a substantial disparity between the classification results of the test and

validation sets. Additionally, the analysis primarily focused on comparing the control and

LTP classes, as the SNI class exhibited poor performance in both the validation and test

sets. Lastly, a comparison was made with the binary model highlighting the key differences

in feature attribution between the two models.

It was worth mentioning that the occlusion method failed to provide any meaningful

attribution and instead presented a noisy map devoid of any correlation with the actual

response. This observation suggested that the model may not be relying on specific features

that significantly impact its classification performance. An example of the noisy occlusion

map can be seen in Figure 8.3.

89

Group 10402 8. Results

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.3. An example of the occlusion method applied to the validation set + control class
reveals that the resulting attribution map exhibits no discernible correlation with the actual

input.

The occlusion method was not further presented in this part of the results but can be

found in Appendix B.

8.4.1 Multiclass Model

Control

The final results for the control class were computed using Saliency, Integrated Gradients,

and DeepLIFT. These results can be seen on Figures 8.4 to 8.6 respectively.

When analyzing the input image alone, a significant disparity became apparent between

the two types of control. The validation and test control classes exhibited displacement in

both time and frequency when compared. Validation had a greater high-frequency span

of 30 - 100 Hz shortly after stimulation at around 0 ms. Conversely, the test control had a

shorter span of 0 - 25 Hz later in the signal at 200 ms. However, there was a subtle response

in the test control that had a resemblance to the more pronounced response observed in

the validation control at the same time point. In summary, there was a notable distinction

between the two control groups.

90

8.4. Model Interperability Aalborg University

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.4. Saliency maps for both the validation and test set. Lighter pixels indicate more
important features, while darker pixels indicate less important features

Upon examining the saliency map (see Figure 8.4), differences in the contributing features

were evident. The model’s attention appeared to be concentrated at a specific time

point, spanning across the entire active frequency band of the input, with a heightened

focus on higher frequencies on the control validation. Conversely, in the control test,

attention was more widely distributed both in terms of time and frequency. However, some

correspondence was observed between the two sets when closely inspecting the response

after 0 ms at 75 Hz. The remainder of the attention on the control test was centered

around 200 ms, encompassing both the low-frequency range of 0 - 25 Hz and the high

frequency of 75 Hz.

91

Group 10402 8. Results

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.5. Integrated Gradients maps for both the validation and test set. Lighter pixels
indicate more important features, while darker pixels indicate less important features

On the integrated gradients map (see Figure 8.5), the differences in the contributing

features were less prominent compared to saliency. Similar to the saliency map, in the

control validation, the model’s attention appeared to be concentrated at a specific time

point after 0 ms, primarily focused on 75 Hz, with some attribution at 90 Hz both.

Conversely, in the control test, the attention was less dispersed both in terms of time

and frequency compared to saliency. However, unlike saliency, there were no apparent

similarities between the validation and test control. In the control test, the attention

was centered around 200 ms, encompassing the low-frequency range of 0 - 25 Hz with a

negligible attribution at the high frequency of 80 Hz.

92

8.4. Model Interperability Aalborg University

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.6. DeepLIFT maps for both the validation and test set. Lighter pixels indicate more
important features, while darker pixels indicate less important features

Lastly, the deeplift analysis (see Figure 8.6) revealed similarities to the saliency map, with

a broader attribution in the frequency domain spanning from 30 to 100 Hz, while remaining

highly specific to a particular time point around 0 ms. As for the control set, the deeplift

map exhibited similarities to the integrated gradients, with attention centered around 200

ms. It encompasses the low-frequency range of 0-25 Hz, with minimal attribution at the

high frequency of 80 Hz.

To summarize, a different attention from the model was seen when looking at the two

types of datasets. Using the three methods saliency, integrated gradients and deeplift it

was evident that the model was looking at different time points and frequencies. This

corresponds with the input where there seemed to be some latency in the response and

low-frequency activity after stimulation in the control test compared to validation.

93

Group 10402 8. Results

LTP

The LTP class attribution was determined through the utilization of Saliency, Integrated

Gradients, and DeepLIFT techniques. The outcomes of these computations are showcased

in Figures 8.7 to 8.9 correspondingly.

Examining the input image in isolation revealed a minor variation in the frequency range.

Specifically, there was a slight downward shift from the LTP validation to the test. In

the case of LTP validation, the frequency range spanned from 40 - 175 Hz, with a peak

around 75 Hz. Conversely, in the LTP test, the frequency range covered 40 - 140 Hz, with

a peak at 40 Hz. In short, there was more resemblance between the validation and test

data, although there was more activity at the higher frequencies on the validation

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.7. Saliency maps for both the validation and test set. Lighter pixels indicate more
important features, while darker pixels indicate less important features

When examining the saliency map (see Figure 8.7), the validation phase revealed a broad

and comprehensive attribution, encompassing the complete response of the input image

across a frequency range of 25 - 150 Hz. In contrast, the LTP test demonstrated a narrower

attribution, with a particular focus on the prominent frequency of 40 Hz.

94

8.4. Model Interperability Aalborg University

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.8. Integrated Gradients maps for both the validation and test set. Lighter pixels
indicate more important features, while darker pixels indicate less important features

The integrated gradients map (see Figure 8.8) showcased a more focused distribution of

attributions. In the validation dataset, the range of attribution spanned from 75 - 120 Hz,

exhibiting a narrower spread compared to other frequencies. On the other hand, the LTP

test exhibited a distinct point of attribution at 40 Hz, around the 0 ms mark. Notably,

both datasets demonstrated pronounced attributions that are clearly discernible from the

background. However, in the validation set, there was an additional delayed attribution

at approximately 280 ms and 75 Hz.

95

Group 10402 8. Results

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.9. DeepLIFT maps for both the validation and test set. TLighter pixels indicate more
important features, while darker pixels indicate less important features

In the deeplift analysis (see Figure 8.9), the attribution was found to be comparable to the

saliency analysis. When examining the LTP validation dataset, the attribution appeared

to be more widespread across a frequency range of 30 - 150 Hz, with the most prominent

attribution observed between 70 - 110 Hz. On the other hand, the LTP test dataset

exhibited a specific activation at 40 Hz immediately after stimulation at 0 ms. These

findings indicated that both datasets showed distinct patterns of attribution in the deeplift

analysis, with the validation dataset demonstrating a broader frequency distribution and

the test dataset displaying a more specific and focused activation.

To summarize, a different attention from the model was seen when looking at these two

types of datasets. Using the three methods saliency, integrated gradients and deeplift it

was evident that the model was looking at the same time points and approximately the

same frequencies. These observations align with the input data, indicating a resemblance

between the validation and test datasets. However, there was a slightly heightened level

of activity at higher frequencies in the validation dataset.

96

8.4. Model Interperability Aalborg University

8.4.2 Comparison to the Binary Model

This section focused on comparing the interpretability results of the multiclass model and

the binary model, specifically highlighting the significant differences in feature attribution

between the two models.

Control

Upon analyzing the results using the three interpretability methods, a notable difference

was observed primarily in the saliency method. However, the other interpretability

methods employed for the control using the binary model can be found in Appendices B.2.1

and B.2.2. These appendices provide a comprehensive overview of the interpretability

methods and their outcomes for the binary model control experiments.

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.10. Saliency maps for both the validation and test set. Lighter pixels indicate more
important features, while darker pixels indicate less important features

The saliency maps (see Figure 8.10) for both the control validation and test datasets

exhibited a distinctive speckle-like pattern that was spread across the image. In the

validation dataset, this pattern appeared within a narrower window in the time domain,

specifically ranging from 0 to 100 ms. Additionally, there was some residual attribution

observed around the 300 ms mark. In terms of frequency, the saliency contributions ranged

97

Group 10402 8. Results

from 25 - 125 Hz, with the residue attribution specifically occurring around 75 Hz. On the

other hand, the test dataset demonstrated a more evenly spread pattern in both the time

and frequency domains. The saliency contributions were distributed over a wider time

range, ranging from 0 - 200 ms. Similarly, the frequency range spanned from 0 - 150 Hz,

showcasing a broader distribution of attributions compared to the validation dataset.

