
Augmented Reality For Indoor
Navigation In A Warehouse

Setting

Examining Supervised Learning-Based Pretrained CNNs for
Feature Extraction in Visual Odometry

MSc Thesis: Vision, Graphics, and Interactive Systems

1043
Aalborg University
Electronics and IT

Copyright © Aalborg University 2023

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Augmented Reality For Indoor Naviga-
tion In A Warehouse Setting

Theme:
Examining Supervised Learning-Based
Pretrained CNNs for Feature Extraction
in Visual Odometry

Project Period:
Spring Semester 2023

Project Group:
1043

Participant(s):
Bastian Starup Petersson

Supervisor(s):
Kamal Nasrollahi

Copies: 1

Page Numbers: 53

Date of Completion:
June 1, 2023

Abstract:

This report examines the potential use
of Augmented Reality (AR) technol-
ogy in improving warehouse manage-
ment processes, specifically in tasks
such as picking, receiving, and re-
locating items. The report explores
the technical aspects of AR and the
challenges involved in developing an
AR solution for warehouse naviga-
tion, including the use of Simul-
taneous Localization and Mapping
(SLAM) algorithms for accurate posi-
tional tracking. The report proposes
a deep learning-based feature extrac-
tor for visual odometry in large indus-
trial environments, which combines
the FAST key point extractor with
pre-trained CNNs to generate feature
descriptors and evaluates its perfor-
mance against traditional feature ex-
traction techniques such as ORB. The
test results show that the ORB al-
gorithm demonstrated superior effi-
ciency and accuracy compared to the
deep learning-based methods. Future
work includes investigating the im-
pact of extracting features from differ-
ent layers within pre-trained networks
and exploring the benefits of leverag-
ing GPUs for computation.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.

Contents

Preface viii

1 Introduction 1
1.1 Finding Bins In A Warehouse . 1
1.2 Main Warehouse Tasks . 2
1.3 AR Navigation . 3

2 Problem Analysis 4
2.1 Warehouse Management Systems . 4
2.2 Warehouse Hardware . 5
2.3 WMS software . 6
2.4 Literature review on AR in a warehouse setting 7

2.4.1 Hand-held Devices vs. AR Glasses 7
2.4.2 AR Benefits and Challenges . 7
2.4.3 AR Headsets Enhance Order Picking 8
2.4.4 AR Visualization for Item Picking 8
2.4.5 AR Drift Error in Large Warehouses 9
2.4.6 AR in Warehouses: Summary 9

2.5 Initial Problem Formulation . 10

3 Technical Analysis 11
3.1 Introduction . 11
3.2 Simultaneous Localization and Mapping 12

3.2.1 What is SLAM? . 12
3.2.2 ORB-SLAM . 13
3.2.3 Loop Closing . 14

3.3 Visual Odometry . 15
3.4 Feature Detection . 16

3.4.1 What Is Feature Detection? . 16
3.4.2 ORB features . 17
3.4.3 Learned Feature Detectors . 18

v

Contents vi

3.5 ARKit In Selek’s Warehouse . 19
3.5.1 Understanding Selek’s Warehouse and its Challenges 19
3.5.2 ARKit Tracking . 21
3.5.3 Test App . 21

3.6 Conclusion . 25
3.7 Final Problem Formulation . 26

4 Implementation of proposed feature extractor 27
4.1 Introduction . 27
4.2 Monocular Visual Odometry . 28
4.3 Proposed Deep Learning Based Feature Extractor 31

4.3.1 Introduction To Proposed Feature Extractor 31
4.3.2 Using FAST for Key Point Extraction 32
4.3.3 VGG-16 . 33
4.3.4 MobileNetV2 . 34

4.4 Conclusion . 34

5 Tests 35
5.1 Introduction . 35
5.2 The Dataset . 35
5.3 Adjustable Parameters . 37

5.3.1 Ratio Test Threshold . 37
5.3.2 Mean Based Filtering . 37
5.3.3 Max Number of Features . 37
5.3.4 Image Pyramid . 38

6 Results and Discussion 39
6.1 Test Results . 39
6.2 Discussion . 42

6.2.1 Underperformance of Proposed Feature Extractors 42
6.2.2 Training Data Discrepancy . 42
6.2.3 Feature Dimensionality . 42
6.2.4 Feature Matching Analysis and Filtering 44
6.2.5 Compute Time . 46
6.2.6 Relation to AR . 46

7 Conclusion 48
7.1 Summary of Findings . 48
7.2 Future Work and Improvements . 49

7.2.1 Fine-Tuning Neural Networks 49
7.2.2 Dimensionality Reduction Techniques 49
7.2.3 Exploring Features from Different Network Layers 49

Contents vii

7.2.4 Leveraging GPUs for Computation 49
7.2.5 Using a More Relevant Dataset 50

7.3 Closing Remarks . 50

Bibliography 51

Preface

Aalborg University, June 1, 2023

Bastian Starup Petersson
bpeter18@student.aau.dk

viii

Chapter 1

Introduction

1.1 Finding Bins In A Warehouse

In recent years, companies have increasingly adopted new technologies to trans-
form their operations and enhance productivity. Technology integration has be-
come a critical focus for many organizations seeking a competitive advantage,
from robotics and machine learning for automation to implementing the Internet
of Things (IoT). One emerging technology that is gaining traction in industrial set-
tings is Augmented Reality (AR). AR technology seamlessly combines the physical
and digital worlds by overlaying digital components onto a real-life environment.

This report will explore the possibility of using AR in a warehouse setting, where
it might offer significant benefits for warehouse employees. Specifically, the use of
AR to help warehouse employees find a location in a warehouse will be examined.
Currently, many warehouses use a numbering system to organize their physical
locations, referred to as "bins", with each bin having a unique "bin code". Typ-
ically, the bin codes are designed to reflect physical locations in the warehouse,
with specific digits representing the aisle and shelf of the bin. This allows ware-
house employees to more easily find the location of a bin based on its unique bin
code. While this system aims to simplify location interpretation for warehouse
employees, it can still pose challenges, especially for inexperienced employees. In
a warehouse with many locations, the system can become confusing and time-
consuming to navigate. [1]

As argued by (Schwerdtfeger et al., 2008), finding a bin in a warehouse can roughly
be divided into two main stages. Firstly the warehouse employee must find the
bin’s general area, typically by finding the correct aisle. Once the correct aisle is
found, they have to locate the exact bin within that aisle and the correct item on
that bin. Performing these different levels of long and short-distance navigation

1

1.2. Main Warehouse Tasks 2

takes time and can be cognitively straining if done many times. This is the core
motivation for this report since AR might be used to reduce this problem. [20]

Given the potential challenges in bin finding, understanding the typical tasks car-
ried out in a warehouse becomes crucial. The following section will delve into
the main activities of warehouse employees and explore how AR might offer assis-
tance.

1.2 Main Warehouse Tasks

To develop an effective AR navigation solution for a warehouse, it is essential to
understand the primary tasks carried out by warehouse employees. In a typical
warehouse, the three main tasks employees spend the most time on are picking,
receiving, and relocating items. In all of these tasks, the warehouse employee
needs to find specific bins in the warehouse. Consequently, AR navigation could
be useful for accomplishing all these tasks more efficiently.

Picking is the process of finding and collecting items in the warehouse according
to a specific sales order. To perform this task, a warehouse employee will typically
have a list of all the items to be picked, containing the item number, quantity, and
bin code to pick from. Additional information might also be present, such as a
description or an image of the items. AR can potentially help with this task by
displaying the aforementioned information, along with guiding the employee to
specific bins. If implemented on a pair of AR Glasses, this could be particularly
useful, as the warehouse employee would free up a hand that would otherwise be
used to hold a phone or hand-held scanner.

Receiving items are, to a large extent, the opposite of picking. In this task, the
employee is presented with a list of items, quantities, and bin codes where they
should be placed. Similar to picking, this information could be displayed through
AR glasses, enabling the employee to use both hands while performing the task.

Relocating items involves moving items from one bin position to another. AR
might also be helpful in this task, guiding the user from the original bin to the new
bin location, thus streamlining the process.

In conclusion, each of these key warehouse tasks could greatly benefit from the
integration of AR technology. However, for AR to truly revolutionize these tasks,
the implementation of precise and reliable AR navigation is essential. The follow-
ing section will discuss the technical aspects of AR navigation and its challenges.

1.3. AR Navigation 3

1.3 AR Navigation

To effectively utilize AR for guiding a user to specific bins in a warehouse, the
AR-enabled device needs to continuously update and track its physical position,
as well as the positions of the bins. This involves advanced sensors and algorithms
to achieve real-time tracking. Once the positions of the device and the bins are
known, an arrow can be displayed to guide the user to the correct bin.

Feature extraction is a crucial aspect of AR navigation, as it helps the device rec-
ognize and understand its surroundings. The extracted features are then used by
algorithms, such as SLAM (Simultaneous Localization and Mapping), to maintain
a consistent mapping of the environment while also tracking the device’s position.

As explained by (Feigl et al., 2020), there are several prebuilt AR software frame-
works available that allow developers to build advanced AR applications with-
out focusing much on the underlying algorithms. Three of the largest AR frame-
works are ARKit for iPhone and iPad, ARCore for Android devices, and Microsoft
HoloLens. While it is not publicly known which specific algorithms these frame-
works use for positional tracking, they likely employ some variation of a SLAM
algorithm using Visual-inertial odometry. However, as found by (Feigl et al., 2020),
these frameworks have limitations in large industrial environments, particularly
due to an accumulation of errors over time. This issue is exacerbated in environ-
ments that change over time, such as those with objects being moved or varying
lighting conditions. [7]

This report examines the underlying principles behind state-of-the-art SLAM algo-
rithms, with a specific focus on a feature-based SLAM algorithm called ORB-SLAM
and its feature extractor, ORB (Oriented FAST and Rotated BRIEF). Good features
are essential for SLAM algorithms to work effectively, so the report also investi-
gates other state-of-the-art deep learning-based feature extractors. It is found that
deep learning-based feature extractors can be challenging to train due to the diffi-
culty in creating a labeled dataset of features, as the lack of semantic information
makes it challenging and unreliable for humans to create ground truth data.

The report proposes to use features learned by a CNN pre-trained on a classi-
fication task to create feature descriptors. This approach is implemented into a
proposed algorithm that draws inspiration from ORB features by using FAST (Fea-
tures from Accelerated Segment Test) to find key points and CNNs to create feature
descriptors. Finally, this proposed feature extractor is tested using a VO (Visual
Odometry) algorithm, with its performance compared to the performance of ORB
features.

