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Chapter 1

Introduction

The rapid development of Visual Simultaneous Localization and Mapping (V-SLAM) has facil-
itated significant advancements in various industries, including autonomous vehicles, robotics,
and augmented reality. As a result, novel applications such as indoor mapping, robot-assisted
surgery, immersive gaming experiences, and planetary exploration, have emerged, demonstrat-
ing the potential of V-SLAM technology [1, 2, 3, 4, 5].
V-SLAM has been in development since the 2000s [6] leading to a vast selection of methods
within the research community. Each method is designed to tackle unique challenges and
environments. Specific V-SLAM methods have been made to deliver more detailed maps, fa-
cilitate mapping during fast motion, manage large environments, or cope with dynamic scenes
as highlighted in Kazerouni et al.’s survey [7]. Some specific examples of V-SLAM applications
are:

1. Disaster response: Deploying autonomous robots or drones to assess the damage, locate
survivors, and navigate through hazardous environments during natural disasters, such
as earthquakes or tsunamis.

2. Environmental monitoring and conservation: Mapping and localization to monitor and
map forest ecosystems, enabling detection of illegal logging, monitoring climate change,
or wildlife tracking for conservation purposes.

3. Infrastructure inspection and maintenance: Utilizing V-SLAM technology for inspection
and maintenance of critical infrastructure such as bridges, tunnels, and power plants.

As an example, in the ongoing fight against climate change and the need for conserving bio-
diversity, the scientific community increasingly relies on advanced technologies to understand
and manage natural ecosystems. One such technological frontier is the use of robotics for en-
vironmental monitoring and conservation. Autonomous robotic systems can be deployed to
monitor and map vast forest ecosystems, track indicators of illegal logging, observe the impact
of climate change, and even follow wildlife movements and patterns. V-SLAM plays a critical
role in these applications and is one of the most efficient methods for building 3D maps and
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1.1. Company collaboration: Carnegie Robotics

estimating the position of a robot within it [7]. Building on the contextual understanding of
V-SLAM technology, the forward-thinking organization, Carnegie Robotics which has supplied
one of their high-end rugged stereo cameras for this project will be introduced next.

1.1 Company collaboration: Carnegie Robotics

The company Carnegie Robotics is a Pittsburgh-based company that specializes in autonomy in
rugged environments. It was founded in 2010 by a team of experts in robotics, computer vision,
electrical engineering, and mechanical engineering. The company has since grown to employ
over 150 people. Their project portfolio continuously expands, and today they are produc-
ing solutions within the fields of, autonomous mining, infrastructure inspection, agricultural
automation, defense robotics, and delivering sensing and perception systems for autonomous
boats. A commonality for the aforementioned fields is that the environments are mostly large
and unknown. The rugged and unpredictable nature of the environments makes it a challenge
for Carnegie Robotics’ autonomous solutions to operate. Unlike autonomous cars that can rely
on pre-existing road maps and traffic patterns. Therefore Carnegie Robotics specializes in de-
veloping robust and advanced sensing and control systems that enable their robots to navigate
challenging environments without relying on prior knowledge. To further improve the per-
formance of their autonomous systems, it is essential for Carnegie Robotics to have advanced
sensing and perception capabilities, one key technology is V-SLAM. By developing a robust
V-SLAM algorithm for their MultiSense cameras, Carnegie Robotics can significantly improve
the performance of their autonomous systems enabling their robots to better understand and
navigate the rugged environment.

As developing a full V-SLAM project for the course of this project will be too ambitious given
the level of complexity and time to complete this project, it is necessary to focus on a smaller
module of V-SLAM. However, in order to do that, a fundamental understanding of the field of
V-SLAM is required. The guiding question for the following chapter is stated below.

Initial Problem Formulation:

"What is the current state of the V-SLAM field and what obstacles does it encounter in real-world
applications?"

The following chapter will try to answer the initial problem statement defined above.



Chapter 2

Problem Analysis

This chapter consists of two main sections. Firstly an impact analysis, that answers why visual
odometry and SLAM are important for autonomy and to what extent further development will
impact the real world. Secondly, it consists of a technical analysis that analyzes the current
research progress and implementations, ending with a brief overview of current challenges in
the field.

2.1 Real-world usage of Visual SLAM

The current state of V-SLAM has enabled new applications and advancements across various
industries. It has had a significant social, economic, and commercial impact on various appli-
cation areas such as autonomous vehicles, drones, robotics, and augmented reality.
In industry, advances in V-SLAM has made it possible to create accurate maps of indoor en-
vironments such as shopping malls, museum, and airports. For example navVis, a German
company has utilized SLAM to create detailed 3D maps of large indoor spaces for navigation
and facility management. [1]
In robot-assisted Surgery, the da Vinci Surgical System utilizes a stereo vision system with V-
SLAM capabilities to provide the surgeon with accurate 3D visualization during procedures.
The robot-assisted surgery helped the surgeon perform invasive procedures with less damage
to the patient which led to faster recovery time. [2]
The launch of application programming interfaces (API) for mobile devices: ARKit and ARCore
giving iOS and Android developers new opportunities to create immersive applications and
games. While these APIs are proprietary, they heavily depend on SLAM technology to perform
the localization and mapping for Virtual and Augmented reality [4]. Similarly, developers
using Microsoft’s Hololens have created a real-life-sized interactive Super Mario Smash game
playable outdoors [3].
Improvements in SLAM have made automatic inventory management possible and are often
present in large warehouses. Amazon Robotics (formerly Kiva Systems) set an example for
using robotics to automate operations in warehouses. While such a system does not solely rely
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on a camera it is often included as an input to a more extensive SLAM system.[8]

It is clear that improvements in the V-SLAM field have affected several areas making autonomy
possible in areas that were previously inaccessible to robotics. As a result, we see commercial
applications such as the ones mentioned above. However, to keep improving the technology
there has to be an incentive to do so. Therefore next section will explore what the future might
bring if the V-SLAM technology is improved.

2.1.1 Future possibilities for Visual SLAM

As robotics and SLAM keeps developing, new possibilities for automation arise. In research,
we see development in advanced robotic telepresence. This could involve remotely controlled
robots capable of performing highly precise tasks, such as repair and maintenance of satellites
or space stations, without the need for human presence on-site. In February 2023, a group from
German Aerospace Center envisioned and proposed a system for an aerial manipulator with
teleoperation. The drone carrying the manipulator used lidar-based SLAM to localize itself
according to the object to be manipulated. The human operator could control the aerial ma-
nipulator safely from the ground while receiving visual and haptic feedback from the robot.[9]
Future research in this area could result in products that will eventually help workers perform
high-risk tasks safely from a remote location.
Swarm robotics is another hot topic in research. As V-SLAM continues to improve, swarm
robotics could also be employed in unknown environments. This could prove helpful in areas
such as disaster response, environmental monitoring for climate change, or on search and
rescue missions.
In the medical field, inspired by the da Vinci Surgery System, robot-assisted microsurgery may
be a possibility if localization and mapping technology is improved. Highly precise procedures
such as cell manipulation or tissue engineering would be a possibility as the accuracy and reli-
ability of V-SLAM and robotics continue to improve.[10]

It is clear that continuous improvement in robot localization and mapping will be fundamental
to improving autonomy in vastly different areas. The next section will describe a high-level
overview of SLAM and V-SLAM technology.

2.2 SLAM

For a mobile robot to perform some tasks by itself, it needs to be able to adapt to an unfamiliar
environment. To perform either searching, fetching, or coverage tasks the robot requires some
sense of localization and position. SLAM refers to the process by which a mobile robot adapts to
an unfamiliar environment to perform tasks such as searching, fetching, or coverage. Since its
proposal in 1986, SLAM has received extensive attention in combination with different research
fields such as robotics, virtual reality, autonomous driving, and drones. A subcategory of
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SLAM is V-SLAM. The term visual is added when a camera is the main sensor element to
perform the localization and mapping. A SLAM system typically deploys two parts. The two
parts are depicted in Figure 2.1 [11]. Firstly the front end provides pose estimates for the local
trajectory. The other part usually called the back end optimizes the pose estimates from the
front end trying to achieve global consistency. In a V-SLAM system, the pose estimated from
the front end is estimated by consecutive images from a camera.

Figure 2.1: Illustration of the Frontend and backend architecture in SLAM. [11]

2.2.1 Frontend

The front end itself in a V-SLAM framework can be subcategorized further into the research
field of visual odometry. A visual odometry system is typically only concerned with the local
trajectory over a set of the latest few keyframes. Therefore a visual odometry system will
always drift, meaning errors will accumulate and result in a growing inaccurate trajectory,
however, approaches to minimize this drift have been successful and have further helped full V-
SLAM systems in estimating a more accurate global trajectory. The majority of visual odometry
methods are based on error minimization algorithms when attempting to estimate motion
between camera frames. Within error minimization methods, the feature point method and
the photometric method are two of the most popular used visual odometry solutions. The
feature point technique minimizes a geometric error when reprojecting the world coordinates
of tracked features, while the photometric method attempts to minimize a photometric error,
i.e. the pose is recovered based on intensity changes from a set of recent images. Another name
of the distinction is indirect and direct methods respectively.[11]

2.2.2 Backend

As stated earlier, the backend is responsible for optimizing the frontend information and pro-
ducing a complete map that is globally coherent. To achieve this the backend is typically
composed of three primary components: optimization module, loop detection, and loop clo-
sure. Firstly, the optimization module receives the poses from the front end and is responsible
for refining them to generate a globally consistent map. A widely used method is graph-based
optimization and is seen in popular state-of-the-art V-SLAM methods such as ORB-SLAM [12],
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where poses and landmarks are represented as nodes and the transformation between them is
interpreted as edges. When landmarks are observed from different poses, the pose graph can
then be optimized using optimization techniques such as Gauss-Newton which aim to adjust
the positions of the poses and landmarks to achieve a more globally coherent map.[13]
Secondly, the loop detection module is responsible for identifying when the robot has revisited
a previously explored area. A popular technique to do this is called Bag-of-Words and is also
used in ORB-SLAM [12]. This is essential to correct the accumulated drift in the front end.
When a loop is detected, the pose graph can be updated such that one node can have multiple
edges. After this, the new pose graph can then be optimized in the next module.
Thirdly, the loop closure module attempts to update the pose graph by adding constraints that
enforce consistency between the current pose and previously visited locations. Loop closure
optimization is also typically performed using optimization techniques like the aforementioned
Gauss-Newton method.[13]

This project will focus on the frontend part of a V-SLAM system. Due to the relatively short
time span for the thesis project, it would not be feasible to consider a whole V-SLAM system in
detail. Since the front end is a fundamental part of the system, and improvements in this area
will subsequently improve the performance of V-SLAM systems, this project will investigate
visual odometry and its challenges in producing accurate pose estimations.