It was important to note that the speckle-like pattern observed in the saliency maps of the

control validation and test datasets was not evident in the saliency maps of the multiclass

model attribution. This difference suggested that the binary model’s interpretability

results exhibited a distinct pattern that was not observed in the multiclass model’s

attributions for the control group.

In summary, the interpretability analysis of the binary model’s control experiments showed

a distinct speckle-like pattern in the saliency maps. The pattern was observed in both the

validation and test datasets, with narrower time windows and specific frequency ranges.

Importantly, this pattern was not seen in the saliency maps of the multiclass model.

LTP

Upon analyzing the results using the three interpretability methods, a notable difference

was observed primarily in the saliency and deeplift methods. However, the other

interpretability method integrated gradients employed for the LTP used on the binary

model can be found in Appendices B.2.1 and B.2.2. These appendices provide a

comprehensive overview of the interpretability methods and their outcomes for the binary

model LTP experiments.

98

8.4. Model Interperability Aalborg University

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.11. Saliency maps for both the validation and test set. Lighter pixels indicate more
important features, while darker pixels indicate less important features

The saliency maps (see Figure 8.11) for both the LTP validation and test datasets exhibited

speckle patterns similar to those observed in the control set. In the validation dataset,

the frequencies ranged from 25 - 150 Hz, with a broader spread observed in the lower

frequencies within the timeframe of approximately 0 - 200 ms. In the test dataset,

there was a narrower distribution in the time domain, and resembling the frequency span

observed in the validation dataset. Notably, both datasets show the highest attribution at

approximately 100 Hz precisely at the stimulation time point of 0 ms.

Deeplift (see Figure 8.12) shows a slight difference in only the validation patterns, again

with the speckle-like attributions, ranging in 0 - 300 ms at frequency ranges at 25 - 140

Hz.

99

Group 10402 8. Results

Validation

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

Test

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.12. DeepLIFT maps for both the validation and test set. Lighter pixels indicate more
important features, while darker pixels indicate less important features

In summary, the interpretability analysis of the binary model’s LTP experiments revealed

distinct patterns in the saliency and deeplift methods. The saliency maps showed speckle-

like patterns in both the validation and test datasets, with a broader spread of frequencies

observed in the validation dataset and a narrower distribution in the time domain in the

test dataset. Notably, both datasets exhibited a prominent attribution at around 100 Hz

during the stimulation time point of 0 ms. The deeplift method displayed similar speckle-

like attributions, ranging from 0 - 300 ms and frequencies of 25 - 140 Hz in the validation

dataset.

100

Discussion 9
This chapter provides a summary of the findings of the report and attempts to interpret the

results. Both the results and methodological considerations will be discussed. Additionally,

the chapter concludes with a discussion on the limitations and potential future directions

within the methodology.

9.1 Comparison of Results

In this project, a CNN combined with an LSTM model was developed to classify between

control, LTP, or SNI pain models in pigs. Continuous wavelet transform of ERPs from

ECoG signals in S1 was calculated as input. To our knowledge, no papers have been

published with classification between different chronic pain models in large animals. This

underlines the novelty of this project, but also the complexity of the problem. Because of

this novelty, a more objective solution was chosen, using a deep learning architecture, in

the hopes of it detecting patterns unbeknownst to the literature.

For the multiclass classification, the model predicted 42.8% of the total predictions

correctly on the test data, and an F1-score of 34.9%. The difference between accuracy and

F1-score can be explained by the fact that only the control class had correctly predicted

samples, and since the classes were imbalanced, the F1-score dropped notably. For the

binary classification, an accuracy of 52.0% was achieved with an F1-score of 44.6%. The

drop in the accuracy score to the F1-score is due to the same reasons as for the multiclass

classification, where only the control group was correctly predicted. These results indicate

that the features learned from the training data, which were applicable to the validation

data where an accuracy of 63.9% and 84.0% was achieved for multiclass and binary

classification respectively, did not seem to be transferable to the test data for both models.

Another interesting result was the absence of predictions for the SNI class from the models.

This was recurrent through most of the models, that the SNI class was barely predicted

from any of the models, with the exception of the balanced classes. This indicates that

since the majority of the data are control, the models had a hard time predicting the SNI

class. This does however not explain why the models were still capable of predicting the

LTP class since the amount of data was the same in the SNI and LTP class. Perhaps the

LTP and control data were not as similar as the control and the SNI classes, making it

101

Group 10402 9. Discussion

more likely to predict the LTP class than the SNI when data was unbalanced towards the

control data.

Similar studies have classified between chronic pain patients and healthy controls. Santana

et al. [2019] used different convolutional neural networks with resting-state fMRI scannings

from 60 patients (control = 98) as input, and achieved a balanced accuracy of 86.8% and

an AUC of 0.93. When comparing these results to this project with an accuracy of 52.0%

for the binary model, it is clear that their accuracy is higher. However, when comparing

it to the validation accuracy of 84.0%, these results are similar. Due to the absence of a

confusion matrix in Santana et al. [2019], it becomes challenging to assess whether they

encountered difficulties with classifying one of their classes, like in this project where the

LTP group was not correctly predicted.

By employing model interpretability techniques, it was discovered that the multiclass

model exhibits different attention to time points and frequencies between validation and

test, where the test is seen to have a more delayed feature attribution timewise. This

observation is further reinforced when examining the input alone, as the response pattern is

overshadowed by heightened activity in later time points of the signal (Figure 8.5). Notably,

there are additional disparities observed in the LTP attribution regarding frequencies.

Specifically, it becomes apparent that the model focuses on a singular peak when analyzing

the test data, whereas the validation data exhibited a more dispersed distribution across

frequencies. These two aforementioned discoveries potentially shed light on the challenges

faced by the model in achieving improved performance on the test data. The significant

dissimilarities in the features it attributes to may impede its ability to accurately classify

the test samples. This is due to the expected patterns and characteristics of the class are

not sufficiently recognized.

Moreover, it appears that the model fails to attribute complex feature relationships to

the test data, as it predominantly focuses on single peaks. This limited perspective of the

model prevents it from capturing intricate patterns and interdependencies within the data,

potentially contributing to its inability to achieve higher performance on the test dataset.

This limitation is especially undesirable since the feature it predominantly examines bears a

striking resemblance to existing, less sophisticated methods like N1/P1-based classification,

offering little novelty compared to established classical approaches as seen in Lenoir et al.

[2020].

The misclassification of LTP as as control in the test dataset can be related to the observed

similarities in attribution maps when comparing control and LTP instances. Both the

control (Figure 8.5) and LTP (Figure 8.8) attribution maps exhibit a distinct point-like

pattern, with the primary difference lying in the specific position of the feature. For

the control class, the feature is centered around 190 ms and 20 Hz, whereas for LTP,

102

9.2. Methodological Considerations Aalborg University

it is centered around 20 ms and 40 Hz. This resemblance in the attribution patterns

can potentially lead to confusion for the model during the classification process, resulting

in misclassifications of LTP instances as control. The proximity of the feature positions

between the two classes, despite their differences, may also contribute to the model’s

difficulty in accurately discerning between them in the test dataset. The significant

differences in the spread of frequencies between the LTP validation and test data further

contributes to the model’s challenge in accurately classifying LTP instances. The model’s

reliance on a single peak in the test data, while the validation data exhibits a broader

frequency distribution, explains the misclassification of LTP as control.

9.2 Methodological Considerations

9.2.1 Data

An important part of training a neural network is the data provided to the model. Although

a lot of data was available in this project, the subjects from which it originated were limited.