Chapter 2

Problem Analysis

2.1 Warehouse Management Systems

For any company with a warehouse, the warehouse employees must be able to
perform their job efficiently and without making many errors. Some of the main
tasks in a warehouse are picking, restocking, and moving items around. A record
must be kept to track the warehouse stock to carry out these tasks efficiently. In
the past, a record of items was kept using a clipboard. However, with time, dif-
ferent technologies have become important tools for warehouse work. Today, most
warehouses store a digital record of all items, their bin locations, and quantities
on each bin. The warehouse employees will typically carry a hand-held computer
with a barcode or RFID scanner to identify the different items and bins in the ware-
house. When performing the different tasks in the warehouse, the employees can
see where the items are located, among other useful information. This information
can be pulled directly from a company’s warehouse management system (WMS),
ensuring that the information is always up to date. [5]

As new technologies emerge, they might present an interesting use case within
the context of warehouse management. One such technology is AR, which might
be used for indoor navigation in a warehouse. Examining some of the tools and
methods used in warehouses today might be advantageous to enable AR naviga-
tion in a warehouse. It is in the interest of any company with a warehouse that
their warehouse operations run smoothly and without mistakes being made. To do
so, the warehouse must be well organized, and an accurate and up-to-date record
must be kept, containing information about the items in storage, how many there
are, and on what bins they are located. Before computers became widely available,
such records were kept on paper. However, today most companies have adopted
the use of computer databases to store these records. Typically, such a database
will be part of a WMS, a software tool for organizing the warehouse. WMSs are

4

2.2. Warehouse Hardware 5

often integrated into the company’s ERP (Enterprise Resource Planning) system
to easily share information across different departments and ensure accurate and
efficient record keeping. One of the most popular ERP systems is Microsoft Dy-
namics 365 Business Central (BC). BC incorporates a WMS enabling a corporation
to manage its warehouse.

2.2 Warehouse Hardware

In the realm of warehouse management, hardware plays a critical role in comple-
menting the capabilities of WMS and ERP systems, particularly in terms of real-
time tracking and inventory management. Hand-held devices are widely used
by warehouse employees, providing them with a portable interface to access the
WMS database from anywhere in the warehouse. Having an up-to-date record
of the warehouse inventory is crucial since it allows warehouse employees to eas-
ily find items in the warehouse when picking a sales order or performing other
warehouse activities. Accessing information about the warehouse directly from
the WMS using a stationary computer or laptop is possible. However, a warehouse
employee will typically obtain the necessary information using a hand-held device
connected to the internet. This device provides the employee with an up-to-date
record of the state of the warehouse and enables the employee to access the WMS
database from anywhere in the warehouse. Typically these devices can be used
both to pick sales orders and put purchase orders in stock. A variety of hand-held
devices exist for this purpose. One of the well-established companies that make
such devices is called Zebra. [25]

Zebra is a technology company that provides enterprises with solutions to manage
their logistics operations. The company provides various products and services,
including barcode scanners and mobile computers. Warehouse employees often
use Zebras products to perform common warehouse tasks. One of their newer and
more popular products is the Zebra TC21/TC26 Touch Computer. The device is
lightweight and has a 5-inch high-definition touchscreen that is easy to view both
indoors and outdoors. The device runs on Android and is built to withstand harsh
environments. It supports both wifi and a cellular 4G internet connection, enabling
it to connect to a company’s WMS. The device has a 13-megapixel rear camera, a
removable battery, and the option for a hands-free wearable solution with an op-
tional wrist-mount accessory. [25]

The research presented in this report has partly been conducted in collaboration
with a company called Selek. Thus it might be helpful to examine the tools and
methods used by Selek. Selek is a B2B company located in Aalborg, Denmark,
specializing in distributing accessories for the IT industry. Selek has a warehouse

2.3. WMS software 6

where they store products before shipping them to customers. The ERP system
used at selek is BC, which is also used as their WMS. To perform warehouse op-
erations at Selek, the employees use iPhones as hand-held devices. Similar to the
Zebra devices, the iPhones provide both wifi and a cellular internet connection
and the ability to scan barcodes using the inbuilt camera. Furthermore, Selek is
still using pen and paper sometimes when picking orders.

As technology advances, warehouse management hardware has become more so-
phisticated, with various companies like Selek incorporating modern technologies
into their operations. However, these tools’ usefulness largely depends on the soft-
ware that supports them.

2.3 WMS software

To fully leverage the potential of these innovative hardware solutions in warehouse
management, robust and reliable software solutions are required. These software
applications serve as the backbone of operations, translating the data collected by
hardware devices into actionable insights.

If a company uses Zebra scanners, iPhones, or other devices for warehouse man-
agement, they need some software for them to function. Depending on the hard-
ware used, a variety of software solutions are available. One solution comes from
a company called Tasklet. They provide a software solution for Android-based
devices, such as the Zebra devices, which can be used to perform common ware-
house operations. [23]

However, at Selek, they use a custom-made app that runs on iPhones. This app is
used to pick, restock and move items in the warehouse. It works with BC, which
is used at selek, providing the warehouse employees with information about new
sales, purchase orders, and other useful information.

Nevertheless, whether these software applications are functioning on a Zebra scan-
ner, an iPhone, or any other handheld device, their efficiency is reliant on the
clarity of the displayed information. This brings us to an innovative way to visual-
ize data—Augmented Reality (AR)—that could potentially enhance the warehouse
management process by providing an immersive experience to users.

2.4. Literature review on AR in a warehouse setting 7

2.4 Literature review on AR in a warehouse setting

2.4.1 Hand-held Devices vs. AR Glasses

AR is emerging as a promising solution to overcome the limitations of traditional
display methods in warehouse management. Its ability to overlay digital infor-
mation onto the real world in real-time can create more intuitive and engaging
experiences, enhancing the efficiency and accuracy of warehouse operations. As a
rapidly developing technology, AR has been the subject of various studies assess-
ing its applications and potential benefits in a warehouse setting.

Given that hand-held devices are already being used widely in many warehouses
today, it might make sense to use these devices to display AR content to the user.
The AR content shown to the employees could be an arrow pointing the employee
to a specific bin location in the warehouse or a square around the items they have
to pick. Although this could be achieved using a hand-held device, it might be
even more useful if implemented on a pair of AR glasses, as done by (Stoltz et al.,
2017), who experimented with using Google Glass as their AR platform [22]. This
way, the employees could free up a hand that would otherwise be used to hold
the device. Furthermore, relevant information could be displayed to the employee
constantly, making them more efficient.

2.4.2 AR Benefits and Challenges

A few studies have been conducted exploring the use of AR in a warehouse set-
ting. One such study was made by (Stoltz et al., 2017), who showed that AR has
the potential to increase efficiency and reduce errors in the warehouse. The paper
highlights the importance of warehouse efficiency for the overall performance of
supply chains and the potential benefits of using AR to improve warehouse oper-
ations. The study investigates the opportunities and barriers to implementing AR
in warehouses through practitioner interviews and an experiment using Google
Glass. The study’s results indicate that although the technology is not yet mature,
its potential benefits make it promising for the near future. The paper identifies
several advantages of using AR in warehouse operations, including improved ac-
curacy in task execution, increased efficiency, better visualization, and enhanced
safety. AR can display relevant information about incoming goods, storage loca-
tions, and picking routes, reducing the likelihood of human error. It can provide
real-time information about the status of an operator’s task, reducing downtime
and improving productivity. AR can also display images and other details of items
to be picked, making it easier for operators to identify and locate them. However,
the paper also highlights several limitations and challenges associated with using
AR in warehouse operations. For example, AR devices may only be designed for

2.4. Literature review on AR in a warehouse setting 8

short periods of continuous use and can cause comfort problems. The battery life
is also not designed to last a full working day. The total cost of ownership for
AR solutions is still quite high, and alternative IT solutions for warehouse man-
agement can be significantly cheaper. Some users may not be willing to wear AR
devices with cameras and microphones due to privacy concerns. Overall, the pa-
per suggests that AR technology is promising to improve warehouse operations,
but careful consideration of its limitations and challenges is necessary to ensure
successful implementation. [22]

2.4.3 AR Headsets Enhance Order Picking

Another paper investigating the use of AR in a warehouse setting examines how
order picking can be improved by using an AR headset. This study was conducted
using an experimental warehouse setup, and the AR headset used tracking markers
to track the headset’s position accurately. Two experiments were conducted in the
paper, showing that using AR for order picking can improve efficiency and error
rates. Furthermore, it was concluded that the AR headset used in this study did
not cause higher user strain than traditional picking methods, such as pen and
paper. Overall, the authors suggest that AR can significantly improve logistics and
warehousing operations, but more research and development are needed to realize
this potential fully. [19]

2.4.4 AR Visualization for Item Picking

Another study has been conducted using the same experimental setup. This study
examines the effectiveness of three different visualization approaches (Arrow, Frame,
and Tunnel) for picking items from a shelf. An experiment was conducted involv-
ing 34 subjects who were asked to perform a picking task using the three different
visualization approaches. The study indicated that different visualization tech-
niques were useful depending on the user’s situation. If the item to be picked is
in the user’s field of view, it would be suitable to display a frame or tunnel visual-
ization. However, an arrow was helpful for situations where the desired item was
not in the field of view. The process of finding a specific item can be divided into
two steps. Firstly, the employee has to find the correct aisle and shelf. Afterward,
they have to locate the exact item to pick. These two types of navigation require
different visualization techniques. In the former, the user needs to know the gen-
eral direction and distance to the item. In the latter, more precision is required to
pinpoint the item to pick. [20]

2.4. Literature review on AR in a warehouse setting 9

2.4.5 AR Drift Error in Large Warehouses

Some warehouses are very large, presenting a significant challenge for the use of
AR. Rather using a hand-held device such as a phone, or a pair of AR glasses, the
device needs to know its position at all times if it is to guide the user to a specific
bin. This becomes increasingly challenging for large environments since errors ac-
cumulate over large distances. AR devices typically rely on a class of algorithms
called SLAM to constantly track their position. In addition to the challenge of large
environments, SLAM algorithms also work best for static environments, where fea-
tures do not change over time. This presents further complications in the case of a
warehouse since items are constantly in circulation, altering potentially useful fea-
tures tracked by a SLAM algorithm. Furthermore, SLAM works best for well-lid
environments where the lighting conditions do not change over time. (Feigl et al.,
2020) investigates the use of AR in large industrial environments, using three of
the largest and most well-established AR platforms [7]. These AR platforms are
ARKit for Apple products, ARCore for Android devices, and Microsoft HoloLens.
The study by (Feigl et al., 2020) found that the reliability of SLAM algorithms used
on the aforementioned AR platforms could perform better in large industrial en-
vironments of around 1, 600m2. They show that the tested AR systems accumulate
an error of around 17m per 120m. The study also revealed that adding natural
features improved tracking reliability but not enough to be considered useful for
the industrial context. In addition, AR systems perform best in static environments
and when only the user is moving. Good position accuracy requires many iden-
tifiable features, which can be challenging in an industrial context where lighting
and the presence of moving objects can interfere with tracking accuracy. However,
the study found that Microsoft HoloLens worked best among the three platforms
tested, followed by ARKit, and then ARCore. Despite the limitations identified,
the study concludes that AR has great potential in the industrial context if further
research is conducted to address the challenges identified. Although this study is
useful, research on AR systems in industrial settings is limited. [7]

2.4.6 AR in Warehouses: Summary

In summary, the key findings from the studies on AR in warehouse settings in-
dicate that AR has the potential to increase efficiency and reduce errors in ware-
houses [22]. (Stoltz et al., 2017) found that AR can improve accuracy in task ex-
ecution, enhance visualization, and provide real-time information to employees.
(Schwerdtfeger et al., 2009) demonstrated that using AR for order picking could
improve efficiency and error rates and did not cause higher user strain than tradi-
tional methods [19]. (Schwerdtfeger et al., 2008) also investigated the effectiveness
of different visualization approaches for picking items, concluding that various
techniques were suitable depending on the user’s situation [20]. However, a signif-

2.5. Initial Problem Formulation 10

icant challenge for AR in warehouses is the drift error in large environments. (Feigl
et al., 2020) found that the reliability of SLAM algorithms used in AR platforms
did not perform well in large industrial environments, accumulating significant
errors. While improvements can be made by adding natural features, further re-
search is needed to address these challenges and fully realize the potential of AR
in the industrial context [7].