2.3 Related work for visual odometry

This section will summarize the current research development of visual odometry. In Table
2.1 is a complete list of related works that are investigated in this section. They are catego-
rized based on their approaches to visual odometry which can either be direct, indirect, deep
learning, or hybrid methods. Hybrid methods are a combination of methods from both tradi-
tional (direct/indirect) approaches and deep learning methods. For example, utilizing a trained
neural network to perform place recognition in a loop detection module.
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Category Names

Direct Methods
DSO: Direct Sparse Odometry
DM-VIO: Delayed Marginalization Visual-Inertial Odome-
try
VI-DSO: Direct Visual-Inertial Sparse Odometry

Indirect and LKT Methods
BASALT: Visual-Inertial Mapping with Non-Linear Factor
Recovery
VINS-Motion: A Robust and Versatile Monocular Visual-
Inertial State Estimator

Deep Learning Methods
DPVO: Deep Patch visual odometry
DEEPVO: End to end visual odometry using deep learning
ContextAVO: Local context guided and refining poses for
deep visual odometry

Hybrid methods
SalientDSO: Direct Sparse Odometry with scene segmenta-
tion and saliency maps
MBA-VO:Motion Blur Aware visual odometry
DeblurSLAM: A Novel Visual SLAM System Robust in Blur-
ring Scene

Table 2.1: List of works included in the related work analysis. They are categorized by their main approach to
solving the visual odometry problem.

2.3.1 Direct methods

Direct visual odometry estimates the motion of a camera by directly analyzing the intensity
values of the pixels between consecutive frames. The following section presents the state-of-
the-art Direct visual odometry methods.

DM-VIO, VI-DSO and DSO

In 2022, Delayed Marginalization Visual-Intertial Odometry (DM-VIO) was presented [14]. It
is a real-time monocular odometry system based on previous research from several papers but
most notably the 2016 Direct Sparse Odometry (DSO) paper [15], and the 2018 Visual Intertial
Direct Sparse Odometry (VI-DSO) paper [16]. VI-DSO is again an extension of DSO (Direct
Sparse Odometry) where inertial information was added to the visual odometry to minimize
the error introduced by rapid movements, pure rotations, and bad image quality. DM-VIO em-
ploys two novel techniques namely delayed marginalization and their coined term pose graph
bundle adjustment (PGBA). PGBA is a bundle adjustment-like procedure to optimize a pose
graph for a local trajectory. The novel techniques are a step in addressing the shortcomings
of the IMU integration in VI-DSO. DM-VIO then presents a tightly coupled implementation
of visual-inertial Odometry where the energy function jointly optimizes for IMU and visual
parameters. As a result, DM-VIO is the state-of-the-art implementation for visual odometry



2.3. Related work for visual odometry

methods and its performance is even comparable to that of ORBSLAM3 which is a full VI-
SLAM system [14]. Most of the achievements stem from the publication of the direct image
formulation model from DSO. By minimizing a photometric error, the optimization process
does not need to adhere to feature extraction and matching which allows the system to main-
tain tracking accuracy in sparse and textureless areas. Figure 2.2 shows an image from the
DSO running on a frame from the European Robotics Challenge (EuRoC) Micro Aerial Vehicle
(MAV) dataset in a relatively textureless scene.

Figure 2.2: DSO running on the EuRoC MAV dataset. This frame illustrates the direct formulation’s ability to track
when the image contains little texture

In the Figure 2.2, the colors of the points is determined by the depth value assigned to each
point which is sampled from the jet color map.

2.3.2 Indirect and optical flow methods

Lately in Indirect methods development, besides from ORB-SLAM3, feature descriptors such
as ORB and SIFT descriptors have been switched out with corner methods such as FAST and
Harris Corner methods. The matching algorithm heavily relies on the Lukas-Kanada-Tomasi
algorithm to generate sparse optical flow from a set of consecutive images. This combination
along with the integration of an Inertial Measurement Unit has shown improvements in the
Visual-Intertial Odometry field and pushed state-of-the-art solutions towards more accurate
implementations. A commonality for indirect methods is that the features collected are more
easily extended to include SLAM components such as place recognition for loop detection and
loop closure. The following sections are a description of two methods in that scope. [17] [18]
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BASALT

In 2020, Usenko et al persented BASALT [18]. BASALT is a tightly integrated visual-inertial
odometry system. For each frame, they minimize non-linear energy that consists of reprojection
terms, IMU terms, and a marginalization prior in a sliding window. Like VINS-Motion, they
also use the KLT for sparse optical flow, but they use the FAST algorithm for feature detection.
An example of the KLT tracks estimated by their system is shown below in Figure 2.3. The
two images presented in the figure shows the tracks on the same object from two different
viewpoints and slightly different exposure.

Figure 2.3: Example of KLT tracks estimated by the BASALT system. Despite changes in both viewpoint and
exposure time the method is able to estimate the warp between the patches in the images

Additionally, Basalt also adds a global map optimization module, where Oriented BRIEF and
Rotated Fast (ORB) features are extracted independently from the keyframes. The novelty pre-
sented in BASALT is reintegrating non-linear factors into the initially linearized optimization
problem. Earlier methods relied on a linearization of the system dynamics and measurements,
which could lead to suboptimal solutions if the motion were not approximately linear between
keyframes. This is a problem since for visual-inertial odometry systems several seconds may
pass between keyframes. Therefore it can be difficult to approximate the motion with linear
terms. The non-linear factor recovery method tries to restore a more accurate trajectory be-
tween keyframes by reducing the linearization errors that occur in the optimization process
by re-integrating non-linear factors that were previously linearized during the initial optimiza-
tion. This allows BASALT to capture the non-linear dynamics of the system, leading to more
accurate state estimation. [18] As a result, BASALT presents state-of-the-art results on the Eu-
RoC dataset for both visual odometry solutions with global map optimization disabled and for
V-SLAM solutions once the module is enabled. [18]
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VINS-Motion

In 2018, Qin et al. presented VINS-Motion [17]. It is a tightly coupled nonlinear optimization-
based method by fusing pre-integrated IMU measurements and Harris corners detector for
features tracked by the KLT sparse optical flow algorithm. Furthermore, they added a loop de-
tection module and a 4-DOF pose graph optimization to enforce global consistency. The system
is therefore not a pure visual odometry since it contains a backend optimization module, but
they do show a reliable, complete, and versatile system that is applicable for different appli-
cations while its performance is comparable to that of state-of-the-art algorithms. They argue
that the feature-based VINS estimator has reached the maturity of real-world deployment, but
still see many directions for future research. One direction is that for mass deployment on a
variety of consumer devices such as smartphones, the application requires online calibration of
almost all sensor intrinsic and extrinsic parameters. [17]

2.3.3 Deep learning methods

In general, deep learning methods are still in their infancy compared to classical methods when
considering Absolute Trajectory Error (ATE). However, deep learning methods show promising
results for robust pose estimations and generalize well for unseen datasets. Following is a
description of an impactful deep learning visual odometry estimation model, DeepVO, and a
more recent development called ContextAVO.

DeepVO

In 2017, Wang et al. presented DeepVO [19]. They presented a novel end-to-end framework
for monocular visual odometry by using deep Recurrent Convolutional Neural Networks (RC-
NNs). The end-to-end model infers poses from a sequence-pair of raw RGB images usually
from a video file. Their architecture is depicted in Figure 2.4.

Figure 2.4: Network architecture presented in DeepVO, each pose estimate relies on two frames which is passed
through a CNN layer for feature extraction then to a RNN for the pose estimation. Source: Wang et al. [19]
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The approach presented by Wang et al. replaces all the modules in a classical handcrafted
visual odometry pipeline with deep learning. It leveraged the capability of CNN to extract
features from the images, and then a Recurrent Neural Network (RNN) to capture the tempo-
ral information among sequential frames. The end-to-end approach in DeepVO allowed the
network to be optimized as a whole. This means that the modules of the networks could in-
fluence each other during learning. For instance, the features required for RNN to learn the
geometric relationship between frames influenced the CNN module to focus on feature maps
that were specialized for tracking, this connection is also depicted clearly in the architecture
in Figure 2.4. DeepVO proved that a deep learning-based visual odometry algorithm could
achieve state-of-the-art results on the KITTI visual odometry benchmark set. The model also
transfers well to new scenarios. The researcher behind DeepVO stresses that incorporating
classical geometric approaches with the representation, knowledge, and models learned by the
Deep Neural Networks will further improve accuracy and most importantly, robustness. [19]

ContextAVO

In February 2023, Song et al. presented ContextAVO. Their approach focused on the effective-
ness of local contexts to improve the estimation recovered from continuous multiple optical
flow snippets. They introduce Context-Attention Refining into a novel learning-based visual
odometry framework to enable the model to better capture relevant information and ignore
irrelevant noise. Additionally, they introduce a multi-length window in the input. This is done
by applying three sliding windows with different sizes to select continuous optical flow for an
input system. This was implemented to make the system more suitable for general scenarios
instead of relying on a fixed input length based on empirical knowledge. As a result, Con-
textAVO achieved comparable results to classical approaches and showed better performance
than state-of-the-art deep learning visual odometry solutions.[20]

2.3.4 Hybrid methods

Hybrid methods attempt to harvest the strengths of traditional hand-crafted approaches with
the robustness of deep learning. Many of the state-of-the-art direct and indirect methods have
been enhanced by supplementing their pipeline with deep learning methods. Below is a de-
scription of such methods.