For both the SNI and the LTP interventions only five subjects had each intervention. This

meant that the 60/20/20 split for train, validation, and test data only included one subject

in each validation and test set, while the train data had three subjects. This may have

been enough subject if the features between the classes were clearly distinguishable, but

that did not seem to be the case from the results. This makes it difficult to say whether

the models’ inability to correctly predict the classes were due to it not being possible or if

there were too few subjects in both the intervention classes. If there are too few subjects,

it can cause the variance between subjects to be greater than the variance between classes,

making it difficult to classify the samples correctly. This is because there is a chance of

outliers or extreme values from single experiments which, when having a few subjects in

each class, can significantly impact the variance within a class which can dominate the

variance between the groups. A smaller sample size can also give a skewed reflection of the

true population affecting the generalizability of the findings. But how many subjects are

enough? To this end, there is also an ethical aspect of deciding how many animals should

be used in these experiments. The more animals there are used for a single experiment, the

less every single animal matters in the overall analysis. On the other hand, it should also

be insured that enough animals are used to produce statistically significant and reliable

results, otherwise, the animals would be used without a meaningful outcome. [Picciotto,

2020]

Seeing the confusion matrices of the different models, it is clear that the SNI intervention

group was an issue since the models very rarely predicted this. A possibility is that the

SNI and control class did not have a difference that was noticeable by the model. This

may be explained by the recording site of the signals, which was on top of the dura. A

103

Group 10402 9. Discussion

study has found that following a nerve injury intervention, the peak amplitude of neuronal

activity significantly increased only when reaching the third to the sixth cortical layers

compared to control [Meijs et al., 2022]. It is uncertain whether the electrode on top of the

dura is capable of reaching signals from the third cortical layer because of the attenuation

by the layers. Therefore, the lack of noticeable differences between the SNI and control

groups could very well be an issue of signal detection rather than a failure of the machine

learning models themselves.

Another limiting factor for this project has been the size of the recording site since only

signals from the S1 were recorded. There are multiple cortical and subcortical structures

involved in different aspects of the pain experience, such as the ACC or the thalamus, which

could have contained more information useful to the algorithm. [Martucci and Mackey,

2018]. In human experiments, a larger area of the brain is often looked upon using EEG

caps or fMRI. The fMRI has the advantage of being able to visualize the subcortical areas,

such as the limbic system, which is an area involved in the processing of pain. Using EEG

could have been beneficial since it is a non-invasive alternative, which is more likely to

be used on humans. It is however much less precise and the signals are dampened by

the layers between the scalp and the brain. Considering the preceding discussion, the S1

emerges as the most plausible region of the brain to anticipate alterations, especially when

the experiment at hand pertains to the stimulation of sensory neurons.

An important consideration for the results of this project is the time scale of the

experiment. The recorded data used was pre-intervention and directly after the

intervention, which is not similar to a real-life scenario with a patient. Patients will

often experience pain for weeks before seeking treatment, which is enough time for

neuroplasticity to occur and change neural activity. Hence, it would be more favorable to

utilize a model that has been trained on data similar to a clinical setting, where patients

have experienced pain for an extended duration. [Mussigmann et al., 2022; Pricope et al.,

2022].

9.2.2 Architecture

The training of the neural network is an iterative process in which the model is optimized

by changing the hyperparameters and architecture. The large number of possible

combinations makes it impractical to try each one, necessitating the development of a

well-structured training plan. This plan was an attempt to ensure that only one change

was made to the model at a time and thereby allowing the researchers to note which specific

parameters or architectural changes had a positive effect on the learning. However, this

does not mean that a better performing model than the ones achieved in this project cannot

be accomplished, it is unlikely that the persistently inaccurate predictions are solely due to

the model itself. It is more probable that the issue lies within the data. A recommendation

104

9.3. Future Work Aalborg University

of the most important parameters can therefore not be made based on the results, since new

data added to the model could potentially have a considerable impact on which parameters

would output the best results.

9.3 Future Work

Because of the novelty of this project’s aim, it was unclear from the start whether it would

be possible to distinguish between the pain models. Although the results did not show it

to be possible, future work may improve it and increase the capabilities of the model. This

work should include more subjects since the results from this project have proven that too

few can result in inconclusive results. Using more animals would be beneficial both for

the amount of data and also to give more trustworthy results and thereby limiting how

many further experiments needed to be done. The experiment should also include more

recordings at different stages after the intervention since some of the changes from the SNI

model could occur as late as after 6 to 12 months. On the other hand, this does however

question the feasibility of longitudinal studies with animals with implants. An additional

adjustment could be to measure from multiple locations of the brain simultaneously. These

areas could offer valuable insights into the underlying mechanisms of various chronic pain

types, enabling the discovery of distinct characteristics across pain models. Notably, the

SNI model stands out due to its long-term effects on both the peripheral and central

nervous systems.

If an accurate model for predicting chronic pain in animals was developed, future studies

could also focus on translation from animal models to humans, as this has the potential

to greatly improve the classification of different types of chronic pain compared to the

methods used today. This translation also needs to focus on determining the optimal

locations for measuring brain-related physiological signals, as well as whether they would

be evoked potentials or if resting-state signals will be sufficient for the classification. Using

animal models is an important step when considering the ethical aspect of research. An

experiment like the one performed in this project would likely not be considered ethical if

conducted on human subjects. The animals used allow for more invasive and in terms life-

threatening procedures. These experiments are often done on smaller animals like rodents

to determine if the results are significant. By moving to larger animals that have a brain

structure similar to humans, the translation of the results becomes easier. The outcomes

of the experiments are further strengthened when multiple species are used in the tests,

as this can be interpreted as cross-validation across different species. Overall, the use of

animal models gives a stronger foundation in translation to human studies.

105

Conclusion 10
In conclusion, this project aimed to develop a CNN combined with an LSTM to classify

between control, LTP, and SNI pain models in pigs using ECoG signals. The results showed

that both multiclass and binary classification achieved low accuracy and F1-score on the

test data. However, the model struggled to predict the SNI class, indicating the difficulty

of distinguishing it from the control class. The model interpretability analysis revealed

differences in attribution patterns between validation and test data, potentially explaining

the drop in performance on the test data. Moreover, the model mainly focused on single

peaks and failed to capture complex feature relationships, limiting its ability to accurately

classify the test samples. The similarities in attribution patterns between control and

LTP instances further contributed to misclassifications. Further research should increase

the number of subjects in each class, especially LTP and SNI, as well as focus on the

translation from animal to human studies.

107

Bibliography

Alshelh et al., 2016. Zeynab Alshelh, Flavia Di Pietro, Andrew M Youssef, Jenna M

Reeves, Paul M Macey, E Russell Vickers, Christopher C Peck, Greg M Murray and

Luke A Henderson. Chronic neuropathic pain: it’s about the rhythm. Journal of

Neuroscience, 36(3), 1008–1018, 2016.

Ghita Amrani, Amina Adadi, Mohammed Berrada, Zouhayr Souirti and Saïd Boujraf,

2021. Ghita Amrani, Amina Adadi, Mohammed Berrada, Zouhayr Souirti and Saïd

Boujraf. EEG signal analysis using deep learning: A systematic literature review. In

2021 Fifth International Conference On Intelligent Computing in Data Sciences

(ICDS), pages 1–8. IEEE, 2021.

Armstrong, Herr, 2019. Scott A Armstrong and Michael J Herr. Physiology,

nociception. 2019.

Asad et al., 2016. Abu Bakar Ali Asad, Stephanie Seah, Richard Baumgartner, Dai

Feng, Andres Jensen, Elaine Manigbas, Brian Henry, Andrea Houghton, Jeffrey L

Evelhoch, Stuart WG Derbyshire et al. Distinct BOLD fMRI responses of

capsaicin-induced thermal sensation reveal pain-related brain activation in nonhuman

primates. PloS one, 11(6), e0156805, 2016.

Nickolaj Ajay Atchuthan, Hjalte Clark, Mikkel Bjerre Danyar, Amalie Koch Andersen,

Felipe Rettore Andreis and Suzan Meijs, 2023. Nickolaj Ajay Atchuthan, Hjalte Clark,

Mikkel Bjerre Danyar, Amalie Koch Andersen, Felipe Rettore Andreis and Suzan

Meijs. Classification of noxious and non-noxious event-related potentials from S1 in

pigs using a convolutional neural network. In 2023 11th International IEEE/EMBS

Conference on Neural Engineering (NER), pages 1–4. IEEE, 2023.