2.5 Initial Problem Formulation

As we have identified the potential of using AR technology to guide warehouse
employees at Selek, it is crucial to understand the suitability of existing SLAM
algorithms in this context. Evaluating their limitations and exploring possible im-
provements can pave the way for a more effective AR-based navigation system in
large industrial warehouses. Therefore, the following initial problem formulation
has been created:

Which state-of-the-art SLAM algorithms are suitable for an indoor AR navigation system,
what are their limitations, and how can they be improved?

Chapter 3

Technical Analysis

3.1 Introduction

In the previous chapter, we identified the key problems faced in large-scale ware-
house operations concerning inventory localization and the potential of Augmented
Reality to address these problems. This chapter aims to explore the technical as-
pects of AR in more depth, with a particular focus on the core algorithms that
power this technology. A significant component of an AR system is its ability to
accurately determine and track its position in real time, a capability largely pro-
vided by SLAM algorithms. Thus, understanding SLAM and its variants forms an
essential part of this analysis. The initial problem formulation should be answered
at the end of this chapter. Finally, a final problem statement will be presented
based on the findings.

Augmented reality is a technology that overlays computer-generated content on
top of the real world. This is accomplished using an AR-enabled device, such as a
smartphone or AR glasses, that displays real-world and digital information while
tracking the user’s location and real-time movements. The information shown in
AR can be text, images, video, or 3D objects. In the specific case of guiding a user
to a location in a warehouse, an arrow might be shown along with a text indicating
the distance to the location.

However, developing such an AR solution presents several technical challenges,
including accurate tracking and localization of the AR-enabled device, accurately
displaying the AR content, and ensuring a seamless and natural user experience.
To overcome these challenges, a thorough understanding of the current state and
latest advancements in AR technology must be gained. [24]

11

3.2. Simultaneous Localization and Mapping 12

A critical component of AR technology is positional tracking, which allows the
AR-enabled device to accurately determine its pose in real-time. Positional track-
ing is vital since knowing the pose of the AR device allows it to accurately display
AR content placed at a fixed position in the real world. The pose can be described
with 6 degrees of freedom (6DoF), where three DoFs are dedicated to describing
the position, and the other three DoFs describe the orientation. The pose should
be updated in real time while the AR-enabled device moves through space. Esti-
mating an accurate real-time pose of the device is crucial for displaying properly
positioned and aligned AR content. Doing so requires a combination of advanced
sensors and software.

(Schwerdtfeger et al., 2009) tracks the AR headset using visual markers and cam-
eras [19]. This is not an ideal solution since the visual markers are inconvenient to
wear, and it requires a large setup with multiple cameras, which does not easily
scale to a large warehouse. Fortunately, other solutions exist for positional track-
ing. GPS and compass are two of the most common technologies for tracking
position and orientation. However, these technologies can not alone obtain a 6DoF
pose.

Furthermore, they need to be more accurate for AR, especially in indoor environ-
ments. Therefore, other, more accurate systems are often used for AR experiences.
One such common system is a SLAM algorithm. This is especially useful if a phone
is used to show AR content since visual markers would be very inconvenient on a
phone. [19]

3.2 Simultaneous Localization and Mapping

3.2.1 What is SLAM?

SLAM is a class of algorithms commonly used to solve the problem of positional
tracking in augmented reality. It is an algorithmic approach that allows an AR-
enabled device to build a map of its surroundings while simultaneously estimating
its pose within that map. SLAM uses sensors, such as cameras and accelerometers,
to detect and track features in the environment.

One of the key benefits of SLAM is its ability to work in environments where GPS
and compass-based tracking systems are not reliable or accurate enough, such as
indoor environments or areas with a limited GPS signal. This makes SLAM a
popular choice for AR applications that require accurate positional tracking.

3.2. Simultaneous Localization and Mapping 13

3.2.2 ORB-SLAM

One of the state-of-the-art SLAM algorithms is called ORB-SLAM3, which is a suc-
ceeding version of the former ORB-SLAM2 and ORB-SLAM algorithms [11, 12, 4].
The original ORB-SLAM algorithm was published in 2015, by (Raul et al., 2015). It
presents a feature-based SLAM algorithm that uses ORB features to perform both
tracking and relocalization. ORB-SLAM works with a monocular camera and uses
a bundle adjustment algorithm to estimate the camera pose.

One of the main contributions of ORB-SLAM is that it uses the same ORB fea-
tures to perform both tracking, mapping, relocalization, and loop closing, which
improves efficiency and reliability. It also uses a covisibility graph to limit the
scope of tracking and mapping to a local area, which improves the system’s effi-
ciency and robustness. This is especially beneficial for real-time tracking in large
environments since tracking becomes independent of the size of the map. Further-
more, ORB-SLAM implements a new loop-closing algorithm and real-time camera
relocalization. [11]

There are a few reasons why (Raul et al., 2015) use ORB features, one of which
is that they are rotation-invariant, meaning they can match features even if the
camera is rotated. This is important because the camera’s orientation can change
as it moves through the environment, and the system needs to be able to track its
position and orientation accurately to create an accurate map of the environment.
Furthermore, ORB features are scale-invariant, which means they can accurately
match features regardless of their size in the image. This makes them particularly
useful for ORB-SLAM, as it allows the system to detect and track features at differ-
ent distances from the camera. Additionally, a SLAM system should be able to run
in real time. Thus, ORB-SLAM needs to run fast, and ORB features are computa-
tionally efficient, which makes them well-suited for real-time applications such as
running AR on a phone. [17]

Using a monocular camera, as done in the original ORB-SLAM algorithm, shows
promising results. Using a monocular camera, depth and movement can be esti-
mated using visual odometry techniques. This is done by observing the scene from
two different viewpoints, finding matching features, and minimizing a reprojection
error. This can be achieved with a monocular camera, as in ORB-SLAM, by moving
the camera around. However, estimating depth can be done more accurately with
stereo vision, where two fixed cameras are used to estimate the depth using stereo
triangulation.

3.2. Simultaneous Localization and Mapping 14

Furthermore, depth could also be estimated using other sensors, such as LiDAR.
This is the main contribution of the next iteration of ORB-SLAM, namely ORB-
SLAM2. As described by (Raul et al., 2016), ORB-SLAM2 can use either monocular,
stereo, or RGB-D cameras. As a result of using stereo vision or RGB-D cameras, a
more accurate depth estimation of the ORB features can be obtained, thus improv-
ing the system’s overall accuracy. A pre-processing step is incorporated to make
the algorithm operate independently of which sensor is used, which extracts ORB
features along with their depth. [12]

In 2020 ORB-SLAM3 was released by (Carlos et al., 2020), introducing further im-
provements to the algorithm. The two main contributions of ORB-SLAM3 are
the use of inertial information, making it a visual-inertial SLAM system, and the
ability to perform multi-map SLAM. By combining inertial information obtained
from an IMU with the previously explained feature-based method, a Maximum-
a-Posteriori approach can be used to perform even more accurate tracking and
mapping. (Carlos et al., 2020) demonstrates a two to ten-times improvement by
incorporating inertial information. [4]

The second improvement of ORB-SLAM3 is the use of multiple maps. If the sys-
tem cannot locate its position with a previous map, it initializes a new one. And if
features from two maps start to overlap, they are simply merged, forming one new
map. This makes the algorithm more robust since it only breaks down if tracking
is lost for a short period. [4]

3.2.3 Loop Closing

Visual SLAM systems are very closely related to visual odometry systems since
they both use visual information to predict changes in the position of a camera.
One of the main components distinguishing a SLAM system from an odometry
system is the ability to perform loop-closing.

When obtaining data from sensors, rather it is encoders, cameras, or IMUs, there
will always be some noise and other inaccuracies present. These errors should
be minimized to the extent possible to maximize the accuracy of odometry algo-
rithms. However, minor errors will always be present, causing odometry algo-
rithms to drift over time. This means that the estimated position becomes more
and more inaccurate the longer the algorithm is running. ORB-SLAM attempts to
correct this error by using loop-closing.

3.3. Visual Odometry 15

The loop-closing algorithm used in ORB-SLAM is based on an algorithm devel-
oped by (Mur-Artal et al., 2014), which also uses ORB features to detect loops.
The idea of loop-closing is to detect when the camera detects the same features as
in a previous keyframe. Once this happens, the system can measure the discrep-
ancy between the previous and new keyframes. By knowing the error between the
two keyframes, it can be corrected for in all the keyframes in between, under the
assumption that the accumulated error is somewhat consistent. [13]

3.3 Visual Odometry

Visual odometry (VO) is the process of estimating the motion of a camera by an-
alyzing the changes in visual information captured in consecutive frames. It is an
essential component of SLAM systems, which aim to build a map of an unknown
environment while simultaneously estimating the camera’s pose within that envi-
ronment. VO is different from a full SLAM system as it only focuses on estimating
the local motion of the camera, while SLAM also involves mapping the environ-
ment and estimating a global pose using techniques such as loop closing.

In literature, there are two main categories of visual odometry: geometric and
non-geometric. Geometric methods estimate the camera’s motion based on the ge-
ometry of the scene and are further divided into feature-based, appearance-based,
and hybrid methods. Feature-based methods involve detecting and matching dis-
tinctive features across image frames. Popular feature detectors include SURF,
ORB, BRISK, and more. On the other hand, appearance-based methods estimate
the camera’s motion based on the changes in the intensity values of the entire im-
age or optical flow. Region-based matching and optical flow-based methods are
two types of appearance-based methods. Hybrid methods combine both feature-
based and appearance-based methods, using monocular, stereo, or RGB-D sensors.
[15]

In a feature-based VO algorithm, it is essential to have well-defined and easily
distinguishable features. These features allow the algorithm to match them across
consecutive frames reliably, enabling accurate estimation of the camera’s motion.
The quality of the features can significantly impact the performance of the algo-
rithm, as poorly defined or ambiguous features may lead to incorrect matches and
ultimately result in inaccurate pose estimation.

