
SENTINEL - Automatic
Dissemination and Discovery of
Security Advisories with Web3

Master’s Thesis

Aalborg University
Master of Science (MSc) in Software Engineering

Summary

Software supply chain attacks are difficult to protect against, as protection requires
a good understanding of the entire software supply chain a system relies on. Fur-
thermore, these attacks are on the rise, with the notorious Log4j vulnerability crisis
being an outstanding example of the effects such attacks can cause. As such, se-
curity engineers need to keep track of their software and hardware dependencies
and any potential vulnerabilities they are affected by. Currently, to keep track of
vulnerabilities, security engineers check vulnerability databases such as CVE and
NVD or proprietary vendor websites. Consequently, security engineers may have
to search multiple sources to perform a complete security analysis and find all
potential vulnerabilities relevant for their systems.

In this report, a novel and decentralized system named SENTINEL is proposed.
The purpose of SENTINEL is to automate the dissemination and discovery of se-
curity advisories using Web3 technologies, in order to improve and streamline the
security advisory dissemination pipeline.

SENTINEL consists of a set of Ethereum smart contracts and a user interface for
interaction with the system. The security advisories are distributed with IPFS, a de-
centralized storage system, and security advisories are announced to the Ethereum
blockchain in the form of events and transaction logs, making them publicly avail-
able. The user interface provides functionality for both discovery and dissemi-
nation of security advisories. This is achieved by allowing asset owners to filter
security advisories on their dependencies from a SBOM document, and by facili-
tating announcement of new security advisories for vendors.

A prototype of SENTINEL is implemented and tested to assess the viability of
the proposed system. The availability and scalability of the prototype are assessed
to measure the practicality of using the system. A cost analysis is performed to
examine if the cost of using SENTINEL is reasonable in regard to its improve-
ments to the process of security advisory dissemination and discovery. The cryp-
tographic mechanisms are assessed to investigate if adequate security is provided
in cases where confidentiality is required. Finally, a system test is conducted on an

iii

Ethereum testnet to confirm if the required features are present in the system and
to show if it works as intended in a real world environment.

Software
Aalborg University

http://www.aau.dk

Title:
SENTINEL - Automatic Dissemination
and Discovery of Security Advisories
with Web3

Theme:
Master’s Thesis

Project Period:
Spring Semester 2023

Project Group:
cs-23-ds-10-08

Participant(s):
Jannik Lucas Sommer
Magnus Mølgaard Lund

Supervisor(s):
Michele Albano, mialb@cs.aau.dk
Nicola Cibin, nicolac@cs.aau.dk

Page Numbers: 115

Date of Completion:
June 7, 2023

Abstract:

The prevalence of software supply
chain attacks has reached unprece-
dented levels, primarily due to the in-
creasing reliance on software depen-
dencies and the inherent vulnerabili-
ties they harbor. Currently, vendors
share security advisories to central-
ized databases or proprietary web-
sites, which security engineers have
to search manually to find vulnerabil-
ities relevant for their system. Fur-
thermore, the security advisories of-
ten do not follow a standard machine-
readable format, which results in the
engineers having to manually analyze
the documents. In this report, SEN-
TINEL, a novel solution for automat-
ing dissemination and discovery of se-
curity advisories using Web3 technolo-
gies, is proposed. A system test con-
ducted on the Sepolia Ethereum Test-
net confirm that SENTINEL is a func-
tioning solution for securely dissem-
inating and discovering security ad-
visories utilizing a fully decentralized
infrastructure.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Preface

Aalborg University, June 7, 2023

Jannik Lucas Sommer
<jsomme18@student.aau.dk>

Magnus Mølgaard Lund
<mlund18@student.aau.dk>

vii

Foreword

This report is the Master’s Thesis for the Master program in Software Engineering
from Aalborg University. The work of this project is based upon previous work [1]
completed on the previous semester. The semester started February 1st 2023, and
concluded with the project exam on June 20th.

We would like to show gratitude towards our supervisors Nicola Cibin and Michele
Albano for their collaboration and guidance throughout both the pre-specialization
project and the Master’s Thesis.

The implementation code for this project is open source and can be found at https:
//github.com/JannikSommer/SENTINEL. Note that the repository may change to a
different URL in the future.

Reading Guide

As this report is based upon previous work, we assume that the reader has read
and understood the concepts introduced in that report. Therefore, we strongly
recommend reading the previous work before this report [1].

This report follows the Vancouver referencing method. Citations which refer to
multiple paragraphs will be placed at the last paragraph which references the cita-
tion. As such, the citations in text will be kept at a minimum.

For an overview of all references cited in the report, see page 83.

https://github.com/JannikSommer/SENTINEL
https://github.com/JannikSommer/SENTINEL

Acronyms

CVE Common Vulnerability Enumeration
NVD National Vulnerability Database
SBOM Software Bill Of Materials
DApp Decentralized Application
CSAF Commons Security Advisory Framework
MoSCoW Must have, Should have, Could have, Won’t have
CDX CycloneDX
SPDX Software Package Data Exchange
SWID Software Identification Tags
NIST National Institution of Standards and Technologies
IPFS InterPlanetary File System
AS Announcement Service
IIS Identifier Issuer Service
VSC Vendor Smart Contract
PSC Private Smart Contract
IPNS InterPlanetary Name System
CID Content Identifier
DES Data Encryption Standard
AES Advanced Encryption Standard
AES-GCM AES in Galois/Counter Mode
IV Initialization Vector
LTS Long Term Support
SPA Single Page Application
OWASP Open Worldwide Application Security Project
CI/CD Continuous Integration and Continuous Deployment
EVM Ethereum Virtual Machine
SWC Smart contract Weakness Classification
DoS Denial of Service

ix

Contents

Preface vii

1 Introduction 1

2 Previous Work 3
2.1 Summary of Previous Work . 4

3 Problem Statement 7

4 Design 9
4.1 Event Concept . 10
4.2 User Interaction . 10
4.3 Requirements . 11

4.3.1 System Requirements . 11
4.3.2 Requirement Analysis . 12

4.4 Design Considerations & Assumptions 16
4.4.1 Use of Centralized Services . 16
4.4.2 Operation Cost . 16
4.4.3 Security Advisory Format . 16
4.4.4 Software Bill of Materials Format 17
4.4.5 Product Identification Scheme 18
4.4.6 Encryption . 18

4.5 Storage System Design . 19
4.5.1 Decentralized Storage Systems 19
4.5.2 Decentralized Storage System Choice 20

4.6 System Overview . 21
4.6.1 System Architecture . 21
4.6.2 Public Use Case Component Interactions 23
4.6.3 Private Use Case Component Interactions 24

4.7 Smart Contract Design . 25
4.7.1 Announcement Service . 25
4.7.2 Identifier Issuer Service . 27

xi

xii Contents

4.7.3 Vendor Smart Contract . 29
4.7.4 Private Smart Contract . 30
4.7.5 Security of Confidential Announcements 32

4.8 Frontend Design . 36
4.8.1 Settings Storage . 36
4.8.2 Vulnerabilities Page . 37
4.8.3 Accounts Page . 37
4.8.4 Settings Pages . 38
4.8.5 Announcement Pages . 38

5 Implementation 39
5.1 Development Environment . 40

5.1.1 Smart Contract Development 40
5.2 Announcement Service Implementation 40

5.2.1 Announcement Events . 40
5.2.2 Announcement Methods . 41

5.3 Identifier Issuer Service Implementation 42
5.3.1 Identifier Issuer Service State Variables 42
5.3.2 Register Vendor . 43
5.3.3 Request Advisory Identifier . 43
5.3.4 Request Vulnerability Identifiers 44

5.4 Vendor Smart Contract Implementation 45
5.4.1 Access Control . 45
5.4.2 Vendor Smart Contract State Initialization 46
5.4.3 New Security Advisory Announcement 46
5.4.4 Updated Security Advisory Announcement 48

5.5 Private Smart Contract Implementation 48
5.5.1 Vendor Whitelisting . 48
5.5.2 Encryption Key . 49
5.5.3 Confidential Announcement 50

5.6 IPFS & Ethereum Nodes . 51
5.6.1 IPFS Node Integration . 51
5.6.2 Ethereum Node Integration . 51

5.7 Frontend Implementation . 52
5.7.1 Framework . 52
5.7.2 Components . 52
5.7.3 Web3.js Integration . 53
5.7.4 IPFS API Integration . 53
5.7.5 User Settings . 54
5.7.6 Password Encryption . 54
5.7.7 Confidential Advisory Process 56

Contents xiii

5.8 Continuous Integration & Deployment 56
5.8.1 GitHub Workflows . 56
5.8.2 Dependabot Updates . 56
5.8.3 Smart Contract Analysis . 57
5.8.4 Integration Tests . 57
5.8.5 Frontend Deployment . 57

6 Test & Assessment 59
6.1 Scalability Assessment . 60

6.1.1 Publication Rate of Security Advisories 60
6.1.2 Ethereum Transaction Capacity 61
6.1.3 Scalability Results . 61

6.2 Cost Assessment . 62
6.2.1 Methodology . 62
6.2.2 Deployment Cost . 62
6.2.3 Interaction Cost . 63
6.2.4 Cost Calculation . 64

6.3 Availability Assessment . 65
6.3.1 Event Data Availability . 65
6.3.2 Security Advisory Availability 65

6.4 Security Assessment . 66
6.4.1 Smart Contract Security . 66
6.4.2 Cryptographic Key Management 68
6.4.3 Password Encryption Assessment 70

6.5 Unit & Integration Testing . 71
6.5.1 Unit Testing . 71
6.5.2 Integration Testing . 71

6.6 System Testing . 72
6.6.1 Test Procedure & Setup . 72
6.6.2 Test Results . 73

7 Discussion 75
7.1 Previous Work . 75
7.2 Non-repudiation . 75
7.3 Frontend Distribution . 76
7.4 Development Process . 76
7.5 Security Concerns . 77
7.6 Ethereum Considerations . 77
7.7 System Test Result . 78

8 Conclusion 79

xiv Contents

9 Future Work 81
9.1 System Features . 81
9.2 Security Advisory Formats . 81
9.3 Encryption Strength . 81
9.4 Extensibility . 82
9.5 Frontend Usability . 82
9.6 Automatic Vendor Whitelisting . 82

Bibliography 83

A Frontend Mockups 89
A.1 Vulnerabilities Page Mockup . 89
A.2 Accounts Page Mockup . 90
A.3 Settings Pages Mockup . 91
A.4 Announcement Pages Mockup . 92

B Frontend Screenshots 93
B.1 Vulnerabilities Page Screenshots . 93
B.2 Accounts Page Screenshots . 95
B.3 Settings Pages Screenshots . 96
B.4 Announcement Pages Screenshots . 97

C GitHub Workflows 99
C.1 Dependabot Update Script . 99
C.2 Slither Smart Contract Analysis . 99
C.3 Truffle Smart Contract Test . 100
C.4 Frontend Integration Test . 101
C.5 Frontend IPFS Deployment . 101

D System Test Plan 105
D.1 Common Features . 105
D.2 Public Use Case . 107
D.3 Private Use Case . 109

E Development Process 113
E.1 The Backlog . 113
E.2 Iterations . 113
E.3 Peer-reviews . 114
E.4 Documentation . 114
E.5 Time Allocation . 114

Chapter 1

Introduction

According to a survey conducted by The Linux Foundation [2], it was found that
98% of organizations use open source software, and 95% of them express concerns
regarding software security. With the increasing reliance on open source in soft-
ware development, the focus on cybersecurity threats on supply chain attacks has
particularly intensified. It is evident that the software supply chain has emerged
as a significant attack vector. Notably, the supply chain attack on the SolarWinds
Orion framework and the vulnerability associated with Apache Log4j led to two
prominent software security crises. The Log4j vulnerability, in particular, had a
global impact, affecting over 35,000 Java packages. Moreover, a significant por-
tion of the impacted artifacts consists of transitive dependencies, making patching
the vulnerabilities a challenging task. Developers are often required to wait for
updates to their dependencies, which can be time-consuming because fixes must
propagate through the dependency chain [2, 3].

With the increasing number of publicly disclosed vulnerabilities and the in-
creasing complexity of software systems, it is becoming progressively more diffi-
cult to manually track dependencies and any potential vulnerabilities. Moreover,
the task of analyzing unstructured and non-standard security advisories docu-
ments for vulnerability details and remediation strategies, further increases the
amount of manual work required to keep systems secure. [4]

Given the discussed problems related to security advisories dissemination and
discovery, the following initial problem statement which guides the project design
and development is introduced:

“How can mechanisms for vulnerability dissemination and discovery be improved?”

This report is structured as follows. In Chapter 2 previous work regarding the

1

2 Chapter 1. Introduction

problem introduced is briefly introduced and explained. Chapter 3 introduces a
problem state which expands upon the initial problem introduced in this chapter
with more details about the problem explained in previous work. From the prob-
lem statement, Chapter 4 details a design of a system, which is then implemented
as described in Chapter 5. Chapter 6 investigates different characteristics about the
implemented system and if the system conforms the specified requirements. Chap-
ter 8 concludes on the results of the project detailed in this report, and suggestions
for future work are presented in Chapter 9.

Chapter 2

Previous Work

The project described in this report is based on previous work [1]. It contained
analyses of the problem area and Web3 technologies, which was the basis for a
design and proof of concept of a system for automatic dissemination and discovery
of security advisories. This chapter will briefly summarize the previous work.

3

4 Chapter 2. Previous Work

2.1 Summary of Previous Work

Previous work was based on the observation about the state of the industry in
regard to how security advisories are disseminated by vendors and discovered
by asset owners. This observation is illustrated in Figure 2.1 as the timeframe of
concern, where there is a missing link between security advisory publication and
discovery. Security engineers spend time on manually searching for security advi-
sories and vulnerabilities which could affect their system. Common Vulnerability
Enumeration (CVE) and National Vulnerability Database (NVD) are repositories
where security engineers can search for public vulnerabilities. However, these
repositories might not be exhaustive, as some vendors use proprietary websites to
announce new vulnerabilities in their products. This means that security engineers
may need to search multiple sources to exhaust all potentially relevant vulnerabil-
ity databases.

Furthermore, CVE and NVD are operated by large centralized organizations
where bureaucracy can slow down or censor the announcement of new vulnera-
bilities to the public.

Figure 2.1: Timeframe of concern regarding the security advisory dissemination and discovery
pipeline. [1]

From analyzing the industry and an interview with an expert, two distinct
use cases for disseminating and discovering security advisories were envisioned.
Firstly, the public use case, in which vulnerabilities are shared with the public.
However, in some situations, vendors, the party who provides a software compo-
nent, and asset owners, the party which uses the software component, may have a
contract specifying that the vendor must disclose vulnerabilities before it is made
public. Then the asset owner can patch the vulnerability as soon as possible and
reducing the chances of the vulnerability being exploited. This private use case is
useful for critical systems, however, the disclosure is sometimes carried out using
an email with a link to a security advisory in cloud storage, which is a manual
process.

2.1. Summary of Previous Work 5

A set of requirements that could solve these problems with the current dissem-
ination and discovery of security advisories in industry were specified. The focus
of these requirements was on automation, unified infrastructure, and decentral-
ization, for both use cases. Furthermore, a proposed system should make use of
standards such as Software Bill of Materials (SBOM) to improve automation. From
these requirements, an analysis of technologies to meet these requirements was
conducted.

With a focus on decentralization, Web3 technologies, were investigated. Sev-
eral decentralized storage systems and blockchains were investigated to determine
which are best suited to build a decentralized application (DApp) that can improve
automation of security advisory dissemination.

From the problem and technology analysis, the following problem statement
was created: "How can a single infrastructure for dissemination of security advisories be
designed?" [1]. From this problem statement, a design of such an infrastructure was
developed.

The design for both the public and private use cases are based on the same
blockchain network. Ethereum was determined to be the most mature blockchain
that includes the capabilities for smart contracts that can emit events to the trans-
action logs. This is useful for announcing security advisories. In the proposed
design, vendors use deployed smart contracts to create identifiers for the vulner-
abilities, and to announce security advisories. Asset owners search these logs on
Ethereum to find security advisory announcements relevant for their system. The
actual security advisories are written in a machine-readable format and published
to a decentralized storage system, which the asset owners can retrieve it from and
parse it to try to match it to any of their dependencies. Asset owners interact with
the system from a frontend system, which will perform all computations that are
not strictly required to be on the blockchain, in order to reduce the computation
cost.

For the private use case, confidentiality of the security advisories is necessary
because of the transparent nature of the blockchain. The disclosure agreement
between asset owner and vendor is realized with a single smart contract, that can
emit events to announce security advisories for the specific asset owner.

A proof of concept was created based on the proposed design. The utilization of
the events on smart contracts and retrieval of the data with a frontend component
was found to be functional, and the proposed design was therefore considered
valid as a solution for the problem statement.

Chapter 3

Problem Statement

In this chapter, a problem statement, based on previous work introduced in Chap-
ter 2, is defined. The problem statement provides the direction of the project. It is
presented below, along with its accompanying sub-problem statements.

• How can a prototype system for automatic dissemination and discovery of
security advisories be designed, implemented, and tested?

– How can such a system incorporate decentralization by integration with
Web3 technologies?

– How can such a system use industry standards to increase automation
and interoperability?

– How can such a system disclose vulnerabilities to asset owners without
exposing which systems are vulnerable?

To make it easier to refer to the prototype system created from this project, it
will be referred to as SENTINEL for the remainder of the report.

7

Chapter 4

Design

This chapter will include the design of SENTINEL, which aims to solve the issues
raised by the problem statement in Chapter 3. In this chapter, concepts and con-
siderations about the design are presented. Based on these, the system architecture
and component design of SENTINEL is defined.

The design chapter includes the following sections.

• Event Concept

• User Interaction

• Requirements

• Design Considerations & Assumptions

• Storage System Design

• System Overview

• Smart Contract Design

• Frontend Design

9

10 Chapter 4. Design

4.1 Event Concept

As smart contracts are isolated in the blockchain they are deployed in, it is not
possible for them to send data to any off-chain system. In Ethereum, events can be
used to emit data to the transaction logs, which facilitates data transfer from smart
contracts to outside the Ethereum network. Another approach would be to store
data on the smart contract itself with state variables. However, emitting data is
cheaper than storing the data with state variables on a smart contract, which makes
it convenient for communicating data from smart contracts to user interfaces, for
data that should not be used by smart contracts.

Events are defined in smart contracts, where the properties and the type of
those properties are defined. The smart contract can emit the event in smart con-
tract methods. The event data is written to the transaction log when the transaction
is mined, and external systems can find the event data in the transaction logs of
the mined blocks. [5]

Figure 4.1: High level overview of how the event concept in Ethereum is used.

SENTINEL uses the concept of Ethereum events to announce security advi-
sories to asset owners, as illustrated in Figure 4.1. The security advisory announce-
ments are made public to anyone who listens. As the events are emitted to the
transaction logs which are stored in blocks on the blockchain, all security advisory
announcements made with SENTINEL are available forever.

4.2 User Interaction

In previous work, a solution for both the public and private vulnerability disclosure
use cases was proposed. The proposed solution allows vendors to upload and
announce security advisories, which are automatically disseminated to subscribed
asset owners. A high level view of the interactions occurring in the platform is
illustrated in Figure 4.2. The message chart covers both the public and private
use case, however, they require different implementations to fulfill their specific

4.3. Requirements 11

purposes.

Figure 4.2: Message chart of user interaction with vulnerability disclosure in both public and private
use case.

Vendors upload the security advisory for one or more vulnerabilities to a de-
centralized storage service. The vendor then announces the new public security
advisory to the Ethereum blockchain, including the location of the security advi-
sory document. When the event has been emitted, asset owners can retrieve the
event data and thereby the security advisory from the decentralized storage. In
the private use case, the announcement is still publicly visible, as per the trans-
parency of the blockchain network. However, encryption measures are utilized
to ensure confidentiality of the security advisory content. With the security ad-
visory announcements, asset owners can retrieve the security advisory from the
decentralized storage service given the storage location from the announcement.

4.3 Requirements

A system to solve the issues raised in Chapter 3 should meet certain requirements.
In this section, the criteria and feature requirements that SENTINEL must fulfill
are presented. Furthermore, the feature requirements are prioritized for the imple-
mentation.

4.3.1 System Requirements

Previous work introduced several requirements for how a system that could im-
prove on existing issues of how security advisories are disseminated and discov-

12 Chapter 4. Design

ered in the current state of the industry. These requirements are reintroduced and
expanded in the following list, and in turn they can be broken down into several
criteria which SENTINEL should adhere to.

• Integrity: Throughout its lifecycle, a security advisory should maintain con-
sistent information, except in cases where updates are necessary. As a result,
it should be possible to modify security advisories in order to incorporate
new information as it becomes available.

• Standardization: In order to facilitate automation and broad adoption, secu-
rity advisories should adhere to machine-readable standards to facilitate the
parsing of information.

• Unification: Using a shared infrastructure for storing and distributing secu-
rity advisories would simplify the process of discovering these documents for
asset owners. Additionally, vendors would only need to send the advisories
to a single platform to reach all affected asset owners.

• Decentralization: By avoiding centralized third-party organizations such as
Mitre or National Institute of Standards and Technologies (NIST), the need
for time-consuming bureaucracy can be eliminated. Additionally, a decen-
tralized infrastructure is trustless, and asset owners only need to place their
trust in the vendors who are publishing security advisories.

• Non-repudiation: Asset owners should not be able to repute that a vendor
has disclosed a vulnerability in due time, if the security advisory was dis-
closed in due time. With the immutability of the Ethereum blockchain, it
would be easier for a vendor to show asset owners the transaction data that
makes the announcement. Thereby, vendors are not accountable for vulnera-
bility exploits that an asset owner has disregarded.