SalientDSO

In 2019, Liang et al. attempted to enhance DSO by using deep learning methods to help
reduce the number of samples in the image required for pose estimation and increase the
pose estimation quality. In SalientDSO [21], Direct Sparse Odometry (DSO) was extended by
using a saliency map. The saliency map which is a piece of high-level semantic information
about the scene is utilized in the point selection strategy in DSO. It improved DSO by making
it more robust as well as more accurate. Weighting the point selection with a saliency map
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required fewer points per frame to achieve convergence since the overall quality of the selected
points was greater. This also resulted in a faster computation of the error term, however, the
pre-processing step of generating a saliency map slowed down the overall implementation.
The saliency map is made by using SalGAN, a deep convolutional neural network for visual
saliency prediction trained with adversarial examples. As a result, SalientDSO obtained more
accurate results as well as an increase in robustness for challenging conditions. [21]

DeblurSLAM

In 2021, Guo et al. presented "DeblurSLAM: A Novel Visual SLAM System Robust in Blurring
Scene" [19]. They argue that for V-SLAM feature point extraction and tracking are closely
related to image quality. Bad image quality such as severe motion blur will reduce the accuracy
of the system. Motion blur in the image can appear due to fast camera motion, long exposure
time due to low light environment, or a highly dynamic scene. To help the system deal with
reduced image quality due to motion blur, they introduced a deblurring module to the ORB-
SLAM2 consisting of a blur detection block and a deblurring block based on DeBlurGANv2
as shown in Figure 2.5. Otherwise, the pipeline depicted in the Figure shows the ORBLSAM2
procedure.

Figure 2.5: Implementation pipeline of DeblurSLAM made by Gou et al. [22]. The figure shows how blur detection
and blur removal are implemented before being passed to the ORBSLAM module.

They used a GAN-based deblurring network called DeblurGANv2 because of its strong abil-
ity to handle blur and great advantage in computing speed. Their results demonstrated that
DeblurSLAM outperforms the accuracy of standard V-SLAM baselines such as ORB-SLAM2
without the deblurring module. [22] The performance gap is small when evaluated on popular
benchmark datasets such as the KITTI dataset, however, if a dataset contains strongly blurred
scenes this deburring module would show a greater impact.
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MBA-VO

In 2021, Liu et al presented Motion blur-aware visual odometry [23]. They extended DSO to
consider the camera’s local trajectory within the exposure time. This allowed them to com-
pensate for motion blur that occurs due to the camera motion. They build upon the direct
image alignment presented by DSO. In an extension of DSO, they parameterize two camera
poses, one for the beginning of the exposure and one at the end. Then they linearly interpolate
between the poses as a function of the exposure time. This way they can calculate the amount
of motion blur if the two poses are far apart or close to each other. As DSO relies on pho-
tometric consistency, to continue tracking they need to either deblur or re-blur the keyframe
to maintain the consistency between frames. MBA-VO chooses to re-blur the keyframe since
it is computationally easier and more robust compared to motion deblurring, especially if the
blur is severe. As a result, they achieve superior performance on their own virtual heavily
blurred dataset generated with Unreal Engine. They choose some select sequences from the
TUM RGB-D dataset and achieve better results than with DSO but fall behind ORBSLAM on
the same sequence. [23]

2.3.5 Summary of related work

The different main approaches to visual odometry have been presented. Among the methods
were direct, indirect, deep learning, and hybrid. Direct methods, together with an IMU have
shown superior performance for visual odometry. Indirect methods are a great choice for full
SLAM systems, and deep learning methods are still developing but have shown potential in
modeling complex relationships in the data. Hybrid methods have shown the capability to
combine the accuracy of the direct methods with the robustness of deep learning methods.
Therefore, from here on the project will focus on hybrid methods. The next section will inves-
tigate the challenges for visual odometry for fields that may be alleviated by deep learning.

2.4 Challenges in visual odometry

This and the following sections will address the current challenges visual odometry is facing
in its development. Factors that challenge visual odometry in producing accurate and reliable
estimates are: [24] [25]

• Accurate sensor calibration

• Scale ambiguity

• feature detection and tracking

• Robustness to new environments

• Robustness to lighting conditions

• Handling dynamic environments

• Computational complexity

• Long-term operation

• Degenerate motion
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Handling all of the bullet points above will create a very capable visual odometry system.
However, only a selection will be discussed in more detail by their general applicability to most
implementations. For instance, the requirement to extensively explore the effects of degenerate
motion and computational complexity depends on the implementation. Instead, focusing on
calibration, scale, feature detection, and tracking is vital for every visual odometry system,
these points will be discussed next.

2.4.1 Accurate sensor calibration

Obtaining an accurate sensor calibration is crucial when modeling the environment based on
the incoming light hitting the sensor. An inaccurate calibration will lead to drift and tracking
errors in a visual odometry system. [25]. Unaccounted lens distortion is visualized in Figure
2.6. The figure shows the distortion effects of a wide field of view lens as well as the calibrated
image when distortion is accounted for. However, even if an extensive calibration is performed
prior to running a visual odometry algorithm, it might not hold in real-world applications.
Rapid motion or accidental dents may cause material fatigue, and thermal expansion and con-
traction will deteriorate the calibration over time. Therefore a calibration cannot be assumed to
be constant and the system must therefore be robust enough to handle inaccuracies in the cali-
bration or be able to re-adjust its calibration while running. The stereo cameras from Carnegie
Robotics are known for their rugged cameras that can operate for long periods without requir-
ing a re-calibration. This is a result of extensive hardware testing and carefully construct and
select materials for the design.

(a) Distorted image from the color imager. The wide lens in-
creases the field of view but distorts the image.

(b) Rectified image using the calibration supplied by Carnegie
Robotics

Figure 2.6: Image capture using Carnegie Robotics’ MultiSense S30 color imager.
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2.4.2 Scale ambiguity

All of the presented solutions in related work are monocular visual-inertial odometry systems.
A common problem for monocular visual-inertial odometry is that scale cannot be directly
inferred from the visual data. In a monocular setup, it is impossible without prior knowledge
to know whether an object is large or just appears further away. This is an inherent problem,
since when the 3D point in the world is projected onto the 2D image plane of a camera, depth
information of that point is lost. This can lead to additional drift and incorrect scale estimates
for the trajectory. If the scale is not corrected in a monocular visual-inertial odometry system,
a tracking result such as depicted in Figure 2.7 can be expected.

Figure 2.7: The scale ambiguity problem illustrated on a sequence of the KITTI dataset. The estimated trajectory is
a result of monocular ORBSLAM which has not been initialized with the correct scale.

To solve the ambiguous scale problem, one can put markers with a known size in an initial-
ization step to set the correct scale for the visual odometry estimation. However, this can not
be extended to unknown environments. Other approaches have leveraged deep learning for
depth estimation in monocular images which can be used to infer scale. By training a model
on a large dataset with ground truth scale information, the model can learn to predict the scale
factor for unseen environments. [25] DM-VIO uses an Inertial Measurement Unit (IMU) to
attempt to optimize for the scale [14]. Other approaches have simply used another camera in
a stereo camera setup to triangulate the position of landmarks. The known baseline between
the cameras can be used to eliminate scale ambiguity and determine the size of the camera
movement. This is also what is used in production for Carnegie Robotics where all of their
cameras used for depth estimation are based on stereo vision setups.
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2.4.3 Handling dynamic environments

Dynamic environments pose more challenges for a visual odometry system. The motion of
objects in the scene can be misinterpreted as camera motion, leading to false motion estimates.
If the majority of the features or the sampled pixels are on a moving object, the visual odometry
system may incorrectly estimate the camera’s motion. [26] Another aspect is occlusion, dynamic
objects can occlude and obscure static features in the environment, which makes it difficult
to track these features consistently. Specific examples are robotics used outdoors in offroad
terrain. One may want to employ autonomous monitoring of forest ecosystems, track indicators
of illegal logging, or observe and follow wildlife movements and patterns. visual odometry
systems will struggle to try to cope with the dynamic lightning and movements of animals,
birds, or leaves fluttering in the wind. Another example is cars driving on the road. An image
from the KITTI dataset is depicted in Figure 2.8. It can be difficult to separate moving objects
from static objects in the scene. Especially if a car is moving or parked. If points or features
belonging to a moving object is included in the pose estimation the static scene assumption
does not hold for the presented methods in the previous section, which will have a negative
impact on the tracking accuracy.

Figure 2.8: Dynamic scenes of the KITTI dataset. From a single image, it is difficult to determine if the cars are
moving or parked

Handling dynamic environments is a hot topic in visual odometry research and is yet to be
handled. Attempts have emerged trying to use deep learning to gain a high-level perception
of the scene which then can be utilized to avoid sampling from the dynamic objects. Vertens et
al. attempted to use semantic motion segmentation using deep convolutional networks. They
obtained an object label and the motion status of each pixel in an image. [27] An example
output of their work is seen in Figure 2.9. The semantic labels can then be used to identify
dynamic areas of the scene which can then be subtracted from the optical flow or ignored
by the visual odometry system. However, accurately performing pose estimation in highly
dynamic scenes is still a hot topic and an unsolved problem.
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Figure 2.9: Motion segmented using the SMSnet on an image of the Cityscapes-Motion dataset, presented by
Vertens et al. The blue overlay shows parked and non-moving cars, while the green labels show moving cars.
source: Vertens et al. [27]

2.4.4 Feature detection and tracking

The classical and hand-crafted approaches usually rely on feature detection and tracking. A
reliable and consistent system for detecting and tracking is essential for visual odometry. How-
ever, this can be challenging for systems operating in environments with repetitive textures or
textureless areas, occlusions, or motion blur. Such environments can result in wrong corre-
spondences between frames and further on tracking failures.