3.4. Feature Detection 16

Non-geometric visual odometry methods are another recent paradigm shift in the
field. They use learning-based techniques to train regression models that estimate
the camera’s motion from image sequences without requiring prior knowledge of
the camera’s intrinsic parameters. These methods have gained popularity in recent
years thanks to the evolution of machine learning techniques. [15]

One of the challenges of visual odometry is drift, which occurs when the esti-
mates of the camera’s motion accumulate errors over time, leading to inaccurate
pose estimates. To mitigate this, SLAM systems often use loop closure and Bundle
Adjustment (BA), which attempts to correct the errors and refine the estimated
poses over longer time intervals. To mitigate drift, it can be helpful to incorporate
an initialization step, as it initializes the camera’s position and orientation, which
is necessary for estimating the camera’s motion. The initialization step can be done
using various methods, including using a priori information, such as GPS or IMU
data, or by detecting and matching distinctive features across the first few frames
of the video sequence. The latter approach is commonly used in feature-based
methods, where the first few frames are used to extract features and match them
across the frames to initialize the camera’s pose. [15]

In summary, visual odometry is a crucial component of SLAM systems, which
estimate the local motion of a camera in unknown environments. Geometric meth-
ods, such as feature-based, appearance-based, and hybrid methods, estimate the
camera’s motion based on the scene’s geometry. In contrast, non-geometric meth-
ods use learning-based techniques to estimate the motion directly from image se-
quences. However, drift is a major challenge in visual odometry, which requires
loop closure and Bundle Adjustment techniques to mitigate the errors and refine
the estimated poses. Furthermore, accurate initialization of the system can help
to reduce drift and is thus an important component of VO. In the case of feature-
based methods, the quality of the features is particularly important, as well-defined
and easily distinguishable features allow for more accurate motion estimation and,
ultimately, better performance.

3.4 Feature Detection

3.4.1 What Is Feature Detection?

One of the critical components of a feature-based odometry algorithm is its feature
detection algorithm. In computer vision and image processing, a feature refers to
a distinct and recognizable pattern or structure within an image, such as corners,
edges, or textures. A feature detection algorithm aims to identify and extract these
features from an image, providing valuable information for subsequent tasks such

3.4. Feature Detection 17

as object recognition, tracking, and localization. By reliably detecting and match-
ing features across different images or frames, an odometry algorithm can estimate
the relative motion and position of the camera or objects within the scene, enabling
accurate navigation and mapping for applications such as AR.

Various feature detectors exist and can be divided into handcrafted and learned
features. Handcrafted feature detectors, such as SIFT, SURF, and ORB, serve the
purpose of extracting key points, which describe pixel positions in the image, as
well as feature descriptors, which might be vectors that represent or encode infor-
mation about the specific features [10, 2, 17]. On the other hand, learned features
can be generated using deep learning techniques, such as CNNs (convolutional
neural networks). These techniques have gained significant popularity in recent
years due to their ability to automatically learn patterns and representations, in-
cluding key points and feature descriptors, from large amounts of data [6].

One of the important aspects to consider for feature extractors is their ability to
be scale and rotation invariant. Scale invariance refers to the ability of an algo-
rithm to recognize and match features across images with varying scales or res-
olutions. This is particularly important in scenarios where objects may appear
larger or smaller due to changes in distance or perspective. Rotation invariance, on
the other hand, enables the algorithm to identify and match features regardless of
their orientation in the image. This is critical when dealing with images captured
from different angles or in situations where the camera or objects within the scene
undergo rotation.

3.4.2 ORB features

As mentioned, ORB-SLAM uses the ORB feature detector [17]. The ORB feature
detector is a rotation and scale invariant method for detecting and describing local
features in images, combining the strengths of the FAST (Features from Acceler-
ated Segment Test) keypoint detector and the BRIEF (Binary Robust Independent
Elementary Features) descriptor. [17]

The FAST keypoint detector

FAST compares the brightness of a specific pixel in an image with 16 of its sur-
rounding pixels. If eight or more of the 16 surrounding pixels are either darker or
brighter than the center pixel, it is selected as a key point. By applying this algo-
rithm to each pixel in an image, points containing useful features can be identified.
To make FAST scale-invariant, ORB uses an image pyramid, enabling FAST to find
useful key points at different scales of the image. [16]

3.4. Feature Detection 18

The ORB feature detector achieves rotation invariance by computing the orienta-
tion of each key point using the intensity centroid method. This method calculates
a patch’s intensity-weighted center of gravity surrounding the key point, effec-
tively determining its orientation. By rotating the image patches according to their
orientations before applying the BRIEF algorithm, ORB obtains rotation invariance.

BRIEF

After finding a bunch of scale and rotation-invariant features in an image, BRIEF
is then used to convert their associated image patches to a binary feature vector.
To prevent the feature vectors from being sensitive to high-frequency noise, BRIEF
starts by smoothening the image using a Gaussian kernel. The feature vector is
constructed hereafter by finding pairs of random points in the image patch. For
each pair of points, their intensities are compared. If the first point of a pair is the
brightest, then a value of 1 is added to the binary feature vector. Otherwise, a value
of 0 is added. The random pairs of points are drawn from a Gaussian distribution,
and each binary value in the feature vector has its random point pair. [3]

3.4.3 Learned Feature Detectors

As mentioned earlier, learned feature detectors leverage deep learning techniques,
such as convolutional neural networks (CNNs), to automatically learn patterns and
representations from large amounts of data. These methods have gained significant
popularity in recent years due to their ability to generalize well to various images
and feature types, outperforming handcrafted feature detectors in many cases.

(DeTone et al., 2018) proposed a deep learning-based feature detection algorithm
called SuperPoint [6]. This algorithm uses a neural network architecture that en-
ables it to perform one forward pass for both finding key points and feature de-
scriptors. This method differs from other common techniques that first find rele-
vant key points, followed by computing the feature descriptors. The SuperPoint
architecture uses a VGG-style neural network as an encoder, followed by two sep-
arate networks for computing the key points and the feature descriptors. [6]

Training a CNN, such as SuperPoint, to detect key points and feature descrip-
tors presents a problem. Since semantic labels do not easily define key points, a
human cannot reliably label such a dataset. Thus, no large dataset exists with key
point labels. To overcome this problem, the authors rely on a synthetic dataset and
self-supervised learning to train the network. They generate a synthetic dataset of
3D shapes and extract key point labels at the corners of the 3D shapes. [6]

3.5. ARKit In Selek’s Warehouse 19

The authors start by training a network they call MagicPoint on the synthetic
dataset. Hereafter, they train the SuperPoint network on the MS-COCO 2014
dataset, where key point labels have been generated using the MagicPoint network
and a technique they call Homographic Adaptation. This approach avoids human
annotation and allows the SuperPoint network to be trained in a self-supervised
manner. [6]

3.5 ARKit In Selek’s Warehouse

3.5.1 Understanding Selek’s Warehouse and its Challenges

As previously explained, one of the main problems with SLAM algorithms is the
drift that accumulates over time. This has been demonstrated by (Feigl et al., 2020)
[7]. However, it might be insightful to test this problem in the context of Seleks
warehouse since this is where to motivation for this project stems from. To do so, it
might be useful to understand the layout of Selek’s warehouse and its bin positions.

Selek’s warehouse consists of two warehouses connected by a small hub where
orders are packed and shipped from. Both warehouses contain several aisles that
are further divided into subsections. Each subsection has some shelves, and each
shelf is subdivided into individual bins containing a specific item. In some cases, a
bin contains multiple different items. When a warehouse employee needs to pick
an item, they are presented with a bin code describing which bin the item is lo-
cated on. A bin code at Selek includes three numbers describing the aisle, section,
and shelf, respectively, as shown in Figure 3.1. The bin code is shown at each
physical bin in the warehouse, along with a barcode containing the bin code. This
system is meant to make it easy for warehouse employees to navigate the ware-
house. However, it takes time for new employees to learn the system, presenting
the opportunity to use AR to guide the employee. [1]

3.5. ARKit In Selek’s Warehouse 20

Figure 3.1: Example of bin code in the warehouse at Selek with its associated barcode.

At Selek, they use a custom-made app at the warehouse when picking, restocking,
and moving items around. Among other features, this app incorporates a small
camera view for scanning barcodes. This camera view could also be used to dis-
play AR content to the user. The app at Selek runs on iPhone, and thus ARKit
might be used to achieve this. However, as shown by (Feigl et al., 2020), the ac-
curacy of ARKit is inadequate when used in large industrial environments such
as the warehouse at Selek. Thus, it might be advantageous to explore alternative
solutions. [7]

If AR should be used to guide warehouse employees to a specific bin, the sys-
tem should also know the physical positions of the bins. Thus, each bin should be
represented with a point in 3D space with respect to the same coordinate system.
Additionally, when a user opens the app, it does not initially know its position
within this coordinate system, and therefore, it has to relocalize itself somehow.
Solving these problems is essential if AR is to guide a user to a specific bin.

Having gained an insight into the layout, options, and tools used in Seleks ware-
house sets the stage for the creation of a test app for iOS that uses ARKit. As
explained in section 2.4.5, ARKit experiences drift over time when used in large
industrial environments. The rest of this section explores the capabilities of ARKit
and presents a test app that is used to test the accumulated drift when used in
Selek’s warehouse.

3.5. ARKit In Selek’s Warehouse 21

3.5.2 ARKit Tracking

As discussed in Chapter 1, this report is motivated by the idea of AR navigation
in a warehouse. Specifically, a goal is to integrate an AR solution into Selek’s ex-
isting iOS app used for warehouse management. While other frameworks exist for
different devices, such as ARCore for Android and the HoloLens framework for
Microsoft’s HoloLens, Apple has developed ARKit specifically for iOS. As Selek
utilizes an iOS app, this section will exclusively focus on ARKit. [7]

Although Apple has not published detailed information regarding the algorithm
used for tracking, an overview of the main concepts is presented in a video from
their annual developer conference (WWDC) in 2018 [9]. These concepts closely
resemble those implemented in ORB-SLAM3. Like ORB-SLAM3, ARKit applies a
feature-based visual-inertial odometry algorithm. Although the type of features
utilized by Apple is unknown, it is likely that they use something computationally
inexpensive yet robust to different scales and orientations, such as ORB features.
Additionally, ARKit’s tracking algorithm also employs loop closure. [9]

When using ARKit, it is possible to save a tracking state by saving an object known
as an ARWorldMap. This allows users to return to the AR experience after clos-
ing and reopening the app or experiencing other interruptions. An ARWorldMap
includes all the feature points tracked by the system and can be loaded back into
ARKit when the user wishes to return to the AR experience. This feature could
be particularly useful for AR navigation in a warehouse, as warehouse employees
should be able to exit and re-enter the AR experience easily. [9]

3.5.3 Test App

To evaluate the usefulness of ARKit and uncover some of its potential shortcom-
ings, a test app has been developed that can be used to test the accuracy of the
system. To guide users to bin positions within a warehouse, it is essential to first
record the position of the bins. At Selek, each bin in the warehouse is associated
with a barcode, as seen in Figure 3.1. A possible approach to mapping these bin po-
sitions could involve scanning the barcodes while the ARKit’s tracking algorithm
is active, thereby recording the position of the barcodes.