• Completeness: Asset owners can have agreements with vendors to receive
security advisories before they are made public. Therefore, an infrastructure
that supports the dissemination of security advisories should support both
public and confidential security advisory announcements.

4.3.2 Requirement Analysis

In order to prioritize features of SENTINEL, a requirement analysis is made using
the MoSCoW framework [6]. Thereby, the most important features of the system
are developed first, and the less important features are prioritized less. Table 4.1
shows the features of SENTINEL, divided into the four MoSCoW categories. The
features are based upon the system requirements specified in Section 4.3.1.

4.3. Requirements 13

Must have Should have
- Announce public security advisories - Filter advisories on vendor
- Announce private security advisories - Announce updates to advisories
- Discover security advisories - Discover advisory updates
- Load dependencies from SBOM - Manage confidential agreements
- Filter advisories on dependencies - Persistent storage of settings
- Present security advisory content - Contract deployment
- Integrate with storage system - Account management
- Security advisory identification
- Vulnerability identification
Could have Won’t have
- Support multiple storage systems
- Support multiple advisory formats
- Support multiple SBOM formats

Table 4.1: Requirement analysis with the use of the MoSCoW framework.

Must have

The must-have requirements from Table 4.1 are essential for SENTINEL to fulfill
its purpose and are non-negotiable. If any of the requirements in the must-have
category are not met, the system cannot work as intended. The must-have require-
ments also outline the features necessary for a minimum viable product.

Announce public & private security advisories: Vendors must be able to use
SENTINEL to announce security advisories for both the public and private use
case. Smart contracts, that facilitate emitting events to the transaction logs, must
be available for vendors to use. In the private use case, asset owners must be able
to restrict who can announce security advisories to them.

Discover security advisories: Asset owners must be able to use SENTINEL to
discover security advisories that have been announced with SENTINEL. In other
words, a frontend component of SENTINEL that allows vendors to discover secu-
rity advisories announced by vendors, must be created to incorporate automation
and usability functionality. Furthermore, the frontend must be connected to the
Ethereum network, as it is where the announcements of security advisories are
stored.

Load dependencies from SBOM and filter advisories on dependencies: As-
set owners must be able to provide a SBOM document to a frontend component
from which SENTINEL can load their dependencies, and filter announced security
advisories on. This requirement will provide the asset owners with security advi-

14 Chapter 4. Design

sories relevant for their system and reduce the amount of manual labor of filtering
security advisories.

Present security advisory content: Asset owners must be able to read security
advisory information in a human-readable format, with only relevant informa-
tion presented. Security advisory documents may contain many vulnerabilities for
many products, which necessitates filtering the information on the dependency
information provided from SBOM documents, such that only the information rel-
evant to the asset owner is presented.

Integrate with storage system: A frontend component of SENTINEL must inte-
grate with a decentralized storage system. As the security advisories are published
to a decentralized storage system, the frontend component must integrate with
such a storage system, to upload and download security advisories for vendors
and asset owners respectively.

Security advisory & vulnerability identification: In SENTINEL, the announced
security advisories and the vulnerabilities within must be identifiable and, in turn,
easily distinguishable. Moreover, they must be uniquely identifiable, such that two
security advisories or vulnerabilities never have the same identifier. With identifi-
cation in place, the security advisories and vulnerabilities can be referenced by a
unique identifier, and the security advisories can be updated based on the identi-
fier.

Should have

The should-have requirements from Table 4.1 are important but not necessary for
the system, and should therefore be prioritized after all must-have requirements
are fulfilled. Furthermore, many of these requirements are dependent on the im-
plementations of the must-have requirements.

Filter advisories on vendor: Asset owners should be able to filter the security
advisories they are presented based on the vendor who published the security
advisory. Due to the permissionless nature of the Ethereum blockchain and the
decentralized nature of SENTINEL, there is no restriction on who can announce
public security advisories. Therefore, asset owners should be able to specify which
vendors they trust to reduce the risk of receiving false information from malicious
actors.

Announce and discover updates to advisories: Vendors should be able to an-
nounce updates to already announced security advisories. As security advisories

4.3. Requirements 15

can be updated with more information or modifications, SENTINEL should sup-
port vendors with functionality that facilitates announcing updates to published
security advisories. By extension, asset owners should also be able to discover
these updates to security advisories.

Manage confidential agreements: Asset owners should be able to manage their
confidential agreements with a vendor to facilitate the private use case. As such,
the frontend component should include functionality for this.

Persistent storage of settings: Asset owners and vendors should be able to
store any settings used to interact with SENTINEL persistently, such that the set-
tings are retained with any crashes or applied to a new environment. This require-
ment only applies to any information not stored on the blockchain.

Contract deployment: Asset owners and vendors should be able to use the
frontend component to easily deploy any smart contracts they will use for either
the public or private use cases. This will make it easier for the users to get started
with SENTINEL, as they do not have to know the contract bytecode that is required
for a deployment transaction.

Account management: Asset owners and vendors should be able to store
Ethereum account information. This will enable a more streamlined process when
they create transactions, as they do not need to copy and paste both the private key
for each transaction. This allows asset owners and vendors to multiple accounts
more easily.

Could have

The could-have requirements in Table 4.1 are not important for the system outside
usability and user satisfaction improvements. Such requirements can be considered
if the must-have and should-have requirements have been satisfied.

Support multiple storage systems & standards: SENTINEL could have sup-
port for multiple decentralized storage systems, security advisory formats, and
SBOM formats. This would give more freedom of choice for the users that may
prefer some standards or technologies over others. Furthermore, unlocking users
from any specific technology will decrease the bias towards some standard or tech-
nology in the design and development.

16 Chapter 4. Design

4.4 Design Considerations & Assumptions

Several considerations and assumptions for the design process will be described in
this section. These considerations are the foundation on which the system design
and architectural decisions are based upon.

4.4.1 Use of Centralized Services

As SENTINEL is supposed to be in a decentralized environment to eliminate the
reliance on trusted third parties, it is important that the design is made with such
considerations. In the context of Web3, there are several third party services that
can be used to ease integration with blockchain networks and decentralized stor-
age systems. However, these must be avoided in the design and implementation
of SENTINEL as these centralized services are subject to censorship and bureau-
cracy, which is exactly what the decentralization with Web3 is trying to eliminate.
Moreover, these centralized organizations could introduce a single point of failure.

4.4.2 Operation Cost

In the design of SENTINEL, the operational cost is considered when choosing be-
tween different design choices. Operational cost in this context is the gas fees paid
when making transactions to the Ethereum network when interacting with smart
contracts. If the different design choices fulfill a requirement evenly, the design
choice with the least cost will be chosen to SENTINEL, as it is more attractive
for asset owners and vendors. However, in some cases where a design choice is
cheaper but more complex, the lesser complex design choice is chosen, if they fulfill
the same requirement.

4.4.3 Security Advisory Format

In this project, it is assumed that vendors will disclose vulnerabilities in the form
of the Common Security Advisory Framework (CSAF) 2.0 specification [7]. This
framework provides concise information in a machine-readable format, which is
useful for automation. As such, SENTINEL can parse the security advisory infor-
mation consistently and display that information to the asset owners.

The CSAF specification allows different product structure definitions. While
this supports for a large variety of structures, it is difficult to support all possi-
ble structures. Therefore, SENTINEL will only support the product tree structure
vendor → product_name → product_version. The supported structure can be seen
in Listing 4.1. While this structure is restrictive, it is the structure recommended
by the OASIS CSAF technical committee [7].

4.4. Design Considerations & Assumptions 17

Listing 4.1: Example of the supported structure of CSAF product tree property.

1 " product_tree " : {
2 " branches " : [
3 {
4 " category " : " vendor " ,
5 . . . ,
6 " branches " : [
7 {
8 " category " : " product_name " ,
9 . . . ,

10 " branches " : [
11 {
12 " category " : " product_version " ,
13 . . . ,
14 }
15 . . .

4.4.4 Software Bill of Materials Format

In previous work, three SBOM formats were introduced, those being CycloneDX [8]
(CDX), Software Package Data Exchange [9] (SPDX), and Software Identification
(SWID) Tags [10]. Each format contains information about a piece of software,
however, for the purpose of SENTINEL only the dependencies from SBOM docu-
ments are relevant, as they should be matched with vulnerable products in CSAF
security advisories. In theory, all three formats are interoperable and all can be
converted into an equivalent version in another format. However, CDX is chosen
as the SBOM format for SENTINEL due to the fact that it explicitly conveys de-
pendency trees, which are useful to depict transitive relationships. An example of
how transitive dependencies are described in CDX SBOM documents is illustrated
in Listing 4.2.

Listing 4.2: Example of how transitive dependencies are described in a CDX SBOM document.

1 " dependencies " : [
2 {
3 " r e f " : " l i b r a r y −a " ,
4 " dependsOn " : [
5 " l i b r a r y −b "
6]
7 } ,
8 {
9 " r e f " : " l i b r a r y −b " ,

18 Chapter 4. Design

10 " dependsOn " : [
11 " l i b r a r y −c " ,
12 " l i b r a r y −d"
13]
14 }
15]

4.4.5 Product Identification Scheme

The key part of automation in the discovery of relevant security advisories is iden-
tification of products. Asset owners should be able to identify which software com-
ponents they are dependent on, which can be provided from SBOM documents.
Vendors should also be capable of identifying which of their products are vulner-
able to a specific vulnerability, such that they can disseminate that information
concisely. If both parties are able to uniquely identify the products in this manner,
then it is possible to match a vendor’s vulnerable products to the asset owner’s
dependencies. However, a major concern in matching products in this manner is
that all parties must use the same, or interoperable, product identification scheme.

With the design assuming that security advisories follow CSAF, it is valuable to
understand how the framework specifies product identification. There is no single
standard which the product identification scheme should follow. This allows ven-
dors to use their preferred schemes for product identification, but it is assumed that
vendors will be consistent in their chosen identification scheme. Thereby, vendors
are not restricted to a single identification scheme when using SENTINEL, how-
ever, they must be sure to use the same scheme for SBOM and security advisory
documents.

4.4.6 Encryption

SENTINEL will in some cases be handling confidential data in the form of confi-
dential security advisories. As such, proper precautions and procedures must be
taken in order to ensure safe transmission of confidential security advisories from
vendor to asset owner. In particular, the advisories should be encrypted to ensure
that only the intended recipient can access and read it.

NIST maintains a large repository of guidelines and standards for the use of en-
cryption and how to manage cryptographic keys, which are thoroughly reviewed.
SENTINEL must comply with these guidelines where possible to ensure secure
data transmission. [11]

4.5. Storage System Design 19

4.5 Storage System Design

In SENTINEL, a decentralized storage system is used to store and share the se-
curity advisories between asset owners and vendors. This reduces the operation
cost of using the system, as storing security advisories on Ethereum is more ex-
pensive than decentralized storage services. Choosing the right storage system is
important, as it is how vendors relay vulnerability information to asset owners.

4.5.1 Decentralized Storage Systems

In previous work, several decentralized storage systems were investigated and are
listed below.

• Hypercore

• Storj

• Sia

• Swarm

• Filecoin (IPFS)

• Arweave

Hypercore, recently renamed to Holepunch, is useful for sharing real-time data,
large datasets and streams [12]. This is in contrast to the static nature of CSAF
security advisories, which are often smaller files that do not need to be acquired in
real-time. Therefore, the use case Holepunch is created for, is not compatible with
SENTINEL.

Storj and Sia are similar in service structure and provide users with decentral-
ized personal cloud storage. Both require payment to upload data to their services,
which is not in itself problematic for SENTINEL. However, users are billed for the
bandwidth they, and others who access their files, use. In a system where the se-
curity advisories are publicly available, this can be exploited to make vendors who
upload security advisories pay massive bills for the bandwidth used to download
their security advisories. Because of this potential exploit, Storj and Sia are not
suitable for the public use case. This exploit is not as problematic if Storj or Sia is
used in the private use case, but it will require some access control to make sure
adversaries cannot access the information in the vendor’s personal storage, which
increases the complexity. [13, 14]

Swarm suffers from the opposite issue to Storj and Sia as only those who down-
load files are billed for the bandwidth they use, and not the owner of the file. In

20 Chapter 4. Design

Swarm, asset owners need to pay a fee, if they use too much bandwidth when
downloading files. This becomes an issue when the content of the security advi-
sory is used to determine if the vulnerability is relevant for an asset owner or not,
as they can potentially pay to download files, which they do not need. However,
in the private use case, paying to download a security advisory is not an issue, as
all security advisories announced are relevant for a specific asset owner. [15]

Filecoin also suffers from the same issue as Swarm, as users always have to pay
to download files in that system. [16]

Even though Filecoin is not suitable, the system it is built on top of, is. The
InterPlanetary File System (IPFS) allows free upload and download of files. The
catch is that data is only available as long as the file is active, that is, the file is
being stored on at least one node. Files which are not accessed for a while are
removed from the cache and the network. This issue of availability is solved by
locally pinning files on a node, which causes the node to retain the file regardless
of activity. Vendors should use local pinning with their own IPFS node to ensure
the availability of their security advisories. [17, 18]

Arweave, much like other system described in this section, requires an upfront
fee for storing files on the Arweave network. However, uniquely to Arweave the
files are stored permanently on the network after that fee. While this feature is
not necessarily useful for SENTINEL, however, there are no other downsides that
would make it unsuitable. [19]

Holepunch Storj Sia Filecoin IPFS Swarm Arweave
Upload ✗ ✓ ✓ ✓ ✗ ✓ ✓

Download ✗ ✗ ✗ ✓ ✗ ✗ ✗

Bandwidth ✗ ✓ ✓ ✗ ✗ ✓ ✗

Table 4.2: Comparison of the decentralized storage services.

The decentralized storage systems introduced in this section are compared in
relation to their payment structure in Table 4.2. The storage systems are compared
by their payment requirements for uploading and downloading files, and band-
width for accessing files.

4.5.2 Decentralized Storage System Choice

As this project is a prototype, the chosen decentralized storage is IPFS. It allows for
broad experimentation without having any cost, as illustrated in Table 4.2, other
than running an IPFS node and interacting with the network. In a production
implementation of SENTINEL, it may be advantageous to use other decentralized

4.6. System Overview 21

storage systems if their characteristics achieve more desirable features. For exam-
ple, the increased privacy focus in Swarm could make it an attractive decentralized
storage system for the private use case.

4.6 System Overview

In this section, an overview of the design of SENTINEL is presented. The archi-
tecture is presented first, which describes which components are present and how
they are connected to other components and their domains. Specific component
interactions in both the public and private use cases are also presented to demon-
strate how the components are used.

4.6.1 System Architecture

The architecture of SENTINEL is illustrated in Figure 4.3. It consists of multiple
components, spread out on three different platforms. Specifically, the system is
composed of a local machine, the Ethereum network, and the IPFS network. The
various components are described in detail in the remaining sections in this chap-
ter.

22 Chapter 4. Design

Figure 4.3: The architecture of SENTINEL.

SENTINEL makes use of several smart contracts to execute specific function-
ality in a decentralized manner. The design of the smart contracts are detailed in
Section 4.7. For the public use case, the Announcement Service (AS) smart con-
tract, Identifier Issuer Service (IIS) smart contract, and the Vendor Smart Contract
(VSC) are used to announce security advisories. The private use case only makes
use of the Private Smart Contract (PSC) to make confidential security advisory
announcements.

The local machine component includes an IPFS node which is connected to
the IPFS network. The node includes an API which is used by the frontend to
interact with the IPFS network. While an in-browser IPFS node is available, due to

4.6. System Overview 23

certain limitations this setup is not feasible for SENTINEL [20]. Consequently, the
users of SENTINEL must have a standalone IPFS node running. Furthermore, as a
standalone IPFS node is used it will not shut down when the SENTINEL frontend
is not running, and thus continue to be connected to the IPFS network. [21]

The frontend component is the access point for asset owners and vendors to
use SENTINEL. Design details about the frontend are introduced in Section 4.8.
Functionality for both the public and private use case are implemented into the
same frontend, which makes the frontend component more complex but also more
complete. The files that make up the frontend component are uploaded to the
IPFS network under an InterPlanetary Name System (IPNS) name, such that the
frontend is stored in a decentralized manner, with the same IPNS name. Using
an IPNS name to access the frontend ensures that the frontend can always be
accessed from the same URL. Users use their local IPFS gateway to download the
files and run the frontend in a local browser. While it is possible to access the
frontend from public gateways, it should only be done with gateways that use
subdomain resolution. This is because gateways that use path resolution, will
store local storage under the gateway domain which could be exploited by cross-
site-scripting. [22]

In order to connect to and read data on the blockchain, an Ethereum node must
be present on the local machine. While it is possible to use third-party services for
this purpose, it goes against the decentralized nature of SENTINEL, as explained
in Section 4.4.1. Therefore, users must have a running, and up-to-date node on
their local system. A full node on Ethereum consist of an execution and consensus
client. The frontend only connects to the execution client, which stores the state of
the blockchain. The consensus client is connected to the Ethereum network, where
it receives blocks which are passed to the execution client. While light nodes for
Ethereum exist which only holds parts of the blockchain, they are currently under
development and therefore not considered viable for SENTINEL. [23]

4.6.2 Public Use Case Component Interactions

The public use case utilizes multiple components to announce new security ad-
visories. An overview of how these components interact with each other in the
public use case is illustrated in Figure 4.4.

24 Chapter 4. Design

Figure 4.4: Overview of component interactions in the public use case.

First, the vendor announces a security advisory using their VSC. The VCS then
requests identifiers for the security advisory from the IIS. Once the identifiers are
returned, the VSC forwards the information to the AS, which will emit an event
containing the security advisory information. The asset owner’s frontend peri-
odically checks for new security advisory announcements and will automatically
retrieve the relevant security advisories.

4.6.3 Private Use Case Component Interactions

The private use case requires use of both the frontend component and PSC com-
ponent in order to announce confidential security advisories. An overview of com-
ponent interaction in the private use case is illustrated in Figure 4.5.

4.7. Smart Contract Design 25

Figure 4.5: Overview of component interactions in the private use case.

The vendor announces a security advisory using the PSC, which is deployed to
meet the agreement terms. Upon calling the PSC, an event containing the security
advisory information is emitted to the blockchain. Similarly to the public use case,
the frontend periodically checks the PSC for security advisory announcements.

4.7 Smart Contract Design

SENTINEL makes use of several smart contracts as a backend functionality, as
shown in Section 4.6.1. The smart contracts each have their individual purpose
and design, which is described in the following sections.

4.7.1 Announcement Service

The AS is responsible for announcing both new security advisories and updates to
already announced advisories. The announcements are created by emitting events
to the transaction log, which the frontend component automatically looks for. The
service is a smart contract without any ownership to ensure that no organization or
individual to controls the service. The design of the AS is illustrated in Figure 4.6.

Figure 4.6: Design of the Announcement Service.

The Message Controllable contracts that the AS inherits contains a modifier used
by methods in the AS smart contract. The modifier ensures that the exposed func-

26 Chapter 4. Design

tions are only called by a smart contract and not an externally owned account. This
restriction allows SENTINEL to connect security advisory announcements with in-
formation from the announcing VSC.

The AS defines two different events, one for each type of announcement, that
is, new and updated security advisory announcements. The event data structure
for announcing new security advisories can be seen in Figure 4.7.

Figure 4.7: Data structure of the event that announces new security advisories.

Each security advisory announced in SENTINEL will have an associated Advi-
sory Identifier, which is used to uniquely identify security advisories. Furthermore,
it is also used to link updated security advisory announcements to the original
security advisory announcement. The identifier is issued by the IIS, which will be
described in Section 4.7.2.

The Vulnerability Identifiers property is a string with vulnerability identifiers for
the vulnerabilities that are found in the associated security advisory. Vulnerability
identifiers are issued by the IIS, similar to the advisory identifiers. The identifiers
are comma-separated to reduce the character overhead and keep it compact.

Similarly to the Vulnerability Identifiers property, the Product Identifiers property
is also a comma-separated string. However, this property contains the product
identifiers of the products which are vulnerable to any of the vulnerabilities in
the security advisory. The product identifiers specified in this string are used to
identify which products are described as vulnerable in the security advisory, to
indicate if an asset owner should be notified of the security advisory or not.

Lastly, the Document Location property is used to identify which storage system
is used, and an identifier to download the security advisory, separated using front-
slash. An example is "ipfs/cid", where cid is the IPFS content identifier (CID), which
is the identifier used to retrieve the file from the network.

The data structure of the event used to announce updates to security advisories
is shown in Figure 4.8. The purpose of this event is to connect already announced
security advisories to any updates to security advisories that may be announced
later, such that vendors can stay up to date with any information regarding the
vulnerabilities found in the security advisory.

4.7. Smart Contract Design 27

Figure 4.8: Data structure of the event that announces updates to security advisories.

The event data structure is almost identical to the new security advisory an-
nouncement data structure, but with a single important difference. The advisory
identifier is indexed, which means that the property is hashed and can be effi-
ciently filtered on, which makes it easier to filter for updates for only relevant
security advisories that match the asset owner’s dependencies. All other proper-
ties of the updated security advisory event should be used in the same manner as
in the new security advisory event data structure.

The AS smart contract also includes two methods that can be called from other
smart contracts, with one method for each announcement type. These methods
will emit the events and write the data to the transaction logs. The functions will
simply take in input data, which will then be emitted without any modifications
or authentication.

4.7.2 Identifier Issuer Service

The IIS is the smart contract responsible for generating unique identifiers for ad-
visories and vulnerabilities disclosed using SENTINEL. The identifiers that the IIS
issues are similar to how a CVE ID is attributed to a CVE Record. However, the IIS
can automatically issue the identifiers following the implementation of the smart
contract, whereas CVE IDs have to be manually assigned. [24] The design of the IIS
is illustrated in Figure 4.9. The IIS inherits the MessageControllable smart contract
for the same reasons as for the AS.