Therefore, for both indirect and direct methods, it is important to sample from image areas
that offer data variation. For the indirect methods, feature detection and tracking such as ORB
features achieve better performance on image patches that have unique corners that can be ex-
tracted from shifting viewpoints. For the direct case, the minimization problem using the pixel
intensities is better conditioned if the sampled pixels include variation. For instance, if two
consecutive tracked frames include mostly a white wall, most of the data variation will origi-
nate from noise in the imager which will degrade the tracking result. Another word for data
variation in an image texture. An image with a lot of texture will also include data variation
and to detect the amount of texture, there are a few different methods.

Texture detection

A simple and computationally efficient method for measuring the variation in pixel intensities
is the local standard deviation. It is often used for pre-processing images before tasks such as
feature extraction or tracking. Local standard deviation can also be used to help edge detection.
Another method is the Histogram of Gradients (HOG). HOG captures the distribution of edge
orientations in an image and is particularly effective at detecting object boundaries and corners.
It is a more complex but powerful texture descriptor but it is not as quick to either run or
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implement as the local standard deviation. An example of HOG and local standard deviation
operations on a test image is shown below in Figure 2.10.

(a) Original image from the EuRoC MAV
dataset.

(b) Local standard deviation applied to
the original image, highlighting areas of
high pixel intensity variation.

(c) Histogram of Gradients applied to
the original image, capturing the distri-
bution of edge orientations.

Figure 2.10: Illustration of texture detection methods applied to an image from the EuRoC MAV dataset. From left
to right: original image, local standard deviation, and Histogram of Gradients.

However, it has demonstrated that image gradients are useful for data extraction in an im-
age. For instance, the Direct Sparse Odometry (DSO) implementation uses image gradients
to sample points, and the result is sharing some similarities to HOG. In 2021, Zeng et al.
presented "Robust Mono visual-inertial odometry Using Sparse Optical Flow With Edge Detec-
tion" where the edge detector was based on the laplace operator to identify texture rich areas
to sample points for the Lukas-Kanada optical flow algorithm. [28] However, as can be seen
in the example with HOG descriptors in Figure 2.10c, a lot of information is lost. The loss of
information is apparent by observing the smaller details in the image such as the texture on the
cardboard box or at the wires lying on the floor. SalientDSO extended DSO’s implementation
to not only look at gradients but also saliency maps inspired by the way humans process visual
information. They gathered a pixel-wise map that could be used to identify texture-rich areas.

Saliency maps

Visual attention is an important mechanism that allows humans to select the most relevant
information from a visual scene. A visual saliency map is defined as the amount of attention
each pixel receives by a human observer. The result is usually a heatmap where brighter pixels
indicate a higher saliency value. An example of using the same picture in Figure 2.10a with
saliency detection overlaid with the jet color map is seen below in Figure 3.3b. From the
Figure, it can be observed that the saliency map is good at detecting texture-rich areas which
the gradient approach in Figure 2.10c did not.
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(a) Original image from the EuRoC MAV dataset. (b) Visual saliency map applied to the original image.

Figure 2.11: Illustration of visual saliency detection applied to an image from the EuRoC MAV dataset. The saliency
image is overlaid with the Jet colormap to highlight regions of high saliency.

Accurately predicting saliency as perceived by humans is still an academic challenge. Past ap-
proaches such as used by SalientDSO use deep convolutional networks to extract features and
predict their saliency. [21] However, a limitation of CNN is that it receives information from
only a local subset of pixels which omits long-range contextual information. When humans
perceive an image, the foveal vision provides high-resolution information while peripheral vi-
sion provides low-resolution but long-range information. This property can be beneficial for
predicting visual saliency closer to ground truth. Some approaches have added long-range
modeling capabilities by using Long-Short Term Memory (LSTM)-based architectures. This
approach refined the long-range visual information and improved the visual saliency result.
However, more work is needed to close the gap between saliency prediction and human per-
ception. [29] However, SalientDSO demonstrated using a saliency predictor to weigh in on
point sampling has a positive effect on tracking accuracy.

2.5 Summary and final problem formulation

The initial problem formulation was stated as such:

"What is the current state of the V-SLAM field and what obstacles does it encounter in real-world
applications?"

This chapter has given a description of the V-SLAM technology. The project’s scope was nar-
rowed down to focus on the front end of a V-SLAM system, and more concisely the visual
odometry part. Since visual odometry is a fundamental part of V-SLAM, the findings can still
be applied to the V-SLAM system as a whole. Continuing this a detailed analysis of state-
of-the-art methods for visual odometry was given within direct, indirect, and deep learning
methods. This chapter ends with a description and examples of challenges in visual odometry.
From this description, a problem and approach will be selected to guide the implementation of
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this project. Considering the high accuracy of the direct visual-inertial odometry systems and
the robustness introduced by deep learning systems, this project will focus on hybrid methods
in an attempt to combine the advantages of traditional and deep learning approaches, and
more specifically the traditional DSO by Engel et al. [15] and the hybrid method, SalientDSO
by Liang et al. [21]. DeBlurSLAM and MBA-VO presented in related work achieved better per-
formance in their respective implementations when considering motion blur. VI-DSO added an
inertial measurement unit to minimize the error induced by rapid movements, pure rotations,
and bad image quality such as low illumination and motion blur. This project will contribute to
investigating how much hybrid approaches can enhance visual odometry systems. The main
focus will be to rely on extensive pre-processing of data in visual odometry inspired by the
approaches in SalientDSO and DeBlurSLAM. The pre-processing will also focus on factors that
the IMU was targeted to solve on VI-DSO. Bad image quality as a result of motion blur was
handled by an IMU, however, it is interesting to see how adding a deblurring model to DSO
compares to the integration of the IMU.
The final problem formulation for this project is:

How can the integration of deep learning enhancements augment direct visual odometry to better
handle rapid camera movements and adverse imaging conditions?

The final problem statement defined above will guide the implementation of the project. How-
ever, to measure the success a progressive list of success criteria will be defined.

2.5.1 Success criteria

The success criteria will guide the implementation of the project. They will be defined in
a progressive order and categorized into three phases. The first phase is an initial system
development phase which concerns having a working system that achieves the intended func-
tionality. The second phase is the testing and evaluation of the system. Here the system will be
compared to other pre-existing successful approaches. The last phase consists of an elaborate
and extensive analysis of edge cases to understand the limitations and points of failures of the
system. The list of success criteria is listed in below in Table 2.2.
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Criterion
No.

Description

1 Develop a framework that integrates the modules from SalientDSO, De-
BlurSLAM, and DSO. This involves coding and debugging to ensure the
proper functionality of the integrated system.

2 Validate the functionality of the system with simple test cases, ensuring a
working implementation.

3 Evaluate the hybrid system performance against a well-recognized public
benchmark dataset.

4 Achieve improved tracking accuracy in comparison to baseline methods:
DSO, SalientDSO, DM-VIO.

5 Compare the tracking accuracy of the proposed method with a deblurring
method to a direct Visual-Inertial odometry method.

6 Assess the computational efficiency of the hybrid system. The hybrid system
should operate within an acceptable computational time and resource usage.

7 Lastly, analyze failure cases of the developed framework to understand the
limitations of the hybrid system. This can provide valuable insights for
future improvement.

Table 2.2: Success criteria for the project implementation

However, it is worth mentioning that the handling dynamic environments challenge described
in the previous section is also a worthwhile research direction for the project. But it is not
further investigated in favor of exploring hybrid direct visual odometry.

To the extent of available knowledge, no other project has used a combination of deblurring
and saliency prediction to help point sampling in a direct visual odometry pipeline. The fol-
lowing chapter will elaborate on the implementation process devised to fulfill both the final
problem formulation and the success criteria list.



Chapter 3

Implementation

This section will describe the implementation of this project and in-depth explanation of the
previously used work. A high-level implementation pipeline is seen in Figure 3.1. The Figure
shows how deep learning networks is used in the preprocessing step of the data as well as using
the deblurred image in the point sampling strategy. Firstly a description of the deep learning
models used for data pre-processing will be supplied. Secondly the Direct Sparse Odometry
[15] and SalientDSO [21] will be explained. Lastly in this chapter, the implementation of the
point sampling strategy will be given before being handed to DSO’s pose estimation pipeline.

Figure 3.1: Implementation pipeline for the proposed system. The first module in the system is a Deblurring
network, which preprocesses the data before being passed onto a saliency predictor and a semantic image segmen-
tation model. The output images from deblurring, saliency, and segmentation are passed to a point sampler which
feeds the direct sparse odometry formulation with input data.

22
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3.1 Preprocessing with deep learning networks

The first step in the implementation pipeline depicted in Figure 3.1 is the pre-processing of
the input data. There are three different kinds of pre-processing networks. Firstly the input
data is run through a deblurring network. This reduces the image noise induced by camera
movement. This part is inspired by DeBlurSLAM. Following this, an implementation similar
to SalientDSO is used by using the deblurred images for semantic segmentation and saliency
prediction to identify the texture-rich areas in the image. Since SalientDSO’s release in 2019,
models have achieved better performance at the aforementioned tasks, therefore newer and
improved models are used. All of the models used are pre-trained standard models without
fine-tuning supplied by the original authors of each model. To achieve the best results, each
model selected is a state-of-the-art performer in its respective category and open-sourced. DSO
is primarily made for real-time performance of visual odometry pose estimation and in a real-
world example, the networks used would benefit from being specialized and lightweight net-
works. However, with a proof of concept approach, the models used have not focused on that
part but lean more towards accuracy. The deblurring module may spend upwards of seconds
just to process one image, the saliency predictor and segmentation network takes somewhere
around 0.5 seconds to run individually. The models selected are provided by leading entities in
the deep learning field such as Google Research, which provides the deblurring module, and
OpenGVLAB, which supplies the semantic segmentation module. Next will be a description
and an example for each of the pre-processing modules: Deblurring, Saliency predictor, and
image segmentation.