3.5. ARKit In Selek’s Warehouse 22

Figure 3.2: A screenshot of the test app showing blue spheres placed at the barcodes. Additionally,
yellow dots can be seen, representing ARKit’s features for tracking.

To accurately determine the positions of the barcodes, a ray-tracing algorithm was
employed, measuring the distance between the barcodes and the camera. This
method enabled the app to store the 3D positions of the barcodes, which are rep-
resented as blue spheres in Figures 3.2 and 3.3.

A total of four tests were conducted to evaluate the system’s performance, using
six barcodes for each test. In each test, the process involved scanning each barcode
once and then scanning all of them again. The error distance between the two
scans of the same barcode was then measured. Two scenarios were considered in
each test: scanning all barcodes without closing the app between the sets of scans
and scanning barcodes with the app closed between the two sets of scans. For
the latter scenario, an ARWorldMap was utilized to relocalize the camera position
upon reopening the app. These tests were carried out at short and long distances
to assess the system’s performance under different conditions.

3.5. ARKit In Selek’s Warehouse 23

Figure 3.3: A screenshot of the test app showing blue spheres placed at the barcodes. Additionally,
yellow dots can be seen, representing ARKit’s features for tracking.

For short-distance testing, barcodes within a single aisle were scanned, resulting in
a distance of ⇠ 13 meters between the barcodes. In contrast, long-distance testing
involved scanning three barcodes at one end of the warehouse and three more at
the opposite end, creating a distance of ⇠ 42 meters between the scanned barcodes.
These tests aimed to examine ARKit’s performance in a warehouse environment
and to investigate the impact of distance on system performance. The test results,
shown in Figures 3.4 and 3.5, reveal that long-distance tracking experiences signif-
icantly more drift than shorter distances.

3.5. ARKit In Selek’s Warehouse 24

Figure 3.4: Euclidean Distance Error per Bin for Each Test

3.6. Conclusion 25

Figure 3.5: Average Euclidean Distance Error (All Tests)

As shown in the bar plot of average errors for each of the four tests (Figure 3.5),
the error increases significantly for longer distance tests. Interestingly, relocalizing
the camera position using ARWorldMap after reopening the app appears to have
a lesser impact on the error. It might be assumed that as more bins are added to
the system, the error may increase further due to the increased number of objects
the system has to keep track of. These results align with the findings of (Feigl
et al., 2020), as described in Section 2.4.5. The conducted tests have confirmed
their observations, reinforcing the understanding of the impact of drift error in
large-scale warehouse environments.

3.6 Conclusion

In conclusion, the drift issue in feature-based visual-inertial odometry algorithms,
such as ARKit and ORB-SLAM3, poses a significant challenge for large-scale in-
dustrial environments like warehouses. The ability to accurately identify and track
distinguishable features is crucial for the performance of feature-based SLAM al-
gorithms. Recent studies on deep learning-based feature extractors have shown
promising results in this context.

However, the creation of labeled datasets containing key point features for these
deep learning-based feature extractors is labor-intensive and semantically ill-defined.
This makes it difficult for humans to create high-quality labels reliably. It is worth
considering using convolutional neural networks (CNNs) pre-trained on other
tasks to address this challenge.

3.7. Final Problem Formulation 26

3.7 Final Problem Formulation

Having discussed the state-of-the-art SLAM algorithms and identified the key chal-
lenges, it is clear that improvements are necessary for their application in large
industrial settings like warehouses. Given the complexity of these algorithms, this
report will now focus on developing a simpler visual odometry solution using a
monocular camera. To address the drift problem, the next chapters will explore
using a pre-trained deep learning-based feature extractor.

Based on the insights gained from this chapter, the next chapter will present a
proposed feature extractor inspired by ORB, which leverages the FAST algorithm
to detect key points. Additionally, pre-trained CNNs will be utilized to generate
feature descriptors for each key point. Several delimitations have been made to
maintain a focused scope, including using monocular grayscale visual odometry
for testing the proposed feature extractor instead of using a more complicated al-
gorithm such as ORB-SLAM.

Thus, the final problem formulation is as follows:

How can a pre-trained deep learning-based feature extractor be designed and implemented,
and how might it reduce drift in a VO system, a crucial component of SLAM algorithms,
for AR applications in warehouse management?

Chapter 4

Implementation of proposed feature
extractor

4.1 Introduction

The previous chapter examined SLAM algorithms with a special emphasis on ORB-
SLAM and its successors. It was shown that although these algorithms have un-
dergone massive improvements in the past years, they are still not suited for AR
in large industrial environments, such as in a warehouse. This is due to the signif-
icant drift that these algorithms accumulate over time.

As previously explained, many variations of SLAM algorithms exist, all with many
different subcomponents that make them up. The purpose of this chapter is to at-
tempt to improve one of these sub-components, namely the feature extractor. To
better develop and test the proposed feature extractor, a relatively simple visual
odometry algorithm has been used [14]. This algorithm originally uses ORB fea-
tures for feature extraction, making it a feature-based visual odometry algorithm.
This chapter proposes a deep learning-based feature extractor, drawing inspiration
from the ORB feature extractor. In the following sections, the VO algorithm used
to test the proposed feature extractor is presented, followed by a description of the
proposed feature extractor.

The source code for the proposed feature extractor is implemented in the ‘deep-
Features.py‘ Python script, which can be found in the "VisualOdometry" directory
of the GitHub repository: https://github.com/BSPetersson/Master_Thesis.git

27

https://github.com/BSPetersson/Master_Thesis.git

4.2. Monocular Visual Odometry 28

4.2 Monocular Visual Odometry

The algorithm discussed in this section is a feature-based visual odometry algo-
rithm designed to work with monocular grayscale images. Implemented as a
Python script by (Nielsen, 2022), its primary objective is to estimate the 3D trajec-
tory of a monocular camera using a sequence of monocular grayscale image frames
[14]. The algorithm locates ORB features in the images to match key points between
consecutive frames. Subsequently, it computes the essential matrix, which aids in
determining the relative motion between the frames. As a result, the camera’s esti-
mated trajectory in 3D space is obtained. This trajectory can then be compared to a
ground truth trajectory, allowing for an evaluation of the algorithm’s performance.
In figure 4.1, this algorithm is illustrated as a block diagram, showing its main
components. The first block in "Feature Matching" represents a specific feature
extractor. Initially, the algorithm used ORB, but in the next section, another pro-
posed feature extractor is introduced, using either VGG-16 or MobileNetV2. Thus,
changing this specific part of the VO algorithm has been done to test the different
feature extractors.

4.2. Monocular Visual Odometry 29

Figure 4.1: This block diagram shows the flow of the visual odometry algorithm used to test the
proposed feature extractor.

As mentioned, the algorithm finds ORB features in each of the frames. Each ORB
feature is described with a key point position in the image and a feature descriptor
in the form of an array with numbers. The goal is to find similar feature de-
scriptors in consecutive frames, hopefully corresponding to the same real-world
features, also referred to as feature matching. To do this, a k-nearest neighbors
matching algorithm is used. This algorithm takes an array of feature descriptors
from two consecutive frames. It then computes the Euclidian distance between
the feature descriptors in the two frames. For each feature descriptor in the first
frame, it returns the two closest feature descriptors in the second frame. The reason
for returning two matches is to apply a ratio test, which helps filter out ambigu-
ous matches and retain only high-quality matches. The ratio test compares the
distances of the two closest matches. If the ratio of the distances is less than a
predefined threshold, it is considered a good match. This is because a low ra-
tio indicates that the closest match is significantly closer than the second-closest
match, suggesting that the match is unambiguous and more likely to be a true cor-

4.2. Monocular Visual Odometry 30

respondence between the two frames. By filtering out matches that are too close or
ambiguous, the algorithm ensures that only the most reliable matches are used for
further processing.

The algorithm refines the set of matches further after applying the ratio test by
implementing a mean-standard deviation filtering technique. This method eval-
uates the Euclidean distances, in pixel values, between all pairs of matched key
points in consecutive frames. By calculating the mean distance and standard de-
viation of these distances, the algorithm gains insight into the general distribution
of the matches. A threshold is then established based on the mean distance, and
a multiple of the standard deviation and matches with distances greater than this
threshold are discarded as potential outliers. This approach helps to eliminate
matches that may have passed the ratio test but still show significant pixel-wise
distance discrepancies between the corresponding key points, which could indi-
cate that they are not genuine correspondences. By filtering out such matches,
the algorithm enhances the overall quality and reliability of the feature-matching
process. The mean-standard deviation filtering technique is particularly useful
for removing matches that might have resulted from noise, repetitive patterns, or
other factors leading to ambiguous correspondences. Consequently, the algorithm
ensures that only the most reliable and accurate matches are used for further pro-
cessing, ultimately improving the performance and precision of the system.

Having found matching features for two consecutive frames, the goal is to esti-
mate the relative movement between them. To achieve this, the algorithm finds an
essential matrix using the matched key points and the camera’s intrinsic parame-
ters. The essential matrix is a 3x3 matrix that encodes information about both the
relative translation and rotation, and it can be decomposed into a translation vector
and a rotation matrix. However, decomposing the essential matrix results in four
solutions, and the algorithm must pick the correct one. This is done by projecting
the 3D points reconstructed from the matched key points onto both camera views
and checking the number of points with positive depth values (z coordinate) in
both views. The correct solution is the one that results in the highest number of
points with positive depth values in both camera views, as this implies that the
points are in front of both cameras, which is consistent with the scene geometry.
Having found the correct translation vector and rotation matrix, the algorithm con-
structs a transformation matrix. Obtaining a transformation matrix for each frame
enables the algorithm to calculate a global estimate of the new camera pose by
multiplying them.

4.3. Proposed Deep Learning Based Feature Extractor 31

Now that the visual odometry algorithm has been presented, the following section
will introduce the proposed deep learning-based feature extractor that aims to
improve the feature extraction process.