28 Chapter 4. Design

Figure 4.9: Design of the Identifier Issuer Service.

In order to keep track of the amount of vendors registered and to assign iden-
tifiers for new vendor registrations, the IIS uses an unsigned 64-bit integer, which
allows for 264 − 1 different vendors to register to the IIS and use SENTINEL. While
the size may be excessive for its intended use, it is large enough to facilitate regis-
tration for a long period of time. The same argument goes for the size of advisory
and vulnerability identifier mappings.

Advisory and vulnerability identifiers issued by the IIS follows a strict format,
which begins with the system identifier “SNTL”, which indicates that the identifier
was issued by the IIS, similarly to how CVE IDs starts with “CVE”. The system
identifier is then concatenated with either a “A” or “V” to indicate the identifier
type for advisory and vulnerability identifiers, respectively. Vendor identifiers are
related to the address of a smart contract, that requests a unique identifier, and are
issued incrementally starting from 1. The last part of the identifier is the advisory
or vulnerability number, which is an integer also issued incrementally from 1. All
parts of the identifiers are separated with a hyphen. Examples of identifiers, and
the different parts that make up the identifiers, are illustrated in Figure 4.10.

4.7. Smart Contract Design 29

Figure 4.10: Visualization of how identifiers from the IIS are composed.

To facilitate the storage and tracking of the advisory and vulnerability identi-
fiers, the IIS includes mappings of VSC addresses to their unique vendor identifier.
Furthermore, mappings from that vendor identifier to the generated advisory and
vulnerability identifiers are included. The IIS smart contract also implements func-
tions that vendors can call to register and receive a vendor identifier, and to gener-
ate new advisory and vulnerability identifiers, based on the structure as explained
in this section.

4.7.3 Vendor Smart Contract

VSC is the smart contract which vendors use to interact with SENTINEL in the
public use case. Each vendor deploys and uses their own VSC, as the smart contract
represents the vendor. The VSC contains key state variables and methods that are
necessary for the vendors to correctly interact with the AS and IIS described in the
previous sections. The VSC smart contract is described in Figure 4.11.

Figure 4.11: Design of the Vendor Smart Contract.

In order to control who can interact with any VSC, an Ownable contract is
inherited, which can be used to control who has access to methods on a smart

30 Chapter 4. Design

contract with the onlyOwner modifier. This assures that only the owner of the VSC
can interact with certain methods on the VSC.

The VSC contains four state variables, which are set in the constructor during
the creation of the smart contract. Firstly, the vendor provides a name to a vendor-
Name state variable, which is used to map from an address to a name when asset
owners are accessing security advisories. The VSC also contains instance state vari-
ables for the AS and IIS, which are immutable, as the VSC should always use the
same services via the same addresses. Lastly, a property for the vendor identifier
from the IIS is implemented. All the state variables are assigned in the contract
constructor, such that the VSC is ready for use after creation.

In the public use case, there are two different types of announcements. There-
fore, the VCS includes methods to accommodate both types of announcements.
The methods call the AS to emit events with the input data given from the VSC.
For announcing new security advisories, the VCS calls the IIS to get advisory and
vulnerability identifiers before calling the AS and emitting the event. To announce
updates to security advisories, the VSC calls the AS directly, as there is no need to
generate new identifiers.

4.7.4 Private Smart Contract

The PSC is the smart contract on which asset owners receive confidential security
advisories from a vendor in the private use case.

The PSC contains essential methods and properties for ensuring disclosure of
confidential security advisories. The interface of PSC is illustrated in Figure 4.12.

Figure 4.12: Design of the Private Smart Contract.

4.7. Smart Contract Design 31

As with the VSC described in Section 4.7.3, the PSC inherits the Ownable con-
tract in order to implement access control. Most of the methods in the PSC are
restricted with the onlyOwner access modifier to enforce access control.

In addition to the onlyOwner access modifier, the PSC contains a custom mod-
ifier named whitelisted, which restricts access to allow only whitelisted Ethereum
addresses. This enables an asset owner to allow only specific whitelisted vendors
to announce security advisories on their PSC. The whitelist ensures that the PSC is
not flooded with events from malicious actors.

To complement this modifier, two methods, addVendor and removeVendor, are
used. As the names suggest, these methods allow the asset owner to add or remove
vendors from the whitelist. The methods are protected by the onlyOwner modifier,
such that only the owner of the PSC can whitelist addresses. Each method requires
a valid Ethereum address as input.

The whitelisted addresses are stored in the vendor state variable as a mapping
from address to boolean. This allows a constant time lookup to determine if a
vendor is whitelisted or not.

The PSC implements another state variable in addition to the whitelist. This
state variable, called publicKey contains a public encryption key used for announc-
ing confidential security advisories. An accompanying method, setPublicKey is
used to set the publicKey state variable. It requires a string of bytes as input. More
details on the use of the public key can be found in Section 4.7.5.

To announce a confidential security advisory, whitelisted vendors can call the
announce method. This method announces an AnnouncementEvent which is illus-
trated in Figure 4.13. This event contains four values used for secure announce-
ments. Firstly, a CID is required to inform the asset owner of the location of
the security advisory. Secondly, a cryptographic hash is included to ensure non-
repudiation, in the event that either the security advisory is inaccessible. By having
a backup of the security advisory, the vendor can show that the cryptographic hash
of this security advisory matches the one emitted in the event. Finally, an encryp-
tion key and an initialization vector (IV) is included, which allows the asset owner
to decrypt the security advisory. The use of the encryption key and initialization
vector is described in Section 4.7.5.

32 Chapter 4. Design

Figure 4.13: Data structure of the event announcing a confidential security advisory.

4.7.5 Security of Confidential Announcements

As the disclosure of private vulnerabilities requires transmission of highly con-
fidential security advisories via the public networks of Ethereum and IPFS, it is
pertinent to incorporate security measures to accommodate this in the design.

As mentioned in Section 4.4.6 the design of SENTINEL follows NIST security
guidelines where possible. Currently, there are two NIST approved block cipher
algorithms: Triple DES and AES. However, Triple DES will be deprecated after 2023
and may only be used when interacting with legacy systems. As such, SENTINEL
utilizes AES encryption to encrypt confidential security advisories. [25, 26]

AES is a symmetric key block cipher technique for of encrypting data blocks of
128 bits using key lengths of 128, 192, and 256 bits. AES must be used in a NIST
approved operation mode, that is, an algorithm implementing a symmetric block
cipher technique. Multiple modes exist, however, SENTINEL is designed with Ga-
lois/Counter Mode AES-GCM). AES-GCM is an authenticated mode, which means
that it protects against chosen-ciphertext attacks in which an attacker decrypts arbi-
trary messages and deduce the key from the result. Of the five currently approved
authenticated modes, AES-GCM was chosen as it is already implemented in most
modern browsers and can be utilized using the Subtle Crypto library included in
JavaScript. [25, 27, 28, 29]

AES-GCM utilizes a randomly generated string of bits called an initialization
vector to initialize the encryption functions. It is essential that the IV is unique for
each message, as a reused IV will compromise the implementation. SENTINEL
uses an IV of 96 bits, as recommended by NIST. [30]

In symmetric encryption algorithms, such as AES-GCM, a single private key is
utilized for both encryption and decryption. Therefore, it is of utmost importance
that only the intended parties are in possession of the key. To ensure that only the
intended parties receive the encryption key, it should be distributed using NIST
approved key establishment methods. [31]

One such method is a key-transport scheme in which two parties, a recipi-

4.7. Smart Contract Design 33

ent and a sender, establish a key chosen by the sender. A NIST recommended
key-transport scheme is KTS-OAEP which utilizes the asymmetric encryption al-
gorithm RSA-OAEP to keep the key encrypted when it is transported. KTS-OAEP
is illustrated in Figure 4.14. [32]

Figure 4.14: The KTS-OAEP key transport scheme.

The KTS-OAEP procedure has few steps. First, the sender encrypts the keying
material, that is, the key to be transported, using RSA-OAEP encryption with the
recipient’s public key. The now encrypted keying material is then transmitted to
the recipient, who will decrypt the keying material using RSA-OAEP with their
private key. It is possible to add an optional verification step after decryption to
notify the sender if the key has been transmitted successfully. [32]

SENTINEL utilizes KTS-OAEP when transporting the AES-GCM keys used to
encrypt confidential security advisories. KTS-OAEP was chosen as it is a NIST
recommended algorithm with few stages and because Subtle Crypto, and thus
most modern browsers, already include an implementation of RSA-OAEP. This
makes room for fewer mistakes and vulnerabilities in the implementation. [29]

With the algorithms for secure transmission of confidential security advisories
in place, the key sizes are determined. Depending on the security strength, the
key sizes can differ significantly. Security strength is a number, usually in the
form of n-bits, describing the amount of work it will take to break a cryptographic
algorithm. Security strengths of 112 bits and up are approved by NIST, and they

34 Chapter 4. Design

specify that 128, 192, and 256 bits security strengths are secure through 2031 and
beyond. [31]

SENTINEL uses the Ethereum blockchain, on which minimizing on-chain stor-
age cost is a priority. As such, AES-GCM using 128-bit keys, corresponding to
128 bits security, is used. As they are both approved and secure through 2031 and
beyond, and relatively small, it is an ideal choice of key size. [31]

According to NIST, the security strength of a system is that of the algorithm
with the weakest security strength. Following that guideline, the RSA-OAEP keys
used in the KTS-OAEP procedure should have at least 128 bits of security strength.
This equates to RSA-OAEP keys that are 3072 bits long. [31]

Having determined the algorithms and procedures for securely transmitting
confidential security advisories, the entire data flow can now be established. Fig-
ure 4.15 illustrates the flow. First the asset owner, as the recipient, generates an
RSA-OAEP key pair and publishes the public key to their PSC. Afterward, the
vendor, as the sender, can fetch the public key for future key transport. When
the vendor intends to announce a confidential security advisory, generate an AES-
GCM key and a random IV, which they then use to encrypt the security advisory
and upload to IPFS. Following this, the vendor encrypts the AES-GCM key using
RSA-OAEP with the key retrieved from the asset owner’s PSC. They can then an-
nounce an event to the smart contract including the encrypted AES-GCM key, the
IV, and other necessary information. Finally, the asset owner, upon discovering the
newly emitted event, decrypts the AES-GCM key using their RSA-OAEP private
key and in turn uses the AES-GCM key to decrypt the security advisory.

4.7. Smart Contract Design 35

Figure 4.15: The data flow of the private use case, including encryption procedures.

When handling cryptographic keys, several assurances and protection require-
ments should be upheld in the system using the keys: [31]

• Confidentiality Protection: When the private key information is available
outside a cryptographic module, confidentiality protection is provided by
encryption at an appropriate security strength or by controlling access to the
key via physical means.

• Integrity Protection: When a key is available outside a cryptographic mod-
ule, integrity protection is provided by appropriate cryptographic integrity
mechanisms, non-cryptographic integrity mechanisms, or physical protection
mechanisms.

• Association Protection: Association protection is provided for a cryptographic
security service by ensuring that the correct keying material is used to protect
the correct data in the correct application or equipment.

• Availability Protection: Availability protection is provided for all key infor-
mation that needs to be available beyond its immediate use for protecting
data.

• Assurance of Domain-Parameter and Public Key Validity: This assurance

36 Chapter 4. Design

provides confidence that the parameters and keys used with cryptographic
algorithms are arithmetically correct.

• Assurance of Private Key Possession: This assurance provides assurance
that the owner of a public key actually possesses the corresponding private
key.

Only the confidentiality-, integrity-, association-, and availability-protection are
strictly required by NIST. As such, the two remaining assurances will not be prior-
itized in the prototype of SENTINEL.

4.8 Frontend Design

The frontend is the component which the asset owners and vendors use to interact
with SENTINEL. It contains several important interactive interfaces which ease
the interactions with the smart contracts and facilitate other functionality such as
encryption.

4.8.1 Settings Storage

The asset owners and vendors must provide settings, such as dependencies, to
the frontend for it to work properly. These settings are stored in the browsers
local storage, where they can be saved and loaded between running sessions of
the SENTINEL frontend in a manner that does not require any external database
systems. The stored information is listed below.

• Software dependencies

• Ethereum accounts

• Confidential agreements

• Vendor whitelist

As the frontend stores sensitive data, such as Ethereum private keys and RSA-
OAEP private keys, in local storage, password encryption is employed to ensure
the confidentiality of this data.

When implementing password encryption, multiple requirements must be met
to ensure that the password encryption provides the necessary security, according
to NIST. As this project describes a prototype, only the strictly necessary require-
ments, which are listed below, will be considered at this time. [33]

1. Passwords must be at least 8 characters in length.

4.8. Frontend Design 37

2. Passwords that are randomly generated by the service must be at least 6
characters in length and use a random number generator recommended by
NIST.

3. The password must not be truncated before hashing.

4. No password hints must be available.

5. There must be no composition rules on the password.

6. The password must be compared to compromised passwords, dictionary
words, repetitive or sequential characters, and context specific words. If the
password matches any of these strings, the password cannot be used.

7. There must be a rate limit for password authentication.

8. Encryption and protected channels must be used to avoid Man-in-the-Middle
attacks.

9. A NIST recommended password derivation algorithm must be utilized to
protect against offline attacks.

There are multiple password derivation algorithms. The one SENTINEL uses
is PBKDF2. PBKDF2 applies a pseudo-random function, such as a cryptographic
hashing function, along with a salt, many times in order to derive a string of bytes.
These bytes can be used as a cryptographic key for various algorithms. [34]

4.8.2 Vulnerabilities Page

Most importantly, the frontend must contain a page where asset owners can get an
overview of the vulnerabilities which could affect their system. A mockup of this
page is illustrated in Appendix A.1.

The page consists of a list of vulnerabilities for the asset owner to get a quick
overview of the current vulnerabilities with some information about them. Asset
owners can select a security advisory announcement to read the security advisory
data parsed from CSAF to a human-readable format. This page also contains the
updates for specific security advisories and allow asset owners to see all versions
of a security advisory relevant to their dependencies.

4.8.3 Accounts Page

The frontend contains a page where asset owners and vendors can store their ac-
counts to be used to create transactions easily. The accounts page is illustrated in
Appendix A.2.

38 Chapter 4. Design

Asset owners and vendors can save accounts by filling out the form, which
encrypts and saves the account in local storage. All saved accounts are displayed
in a table, but without the sensitive private key account information. The saved
accounts are available to be used on other pages for creating transactions.

4.8.4 Settings Pages

There are two different settings pages on the frontend, one for each use case. The
public settings page, which is for the public use case, is used by the asset owner
to upload their dependencies from a CDX SBOM document, and to whitelist VSC
addresses to allow security advisory announcements announced with the specified
VSC. The mockup for the public settings page is illustrated in Appendix A.3.

The private settings page is used by asset owners to manage the PSC. On this
page they can save and see their deployed PSCs, specify which vendors can in-
teract with the smart contract, and update the public key used for encryption of
security advisory. Any announcements made to saved PSCs will be displayed on
the vulnerability page. A mockup of the private settings page is illustrated in
Appendix A.3.

4.8.5 Announcement Pages

The announcement pages are used by vendors to announce security advisories
to the public or to a specific vendor. To announce new and updated security
advisories to the public, the public announcement page is used, of which a mockup
is illustrated in Appendix A.4. The vendor can fill out a form to announce a
new security advisory or announce updates to a previously announced security
advisory. Vendors can use an account they have set up on the accounts page to
create the transaction which calls the announcement method on the specified VSC.

To announce confidential security advisories, the private announcement page
is used. Vendors can use this page the same way as the public announcements
page, but with the address of a PSC instead of their VSC. A mockup of the private
announcements page is illustrated in Appendix A.4.

Chapter 5

Implementation

This chapter will cover the implementation of the SENTINEL prototype. The im-
plementation follows the design from Chapter 4. Additionally, the development
environment, integration of external components, and automation pipelines are
described.

This chapter includes the following sections.

• Development Environment

• Announcement Service Implementation

• Identifier Issuer Service Implementation

• Vendor Smart Contract Implementation

• Private Smart Contract Implementation

• IPFS & Ethereum Nodes

• Frontend Implementation

• Continuous Integration & Deployment

39

40 Chapter 5. Implementation

5.1 Development Environment

SENTINEL consists of two Node.js [35] projects, one for the smart contracts, and
one for the frontend. The latest LTS version of Node.js was used for both projects.

For smart contact development, Truffle Suite [36] was utilized to compile, de-
ploy, and test smart contracts on a simulated Ethereum network, enabling fast
and practical testing. Furthermore, the Truffle Console allows interaction with
deployed smart contracts using built-in libraries.

For frontend development, the React.js [37] framework was used to build and
prototype the frontend. Additionally, IPFS Kubo [38], an IPFS client, was instru-
mental in the implementation and testing of upload and download of security
advisories as it allowed access to the IPFS network.

5.1.1 Smart Contract Development

While the immutability of Ethereum provides advantages in some situations, such
as non-repudiation, it also creates disadvantages in others. Smart contracts being
immutable means that any bugs or vulnerabilities found in deployed code, usually
will be hard or impossible to patch.

As such, development and security guidelines from both the Ethereum docs [39]
and ConsenSys [40, 41] were followed in order to minimize possible vulnerabilities
in SENTINEL’s smart contracts. Furthermore, all smart contracts are written in
Solidity v0.8.18

5.2 Announcement Service Implementation

As specified in Section 4.7.1, the purpose of the Announcement Service is to emit
events that announce security advisories. The service supports both announce-
ments of new security advisories and updates to already announced security advi-
sories.

5.2.1 Announcement Events

The AS specifies two different events to support the announcements of new and
updated security advisories. The events implement different data according to the
different purposes which they are responsible for.

In Listing 5.1 the event implementation for announcing new security advisories
can be seen. Four string properties are used to describe new security advisories,
as they are explained in Section 4.7.1

5.2. Announcement Service Implementation 41

Listing 5.1: New security advisory announcement event implementation in Solidity.

1 event NewSecurityAdvisory (
2 s t r i n g a d v i s o r y I d e n t i f i e r ,
3 s t r i n g v u l n e r a b i l i t y I d e n t i f i e r s ,
4 s t r i n g p r o d u c t I d e n t i f i e r s ,
5 s t r i n g documentLocation
6) ;

The event representing the updated security advisory announcements can be
seen in Listing 5.2. The main difference is the inclusion of the indexed keyword
to the advisoryIdentifier property, which is used to increase search efficiency of
events based on the value of that property.

Listing 5.2: Updated security advisory announcement event implementation in Solidity.

1 event UpdatedSecurityAdvisory (
2 s t r i n g indexed a d v i s o r y I d e n t i f i e r ,
3 s t r i n g v u l n e r a b i l i t y I d e n t i f i e r s ,
4 s t r i n g p r o d u c t I d e n t i f i e r s ,
5 s t r i n g documentLocation
6) ;

5.2.2 Announcement Methods

Two different methods are implemented in the Announcement Service smart con-
tract to facilitate announcements of the two different event types. The methods can
be seen in Listing 5.3.

Listing 5.3: Methods in the Announcement Service to announce new and updated security advi-
sories.

1 function announceNewAdvisory (
2 s t r i n g memory a d v i s o r y I d e n t i f i e r ,
3 s t r i n g memory v u l n e r a b i l i t y I d e n t i f i e r s ,
4 s t r i n g memory p r o d u c t I d e n t i f i e r s ,
5 s t r i n g memory documentLocation) e x t e r n a l onlyContract
6 {
7 emit NewSecurityAdvisory (a d v i s o r y I d e n t i f i e r ,

v u l n e r a b i l i t y I d e n t i f i e r s , p r o d u c t I d e n t i f i e r s ,
documentLocation) ;

8 }
9

10 function announceUpdatedAdvisory (
11 s t r i n g memory a d v i s o r y I d e n t i f i e r ,

42 Chapter 5. Implementation

12 s t r i n g memory v u l n e r a b i l i t y I d e n t i f i e r s ,
13 s t r i n g memory p r o d u c t I d e n t i f i e r s ,
14 s t r i n g memory documentLocation) e x t e r n a l onlyContract
15 {
16 emit UpdatedSecurityAdvisory (a d v i s o r y I d e n t i f i e r ,

v u l n e r a b i l i t y I d e n t i f i e r s , p r o d u c t I d e n t i f i e r s ,
documentLocation) ;

17 }

Vendors can only call these methods from a smart contract, as the address of the
VSC is used to identify what vendor has initiated the transaction and not from ex-
ternally owned accounts. To achieve this, the methods implement a modifier called
onlyContract which can restrict access to methods. The modifier is specified in the
MessageControllable contract, which is inherited by the AS. The implementation
of the modifier can be seen in Listing 5.4.

Listing 5.4: The MessageControlable smart contract implementation.

1 c o n t r a c t MessageControl lable {
2 modifier onlyContract () {
3 require (msg . sender != tx . origin , "Call only

accessible from smart contract") ;
4 _ ;
5 }
6 }

Smart contracts cannot create transactions, however, they can create messages
to interact with other smart contracts. The onlyContract modifier does a simple
check to verify whether the transaction and the message are originating from the
same address.

5.3 Identifier Issuer Service Implementation

The purpose of the IIS, as explained in Section 4.7.2, is to assign unique identifiers
to vendor smart contracts, security advisory announcements, and vulnerabilities.
Similar to the AS, the IIS inherits the MessageControllable contract, which was
previously described in Section 5.2.2.

5.3.1 Identifier Issuer Service State Variables

The IIS smart contract contains four private state variables to keep track of all
identifiers issued by the service, and to help generate new identifiers when re-
quested. These state variables can be seen in Listing 5.5.

5.3. Identifier Issuer Service Implementation 43

Listing 5.5: State variables of the Identifier Issuer Service.