3.1.1 Maxim: Deblurring

MAXIM: is a multi-axis multi-layer perceptron-based architecture that serves as a general-
purpose vision backbone for image processing tasks. It was published in April 2022 and shows
significant advances over the state-of-the-art in five image processing tasks in terms of peak
signal-to-noise ratio. The five areas are Denoising, Deblurring, Deraining, Dehazing, and En-
hancement. [30] Large-scale vision models have obtained great success on many high-level
applications, but these models for low-level enhancement such as the aforementioned metrics
have not been as thoroughly studied. Pioneering works on transformers for low-level vision
only accepted small patches of fixed sizes, due to the intense computational requirements for
self-attention. This has a bad effect and can cause boundary artifacts when cropping larger
images. Local-attention-based transformers ameliorate this issue but are still limited in the re-
ceptive field, or lose non-locality. A key design in MAXIM is the use of multi-axis approach
that captures both local and global interactions in parallel. By mixing the information the MLP-
based operator becomes convolutional and scales linearly with image size, which is great for
performance and flexibility. [30] Below in Figure 3.2 is an example of the model performing
deblurring on one of the images in a visual-inertial odometry dataset. The model used was a
pre-trained model given by the authors. This model is particularly effective for blurred scenes
with fast camera movement or long exposure times due to low illumination. In the Figure,
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it is clear that the mattress and the table on wheels in the right of the image have received
enhancement and especially the wires lying on the ground in the left part of the image.

(a) Original image from the V02_03_Difficult sequence in
the EuRoC MAV dataset. [Burri25012016]

(b) Deblurred image of Figure 3.2a using the pre-trained
MAXIM model.

Figure 3.2: Comparison of original dataset image and deblurred image

The output from the MAXIM model is used as the input for the next step which is the saliency
predictor and image segmentation networks.

3.1.2 TranSalNet: Saliency prediction

TranSalNet was published by Lou. et al. in October 2021. It advanced towards a perceptually
more relevant saliency prediction using deep learning models with transformers. Previous at-
tempts at saliency prediction were largely based on CNN architecture. However, due to the
inherent inductive bias of CNN encoder architectures, the extracted feature maps lack long-
range contextual information, compared to the human vision system which is proficient at
capturing both local and long-range visual information. Some methods combined CNN with
long Short-Term Memory based components to better simulate the properties of the human
attention mechanism. TranSalNet took the CNN-based models a step further and combined
them with the transformer which has been successful in natural language processing (NLP),
partly because of its powerful long-range dependency modeling capabilities. results showed
that using TranSalNet achieved superior performance on the public benchmarks and compe-
titions for saliency models. [29] Below in Figure 3.3 it is shown how TranSalNet predicts the
salient areas of an input image for a visual odometry Benchmark dataset. The hotspots in Fig-
ure 3.3b correspond well with the textured areas in Figure 3.3a. A lot of attention is given to
the poster between the door and the whiteboard, and to the text written on the whiteboard.
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(a) Deblurred image from the EuRoC MAV dataset using
the MAXIM model.

(b) Saliency predicted image of Figure 3.3a using the pre-
trained TranSalNet model.

Figure 3.3: Image illustrating the saliency predictor TranSalNet on the EuRoC MAV dataset.

3.1.3 InternImage: Image segmentation

INTERN-2.5 is a powerful multimodal multitask general model based on InternImage founda-
tion model. It was released in March 2023 by Wang et al. Its main approach was to explore
large-scale models based on CNNs such as the large-scale vision transformers (ViTs) has been
in recent years. InternImage stands out from other models by taking deformable convolution
as the core operator. By deforming, InternImage can utilize the advantage of a large receptive
field for tasks such as detection and segmentation. Furthermore, the deformable convolutions
also have the adaptive spatial aggregation condition by input and task information. As a re-
sult, InternImage reduces the inductive bias inherent to traditional CNNs, this is shown as
increased performance on challenging image datasets such as ImageNet, COCO, and ADE20K,
and achieved a new record on COCO and ADE20K outperforming current leading CNNs and
ViTs.[31]
Below in Figure 3.4 is an image from the visual inertial dataset using a pre-trained model sup-
plied by the authors of INTERN-2.5 for the segmentation task. As depicted in Figure 3.4b, the
model is capable of segmenting various elements such as the floor, door, wall, closet, desktop,
and even some smaller objects. However, InternImage was primarily trained on RGB images,
whereas the dataset in use consists exclusively of grayscale images. The network performance
could potentially be improved by fine-tuning it for grayscale images or retraining it on grayscale
datasets.
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(a) Deblurred image from the EuRoC MAV dataset using
the MAXIM model.

(b) Segmented image of Figure 3.4a using the pre-trained
INTERN-2.5 model with the ADE20K color palette

Figure 3.4: Comparison of original dataset image and deblurred image

The next step in the implementation pipeline depicted in Figure 3.1 is the point sampling. How-
ever, to understand the importance of the method by which points are sampled, an overview
of the direct image alignment formulation used in DSO will be explained, furthermore, an
explanation of the changes made by SalientDSO will be introduced.

3.2 Direct visual odometry implementation

In 2016 J Engel et. al. presented Direct Sparse Odometry (DSO), which is based on a novel,
highly accurate sparse and direct structure and motion formulation. It is a probabilistic model
with consistent joint optimization of all model parameters. This includes geometry represented
as inverse depth in a reference frame, camera intrinsics, photometric parameters, and camera
motion. DSO assumes photometric consistency between each image. This means that the trans-
formations between two frames can be found directly from pixel intensities in the image [23].
To rely on this consistency an accurate formulation of the image-forming process is required.
The next section will dissect the calibration process used in DSO.

3.2.1 Camera calibration

The calibration step in DSO consists of two different calibrations. Firstly a geometric calibration
is responsible for camera intrinsics such as focal length, principal point, and lens distortion, and
secondly, a photometric calibration accounts for the intensity changes in statically lit scenes.

Geometric calibration

DSO’s geometric calibration is made for the pinhole camera model, and radial distortion caused
by the lens is removed in a pre-processing step. The pinhole camera model mapping function
of a point in 3D space to the 2D image plane is denoted by Πc : ℜ3 → Ω and back-projection
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with a point in the image plane and a depth value Π−1
c : Ω × ℜ → ℜ3 where c denotes the

intrinsic camera parameters. The distortion model used for this project is the radial-tangential
model which corresponds to the distortion model used by the dataset presented in Chapter 4.
The radial-tangential distortion model is a combination of two expressions. The mathematical
model for radial distortion is expressed as a series expansion, so given an undistorted point
(x, y) in the image plane, the distorted point (x′, y′) is given by:

x′ = x(1 + k1r2 + k2r4)

y′ = y(1 + k1r2 + k2r4)

where r2 = x2 + y2 is the squared distance from the point to the optical axis and k1, k2 are the
radial distortion coefficients. Then, the model for tangential distortion is added to the radial
distortion model. The distorted point (x′, y′) is then given by:

x′ = x + [2p1xy + p2(r2 + 2x2]

y′ = y + [p1(r2 + 2y2) + 2p2xy]

where p1, p2 are the tangential distortion coefficients. Undistorting the image is typically done
as a pre-processing step before the pinhole camera model is applied. [32]

Photometric calibration:

The details of the photometric calibration is described by J. Engel et al. in [33]. From here, they
calibrate the Camera Response Function (CRF) as well as pixel-wise attenuation factors. The
camera response relates the scene’s radiance to image brightness. A well-calibrated camera
response function will more accurately relate scene radiance to image brightness. [34]. The
CRF and attenuation factors G and V, is model is given by:

I(x) = G(tV(x)B(x)) (3.1)

Where t is exposure, B is the irradiance image and I is the observed pixel value. Note that G,
V, and B are only observable up to a scalar factor. Derivation of the unknown terms G(·), V(·)
and B(·) can be found in [33].
To photometrically correct each video frame the following equation can then be used, where I′i
is the corrected image:

I′i (x) := tiBi(x) =
G−1(Ii(x))

V(x)
(3.2)

In subsequent equations, Ii will always refer to the corrected image I′i . For DSO the photometric
calibration is an important step for the system. This is because the model explained in the
next section solely relies on the pixel intensities from the irradiance image. Therefore removing
photometric noise in the image induced by factors such as the lens is a crucial step. An example
of the effect the lens has on an image and the resulting correction step can be seen below in
Figure 3.5.
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Figure 3.5: CRF and Vignette calibration for the Carnegie Robotics’ MultiSense S30 camera. The Left is the original
image from the camera, and the right shows the calibrated image with response calibration and vignette map. As
seen in the right image the calibration, especially around the corners the lens vignetting effect is reduced and the
center is more uniformly exposed.

3.2.2 Model formulation

DSO define the photometric error of a point p ∈ Ωi in a reference frame Ii, observed in a target
frame Ij as the weigthed sum of squared differences (SSD) over a neighborhood of pixels.