Baliki et al., 2006. Marwan N Baliki, Dante R Chialvo, Paul Y Geha, Robert M Levy,

R Norman Harden, Todd B Parrish and A Vania Apkarian. Chronic pain and the

emotional brain: specific brain activity associated with spontaneous fluctuations of

intensity of chronic back pain. Journal of Neuroscience, 26(47), 12165–12173, 2006.

Baroni et al., 2020. Andrea Baroni, Giacomo Severini, Sofia Straudi, Sergio Buja,

Silvia Borsato and Nino Basaglia. Hyperalgesia and central sensitization in subjects

with chronic orofacial pain: Analysis of pain thresholds and EEG biomarkers. Frontiers

in neuroscience, 14, 552650, 2020.

109

Group 10402 Bibliography

Bell, 2018. A Bell. The neurobiology of acute pain. The Veterinary Journal, 237, 55–62,

2018.

Bennet, 2011. M Bennet. Neuropathic Pain Vol. 2. Neuropathic Pain, 2, 224, 2011.

Bennett, 2010. Michael Bennett. Neuropathic pain. OUP Oxford, 2010.

Breivik et al., 2006. Harald Breivik, Beverly Collett, Vittorio Ventafridda, Rob Cohen

and Derek Gallacher. Survey of chronic pain in Europe: prevalence, impact on daily

life, and treatment. European journal of pain, 10(4), 287–333, 2006.

Brownlee, 2019. Jason Brownlee. How to use learning curves to diagnose machine

learning model performance. Machine Learning Mastery, 2019.

Campbell, Meyer, 2006. James N Campbell and Richard A Meyer. Mechanisms of

neuropathic pain. Neuron, 52(1), 77–92, 2006.

Choi et al., 2019. Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee,

Chris J Maddison and George E Dahl. On empirical comparisons of optimizers for

deep learning. arXiv preprint arXiv:1910.05446, 2019.

Clark et al., May 2022. Hjalte Clark, Amalie Andersen, Nickolaj Atchuthan and

Mikkel Danyar. May 2022. URL

https://projekter.aau.dk/projekter/da/studentthesis/

udvikling-af-cnn-model-til-ecog-klassifikation-af-noxious-og-nonnoxious-stimulation-baseret-paa-erps-fra-s1-i-grise(e9d26da0-c931-49d7-94ad-7d56a69c7661)

.html.

Cohen, 2019. Michael X Cohen. A better way to define and describe Morlet wavelets for

time-frequency analysis. NeuroImage, 199, 81–86, 2019.

Cohen, 2014. Mike X Cohen. Analyzing Neural Time Series Data: Theory and

Practice. Issues in Clinical and Cognitive Neuropsychology. The MIT Press, 1 edition,

2014. ISBN 0262019876; 9780262019873.

Craik et al., 2019. Alexander Craik, Yongtian He and Jose L Contreras-Vidal. Deep

learning for electroencephalogram (EEG) classification tasks: a review. Journal of

neural engineering, 16(3), 031001, 2019.

Davis et al., 2017. Karen D Davis, Herta Flor, Henry T Greely, Gian Domenico

Iannetti, Sean Mackey, Markus Ploner, Amanda Pustilnik, Irene Tracey, Rolf-Detlef

Treede and Tor D Wager. Brain imaging tests for chronic pain: medical, legal and

ethical issues and recommendations. Nature Reviews Neurology, 13(10), 624–638, 2017.

de Cheveigné, Nelken, 2019. Alain de Cheveigné and Israel Nelken. Filters: when,

why, and how (not) to use them. Neuron, 102(2), 280–293, 2019.

110

https://projekter.aau.dk/projekter/da/studentthesis/udvikling-af-cnn-model-til-ecog-klassifikation-af-noxious-og-nonnoxious-stimulation-baseret-paa-erps-fra-s1-i-grise(e9d26da0-c931-49d7-94ad-7d56a69c7661).html
https://projekter.aau.dk/projekter/da/studentthesis/udvikling-af-cnn-model-til-ecog-klassifikation-af-noxious-og-nonnoxious-stimulation-baseret-paa-erps-fra-s1-i-grise(e9d26da0-c931-49d7-94ad-7d56a69c7661).html
https://projekter.aau.dk/projekter/da/studentthesis/udvikling-af-cnn-model-til-ecog-klassifikation-af-noxious-og-nonnoxious-stimulation-baseret-paa-erps-fra-s1-i-grise(e9d26da0-c931-49d7-94ad-7d56a69c7661).html

Bibliography Aalborg University

de Natale et al., 2018. Edoardo Rosario de Natale, Heather Wilson, Gennaro Pagano

and Marios Politis. Chapter Seven - Imaging Transplantation in Movement Disorders,

volume 143 of International Review of Neurobiology. Academic Press, 2018. doi:

https://doi.org/10.1016/bs.irn.2018.10.002. URL

https://www.sciencedirect.com/science/article/pii/S0074774218301314.

Decosterd, Woolf, 2000. Isabelle Decosterd and Clifford J Woolf. Spared nerve injury:

an animal model of persistent peripheral neuropathic pain. Pain, 87(2), 149–158, 2000.

Di Pietro et al., 2018. Flavia Di Pietro, Paul M Macey, Caroline D Rae, Zeynab

Alshelh, Vaughan G Macefield, E Russell Vickers and Luke A Henderson. The

relationship between thalamic GABA content and resting cortical rhythm in neuropathic

pain. Human brain mapping, 39(5), 1945–1956, 2018.

Duda et al., 2000. Richard O. Duda, Peter E. Hart and David G. Stork. Pattern

classification. 2000.

Ehde et al., 2003. Dawn M Ehde, Mark P Jensen, Joyce M Engel, Judith A Turner,

Amy J Hoffman and Diana D Cardenas. Chronic pain secondary to disability: a review.

The Clinical journal of pain, 19(1), 3–17, 2003.

Elsayed et al., 2020. Mahmoud Elsayed, Kok Swee Sim and Shing Chiang Tan. A

novel approach to objectively quantify the subjective perception of pain through

electroencephalogram signal analysis. IEEE Access, 8, 199920–199930, 2020.

Fattahi et al., 2014. Pouria Fattahi, Guang Yang, Gloria Kim and Mohammad Reza

Abidian. A review of organic and inorganic biomaterials for neural interfaces.

Advanced materials, 26(12), 1846–1885, 2014.

Finnerup et al., 2022. Nanna B Finnerup, Lone Nikolajsen and Andrew SC Rice.

Transition from acute to chronic pain: a misleading concept? Pain, 163(9), e985–e988,

2022.

Finnerup et al., 2020. Nanna Brix Finnerup, Rohini Kuner and Troels Staehelin

Jensen. Neuropathic pain: from mechanisms to treatment. Physiological reviews, 2020.

Ghosh et al., 2021. Lidia Ghosh, Dipayan Dewan, Abir Chowdhury and Amit Konar.

Exploration of face-perceptual ability by EEG induced deep learning algorithm.

Biomedical Signal Processing and Control, 66, 102368, 2021.

Grandini et al., 2020. Margherita Grandini, Enrico Bagli and Giorgio Visani. Metrics

for multi-class classification: an overview. arXiv preprint arXiv:2008.05756, 2020.

Gupta, Panghal, 2012. Sonika Gupta and Aman Panghal. Performance analysis of fir

filter design by using rectangular, hanning and hamming windows methods.

111

https://www.sciencedirect.com/science/article/pii/S0074774218301314

Group 10402 Bibliography

International Journal of Advanced Research in Computer Science and Software

Engineering, 2(6), 2012.

Hart et al., 2000. Peter E Hart, David G Stork and Richard O Duda. Pattern

classification. Wiley Hoboken, 2000.

Hubbard et al., 2015. Catherine S Hubbard, Shariq A Khan, Su Xu, Myeounghoon

Cha, Radi Masri and David A Seminowicz. Behavioral, metabolic and functional brain

changes in a rat model of chronic neuropathic pain: a longitudinal MRI study.

Neuroimage, 107, 333–344, 2015.

IASP, Apr 2022. IASP. Terminology: International association for the study of pain,

2022. URL

https://www.iasp-pain.org/resources/terminology/?navItemNumber=576.