1 uint64 pr ivate vendorCount = 0 ;
2 mapping (address => uint64) private vendors ;
3 mapping (uint64 => uint64 []) private a d v i s o r i e s ;
4 mapping (uint64 => uint64 []) private v u l n e r a b i l i t e s ;

The vendorCount state variable is a simple count of how many vendors that
have registered to the IIS. It is also used to assign a unique unsigned integer iden-
tifier to vendors that register to the service.

The vendors state variable is a mapping to keep track of the identifiers issued
for an address of a VSC. The uint64 identifier assigned to a vendor is used in
the advisories and vulnerabilities state variables to keep track of advisory and
vulnerability identifiers generated for the specific vendor.

5.3.2 Register Vendor

Vendors must be registered on the IIS before any security advisories or vulnera-
bility identifiers can be issued for the vendor. In Listing 5.6, the registerVendor
method can be seen, which is used to assign an identifier to a vendor smart con-
tract.

Listing 5.6: The method in the Identifier Issuer Service that registers new vendors to the service.

1 function regis terVendor () e x t e r n a l onlyContract returns (
uint64) {

2 require (vendors [msg . sender] == 0 , "Vendors can only
register once") ; // Vendor is not registered already

3 vendorCount ++;
4 vendors [msg . sender] = vendorCount ;
5 return vendorCount ;
6 }

The method has the external and onlyContract modifiers, which restricts any
callers of the methods only be smart contracts other than the IIS itself. On line
2 is a guard that checks if the vendors mapping already contains the address of
the message sender, which is the smart contract address. If the vendor is already
registered, the transaction will revert. Otherwise, the vendorCount is incremented
by one and the vendor address is added to the vendors mapping with the new
current value of the vendor count.

5.3.3 Request Advisory Identifier

The IIS issues advisory identifiers for any new security advisory announcement
that the AS announces. However, it is vendor’s responsibility to request the ad-

44 Chapter 5. Implementation

visory identifier before announcing with the AS. The method on the IIS, which
generate such an identifier, can be seen in Listing 5.7.

Listing 5.7: The method in the Identifier Issuer Service that generates advisory identifiers.

1 function r e q u e s t A d v i s o r y I d e n t i f i e r () e x t e r n a l onlyContract
returns (s t r i n g memory) {

2 require (vendors [msg . sender] != 0 , "Vendor must be
registered") ;

3 uint64 vendorId = vendors [msg . sender] ;
4
5 a d v i s o r i e s [vendorId] . push (uint64 (a d v i s o r i e s [vendorId] .

length + 1)) ;
6 uint64 advisoryNumber = uint64 (a d v i s o r i e s [vendorId] .

length) ;
7
8 return s t r i n g . concat ("SNTL-A-" , S t r i n g s . t o S t r i n g (vendorId

) , "-" , S t r i n g s . t o S t r i n g (advisoryNumber)) ;
9 }

As in the registerVendor method, the requestAdvisoryIdentifier method
also has the external and onlyContract modifiers. The method starts with a
guard checking that the vendor already has been registered, as the vendor iden-
tifier is used as a part of the advisory identifier. Next, to generate the new advi-
sory identifier, the advisories state variable entry for the specific vendor iden-
tifier is appended with the next advisory number. This means that, if a ven-
dor already has had ten advisory identifiers generated, “11” would be appended
to the mapping, and be used as the advisory number for the advisory identi-
fier. The complete advisory identifier is created with a concatenation of strings of
the vendorId and advisoryNumber with hyphens. This is accomplished with the
built-in string.concat function from Solidity, and with Strings.toString func-
tion from OpenZeppelin Strings utility library [42].

5.3.4 Request Vulnerability Identifiers

The final responsibility of the IIS is to generate unique identifiers for vulnerabil-
ities. As there can be multiple vulnerabilities in a single security advisory, the
method in the IIS responsible for generating these identifiers should therefore also
support this functionality. The implementation of this functionality can be seen in
Listing 5.8.

Listing 5.8: The method in the Identifier Issuer Service that generates vulnerability identifiers.

1 function r e q u e s t V u l n e r a b i l i t y I d e n t i f i e r s (uint16 count)
e x t e r n a l onlyContract returns (s t r i n g memory) {

5.4. Vendor Smart Contract Implementation 45

2 require (vendors [msg . sender] != 0 , "Vendor must be
registered") ;

3 uint64 vendorId = vendors [msg . sender] ;
4 s t r i n g memory ids = "" ;
5
6 for (uint16 index = 0 ; index < count ; index ++) {
7 v u l n e r a b i l i t e s [vendorId] . push (uint64 (v u l n e r a b i l i t e s [

vendorId] . length + 1)) ;
8 uint64 vulnerabil ityNumber = uint64 (v u l n e r a b i l i t e s [

vendorId] . length) ;
9 s t r i n g memory id = s t r i n g . concat ("SNTL-V-" , S t r i n g s .

t o S t r i n g (vendorId) , "-" , S t r i n g s . t o S t r i n g (
vulnerabil ityNumber)) ;

10 i f (index != 0)
11 ids = s t r i n g . concat (ids , "," , id) ;
12 e lse
13 ids = s t r i n g . concat (ids , id) ;
14 }
15
16 return ids ;
17 }

The requestVulnerabilityIdentifiers works similarly to the method for re-
questing advisory identifiers. However, to facilitate generation of multiple iden-
tifiers in a single call, there are some key changes. Firstly, the method takes an
uint16 variable as input which specifies how many identifiers to generate, up
to 216 − 1. Secondly, the for-loop from line 6 to 14, generates the vulnerability
identifiers one at a time, and concatenates the identifier to the ids string variable
declared on line 4, which is returned once the correct amount of identifiers has
been generated.

5.4 Vendor Smart Contract Implementation

As detailed in Section 4.7.3, the VSC is the way for vendors to interact with AS
and IIS in SENTINEL for the public use case. It contains predefined state variables
and methods which enable correct and valid transactions that announce new and
updated security advisories.

5.4.1 Access Control

In order to control who can interact with any VSC, the Ownable abstract contract is
inherited. The functionality of the inherited contract is used to control who has ac-

46 Chapter 5. Implementation

cess to methods on a smart contract with an owner state variable. It contains meth-
ods to update the owner and modifiers to check if the transaction creator has rights
to interact with the smart contract methods. The Ownable contract implementation
is from a collection of open source smart contracts from OpenZeppelin [43] which
provides smart contracts for a large variety of purposes. Many of these smart con-
tracts have been trialed and tested by many developers and are implemented in
smart contracts on the Ethereum Mainnet.

5.4.2 Vendor Smart Contract State Initialization

In the VCS implementation, there are four state variables, each of these are as-
signed in the constructor. The definitions of these state variables can be seen in
Listing 5.9 and the constructor can be seen in Listing 5.10.

Listing 5.9: State variables in the Vendor smart contract.

1 s t r i n g public vendorName ;
2 I d e n t i f i e r I s s u e r S e r v i c e pr ivate _ I I S ;
3 AnnouncementService pr ivate _AS ;
4 uint64 public vendorId ;

The vendorName enables vendors to provide a readable name, which will be dis-
played on the frontend instead of the smart contract address, to make it easier for
asset owners to identify who a security advisory announcement is from. The _IIS
and _AS state variables are contract instances that the VSC uses to send transactions
to the IIS and AS smart contracts, respectively. These instance state variables are
set in the constructor from the address constructor input arguments. Lastly, the
vendorId is assigned with the identifier returned from the registerVendor method
from the IIS on line 5 in Listing 5.10.

Listing 5.10: The constructor of the Vendor Smart Contract.

1 const ruc tor (s t r i n g memory name , address asAddress , address
i i sAddress) {

2 vendorName = name ;
3 _AS = AnnouncementService (asAddress) ;
4 _ I I S = I d e n t i f i e r I s s u e r S e r v i c e (i i sAddress) ;
5 vendorId = _ I I S . regis terVendor () ;
6 }

5.4.3 New Security Advisory Announcement

To announce new security advisories, the VSC has a method that takes in the
necessary arguments and calls the IIS to get identifiers for the announcement. The

5.4. Vendor Smart Contract Implementation 47

implementation of this method can be seen in Listing 5.11.

Listing 5.11: Vendor Smart Contract method to announce new security advisories.

1 function announceNewAdvisory (
2 uint16 count ,
3 s t r i n g memory productIds ,
4 s t r i n g memory l o c a t i o n) onlyOwner public {
5 _AS . announceNewAdvisory (getAdvisoryId () ,

g e t V u l n e r a b i l i t y I d s (count) , productIds , l o c a t i o n) ;
6 }

The announcement method is restricted by the onlyOwner modifier, such that
only the vendor who owns the smart contract can make announcements from the
smart contract and malicious actors cannot impersonate the vendor. The count in-
put argument is used to specify how many vulnerability identifiers the IIS should
generate for the announcement. The productId input argument is a string of prod-
uct identifiers separated by a comma, that indicates which products are impacted
by the vulnerabilities in the security advisory. Lastly, the location argument is the
IPFS CID of the announced security advisory. Before invoking the announcement
method on the AS, the methods to generate advisory and vulnerability identifiers
are called.

The VSC implements helper methods that call the IIS and can be seen in List-
ing 5.12.

Listing 5.12: Helper functions for announcing new security advisories from the Vendor Smart Con-
tract.

1 function g e t V u l n e r a b i l i t y I d s (uint16 count) onlyOwner public
returns (s t r i n g memory) {

2 require (vendorId != 0 , "Function only available with a
vendor id") ;

3 return _ I I S . r e q u e s t V u l n e r a b i l i t y I d e n t i f i e r s (count) ;
4 }
5
6 function getAdvisoryId () onlyOwner public returns (s t r i n g

memory) {
7 require (vendorId != 0 , "Function only available with a

vendor id") ;
8 return _ I I S . r e q u e s t A d v i s o r y I d e n t i f i e r () ;
9 }

The identifier helper methods both require that the vendorId state variable has
been assigned a value other than 0, which is fulfilled if the constructor has been
executed successfully. The guards ensure that the IIS can generate identifiers for
the VSC and return the generated identifier.

48 Chapter 5. Implementation

5.4.4 Updated Security Advisory Announcement

The VSC implements a method to announce updated security advisories as well.
This method takes several arguments as input and calls the AS directly without
any identifier generation from the IIS. The method can be seen in Listing 5.13.

Listing 5.13: Vendor Smart Contract method to announce updated security advisories.

1 function announceUpdatedAdvisory (
2 s t r i n g memory advisoryId ,
3 s t r i n g memory v u l n e r a b i l i t y I d s ,
4 s t r i n g memory productId ,
5 s t r i n g memory l o c a t i o n) onlyOwner public {
6 _AS . announceUpdatedAdvisory (advisoryId , v u l n e r a b i l i t y I d s ,

productId , l o c a t i o n) ;
7 }

Similarly to the announceNewAdvisory method, the announceUpdatedAdvisory
method restricts access with the onlyOnwer modifier. The advisoryId and vulnerabilityIds
are given as input to this method as the security advisory, to be updated, already
exists. The productId and location arguments are handled identically as in the
method that announces new security advisories.

5.5 Private Smart Contract Implementation

The PSC is the smart contract that assists an asset owner and a vendor in the
announcement of confidential security advisories in the private use case. The im-
plementation of this smart contract follows the design in Section 4.7.4.

5.5.1 Vendor Whitelisting

The PSC implements a whitelist to creation of announcements strictly to whitelisted
addresses. To implement this, the PSC contains a state variable to store the whitelist
and methods to manage the whitelist, which can be seen in Listing 5.14.

Listing 5.14: Whitelist state variable and management methods on the Private Smart Contract.

1 mapping (address => bool) private vendors ;
2
3 function addVendor (address vendor) public onlyOwner {
4 require (vendor != address (0) , "Address 0 is not

whitelistable") ;
5 require (! vendors [vendor] , "Address is already whitelisted

") ;
6 vendors [vendor] = t rue ;

5.5. Private Smart Contract Implementation 49

7 }
8
9 function removeVendor (address vendor) public onlyOwner {

10 require (vendor != address (0) , "Address 0 is not
whitelistable") ;

11 require (vendors [vendor] , "Address is not whitelisted") ;
12 vendors [vendor] = f a l s e ;
13 }

The whitelist is implemented as a mapping from an address to a Boolean which
indicates if the vendor is whitelisted or not. This means that only vendor addresses
in the mapping that maps to true are considered whitelisted. On lines 3 to 7, the
method to whitelist vendors can be seen, where the method is protected by two
guards to cover whitelisting the zero address and already whitelisted addresses. If
both guards are passed, the vendor address is added to the mapping with true
as value. If a vendor has to be removed from the whitelist, they are blacklisted in
the method on line 9 to 13. The method also checks that the address is not the
zero address and that the vendor address is already whitelisted. The vendor is
blacklisted by mapping the address to false.

The whitelisted modifier in the PSC checks if the caller address is whitelisted
or not, and only proceeds if it is. The modifier implementation can be seen in
Listing 5.15.

Listing 5.15: The whitelisted modifier on the Private Smart Contract.

1 modifier w h i t e l i s t e d () {
2 require (vendors [msg . sender] , "Caller is not whitelisted")

;
3 _ ;
4 }

5.5.2 Encryption Key

An important part of announcing confidential security advisories is encryption.
As specified in the design in Section 4.7.5, the vendors use a public RSA-OAEP
key to encrypt the AES-GCM key, which the security advisory is encrypted with.
The PSC provides a state variable for this public RSA-OAEP key and a method to
update it, which can be seen in Listing 5.16.

Listing 5.16: The publicKey state variable and the related setter function on the Private Smart Con-
tract.

1 bytes public publicKey ;
2

50 Chapter 5. Implementation

3 function setPubl icKey (bytes memory pKey) public onlyOwner {
4 publicKey = pKey ;
5 }

The publicKey state variable is a dynamically-sized byte array in which the
public RSA-OAEP key is stored such that vendors can retrieve it when they should
encrypt the key they encrypted the security advisory with. Asset owners update
the key by calling the setPublicKey method with the key as input. The public key
state variable is accessible for everyone at all times from the PSC address when
they need to encrypt data for the asset owner.

5.5.3 Confidential Announcement

In order to implement the announcement functionality on the PSC, an event decla-
ration and a method which emits this event, is introduced. The implementation of
these can be seen in Listing 5.17.

Listing 5.17: Event declaration and announcement method on the Private Smart Contract.

1 event Announcement (
2 s t r i n g l o c a t i o n ,
3 bytes32 hash ,
4 bytes decryptionKey ,
5 bytes12 iv
6) ;
7
8 function announce (s t r i n g memory l o c a t i o n , bytes32 hash , bytes

memory decryptionKey , bytes12 iv) e x t e r n a l w h i t e l i s t e d {
9 emit Announcement (l o c a t i o n , hash , dKey , iv) ;

10 }

In the announce method, an instance of the previously declared Announcement
event is emitted. The input arguments are the IPFS CID of the encrypted security
advisory, a hash of the security advisory, the encrypted AES-GCM key, and the
initialization vector. With this data, the asset owner is able to retrieve the encrypted
security advisory, decrypt it with the use of the private RSA-OAEP key, AES-
GCM decryption key and the initialization vector. The hash is used to ensure
non-repudiation, as described in Section 4.7.4.

The use of this method is restricted by the whitelisted modifier to only allow
access to whitelisted vendors, such that the event is not emitted by a malicious
actor.

5.6. IPFS & Ethereum Nodes 51

5.6 IPFS & Ethereum Nodes

The IPFS and Ethereum nodes are essential parts of SENTINEL, as illustrated in
Section 4.6.1. As there are many existing software solutions for these nodes, and
implementation of such nodes falls outside the scope of this project, third-party
nodes are used. The chosen solutions are covered in this section.

5.6.1 IPFS Node Integration

Kubo [38] is used as IPFS node on the local machine of asset owners and vendors.
Kubo is created by Protocol Labs [44] which is the creator of IPFS. This node con-
tains the core IPFS functionality to interact with the IPFS network, it includes an
API to interact with the node, and has a gateway allowing the user can access con-
tent on IPFS. All parts are vital in the use of SENTINEL, as the API is used from
the frontend to upload and download security advisories, and the gateway is used
to host the frontend itself in a local environment.

Asset owners and vendors interact with the API on the IPFS node from the
frontend, to upload and download security advisories from the IPFS network. Be-
cause the access to this API is restricted by default, it is necessary to configure
the IPFS node to allow API calls from the frontend. The API configuration can be
changed from the terminal on the localhost or via the web user interface that the
Kubo provides. To configure the API via the terminal, the command in Listing 5.18
is used, where FRONTEND_URL is the URL on which the frontend is running.

Listing 5.18: Kubo API configuration bash command.

1 i p f s conf ig −− json API . HTTPHeaders . Access −Control −Allow−
Origin " [\ "<FRONTEND_URL>\"] "

5.6.2 Ethereum Node Integration

As a part of the design from Section 4.6.1, the frontend connects to the Ethereum
network through an Ethereum node’s execution client. However, the full node
must also contain a consensus client as it is responsible for receiving blocks from
the network and pass them to the execution client which keeps the locally stored
blockchain up to date. [23]

Geth [45] is created by the Ethereum Foundation as an official execution client
for Ethereum networks, written in the Go programming language. It is the most
used execution client, which is the reason for it to be chosen as the execution client
in the Ethereum node setup in this project [46]. Geth exposes a JSON-RPC server

52 Chapter 5. Implementation

on http://localhost:8545 which the frontend can query to get data from the
blockchain.

Lighthouse [47] is one of the two most used consensus clients [48], which are
responsible for the proof-of-stake consensus protocol in combination with other
validation nodes. Lighthouse validates blocks from other consensus nodes with the
blockchain data stored on Geth. This will ensure that the locally stored blockchain
is synchronized with the state of the blockchain network and that the SENTINEL
frontend has access to all blocks from the past and in the future.

5.7 Frontend Implementation

The frontend is an important component for SENTINEL, as it is how the asset
owners and vendors interact and use the system. Important implementation details
about the frontend are described in this section.

5.7.1 Framework

React.js is chosen as the frontend framework for the development of the frontend
to SENTINEL. This framework is chosen because it is the most popular JavaScript
frontend framework, according to the 2022 developer survey conducted by Stack
Overflow [49]. With React.js being the most popular, it is reasonable to assume
more support is available for issues regarding Web3 frontend development and
frontend development in general.

The SENTINEL frontend is implemented as a Single Page Application (SPA).
With the use of SPA, the frontend is loaded entirely on the first request, and will
not have to request resources when navigating between pages.

5.7.2 Components

React components are the building blocks that make up the frontend. The compo-
nents include the actual UI elements which a user can see and interact with, and
contain functionality to change the state of the component. The frontend is built of
components in a tree-like structure, with a root component called Index.js, where
other components branch from.

Screenshots of the frontend UI can be seen in Appendix B.

To simplify the implementation and focus on functionality, UI components are
built with Bootstrap React components [50]. Bootstrap is an open source library
with HTML, CSS, and JavaScript for a collection of components. Bootstrap React

http://localhost:8545

5.7. Frontend Implementation 53

is a version of Bootstrap ported to React by a GitHub community. The compo-
nents have standardized themes and can be implemented directly into the React
components to build the UI. Using Bootstrap saves development time that would
otherwise be used to create these UI components.

5.7.3 Web3.js Integration

In order to read the events and other smart contract data from the Ethereum
blockchain, the frontend uses the Web3.js [51] JavaScript library. The library is
an abstraction over the Ethereum JSON-RPC API and makes it easier to implement
interactions with blockchain with the connected client in JavaScript code.

The Web3 client is used in the Web3Gateway class, which is a wrapping class
that contains the necessary Web3 functionality for the SENTINEL frontend. This
class includes fields to store the Web3.js API client instance, events from the AS,
event subscriptions, and methods to create transactions for the smart contracts. The
Web3Gateway integrates with the Geth execution client via ws://localhost:8546.
A web socket connection is used instead of HTTP, as subscribing to events is not
supported for HTTP connections.

One instance of Web3Gateway is stored in an outer component, where it is kept
active regardless of routing. It is used to keep the state of event subscriptions
and already discovered events, such that an asset owner does not have to wait
for the frontend to search through all announcements every time they access the
vulnerabilities page.

5.7.4 IPFS API Integration

The frontend integrates with the local IPFS node’s API, which should be exposed
on http://localhost:5001. The ipfs-http-client npm [52] package is used to
create the API client to the IPFS node. The IPFS client is created in an outer
component, where it remains usable on all frontend pages. The function creating
the IPFS client can be seen in Listing 5.19.

Listing 5.19: IPFS API client loading function in the frontend.

1 async function l o a d I p f s () {
2 var i p f s C l i e n t = c r e a t e ({
3 host : " 1 2 7 . 0 . 0 . 1 " ,
4 port : 5001 ,
5 protoco l : " ht tp "
6 }) ;
7 s e t I p f s (i p f s C l i e n t) ;
8 }

ws://localhost:8546
http://localhost:5001

54 Chapter 5. Implementation

When the API client is done loading it is passed to the child components where
it is used to download security advisories from on the vulnerabilities page, or
to upload security advisories to IPFS on the announcement pages. Passing the
client to child components ensures that the client is initialized with the correct
configuration to all components it is passed to.

On the vulnerabilities page, security advisories are downloaded from IPFS
upon request and automatically parsed from CSAF document to a human-readable
format. The information parsed from the CSAF document is pruned, such that only
relevant vulnerabilities are displayed.

5.7.5 User Settings

In SENTINEL, settings such as dependencies and account information are stored
in the browser’s local storage. This ensures that settings are persisted between
sessions and are easily readable on the various pages on the frontend. Data in local
storage that can be considered sensitive is encrypted, as explained in Section 5.7.6.