Epj := ∑
p∈Np

ωp||(Ij[p′]− bj)
tjeaj

tieai
(Ii[p]− bi||γ (3.3)

Where Np is the set of pixels in the SSD, ti, tj the exposure times of the images Ii, Ij and || · ||γ
the Huber norm. The variables bj, bi, aj, ai are included in an affine brightness transfer function
for the images. p′ is the projected point position of p with inverse depth dp given by:

p′ = Πc(RΠ−1
c (p, dp) + t (3.4)

with ⌈
R t
0 1

⌉
:= TjT−1

i (3.5)

In addition to using robust Huber penalties, a gradient-dependent weighting wp. It is respon-
sible for down-weighting pixels with high gradients and is given as:

wp :=
c2

c2 + ||∇Ii(p)||22
(3.6)

The full photometric error over all frames and points is then given by:

Ephoto := ∑
i∈F

∑
p∈Pi

∑
j∈OBS(p

Epj (3.7)

where i runs over all frames F, p over all point Pi in frame i, and j over all frames obs(p) in
which point p is visible. To summarize the DSO model formulation depends on the following
variables:
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• The point’s inverse depth dp

• The camera intrinsics c

• Poses of the target and tracked frames: Ti, Tj and brightness transfer function parameters:
ai, bi and aj, bj

The photometric error in equation 3.7 is then optimized using the Gauss-Newton algorithm in
a sliding window approach. Which follows an approach presented by Leutenegger et al. in
[35] A more detailed explanation of this step can be seen in the original paper "Direct Sparse
Odometry" by Engel et al. [15] and Leutenegger et al. [35].

3.2.3 Point selection strategy

The point selection strategy follows a different approach than other direct methods. Engel
et al. found that image data is highly redundant, and the benefit of using more data points
quickly flattens off. They aim to keep a fixed number Np of active points, Np = 2000, equally
distributed across space and active keyframes, in the optimization. In three steps the point
sampling and point management are as follows: [15]

1. Candidate points are tracked individually in subsequent frames, generating a coarse
depth value that will serve as initialization for the optimization. The requirement for
candidate points aims at selecting points that are well-distributed in the image and have
sufficiently high image gradient magnitude with respect to their immediate surroundings.
They obtain a region-adaptive gradient threshold by splitting the image into 32x32 blocks
and for each block, they compute a gradient threshold over all the pixels in that block.
They also found that it was often beneficial to also include some points with weaker gra-
dients when no high-gradient points are present. To achieve this, the candidate point
selection procedure was repeated twice more width decreased gradient threshold and
increased block size to generate the desired amount of points,

2. Point candidates are tracked in subsequent frames using a discrete search along the epipo-
lar line, minimizing the photometric error 3.3. They compute a depth and associated
variance, which is used to constrain the search interval for the subsequent frame. This
tracking is inspired by LSD-SLAM. The computed depth only serves as initialization once
the point is activated.

3. After a set of old points is marginalized, new point candidates are activated to replace
them. They aim to maintain a uniform spatial distribution across the image. To do this,
they project all active points onto the most recent keyframe, then activate candidate points
that maximize the distance to any existing point all within the keyframe.

An example of DSO’s point sampling from a scene in the EuRoC MAV dataset in seen below
in Figure 3.6
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Figure 3.6: Points selected from a difficult sequence from the EuRoC MAV dataset using the baseline DSO method

3.3 SalientDSO implementation

SalientDSO’s framework is composed of a preprocessing step and a Visual Odometer backbone.
The visual odometry backbone is adopted from DSO. The preprocessing step involves saliency
prediction and scene parsing using deep convolutional neural networks and using the outputs
to help the point selection strategy. [21] This section will describe in more detail the visual
saliency prediction, and filtering saliency using semantic information and how it affects the
point sampling in DSO.

3.3.1 Visual saliency prediction

Saliency prediction in general is a difficult problem because it envelopes how humans process
visual information. Lately, data-driven approaches have excelled at this task. SalientDSO
adopted SalGAN for saliency prediction. In brief, SalGAN introduced the use of a Generative
Adversarial Network (GAN) for saliency prediction.[21] The researchers behind SalientDSO
found that the salinecy produced by SalGAN is concentrated around a fixation point inside
an object and is fuzzy. Additionally, the predicted saliency map is not robust to viewpoint
and illumination, meaning that when the camera moves around the fixation point does not
remain constant. To solve this, they introduced Pyramid Scene Parsing (PSPNet) for pixel-
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level scene segmentation prediction. Each object segmented in the scene is assigned a saliency
value based on the output from SalGAN, this helps maintain focus on interesting objects in the
scene. However, some empirical knowledge was introduced. They manually down-weighted
the saliency of uninformative regions such as walls, ceilings, and floors. The semantic filtered
saliency map Ŝj

weighted
was given by:

Ŝj
weighted

= wC(Cj)Ŝj (3.8)

Where wC are predefined weights obtained empirically for different classes. To create a smoother
saliency map they also replaced each pixel by the median of saliency for its respective class such
that:

Ŝj
f inal

= median{Ŝj
weighted

, ∀i ∈ Cj} (3.9)

A final semantic filtered saliency image is seen in Figure 3.7. Note that the image segmentation
was done with InternImage and saliency prediction was done with TranSalNet due to being
unable to reuse SalGAN and PSPNet on the hardware for this project. This is expected to have
some impact on SalientDSO as a baseline method for comparison, however, it will presumably
favor it positively by having more accurate scene segmentation and saliency prediction.

Figure 3.7: Saliency and segmentation filtered version of the image of Figure 3.4

The next section will explain how the segmented saliency image affected the point selection
strategy.

3.3.2 Point selection strategy

While DSO samples candidate points that were uniformly spatially distributed, SalientDSO
selects points based on saliency. To do this they split the image into KxK patches. For a patch
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Mi they compute the median of gradient as a region-adaptive threshold, and the median of
saliency as a region-adaptive sampling weight swi. For each patch, the sampling weight is
computed as:

swi = median{Ŝj
f inal

, ∀j ∈ Mi}+ ssmooth (3.10)

Where ssmooth is a laplacian smoothing controlling the bias on a salient region. The probability
of a patch Mi from all patches M being sampled is:

PS(Mi) =
swi

∑m∈M swm
(3.11)

A higher saliency weight will result in a higher probability of that patch being sampled. Once
a patch Mi is selected the patch is then split into dxd blocks. From here the approach is the
same as in DSO, where for each dxd block the pixel with the highest gradient is selected if it
surpasses the region-adaptive threshold. Repeating DSO’s procedure within a patch yields a
good result in which the points within a patch are evenly distributed. The point selection with
SalientDSO is shown in Figure 3.8.

Figure 3.8: Points selected from a difficult sequence from the EuRoC MAV dataset using SalientDSO method

The modified point selection strategy is very clear when comparing the differences in Figure
3.6 and Figure 3.8. Uninformative regions have been down-prioritized and points are more
strongly sampled from places with more texture variation.
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3.4 Deblurred Salient DSO implementation

The Deblurred Salient DSO implementation first presented in this project builds upon SalientDSO,
DSO, and DeBlurSLAM. As shown in the implementation pipeline in Figure 3.1, the data is
preprocessed with an image deblurring network, a saliency predictor network, and finally an
image segmentation network. The main idea behind Deblurred Salient DSO is that camera or
scene movement during the camera exposure period produces noise in the resulting image that
makes it difficult to restore the pose. For a method such as DSO which relies on a photometri-
cally accurate image, this will have a noticeable effect on the tracking accuracy. The use of the
MAXIM deblurring model serves two purposes. Firstly, it deblurs the input images to both the
DSO and the SalientDSO predictor and segmentation networks. Secondly, the model is used
to identify the blur-induced areas of the image. This allows the implementation to account for
the blur. The implementation computes a pixel-wise weight map to be used together with the
saliency weighting of the pixels. The pixel-wise weight map Bdi f f computed from the origi-
nal image Iorig(x) and the deblurred image Ideblur(x), where imax is normalization factor and
defined as the max pixel intensity value in either image:

Bdi f f (x) =
|Iorig(x)− Ideblur(x)|

imax
(3.12)

An example calculation of a scaled Bdi f f is seen in Figure 3.9b. white area i.e. the value 255
represents areas with no blur and the black areas are the regions that have been modified by
the MAXIM model.

3.4.1 Changes to point selection

Recall the weighted saliency calculation using weighted by the segmentation map in Equation
3.8:

Ŝj
weighted

= wC(Cj)Ŝj

To calculate the final weight, two methods are attempted. Firstly the point sampler will try to
avoid the deblurred areas while in the other it will favor deblurred areas of the image.
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(a) Deblurred image from the EuRoC MAV dataset using
the MAXIM model.

(b) Blur difference image calculated from the original in
the EuRoC MAV dataset, and the deblurred image shown
to the left.

Figure 3.9: Difference of pixel intensities in the original dataset image and the deblurred image

Avoid deblurred areas of the image

The idea of avoiding the blurred areas identified by the MAXIM model is based on Engel et al.
argument that image data is highly redundant. This suggests that we can safely ignore those
areas that have been impacted by blurring noise. To do this, the probability of a patch being
sampled is affected according to the pixel value at Bdi f f image.
This results in the following equation:

Ŝj
blur_weighted

= wC(Cj)ŜjB2
di f f (3.13)

where Bdi f f is a normalized variable [0, 1] where a 1 indicates no deblurring in that particular
pixel compared to 0 where the deblurring model has altered the pixel. The variable has been
raised to the power of two which achieved better results in preliminary testing. Ŝj

blur_weighted

replaces Ŝj
weighted

in subsequent equations. An example of how this affects the final saliency
weights are shown in Figure 3.11b. As shown in the image, the borders around objects are
especially affected by the avoid scheme. A darker value corresponds to a lower probability of
pixels being sampled from this region.

Attract the deblurred areas

If the deblurring network enhances the image’s precision it may be beneficial to focus more
on the areas that have undergone deblurring. Since DSO relies on the photometric consistency
assumption and MAXIM modifies the image aiming for the highest signal-to-noise ratio. The
deblurred areas may contain more photometrically accurate information. Therefore we want to
favor the areas that have been deblurred. This results in the following equation:

Ŝj
blur_weighted

= wC(Cj)Ŝj(1 − Bdi f f ) (3.14)
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where Bdi f f is a normalized variable same as before and Ŝj
blur_weighted

replaces Ŝj
weighted

in sub-
sequent equations. An example of how this affects the final saliency weights are shown in
Figure 3.11a. In the illustration, small pixel-wise regions containing deblurred data are highly
weighted. This ensures the point sampling will focus on patches containing deblurred regions.