4.3 Proposed Deep Learning Based Feature Extractor

4.3.1 Introduction To Proposed Feature Extractor

In recent years, deep learning techniques have gained significant popularity and
have been successfully applied to various computer vision tasks. As mentioned
in Section 3.4.3, one such task is feature extraction, where a significant challenge
lies in obtaining a labeled dataset of key point features due to the difficulty for
humans to identify interesting key points within an image consistently [6]. This
chapter proposes a novel approach that combines the FAST key point extractor
with deep neural networks, drawing inspiration from the ORB algorithm and lever-
aging pre-trained CNNs like VGG-16 and MobileNetV2. The proposed feature ex-
tractor maintains scale invariance by constructing an image pyramid and applying
the FAST algorithm at each scale. The hypothesis for rotation invariance is that the
CNNs can detect the same features regardless of the rotation. By utilizing the pre-
trained CNNs to generate feature descriptors, this approach aims to eliminate the
need for a labeled key point dataset with corresponding feature descriptors and
improve the feature extraction process. Figure 4.2 illustrates this algorithm with a
block diagram, showing the main components of the algorithm.

4.3. Proposed Deep Learning Based Feature Extractor 32

Figure 4.2: Block diagram representing the proposed feature extractor using either MobileNetV2 or
VGG-16 to compute feature descriptors.

4.3.2 Using FAST for Key Point Extraction

The proposed feature extraction approach employs the FAST algorithm, an effi-
cient and effective method for identifying key points within images. Like ORB
features, the FAST algorithm detects key points while maintaining the advantages

4.3. Proposed Deep Learning Based Feature Extractor 33

of deep learning techniques. An image pyramid is constructed to enhance scale
invariance, and the FAST algorithm is applied to each scale of the image pyra-
mid. This method ensures that key points are detected at different scales, making
the feature extraction process more robust to variations in scale. The key points
detected by the FAST algorithm will then be utilized as input for the pre-trained
CNNs to generate the feature descriptors, which will be described in the following
sections.

4.3.3 VGG-16

A feature descriptor must be constructed upon identifying interesting features
within an image. Ideally, this feature descriptor should exhibit a certain degree
of scale and rotation invariance. To compute these feature descriptors, a CNN is
utilized. An image patch surrounding each key point is extracted and used as in-
put for the CNN. The output of the CNN is a feature descriptor in the form of a
vector.

In this project, two different CNNs are implemented and tested as a part of the
proposed feature extractor, one of which is VGG-16. VGG-16 is a deep convolu-
tional neural network originally used to classify images. In 2014, VGG-16 won the
ImageNet challenge with a 92.7% accuracy. VGG-16 consists of multiple convolu-
tional layers with pooling layers in between for downscaling and a fully connected
layer at the end. A total of 13 convolutional layers are used in conjunction with
five pooling layers, followed by three fully connected layers. The convolutional
layers use a 3x3 filter and a stride of 1, and the pooling layers use a 2x2 filter with
a stride of 2. The convolutional layers increase the number of filters from 64 in the
first layer to 512 in the last layer. The two first fully connected layers have 4096
channels, and the last one has 1000 for classifying 1000 different objects. All the
layers use ReLu as their activation function except for the final layer, which uses a
soft-max function to produce the final output prediction. [21]

Although VGG-16 was originally developed to classify objects in images, it should
be possible to adapt it to produce a feature vector that can be used in the pro-
posed algorithm. To achieve this, the network has been pretrained on the Ima-
geNet dataset, thereby teaching the network to recognize features. Hereafter, the
last three dense layers are removed to output a feature map. By passing an image
of the size 224x224 to this network, the resulting output will be a feature map of
size 7x7x512. However, only small image patches around the key points found by
FAST should be used in the proposed algorithm. Therefore, image patches of size
32x32x3 are passed through the network, consequently resulting in an output size
of 1x1x512. Thus, this can be considered a feature descriptor with 512 features.

4.4. Conclusion 34

[21]

4.3.4 MobileNetV2

Another network proposed by (Sandler et al., 2021) that might be used to compute
feature descriptors is MobileNetV2 [18]. This network uses two types of computa-
tional blocks. One computational block uses something called a residual connec-
tion. The idea behind a residual connection is to use skip connections, essentially
bypassing one or more layers of data. This kind of architecture allows the network
to learn more complex features and helps with the issues of vanishing gradients.
The residual blocks output a feature map with the same spatial dimension as the
input. In MobileNetV2, another computational block is used to downscale the spa-
tial resolution of the feature maps by using a 3x3 convolution with a stride of 2. As
activation functions, a modified version of ReLu is used called ReLu6. Similarly to
VGG-16, MobileNetV2 is pretrained on the ImageNet dataset and a feature map
of size 1x1x320 can be obtained by removing the last layers of the network and
inputting an image patch of size 32x32x3. [18]

4.4 Conclusion

This section has introduced the idea of combining the FAST key point extractor
with deep neural networks to obtain key points with attached feature descriptors.
Two CNNs have been described and implemented into the proposed algorithm
to produce the feature descriptors. Furthermore, a simple odometry algorithm
was introduced [14], which can be used to test the proposed feature extractor and
compare it to the ORB feature extractor, which is the purpose of the next chapter.

Chapter 5

Tests

5.1 Introduction

The previous chapter described the proposed feature extractor algorithm and a
simple VO algorithm that can be used to test it. The purpose of this chapter
is to describe how the tests were conducted, the specific parameters used, and
the dataset used. As explained in the previous chapter, the proposed feature ex-
tractor has been implemented with two different CNNs, which are VGG-16 and
MobileNetV2. Both of these implementations are tested and compared to the per-
formance of ORB features. Both the VO algorithm and the feature extractors have
some parameters associated with them, which exact values will also be given in
this chapter. The results of the tests will be provided in the next chapter, along
with a discussion of them.

5.2 The Dataset

Although this project mainly focuses on indoor AR navigation, the KITTI dataset is
utilized to test the feature extractors due to its robustness, diversity, and widespread
use in benchmarking VO algorithms [8]. The KITTI dataset, captured by a car-
mounted camera, consists of 22 image sequences numbered from 00 to 21. While
primarily intended for autonomous driving applications, its diverse and complex
real-world scenarios make it a reliable testing platform for evaluating VO algo-
rithms, essential for precise and stable AR experiences. In addition, the KITTI
dataset can provide insights into the performance of the proposed feature extrac-
tor under various conditions, potentially offering valuable information for further
development and adaptation for indoor industrial environments.

35

5.2. The Dataset 36

The KITTI dataset includes both RGB and grayscale images in monocular or stereo
formats. For this project, monocular grayscale images from sequence 01 are cho-
sen, using only the first 50 images as a constraint to avoid an unreasonably lengthy
algorithm execution. Ground truth files containing transformation matrices de-
scribing the camera’s true pose and a calibration file containing the camera’s in-
trinsic parameters are provided. Figure 5.1 showcases two example images from
the selected image sequence.

It is important to note that despite the outdoor nature of the KITTI dataset, many
features present in these images, such as edges, corners, and textures, can also be
found in indoor environments. Thus, the performance of the proposed feature ex-
tractor on the KITTI dataset can still provide valuable insights into its effectiveness
and potential applicability for indoor AR navigation. Moreover, demonstrating
strong performance on this challenging dataset indicates that the algorithm may
also perform well in indoor settings.

Figure 5.1: Two example images from the KITTI sequence used to test the VO algorithm

5.3. Adjustable Parameters 37

5.3 Adjustable Parameters

The VO algorithm used to test the feature extractors and the feature extractors
themselves have some associated parameters that influence the algorithm’s per-
formance. To find an effective combination of parameters, a selective grid search
is performed, testing specific chosen parameter combinations. This section gives
a short description of each parameter, followed by a table of the various values
tested.

5.3.1 Ratio Test Threshold

When performing feature matching, the ratio test compares the distances between
the best-matching feature and the second-best matching feature. If the ratio of
the best match’s distance to the second-best match’s distance is smaller than the
threshold, the match is considered valid. By comparing the best and second-best
match, the ratio test aims to ensure that a match is not only the best but also
significantly better than the next best match. This helps filter out false matches that
might have occurred due to noise or repetitive patterns in the images. Adjusting
this threshold affects the strictness of filtering, thereby impacting the number of
matches.

5.3.2 Mean Based Filtering

The ratio test compares the distance in feature space. However, there might be
features that are still wrongly matched. Therefore, another filter is applied, which
measures the pixel distance between two matched key points. It calculates the
mean value of the distances and creates a threshold based on a multiple of the
standard deviation. The multiple of the standard deviation can be adjusted.

5.3.3 Max Number of Features

Both the ORB features and the proposed deep learning-based feature extractor
have a parameter limiting the number of found features. This is done by selecting
the n best features based on their response values. Selecting the features with the
best response values ensures that the most useful features are used while reducing
compute time of the algorithm.

5.3. Adjustable Parameters 38

5.3.4 Image Pyramid

Image pyramids are used in various computer vision tasks, including feature de-
tection and description. They help capture features at different scales, which is
useful when dealing with images with varying scales and resolutions. An image
pyramid has two associated parameters.

• Num scales: The number of scales in the image pyramid determines the
number of downsampled versions of the input image.

• Scale factor: The scale factor is a multiplicative factor that determines the
size of each successive level in the image pyramid. It is used to resize the
image at each level. Adjusting the scale factor impacts the granularity of the
detected features at different scales.

Parameter Values Tested
Feature Extractor [ORB, MobileNetV2, VGG-16]

Max Number of Features [3000, 6000]
Mean Based Filtering [False, True]

Standard Deviation Multiplier [1, 2]

Table 5.1: Parameter values used in the selective grid search.

Chapter 6

Results and Discussion

6.1 Test Results

This chapter presents the results of the tests conducted on three different feature
extractors, including the original ORB feature extractor and the proposed feature
extractor, tested with two different neural networks. A grid search was performed
to test different combinations of three parameters for each feature extractor, result-
ing in 18 tests. The final drift error for each test is displayed in Table 6.1. This error
was calculated with equation 6.1, using the final predicted and ground truth x and
y positions. The results indicate that, unfortunately, the proposed feature extractor
performed worse than the ORB feature extractor, regardless of whether VGG-16 or
MobileNetV2 was used. Notably, VGG-16 outperformed MobileNetV2, and one of
the tests using MobileNetV2 failed due to insufficient features in one of the frames,
resulting in an error when calculating the essential matrix.