A part of the settings stored in local storage is the dependencies of the asset
owner. This information is parsed from a CDX SBOM document, and the product
identifiers for the dependencies are saved in local storage.

5.7.6 Password Encryption

In order to encrypt the data in local storage, the SENTINEL frontend uses PBKDF2
to derive an AES-GCM key, which is used to encrypt and decrypt the data. The
responsible function can be seen in Listing 5.20

Listing 5.20: The deriveAesKey function from the frontend. The function derives an AES-GCM key
from a provided password string.

1 s t a t i c async deriveAesKey (password , s a l t) {
2 const keyMaterial = await t h i s . computeKeyMaterial (

password) ;
3 const aesParams = {
4 name : "AES−GCM" ,
5 length : 256
6 }
7
8 const derivationParams = {
9 name : "PBKDF2" ,

10 s a l t : s a l t ,

5.7. Frontend Implementation 55

11 i t e r a t i o n s : 600000 ,
12 hash : "SHA−256 "
13 }
14
15 return window . crypto . s u b t l e . deriveKey (
16 derivationParams ,
17 keyMaterial ,
18 aesParams ,
19 true ,
20 [" decrypt " , " encrypt "]
21) ;
22 }

The key derivation method from SubtleCrypto [53] is used to derive an AES-
GCM cryptokey from a password string. The password is converted to bytes and
passed to the deriveKey method along with the PBKDF2 parameters and AES-
GCM parameters.

To ensure that the PBKDF2 algorithm provides adequate security, several con-
figuration considerations must be made. PBKDF2 applies a pseudo-random func-
tion, such as a cryptographic hash function, along with a salt, to some data and
repeats this many times to produce a key. As such, the choice of hash function, salt
size, and iteration count is important. [33, 34]

The hash function should be approved by NIST and should match the security
strength of the key that is derived. For local storage encryption, 256 bit AES-
GCM encryption is used, as in contrast to the encryption process in Section 4.7.5,
there are no storage limitations to consider. As such, the SHA-256 hash function is
chosen, as it matches the security strength of 256 bits when used in key derivation
functions. [33, 54]

It is recommended that the salt size is at least 16 bytes long and is generated
by a NIST approved random number generator. The SENTINEL frontend imple-
mentation utilizes the random number generator in the WebCrypto module [55] of
JavaScript to generate a 16 byte salt. [33, 34]

Finally, the number of iterations used in PBKDF2 is recommended to be as high
as possible while still being tolerable for the application. In their password guide-
lines, NIST recommends at least 10, 000 iterations, while OWASP recommends
600, 000 when using SHA-256. In the frontend, as seen in the derivationParams in
Listing 5.20, 600, 000 iterations are used. [33, 34, 56]

56 Chapter 5. Implementation

5.7.7 Confidential Advisory Process

In Section 4.7.5 the process of transmitting confidential advisories securely was
described. This process is simplified in the implementation from a user standpoint.

On the Confidential Settings page the asset owner can generate an RSA-OAEP key
pair. The public key is automatically uploaded to the specified PSC, thus making
it accessible to others. The private key is encrypted and saved to local storage for
decryption.

When the vendor intends to announce a confidential security advisory, they
can fill out the form on the Confidential Announcements page. Upon submitting the
form, the provided security advisory is encrypted using AES-GCM and uploaded
to IPFS. After a successful upload, a CID, corresponding to the location of the
advisory, is returned. This CID, along with the IV, a SHA-256 hash of the security
advisory, and the AES-GCM private key encrypted using the asset owner’s RSA-
OAEP public key, are emitted as an event on the Ethereum blockchain using the
PSC.

The asset owner, having added their PSC to their settings, will automatically
retrieve new events related to that smart contract. The advisory is automatically
downloaded from IPFS, decrypted using the corresponding RSA-OAEP private key
from local storage, and displayed to the asset owner on the Vulnerabilities page.

5.8 Continuous Integration & Deployment

Continuous integration was used during development to automate code analysis
and testing, thus adding additional quality control to new code. Continuous de-
ployment was used to automatically update the frontend when new changes were
made. The various workflows utilized for this are described in this section.

5.8.1 GitHub Workflows

As the code is saved on GitHub [57], the CI/CD pipeline can be automated with
the use of GitHub Workflows. A workflow is a set of jobs that describe what actions
should be made for that specific task specified by a YAML file. Workflows can be
triggered on specific events, such as commits to a pull request or when code is
committed to the main branch. This makes it useful to check for breaking changes
committed to a pull request and to deploy new versions when released. [58]

5.8.2 Dependabot Updates

Dependabot is used to automatically check for security patches and version up-
dates to dependencies of a GitHub repository. It can automatically create pull
requests and security alerts if updates or patches are available. [59]

5.8. Continuous Integration & Deployment 57

In the SENTINEL repository, Dependabot keeps the GitHub-Actions, utilized in
the workflows, up to date. The script can be seen in Appendix C.1. Additionally,
Dependabot also automatically creates security alerts for patches to vulnerable
npm packages used in the repository.

5.8.3 Smart Contract Analysis

In order to catch known vulnerable smart contract patterns, Slither is utilized.
Slither is a static analysis tool for solidity code, which finds vulnerabilities and
optimizations in smart contracts. [60, 61]

To run Slither in a GitHub workflow, slither-action is used, which enables Slither
analysis against the repository in workflows. slither-action allows GitHub Code
Scanning integration, which will create security alerts on the GitHub repository if
the analysis detects any vulnerabilities. The script can be seen in Appendix C.2. [62]

5.8.4 Integration Tests

During the development, the implementation code for the smart contracts and the
frontend was checked against a certain set of unit- and integration tests to make
sure that any changes would not break the code. The smart contract tests are run
with Truffle on any commits to a pull request.

As the frontend tests utilize an Ethereum blockchain connection, the test com-
mand for npm is customized. The npm test command that runs frontend tests
automatically create a local Ethereum blockchain instance with Ganache [63], run
the frontend test, and then remove the blockchain instance when the tests are com-
pleted. With this setup, the tests can be run locally and in GitHub actions.

5.8.5 Frontend Deployment

As mentioned in Section 4.6.1, the frontend is distributed via the IPFS network
under an IPNS name, such that users can access it from their local IPFS node.
Uploading the frontend build to the network is done using a GitHub workflow,
which can be found in Appendix C.5. The workflow is triggered on commits to
the main branch, which contains the code of the latest version of the SENTINEL
frontend. The workflow builds the frontend and uploads the build artifacts to an
IPFS node with the script in Listing C.6. The frontend build is uploaded to IPNS
on the specified IPFS node.

Chapter 6

Test & Assessment

To ensure that the implementation detailed in Chapter 5 conforms to the require-
ments specified in Section 4.3, several tests are performed. Additionally, important
characteristics such as security, scalability, availability, and cost of SENTINEL are
assessed in the chapter.

This chapter includes the following sections.

• Scalability Assessment

• Cost Assessment

• Availability Assessment

• Security Assessment

• Unit & Integration Testing

• System Testing

59

60 Chapter 6. Test & Assessment

6.1 Scalability Assessment

An important factor of SENTINEL’s usability is scalability. It is important that
SENTINEL and by extension the Ethereum network can support the amount of
transactions that users of SENTINEL will create when interacting with the sys-
tem. This section investigates if CVE’s current security advisory publication rate is
supported by SENTINEL and the Ethereum network.

6.1.1 Publication Rate of Security Advisories

Calculating the publication rate of all security advisories is an impossible task
because security advisories can be shared in confidentiality, and public security
advisories can be published many places. Therefore, the calculated publication
rate is not of all security advisories published everywhere. However, as SENTINEL
is supposed to be a decentralized alternative to centralized organizations, it is
useful to look at the publication rate of security advisories on CVE and NVD as an
estimate.

Table 6.1 shows the published security advisory statistics from 2016 to 2022 for
both CVE and NVD. The data shows a trend of increasing number of published
security advisories each year. The statistics are naturally similar for CVE and NVD,
as NVD is basing their vulnerability database on the content of CVE. [64, 65]

CVE statistics
Year 2022 2021 2020 2019 2018 2017 2016
Published 25,059 20,161 18,375 17,308 16,512 14,645 6,457
Daily average 68.65 55.24 50.34 47.42 45.24 40.12 17.69
Increase 24.29% 9.72% 6.16% 4.82% 11.27% 126.80% −0.57%

NVD statistics
Year 2022 2021 2020 2019 2018 2017 2016
Published 25,101 20,158 18,350 17,305 16,509 14,644 6,447
Daily average 68.77 55.23 50.27 47.41 42.49 40.12 17.66
Increase 24.52% 9.85% 5.49% 4.82% 12.74% 127.14% −0.62%

Table 6.1: CVE and NVD security advisories statistics from 2016 to 2022. [64, 65]

The data from 2022 is used as the target, that is, SENTINEL, and by extension
the Ethereum network, should at least be able to support this amount of security
advisory publications. However, as the trend is showing that the target will likely
increase in the future, it would be favorable for SENTINEL to support more than
what was disclosed in 2022, to continue to be usable in the future. Table 6.2 shows
a breakdown of the 2022 targets for SENTINEL to achieve.

6.1. Scalability Assessment 61

Interval Number of public advisories
Yearly 25,101
Monthly 2,092
Weekly 483
Daily 69
Hourly 3

Table 6.2: Security advisory publication targets that SENTINEL should achieve, broken down into
different intervals.

6.1.2 Ethereum Transaction Capacity

Since The Merge on September 15th 2022 to April 25th 2023 there have been an
average of 1, 061, 576 transactions per day on the Ethereum blockchain. However,
there has been an average of 165, 167 pending transactions which has never been
cleared entirely [66, 67]. This means that anyone who wishes to make a transaction
has to compete with other users to have their transaction selected for the next blocks.
To make sure that a transaction will be mined the shortest time possible, the user
can provide a higher priority fee, and pay more gas for the transaction, to incentivize
miners to choose that specific transaction for the next block.

6.1.3 Scalability Results

Assuming the number of transactions is 1, 049, 678 for a given day, and the number
of daily security advisories published is 69, the amount of announcement transac-
tions is only 0.000657% of all transactions on the Ethereum network for that day.
However, this number only takes the transactions that announce new public se-
curity advisories into account. Other transactions, such as contract deployment,
announcement for updates to public security advisories, and all transactions in
the private use case are not covered by that estimate. Even still, asset owners
and vendors are able to use SENTINEL to announce security advisories without
overwhelming the Ethereum network.

Another point is that the SENTINEL users can pay higher gas fees to in-
crease the chances of having their transaction chosen for a block. In contrast, if
users are not willing to pay the necessary gas fees, discussed in Section 6.2, then
their transaction can potentially be pending indefinitely. Users can use Layer 2
rollups [68], where transactions are executed off chain and bundled together in a
single Ethereum transaction, to minimize the transaction cost and increasing the
transaction throughput of the network. However, this comes at a cost as the Layer 2
operators often are centralized services. It should be noted that there are upgrades
planned for the Ethereum network which will increase its scalability. [68]

62 Chapter 6. Test & Assessment

6.2 Cost Assessment

As transactions in the Ethereum network cost money and these transactions are es-
sential for SENTINEL to function, it is in order to investigate the operation cost of
SENTINEL. The cost is measured in gas, as converting to a fiat currency is trouble-
some due to fluctuating exchange rate. However, it should be noted that the actual
gas used will also vary depending on the input data, and thus the cost assessment
in this section should not be taken as concrete values but only as approximate
values instead.

The formula for calculating the transaction cost is:

units o f gas used ∗ (base f ee + priority f ee),

where base fee is provided by the protocol and the priority fee is decided by the
transaction creator [69].

6.2.1 Methodology

The gas cost is calculated by making transactions to a locally run Ganache blockchain
instance, where gas used for the transactions is recorded from the transaction re-
ceipts. The Ganache blockchain uses the Petersburg Ethereum Virtual Machine
(EVM) version, which means the transaction cost may be different on blockchains
with a different EVM version.

In addition to the cost provided by the transaction receipts, the gas-estimate
function from the Web3.js [51] JavaScript library is run on all transactions. This
data is not presented for conciseness and readability reasons; however, it was found
that the estimation and the recorded gas are accurate most of the time.

6.2.2 Deployment Cost

Smart contracts must be deployed to the network for both the public and private
use cases. The deployment cost of SENTINEL smart contracts can be seen in Ta-
ble 6.3. It should be noted that the cost of the VSC deployment can vary depending
on the input variables for the constructor.

6.2. Cost Assessment 63

Contract Deployment Cost
Announcement Service 404,628 gas
Identifier Issuer Service 1,328,841 gas
Vendor Smart Contract 1,098,681 gas
Private Smart Contract 1,124,256 gas

Table 6.3: SENTINEL smart contract deployment gas cost.

6.2.3 Interaction Cost

Another element leading to the total cost is the Ethereum transactions made after
deployment to interact with the smart contracts. These transactions are fundamen-
tal functionality for the system. To collect data on the cost, the transactions are
created through the frontend, and are recorded to calculate how much gas each
transaction consumes. Transactions can change the state of the blockchain, and de-
pending on smart contract memory state, more storage could be allocated to store
new data. Therefore, the transactions are created ten times in sequence with the
same input data to more accurately capture the cost over a larger sample size.

Table 6.4 shows the cost of different transactions in SENTINEL as recorded
by the transaction receipts in the frontend. The data shows that for announcing
new security advisories, vendors can expect that the gas cost will differ. This is
due to the identifier generation from the IIS, which allocates memory to store the
identifiers in the smart contract memory.

Transaction Cost
Transaction min max avg
New announcement 88,903 gas 148,803 gas 100,900 gas
Update announcement 42,744 gas 42,744 gas 42,744 gas

Table 6.4: Gas cost of transaction for the public use case of SENTINEL.

Table 6.5 shows the cost of the transactions related to the private use case of
SENTINEL. The biggest cost is saving the RSA-OAEP public key in the smart con-
tract memory.

64 Chapter 6. Test & Assessment

Execution
Transaction min max avg
Update public key 45,192 332,884 73,961
Add to whitelist 44,790 44,790 44,790
Remove from whitelist 14,905 14,905 14,905
Announcement 40,423 40,423 40,423

Table 6.5: Cost comparison of private use case transactions in SENTINEL.

6.2.4 Cost Calculation

The cost of different blockchain transactions in SENTINEL can be seen in Table 6.6.
The transactions are grouped by their respective use case. In situations where the
gas for a transaction is not constant, the average cost over ten transactions is used
instead, apart from the operation of updating the public key. Here, the gas cost for
the first transaction is used to show an upper bound of cost, as this is when the
storage space is allocated.

From The Merge on September 15th 2022 to April 25th 2023, the average gas
price is 25.63 Gwei and the Ether exchange rate is $1,499. These prices are assumed
for the conversion in Table 6.6.

Public use case
Action Gas units Ether USD
Vendor deployment 1,098,681 gas 0.028159194 ETH $42.21
New announcement 100,900 gas 0.002586067 ETH $3.88
Update announcement 42,744 gas 0.001095528 ETH $1.64

Private use case
Action Gas units Ether USD
Private deployment 1,124,256 gas 0.02881468128 ETH $43.19
Update public key 332,884 gas 0.00853181692 ETH $12.79
Add to whitelist 44,790 gas 0.00114796770 ETH $1.72
Remove from whitelist 14,905 gas 0.00038201515 ETH $0.57
Private announcement 40,423 gas 0.00103604149 ETH $1.55

Table 6.6: Cost calculations for different blockchain specific operations of SENTINEL. Gas price
assumed to 25.63 Gwei and one Ether is $1,499.

The cost in Table 6.6 shows a large up-front payment to deploy the smart con-
tracts for the respective use cases, and the announcement of security advisories is
much lower in comparison. A caveat in the private use case is that most transac-
tions are part of the deployment of the smart contract and setup. This means that
the cost of deploying and setup in the private use case is actually $57.7.

6.3. Availability Assessment 65

6.3 Availability Assessment

In this section, the availability of security advisories published with SENTINEL is
assessed. Specifically, the time for security advisory announcements to be discover-
able and the time for security advisory uploaded to IPFS is investigated, as both of
these are necessary for asset owners to become aware of potential vulnerabilities.

6.3.1 Event Data Availability

No data have been published yet on transaction confirmation time after The Merge
in September 2022. As such, it is difficult to give an estimate on how long a
vendor will have to wait, before their announcements are stored in the blockchain.
However, Etherscan’s Gas Tracker [70] shows real-time estimates on the size of the
transaction fee which users should use, in order to be competitive in the miner
transaction selection. Observations on this page show, that paying near the highest
gas fees gives an estimated confirmation time of about 30 seconds, while paying
a lower priority fee offers an estimated confirmation time of around 3 minutes.
These timings assume that the base fee matches the required gas determined by
the Ethereum protocol.

When the transaction is first mined, it must wait for approximately 15 minutes
for the block to be finalized, which means that the block cannot be changed without
burning at least 33% of the total staked Ether, the cryptocurrency of Ethereum.
This means that asset owners and vendors should wait approximately 15 minutes
after the transaction is mined, before they should consider it valid. [71]

With this knowledge about confirmation and finality time, vendors can expect
their announcements to be available after 0.5 to 3 minutes and stored indefinitely
after about 15.5 to 18 minutes. However, this assumes that vendors pay competitive
gas fees and that miners will select the transaction to include it in a block.

6.3.2 Security Advisory Availability

The availability of security advisories uploaded to IPFS is an important part of the
general availability of SENTINEL, because if the security advisories are not avail-
able, the asset owners cannot take action against potential vulnerabilities. There-
fore, the availability of security advisories uploaded to IPFS, as is designed for
SENTINEL, is assessed.

In this availability assessment, two different IPFS nodes with different partic-
ipation time in the IPFS network are used: a well established node with three
months of participation and a new node with no previous participation. With this

66 Chapter 6. Test & Assessment

setup, the difference between newly and well established nodes is investigated.
The nodes are kept connected to the IPFS network for the duration of the assess-
ment. Each node is given a similar CSAF document [72] with modification to
ensure different IPFS content identifiers. With the security advisories uploaded
and pinned to the nodes, they are accessed through the https://ipfs.io/ipfs/
public gateway at different intervals to check if the file is accessible from the gate-
way. A document is considered inaccessible if the gateway suffers a timeout when
trying to access the document.

For the well established node, the security advisory document was available
practically immediately, which was not the case for the newly established node,
where the document was available within 30 minutes. When the security advi-
sories became available from the public gateway, they remained available for the
remainder of the requests because they are pinned and never removed from the
nodes by the garbage collector. The availability of security advisories with IPFS is
therefore acceptable for the use of SENTINEL, where security advisories are not
required to be available immediately.

6.4 Security Assessment

In Chapter 4, multiple security requirements were presented. In this section, SEN-
TINEL is assessed in relation to the requirements and smart contract security
guidelines.

6.4.1 Smart Contract Security

As mentioned in Section 5.1.1 development guidelines from Ethereum and Con-
senSys were followed during development. These guidelines focus on prevention
of common patterns and mistakes that make smart contracts vulnerable. Known
attacks are also considered in the smart contract security assessment.

Known Attacks

Multiple known smart contract attacks have been explored in relation to SEN-
TINEL, however, most are not applicable as the features they depend on are not
found in SENTINEL. Several relevant attacks and vulnerabilities which can directly
affect SENTINEL are discussed below. These known vulnerabilities are classified in
Smart contract Weakness Classification (SWC) where each weakness has a unique
identifier. [73]

SWC-107, known as reentrancy [74] is a potentially dangerous vulnerability
that can occur when smart contracts make external calls. In a reentrancy attack, a

https://ipfs.io/ipfs/

6.4. Security Assessment 67

malicious contract initiates a callback to the calling contract prior to the completion
of the first function invocation and before the state of the calling contract gets
updated. However, it can be avoided by using the checks-effects-interactions pattern,
as well as, by using locks. [74, 39]

In SENTINEL, the checks-effects-interactions pattern was followed where ap-
plicable. Additionally, only four external calls are made in SENTINEL smart con-
tracts, all in the VSC. The calls are made to the AS and the IIS, which both are
trusted smart contracts. In the case that they were malicious smart contracts, a
reentrancy attack would not be able to manipulate the state of the VSC, as no state
variables are modified after the external calls.

Another common attack is SWC-114 [75], also known as frontrunning, in which
an attacker manipulates the order of transactions to their gain. Because asset own-
ers explicitly have to whitelist trusted addresses, frontrunning is not impactful re-
garding security advisory announcements, as the attacker is not trusted and their
announcements would be ignored. As such, manipulating the order of announce-
ments would not provide any advantage.

SENTINEL, is vulnerable to SWC-128, Denial of Service (DoS) attacks with
block gas limit [76], however, the impact of such an attack is difficult to determine.
The fact that vendors would be unable to announce security advisories is detri-
mental to the entire security advisory dissemination process. Nonetheless, it is not
critical that advisories are announced the instant it is possible. As such, an attacker
would likely have to keep up the DoS attack for an extended period of time for it
to have a noticeable effect, all while expending large amounts of gas for the attack.

Another possible DoS attack is that an attacker could continue to register ven-
dors and saturate the vendor registry in the IIS. If 264 vendors are registered, new
vendors cannot register, thus leaving them excluded from the service. This would,
however, be very expensive, as the call to register a vendor must be received from
a smart contract, and each smart contract can only register once. As such, it is
reasonable to assume that it is infeasible for an attacker to register enough vendors
to deny usage of the IIS.

