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Abstract:

This thesis investigates whether the over-
all toughness of the material can be im-
proved by promoting multiple delamina-
tions. This is done by first investigat-
ing state-of-the-art methods regarding ma-
terials that exhibit toughening behaviour
during fracture initiation. This behaviour
can be achieved by introducing weakening
patches between the material interfaces.
In order to validate the results found in the
literature, experimental testing of a glass
fiber reinforced polymer (GFRP) double
cantilever beam (DCB) containing a weak-
ening patch configuration was conducted.
These DCB specimens were tested un-
der quasi-static and fatigue loading con-
ditions. The results showed that under
quasi-static loading, no toughening was
observed in the DCB beams tested. In
the context of fatigue testing, the charac-
terization of this test revealed toughening
behaviour in the test specimens. These
studies proposed a novel contribution to
state-of-the-art methods by providing a
new benchmark case for the study and pre-
diction of multiple fatigue-driven delami-
nations in GFRP specimens.
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Introduction 1
1.1 Background and motivation

Composite materials are compounded by two or more di�erent materials to create a new

one, which often has better properties. These types of materials are most widely used in

multiple industries such as aerospace, automotive, and construction industry due to their

strength-to-weight ratio, corrosion, wear resistance and strength [1].

Composite materials o�er a signi�cant advantage in terms of mechanical properties in

comparison to conventional engineering materials, such as steel. Unlike engineering

materials, composites are mostly heterogeneous and anisotropic, meaning that their

properties are non-uniform and they have distinct material properties depending on the

�ber directions [1].

Among the various types of composite materials that exist, this thesis will be focused on

Fiber Reinforced Polymers (FRP), which are materials composed of �bers bonded to a

matrix. Through this bonding process, the �ber and the matrix properties are combined

to create a new material which enhanced them. Typically, the �bers are responsible for

carrying the primary load, while the matrix serves to bond the �bers together and facilitate

the transfer of load between them [2].

As the need for lightweight and more e�cient structures has increased, composites have

been introduced into various industries, resulting in new composite design philosophies.

Bragal et al. [3] state three di�erent design concepts that have been evolving through the

years: safe-life, fail-safe and damage tolerance philosophy.

Safe-life and fail-safe design philosophies are commonly used design philosophies. These

philosophies usually account for not considering damage within the material useful life,

which in some cases has led to disastrous failures. The use of these philosophies results in

signi�cant expenses when utilizing equipment designed under these philosophies [3], [4].

Damage tolerant design philosophy accounts for initial damage that has occurred in the

structure. This damage makes it necessary to take this early damage stage into account

when determining inspection criteria and intervals. Damage tolerant designs are frequently

used because they provide more adaptation and �exibility to overcome uncertainty. By

reducing the need for maintenance or replacement, this design strategy can increase safety

and reliability while at the same time lowering costs [3],[5].
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Damage tolerant philosophy is related to high cyclic loading. Yet, compared to isotropic

materials, like metals, the fatigue behaviours of composite materials are very di�erent.

The initiation of microcracks in composite materials occurs at the early stages of loading,

yet composites are still able to bear the load until �nal failure [6]. This philosophy also

deals with crack growth, which is thought of as the separation of surfaces between any two

laminates of a composite laminate. This phenomenon is known as delamination [7].

Understanding the qualities of the materials and the structural requirements can help

to create a better damage tolerant structure utilizing damage tolerant materials. These

damage tolerant materials take into account the strength beyond the linear elastic limit,

allowing damage to be detected and the structure to be repaired or replaced before it

reaches its design stress. To create damage tolerant structures, materials that exhibit

toughening behaviour during fracture initiation and progression are particularly well suited

to the damage tolerance design philosophies presented [5].

1.2 Failure in composite materials

Considering the damage tolerance design philosophy mentioned in the previous section, an

understanding of the di�erent failure mechanisms is required to be able to use and design

a damage tolerance material.

With respect to failure mechanisms in composite materials, a distinction between inter-

lamina and intra-lamina failure mechanisms needs to be done. Intra-lamina occurs within

a single layer of the composite material. On the other hand, inter-lamina occurs between

two or more adjacent layers of the composite material.

Intra-lamina failure usually includes �ber and matrix failure. Fiber failure can occur due

to excessive tensile or compression loading creating failures such as �ber matrix debond

and kink band. The failure that occurs in a lamina does not extend to the adjacent layers.

Intra-lamina failure usually happens under di�erent loading conditions and may include

failures such as shear failure, transverse cracking and buckling [1]. The most common

failure regarding inter-lamina mode is delamination, which happens when a lamina debonds

from the adjacent layers [8].

Due to the high level of �bre composition in composite materials, delamination is one of the

most serious failure mechanisms that can shorten the life of the material [9]. Delamination

is a di�cult failure mechanism to detect by non-destructive inspection because it is usually

embedded in the whole structure. This defect usually occurs during the manufacturing

process but can also occur when the composite is in service or even as an external factor

[10], [11].

2
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(a) Intact material (b) Delaminated material

Figure 1.1. Delamination of a �ber-reinforce composite material under arbitrary loading
conditions.

Delamination can be interpreted as a growing crack between the laminate surfaces as shown

in Figure 1.1. Fracture mechanics can be used to study the phenomenon of delamination as

it can be considered as a growing crack problem [12], which implies that it only propagates

through one interface. Delamination in composites is a complex process caused mainly by

the composite orthotropic properties, mixed mode cracking, and crack bridging [13], [14].

The analysis of crack growth problems in composites usually involves �bre bridging. Large

scale bridging depends mainly on the specimen geometry and material properties of the

laminate [15]. This phenomenon is usually located in the crack wake and causes an increase

in fracture resistance as the crack grows [16]. Fiber bridging can be seen in Figure 1.2.

Figure 1.2. Fiber bridging phenomenon of a �ber reinforced composite.

Mechanically, crack bridging can be described in terms of tensile separation laws. It is

still a challenge to measure traction-separation laws and use them in structural design.

This damage is localised and is known as the fracture process zone because delamination

is considered to be a separation of bound layers.

Traction separation laws dictate that less traction can be transmitted through the �bres as

the separation of the layers increases, as shown in Figure 1.3. Traction separation laws are

commonly considered to be a material property that has the same behaviour throughout

the fracture process zone that occurs in the material [5].

3
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