IASP, Jan 2023a. IASP. Acute pain, 2023. URL

https://www.iasp-pain.org/resources/topics/acute-pain/.

IASP, Feb 2023b. IASP. Terminology: International association for the study of pain,

2023. URL https://www.iasp-pain.org/resources/terminology/.

Janjua et al., 2021. Taha Al Muhammadee Janjua, Thomas Gomes Nørgaard dos

Santos Nielsen, Felipe Rettore Andreis, Suzan Meijs and Winnie Jensen. The effect of

peripheral high-frequency electrical stimulation on the primary somatosensory cortex in

pigs. IBRO neuroscience reports, 11, 112–118, 2021.

Kandel et al., 2021. Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven

Siegelbaum, A James Hudspeth, Sarah Mack et al. Principles of Neural Science.

McGraw-Hill, 6 edition, 2021. ISBN 9781259642234,1259642232.

Keller et al., 04 2016. Corey J. Keller, Christopher Chen, Fred A. Lado and Kamran

Khodakhah. The Limited Utility of Multiunit Data in Differentiating Neuronal

Population Activity. PLOS ONE, 11(4), 1–20, 2016. doi:

10.1371/journal.pone.0153154. URL

https://doi.org/10.1371/journal.pone.0153154.

King et al., 2013. W King et al. Acute pain, subacute pain, and chronic pain.

Encyclopedia of pain, 10, 978–3, 2013.

Kingma, Ba, 2014. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Kokhlikyan et al., 2020. Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward

Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina,

112

https://www.iasp-pain.org/resources/terminology/?navItemNumber=576
https://www.iasp-pain.org/resources/topics/acute-pain/
https://www.iasp-pain.org/resources/terminology/
https://doi.org/10.1371/journal.pone.0153154

Bibliography Aalborg University

Carlos Araya, Siqi Yan and Orion Reblitz-Richardson. Captum: A unified and generic

model interpretability library for PyTorch, 2020.

Komaki et al., 2016. Yuji Komaki, Keigo Hikishima, Shinsuke Shibata, Tsunehiko

Konomi, Fumiko Seki, Masayuki Yamada, Naoyuki Miyasaka, Kanehiro Fujiyoshi,

Hirotaka J Okano, Masaya Nakamura et al. Functional brain mapping using specific

sensory-circuit stimulation and a theoretical graph network analysis in mice with

neuropathic allodynia. Scientific reports, 6(1), 1–11, 2016.

Latremoliere, Woolf, 2009. Alban Latremoliere and Clifford J Woolf. Central

sensitization: a generator of pain hypersensitivity by central neural plasticity. The

journal of pain, 10(9), 895–926, 2009.

LeBlanc et al., 2014. Brian W LeBlanc, Theresa R Lii, Andrew E Silverman, Robert T

Alleyne and Carl Y Saab. Cortical theta is increased while thalamocortical coherence is

decreased in rat models of acute and chronic pain. PAIN®, 155(4), 773–782, 2014.

LeCun et al., 1998. Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86

(11), 2278–2324, 1998.

Lenoir et al., 2020. Dorine Lenoir, Ward Willaert, Iris Coppieters, Anneleen Malfliet,

Kelly Ickmans, Jo Nijs, Kristl Vonck, Mira Meeus and Barbara Cagnie.

Electroencephalography during nociceptive stimulation in chronic pain patients: a

systematic review. Pain Medicine, 21(12), 3413–3427, 2020.

Liberati et al., 2016. Giulia Liberati, Anne Klöcker, Marta M Safronova, Susana

Ferrao Santos, Jose-Geraldo Ribeiro Vaz, Christian Raftopoulos and André Mouraux.

Nociceptive local field potentials recorded from the human insula are not specific for

nociception. PLoS biology, 14(1), e1002345, 2016.

Livezey, Glaser, 2021. Jesse A Livezey and Joshua I Glaser. Deep learning approaches

for neural decoding across architectures and recording modalities. Briefings in

bioinformatics, 22(2), 1577–1591, 2021.

Logothetis, 2008. Nikos K Logothetis. What we can do and what we cannot do with

fMRI. Nature, 453(7197), 869–878, 2008.

Lötsch, Ultsch, 2018. Jörn Lötsch and Alfred Ultsch. Machine learning in pain

research. Pain, 159(4), 623, 2018.

Luck, 2014. Steven J. Luck. An Introduction to the Event-Related Potential Technique.

A Bradford Book, second edition edition, 2014. ISBN 0262525852,9780262525855.

URL https://mitpress.mit.edu/9780262324069/

an-introduction-to-the-event-related-potential-technique/.

113

https://mitpress.mit.edu/9780262324069/an-introduction-to-the-event-related-potential-technique/
https://mitpress.mit.edu/9780262324069/an-introduction-to-the-event-related-potential-technique/

Group 10402 Bibliography

Mandrekar, 2010a. Jayawant N Mandrekar. Receiver operating characteristic curve in

diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315–1316, 2010.

Mandrekar, 2010b. Jayawant N Mandrekar. Simple statistical measures for diagnostic

accuracy assessment. Journal of Thoracic Oncology, 5(6), 763–764, 2010.

Mane et al., 2015. Akshaya R Mane, SD Biradar and RK Shastri. Review paper on

feature extraction methods for EEG signal analysis. Int. J. Emerg. Trend Eng. Basic

Sci, 2(1), 545–552, 2015.

Mano et al., 2017. Hiroaki Mano, Gopal Kotecha, Kenji Leibnitz, Takashi Matsubara,

Aya Nakae, Nicholas Shenker, Masahiko Shibata, Valerie Voon, Wako Yoshida, Michael

Lee et al. Classification and characterisation of brain network changes in chronic back

pain: A multicenter study. bioRxiv, page 223446, 2017.

Ioannis Markoulidakis, George Kopsiaftis, Ioannis Rallis and Ioannis Georgoulas, 2021.

Ioannis Markoulidakis, George Kopsiaftis, Ioannis Rallis and Ioannis Georgoulas.

Multi-Class Confusion Matrix Reduction method and its application on Net Promoter

Score classification problem. In The 14th pervasive technologies related to assistive

environments conference, pages 412–419, 2021.

Martucci, Mackey, 2018. Katherine T Martucci and Sean C Mackey. Neuroimaging of

pain: human evidence and clinical relevance of central nervous system processes and

modulation. Anesthesiology, 128(6), 1241–1254, 2018.

Mee et al., 2006. Steven Mee, Blynn G Bunney, Christopher Reist, Steve G Potkin and

William E Bunney. Psychological pain: a review of evidence. Journal of Psychiatric

Research, 40(8), 680–690, 2006.

Meijs et al., 2022. Suzan Meijs, Andrew Hayward, Carsten Bjarkam and Thomas

Gomes Nørgaard dos Santos Nielsen. Spared ulnar nerve injury results in increased

layer III-VI excitability in the pig primary somatosensory cortex. 2022.

MNE, 2023a. MNE. Python homepage, 2023. URL

https://mne.tools/stable/index.html.

MNE, 2023b. MNE. Mne.timefrequency.tfrmorlet, 2023.URL.

Mouraux, Iannetti, 2009. André Mouraux and Gian Domenico Iannetti. Nociceptive

laser-evoked brain potentials do not reflect nociceptive-specific neural activity. Journal of

neurophysiology, 101(6), 3258–3269, 2009.

Mouraux, Iannetti, 2018. André Mouraux and Gian Domenico Iannetti. The search

for pain biomarkers in the human brain. Brain, 141(12), 3290–3307, 2018.

114

https://mne.tools/stable/index.html
https://mne.tools/stable/generated/mne.time_frequency.tfr_morlet.html#footcite-tallon-baudryetal1997

Bibliography Aalborg University

Murakami, Okada, 2006. Shingo Murakami and Yoshio Okada. Contributions

of principal neocortical neurons to magnetoencephalography and electroencephalography

signals. The Journal of physiology, 575(3), 925–936, 2006. ISSN 0022-3751.