Analysis Tools

In addition to following the guidelines and checking common vulnerabilities, it is
recommended by both the Ethereum Foundation and ConsenSys to utilize analysis
tools to check smart contracts for vulnerabilities. For these purposes, Slither [60]
and Mythril [77] were utilized. Slither is a static analysis tool for Solidity code,
which finds vulnerabilities and optimizations in smart contracts. Mythril is a tool

68 Chapter 6. Test & Assessment

for security analysis of smart contracts. It utilizes symbolic execution, Satisfiability
Modulo Theories solving, and taint analysis to find vulnerabilities. [60, 61, 77]

The analysis results only found one potential vulnerability, which is the SWC-
115 vulnerability. This relates to the use of tx.origin in authorization, as poten-
tially malicious code can be executed if it is used in authorization mechanisms. In
SENTINEL, however, tx.origin is used to ensure that only smart contracts can
call specific functions. It is not used to authorize an address, thus not creating the
SWC-115 vulnerability. As such, the tools returned a false positive, in this case.

6.4.2 Cryptographic Key Management

In Section 4.7.5 several protection requirements were presented, of which four were
strictly required when handling cryptographic keys. SENTINELS compliance with
the four strictly required requirements is assessed in this section.

Confidentiality Protection

In SENTINEL, confidentiality protection should be provided in two cases.

1. When the AES-GCM private key is transported from the vendor to the asset
owner.

2. When the RSA-OAEP private key is stored in the browsers local storage.

In case 1, the AES-GCM private key is transmitted using KTS-OAEP, which is
a NIST approved key transportation method. When KTS-OAEP is employed in
SENTINEL, 3072 bit RSA-OAEP keys are used. This translates to 128 bits security
strength, which matches the security strength of the AES-GCM private key. As
such, confidentiality is protected in this case. [31]

In case 2, the RSA-OAEP private keys are encrypted using AES-GCM encryp-
tion when stored locally. The AES-GCM keys are 256 bits long, thus having 256
bits of security strength, which exceeds the 128 bits of the RSA-OAEP key. The
AES-GCM key is generated using PBKDF2, which is a NIST approved key deriva-
tion algorithm. SENTINEL uses the SHA-256 cryptographic hash function in its
PBKDF2 configuration, which results in a security strength of 256 bits, thus match-
ing the AES-GCM security strength.

Additionally, as mentioned in Section 4.8.1 and Section 5.7.6, proper guide-
lines and configurations are followed to provide secure key derivation. As such,
confidentiality protection is ensured in case 2.

6.4. Security Assessment 69

Integrity Protection

Integrity protection should be provided by SENTINEL in three cases.

1. When an AES-GCM key is transmitted via an event.

2. When an RSA-OAEP public key is written to a PSC.

3. When an RSA-OAEP private key is saved to local storage.

NIST’s key management guide specifies that integrity of a transmitted crypto-
graphic key can be verified if the recipient of the key can perform the intended
cryptographic operation correctly using the key. This method assumes that protec-
tion of the key is in place to protect against key manipulation from physical attacks,
where an attacker modifies the key via physical access to the machine, on which
it is stored. In all the abovementioned cases this means that if the asset owner,
whom is the recipient of the keys, can decrypt the encrypted security advisory and
wrapped AES-GCM key respectively, the integrity can be verified. [31]

It is worth noting that integrity verification of the RSA-OAEP public key is a
process consisting of the recipient manually informing the sender that the key is
invalid and as a result is inefficient. Providing a built-in integrity mechanism in
the PSC could improve the process.

Physical protection in case 1 and 2 is not as important because the keys are
stored on the Ethereum blockchain. As such, if an attacker were to modify these
keys physically they would have to access to a majority of the computers validating
the blockchain, which is infeasible for the Ethereum blockchain due to its size, thus
providing integrity protection.

Regarding case 3, which is stored locally on the asset owner’s machine, physical
protection is the responsibility of the asset owner. It is assumed that the asset
owner has taken precautions, such as authentication and disk encryption, to secure
the machine from physical attacks.

Association Protection

Association protection should be provided in four different cases in SENTINEL.

1. When an AES-GCM key is emitted in an event.

2. When the RSA-OAEP public key is stored on a PSC.

3. When the RSA-OAEP private key is stored locally.

4. When the IV used to encrypt locally stored data is stored locally.

70 Chapter 6. Test & Assessment

In case 1, association protection is provided by including the location to retrieve
the ciphertext and the related IV. The sender, who is also authorized to use the key,
is known via the address of the transaction creator.

In case 2 association protection is achieved as the key-pair owner is known to
be the owner of the PSC which stores the public key. This party is also in pocession
of the private key. Furthermore, the usage of the RSA-OAEP public key is specified
in SENTINEL, both in the smart contracts and on the frontend.

In case 3, the association protection is achieved as the RSA-OAEP private key
is stored locally along with the necessary information. This information includes
the address of the smart contract, on which the related public key is stored. The
key-pair owner is known implicitly, as this is the user of the system. Usage of the
key is specified in the SENTINEL frontend.

Finally, in case 4, association protection is provided by storing the IV related to
each distinct message alongside the ciphertext.

Availability Protection

Availability protection can be provided by storing backups of keys in key archives
or other backup systems. NIST recommends that use of backup systems for cryp-
tographic keys is determined based on the needs of the application, however, it is
not strictly required to back up any keys according to their guidelines. [31]

The SENTINEL prototype does not implement any backup storage options for
cryptographic keys, as it was omitted due to requirements prioritization.

6.4.3 Password Encryption Assessment

In Section 4.8.1 multiple requirements for password encryption from NIST were
introduced. The requirements are specified as strictly necessary, however, four of
them are not fulfilled in SENTINEL.

The requirement for randomly generated passwords is not fulfilled, as SEN-
TINEL does not provide any service to automatically generate passwords or pin
codes. As such, this requirement is irrelevant.

The requirement regarding password comparison to compromised passwords,
dictionary word and sequential characters, has not been fulfilled due to time con-
straints. Because this project outlines a prototype, this requirement was not priori-
tized as the focus of development was on feature implementation.

The requirements regarding rate-limiting and protected communication chan-
nels are irrelevant to SENTINEL, as the frontend is run locally in the browser. If

6.5. Unit & Integration Testing 71

a rate limit was introduced, a malicious user could simply change or remove it by
modifying the JavaScript. Encryption and protected communication is irrelevant,
as the password never leaves the local machine. As such, these requirements have
not been implemented.

6.5 Unit & Integration Testing

This section describes how the different parts of the system were tested during
development. The tests cover all different components, that is, smart contracts and
frontend in both public and private use cases.

6.5.1 Unit Testing

For unit testing, the Node.js module Mocha was utilized for both frontend and
smart contracts. Mocha was especially practical for testing smart contracts, as it is
already integrated with Truffle. As such, Truffle’s features such as smart contract
deployment to Ganache, smart contract calls and transactions are available to use
in Mocha unit tests. Additionally, Truffle-Assertions, an add-on package to Mocha,
was used to allow more detailed checks of reverts.

In smart contracts, it is important to avoid bugs as they can be hard, if not
impossible, to patch once the smart contract is deployed. Therefore, when unit
testing smart contracts, it is especially important to cover as many cases as possible.
The smart contracts in SENTINEL have unit tests to cover all the functionality of
the smart contracts.

The SENTINEL frontend primarily consists of React.js components, in which
most of the functionality is used to change the user interface. However, unit tests
are created for standalone JavaScript components such as the CSAF parser and the
Web3Gateway.

6.5.2 Integration Testing

Integration testing was utilized during and at the end of development to test the
SENTINEL components in integration. This ensures that the interfaces between the
components are working as intended and that any breaking changes introduced in
one component is caught before it breaks other components.

In order to test the integration between the frontend and the smart contract,
the frontend must integrate with an Ethereum network. During development, the

72 Chapter 6. Test & Assessment

Ethereum integration was tested using a local blockchain instance where the smart
contracts were deployed to. As mentioned in Section 5.8.4, the npm test command
automatically creates a blockchain instance which the frontend integration tests
interact with.

The Ethereum integration tests ensures that the methods on the smart contracts
exist, can be called with specific input data, and execute as expected without re-
verting.

Integration with IPFS was tested using a local Kubo IPFS node. With this node,
the file upload and download from the frontend could be tested for both use cases.
This ensures that the frontend can integrate with the IPFS network as it was de-
signed to.

6.6 System Testing

A system test is conducted to ensure that all components, that is, the frontend,
smart contracts, IPFS node, and Ethereum node, integrate and achieve the desired
functionality when combined. In this test, all integrations from the frontend to the
individual components and frontend functionalities are tested.

6.6.1 Test Procedure & Setup

To test the two distinct use cases in SENTINEL, the following procedure is used.
Each use case is divided into a set of features that must work as intended in order
for the use case to satisfy the system requirements. Each feature has unique success
criteria which is verified using data collected from the blockchain, as well as, state
changes on the frontend. Based on the collected data, the system is evaluated
depending on the collective success criteria of all features.

For the system test, SENTINEL is deployed in the Sepolia Ethereum testnet [78].
This includes deployment of an AS, an IIS, a VSC, and a PSC as they are described
in Chapter 4 and Chapter 5. A custom script is developed to deploy the smart con-
tracts to the testnet. The SENTINEL smart contracts are deployed to the following
addresses:

• Announcement Service: 0xbdBc312f3dc75a6D47D7Eaa7E6a4BBFbb07f09fc

• Identifier Issuer Service: 0x577a791f4033F7905b822664ff0E1a74dbe5EF70

• Vendor smart contract: 0xF472cebcd32953E165eD35B51708a796EEA76A34

• Private smart contract: 0xFfb2234E55D1D238fE8b80Ef6e4f435AC89c375d

6.6. System Testing 73

All the smart contracts have been deployed from the same account address
(0x84Ed2d4aF7C11E637Beab9F08677937B7994c07E) and the system test is performed
from the same address. All transactions are public and can be browsed at https:
//sepolia.etherscan.io

The frontend is published to IPFS where it is downloaded and accessed from a
local IPFS gateway and utilizes the corresponding IPFS API to retrieve data from
IPFS, as explained in Section 4.6.1 and Section 5.6.1.

During the system test, success and failure data is recorded. For integrations
with Sepolia, this data is the receipts of the transactions that are executed and
added to a block in the case of success and reverted in the case of failure. For
IPFS integrations, recorded data is the accessibility and integrity of the security
advisories. Recorded data for the frontend specific functionality is the success of
storing data in the browser’s local storage and the encryption and decryption of
stored data.

The plan for the system test is located in Appendix D.

6.6.2 Test Results

As the system test is used to test the integration of components and the capabilities
of the entire system, the results from the test is evaluated by which requirements
from Section 4.3.2 have been fulfilled. Table 6.7 shows the requirements with a
symbol to indicate the level of fulfillment. Each requirement can either be fully,
partially, or not fulfilled as indicated with ✓, ≈, and × respectively.

https://sepolia.etherscan.io
https://sepolia.etherscan.io

74 Chapter 6. Test & Assessment

Must have Should have
✓ Announce public security advisories ✓ Filter advisories on vendor
✓ Announce private security advisories ✓ Announce updates to advisories
✓ Discover security advisories ✓ Discover advisory updates
✓ Load dependencies from SBOM ✓ Manage confidential agreements
✓ Filter advisories on dependencies × Persistent storage of settings
✓ Present security advisory content ≈ Contract deployment
✓ Integrate with storage system ≈ Account management
✓ Security advisory identification
✓ Vulnerability identification
Could have Won’t have
× Support multiple storage systems
× Support multiple advisory formats
× Support multiple SBOM formats

Table 6.7: Requirement fulfillment based on the system test.

All must have requirements are fulfilled, alongside a small majority of the
should have requirements. As such, it can be concluded that the components have
been successfully implemented and integrated.

Even though the system test shows that the SENTINEL prototype implemented
in this report fulfills the majority of the requirements created, there are issues as
well. Foremost, during the system test, little guidance were given to the tester from
the frontend, which made it difficult to navigate unless they have had training.
This resulted in errors being made, even though the tester was well versed in the
system. Shown in Figure 6.1 are 4 out of 22 transactions made during the system
test, where two of them are reverts, meaning some error was made when creating
the transactions. This proves that, while SENTINEL is functioning as a prototype,
more work should be made to help users interact with the system successfully.

Figure 6.1: Two reverting transactions created during system testing.

Chapter 7

Discussion

In this chapter, several interesting topics raised during and from this project are
discussed. The discussion covers many parts of the development, such as design
decisions and the development process.

7.1 Previous Work

In previous work [1] a design for SENTINEL was proposed alongside a proof of
concept. However, the design for SENTINEL has undergone significant changes
when more knowledge on DApp development was acquired. Even still, the pro-
posed design from previous work was vital in the development of SENTINEL, as
it was a starting point from which the different components were based and ex-
panded upon. Moreover, the design created in this project also underwent several
iterations with definitive modifications.

Furthermore, the investigation into the problem area and technologies in pre-
vious work was fundamental for the design decisions made in the project, which
solidifies the importance of the previous work even further.

7.2 Non-repudiation

As mentioned in Section 4.3.1, non-repudiation as a characteristic is a system re-
quirement which SENTINEL should adhere to. Non-repudiation is introduced in
SENTINEL by using the Ethereum blockchain to announce security advisories, and
store the announcement indefinitely. This is useful for vendors to prove that they
have disclosed some vulnerability in a timely manner.

However, another part of non-repudiation is the availability of security advi-
sories documents. IPFS as a decentralized data storage system does not provide
non-repudiation with the setup of SENTINEL explained in Section 4.6.1. There-

75

76 Chapter 7. Discussion

fore, vendors cannot prove the accessibility of security advisories that they have
announced.

Non-repudiation for both the announcement and accessibility of security ad-
visories is useful for vendors if they are ever required by law to prove they have
disclosed a vulnerability in due time. If SENTINEL should be adopted for this,
another storage system that provide proof-of-storage should be used instead of a
self-hosted IPFS node. For example, Swarm [15] provides functionality for long
term storage, where storage nodes provide continuous proofs that the security
advisory is available.

7.3 Frontend Distribution

In Section 4.6.1 it is described that the SENTINEL frontend is accessible via IPNS
such that users are able to access the frontend from the same IPNS name all the
time, which is not possible with standard IPFS content, if the frontend code should
ever change. In order to achieve this, an IPFS node must publish the IPNS name.
This creates a centralized component, which is undesirable for SENTINEL. There-
fore, it may be preferred to distribute the frontend as ordinary IPFS content and
advertise the new content identifier after updates. Even still, the frontend has to
be uploaded to a IPFS node to be distributed in the IPFS network.

7.4 Development Process

During the development of SENTINEL, the process defined in Appendix E was
followed. As specified, the process follows Agile principles. Due to inexperience
with DApp development, Agile would allow changes to the design if new infor-
mation came to light, without large repercussions and time loss. It would also
enable modifications and optimizations to the process through retrospectives, if
something did not work as expected.

In Appendix E.5 two timelines are illustrated: one described the planned time
allocation, and one depicting the actual time allocation. As illustrated, signifi-
cantly more time was spent on implementation than anticipated. This stems from
the many technologies, such as React.js, Ethereum, IPFS, and Solidity, which took
longer to learn than anticipated.

It was, however, possible to reduce time for testing, as much of the planning
and tooling for it was handled quickly, which allowed the sprints to be finished at
the original goal.

7.5. Security Concerns 77

7.5 Security Concerns

In Section 4.7.5 the process and methods used to keep confidential security advi-
sories encrypted are described. Among these details, it is specified that a security
strength of 128-bits is used to ensure confidentiality. While this is an acceptable
security strength according to NIST’s guidelines regarding both the strength and
the timeframe in which it will be secure, it was chosen because it was the cheapest
option that was approved by NIST, as storage on the Ethereum blockchain can be
expensive.

However, when handling confidential and potentially highly critical security
advisories, having the highest possible security strength might be preferable to
saving money on storage. If AES-GCM with 256-bit keys, and therefore 256-bit
security strength, were to be used instead, it would also require larger RSA-OAEP
keys. The size of the RSA-OAEP keys would increase from 3072 bits to 15360 bits,
which in turn will cause a significant increase in gas usage.

In Section 6.4.3 several requirements for secure password encryption, which are
omitted from SENTINEL, are described. Two of these requirements could result in
considerably reduced security of the password encryption used to protect locally
stored data. Firstly, if SENTINEL could generate random passwords for the user,
passwords would likely have a higher entropy. Secondly, if SENTINEL could check
for compromised password, dictionary words, sequential characters, when users
create a password they will be more secure against dictionary attacks [79].

7.6 Ethereum Considerations

As mentioned in Section 6.4.1, SENTINEL is, as many other DApps, vulnerable
to Denial of Service attacks. As such, attackers can extend the time for security
advisories to be announced to the network. However, if such an attack is executed,
the attackers would have to keep the DoS attack going for a long time for the
attack to have any significant impact, as it is not detrimental if the publication of a
security advisory is delayed by a short period. Furthermore, the cost of the attack
will increase exponentially due to the design of the Ethereum protocol [69]. As
such, a DoS attack against SENTINEL is possible, however, to have any significant
effect, adversaries would have to provide an extreme amount of Ether at their
disposal.

As detailed in Section 6.1, Ethereum transactions made by SENTINEL do not
overwhelm the network. However, the assessment only considers historical data
from The Merge in September 2022. If the network sees an increase in traffic com-
pared to this data, the gas fees will increase and asset owners and vendors will

78 Chapter 7. Discussion

have to pay more to use SENTINEL, which could disincentivize its use. Further-
more, an increase in the exchange rate regardless of network traffic could increase
the cost of transactions when users have to purchase Ether.

In the future, Ethereum is aiming to be able to handle more than 15 transactions
per second with upgrades to the network [68], which makes it cheaper to use and
more scalable. However, until such upgrades are introduced, users of SENTINEL
introduce a minute traffic load to the Ethereum network.

7.7 System Test Result

The system test in Section 6.6 showcased that most of the desired requirements
and functionality from Section 4.3.2 were successfully implemented in the SEN-
TINEL prototype. However, the system test also demonstrated that the system is
fragile in that transaction reverts can easily happen with small errors. With the
restricted time for the development of the frontend in this project, the focus was
on development of features and not on error handling and usability, which causes
the frontend to be fragile.

Chapter 8

Conclusion

In this project, a novel system to improve the dissemination and discovery of se-
curity advisories was designed, implemented, and tested. The system, named
SENTINEL, makes use of the Ethereum blockchain and smart contracts to auto-
mate and decentralize the process of announcing security advisories, which are
distributed via IPFS. Additionally, a web-based graphical user interface has been
developed to ease user interactions with these web3 technologies and to improve
automation. With SENTINEL, asset owners can automatically discover vulnerabil-
ities for their software dependencies, and vendors can disclose vulnerabilities in
both public and confidential contexts.

With the integration to the Ethereum blockchain, assessments made show that
SENTINEL has a nearly negligible impact on the blockchain network traffic and
that the transactions announcing new security advisories are economically viable.
Furthermore, the assessments illustrated that security advisories are quickly avail-
able such that asset owners are expeditiously aware of any vulnerabilities in their
dependencies.

A security assessment of SENTINEL showed that, the smart contracts devel-
oped for SENTINEL are secure against common and known attacks, and the pro-
cesses that SENTINEL use are secure such that confidential information is not
leaked.

A system test of SENTINEL, conducted on an Ethereum testnet, proves that
SENTINEL works in the intended environment and fulfill most requirements envi-
sioned for SENTINEL. Furthermore, the system tests shows that asset owners and
vendors can use SENTINEL to disseminate and discover security advisories in an
efficient and economically viable manner.

79

Chapter 9

Future Work

Several ideas for expansion and improvement of the SENTINEL prototype are de-
tailed in this chapter. These ideas are suggestions of what would be interesting
additions to SENTINEL.

9.1 System Features

As outlined in Section 6.6, there are some features from the requirement analysis
that have not been implemented in the prototype for this project. A natural next
step for SENTINEL would be to implement the missing features. Furthermore, it
would be interesting to gather information from actual asset owners and vendors
to investigate if more system requirements should be specified and implemented.
As such, SENTINEL could include more functionality which the users find useful.

9.2 Security Advisory Formats

In this project, CSAF v2.0 [7] was chosen as the only format supported for security
advisories in the SENTINEL prototype. Furthermore, as explained in Section 4.4.3,
only a specific structure of the product tree in CSAF documents is supported. This
restriction can disincentivize some vendors from using SENTINEL if the format
and structure does not suit them. As such, it would add value to certain vendors
if SENTINEL supported the entirety of the CSAF specification and other security
advisory formats.

9.3 Encryption Strength

As mentioned in Section 7.5, while confidential advisories currently are locked to
a security strength of 128-bits, some users may prefer to use stronger encryption,

81

82 Chapter 9. Future Work

such as AES with 256-bit keys. For SENTINEL to support this, only minor mod-
ifications would be required on the frontend, allowing users to choose between
different strengths. The PSC technically already supports this, as the state variable
storing both the RSA-OAEP key and the event data property storing the AES-GCM
key are dynamically allocated.

9.4 Extensibility

To enable further extension to SENTINEL, an additional data field could be added
to every announcement event. This field could include metadata or data required
for new features on the frontend, while not requiring further changes to the smart
contracts. Such changes could include new or custom encryption schemes, quality
of life features, or simply metadata for further automation.

9.5 Frontend Usability

From the system test in Section 6.6 it was concluded that the frontend needs more
error handling to increase usability and reduce the chance of errors. The frontend
should handle potential errors before a transaction is created, such that the user
funds are not wasted on a transaction that will revert. Conducting a usability test
can help pinpoint flaws in the user interface and error-prone parts of the frontend
where the error handling functionality should be implemented.

9.6 Automatic Vendor Whitelisting

Currently, asset owners must manually whitelist vendor addresses which they
want to receive public security announcements from. This process can be error-
prone, and adversaries could potentially be whitelisted by mistake. A solution
could be to provide the addresses that should be whitelisted in some formal doc-
ument, which the asset owners can inject into the SENTINEL frontend. One such
approach is to include the addresses in SBOM documents, which can be parsed
into the frontend and whitelist vendors automatically.

