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Figure 1: Log from Chronus, making an energy benchmark

ABSTRACT
This paper presents a novel approach to energy-efficient job sched-
uling in High Performance Computing (HPC) environments. The
primary objective is to reduce the technology gap between research
and production in energy-efficient scheduling models for HPC. I
propose an architecture and a program that decouples scheduling
heuristics to a Python application in the HPC scheduler Slurm,
traditionally written in C. This approach leverages the principles
of Service-Oriented Architecture (SOA) and Clean Architecture
to create a system that is adaptable for production setups. It pro-
vides a platform for integrating various energy-efficient scheduling
models.

My implementation demonstrates a potential energy saving of
11% in the High Performance Conjugate Gradients (HPCG) bench-
mark, which represents modern applications’ data access patterns
and computation. This showcases the approach in a single-node
HPC cluster.

The paper underscores the importance of this work as a founda-
tion for integrating research into production. It provides a realistic
example of how energy-efficient HPC can be achieved in a produc-
tion setting. Furthermore, it opens up possibilities for more complex
applications, such as automatically scheduling jobs when energy
is cheap and renewable, a practice already in use in companies
utilizing HPC.

This work contributes to the field by demonstrating a practi-
cal, energy-efficient solution for job scheduling in HPC, and by
highlighting the potential for future enhancements in this area.

1 INTRODUCTION
High-Performance Computing (HPC) is a rapidly expanding field,
driven by increasing business demands for computational power.
However, this surge has led to a rise in energy consumption, with

projections suggesting it could equal the world’s total energy pro-
duction by 2050, looking at the growth rate from 2010 to 2020 [4].
This highlights the need for effective HPC management to opti-
mize performance while minimizing power draw. In the context of
machine learning (ML) systems, the cost of computation has been
growing significantly, indicating the increasing expense of these
training runs and the willingness of actors to invest in them. There-
fore, energy-efficient strategies in HPC are crucial for managing
these costs and facilitating AI progress.[5]

The need for efficient HPC software scheduling has become
especially apparent since the European Energy Crisis of 2022 when
Russia cut off its gas supply to Europe due to political tensions. This
crisis made the prices for energy increase significantly [11]. Vestas,
a Danish wind turbine company, are facing the same problems
when running HPC applications. Vestas are watching their 𝐶𝑂2
footprint, and trying to maintain costs, by only scheduling HPC
applications when there is cheap or green energy in the market.[2]

HPC software scheduling for improved energy efficiency is es-
sential for reducing environmental impact while ensuring optimal
performance from high-performance computers. Recognizing the
importance of managing resources efficiently, businesses can make
substantial progress towards sustainable computing practices that
will benefit both society and their bottom line.

This paper proposes a novel approach for the integration of
energy-efficientmodels withinHigh-Performance Computing (HPC)
systems, architected with a keen focus on ensuring interoperability
among the components of an HPC system. A review of existing
solutions in Section 2 highlights the prevalent technology gap be-
tween academic research and practical implementation in the field
of HPC systems. Section 3 delineates the construction and opera-
tional mechanisms of the proposed system, providing an in-depth
understanding of its functionality and application in real-world
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scenarios. Section 4 delves into the technical intricacies that make
the proposed solution feasible, while Section 5 presents an empiri-
cal study demonstrating the system’s efficacy in enhancing energy
usage efficiency. Finally, Section 6 outlines potential avenues for
future research, drawing conclusions about the effectiveness of
the proposed solution and serving as a roadmap for future endeav-
ors aimed at enhancing the energy efficiency of HPC systems. In
Appendix B, C and D there are section about my Progress. Appen-
dix B describes where to find the code. Appendix C is about my
work process. Appendix D is about how I verified that everything
worked.

2 RELATEDWORKS
This section provides a brief overview of the existing solutions and
highlights the technology gap that the proposed solution aims to
bridge.

2.1 Slurm and HPC
Simple Linux Utility for Resource Management, Slurm. Slurm is a
highly scalable, open-source job scheduler designed for Linux clus-
ters inHPC environments[25]. It manages computational workloads
by allocating resources, providing a framework for starting, execut-
ing, and monitoring work, and managing a queue of pending work.
Developed at Lawrence Livermore National Laboratory, Slurm is
now widely used in many of the world’s supercomputers, research
universities, and commercial companies involved in HPC[3]. It sup-
ports a variety of job types, including single or multiple-task jobs,
job arrays, and job steps where multiple tasks of a job can be dis-
tributed across multiple nodes. Slurm is a widely-used scheduling
system employed by 60% of the top 10 supercomputers[24] in the
world.

Niagara: Canada’s National Supercomputing System. [18] provides
a comprehensive overview of the Niagara supercomputer, which
uses Slurm as its job scheduler and resource manager. The authors
discuss the system’s software stack, job scheduler, file systems, and
monitoring tools. They highlight the flexibility of Slurm in its con-
figuration, emphasizing that fewer constraints on a scheduler can
lead to better performance in delivering high and fair utilization of
the cluster. They also mention the use of the Slurm multifactor pri-
ority plugin to balance various factors used in priority computation,
such as job age and size, the partition it was submitted to, the job’s
quality of service, and the user’s fair share of the system. Niagara is
an example of a complex HPC system, where everything is tailored
to their cluster. As they describe it, that is the best practice way.
That means that every HPC cluster, that is following best practices
will have different setups. It is also an example of how complex it
can be to set up an HPC system.

Energy efficiency approaches.

2.1.1 Indutry approaches to energy efficiency.

The Language Mojo. [10] is a new programming language under
development. It was announced in May 2023. It is focused on AI,
where they have features such as autotune. Autotune automatically
calculated the fastest parameters of your code, caches it, and then
uses that for compiling your code. An example of a parameter is the

tile size of a matrix, to fit your hardware cache. This is similar to the
approach proposed in this paper, where we are trying to find the
most energy-efficient parameters. The difference is that they are
doing it at compile time, and this paper’s approach is configuring
runtime parameters.

Lancium. is a company that has developed its unique strategy to
achieve energy efficiency in HPC workloads. Lancium’s approach
leverages the variability of renewable energy generation to op-
timize the scheduling of HPC jobs. By aligning the execution of
computationally intensive tasks with periods of high renewable
energy availability. Based on historical data Lancium’s solution sig-
nificantly reduces the carbon footprint and energy costs associated
with HPC operations. They are looking at the energy market at
a macro scale to optimize for green energy, whereas this paper’s
approach is optimizing the program to use less energy.

2.1.2 Energy efficiency models for Slurm.

Energy-Optimal Configurations for Single-Node HPC Applications.
[21] presents a method for finding energy-optimal configurations
for single-node HPC applications. The method uses a genetic algo-
rithm to find the optimal configuration for a given application. The
results show that the proposed method can find energy-optimal
configurations for a wide range of applications. They outperformed
the default Linux DVFS scheme in its best case with an average of
6% energy savings. In DVFS’s worst case, the savings were about
790%, on average. The experiment for this paper was done by set-
ting frequencies getting a admin to set the frequencies of cores, and
then running the program on those cores. This does not work in
a production setting, as you do not know which cores your job is
running on before it is out of the queue and scheduled.