(a) Saliency filtered image using attract scheme (b) Saliency filtered image using avoid scheme

Figure 3.10: Comparison on saliency weights affected by the attract and avoid deblur methods

To show the difference in point sampling using Deblurred Salient DSO implementation in either
attract or avoid scheme Figure 3.11 is shown below. The red rectangle highlights the changes
between the two methods. In the attraction scheme, more points are selected in this area.

(a) Saliency filtered image using attract scheme (b) Saliency filtered image using avoid scheme

Figure 3.11: Comparison of using the two methods. The difference in the sampled points is highlighted in the red
rectangle.

The Deblurred Salient DSO implementation enhances DSO by preprocessing the data with an
image deblurring network, a saliency predictor network, and an image segmentation network
to improve image tracking accuracy. This addition to DSO only adds a minor computational



3.4. Deblurred Salient DSO implementation

burden on the system and does not noticeably affect the run-time of the system. The technique
presented computes a pixel-wise weight map and attempts two methods of point selection:
avoiding and favoring deblurred areas. Examples from the EuRoC MAV dataset illustrate how
this affects the final saliency weights and how it influences the point sampling. The next chapter
will test and evaluate the implementation similar and compare the performance in accuracy to
the DSO, SalientDSO, and DM-VIO implementations.
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Testing

4.1 Test description

4.1.1 Dataset

This implementation will run on the EuRoC MAV dataset. The dataset was created to assess
the visual-inertial SLAM and 3D reconstruction capabilities of MAVs. The dataset consists of
eleven segments, five of which are in a machine hall, and the remaining six in an office room.
[36] The segments are listed in Table 4.1.

Table 4.1: EuRoC dataset, all eleven segments [36]

Dataset Author comment:
Machine Hall 01 easy
Machine Hall 02 easy
Machine Hall 03 medium
Machine Hall 04 difficult
Machine Hall 05 difficult
Vicon Room 1 01 easy
Vicon Room 1 02 medium
Vicon Room 1 03 difficult
Vicon Room 2 01 easy
Vicon Room 2 02 medium
Vicon Room 2 03 difficult

As shown in the table, there are three different comments to the sequences. The easy segments
are characterized by slow and steady movement in a decently well-illuminated room. The
MAV avoids pointing straight forward into areas that will overexpose the sensor such as a
window. The medium segments offer faster movement and the illumination has been slightly
reduced. Lastly, the difficult sequences have to do tracking in low-light conditions, increasing
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the effects of motion blur together with a faster movement of the MAV. Additionally in the
difficult sequences, the MAV does not face the room as often as in the easy sequences. This
results in images with less texture which makes it more difficult to do tracking. An example
from all three difficulties in the Vicon Room 2 is shown below in Figure 4.1.

(a) Easy difficulty from the EuRoC MAV
dataset

(b) Medium difficulty from the EuRoC
MAV dataset

(c) High difficulty from the EuRoC MAV
dataset

Figure 4.1: Illustration of the different difficulty levels in the EuRoC MAV dataset. From left to right, the difficulties
increase from easy to medium and finally to high.

To provide a comprehensive evaluation, the dataset is run identically to DSO in [15]. All se-
quences for each camera are run ten times, five of which are played forward and the remaining
five are played backward. Since the EuRoC dataset uses a stereo setup and this implementation
is monocular, each left and right image are run separately. For example, the sequence "Vicon
Room 1 01" is run 20 times, where ten times are for the left camera and the remaining ten times
are for the right camera. In total this yields 220 runs for the entire EuRoC dataset.

4.1.2 Absolute trajectory error

For V-SLAM and visual odometry systems, the global consistency of the estimated trajectory is
an important quality, and even more so in the former case. By comparing the absolute distances
between the estimated and ground truth trajectories, the global consistency can be evaluated.
However, since both coordinate frames, the camera, and ground truth trajectories, are defined
in arbitrary coordinate frames they first need to be aligned. [37] This is usually referred to as
Absolute Trajectory Error (ATE) with SIM(3) alignment. To compute the ATE, the main steps
are: Align the estimated trajectory with the ground truth using a similarity transformation,
compute the differences between the aligned estimated and ground truth poses, then calcu-
late the RMSE of the differences in the translational components. To perform the alignment,
Umeyama’s method in [38] is used. Umeyama’s method is an extension of Horns method in
the original paper "Closed-form solution of absolute orientation using unit quaternions". The
extension of Horn incorporates scaling which is particularly useful in the context of monocular
visual odometry such as this project. [39]
We have the ground truth trajectory as a set of poses Pgt1 , Pgt2 , ..., Pgtn and the estimated tra-
jectory as Pest1 , Pest2 , ..., Pestn . First to find the similarity transformation S that best aligns the
estimated and ground truth trajectories:
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S = min
S

n

∑
i=1

||Pgti − S · Pesti ||2 (4.1)

Then after finding the optimal S, the estimated trajectory is aligned, applying the transforma-
tion to each pose:

Palignedi = S · Pesti (4.2)

Finally, the ATE is calculated as the RMSE (Rooted Mean Squared Error) of the translational
components of the differences:

ATE =

√
1
n

n

∑
i=1

||trans(Pgti)− trans(Palignedi)||2 (4.3)

It is usually sufficient to only consider the translational component since errors in the rotation
will show up as translational errors in subsequent frames[37].

4.2 Results

The results for the EuRoC dataset are presented in Figure 4.2. The graph shows the results for
six different runs. Three of the runs are used as a baseline method, namely: "DSO Baseline",
SalientDSO Baseline", "DM-VIO", and "SalientDSO Deblurred Data". These types of runs con-
sist of original implementations and what this project’s results will be compared against which
are the "Deblur Attract" and "Deblur Avoid" methods. The results are shown in Figure 4.2 as
a cumulative error plot scaled with the 220 runs. This figure gives a good indication of the
overall performance of a method and how it compares to the other. A better implementation
will lean towards the left in the graph, and a perfect implementation would be a vertical line at
0.00m on the x-axis.
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Figure 4.2: Cumulative ATE plot showing the scaled ATE for the 220 runs on the EuRoC dataset.

To better evaluate the result on each type of sequence for each implementation the results have
been summarized for each sequence in Table 4.2. The values in the table are the average ATE
of the 20 runs for each sequence. The last column Avg is the average ATE across all sequences.
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Table 4.2: Evaluation of the different methods on the EuRoC MAV dataset. The baseline methods are presented in the first four
rows starting with the original implementations of DSO and SalientDSO. SalientDSO Deblur is the original SalientDSO running
with deblurred data. DM-VIO is the state-of-the-art visual-inertial odometry method, its accuracy far exceeds any of the other
methods. The results for this implementation are shown in the last two rows for the attract and avoid scheme. All the results
are in meters

Sequences: MH1 MH2 MH3 MH4 MH5 V1 V12 V13 V21 V22 V23 Avg

DSO 0.065 0.098 0.295 0.317 0.383 0.130 0.339 0.538 0.328 0.226 0.970 0.335
SalientDSO 0.069 0.097 0.273 0.232 0.205 0.148 0.357 0.738 0.325 0.220 0.668 0.303
SalientDSO Deblur 0.070 0.089 0.287 0.216 0.263 0.202 0.330 0.636 0.305 0.160 0.691 0.295
DM-VIO 0.037 0.045 0.097 0.091 0.092 0.074 0.040 0.059 0.027 0.045 0.117 0.066
Deblur Attract 0.071 0.089 0.282 0.230 0.202 0.162 0.333 0.629 0.085 0.168 0.613 0.260
Deblur Avoid 0.076 0.092 0.281 0.229 0.210 0.251 0.326 0.492 0.085 0.152 0.687 0.262

DSO Baseline

The results for DSO are comparable to the original results described in their paper. The answers are not
exact as the tools to generate the original plots were not available so they have been manually re-created.
Additionally, when processing the EuRoC dataset Engel et. al crops the beginning and end for each
trajectory such that the data only consist of images where the MAV is in the air. The exact cropping
location was not disclosed in the original paper which may contribute to why the results are not exactly
identical but still comparable to the paper.

SalientDSO Baseline

The second baseline method is SalientDSO and shows results very similar to the baseline DSO method.
The original paper for SalientDSO did not test on the EuRoC MAV dataset, therefore it is difficult to
comment on the performance compared to the original. However, the results do line up with the general
performance of SalientDSO which in the original paper was slightly better than DSO. Note that a main
strong point for SalientDSO was that it required fewer points to do accurate pose estimation, and they
found that with an extremely low point density Np = 40, they still achieved successful tracking.

SalientDSO Deblurred Data

To validate that the extra weighting factor introduced in equations 3.14 and 3.13, the SalientDSO was
also run with the deblurred images. The results showed slightly better performance than running on the
original dataset without preprocessing.

Deblur Attract and Deblur Avoid

These two runs are a result of the implementation of the project. As seen in the results Figure 4.2, all runs
maintain relatively equal accuracy. Around run 70 the different methods begin to diverge. This can largely
be explained that the difficult sequences were run between run 60-100 and again at 140-160, and 200-220.
In the Tabe 4.2, this corresponds to the columns named MH5, V13, and V23. With the characteristics of
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the difficult sequences, it is also expected that these methods would obtain higher accuracy than DSO and
SalientDSO.

DM-VIO Baseline

Note on this implementation. The DM-VIO does not support reverse playback while utilizing the IMU
data. The runs that DM-VIO should have played in reverse have just been played as a normal sequence.
The results shown here are also comparable to the original implementation. The original DM-VIO paper
reported an average ATE of 0.069m on the EuRoC MAV dataset [14]. Which is very similar to 0.066m, as
observed in Table 4.2.



Chapter 5

Discussion

This chapter will discuss the results presented in Chapter 4 in combination with the implemen-
tation presented in Chapter 3. Furthermore, the implementation will be judged in correspon-
dence with the success criteria presented in Table 2.2. Finally, a conclusion that will answer the
final problem formulation will be given.