Bibliography

[1] Jannik Lucas Sommer and Magnus Mølgaard Lund. Automating Dissemina-
tion and Discovery of Security Advisories on Web3: Design and Proof of Concept.
2023. url: https://projekter.aau.dk/projekter/da/studentthesis/
automating- dissemination- and- discovery- of- security- advisories-
on- web3- design- and- proof- of- concept(d1fb7370- 0020- 4ee7- 8018-
1d067a8b90f1).html.

[2] Stephen Hendrick and Jim Zemlin. The State of Software Bill of Materials (SBOM)
and Cybersecurity Readiness. 2022. url: https://www.linuxfoundation.org/
research / the - state - of - software - bill - of - materials - sbom - and -
cybersecurity-readiness.

[3] James Wetter and Nicky Ringland. Understanding the Impact of Apache Log4j
Vulnerability. 2021. url: https : / / security . googleblog . com / 2021 / 12 /
understanding-impact-of-apache-log4j.html (visited on 11/20/2022).

[4] Roshni R Ramnani, Karthik Shivaram, and Shubhashis Sengupta. “Semi-
automated information extraction from unstructured threat advisories”. In:
Proceedings of the 10th Innovations in Software Engineering Conference. 2017,
pp. 181–187.

[5] ConsenSys. A Guide to Events and Logs in Ethereum Smart Contracts. url:
https://consensys.net/blog/developers/guide-to-events-and-logs-
in-ethereum-smart-contracts/ (visited on 05/18/2023).

[6] Dai Clegg and Richard Barker. Case Method Fast-Track: A Rad Approach. USA:
Addison-Wesley Longman Publishing Co., Inc., 1994. isbn: 020162432X.

[7] OASIS CSAF Technical Committee. Common Security Advisory Framework Ver-
sion 2.0. 2022. url: https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-
v2.0.html.

[8] OWASP Foundation. CycloneDX. url: https://cyclonedx.org (visited on
05/23/2023).

[9] SPDX Workgroup. Software Package Data Exchange. url: https://spdx.dev/
(visited on 05/23/2023).

83

https://projekter.aau.dk/projekter/da/studentthesis/automating-dissemination-and-discovery-of-security-advisories-on-web3-design-and-proof-of-concept(d1fb7370-0020-4ee7-8018-1d067a8b90f1).html
https://projekter.aau.dk/projekter/da/studentthesis/automating-dissemination-and-discovery-of-security-advisories-on-web3-design-and-proof-of-concept(d1fb7370-0020-4ee7-8018-1d067a8b90f1).html
https://projekter.aau.dk/projekter/da/studentthesis/automating-dissemination-and-discovery-of-security-advisories-on-web3-design-and-proof-of-concept(d1fb7370-0020-4ee7-8018-1d067a8b90f1).html
https://projekter.aau.dk/projekter/da/studentthesis/automating-dissemination-and-discovery-of-security-advisories-on-web3-design-and-proof-of-concept(d1fb7370-0020-4ee7-8018-1d067a8b90f1).html
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://consensys.net/blog/developers/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://consensys.net/blog/developers/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.html
https://cyclonedx.org
https://spdx.dev/

84 Bibliography

[10] National Institute of Standards and Technology. Software Identification (SWID)
Tagging. url: https://csrc.nist.gov/projects/Software-Identification-
SWID (visited on 05/23/2023).

[11] National Institute of Standards and Technology. Cryptographic Standards and
Guidelines. url: https://csrc.nist.gov/Projects/cryptographic-standards-
and-guidelines (visited on 05/01/2023).

[12] Holepunch. Hypercore. url: https://docs.holepunch.to/building-blocks/
hypercore (visited on 03/24/2023).

[13] Storj. Pricing. url: https://www.storj.io/pricing (visited on 03/24/2023).

[14] Sia Foundation. About Renting on Sia. url: https://docs.sia.tech/renting/
about-renting (visited on 03/24/2023).

[15] Viktor Trón. The book of Swarm. 2020. url: https://www.ethswarm.org/The-
Book-of-Swarm.pdf.

[16] Filecoin. Retrieval market. url: https://docs.filecoin.io/basics/what-
is-filecoin/retrieval-market/ (visited on 03/24/2023).

[17] Protocol Labs. Pin files using IPFS. url: https://docs.ipfs.tech/how-
to/pin-files/ (visited on 03/24/2023).

[18] Protocol Labs. Working with pinning services. url: https://docs.ipfs.tech/
how-to/work-with-pinning-services/ (visited on 03/24/2023).

[19] ArWiki. What is Arweave? url: https://arwiki.wiki/ (visited on 05/05/2023).

[20] IPFS GitHub Community. Using JS IPFS in the Browser. url: https://github.
com/ipfs/js-ipfs/blob/master/docs/BROWSERS.md#limitations-of-the-
browser-context (visited on 05/03/2023).

[21] IPFS. Nodes. url: https://docs.ipfs.tech/concepts/nodes/#nodes (visited
on 05/01/2023).

[22] Inc. Protocol Labs. Address IPFS on the web. url: https://docs.ipfs.tech/
how-to/address-ipfs-on-web/#dweb-addressing-in-brief (visited on
05/19/2023).

[23] Ethereum Foundation. Nodes and clients. url: https://ethereum.org/en/
developers/docs/nodes-and-clients/ (visited on 05/01/2023).

[24] The MITRE Corporation. Process. 2022. url: https://www.cve.org/About/
Process#CVERecordLifecycle (visited on 11/01/2022).

[25] National Institute of Standards and Technology. Block Cipher Techniques. url:
https://csrc.nist.gov/projects/block-cipher-techniques (visited on
05/02/2023).

https://csrc.nist.gov/projects/Software-Identification-SWID
https://csrc.nist.gov/projects/Software-Identification-SWID
https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines
https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines
https://docs.holepunch.to/building-blocks/hypercore
https://docs.holepunch.to/building-blocks/hypercore
https://www.storj.io/pricing
https://docs.sia.tech/renting/about-renting
https://docs.sia.tech/renting/about-renting
https://www.ethswarm.org/The-Book-of-Swarm.pdf
https://www.ethswarm.org/The-Book-of-Swarm.pdf
https://docs.filecoin.io/basics/what-is-filecoin/retrieval-market/
https://docs.filecoin.io/basics/what-is-filecoin/retrieval-market/
https://docs.ipfs.tech/how-to/pin-files/
https://docs.ipfs.tech/how-to/pin-files/
https://docs.ipfs.tech/how-to/work-with-pinning-services/
https://docs.ipfs.tech/how-to/work-with-pinning-services/
https://arwiki.wiki/
https://github.com/ipfs/js-ipfs/blob/master/docs/BROWSERS.md#limitations-of-the-browser-context
https://github.com/ipfs/js-ipfs/blob/master/docs/BROWSERS.md#limitations-of-the-browser-context
https://github.com/ipfs/js-ipfs/blob/master/docs/BROWSERS.md#limitations-of-the-browser-context
https://docs.ipfs.tech/concepts/nodes/#nodes
https://docs.ipfs.tech/how-to/address-ipfs-on-web/#dweb-addressing-in-brief
https://docs.ipfs.tech/how-to/address-ipfs-on-web/#dweb-addressing-in-brief
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://www.cve.org/About/Process#CVERecordLifecycle
https://www.cve.org/About/Process#CVERecordLifecycle
https://csrc.nist.gov/projects/block-cipher-techniques

Bibliography 85

[26] E. Barker and A. Roginsky. Transitioning the Use of Cryptographic Algorithms
and Key Lengths. Tech. rep. NIST Special Publication (SP) 800-131A, Rev. 2.
National Institute of Standards and Technology, 2019. doi: 10.6028/NIST.
SP.800-131Ar2.

[27] National Institute of Standards and Technology. ADVANCED ENCRYPTION
STANDARD (AES). Tech. rep. NIST Federal Information Processing Stan-
dards Publication (FIPS) 197. National Institute of Standards and Technology,
2001. doi: 10.6028/NIST.FIPS.197.

[28] National Institute of Standards and Technology. Block Cipher Modes. url:
https://csrc.nist.gov/projects/block-cipher-techniques/bcm (vis-
ited on 05/04/2023).

[29] Mozilla. SubtleCrypto: encrypt() method. url: https://developer.mozilla.
org/en-US/docs/Web/API/SubtleCrypto/encrypt (visited on 05/04/2023).

[30] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. Tech. rep. NIST Special Publication (SP) 800-38D.
National Institute of Standards and Technology, 2007. doi: /10.6028/NIST.
SP.800-38D.

[31] E. Barker et al. Recommendation for Cryptographic Key Generation. Tech. rep.
NIST Special Publication (SP) 800-57, Part 1, Rev. 5. National Institute of
Standards and Technology, 2020. doi: /10.6028/NIST.SP.800-57pt1r5.

[32] E. Barker et al. Recommendation for Pair-Wise Key Establishment Using Integer
Factorization Cryptography. Tech. rep. NIST Special Publication (SP) 800-56B,
Rev. 2. National Institute of Standards and Technology, 2019. doi: /10.6028/
NIST.SP.800-56Br2.

[33] P. A. Grassi et al. Digital Identity Guidelines - Authentication and Lifecycle Man-
agement. Tech. rep. NIST Special Publication (SP) 800-63B. National Institute
of Standards and Technology, 2020. doi: /10.6028/NIST.SP.800-63b.

[34] M. S. Turan et al. Recommendation for Password-Based Key Derivation. Tech.
rep. NIST Special Publication (SP) 800-132. National Institute of Standards
and Technology, 2010. doi: /10.6028/NIST.SP.800-132.

[35] OpenJS Foundation. Node.js. url: https://nodejs.org/en (visited on 05/23/2023).

[36] Truffle Suite. Truffle Suite. url: https://github.com/trufflesuite (visited
on 03/10/2023).

[37] Meta Open Source. React. url: https://react.dev (visited on 05/23/2023).

[38] Protocol Labs. Kubo. url: https : / / github . com / ipfs / kubo (visited on
05/11/2023).

[39] Ethereum Foundation. Smart contract security. url: https://ethereum.org/
en/developers/docs/smart-contracts/security/ (visited on 05/12/2023).

https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/projects/block-cipher-techniques/bcm
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/encrypt
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/encrypt
https://doi.org//10.6028/NIST.SP.800-38D
https://doi.org//10.6028/NIST.SP.800-38D
https://doi.org//10.6028/NIST.SP.800-57pt1r5
https://doi.org//10.6028/NIST.SP.800-56Br2
https://doi.org//10.6028/NIST.SP.800-56Br2
https://doi.org//10.6028/NIST.SP.800-63b
https://doi.org//10.6028/NIST.SP.800-132
https://nodejs.org/en
https://github.com/trufflesuite
https://react.dev
https://github.com/ipfs/kubo
https://ethereum.org/en/developers/docs/smart-contracts/security/
https://ethereum.org/en/developers/docs/smart-contracts/security/

86 Bibliography

[40] ConsenSys. Ethereum Best Practices - General Philosophy. url: https://consensys.
github.io/smart-contract-best-practices/general-philosophy/ (vis-
ited on 05/12/2023).

[41] ConsenSys. Ethereum Best Practices - Development Recommendations. url: https:
//consensys.github.io/smart-contract-best-practices/development-
recommendations/ (visited on 05/12/2023).

[42] OpenZeppelin. Strings.sol. url: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/Strings.sol (visited on 05/07/2023).

[43] OpenZeppelin. The standard for secure blockchain applications. url: https://
www.openzeppelin.com (visited on 05/05/2023).

[44] Inc. Protocol Labs. Protocol Labs. url: https : / / protocol . ai (visited on
05/18/2023).

[45] Ethereum Foundation. go-ethereum. url: https://geth.ethereum.org (vis-
ited on 05/15/2023).

[46] Ethereum Foundation. go-ethereum. url: https://geth.ethereum.org/docs
(visited on 05/15/2023).

[47] Sigma Prime. Lighthouse GitHub. url: https://github.com/sigp/lighthouse
(visited on 05/15/2023).

[48] Ether Alpha. Client Diversity. url: https://clientdiversity.org (visited
on 05/15/2023).

[49] Stack Overflow. 2022 Developer Survey. url: https://survey.stackoverflow.
co/2022/#technology (visited on 04/25/2023).

[50] Bootstrap React Community. Bootstrap React. url: https://react-bootstrap.
github.io (visited on 05/18/2023).

[51] Ethereum. Web3.js Documentation. url: https://web3js.readthedocs.io/
en/v1.8.1/ (visited on 01/08/2023).

[52] Inc. npm. npm. url: https://www.npmjs.com/ (visited on 05/23/2023).

[53] Mozilla Foundation. SubtleCrypto: deriveKey() method. url: https://developer.
mozilla.org/en-US/docs/Web/API/SubtleCrypto/deriveKey (visited on
05/18/2023).

[54] Dang. Q. Recommendation for Applications Using Approved Hash Algorithms.
Tech. rep. NIST Special Publication (SP) 800-107, Rev. 1. National Institute
of Standards and Technology, 2012. doi: /10.6028/NIST.SP.800-107r1.

[55] Mozilla Foundation. Crypto: getRandomValues() method. url: https://developer.
mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues (visited on
05/18/2023).

https://consensys.github.io/smart-contract-best-practices/general-philosophy/
https://consensys.github.io/smart-contract-best-practices/general-philosophy/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Strings.sol
https://www.openzeppelin.com
https://www.openzeppelin.com
https://protocol.ai
https://geth.ethereum.org
https://geth.ethereum.org/docs
https://github.com/sigp/lighthouse
https://clientdiversity.org
https://survey.stackoverflow.co/2022/#technology
https://survey.stackoverflow.co/2022/#technology
https://react-bootstrap.github.io
https://react-bootstrap.github.io
https://web3js.readthedocs.io/en/v1.8.1/
https://web3js.readthedocs.io/en/v1.8.1/
https://www.npmjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/deriveKey
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/deriveKey
https://doi.org//10.6028/NIST.SP.800-107r1
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues

Bibliography 87

[56] OWASP CheatSheets Series Team. Password Storage Cheat Sheet. url: https:
//cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_
Sheet.html (visited on 05/09/2023).

[57] Inc. GitHub. GitHub. url: https://github.com (visited on 05/15/2023).

[58] Inc. GitHub. About workflows. url: https://docs.github.com/en/actions/
using-workflows/about-workflows (visited on 05/15/2023).

[59] Inc. GitHub. Dependabot. url: https://github.com/dependabot/dependabot-
core (visited on 05/18/2023).

[60] Trail of Bits. Slither, the Solidity source analyzer. url: https://github.com/
crytic/slither (visited on 05/18/2023).

[61] J. Feist, G. Grieco, and A. Groce. “Slither: A Static Analysis Framework For
Smart Contracts”. In: (2019). arXiv: 1908.09878.

[62] Trail of Bits. Slither Action. url: https://github.com/marketplace/actions/
slither-action (visited on 05/18/2023).

[63] Truffle Suite. Ganache. url: https://github.com/trufflesuite/ganache
(visited on 03/10/2023).

[64] The MITRE Corporation. Metrics. url: https : / / www . cve . org / About /
Metrics (visited on 04/18/2023).

[65] The MITRE Corporation. Metrics. url: https : / / nvd . nist . gov / vuln /
search/statistics?form_type=Basic&results_type=statistics&search_
type=all&isCpeNameSearch=false (visited on 04/18/2023).

[66] Etherscan. Ethereum Daily Transactions Chart. url: https://etherscan.io/
chart/tx (visited on 04/18/2023).

[67] Etherscan. Ethereum Network Pending Transactions Chart. url: https://etherscan.
io/chart/pendingtx (visited on 04/18/2023).

[68] Ethereum Foundation. Scaling Ethereum. url: https://ethereum.org/en/
roadmap/scaling/ (visited on 04/18/2023).

[69] Ethereum Foundation. GAS AND FEES. url: https://ethereum.org/en/
developers/docs/gas/ (visited on 04/18/2023).

[70] Etherscan. GAS AND FEES. url: https://etherscan.io/gastracker (vis-
ited on 04/18/2023).

[71] Ethereum Foundation. Single slot finality. url: https://ethereum.org/ph/
roadmap/single-slot-finality/ (visited on 05/31/2023).

[72] OASIS CSAF TC. bsi-2022-0001.json. url: https://github.com/oasis-tcs/
csaf/blob/master/csaf_2.0/examples/csaf/cisco-sa-20180328-smi2.
json (visited on 05/23/2023).

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://github.com
https://docs.github.com/en/actions/using-workflows/about-workflows
https://docs.github.com/en/actions/using-workflows/about-workflows
https://github.com/dependabot/dependabot-core
https://github.com/dependabot/dependabot-core
https://github.com/crytic/slither
https://github.com/crytic/slither
https://arxiv.org/abs/1908.09878
https://github.com/marketplace/actions/slither-action
https://github.com/marketplace/actions/slither-action
https://github.com/trufflesuite/ganache
https://www.cve.org/About/Metrics
https://www.cve.org/About/Metrics
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://etherscan.io/chart/tx
https://etherscan.io/chart/tx
https://etherscan.io/chart/pendingtx
https://etherscan.io/chart/pendingtx
https://ethereum.org/en/roadmap/scaling/
https://ethereum.org/en/roadmap/scaling/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://etherscan.io/gastracker
https://ethereum.org/ph/roadmap/single-slot-finality/
https://ethereum.org/ph/roadmap/single-slot-finality/
https://github.com/oasis-tcs/csaf/blob/master/csaf_2.0/examples/csaf/cisco-sa-20180328-smi2.json
https://github.com/oasis-tcs/csaf/blob/master/csaf_2.0/examples/csaf/cisco-sa-20180328-smi2.json
https://github.com/oasis-tcs/csaf/blob/master/csaf_2.0/examples/csaf/cisco-sa-20180328-smi2.json

88 Bibliography

[73] Smart Contract Security. Smart Contract Weakness Classification Registry. url:
https://github.com/SmartContractSecurity/SWC-registry/ (visited on
06/07/2023).

[74] SmartContractSecurity. SWC-107. url: https://swcregistry.io/docs/SWC-
107 (visited on 05/24/2023).

[75] SmartContractSecurity. SWC-114. url: https://swcregistry.io/docs/SWC-
114 (visited on 05/30/2023).

[76] SmartContractSecurity. SWC-128. url: https://swcregistry.io/docs/SWC-
128 (visited on 05/25/2023).

[77] ConsenSys. Mythril. url: https://github.com/ConsenSys/mythril (visited
on 05/23/2023).

[78] Ehtereum Foundation. Sepolia Resources. url: https://sepolia.dev (visited
on 04/25/2023).

[79] L. Bošnjak, J. Sreš, and B. Brumen. “Brute-force and dictionary attack on
hashed real-world passwords”. In: 2018 41st International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics (MIPRO).
2018, pp. 1161–1166. doi: 10.23919/MIPRO.2018.8400211.

https://github.com/SmartContractSecurity/SWC-registry/
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-128
https://github.com/ConsenSys/mythril
https://sepolia.dev
https://doi.org/10.23919/MIPRO.2018.8400211

Appendix A

Frontend Mockups

This appendix chapter includes mockups of the various frontend pages in SEN-
TINEL.

A.1 Vulnerabilities Page Mockup

Figure A.1: Mockup of the vulnerabilities page on the frontend.

89

90 Appendix A. Frontend Mockups

A.2 Accounts Page Mockup

Figure A.2: Mockup of the accounts page on the frontend.

A.3. Settings Pages Mockup 91

A.3 Settings Pages Mockup

Figure A.3: Mockup of the settings page for the public use case on the frontend.

Figure A.4: Mockup of the settings page for the private use case on the frontend.

92 Appendix A. Frontend Mockups

A.4 Announcement Pages Mockup

Figure A.5: Mockup of the announcement page for the public use case on the frontend.

Figure A.6: Mockup of the announcement page for the private use case on the frontend.

Appendix B

Frontend Screenshots

This appendix chapter contains screenshots of the various pages of the SENTINEL
frontend.

B.1 Vulnerabilities Page Screenshots

Figure B.1: Screenshot of the vulnerabilities page on the SENTINEL frontend.

93

94 Appendix B. Frontend Screenshots

Figure B.2: Screenshot of the vulnerabilities page on the SENTINEL frontend with a public security
advisory selected and detailed.

Figure B.3: Screenshot of the vulnerabilities page on the SENTINEL frontend with a confidential
security advisory selected and detailed.

B.2. Accounts Page Screenshots 95

B.2 Accounts Page Screenshots

Figure B.4: Screenshot of the accounts page on the SENTINEL frontend.

96 Appendix B. Frontend Screenshots

B.3 Settings Pages Screenshots

Figure B.5: Screenshot of the public settings page on the SENTINEL frontend.

Figure B.6: Screenshot of the confidential settings page on the SENTINEL frontend.

B.4. Announcement Pages Screenshots 97

B.4 Announcement Pages Screenshots

Figure B.7: Screenshot of the public announcements page on the SENTINEL frontend.

Figure B.8: Screenshot of the confidential announcements page on the SENTINEL frontend.

Appendix C

GitHub Workflows

This appendix chapter contains the GitHub Workflows utilized for continuous in-
tegration and continuous deployment pipelines.

C.1 Dependabot Update Script

Listing C.1: Dependabot workflow to keep GitHub Actions up to date.

1 version : 2
2 updates :
3 - package−ecosystem : " github − a c t i o n s "
4 d i r e c t o r y : "/"
5 schedule :
6 i n t e r v a l : " da i ly "

C.2 Slither Smart Contract Analysis

Listing C.2: GitHub workflow file to run smart contract test with Truffle.