Mussigmann et al., 2022. Thibaut Mussigmann, Benjamin Bardel and Jean-Pascal

Lefaucheur. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic

pain. A systematic review. NeuroImage, page 119351, 2022.

Navarro et al., 2007. X Navarro, Meritxell Vivó and Antoni Valero-Cabré. Neural

plasticity after peripheral nerve injury and regeneration. Progress in neurobiology, 82(4),

163–201, 2007.

Nicholas et al., 2019. Michael Nicholas, Johan WS Vlaeyen, Winfried Rief,

Antonia Barke, Qasim Aziz, Rafael Benoliel, Milton Cohen, Stefan Evers, Maria Adele

Giamberardino, Andreas Goebel et al. The IASP classification of chronic pain for ICD-

11: chronic primary pain. Pain, 160(1), 28–37, 2019.

Nielsen, 2018. Michael A. Nielsen. Neural Networks and Deep Learning, 2018. URL

http://neuralnetworksanddeeplearning.com/.

Nuñez-Ibero et al., 2021. Maider Nuñez-Ibero, Borja Camino-Pontes, Ibai Diez,

Asier Erramuzpe, Endika Martinez-Gutierrez, Sebastiano Stramaglia, Javier O Alvarez-

Cienfuegos and Jesus M Cortes. A Controlled Thermoalgesic Stimulation Device for

Exploring Novel Pain Perception Biomarkers. IEEE Journal of Biomedical and Health

Informatics, 25(8), 2948–2957, 2021.

Orr, Müller, 1998. Genevieve B Orr and Klaus-Robert Müller. Neural networks: tricks

of the trade. Springer, 1998.

Paszke et al., 2019. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga

et al. Pytorch: An imperative style, high-performance deep learning library. Advances

in neural information processing systems, 32, 2019. URL https://pytorch.org/docs/

stable/index.html.

Dharmendra Pathak and Ramgopal Kashyap, 2021. Dharmendra Pathak and Ramgopal

Kashyap. A review of the classification of neuroscience problems with the help of deep

learning framework. In 2021 5th International Conference on Information Systems and

Computer Networks (ISCON), pages 1–6. IEEE, 2021.

Picciotto, 2020. M Picciotto. Consideration of sample size in neuroscience studies. J.

Neurosci, 40, 4076–4077, 2020.

115

http://neuralnetworksanddeeplearning.com/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

Group 10402 Bibliography

Price et al., 1977. Donald D Price, James W Hu, Ronald Dubner and Richard H

Gracely. Peripheral suppression of first pain and central summation of second pain evoked

by noxious heat pulses. Pain, 3(1), 57–68, 1977.

Pricope et al., 2022. Cosmin Vasilica Pricope, Bogdan Ionel Tamba, Gabriela Dumitrita

Stanciu, Magdalena Cuciureanu, Anca Narcisa Neagu, Ioana Creanga-Murariu, Bogdan-

Ionut Dobrovat, Cristina Mariana Uritu, Silviu Iulian Filipiuc, Bianca-Mariana Pricope

et al. The Roles of Imaging Biomarkers in the Management of Chronic Neuropathic Pain.

International Journal of Molecular Sciences, 23(21), 13038, 2022.

Roodschild et al., 2020. Matías Roodschild, Jorge Gotay Sardiñas and Adrián Will.

A new approach for the vanishing gradient problem on sigmoid activation. Progress in

Artificial Intelligence, 9(4), 351–360, 2020.

Ruder, 2016. Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

Saeidi et al., 2021. Maham Saeidi, Waldemar Karwowski, Farzad V Farahani, Krzysztof

Fiok, Redha Taiar, PA Hancock and Awad Al-Juaid. Neural decoding of EEG signals with

machine learning: a systematic review. Brain Sciences, 11(11), 1525, 2021.

Sak et al., 2014. Haşim Sak, Andrew Senior and Françoise Beaufays. Long short-

term memory based recurrent neural network architectures for large vocabulary speech

recognition. arXiv preprint arXiv:1402.1128, 2014.

Sandkühler, 2007. Jürgen Sandkühler. Understanding LTP in pain pathways. Molecular

pain, 3, 1744–8069, 2007.

Sandkuhler, 2009. Jurgen Sandkuhler. Models and mechanisms of hyperalgesia and

allodynia. Physiological reviews, 89(2), 707–758, 2009.

Santana et al., 2019. Alex Novaes Santana, Ignacio Cifre, Charles Novaes De Santana

and Pedro Montoya. Using deep learning and resting-state fMRI to classify chronic pain

conditions. Frontiers in neuroscience, 13, 1313, 2019.

Savignac et al., 2022. Chloé Savignac, Don Daniel Ocay, Yacine Mahdid, Stefanie Blain-

Moraes and Catherine E Ferland. Clinical use of electroencephalography in the assessment

of acute thermal pain: a narrative review based on articles from 2009 to 2019. Clinical

EEG and Neuroscience, 53(2), 124–132, 2022.

Schnakers, Zasler, 2007. Caroline Schnakers and Nathan D Zasler. Pain assessment

and management in disorders of consciousness. Current opinion in neurology, 20(6),

116

Bibliography Aalborg University

620–626, 2007.

Seixas et al., 2013. Daniela Seixas, Guy Ebinger, Janet Mifsud, Joseph Schmucker von

Koch and Sheri Alpert. Functional Magnetic Resonance Imaging, European Commission,

2013.

Benjamin Shickel, Scott Siegel, Martin Heesacker, Sherry Benton and Parisa Rashidi,

2020. Benjamin Shickel, Scott Siegel, Martin Heesacker, Sherry Benton and Parisa Rashidi.

Automatic detection and classification of cognitive distortions in mental health text. In

2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE),

pages 275–280. IEEE, 2020.

Shrikumar et al., 2017. Avanti Shrikumar, Peyton Greenside and Anshul Kundaje.

Learning important features through propagating activation differences. pages 3145–3153,

2017.

Simonyan et al., 2013. Karen Simonyan, Andrea Vedaldi and Andrew Zisserman. Deep

inside convolutional networks: Visualising image classification models and saliency maps.

arXiv preprint arXiv:1312.6034, 2013.

Song et al., 2021. Yingchao Song, Qian Su, Qingqing Yang, Rui Zhao, Guotao Yin, Wen

Qin, Gian Domenico Iannetti, Chunshui Yu and Meng Liang. Feedforward and feedback

pathways of nociceptive and tactile processing in human somatosensory system: A study of

dynamic causal modeling of fMRI data. NeuroImage, 234, 117957, 2021.

Srivastava et al., 2014. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1), 1929–1958, 2014.

Sundararajan et al., 2017. Mukund Sundararajan, Ankur Taly and Qiqi Yan.

Axiomatic Attribution for Deep Networks. 2017.

Sundhedsstyrelsen, 2019. Sundhedsstyrelsen. Smerteguide. https://www.sst.dk/-/

media/Udgivelser/2019/Smerteguide.ashx, 2019. Accessed: 2023-05-29.

Torrence, Compo, 1998. Christopher Torrence and Gilbert P Compo. A practical

guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61–78,

1998.

Cory Toth. The Clinical Presentation of Neuropathic Pain, page 1–32. Cambridge

University Press, 2013. 10.1017/CBO9781139152211.002.

117

https://www.sst.dk/-/media/Udgivelser/2019/Smerteguide.ashx
https://www.sst.dk/-/media/Udgivelser/2019/Smerteguide.ashx

Group 10402 Bibliography

Tøttrup, 2020. Lea Tøttrup. Functional Cortical Changes in an Animal Model of

Neuropathic Pain, 2020. ISSN 22461302.