Dynamic Power Management for Value-Oriented Schedulers in Power-
Constrained HPC System. [12] presents a framework for dynam-
ically managing the power consumption of HPC systems. This
framework allows users to customize the power budget and adjust
it according to their needs. The results show that the proposed
framework can reduce power consumption by up to 30%. This is
useful for making the plugin dynamically change the order of jobs,
to be more efficient. They are evaluating it by simulating it, and
not running it on a HPC system.

Several existing solutions have been proposed to address the is-
sue of energy efficiency in HPC systems. However, these solutions
are either theoretical or standalone, and there is a lack of a com-
prehensive architecture that can be integrated with existing HPC
systems to enhance their energy efficiency. This paper proposes
an approach that is designed to be used in production, to facilitate
great solutions like the ones mentioned above, with the potential
to be integrated into a production environment.

3 THE ECO PLUGIN
The primary focus of this contribution is the development of a
novel Slurm plugin. It focuses on Slurm, as it is used in 6 out of
the 10 best supercomputers in the world, as described in Section
2.1. It is designed to enhance the energy efficiency of applications
scheduled in high-performance computing systems. in a production
environment. Production environments often have multiple users,
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and they have a scheduler that determines which users turn it is,
to use the cluster.

The eco plugin is made of two parts. One: job_submit_eco
which is a C plugin inside of Slurm, which is responsible for chang-
ing parameters for a job. Two: Chronus, which is a Python appli-
cation responsible for determining the best configuration settings
for CPU frequencies, number of scheduled cores, and threads per
core, intending to minimize energy consumption given the same
executable and problem size. By allowing the integration of various
algorithms or models, this work provides a flexible solution that
can accommodate input from domain experts without requiring
them to be proficient in software engineering.

The primary goal of the eco plugin is to enhance energy efficiency
in high-performance computing by achieving more GFLOPS (billion
floating-point operations per second) per watt. This is accomplished
by incorporating energy-efficient configurations into job scheduling
within Slurm.

The novelty of this contribution lies in its potential integration
of energy-efficient scheduling and getting performance data in a
production environment. While other solutions have focused on
saving energy for individual applications, this approach brings en-
ergy efficiency to the forefront in a widely-adopted scheduling
system. By implementing energy-efficient configurations, the eco
plugin not only saves energy but also promotes more sustainable
high-performance computing with only a minor increase in exe-
cution time. This can be compared to driving a car at a moderate
speed to achieve better miles per gallon, as opposed to driving at
higher speeds with reduced fuel efficiency.

3.1 Functionality of the Eco Plugin
The Eco Plugin works by interacting with Slurm, modifying its
scheduling behavior to prioritize energy efficiency instead of time
for the application to finish. By integrating this plugin into the
Slurm environment, users can adopt greener scheduling practices
into their existing environment.

The Eco Plugin is developed as a standalone component that
can be integrated into an existing Slurm installation. The plugin
consists of two parts. Part 1 is a plugin inside the Slurm code base,
called "job_submit_eco". Part 2 is a Python application Chronus,
that job_submit_eco uses to get the energy-efficient configuration.
This makes it possible to add new integrations and energy efficiency
models to Chronus, without having to redeploy Slurm. This resem-
bles a Service-oriented architecture, in that regard. Figure 2 shows
the architecture of Slurm, with the eco plugin highlighted in green.
Slurm is a distributed system, where the slurmctld is running on
a head node, and the compute nodes are workers running slurmd.
The box in the left lower corner split into 4 are Slurm commands,
that can be run by the user, to interact with slurmctld. This paper
only touches on srun is used to submit an interactive job and di-
rectly run it on the allocated resources, and sbatch which is used
to submit a batch job script, allowing for non-interactive, sched-
uled execution of tasks. The green arrow between slurmctld and
Chronus is "job_submit_eco". For Chronus to work it needs a data-
base, where it can store benchmarks and models. This is shown as a
cylinder disk, with the text "Chronus database". Chronus is built to

work with any database. Right now it has a SQLite and a CSV im-
plementation. Chronus blob storage is built the same way and can
be of any type, like the Network File System (NFS), which allows a
computer to access files over a network like how local storage is
accessed [15], or the Server Message Block (SMB) protocol, often
known as Samba, which provides a method for client applications
in a computer to read and write to files and to request services from
server programs in a computer network [20]. Alternatively, a cloud
solution like an S3 bucket on AWS can be used, which provides
scalable object storage through web services interfaces [8]. For now,
it is just a local disk, as it is the easiest to work with.

Compute
Node

slurmd
Users

Slurm
Accounting
Database

Head Node

slurmdbd

slurmctld

squeuescontrol
sbatchsinfo

chronus

SSH

Compute
Node

slurmd
Chronus
Database

Chronus
Blob storage

Figure 2: Slurm architecture w/ Chronus

All supercomputers are built differently and have different re-
quirements. They have different hardware, different power sources,
and different interconnects. Chronus determines the energy-efficient
configuration for a given application by benchmarking various con-
figurations, different core counts, frequencies, and threads per core.
It then builds a prediction model based on these benchmarks to
identify the most energy-efficient configurations for a specific HPC
cluster, on a specific application. The job_submit_eco plugin in
Slurm’s architecture, modifies the job parameters upon submission,
setting the optimal core count, frequency, and thread per core con-
figuration, including whether to use hyper-threading if available.

3.1.1 Slurm: Job submit eco. Slurm is designed with a plugin ar-
chitecture. There are 38 different types of plugins, with multiple
implementations of each type as of version 22.05.9 [19]. The eco plu-
gin is of the type "job submit", hence the name job_submit_eco.
This type of plugin is called when a job is submitted to the scheduler.
The plugin can then modify the job before it is added to the queue.
Chronus calculates the most energy-efficient configuration. The
Slurm plugin is then modifying the job, to use the most energy-
efficient configuration.

3.1.2 External program: Chronus. Chronus has 4 functions:
(1) Benchmarking
(2) Model building
(3) Pre-load model
(4) Predict energy efficient configuration
Figure 3 shows an overview of how everything is wired together

and is a more detailed version of Figure 2. Each color or arrow is
linked to a task and has a corresponding description to the arrow.
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Below is a more detailed description of each step, which also refer-
ences back to Figure 3.

Head Node

chronus cli

benchmark init�model load�model slurm�conf�g

slurmBMC
1� run hpcg2� get energy

3� add model to local settings

1� load settings
2� run model

File system

/opt/chronus/optimizer

/etc/chronus/settings.json

Chronus Blob storag

2� upload model
2� download modelChronus

Database 3� save benchmark

1� get benchmark
3� save model metadata

1� get model metadata

Figure 3: Chronus flow

Benchmarking - black arrows.
Step 1 Chronus starts a job on the HPC cluster, with a given con-

figuration. This is done by submitting a job to Slurm, using
the sbatch command.

Step 2 Chronus keeps sampling the energy usage from the Base-
boardManagement Controller (BMC), using Intelligent Plat-
form Management Interface(IPMI)[9]. This is done at a 2-
second interval.

Step 3 When the job is done, Chronus saves the energy usage and
the results of the job to a benchmark in a database.

Chronus benchmarks the application, with different configura-
tions: It benchmarks the application with different core counts,
frequencies, and threads per core. It then saves energy usage, and
execution time for each configuration. This is the baseline for mak-
ing a prediction model. It keeps doing this until it has benchmarked
all configurations. If no configurations are given, it will benchmark
all configurations based on the system CPU.