1 name : S l i t h e r Analysis
2 on : p u l l _ r e q u e s t
3 jobs :
4 analyze :
5 runs−on : ubuntu− l a t e s t
6 steps :
7 - uses : a c t i o n s /checkout@v3
8 - name : Setup NodeJS 16
9 uses : a c t i o n s /setup −node@v3

99

100 Appendix C. GitHub Workflows

10 with :
11 node−version : 1 6 . x
12 - name : I n s t a l l T r u f f l e
13 run : npm i n s t a l l t r u f f l e @ 5 . 7 . 6 −g
14 - name : I n s t a l l Dependencies
15 run : npm i n s t a l l
16 - name : T r u f f l e Compile
17 run : t r u f f l e compile
18 - name : Run S l i t h e r Analysis
19 uses : c r y t i c / s l i t h e r −action@v0 . 3 . 0
20 id : s l i t h e r
21 with :
22 s a r i f : r e s u l t s . s a r i f
23 f a i l −on : none
24 s l i t h e r −args : ’−− ignore −compile −− f i l t e r −paths

openzeppelin ’
25 - name : Upload SARIF f i l e
26 uses : github/codeql − a c t i o n /upload−sar i f@v2
27 with :
28 s a r i f _ f i l e : $ { { s teps . s l i t h e r . outputs . s a r i f } }

C.3 Truffle Smart Contract Test

Listing C.3: GitHub workflow file to run smart contract test with Truffle.

1 name : T r u f f l e Build
2 on :
3 pull_request :
4 jobs :
5 build :
6 runs−on : ubuntu− l a t e s t
7 steps :
8 - uses : a c t i o n s /checkout@v3
9 - name : Setup NodeJS 16

10 uses : a c t i o n s /setup −node@v3
11 with :
12 node−version : 1 6 . x
13 - name : Show NodeJS vers ion
14 run : npm −−vers ion
15 - name : I n s t a l l T r u f f l e
16 run : npm i n s t a l l t r u f f l e @ 5 . 7 . 6 −g

C.4. Frontend Integration Test 101

17 - name : I n s t a l l T r u f f l e Dependencies
18 run : npm i n s t a l l
19 - name : Run T r u f f l e Test
20 run : t r u f f l e t e s t

C.4 Frontend Integration Test

Listing C.4: GitHub workflow file to run frontend integration tests.

1 name : Frontend Tes ts
2 on :
3 pull_request :
4 jobs :
5 t e s t :
6 runs−on : ubuntu− l a t e s t
7 steps :
8 - uses : a c t i o n s /checkout@v3
9 - name : Setup NodeJS 16

10 uses : a c t i o n s /setup −node@v3
11 with :
12 node−version : 1 6 . x
13 - name : Show NodeJS vers ion
14 run : npm −−vers ion
15 - name : I n s t a l l Dependencies
16 run : npm i n s t a l l −− p r e f i x ./ frontend
17 - name : I n s t a l l Ganache CLI
18 run : npm i n s t a l l −g ganache
19 - name : Run Tes ts
20 run : npm t e s t −− p r e f i x ./ frontend

C.5 Frontend IPFS Deployment

Listing C.5: GitHub workflow file to deploy the frontend to IPFS.

1 name : Frontend IPFS deployment
2 on :
3 push :
4 branches :
5 - main
6 jobs :

102 Appendix C. GitHub Workflows

7 deploy :
8 runs−on : ubuntu− l a t e s t
9 steps :

10 - uses : a c t i o n s /checkout@v3
11 - name : Setup NodeJS 16
12 uses : a c t i o n s /setup −node@v3
13 with :
14 node−version : 1 6 . x
15 - name : I n s t a l l frontend dependencies
16 run : npm i n s t a l l −− p r e f i x ./ frontend
17 - name : Build frontend
18 run : npm run build −− p r e f i x ./ frontend
19 - name : I n s t a l l deployment dependencies
20 run : npm i n s t a l l −− p r e f i x . / . github/ s c r i p t s /

deployment
21 - name : Publ ish to IPFS
22 run : node . / . github// s c r i p t s /deployment/publish . j s $

{ { s e c r e t s . IPFS_HOST } } ./ frontend/build

Listing C.6: publish.js Javascript code used in the frontend IPFS deployment workflow.

1 import { c rea te , globSource } from " ip f s −http − c l i e n t " ;
2
3 const i p f s = await c r e a t e ({ u r l : process . argv [2] }) ;
4 console . log (" IPFS node connect ion e s t a b l i s h e d ") ;
5
6 //options s p e c i f i c to globSource
7 const globSourceOptions = { r e c u r s i v e : t rue } ;
8
9 //example opt ions to pass to IPFS

10 const options = { wrapWithDirectory : true , t imeout : 60000 } ;
11
12 var r e s u l t s = [] ;
13 for await (const f i l e of i p f s . addAll (globSource (process . argv

[3] . t o S t r i n g () , " * * / * " , globSourceOptions) , opt ions)) {
14 r e s u l t s . push (f i l e) ;
15 }
16 console . log (" IPFS d i r e c t o r y / f i l e s added to host node . ") ;
17
18 for await (l e t r e s u l t of r e s u l t s) {
19 i f (r e s u l t . path === ’ ’) { // t h i s i s the wrapping

C.5. Frontend IPFS Deployment 103

d i r e c t o r y
20 const r es = await i p f s . name . publish ("/ i p f s /" + r e s u l t

. c id . t o S t r i n g () , { key : " s e l f " }) ;
21 console . log (" IPNS key updated . ") ;
22 console . log (‘ h t tps : //gateway . i p f s . io/ipns/$ { re s . name

} ‘) ;
23 }
24 }

Appendix D

System Test Plan

This appendix chapter contains the test plan used in system testing. The test plan
is divided into two use cases, namely the public use case and the private use case.
Each use case covers different features and thereby require different test to verify.

D.1 Common Features

These features are used in both the public and private use case.

Choose password
Description A user of SENTINEL must create a password the first time

they visit the webpage.
How to conduct Load the webpage with no data in local storage. When

prompted for a password, type in a password.
Success criteria The password modal will close, and the information is re-

flected in local storage.

Login with password
Description A user of SENTINEL will be prompted to log in to the web-

page with their chosen password. The users should provide
the correct password.

How to conduct Open the webpage and type in the password.
Success criteria The password modal will close, and the user can interact

with the system and settings which have been encrypted with
the password.

105

106 Appendix D. System Test Plan

Settings: Upload dependencies from SBOM
Description An asset owner should be able to upload their dependen-

cies from a CycloneDX v1.4 SBOM document on the settings
page.

How to conduct Navigate to the settings page. Find and click on the file up-
load button under "Dependencies". Choose the right SBOM
document and click "Upload".

Success criteria The uploaded and parsing of the SBOM document is success-
ful if the UI is updated with the dependencies are shown in a
table under "dependencies" and is reflected in local storage.

Accounts: Add new account
Description A user of SENTINEL should be able to set up an account that

can be used to make transactions from.
How to conduct Navigate to the "Accounts" page and locate the "Setup new

account" section. Fill out the form with the required infor-
mation and press "Save account".

Success criteria The table of accounts is updated with the new account, the
information is reflected in local storage, and the account can
be chosen on other pages to make transactions from.

Accounts: Remove account
Description A user of SENTINEL should be able to remove an account

when they would no longer use it.
How to conduct Navigate to the "Accounts" page, locate the account that

should be removed, and press "Delete account".
Success criteria The table of accounts is updated without the removed ac-

count, the information is reflected in local storage, and the
account can no longer be chosen on other pages to make
transactions from.

Vulnerabilities: Refresh vulnerabilities
Description An asset owner should be able to manually refresh the vul-

nerabilities found on the vulnerabilities page.
How to conduct Navigate to the "Vulnerabilities" page and press "Refresh".
Success criteria Assuming that any vulnerability announcements are dis-

played, the page will clear of all vulnerabilities and repop-
ulate with the relevant vulnerability announcements.

D.2. Public Use Case 107

Vulnerabilities: Download security advisory
Description An asset owner should be able to download the security ad-

visory to find details not presented by SENTINEL.
How to conduct Navigate to the "Vulnerabilities" page and select a vulnera-

bility announcement. In the vulnerability details, locate the
"Download CSAF" button and press it.

Success criteria The selected security advisory will be downloaded as a CSAF
v2.0 document.

D.2 Public Use Case

These features are used in the public use case.

Settings: Add vendor to whitelist
Description Asset owners must whitelist vendor smart contracts on the

settings page in order to have their security advisories dis-
played on the vulnerabilities page.

How to conduct Navigate to the "Settings" menu and choose "General" and
locate the "Whitelisted vendors" section. Fill out the form
to add a new vendor to the whitelist and press the "Add"
button.

Success criteria The vendor smart contract is whitelisted when it is added to
the list of whitelisted vendors in the "Whitelisted vendors"
section, the information is reflected in local storage, and the
vendor’s security advisories are discoverable on the "Vulner-
abilities" page.

Settings: Remove vendor from whitelist
Description Asset owners can remove vendors from the whitelist when

they no longer want to subscribe to their security advisory
announcements.

How to conduct Navigate to the "Settings" menu and choose "General".
Locate the "Whitelisted vendors" section and find the
whitelisted vendor to remove and press the "Delete" button.

Success criteria The vendor smart contract is no longer whitelisted when the
table of whitelisted vendors is updated with the removed
vendor no longer present, the information is reflected in local
storage, and the vendor’s security advisories are no longer
discoverable on the "Vulnerabilities" page.

108 Appendix D. System Test Plan

Announcement: Announce new public security advisory
Description A vendor should be able to announce a new security advi-

sory in the form of a CSAF v2.0 document.
How to conduct Navigate to the "Announcement" menu and choose "Public".

Fill in required information in the "Announce new security
advisory" form. Press "Announce" and agree to the conse-
quences.

Success criteria A receipt is displayed upon announcing the security ad-
visory, a "NewSecurityAdvisory" event is emitted on the
Ethereum network, and the security advisory can be accessed
on IPFS using the given CID.

Announcement: Announce updated public security advisory
Description A vendor should be able to announce a security advisory

update in the form of a CSAF v2.0 document that is linked to
an existing advisory identifier and vulnerability identifier(s).

How to conduct Navigate to the "Announcement" menu and choose "Public".
Fill in required information in the "Announce updated se-
curity advisory" form. Press "Announce" and agree to the
consequences.

Success criteria A receipt is displayed upon announcing the security advi-
sory, a "UpdatedSecurityAdvisory" event is emitted on the
Ethereum network, and the security advisory can be accessed
on IPFS using the given CID.

Vulnerabilities: Discover and retrieve relevant public security advisories
Description An asset owner should be able to discover relevant security

advisories based on their dependencies and vendor whitelist.
Additionally, the asset owner should be able to retrieve and
read the security advisories.

How to conduct Assuming proper setup of general settings and an announced
advisory. Navigate to the "Vulnerabilities" page. Click on the
advisory on the page.

Success criteria An advisory entry can be seen on the "Vulnerabilities" page
showing the expected advisory identifier, vendor name, and
announcement date. CSAF v2.0 information is displayed
when expanding the advisory entry.

D.3. Private Use Case 109

D.3 Private Use Case

These features are only related to the private use case.

Confidential settings: Setup private smart contract
Description Asset owners should be able to set up private smart contracts

if they want to receive security advisories from in the confi-
dential settings page.

How to conduct Navigate to the confidential settings page and locate the
"Setup new contract" section. Fill out the form and press
"Save contract" button.

Success criteria The private smart contract added when the table of confi-
dential contracts is updated, the information is reflected in
local storage, and any advisories announced from the private
smart contract are displayed on the "Vulnerabilities" page.

Confidential settings: Remove private smart contract
Description Asset owners should be able to remove private smart con-

tracts from their settings when they no longer want security
advisory announcements from that smart contract.

How to conduct Navigate to the "Confidential" menu and choose "Confiden-
tial". Locate the private smart contract in the table under
"Your contracts" section and press "Delete contract".

Success criteria The private smart contract is removed when the table is up-
dated with the removed contract no longer present, the in-
formation is reflected in local storage, and any advisories an-
nounced from the private smart contract are no longer dis-
played on the "Vulnerabilities" page.

Confidential settings: Add vendor to whitelist
Description Asset owners should be able to whitelist specific addresses

that can interact with the private smart contract for a ven-
dor to announce security advisories on that particular smart
contract.

How to conduct Navigate to the "Settings" menu and select "Confidential".
Fill out the form under the "Manage Vendor Whitelist" sec-
tion and press "Add".

Success criteria A transaction receipt will be shown, and the address will be
added to a list of whitelisted vendors on the smart contract.

110 Appendix D. System Test Plan

Confidential settings: Remove vendor from whitelist
Description Asset owners should be able to remove addresses from the

whitelist on the private smart contract when a vendor should
no longer announce security advisories to it, from that spe-
cific address.

How to conduct Navigate to the "Settings" menu and select "Confidential".
Fill out the form under the "Manage Vendor Whitelist" sec-
tion and press "Remove".

Success criteria A transaction receipt will be shown, and the address will be
blacklisted on the private smart contract.

Confidential Settings: Update RSA-OAEP keys
Description An asset owner should be able to generate and update RSA-

OAEP key pairs related to a specific private smart contract.
How to conduct Navigate to the "Settings" menu and select "Confidential".

Fill out the "Update public key" form. Click "Generate Keys".
Click Update.

Success criteria A receipt is displayed upon updating the keys, the public
key is written to the "publicKey" state variable on the private
smart contract, and the private key is written to local storage.

Announcement: Announce confidential security advisory
Description A vendor should be able to announce a confidential security

advisory to a specific asset owner in the form of a CSAF v2.0
document.

How to conduct Navigate to the "Announcement" menu and choose "Confi-
dential". Fill in required information in the "Announce new
security advisory" form. Press "Announce" and agree to the
consequences.

Success criteria A receipt is displayed upon announcing the security advi-
sory, a "ConfidentialSecurityAdvisory" event is emitted on
the Ethereum network, and the security advisory can be ac-
cessed on IPFS using the given CID only by the asset owner.

D.3. Private Use Case 111

Vulnerabilities: Discover and retrieve relevant confidential security advisories
Description An asset owner should be able to discover relevant confiden-

tial security advisories from vendors. Additionally, the asset
owner should be able to retrieve and read the security advi-
sories.

How to conduct Assuming proper setup of confidential settings and an an-
nounced advisory. Navigate to the "Vulnerabilities" page.
Click on the advisory on the page.

Success criteria An advisory entry can be seen on the "Vulnerabilities" page
showing the expected advisory identifier, vendor name, and
announcement date. CSAF v2.0 information is displayed
when expanding the advisory entry.

Appendix E

Development Process

Due to the nature of the project and the lack of experience for the specific devel-
opment domain, the process of the project will be AGILE. This allows the develop-
ment of the project to be flexible for the large unknown problem domain of smart
contract development.

E.1 The Backlog

The development is divided into backlog items. These items are broken down
to small objectives which are prioritized for different sprints, based on the sprint
goal. Backlog items are both implementation features for the development of the
SENTINEL components, and report sections.

The backlog is used to get an overview of remaining work, both the overall
project and current sprint, and to track what work has been completed in the
individual sprints.

E.2 Iterations

We want to develop in sprints to keep the iterations short, but also long enough
to have substantial work. Each sprint will consist of two working weeks excluding
the weekends, for a total of 10 working days for each sprint. At the start of each
sprint, sprint planning will take place, where the backlog items will be refined
and selected for the upcoming sprint. When the sprint ends, the sprint review and
retrospective will begin. In the review, the work of the last sprint will be evaluated.
The overall process will be evaluated in the retrospective, where any issues will be
raised, and a potential solution will be suggested.

113

114 Appendix E. Development Process

E.3 Peer-reviews

Everything will be peer-reviewed to ensure the quality is high. Several methods
will be employed in this matter. Pull-requests will be used as a means to ensure
that each piece of new code is reviewed at least once by another developer. Pair
programming will be employed during implementation of smart contracts due to
our inexperience with Solidity and smart contract development. Regarding the
report, each new section is also peer-reviewed and revised in order to ensure a
consistent quality.

E.4 Documentation

Sprint reviews and retrospectives will be documented to monitor progress. Ad-
ditionally, daily logs will be recorded for future recollection and understanding.
These will be compiled into a single document for each sprint to describe it in
detail.

E.5 Time Allocation

In the beginning of the project, most of the time will be spent with implementation
and iterating upon the system. This will help the development in the right direc-
tion as we get more knowledge of the domain and can make better design and
implementation as soon as possible.

The design is largely based on previous work, but will be iterated on during
the implementation as changes are necessary. The planned time allocation for
development is illustrated in Figure E.1.

Figure E.1: A Gantt chart of the planned project time allocation.

In Figure E.2 a timeline of the project time allocation is illustrated. This timeline
depicts the actual time allocation in the project.

E.5. Time Allocation 115

Figure E.2: A Gantt chart of the actual project time allocation.

116 Appendix E. Development Process

	Front page
	English title page
	Preface
	Contents
	1 Introduction
	2 Previous Work
	2.1 Summary of Previous Work

	3 Problem Statement
	4 Design
	4.1 Event Concept
	4.2 User Interaction
	4.3 Requirements
	4.3.1 System Requirements
	4.3.2 Requirement Analysis

	4.4 Design Considerations & Assumptions
	4.4.1 Use of Centralized Services
	4.4.2 Operation Cost
	4.4.3 Security Advisory Format
	4.4.4 Software Bill of Materials Format
	4.4.5 Product Identification Scheme
	4.4.6 Encryption

	4.5 Storage System Design
	4.5.1 Decentralized Storage Systems
	4.5.2 Decentralized Storage System Choice

	4.6 System Overview
	4.6.1 System Architecture
	4.6.2 Public Use Case Component Interactions
	4.6.3 Private Use Case Component Interactions

	4.7 Smart Contract Design
	4.7.1 Announcement Service
	4.7.2 Identifier Issuer Service
	4.7.3 Vendor Smart Contract
	4.7.4 Private Smart Contract
	4.7.5 Security of Confidential Announcements

	4.8 Frontend Design
	4.8.1 Settings Storage
	4.8.2 Vulnerabilities Page
	4.8.3 Accounts Page
	4.8.4 Settings Pages
	4.8.5 Announcement Pages

	5 Implementation
	5.1 Development Environment
	5.1.1 Smart Contract Development

	5.2 Announcement Service Implementation
	5.2.1 Announcement Events
	5.2.2 Announcement Methods

	5.3 Identifier Issuer Service Implementation
	5.3.1 Identifier Issuer Service State Variables
	5.3.2 Register Vendor
	5.3.3 Request Advisory Identifier
	5.3.4 Request Vulnerability Identifiers

	5.4 Vendor Smart Contract Implementation
	5.4.1 Access Control
	5.4.2 Vendor Smart Contract State Initialization
	5.4.3 New Security Advisory Announcement
	5.4.4 Updated Security Advisory Announcement

	5.5 Private Smart Contract Implementation
	5.5.1 Vendor Whitelisting
	5.5.2 Encryption Key
	5.5.3 Confidential Announcement

	5.6 IPFS & Ethereum Nodes
	5.6.1 IPFS Node Integration
	5.6.2 Ethereum Node Integration

	5.7 Frontend Implementation
	5.7.1 Framework
	5.7.2 Components
	5.7.3 Web3.js Integration
	5.7.4 IPFS API Integration
	5.7.5 User Settings
	5.7.6 Password Encryption
	5.7.7 Confidential Advisory Process

	5.8 Continuous Integration & Deployment
	5.8.1 GitHub Workflows
	5.8.2 Dependabot Updates
	5.8.3 Smart Contract Analysis
	5.8.4 Integration Tests
	5.8.5 Frontend Deployment

	6 Test & Assessment
	6.1 Scalability Assessment
	6.1.1 Publication Rate of Security Advisories
	6.1.2 Ethereum Transaction Capacity
	6.1.3 Scalability Results

	6.2 Cost Assessment
	6.2.1 Methodology
	6.2.2 Deployment Cost
	6.2.3 Interaction Cost
	6.2.4 Cost Calculation

	6.3 Availability Assessment
	6.3.1 Event Data Availability
	6.3.2 Security Advisory Availability

	6.4 Security Assessment
	6.4.1 Smart Contract Security
	6.4.2 Cryptographic Key Management
	6.4.3 Password Encryption Assessment

	6.5 Unit & Integration Testing
	6.5.1 Unit Testing
	6.5.2 Integration Testing

	6.6 System Testing
	6.6.1 Test Procedure & Setup
	6.6.2 Test Results

	7 Discussion
	7.1 Previous Work
	7.2 Non-repudiation
	7.3 Frontend Distribution
	7.4 Development Process
	7.5 Security Concerns
	7.6 Ethereum Considerations
	7.7 System Test Result

	8 Conclusion
	9 Future Work
	9.1 System Features
	9.2 Security Advisory Formats
	9.3 Encryption Strength
	9.4 Extensibility
	9.5 Frontend Usability
	9.6 Automatic Vendor Whitelisting

	Bibliography
	A Frontend Mockups
	A.1 Vulnerabilities Page Mockup
	A.2 Accounts Page Mockup
	A.3 Settings Pages Mockup
	A.4 Announcement Pages Mockup

	B Frontend Screenshots
	B.1 Vulnerabilities Page Screenshots
	B.2 Accounts Page Screenshots
	B.3 Settings Pages Screenshots
	B.4 Announcement Pages Screenshots

	C GitHub Workflows
	C.1 Dependabot Update Script
	C.2 Slither Smart Contract Analysis
	C.3 Truffle Smart Contract Test
	C.4 Frontend Integration Test
	C.5 Frontend IPFS Deployment

	D System Test Plan
	D.1 Common Features
	D.2 Public Use Case
	D.3 Private Use Case

	E Development Process
	E.1 The Backlog
	E.2 Iterations
	E.3 Peer-reviews
	E.4 Documentation
	E.5 Time Allocation