5.1 Results

5.1.1 Baseline methods

The baseline methods were run in order to comment on the performance of this implementa-
tion. DSO achieved better results than in the original paper. However, this could be due to the
cropping location of the video were not entirely similar. Additionally, the original paper for
DSO does not disclose which method is used for the similarity transform. This project used
the method presented by Umeyama in 1991, however, the original paper could have used a
different method such as Horn’s method which may yield a slightly different similarity trans-
form. Although the results are not exact they are deemed good enough for comparison partly
because they are performing better than the original paper which may further validate the ap-
proach presented in this project. DSO’s results follow the expectation of low ATE on the easier
sequences while increasing ATE on the more difficult sequences. The only exception is between
V21 and V22 in Table 4.2 where the tracking achieved better results on the medium sequence
V22 instead of the easy sequence in V21.

The SalientDSO was expected to perform better than DSO which it does, but with a thin mar-
gin. To be exact an overall average RMSE of 0.303m compared to DSO’s 0.335m is shown.
As mentioned in the presentation of SalientDSO in Section 3.3, this project was unable to run
the original saliency predictor network (SalGAN) and the image segmentation network (PSP-
Net). They were replaced with the newer approaches TranSalNet and InternImage 2.5. Since
the newer approaches are state-of-the-art models for their respective tasks, this is expected to
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either keep the same performance of SalientDSO or improve it. The main difference between
DSO and SalientDSO is seen in the Machine Hall 04, and Machine Hall 05 (MH4, MH5) se-
quences. Those two sequences are also labeled as difficult which highlights the importance of
finding good points when the conditions are more ill-conditioned for tracking.

SalientDSO was also run with the deblurred data as input but without the additional weighing
of the blurred areas in the point sampling strategy. This was done to confirm that the improve-
ment seen in the proposed Deblurred Salient DSO was not caused by simply using denoised
images for tracking. As expected this version performed slightly better than SalientDSO with-
out pre-processed data, with an avg ATE of 0.295m compared to 0.303m as shown in Table
4.2. The improvement in tracking is assumed to originate from the combination of photometric
consistency assumption in DSO and that deblurring with the MAXIM model maximizes the
signal-to-noise ratio for the image resulting in a more accurate irradiance image.

The top performer was the Visual Inertial system DM-VIO by Usenko et al. [14] It finished
with an average ATE of 0.066m followed by the proposed Deblur Salient DSO’s ATE of 0.260m,
0.262m. The inclusion of DM-VIO in this comparison was thought out, as the system addresses
similar challenges through different methods. The process of image deblurring aids in pose
tracking during rapid camera movements, which often result in significant blur [23]. Concur-
rently, the high-frequency measurements provided by the IMU (Inertial Measurement Unit)
ensure precise short-term estimates [35]. These aspects provide a compelling comparison to
evaluate the effectiveness of our proposed system. However, it was shown that the proposed
system fell behind DM-VIO by a relatively large margin.

Finally, the Deblur Avoid and Deblur Attract presented in this paper showed an increase in
accuracy above both SalientDSO with or without using deblurred tracking frames and the DSO
baseline methods. The result shown in the cumulative ATE plot in Figure 4.2, shows divergence
during the difficult sequences and especially during the Vicon Room sequences. It is interesting
that both the Avoid and Attract perform very similarly even though the methods are sort of
opposite of each other. The differences in the saliency-filtered image in Figure 3.10 show two
very distinct weight maps used for the point selection strategy. In the attract scheme, the rea-
son we get a higher accuracy could be by utilizing the MAXIM model’s ability to increase the
signal-to-noise ratio and favoring the areas which MAXIM has touched. Another factor may be
that the resulting weight map also favors lines and corners. This preference is noteworthy, as
utilizing corners and lines is a widely adopted method to do tracking.
Conversely, in the Avoid strategy, the weight of corners and lines is reduced because these areas
are purportedly more impacted by motion blur as detected by the MAXIM model. By sampling
from areas containing less noise, one would anticipate an increase in accuracy. However, the
trade-off is the diminished sampling from lines and corners, which might conversely degrade
the tracking result. Regardless, the methods presented cannot follow the accuracy presented by
the tightly coupled visual inertial approach in DM-VIO. This indicates that the IMU does not
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only improve tracking during motion-blurred frames but improves the overall result for other
factors as well. One of those factors could be cases of degenerate motion. The direct formula-
tion does not perform well for movements that consist of pure rotations [15]. Another factor is
that the IMU is also included to help with the scale estimate in DM-VIO. The measurements
from the IMU can supply the optimization with the size of the movement performed thus ap-
proximating a more correct scale, which is important for an accurate trajectory estimation [14].
Using an IMU increases the temporal resolution from camera-only tracking. The movement
that happens between keyframes can be more accurately estimated with an IMU.

5.2 Success criterions

The success criteria listed in Table 2.2 guided this implementation. They will be discussed here
regarding their success or failure.

Criterion 1 and 2

Criterion number 1 and 2 were related to developing a framework and validating the function-
ality with simple test cases which have been achieved as documented in the Implementation
chapter.

Criterion 3

Criterion number 3 was to evaluate the system’s performance against well-recognized pub-
lic benchmark datasets. The system has been thoroughly evaluated against the EuRoC MAV
dataset. This criterion is deemed successful.

Criterion 4

Criterion number 4 was to achieve improved tracking accuracy in comparison to the baseline
methods. This criterion has been partly successful. In Table 4.2 the proposed system achieves
better performance than DSO and SalientDSO however it falls behind the DM-VIO method.
Reasons for this were discussed in section 5.1.1.

Criterion 5

Criterion number 5 was to compare the proposed method with a deblurring method do a
visual-inertial odometry method. This was to evaluate the impact of deblurring compared to a
IMU as they solve some of the same problems in visual odometry. The results found that only
relying on deblurring does increase tracking performance however, there is much more to be
gained by using an IMU. This criterion is deemed successful as an answer has been found to
how IMU and deblurring compare.
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Criterion 6

Criterion number 6 was to assess the computational efficiency of the hybrid system. The ef-
ficiency should operate within an acceptable computational time and resources usage. The
computational time of this approach has not been thoroughly evaluated, however, from pre-
liminary testing it is found that the avoid or attract blur does not increase the runtime of DSO
noticeably, however, the preprocessing does not allow for real-time operation. As stated in the
description of the preprocessing in section 3.1, the combined processing time for each image
exceeds several seconds.

Criterion 7

Criterion number 7 was to analyze failure cases of the developed framework to learn about the
limitations of the system. This criterion has not been explored and is therefore not deemed
successful. It would be a sensible next step for future work to better understand the systems
performed.

5.3 Future work

Looking ahead, there are several promising directions one could take to further advance this
method. Therefore four points have been listed, any of the four points could be the next step.

1. Testing on multiple datasets: While the 3. criterion was deemed successful, testing on
various datasets could provide valuable insights. Doing so would explore the perfor-
mance of the developed system in other environments. This could also help with Criteria
7 which was to analyze failure cases, by exposing the system to scenes it might fail to
track. Testing on the photometrically calibrated monocular visual odometry dataset de-
veloped by Engel et al. [33] would be a sensible next step for the project. This would also
make greater use of the photometric calibration formulation used explained in section
3.2.1. Testing on a photometrically calibrated dataset is essential to compare the perfor-
mance with indirect or deep learning methods which should also be done subsequently.

2. Parameter study. This project employed a avoid or a attract scheme to deblurred portions
of the image. A more elaborate parameter study could potentially figure out which of
these methods would perform better and with more convincing reasons as to why.

3. Investigate other pre-processing methods Since the project did not achieve performance
comparable to introducing an IMU unit into the system, other pre-processing methods
could be interesting to investigate. The MAXIM model can also do other image process-
ing tasks such as denoising, dehazing, exposure correction and image enhancement. A
combined effect of all these factors could potentially further increase the performance of
the system.



5.4. Conclusion

4. Unsuccessful criteria. This project met most of the success criteria, but some were not
fully realized. Mainly criterion 7 which concerned the analysis of failure cases was not
explored. Further work could investigate this point which may provide valuable insights
for future improvements and combine the efforts of other pre-processing methods, and
a parameter study. Additionally, for practical applications further work could also focus
on improving computational efficiency to meet criterion 6.

To summarize, the implementation and results of this project have proven promising, and there
are as described, opportunities for future work to further enhance the system’s performance
and its applicability.

5.4 Conclusion

This project was guided by the following final problem statement:

"How can the integration of deep learning enhancements augment direct visual odometry to better
handle rapid camera movements and adverse imaging conditions?"

After conducting an exhaustive analysis of the challenges in visual odometry and alternative
methods to visual odometry, this project landed on combining saliency-filtered images with a
deblurring method to obtain stronger point samples serving as input to DSO. The proposed
system was benchmarked against baseline methods for direct visual odometry namely DSO and
SalientDSO. Additionally, the system was evaluated against the state-of-the-art visual-inertial
method DM-VIO since both the deblurring module and the IMU attempt to resolve similar
issues regarding camera motion. All methods were comprehensively evaluated on the EuRoC
MAV dataset. The proposed system achieved better compared to the baseline direct visual
odometry methods results especially on difficult sequences. An average ATE of 0.26m across
the dataset for the proposed system compared to 0.335m for DSO and 0.303m for SalientDSO.
In short, the final problem formulation has been answered. Integrating a deblurring module to-
gether with salient point sampling has proven to increase trajectory estimation accuracy during
blurry frames caused by rapid camera movements or long exposure times in low-illuminated
conditions. Further research proposes several directions. One direction is to investigate other
pre-processing methods such as image denoising, dehazing, and image enhancement to im-
prove tracking. Another aspect is to test the system for failure cases, this could for example
be done using other benchmark datasets. In conclusion, the implementation and the results of
this project have proven promising and there are as described opportunities to further enhance
the system.
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