Model building - blue arrow.
Step 1 Loads benchmarks from one system and application. Builds

a prediction model, based on the benchmarks
Step 2 Uploads the model to blob storage.
Step 3 Saves metadata for the model to the database. Metadata is

path in blob storage, time on creation, etc.
Chronus builds a prediction model, based on the benchmarks. It

uses the energy usage over time, execution time, and the config-
uration of the system: the number of cores, threads per core, and
frequency to build a model. The model is then saved to blob storage.

Pre-load model - red arrow.
Step 1 Loads metadata for the model from the database.
Step 2 Downloads the model from blob storage.
Step 3 Saves the model to a local disk on the head node.

slurm

benchmark

blob storage f�le systemchronus

run benchmark
 in slurm

model building

pre�load model

saves model

download model to f�le system 

predict
conf�guration

User

Figure 4: The Eco plugin sequence diagram

Chronus loads the model’s metadata from the database. It uses
the path from metadata to download and saves it to a local disk
on the head node, which has slurmctld running. This is done to
speed up the prediction process, as Slurm has a very short time to
make a decision when a job is submitted. This is a constraint set by
Slurm and raises an error if a plugin takes too long to run.

Predict energy efficient configuration - purple arrow.

Step 1 Loads the model from the local disk.
Step 2 Predicts the energy-efficient configuration.
Step 3 Returns the energy-efficient configuration to the eco plugin.

This step is only called by job_submit_eco in Slurm. The Chronus
command returns a JSON, that contains the energy-efficient config-
uration. job_submit_eco calls it with the system identifier and the
hash of the binary. The hash is used to determine the configuration
of the binary.

Figure 4 shows a sequence of how you use the system. The solid
lines are commands the user and Slurm run. The dotted lines are
what happens in software, when the command is run.

3.2 Chronus Integrations
Chronus offers a series of integration interfaces for integrating
with various HPC setups. The integration interfaces of Chronus
are designed to change to fit different setups of HPC Clusters. In
an HPC cluster comprised of a single node, it is feasible to utilize
IPMI to ascertain the system’s power consumption. Conversely, in a
multi-node setup, you need power from multiple nodes where you
have an API that measures power draw. Then there is a need for
an integration in Chronus, that can read the power draw from that
API. That is two different implementations for the same integration
interface.

In an HPC cluster comprised of a single node, it is feasible to
utilize IPMI to ascertain the system’s power consumption. Con-
versely, in a multi-node configuration, obtaining power data ne-
cessitates an application programming interface (API) measuring
power consumption across multiple nodes. Despite the differing
execution methods, both scenarios aim to achieve the same goal -
to provide system power measurement. Chronus needs to facilitate
both, through a common integration interface. Figure 5 presents
an overview of all the integrations currently in Chronus. In this
section, each integration will be described.
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Repository
CSV
SQLite

System Info
lscpu

Application Runners
HPCG

Optimizer
Brute force
Linear Regression
Random Forest Regressor

Local Storage
Etc Storage

System Service
IPMI

Figure 5: Integration interfaces in Chronus

Repository. Designed as a bridge for remote storage, it assists in
saving metadata related to runs, benchmarks, system information,
and models. This integration interface is managing data in the
Chronus system.

The current implementations of the integration interface Repos-
itory are:

• CSV File
• SQLite Database

Optimizer. Designed to fit different efficiency model that calcu-
lates the optimal configuration for energy usage. This is where
new methods for predicting energy efficiency will be implemented.
Current implementations of the integration interface Optimizer
are:

• Linear Regression
• Random Forest Regressor
• Brute Force

Application Runner. is designed to run applications for bench-
marking the HPC system. The best energy efficiency configuration
changes for each application. This is made for Chronus to be able
to integrate with all applications. Current implementations of the
integration interface Application Runner are:

• High Performance Conjugate Gradients (HPCG)
The High Performance Conjugate Gradient[6] (HPCG) bench-

mark is a tool designed for ranking computer systems based on their
performance, while accurately reflecting the performance of mod-
ern applications. Unlike the High-Performance Linpack (HPL)[7]
benchmark, which is often used for ranking computer systems,
HPCG is designed to better represent how today’s applications
perform. It is based on a simple additive Schwarz, symmetric Gauss-
Seidel preconditioned conjugate gradient solver, and it allows for
certain code transformations. This makes HPCG a more realistic
measure of system performance in practical use cases.

Local Storage. This interface is tasked with managing local set-
tings storage. It allows for the saving and retrieving of settings and
conversion of relative paths into full file paths.

The current implementation of the integration interface Local
Storage is:

• ETC Storage

System Service. This service is the monitoring service. It collects
all the system telemetry like CPU frequency and power draw. It is
used for data sampling while running benchmarks.

The current implementation of the integration interface System
Service is:

• IPMI (Intelligent Platform Management Interface)

System Info. This service gathers system information such as
the number of cores, threads, frequencies, and RAM. This is what
identifies the system.

The current implementation of the integration interface System
Info:

• lscpu

File Repository. An integration interface used for storing optimiz-
ers in Chronus, providing a consistent API for managing optimizers.

The current implementation of the integration interface File
Repository is:

• Local Storage
This implementation saves models to a folder called ./optimizers
in the current directory of the user, using Chronus. This could also
be NFS, AWS blob storage, or similar.

Each integration interface provided by Chronus has been de-
signed to cater to different aspects of the system’s operation. Their
flexibility and adaptability make them suitable for various imple-
mentations, thereby enhancing the overall functionality of the eco
plugin. By utilizing different integration interfaces and their respec-
tive implementations, Chronus offers a robust and flexible platform
for optimizing energy usage in HPC systems. Section 4.1 focuses
on implementation, and it shows how to add an implementation
practically.

3.3 Using the system
After installing Chronus and Slurm, and enabling job_submit_eco
in slurm, the user can interact with the plugin through Chronus’s
Command Line Interface (CLI)

When job_submit_eco plugin is enabled for an HPC cluster, by
default it will not change any settings when submitting a job. To
enable it in a job, the user needs to add this line to their sbatch
script. #SBATCH –comment "chronus". This will enable the plugin
for this job, and the plugin will then modify the job, to use the
energy-efficient configuration. The system admin can also disable
it for all jobs. This is done by using Chronus’s CLI.

Chronus offers CLI commands for each of the tasks above. Each
of them corresponds to one of the actions described in Section 3.1.2.
These are the 5 commands.

• benchmark: Runs benchmarks on different configurations.
• init-model: Initializes the prediction model.
• load-model: Loads a pre-trained model.
• slurm-config: Executes the main functionality.
• set: Changes the configuration of the plugin.

The following is a description of the usage of the five commands
listed above.
chronus benchmark [HPCG_PATH]

--configurations [CONFIG_FILE]
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To run a benchmark, call the benchmark command. In the current
version, there is only an application runner for HPCG, and it re-
quires a path to the binary, to begin the benchmark. As default,
it runs in all configurations, but you can specify which configu-
rations to benchmark, with the –configuration flag, with a path
to a JSON with an array of configurations. A JSON configuration
looks like this:
[

{
"cores": 32,
"threads_per_core": 2,
"frequency": 2200000

},
...

]

The benchmarking process can take a while. One of the implementa-
tions of application runners is HPCG, which takes 30 minutes to run
once. When this is run, it is an advantage to run it as a background
process, or in a multiplexer like tmux or screen. When running
it write logs to the terminal, and to /var/log/chronus.log. The
benchmarking process is shown in Figure 6.