Final Error

Proposed Algorithm

nFeatures Use Mean Filter Std Multiplier ORB MobileNetV2 VGG-16

3000
False 1.6349 40.9820 24.7457
True 1 2.5108 36.9791 22.4421
True 2 2.7650 NaN 22.2870

6000
False 2.2378 32.8022 23.9021
True 1 2.7200 34.2734 25.0889
True 2 2.1383 49.7098 27.0332

Table 6.1: Final drift error for all combinations of the tested feature extractors and adjustable param-
eters

39

6.1. Test Results 40

To provide a visual representation of the findings, Figure 6.1 shows three graphs,
each depicting the predicted and true paths in x and y coordinates as well as the
drift error over time. These graphs display the three best tests using the highest-
performing parameter combinations for each feature extractor. The graphs clearly
show how the drift error accumulates over time. It can be seen that when using
ORB features, the predicted path follows the ground truth path much more con-
sistently. Using VGG-16, the predicted path seems to deviate from the true path
quickly. However, when using MobileNetV2 it does not seem to follow the true
path at all.

Error =
q
(xgt, final � xpred, final)

2 + (ygt, final � ypred, final)
2 (6.1)

6.1. Test Results 41

(a) Using ORB feature extractor

(b) Using VGG-16 feature extractor

(c) Using MobileNetV2 feature extractor

Figure 6.1: Showing three graphs, each depicting the predicted and ground truth paths in x and y
coordinates as well as the drift error over time. These graphs display the three best tests using the
highest-performing parameters for each feature extractor.

6.2. Discussion 42

6.2 Discussion

6.2.1 Underperformance of Proposed Feature Extractors

The main findings of this study indicate that the proposed feature extractors did
not outperform the original ORB feature extractor in the visual odometry task.
Both VGG-16 and MobileNetV2 were tested, with VGG-16 achieving better results
compared to MobileNetV2. However, even with the better-performing VGG-16, the
proposed feature extractors still fell short of the performance attained by the ORB
feature extractor. The primary focus of this discussion is to delve into the possi-
ble reasons why the proposed feature extractors did not achieve superior results
compared to the ORB feature extractor and explore potential improvements.

6.2.2 Training Data Discrepancy

A notable aspect to consider is the discrepancy between the data on which the neu-
ral networks were trained and the data used in the visual odometry task. VGG-16
and MobileNetV2 were pre-trained on the ImageNet dataset, a large-scale dataset
comprising varied images ranging from objects and animals to scenes. Never-
theless, the characteristics and features inherent in the ImageNet dataset might
not necessarily align with those present in the data utilized for testing the visual
odometry algorithm.

This misalignment could result in the extraction of features that, while relevant
within the context of ImageNet, might not provide adequate or essential informa-
tion for our visual odometry task. As a result, the accuracy of camera motion
estimation may be negatively affected, contributing to the poor performance of the
proposed feature extractors compared to the ORB feature extractor.

This deviation from expected performance motivates a reassessment of the pro-
cess, suggesting the potential advantage of training these neural networks on data
more reflective of the environments in which the visual odometry algorithm is ex-
pected to operate, thus aligning the feature extraction more closely with the task
at hand.

6.2.3 Feature Dimensionality

Another factor that might have contributed to the increased drift error when using
the proposed feature extractors is the higher dimensionality of the feature vectors
generated by VGG-16 and MobileNetV2. These models produce 512-dimensional
and 1024-dimensional feature vectors, respectively, compared to the ORB’s binary
32-dimensional feature vector.

6.2. Discussion 43

While the richer representations could potentially capture more nuanced infor-
mation about the images, the higher dimensionality also increases the complexity
of the feature-matching process. Theoretically, it might lead to more false matches
due to the ’curse of dimensionality’, where the distance between points in a high-
dimensional space becomes less meaningful. This could result in more matching
errors and hence an increased drift over time.

Moreover, the higher dimensionality could potentially make the system more sen-
sitive to noise and variations in image quality, further degrading the performance.
Thus, a balance must be struck between the richness of the representation and the
robustness and reliability of the matches.

(a) Matched features using ORB feature extraction algorithm.

(b) Matched features using VGG-16 feature extraction algorithm.

(c) Matched features using MobileNetV2 feature extraction algorithm.

Figure 6.2: Matched features between consecutive frames using different feature extraction algo-
rithms. (a) ORB, (b) VGG-16 with mean filtering, and (c) MobileNetV2. The VGG-16 and Mo-
bileNetV2 results are obtained using the proposed algorithm.

6.2. Discussion 44

6.2.4 Feature Matching Analysis and Filtering

A reasonable assumption is that the matched features do not significantly change
their pixel-wise positions from frame to frame. Of course, features far from the
camera in real-world coordinates will move more in pixel coordinates than closer
features. However, large discrepancies in the matched features’ position might in-
dicate wrongly matched features. To gain better insight into this, Figure 6.3 shows
a discretized bar chart with the pixel-wise euclidean distance between matched fea-
tures. The three plots in Figure 6.3 represents a test where no mean filter has been
applied yet and with n f eatures = 3000. These plots show that using MobileNetV2
results in a much larger standard deviation, which could indicate many incorrectly
matched features. The matched ORB and VGG-16 features have a much smaller
standard deviation and, thus, fewer incorrectly matched features. Although, the
matched ORB features seem to have a slightly smaller standard deviation than the
matched VGG-16 features.

6.2. Discussion 45

(a) Discretized bar plot showing the distribution of the pixel-wise dis-
tances between matched key points using ORB features.

(b) Discretized bar plot showing the distribution of the pixel-wise dis-
tances between matched key points using VGG-16 features.

(c) Discretized bar plot showing the distribution of the pixel-wise dis-
tances between matched key points using MobileNetV2 features.

Figure 6.3: Discretized bar plot showing the distribution of the pixel-wise distances between matched
key points.

6.2. Discussion 46

The idea with the mean filter, described in Section 4.2, is to remove some of these
outliers. However, looking at the results in table 6.1, this does not seem to have
any significant impact. Similarly, it seems hard to conclude that the number of
features significantly impacts the performance since using 6000 features instead of
3000 only improves the performance sometimes, whereas other times, it worsens.

6.2.5 Compute Time

Another essential aspect to consider is the computation required to run the al-
gorithms. The algorithm was tested using a 2016 MacBook Pro running on the
CPU, resulting in an average ~0.194-second compute time per frame if using ORB
features. However, using MobileNetV2 and VGG-16 took an average of ~92 and
~48 seconds per frame, respectively. The significant increase in compute time is
mainly due to two factors. Firstly, performing inference on neural networks takes
a significant amount of time. Secondly, MobileNetV2 and VGG-16 produce a fea-
ture vector that is 1024 and 512, respectively, compared to ORB, which produces
only 32 features. More features result in the knn algorithm taking much longer to
find matching features. Although running the algorithms on the aforementioned
hardware takes a long time, it might be possible to speed it up using a GPU.

6.2.6 Relation to AR

As stated earlier in the report, VO is an integral part of SLAM algorithms, which is
a crucial component in many AR applications. Especially if digital objects need to
be placed in fixed real-world positions, as seen in figure 3.3, where a blue sphere
is placed at a bin code position in the Selek warehouse.

It is important to note that the dataset used in this study was recorded from a
car. While the dataset’s origin might seem unrelated to an industrial environment
like a warehouse, the findings can still apply to other scenarios, such as warehouse
AR applications. This is because the fundamental principles of VO remain the
same across different environments, as the goal is to estimate the camera’s motion
based on visual information.

Several factors contribute to the generalizability of the results to other scenarios. A
good feature extractor should be able to recognize and track important features in
various environments, regardless of the specific scene or context. The performance
comparison of different feature extractors in the car dataset can still provide in-
sights into their suitability for industrial environments.

6.2. Discussion 47

Both car and warehouse environments may present challenges, such as occlusions,
lighting variations, and dynamic objects, which can affect the performance of VO
algorithms. Therefore, improvements made to address these challenges in one sce-
nario can also apply to other scenarios.

In conclusion, although the dataset in this study was recorded from a car, the find-
ings and insights gained can still be valuable for other scenarios, such as AR ap-
plications in industrial environments. By leveraging the knowledge obtained from
this study, researchers and practitioners can develop more effective and robust VO
systems for a wide range of AR applications, including those in warehouses and
other industrial settings.

Chapter 7

Conclusion

7.1 Summary of Findings

In this thesis, various feature extraction techniques were examined and compared
within the context of visual odometry. The objective was to evaluate the perfor-
mance of the proposed deep learning-based feature extractors, using VGG-16 and
MobileNetV2, in contrast to the traditional ORB feature extractor. The experiments
were designed to assess the accuracy and robustness of these feature extraction
techniques when estimating camera motion. The findings revealed that the ORB
feature extractor surpassed both VGG-16 and MobileNet-V2 in the visual odom-
etry task. The ORB algorithm demonstrated superior efficiency and accuracy in
estimating camera motion compared to the deep learning-based methods. Further-
more, VGG-16 outperformed MobileNetV2, indicating that the VGG-16 network is
better suited for feature extraction in visual odometry tasks, even though it did not
exceed the performance of the ORB technique.

In section 3.4.3, an alternative deep learning-based feature extractor was explored,
which utilizes synthetic data for key points and feature descriptors. This approach
was chosen due to the challenges faced by humans in reliably labeling key points,
given their semantically ill-defined nature. The proposed feature extractor har-
nesses pre-trained convolutional neural networks trained on the ImageNet dataset
and extracts features from the last convolutional layer as feature descriptors. For
key point detection, the FAST algorithm was implemented. Unfortunately, the re-
sults showed that this approach did not meet the expected performance levels.
Nonetheless, there is room for further research to enhance these outcomes. In the
following sections, potential improvements and future work will be discussed to
address the limitations of this deep learning-based feature extractor and to inves-
tigate new possibilities for advancing visual odometry techniques.

48

7.2. Future Work and Improvements 49

7.2 Future Work and Improvements

7.2.1 Fine-Tuning Neural Networks

Although this study primarily used pre-trained networks as fixed feature extrac-
tors, one potential area for future research would be to fine-tune these networks.
Fine-tuning would involve slightly adjusting the weights of the pre-trained net-
work during the training process on the task-specific dataset. This could lead to
more robust feature extraction and improved performance. As indicated in the
discussion, the VGG-16 and MobileNetV2 networks used in this study were not
explicitly trained for visual odometry tasks. Fine-tuning these networks on a vi-
sual odometry-specific dataset may improve their performance relative to the ORB
extractor.

7.2.2 Dimensionality Reduction Techniques

While the discussion 6.2 pointed out that high-dimensionality of deep learning-
based features may pose challenges for subsequent steps, future research could ap-
ply dimensionality reduction methods, like Principal Component Analysis (PCA),
to the feature descriptors extracted by the neural networks. PCA, which linearly
transforms the original data into a set of uncorrelated variables, could help to re-
duce computational complexity and enhance the efficiency and performance of the
feature matching and filtering algorithms.

7.2.3 Exploring Features from Different Network Layers

As indicated in the discussion 6.2, different layers in CNNs learn distinct feature
representations. Therefore, future research might benefit from extracting features
from various layers within the pre-trained networks and examining the perfor-
mance of visual odometry algorithms using these features. This could potentially
yield a more diverse and comprehensive set of features to be utilized, which could
enhance the accuracy and robustness of the visual odometry estimates.