Vallabhaneni et al., 2021. Ramesh Babu Vallabhaneni, Pankaj Sharma, Vinit

Kumar, Vyom Kulshreshtha, Koya Jeevan Reddy, S Selva Kumar, V Sandeep Kumar and

Surendra Kumar Bitra. Deep Learning Algorithms in EEG Signal Decoding Application:

A Review. IEEE Access, 9, 125778–125786, 2021.

van den Broeke et al., 2010. Emanuel N van den Broeke, Clementina M van Rijn,

José A Biurrun Manresa, Ole K Andersen, Lars Arendt-Nielsen and Oliver HG Wilder-

Smith. Neurophysiological correlates of nociceptive heterosynaptic long-term potentiation

in humans. Journal of neurophysiology, 103(4), 2107–2113, 2010.

van den Broeke et al., 2013. Emanuel N van den Broeke, Lonneke Koeslag, Laura J

Arendsen, Simon W Nienhuijs, Camiel Rosman, Clementina M van Rijn, Oliver HG

Wilder-Smith and Harry van Goor. Altered cortical responsiveness to pain stimuli after high

frequency electrical stimulation of the skin in patients with persistent pain after inguinal

hernia repair. Plos one, 8(12), e82701, 2013.

Van Houdt et al., 2020. Greg Van Houdt, Carlos Mosquera and Gonzalo Nápoles. A

review on the long short-term memory model. Artificial Intelligence Review, 53, 5929–5955,

2020.

Wagemakers et al., 2019. Sjors H Wagemakers, Joanne M van der Velden, A Sophie

Gerlich, Alinde W Hindriks-Keegstra, Jacqueline FM van Dijk and Joost JC Verhoeff. A

systematic review of devices and techniques that objectively measure patients’ pain. Pain

Physician, 22(1), 1–13, 2019.

Wager et al., 2013. Tor D Wager, Lauren Y Atlas, Martin A Lindquist, Mathieu Roy,

Choong-Wan Woo and Ethan Kross. An fMRI-based neurologic signature of physical pain.

New England Journal of Medicine, 368(15), 1388–1397, 2013.

Witting et al., 2006. Nanna Witting, Ron C Kupers, Peter Svensson and Troels S

Jensen. A PET activation study of brush-evoked allodynia in patientswith nerve injury

pain. Pain, 120(1-2), 145–154, 2006.

Woller et al., 2017. Sarah A Woller, Kelly A Eddinger, Maripat Corr and Tony L Yaksh.

An overview of pathways encoding nociception. Clinical and experimental rheumatology,

35(Suppl 107), 40, 2017.

Woolf et al., 2010. Clifford J Woolf et al. What is this thing called pain? The Journal

of clinical investigation, 120(11), 3742–3744, 2010.

118

Bibliography Aalborg University

Woyczynski, 2011. Wojbor A. Woyczynski. A first course in statistics for signal

analysis. Springer, 2011.

Wu et al., 2022. Fengjie Wu, Weijian Mai, Yisheng Tang, Qingkun Liu, Jiangtao

Chen and Ziqian Guo. Learning spatial-spectral-temporal EEG representations with

deep attentive-recurrent-convolutional neural networks for pain intensity assessment.

Neuroscience, 481, 144–155, 2022.

Zeiler, Fergus, 2013. Matthew D Zeiler and Rob Fergus. Visualizing and Understanding

Convolutional Networks. 2013.

Zhang et al., 2018. Pengbo Zhang, Xue Wang, Weihang Zhang and Junfeng Chen.

Learning spatial-spectral-temporal EEG features with recurrent 3D convolutional neural

networks for cross-task mental workload assessment. IEEE Transactions on neural systems

and rehabilitation engineering, 27(1), 31–42, 2018.

Zhao, Wan, 2018. Zi-Fang Zhao and You Wan. Electrophysiological Signature of Pain.

Advances in Pain Research: Mechanisms and Modulation of Chronic Pain, pages 167–177,

2018.

Zhuo, 2011. Min Zhuo. Cortical plasticity as a new endpoint measurement for chronic

pain. Molecular pain, 7, 1744–8069, 2011.

Zolezzi et al., 2022. Daniela M Zolezzi, Luz María Alonso-Valerdi and David I Ibarra-

Zarate. Chronic neuropathic pain is more than a perception: Systems and methods for an

integral characterization. Neuroscience & Biobehavioral Reviews, page 104599, 2022.

119

Pain Models A
A.1 Spared nerve injury (SNI)

The spared nerve injury (SNI) model is an animal model extensively used in research to

simulate the physiological mechanisms in peripheral NP chronic pain. The SNI model

involves partial ligation of two of the three terminal branches of the sciatic nerve (the

common peroneal and tibial nerves), leaving the third branch (the sural nerve) intact.

This model was created because of the lack of understanding of patients with partial nerve

injuries, the most common group of NP patients. Furthermore, this model was created

to be more reproducible, since other models involve quite precise surgery using ligation to

constrict the nerves. [Decosterd and Woolf, 2000]

The SNI procedure is performed under anesthesia and involves making an incision through

the biceps femoris muscle to access the sciatic nerve and its three terminal branches; sural,

common peroneal, and tibial nerves (see Figure A.1). The tibial and common peroneal

nerves are then tied tightly with 5.0 silk and sectioned distal to the ligation, removing 2-4

mm of the distal nerve stump. Great care is taken to avoid any contact or stretching of

the intact sural nerve. The muscle and skin are then closed in two layers. This activates

mechanical hypersensitivity in the lateral dorsal paw during the second week after surgery,

with hypersensitivity persisting for up to 6 months. Therefore longer follow-up studies are

advantageous when making use of the SNI model [Decosterd and Woolf, 2000].

Since the SNI model produces minimal variability in the degree of damage, the

reproducibility and comparability between studies is effective. Furthermore, this

model enables direct investigation of changes in both injured primary sensory neurons,

neighboring intact sensory neurons, and neural activity in the brain.

The nerve injury model of this project was different since the radial nerve was cut instead.

121

Group 10402 A. Pain Models

Figure A.1. (A) Picture of sciatic and saphenous nerves with their origins and little overlap
between them. (B) Map of zones on a rat paw that the nerves control, with some overlap at the

edges of these zones.
Source: [Decosterd and Woolf, 2000]

122

A.2. Electrically evoked acute pain Aalborg University

A.2 Electrically evoked acute pain

Long-term potentiation (LTP) is a well-documented phenomenon and is used in pain

research, learning, and memory. It is generally defined as a long-lasting increase in synaptic

strength, and has at least two different stages which is distinguishable based on their

duration and the signal transduction pathways involved. The early phase of LTP lasts up

to three hours and is independent of de-novo protein synthesis. Late-phase LTP depends

on de-novo protein synthesis, may involve structural changes at synapses, and last longer

than three hours, up to an animal’s life span. The increase in synaptic strength refers to the

level of the post-synaptic reaction such as the neurotransmitters in enhanced and/or the

effect of the neurotransmitters becoming stronger. It is important to note that this does

not include action potential firing.[Sandkühler, 2007] LTP is also present in the nociceptive

system, where it is believed to be a key mechanism in the development and maintenance of

chronic pain. [van den Broeke et al., 2010] Long-term potentiation and depression (LTD)

can induce changes in the cortical map following nerve injury. This affects the size of the

areas by strengthening or weakening connections between cortical areas. [Navarro et al.,

2007] As a pain model, LTP can be induced by high-frequency electrical stimulation (HFS)

on primary afferents, where the stimulation strength (around 100 Hz) is needed to activate

c-fibers. [Sandkuhler, 2009; Janjua et al., 2021; van den Broeke et al., 2013]

A.3 Low-frequency stimulation (LFS)

To investigate the shocked system, for example, using SNI or HFS models, researchers

often apply low-frequency stimulation (LFS). This method ensures the evocation of an

event-related potential (ERP) that can be synchronized with a trigger. By doing this,

researchers can create epochs linked to specific triggers. The advantage of this technique

is that the resulting ERPs can be compared across different pain models, including SNI,

HFS, and control conditions. It is theorized that the LFS-induced ERPs will be modulated

differently depending on the specific pain model being used. The technique of utilizing

electrical stimulation, such as LFS, aims to replicate the sensation of a person experiencing

stimulation in areas affected by allodynia or hyperalgesia. It should be noted that similar

outcomes could also be achieved by utilizing mechanical or thermal stimuli.[Janjua et al.,

2021]

123

Model Interperability B
This appendix chapter contains the plots from the explainable AI from the multiclass

classification model as well as the binary model. It will contain information about the

models performance on validation and test data for the control, LTP, and SNI groups.