Figure 6: Chronus benchmark

chronus init-model
--model [MODEL_TYPE]
--system [SYSTEM_ID]

To build a model call the init-model command. This command
takes a model type and a system identifier. The model type is the
type of model Chronus should build. Currently, there are three
models available: brute force, linear regression, and random tree.
The options for choosing one can be displayed by running the
command with the –help flag. See Figure 7 for a output of –help.

Figure 7: Set help message

The system identifier is a unique identifier for the system. This
is used to identify the model when loading it. When you do not
specify a system identifier, it will present you with systems that are

already in the database. Figure 8 shows the CLI presenting available
systems, and then how it looks building a model.

Figure 8: CLI init model

chronus load-model --model [MODEL_ID]

To pre-load a model you call the load-model command. The model
id is the id of the model to load. When you do not specify a model
id, it will present you with models that are already in the database.
Figure 9 shows the CLI presenting available models, and then how
it looks loading a model.

Figure 9: Displaying available models

chronus slurm-config [SYSTEM_IDENTIFYER] [BINARY_HASH]

Given a cluster identifier and a job, Chronus predicts the most
efficient energy configuration. It returns the energy-efficient con-
figuration to the Eco plugin, which modifies the job accordingly.
This is not supposed to be called by the user but is called by
job_submit_eco. If you call it, it returns a configuration in JSON
format.

chronus set COMMAND [ARGS]

To change the configuration of the plugin you call the set com-
mand. This command takes a configuration type and a value. The
configuration type is the type of configuration to change. Currently,
there are three configurations available: model, system, and bench-
mark. The options for choosing one can be displayed by running
the command with the –help flag.

These are the available things to set
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Figure 10: Set help message

3.4 Installation
Installing the eco plugin is a two-step process. First, you need to
enable the plugin in Slurm, and then you need to install Chronus
on the head node. Both of them have a few requirements, for them
to work.

3.4.1 Slurm plugin requirements. Slurm in itself is a complex dis-
tributed system. It is built with autotools and has a lot of dependen-
cies. The job_submit_eco plugin does not have any extra depen-
dencies on Slurm. If you install a version of Slurm with this plugin
in the source code, it will be compiled with Slurm.

To enable the plugin, you need to add this line to your Slurm
config file.
JobSubmitPlugins=eco

The default place for this file is /etc/slurm/slurm.conf. This will
enable the plugin, and it will be called when a job is submitted.

3.4.2 Chronus requirements. Chronus is written in Python and re-
quires Python 3.9 or newer. Chronus is tested and works on Ubuntu
20.04, Centos 7.9, Rocky Linux 8.7, Rocky Linux 9.1, and PopOS
22.04, and should work on any Linux distribution.

Chronus can be installed as a Python package. In a virtual en-
vironment, you can install it with pip install chronus. If you
are using Conda you can install it with conda install chronus.
This will install Chronus in the user’s path. Chronus needs to be
available for the Slurm user and the user that is running the plugin.
Slurm is often setup to run as a user called Slurm and needs to
be able to run Chronus on job submit to get a configuration. The
users using Chronus as a CLI needs to be able to modify system
settings like /etc/chronus/settings.json. You could install it
system-wide, and use sudo when changing system settings.

Chronus reads most of the system information in Linux files. An
example is the CPU scaling frequencies, which are read from:
/sys/devices/system/cpu/cpu0/cpufreq/

scaling_available_frequencies

When using IPMI to read the power consumption of the nodes,
Chronus needs access to IPMI. On most systems, only admins can
read the special files in /dev. Chronus needs to be able to read
the onboard communication to the BMC through /dev/ipmi0, or
provided with credentials to the BMC. Making Chronus able to

read onboard communication, can be done by making /dev/ipmi0
readable by users on the system. This can be done by running
chmod o+r /dev/ipmi0

This will allow Chronus to read the power consumption of the node.
Credentials to the BMC can be provided in the settings file.

4 IMPLEMENTATION
This section discusses the implementation details of the eco plu-
gin, and how it integrates into the proposed architecture. First
job_submit_eco and then Chronus. We are going to go through
how to extend Chronus and then how they interact. Section 3.1
already went through the high-level architecture, and this will not
be explained further in this section.

4.1 Extending Chronus
To support the extensibility described in Section 3.1.2, Chronus is
made with Clean Architecture and Dependency Inversion.

CLI

System Integrations

Presenter

Application

Domain

Data flow

Depedency
rule

Figure 11: Clean Architecture for Chronus

Clean architecture[14], as proposed by Robert C. Martin, is a soft-
ware design philosophy that emphasizes the separation of concerns.
It encourages the development of systems that are independent of
specific details, such as databases and user interfaces. For Chronus,
it is independent of application runner, system sampling, etc. from
Section 3.1.2. This independence allows for easier maintenance and
testing, as changes in one part of the system do not affect others.
Furthermore, it enables the system to be extended without signifi-
cant restructuring, which is particularly important in the context
of HPC systems due to their diverse nature.

Chronus design is shown in Figure 11. It is a clean architecture,
where each ring in the figure represents a layer in the system. The
arrow on the right shows the path of the dependencies, where each
layer only has dependencies towards the center. The green ring
Presenter is the contextual boundary between the core of the
system, and system integrations mentioned in 3.1.2. Each system
integration implements an integration interface, which the applica-
tion layer needs, to do the business logic. The Presenter layer acts as
a mapping for the data structure that is most convenient for the UI,
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CLI

load model

Load model

user input cli

model loaded

Model Database

get model

db row to model
model

Interface

UI string

model id

stdout

Figure 12: Sequence diagram of data flow in loading model

and the data structure that is most convenient for the application.
Data still flows through the system from CLI to Database, even
with dependencies only pointing towards the center. Figure 12 is a
simplified example of loading a model from Chronus’s CLI.

The way Chronus archives this dependency structure is by using
the Dependency Inversion Principle[13]. This principle, which
is one of the five principles of Solid Design, states that high-level
modules should not depend on low-level modules; both should
depend on abstractions. By adhering to this principle, we ensure
that our system’s components are loosely coupled, making them
easier to modify and extend. This is crucial for supporting the wide
range of HPC systems, each with its unique characteristics and
requirements. The application needs to describe how it uses the
system integrations. We do this by using interfaces. As an example,
see Listing 1 for how an interface is injected into the constructor,
and later used.

1 # application/load_model.py
2 class LoadModelService:
3 def __init__(self, repository: RepositoryInterface):
4 self.repository = repository
5
6 def run(self, model_id: int):
7 model = self.repository.get_model(self.model_id)
8 # load model to local storage...
9 return model.name, model.path
10
11 # system_integrations/repository_interface.py
12 class RepositoryInterface:
13 def get_model(self, model_id: int) -> Model:
14 raise NotImplementedError()

Listing 1: Load model command in Application layer
It takes an object that implements the RepositoryInterface

interface. The interface is defined in the Application module and
is shown in Listing 1. Python is a dynamic typed language, and
do not have interfaces. The interface is an abstract class instead,
that defines the methods that the application layer needs. The
application layer does not care how the repository is implemented,
as long as it implements the interface.

This allows the application layer to be independent of the real
implementation. In the outer layer of Figure 11, the real implemen-
tation is defined. The real implementation is the system integration
and is defined in the System Integrations layer.