7.2.4 Leveraging GPUs for Computation

Given the computational intensity of deep learning techniques, especially CNNs,
future work could explore the benefits of utilizing GPUs for computation. This
could significantly reduce computational time, leading to improved efficiency and
real-time performance of the feature extraction and visual odometry algorithms.
The discussion 6.2 mentioned the higher computational requirements of the deep
learning-based methods compared to ORB, so harnessing the computational power
of GPUs could make these methods more feasible for real-time applications.

7.3. Closing Remarks 50

7.2.5 Using a More Relevant Dataset

Lastly, considering the feedback from the discussion about the dataset used in this
study, it might be beneficial to evaluate the accuracy of the proposed algorithms
using a dataset more closely related to the primary motivation of this study. Using
a dataset that accurately represents the unique features and complexities of indoor
environments would offer a more accurate assessment of the proposed feature
extraction techniques for indoor AR navigation.

7.3 Closing Remarks

In conclusion, this thesis investigated feature extraction techniques in visual odom-
etry and proposed a deep learning-based feature extractor for use in large indus-
trial environments. The experiments demonstrated that traditional feature extrac-
tion techniques, such as ORB, surpassed the deep learning-based methods in terms
of accuracy and efficiency in estimating camera motion. Nonetheless, the proposed
algorithm offers a promising avenue for further research and development. Poten-
tial improvements were suggested, such as exploring different layers in pre-trained
networks, utilizing GPUs for computation, and evaluating the accuracy of the al-
gorithms using datasets closely related to indoor AR navigation scenarios. As AR
technology continues to evolve, this research could contribute to the development
of more effective and robust visual odometry algorithms that improve warehouse
management processes and other applications in indoor AR navigation.

Bibliography

[1] SELEK DANMARK ApS. Visit to Selek. Personal visit. Visited on: 2023-02-08.
2023.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Ro-
bust Features”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 404–417. isbn: 978-3-540-33833-8.

[3] Michael Calonder et al. “BRIEF: Binary Robust Independent Elementary Fea-
tures”. In: Computer Vision – ECCV 2010. Ed. by Kostas Daniilidis, Petros
Maragos, and Nikos Paragios. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 778–792. isbn: 978-3-642-15561-1.

[4] Carlos Campos et al. “ORB-SLAM3: An Accurate Open-Source Library for
Visual, Visual-Inertial and Multi-Map SLAM”. In: CoRR abs/2007.11898 (2020).
arXiv: 2007.11898. url: https://arxiv.org/abs/2007.11898.

[5] Christine Connolly. “Warehouse management technologies”. In: Sensor Re-
view 28.2 (2008), pp. 108–114. doi: 10.1108/02602280810856660.

[6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “SuperPoint:
Self-Supervised Interest Point Detection and Description”. In: CoRR abs/1712.07629
(2017). arXiv: 1712.07629. url: http://arxiv.org/abs/1712.07629.

[7] Tobias Feigl et al. “Localization Limitations of ARCore, ARKit, and Hololens
in Dynamic Large-scale Industry Environments”. In: Jan. 2020, pp. 307–318.
doi: 10.5220/0008989903070318.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2012.

[9] Apple Inc. Understanding ARKit Tracking and Detection. Video recording. Cu-
pertino, CA: Apple Inc., 2018. url: https://developer.apple.com/videos/
play/wwdc2018/610/.

[10] Tony Lindeberg. “Scale Invariant Feature Transform”. In: vol. 7. May 2012.
doi: 10.4249/scholarpedia.10491.

51

https://arxiv.org/abs/2007.11898
https://arxiv.org/abs/2007.11898
https://doi.org/10.1108/02602280810856660
https://arxiv.org/abs/1712.07629
http://arxiv.org/abs/1712.07629
https://doi.org/10.5220/0008989903070318
https://developer.apple.com/videos/play/wwdc2018/610/
https://developer.apple.com/videos/play/wwdc2018/610/
https://doi.org/10.4249/scholarpedia.10491

Bibliography 52

[11] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: a Ver-
satile and Accurate Monocular SLAM System”. In: CoRR abs/1502.00956
(2015). arXiv: 1502.00956. url: http://arxiv.org/abs/1502.00956.

[12] Raul Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras”. In: CoRR abs/1610.06475
(2016). arXiv: 1610.06475. url: http://arxiv.org/abs/1610.06475.

[13] Raul Mur-Artal and Juan D. Tardós. “Fast relocalisation and loop closing in
keyframe-based SLAM”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). 2014, pp. 846–853. doi: 10.1109/ICRA.2014.6906953.

[14] Nicolai Høirup Nielsen. Computer Vision: Visual Odometry. https://github.
com/niconielsen32/ComputerVision/tree/master/VisualOdometry. 2022.

[15] Shashi Poddar, Rahul Kottath, and Vinod Karar. “Evolution of Visual Odom-
etry Techniques”. In: CoRR abs/1804.11142 (2018). arXiv: 1804.11142. url:
http://arxiv.org/abs/1804.11142.

[16] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed
Corner Detection”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 430–443. isbn: 978-3-540-33833-8.

[17] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In:
2011 International Conference on Computer Vision. 2011, pp. 2564–2571. doi:
10.1109/ICCV.2011.6126544.

[18] Mark Sandler et al. “Inverted Residuals and Linear Bottlenecks: Mobile Net-
works for Classification, Detection and Segmentation”. In: CoRR abs/1801.04381
(2018). arXiv: 1801.04381. url: http://arxiv.org/abs/1801.04381.

[19] Bjo rn Schwerdtfeger et al. “Pick-by-Vision: A First Stress Test”. In: IEEE,
2009. doi: 10.1109/ISMAR.2009.5336484.

[20] Björn Schwerdtfeger and Gudrun Klinker. “Supporting Order Picking with
Augmented Reality”. In: IEEE International Symposium on Mixed and Aug-
mented Reality. IEEE, 2008. doi: 10.1109/ISMAR.2008.4637331.

[21] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014).
url: http://arxiv.org/abs/1409.1556.

[22] Marie-H’el‘ene Stoltz et al. “Augmented Reality in Warehouse Operations:
Opportunities and Barriers”. In: IFAC-PapersOnLine 50.1 (2017), pp. 12979–
12984.

[23] Tasklet Factory. https://taskletfactory.com. Accessed March 6, 2023.

https://arxiv.org/abs/1502.00956
http://arxiv.org/abs/1502.00956
https://arxiv.org/abs/1610.06475
http://arxiv.org/abs/1610.06475
https://doi.org/10.1109/ICRA.2014.6906953
https://github.com/niconielsen32/ComputerVision/tree/master/VisualOdometry
https://github.com/niconielsen32/ComputerVision/tree/master/VisualOdometry
https://arxiv.org/abs/1804.11142
http://arxiv.org/abs/1804.11142
https://doi.org/10.1109/ICCV.2011.6126544
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://doi.org/10.1109/ISMAR.2009.5336484
https://doi.org/10.1109/ISMAR.2008.4637331
http://arxiv.org/abs/1409.1556
https://taskletfactory.com

Bibliography 53

[24] Chen Yunqiang et al. “An overview of augmented reality technology”. In:
Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1237/
2/022082.

[25] Zebra Technologies Corporation. PRODUCT SPEC SHEET: TC21/TC26 Touch
Computer. Online. Accessed: March 6, 2023. 2023. url: https://www.zebra.
com/content/dam/zebra_dam/en/spec-sheets/tc21-tc26-spec-sheet-en-

us.pdf.

https://doi.org/10.1088/1742-6596/1237/2/022082
https://doi.org/10.1088/1742-6596/1237/2/022082
https://www.zebra.com/content/dam/zebra_dam/en/spec-sheets/tc21-tc26-spec-sheet-en-us.pdf
https://www.zebra.com/content/dam/zebra_dam/en/spec-sheets/tc21-tc26-spec-sheet-en-us.pdf
https://www.zebra.com/content/dam/zebra_dam/en/spec-sheets/tc21-tc26-spec-sheet-en-us.pdf

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Finding Bins In A Warehouse
	1.2 Main Warehouse Tasks
	1.3 AR Navigation

	2 Problem Analysis
	2.1 Warehouse Management Systems
	2.2 Warehouse Hardware
	2.3 WMS software
	2.4 Literature review on AR in a warehouse setting
	2.4.1 Hand-held Devices vs. AR Glasses
	2.4.2 AR Benefits and Challenges
	2.4.3 AR Headsets Enhance Order Picking
	2.4.4 AR Visualization for Item Picking
	2.4.5 AR Drift Error in Large Warehouses
	2.4.6 AR in Warehouses: Summary

	2.5 Initial Problem Formulation

	3 Technical Analysis
	3.1 Introduction
	3.2 Simultaneous Localization and Mapping
	3.2.1 What is SLAM?
	3.2.2 ORB-SLAM
	3.2.3 Loop Closing

	3.3 Visual Odometry
	3.4 Feature Detection
	3.4.1 What Is Feature Detection?
	3.4.2 ORB features
	3.4.3 Learned Feature Detectors

	3.5 ARKit In Selek's Warehouse
	3.5.1 Understanding Selek's Warehouse and its Challenges
	3.5.2 ARKit Tracking
	3.5.3 Test App

	3.6 Conclusion
	3.7 Final Problem Formulation

	4 Implementation of proposed feature extractor
	4.1 Introduction
	4.2 Monocular Visual Odometry
	4.3 Proposed Deep Learning Based Feature Extractor
	4.3.1 Introduction To Proposed Feature Extractor
	4.3.2 Using FAST for Key Point Extraction
	4.3.3 VGG-16
	4.3.4 MobileNetV2

	4.4 Conclusion

	5 Tests
	5.1 Introduction
	5.2 The Dataset
	5.3 Adjustable Parameters
	5.3.1 Ratio Test Threshold
	5.3.2 Mean Based Filtering
	5.3.3 Max Number of Features
	5.3.4 Image Pyramid

	6 Results and Discussion
	6.1 Test Results
	6.2 Discussion
	6.2.1 Underperformance of Proposed Feature Extractors
	6.2.2 Training Data Discrepancy
	6.2.3 Feature Dimensionality
	6.2.4 Feature Matching Analysis and Filtering
	6.2.5 Compute Time
	6.2.6 Relation to AR

	7 Conclusion
	7.1 Summary of Findings
	7.2 Future Work and Improvements
	7.2.1 Fine-Tuning Neural Networks
	7.2.2 Dimensionality Reduction Techniques
	7.2.3 Exploring Features from Different Network Layers
	7.2.4 Leveraging GPUs for Computation
	7.2.5 Using a More Relevant Dataset

	7.3 Closing Remarks

	Bibliography