125

Group 10402 B. Model Interperability

B.1 Multiclass model

B.1.1 Validation

Control

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

126

B.1. Multiclass model Aalborg University

LTP

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

127

Group 10402 B. Model Interperability

SNI

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

128

B.1. Multiclass model Aalborg University

B.1.2 Test

Control

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

129

Group 10402 B. Model Interperability

LTP

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

130

B.1. Multiclass model Aalborg University

SNI

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

131

Group 10402 B. Model Interperability

B.2 Binary model

B.2.1 Validation

Control

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

132

B.2. Binary model Aalborg University

LTP

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

133

Group 10402 B. Model Interperability

B.2.2 Test

Control

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

134

B.2. Binary model Aalborg University

LTP

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Saliency Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
e
ue
nc
y
(H
z)

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Integrated Gradients Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq

ue
nc
y
(H
()

Input Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
DeepLift Map

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
C mbined Attributi n Map

0.0 0.2 0.4 0.6 0.8 1.0

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200

Fr
eq
ue
nc
y
(H
z)

In ut Image

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Occlusion Ma

−200 0 200 400
Time (ms)

25

50

75

100

125

150

175

200
Combined Attribution Ma

0.0 0.2 0.4 0.6 0.8 1.0

135

Time Series C
In order to test whether time series data could be used as input as an alternative to

CWT, this was tested with a 1-dimensional convolutional layer. The network consisted of

the same hyperparameters as the base model, however only with one convolutional layer.

Time series was tested with multiclass classification and a binary between control and

intervention. As seen in Figure C.1, the confusion matrix of the time series model with

multiclass classification did not predict the SNI group. Furthermore, the LTP prediction

was questionable, whereas the control predictions were somewhat consistent. The learning

curve showed a small drop in the validation loss with respect to the starting point but

did not follow the training loss. For the binary classification, an accuracy of 63.4%

between intervention and control was obtained, compared to the CWT version of the

binary classification with 62.9% performing slightly better. Based on these findings, it was

determined that neither of these models was suitable for further utilization.

Time series
(58.7 %)

Time series binary
(63.4 %)

Figure C.1. Confusion matrix and learning curve for time-series models with multiclass and
binary classification. The blue and orange lines in the training and validation loss, respectively.

The accuracy of the two models is written underneath the respective model names.

137

Activity- and Time-plan D
To keep track of how much time we had available for each activity in this project an

activity and time plan was made. The first iteration of this plan can be seen in Table D.1.

The plan was made from the basis of us wanting to use 40 hours a week on the project.

We then used backtracking to set milestones for when we should be finished with different

parts of the project. We also wanted to make sure we met the requirements of the learning

goals, which is why these were put on the plan as well.

Table D.1. Initial activity and time plan

February Marts April MayActivities 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Total Leaning goals

Init. prob. search x x x 1,2,4,5
Struct. lit. search x x 1,2,3,4,5
Introduction x x x 1,2,4,5
Pre-processing x x x 1,2,4,5
Development of ML/DP method x x x x x x x 1,2,4,5,6
Results x x x 2,6
Discussion x x 2,4,5,6
Conclusion x 2
Article finalize x x x 2
Appx. & PBL x x x x x x x x x x x x x x x 2
Project (hours) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 680

Additional deadlines
Status seminary
Semester meetings

The time planning was an iterative process and was continuously updated as time passed.

Table D.2 is an example of an iteration of the plan. An example of the change is that

more time was added to the structured literature search since two weeks wasn’t enough

time to perform two searches, which was not planned at the start of the project. The

article writing was also scrapped because the results of the projects were not suitable for

an article. Two of the members of the group also got a study job this semester, which was

added to the plan, so this could be accounted for in the plan. Keeping track of the extra

working hours meant that the two members could slowly catch up in their free time.

139

Group 10402 D. Activity- and Time-plan

Table D.2. Iterated version of the activity and time plan

February Marts April MayActivities 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Total Leaning goals

Init. prob. search x x x 1,2,4,5
Struct. lit. search x x x 1,2,3,4,5
Introduction x x x x x 1,2,4,5
Pre-processing x x x 1,2,4,5
Development of ML/DP method x x x x x 1,2,4,5,6
Explainable AI x x x x
Results x x 2,6
Discussion x x 2,4,5,6
Conclusion x 2
Article finalize x x 2
Appx. & PBL x x x x x x x x x x x x x x x 2
Project (hours) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 680

Additional deadlines
Status seminary
Semester meetings

Arbejde
Nickolaj 6 2 5 0 4 0 6 4 0 0 0 3 0 3 0 6 6 45
Mikkel 2 2 8 0 5 3 4 2 2 0 2 4 0 2 4 0 0 40

The activity and time plan were used on a weekly basis to create overall goals for each

week. These goals ensured that the work done each week was aligned with the plan and

helped prevent falling behind. These weekly goals were assessed each Friday, and a status

meeting was held at the end of the day. At these meetings, the goals would be discussed

whether they were reached or more work was needed. This was also used to iterate the

time plan if a task was more time-consuming than first assumed.

For the final month, we made an overall plan for each day, so we had a strict timeline for

when the different sections had to be finished. This can be seen in Table D.3. The article

writing was redacted from the time plan since the results were not expected and therefore

not suitable for an article. Instead, the time was used to do some more experimenting

with the model and the data to try and improve the results.

140

Aalborg University

Table D.3. Final month of the project

Date Focus Deadlines

2. maj CNN
(udvikling + formidling af CNN arkitektur)

3. maj CNN
(udvikling + formidling af CNN arkitektur)

4. maj CNN
(udvikling + formidling af CNN arkitektur)

5. maj CNN
(udvikling + formidling af CNN arkitektur) Optimering af CNN done

8. maj Test+validering af CNN → resultater
9. maj Test+validering af CNN → resultater
10. maj Test+validering af CNN → resultater
11. maj Validering-, test- & resultat-afsnit
12. maj Validering-, test- & resultat-afsnit
15. maj Artikelskrivning
16. maj Artikelskrivning
17. maj Artikelskrivning
18. maj Artikelskrivning
19. maj Artikelskrivning
22. maj Artikelskrivning
23. maj Resultater + diskussion
24. maj Diskussion
25. maj Diskussion
26. maj Diskussion + konklusion
29. maj Diskussion + konklusion + abstract
30. maj Alt tekst skal være færdig Rapport og artikel done
31. maj Sidste rettedag Aflevering

141

	Titlepage
	Content
	Problem Analysis
	General Pain
	Neuropathic Pain
	Diagnosing Chronic Neuropathic Pain
	Overview of Different Diagnostic Imaging Methods
	Classification of Pain
	Aim

	Structured Literature Search
	The Initial Search
	AND/OR Table
	Structured Search on Machine Learning Models for EEG Classification

	Experimental Protocol
	Protocol and Procedure of the Experiment
	Measurement Protocol

	Pre-proccesing
	Data Management & Signal Processing
	Initial Inspection of ECoG Data
	Pre-processing of ECoG Signals
	Wavelet Transform
	Temporal Window Length

	Neural Network Architecture
	General CNN-LSTM architecture
	Convolutional Neural Network
	Long Short-Term Memory

	Model Interpretability, Evaluation, and Performance Metrics
	Model Interperability
	Saliency
	Integrated Gradients
	DeepLIFT
	Occlusion
	Model Evaluation
	Classification Performance Metrics

	Training and Validation of the Network
	Development Strategy of the Network
	Separation of Data
	Training Process
	Structured Training Process
	Model Chosen for the Final Testing
	Final CNN-LSTM Architecture

	Results
	Confusion Matrix
	Accuracy and F1-score
	Receiver Operating Characteristic Curve
	Model Interperability

	Discussion
	Comparison of Results
	Methodological Considerations
	Future Work

	Conclusion
	Bibliography
	Pain Models
	Spared nerve injury (SNI)
	Electrically evoked acute pain
	Low-frequency stimulation (LFS)

	Model Interperability
	Multiclass model
	Binary model

	Time Series
	Activity- and Time-plan