In the entry point of your application, you specify which imple-
mentations there are for each interface. init model is an example of
where these dependencies are interchangeable. When init model

is called, you specify which model you want to make. This is an
example of how dependencies can be swapped in and out, while
being used for the same purpose. A part of the domain is to know
what kinda of model it is. Therefore the class Model has a string
called type. This string is defined by the model interface and is used
to load the correct model. In the entry point of Chronus, there is a
mapping between the model type and the model implementation.
This is shown in Listing 2. This is an example of how the application
layer is independent of the real implementation.

1 # main.py
2
3 class ModelFactory:
4 def get_optimizer(model_type: str) -> OptimizerInterface:
5 if model_type == LinearRegressionOptimizer.name():
6 return LinearRegressionOptimizer()
7 elif model_type == BruteForceOptimizer.name():
8 return BruteForceOptimizer()
9 elif model_type == RandomTreeOptimizer.name():
10 return RandomTreeOptimizer()
11 else:
12 raise Exception("Unknown optimizer type")
13
14 # presenter/load_model
15 def load_model(model_id: str):
16 # ...
17 model_type = model.type
18 model = ModelFactory.get_model(model_type)

Listing 2: Injection model into application layer
Python was chosen as the implementation language as both of

the energy efficiency models in Related Works are implemented
in Python and it has the most popular libraries for data analysis.
Stackoverflow’s 2022 developer survey[17], shows that out of the
top 11 most popular frameworks and libraries in all fields 5 of them
are data science related. All 5 are Python technologies. This decision
is made to make it people who are making energy efficiency models
to integrate their existing Python code, into a production system.

4.2 Integration between Chronus and Slurm
As shown in section 3 the eco plugin is a distributed system, and
there is some communication betweenChronus and job_submit_eco.
This section will explain how job_submit_eco gets a configuration
from Chronus and set the parameters in slurm.

Slurm has a plugin structure. It works by loading a shared object
file and calling functions in the file. When a job is submitted to
Slurm, the job_submit_eco plugin is called. It is called with the
job id, and the job id is used to get the job information from Slurm.
The job information is then used to get the system information.
The system information is then used to get the configuration from
Chronus.

4.2.1 Load config. Getting a config for a job submit Chronus needs
a binary hash and a system hash. The binary hash is a hash of the
executable that is run in the job. The system hash is a hash of the
system that the job is run on. The binary hash is used to identify
the application running, and the system hash is used to identify
the system configuration. This paper focused on single node clus-
ters, and the system identifier is the CPU information and ram size
hashed. The system information is read from /proc/cpuinfo and
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ram size from /proc/meminfo. There is some error handling on
reading files, and then they get concatenated into a string. The
string is then hashed with the simple hash function. The hash is
then returned to the plugin. The simple hash code is showed in
Listing 3.

1 unsigned long simple_hash(const char *str) {
2 unsigned long hash = 5381;
3 int c;
4 while ((c = *str++))
5 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
6 return hash;
7 }
8

Listing 3: Simple hash function

4.2.2 Set configuration on compute node. When the plugin has
gotten a configuration from Chronus, it needs to set the config-
uration on the compute node. The configuration is set by set-
ting using Slurm’s API in the plugin. They provide a struct called
job_description, which contains all the information about the
job. The job_description can be modified, to change the behavior
of a job. The configuration is set by modifying these variables in
the struct:

• job_description->threads_per_cpu for enabling hyper-
threading

• job_description->num_tasks for the number of cores
• job_description->min_frequency for the CPU frequency
• job_description->max_frequency for the CPU frequency

Listing 4 shows how the configuration is set.

1 extern int job_submit(job_desc_msg_t *job_desc, uint32_t
submit_uid, char **err_msg)↩→

2 {
3 //... init code
4 load_config(&config);
5 job_desc->num_tasks = config.num_tasks;
6 //... rest of the code
7 }

Listing 4: Snippet of setting job configuration

4.2.3 Running benchmarks. Chronus does the higher-level logic in
the application layer. See Figure 11 for reference of the application
layer. Each implementation of the application runner interface is
responsible for running the implementation in slurm. In the HPCG
implementation, it is done by using system calls. In Listing 5 you
see a code snippet for how it is calling sbatch to schedule a job.

The slurm file that is generated on line 3 in Listing 5 makes a
Slurm file, that uses Slurm’s CLI input to set its cores, threads, and
frequency for the run. The function generating the file is shown
in Listing 6. On line 4 the number of cores is set, on line 5 the
frequency is set and on line 7 hyper-threading is specified as a
parameter to srun

1 def run(self, cores: int = 1, frequency: int = 1_500_000,

thread_per_core=1):↩→
2 # generate file, with benchmark configuration
3 slurm_file_content =

self._generate_slurm_file_content(cores, frequency,
thread_per_core)

↩→
↩→

4
5 # Preparing the file HPCG_BENCHMARK.slurm...
6 # SKIP CODE LINE
7
8 job = subprocess.run(
9 ["sbatch", "HPCG_BENCHMARK.slurm"],
10 cwd=self._output_dir + "hpcg_benchmark_output",
11 stdout=subprocess.PIPE,
12 )

Listing 5: Running HPCG as a benchmark in Chronus

1 def _generate_slurm_file_content(self, cores, frequency,

thread_per_core) -> str:↩→
2 return f"""#!/bin/bash
3 #SBATCH --nodes=1
4 #SBATCH --ntasks={cores}
5 #SBATCH --cpu-freq={frequency}
6
7 srun --mpi=pmix_v4 --ntasks-per-core={thread_per_core}

{self._hpcg_path}"""↩→
8

Listing 6: Slurm file for HPCG

5 EXPERIMENTS
This section presents the experimental setup and results obtained
from running benchmarks with different configurations of cores,
frequency, and hyper-threading. The experiments were conducted
on a Lenovo ThinkSystem SR650 equipped with an AMD Epyc
7502P CPU and 256 GB of RAM, running Rocky Linux 8.7 with Linux
kernel 4.18. IPMI sensors are used to measure power consumption.
The HPCG benchmark is used to measure performance.

5.1 Power Measurement
To get accurate results timing of power consumption, I needed to
automate it with code. I did not have access to a smart PSU, which
has a digital wattmeter with an API to get the power consumption.
An alternative was using IPMI, as the node used for testing BMC
had IPMI sensors.[9] IPMI is a standardized interface for out-of-
band management of computer systems. It is a firmware that is
running on the BMC and is used to monitor the system. The BMC is
a microcontroller that is on the motherboard and is used to monitor
the system. To test the accuracy of IPMI, I compared it to a digital
wattmeter. The wattmeter was connected to the machine’s two
power supply units (PSUs). During the HPCG benchmark run, the
first PSU reported a power draw of 129.7 watts, while the second
PSU reported 143.7 watts. IPMI sensors reported a total power draw
of 258 watts, resulting in a percentage difference of 5.96% between
the wattmeter and IPMI readings, as per the calculations in Equation
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1.

Percentage Difference =
|IPMI ussage −Watt meter usage|

IPMI ussage
× 100

Percentage Difference =
|258 − 273.4|

258
× 100

Percentage Difference = 5.96%
(1)

Therefore, the IPMI report differs from the real total PSU usage
by approximately 5.96%, which is relatively small. A cropped picture
of the power measurement setup is provided for reference in Figure
13. A full picture is provided in Figure 16 in Appendix A.

Figure 13: IPMI vs Wattmeter

5.2 Experiment Results
The HPCG benchmark was used for the experiments. Each job ran
for 20 minutes, with data sampled every 3 seconds. It is run with
the default problem size 𝑥 = 104, 𝑦 = 104, 𝑧 = 104[6], which used
32GB ram. That is 12.5% of the system’s 256GB of ram. The GFLOPS
performance of a job is calculated by HPCG.

5.2.1 GFLOPS per Watt. In Figure 14 you see three surface plots
to visualize GFLOPS per watt for different numbers of cores and
frequencies. The first two plots in Figure 14a and 14a show a plot
of GFLOPS per watt for different numbers of cores and frequencies
with either or without hyper-threading. The third plot is both sur-
face plots in the same figure. In Figure 14a and 14a, we see a surface
that has a similar shape, and therefore we focus on the overlapping
plot. Figure 14 shows that non-hyper-threaded workloads have
better or worse 𝐺𝐹𝐿𝑂𝑃𝑆

𝑊𝑎𝑡𝑡
. This is likely because the HPCG bench-

mark is memory-bound, a characteristic shared by many real-world
applications. Table 1 reports the data points for the best 13 con-
figurations. The Performance column is calculated by taking how
many 𝑓 𝑙𝑜𝑝𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
each benchmark ran. Rows with a grey background

are with hyper-threading enabled and the blue row is the standard
configuration Slurm runs without the plugin. There is a full table
in Appendix A Table 4„ 5 and 6 with all the data points. There are
multiple things to observe in this data:

(1) The 𝐺𝐹𝐿𝑂𝑃𝑆
𝑊𝑎𝑡𝑡

is best for 32 cores and 2.2 GHz without hyper-
threading, with a value of 0.0488 𝐺𝐹𝐿𝑂𝑃𝑆

𝑊𝑎𝑡𝑡
. That is 13% better

than the standard configuration, with only a 2% decrease
in performance

(a) GFLOPS/watt with hyper-
threading

(b) GFLOPS/watt without hyper-
threading

(c) Overlapping

Figure 14: 𝐺𝐹𝐿𝑂𝑃𝑆
𝑊𝑎𝑡𝑡

for each configuration

(2) Running without hyper-threading results often beats its
hyper-threading counterpart in 𝐺𝐹𝐿𝑂𝑃𝑆

𝑊𝑎𝑡𝑡
. Hyper-threading

works by splitting the CPU into two virtual cores, and they
take turns doing the computation, while the other cores are
waiting for something like I/O. An article from the HPC
Revolution[23] explains that cache-friendly workloads and
workloads with high CPU utilization, like HPCG, might
not benefit from hyper-threading as logical cores share
the cache, and the core might already have work to do.
HPCG might be so well optimized, that the cores memory
channels are completely saturated, and therefore adding
hyper-threading does not scale linearly with performance
per watt.

(3) At lower cores, especially 7, hyper-threading gives a better
𝐺𝐹𝐿𝑂𝑃𝑆
𝑊𝑎𝑡𝑡

. This is likely because the data does not use the
cache as efficiently, and therefore hyper-threading can by
having one logical core computing, while waiting for the
other to load data into the cache.

5.2.2 Power Over Time. Figure 15 shows a plot of the power con-
sumption of the system for the best configuration and the standard
Slurm configuration. Table 2 presents an overview of the sum and
average of the lines. The data shows that the power consumption
of the system is more stable in the new configuration, compared
to the standard configuration. The power consumption of the best
configuration is lower than the standard configuration, as expected.
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Cores GHz Hyper-
thread

GFLOPS
/ watt

GFLOPS
/ watt %

Performance
%

32 2.2 f 0.0488 1.13 0.98
32 2.2 t 0.0483 1.12 0.98
32 1.5 f 0.0480 1.11 0.90
32 1.5 t 0.0469 1.09 0.90
30 2.2 t 0.0456 1.06 0.93
30 2.2 f 0.0456 1.06 0.93
30 1.5 t 0.0446 1.03 0.86
28 2.2 f 0.0444 1.03 0.88
30 1.5 f 0.0441 1.02 0.86
28 2.2 t 0.0437 1.01 0.88
32 2.5 f 0.0432 1.00 1.00
32 2.5 t 0.0431 1.00 1.00
28 1.5 t 0.0425 0.99 0.81

Table 1: 𝐺𝐹𝐿𝑂𝑃𝑆
𝑊𝑎𝑡𝑡

comparison

Figure 15: System samples for best and standard configura-
tion

As assumed earlier in this section, the HPCG benchmark is memory-
bound, and therefore the CPU is not the bottleneck. The new com-
putation might fit better to the memory channel bottleneck and
therefore not have to increase and decrease power during the bench-
mark. Increasing and decreasing power is inefficient, as the system
has to ramp up and down the power consumption. It is like press-
ing the gas, lifting off over and over again in a car, compared to
running at a constant speed. The CPU temperature is also lower in
the best configuration, which means that power can be saved on
cooling. The average system power draw is 190 watts for the best
configuration and 216 watts for the standard configuration. The
best configuration runs for 18 seconds longer and uses 26 watts
per second. In total, the best configuration uses 214.4𝐾𝐽 and the
standard configuration uses 240.2𝐾𝐽 . This is an 11% reduction in
energy usage. The total CPU power for the best configuration is
109.8𝐾𝐽 watts and 133.5𝐾𝐽 watts for the standard configuration.
This is an 18% reduction in CPU power.

5.2.3 Comparison with Other Work. This research was analyzed
alongside related work within the same domain. Notably, the study
"Energy-Optimal Configurations for Single-Node HPC Applica-
tions" [21] which is referenced in Section 2, reported a substantial
average 106% improvement in system power efficiency for 32 cores.
Their result is compared to Linux’s with their built-in Dynamic
voltage and frequency scaling (DVFS)[22] in "On Demand" mode.

Name Avg
Sys
(W)

Avg
Cpu
(W)

Sys
𝐾𝐽

Cpu
𝐾𝐽

Avg
Temp
(C)

Run
time

Standard 216.6 120.4 240.2 133.5 62.8 0:18:29
Best 190.1 97.4 214.4 109.8 53.8 0:18:47

Table 2: Average Watt Usage, 𝐾𝐽 used, Average CPU Temp
and Runtime

This paper is compared to Slurm’s standard configuration, which is
DVFS in Performance mode.[19]. This value is derived by dividing
the new system power by the standard power. In contrast, our paper
expresses efficiency as a proportion of the initial consumption. To
ensure uniformity with our findings, we recalculated the improved
efficiency from the mentioned paper into a fraction of the original
power consumption using Equation 2.

Standard system power = New system power ∗ Better efficiency

Standard system power = New system power ∗ 106
100

New system power
Standard system power

=
100
106

New system power
Standard system power

= 94.34%

Reduction = 100% − New system power
Standard system power

Reduction = 100% − 94.34%
Reduction = 5.66%

(2)

The derived energy reduction is 5.66. We also see a 14% reduc-
tion in cooling, which can lead to using less power on cooling in a
data center. This substantial reduction in system power consump-
tion holds the potential for significant cost savings and positive
environmental impacts. See Table 3 for a comparison.

Plugin CPU Reduction
(%)

System Reduction
(%)

Eco 18% 11.00%
Related work[21] 𝑁𝑎𝑁 a 5.66%b

aThe value for CPU Reduction is not available for the related work.
bWith DVFS set to On Demand

Table 3: Comparison of System Power Reduction

6 CONCLUSIONS & FUTUREWORK
The eco plugin has made significant strides in the field of energy-
efficient job scheduling in high-performance computing (HPC). The
main contribution of this project is the architecture of the plugin,
which increases development velocity in this area. The system
design of the plugin, with its service-oriented architecture (SOA),
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decouples some of the systems to Chronus, thereby increasing the
flexibility and scalability of the system.

With a ThinkSystem SR650 equipped with an AMD Epyc 7502P
CPU and 256 GB of RAM, running Rocky Linux 8.7 with Linux
kernel 4.18, the eco plugin was able to reduce the system power
consumption by 11% and the CPU power consumption by 18%.
This also affected the average CPU temperature and reduced it by
14%. Compared to related works, the eco plugin is able to reduce
the system power consumption by 11% compared to their 5.66%.
This reduction in power consumption could lead to significant cost
savings and environmental benefits.

6.1 Limitations
Despite the advancements made, the current plugin has its limi-
tations. The most significant limitation is that it only works on
single-node systems, whereas most production setups are on multi-
node systems. This limitation restricts the plugin’s applicability in
real-world scenarios.

6.1.1 Single node. The plugin’s current implementation is designed
to work on single-node systems. This design choice limits the plu-
gin’s applicability in multi-node setups, which are common in pro-
duction environments.

6.1.2 Find binary path. The current implementation of the plu-
gin uses a constant string to find the binary path. This was an
implementation detail that was never fixed after an initial trial and
error.

6.1.3 Simple model. The model interface in the system is simple
and does not take into account various parameters that could be op-
timized, such as time and program input. This simplicity limits the
plugin’s ability to optimize job scheduling in a more comprehensive
manner.

6.2 Future works
Several potential future enhancements could be made to the eco
plugin project. These enhancements include multi-node support,
scheduling jobs at specific times, incorporating deadlines for energy-
efficient job completion, and tuning GPU frequency for better en-
ergy efficiency.

6.2.1 Deadline. Future enhancements could include giving a dead-
line as an input in sbatch, and the model finds the best config-
uration that still finishes before the deadline (statistically). This
feature would allow the plugin to work in environments where
coordination is critical. An example would be if Vestas needed a
simulation to be done by Monday morning.

6.2.2 GPU frequency. Another potential enhancement is to tune
the clock rate and memory frequency to get better energy efficiency
on GPU. Research has found that this can save 28% energy for 1
% performance loss [1]. Nvidia provides telemetry tools for this
purpose, which could be integrated into the plugin.[16]

6.2.3 Multi node. The plugin could be developed to support multi-
node HPC setups. This enhancement would require a mechanism
for identifying a multi-node system and extending the main part of
the system to handle affinity and sockets for multi-node systems.

6.2.4 Time scheduling. The model could be given access to sched-
ule a job at a specific time. This enhancement could be used to get
a better price for the energy or be tailored to only use renewable
energy, based on the energy market. This approach could lead to
significant cost savings and environmental benefits.

In conclusion, the eco plugin project has made significant strides
in energy-efficient job scheduling in HPC. However, there are
still several areas for potential future enhancements. With these
enhancements, the eco plugin could become a powerful tool for
energy-efficient job scheduling in HPC.
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A.2 Benchmarks

Cores GHz GFLOPS p/ watt Hyper-thread

32 2.2 0.048767 False
32 2.2 0.048286 True
32 1.5 0.047978 False
32 1.5 0.046933 True
30 2.2 0.045618 True
30 2.2 0.045603 False
30 1.5 0.044614 True
28 2.2 0.044392 False
30 1.5 0.044127 False
28 2.2 0.043690 True
32 2.5 0.043168 False
32 2.5 0.043122 True
28 1.5 0.042526 True
27 2.2 0.042289 True
27 2.2 0.042171 False
28 1.5 0.041438 False
27 1.5 0.041218 True
30 2.5 0.040994 False
27 1.5 0.040803 False
25 2.2 0.040196 False
25 2.2 0.039824 True
30 2.5 0.039537 True
28 2.5 0.038596 True
25 1.5 0.038480 False
28 2.5 0.038408 False
24 2.2 0.038154 False
24 2.2 0.037978 True
25 1.5 0.037609 True
27 2.5 0.037581 True
27 2.5 0.037275 False
24 1.5 0.037072 False
24 1.5 0.036513 True
25 2.5 0.035153 True
25 2.5 0.034758 False
21 2.2 0.034490 False
21 2.2 0.034477 True
24 2.5 0.034234 False
20 2.2 0.033840 False
21 1.5 0.033378 False
20 2.2 0.033332 True
21 1.5 0.033251 True
24 2.5 0.032800 True
20 1.5 0.032278 False
21 2.5 0.031940 False
21 2.5 0.031821 True
20 1.5 0.031744 True
20 2.5 0.031623 True
20 2.5 0.031473 False
18 2.2 0.031221 False
18 2.2 0.031209 True
18 1.5 0.030226 False

Table 4: Gflops per watt part 1
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Cores GHz GFLOPS p/ watt Hyper-thread

18 1.5 0.030030 True
8 2.5 0.030025 False
16 2.2 0.029694 False
18 2.5 0.029675 False
16 2.2 0.029481 True
8 2.2 0.029461 True
18 2.5 0.029385 True
9 2.2 0.029378 False
8 2.2 0.029355 False
8 2.5 0.029334 True
10 2.2 0.029024 False
10 2.5 0.028914 False
10 2.2 0.028787 True
9 2.2 0.028717 True
6 2.5 0.028709 True
9 2.5 0.028601 True
12 2.2 0.028460 False
9 2.5 0.028423 False
16 2.5 0.028402 False
12 2.5 0.028379 True
12 2.5 0.028355 False
16 2.5 0.028317 True
10 2.5 0.028312 True
15 2.2 0.028312 True
12 2.2 0.028258 True
14 2.2 0.028235 True
16 1.5 0.028144 False
14 2.2 0.028097 False
6 2.5 0.027928 False
15 2.2 0.027785 False
7 2.5 0.027625 False
7 2.5 0.027594 True
14 1.5 0.027554 False
16 1.5 0.027520 True
15 2.5 0.027500 False
15 2.5 0.027353 True
7 2.2 0.027228 True
14 1.5 0.027054 True
7 2.2 0.027033 False
14 2.5 0.027008 False
12 1.5 0.026994 False
15 1.5 0.026925 True
15 1.5 0.026879 False
14 2.5 0.026860 True
6 2.2 0.026797 True
10 1.5 0.026599 False
8 1.5 0.026577 True
10 1.5 0.026549 True
6 2.2 0.026512 False
8 1.5 0.026397 False
9 1.5 0.026236 False
12 1.5 0.026219 True
9 1.5 0.026151 True
5 2.5 0.026056 True
5 2.5 0.026028 False

Table 5: Gflops per watt part 2

Cores GHz GFLOPS p/ watt Hyper-thread

4 2.5 0.025157 True
4 2.5 0.024648 False
5 2.2 0.023307 False
7 1.5 0.022859 True
5 2.2 0.022752 True
7 1.5 0.022643 False
4 2.2 0.022313 False
6 1.5 0.021718 True
6 1.5 0.021681 False
4 2.2 0.021294 True
3 2.5 0.020024 False
3 2.5 0.019348 True
5 1.5 0.018599 True
5 1.5 0.018445 False
4 1.5 0.016654 False
4 1.5 0.016160 True
2 2.5 0.016094 False
2 2.5 0.015917 True
3 2.2 0.015503 True
1 2.5 0.014558 False
1 2.5 0.014548 True
3 2.2 0.014462 False
2 2.2 0.011852 False
3 1.5 0.011503 True
2 2.2 0.011355 True
3 1.5 0.011177 False
1 2.2 0.010560 True
1 2.2 0.010462 False
1 1.5 0.007571 True
1 1.5 0.007569 False
2 1.5 0.007236 False
2 1.5 0.007150 True

Table 6: Gflops per watt part 3

A.3 Gflops per watt configurations

Figure 17: Full image of no hyper-threading testing results
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Figure 18: Full image of hyper-threading testing results

B CODE
The code for this project is all open-sourced and on GitHub.

Click here to go to the repository or you can find Chronus at:
https://github.com/AndersSpringborg/chronus

I made a fork of Slurm, and implemented job_submit_eco in the
fork. To make it simple to see what I added, I made a Pull Request
that shows the differences from what I added. Click here to get to
the repository, or find it in the link below:
https://github.com/AndersSpringborg/slurm

The Pull Request can be found here:
https://github.com/AndersSpringborg/slurm/pull/1/files

C WORK PROCESS
This appendix provides an overview of the process followed to com-
plete the study, focusing on the significant challenges encountered
and the solutions implemented.

Project management
The project was meticulously planned and managed to ensure a
steady pace of development and to meet all the deadlines. A detailed
schedule was created at the beginning of the project, outlining the
tasks to be completed eachweek. This schedule served as a roadmap,
guiding the project’s progress and keeping it on track.

The project was divided into several phases, each focusing on
a specific aspect of the project. The first phase, spanning weeks 7
to 9, was dedicated to developing the model for predicting energy
efficiency configurations. I did this while waiting to get hardware, to
start setting up my cluster. This involved parsing data, and creating
a tool that could operate in multiple configurations. This later
became Chronus.

The second phase, from weeks 10 to 14, focused on the imple-
mentation of the project. This involved setting up the hardware,
installing dependencies for SLURMon a node in the basement, build-
ing SLURM on the machine, and initializing the plugin. Challenges
encountered during this phase, such as the unsuccessful build of
SLURM on Rocky Linux 9.1, were addressed by reformatting the
system to Rocky 8.7 and retrying the build.

Week 15 to 17 were dedicated to developing the eco plugin. This
phase involved writing debug messages in slurmctld (master) and

slurmd (compute) to fixing some of the dependencies, that were
installed incorrectly.

The third phase, from weeks 18 to 19, was dedicated to testing
and benchmarking. This phase ensured that all components of the
project functioned as expected and that the system was ready for
the final phase.

The final phase, from weeks 20 to 23, was dedicated to finaliz-
ing the paper. Each section was tackled one at a time, beginning
with the eco plugin (Section 3) and implementation details (Section
4), followed by experiments (Section 5) and future work (Section
6). After completing these sections, the related works section was
revisited to ensure it remained relevant and up-to-date. The con-
clusion, abstract, and process sections were written, summarizing
the overall project, its findings, and the methodology followed.

This structured approach to project management ensured that all
tasks were completed in a timely manner and that the project pro-
gressed smoothly. The detailed schedule provided a clear roadmap
for the project, allowing for efficient time management and ensur-
ing that all aspects of the project were adequately addressed.

Figure 19 presents a Gantt chart of schedule.
I used a Kanban board throughout, to keep track of what I was

doing that week. At the start of the week, I would split the week
into smaller task, and always keep track on my current task, and
the rest of the tasks for the week.

Slurm Integration and Development
The integration of Slurm posed a series of challenges, as it required
installing dependencies and building the software on a specific
machine. The initial attempt to build Slurm on Rocky Linux 9.1 was
unsuccessful, leading to a decision to reformat the system and try
again the following week.

Upon formatting the system to Rocky 8.7, the necessary depen-
dencies were installed, and Slurm was successfully built on the
machine. The next steps involved implementing (C code in Slurm).
Although optional, an attempt was made to get the Chronus CLI to
run Slurm.

Once the Slurm plugin was initialized, several tasks were per-
formed, including writing debug messages in slurmctld (master)
and slurmd (compute), fixing the openmpi installation to support
PMIx, and setting frequency using a hardcoded approach on the
compute node. These steps were crucial in preparing a demo for
the project supervisors and progressing the development.

Supercomputer Club and Competition
Experience
During this study, I also founded a supercomputer club focused on
high-performance computing (HPC). The club provided an oppor-
tunity to deepen my understanding of HPC concepts by teaching
others and engaging in practical experiences. This involvement
proved valuable in complementing the research and development
process of the paper.

The supercomputer club went to California for 9 days to attend
a competition, where we competed against other teams in various
HPC challenges. The competition allowed me and club members
to learn more about the HPC space, network with professionals

https://github.com/AndersSpringborg/chronus
https://github.com/AndersSpringborg/slurm
https://github.com/AndersSpringborg/slurm/pull/1/files
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and academics, and gain hands-on experience in optimizing and
deploying HPC systems.

The knowledge and skills acquired during the competition and
through the supercomputer club’s activities contributed to my
knowledge in the field, ultimately benefiting the research and de-
velopment process for the paper. The club’s experiences helped to
contextualize the challenges faced during the study and offered
additional insights into the practical applications of HPC solutions.

Figure 19 shows how I have used my time

D TESTING
The testing process was comprehensive and thorough, ensuring that
all components of the project functioned as expected. This process
was divided into several stages, including unit testing, integration
testing, and end-to-end testing.

Unit Testing
Unit testing was performed on Chronus to verify that each individ-
ual component worked as intended. This process involved testing
each command individually, including benchmark, init-model, load-
model, and slurm-config. The integrations with HPCG, lscpu, CSV
repository, SQLite repository, IPMI service, and optimizers were
also tested.

To facilitate these tests, system processes were mocked and a
temporary folder was used for file integrations. The C code was
tested in a small program with just a main function before integrat-
ing it into Slurm. This step was crucial as Slurm took a significant
amount of time to build. Once the C code was confirmed to work
correctly in the small program, it was then tested in Slurm while
monitoring the log files for any potential issues, specifically looking
for print statements.

Integration Testing
Integration testing was performed to ensure that all the components
of the project worked together seamlessly. This process involved
using temporary files to test all integrations against the file system.
The temporary files were written to a folder and then deleted after
the test was completed.

Before executing commands in Chronus, they were tested man-
ually to ensure their correctness. These commands included Slurm
commands and lscpu. job_submit_eco was tested with a small
bash script that initially returned a JSON, allowing control over
the output. Once this was successful, it was pointed to the real
implementation of Chronus for further testing.

End-to-End Testing
End-to-end testing was performed extensively on the command-
line interface (CLI) by running all the scripts, including benchmark,
init-model, load-model, and slurm-config. The tests verified that
these scripts worked with Slurm by checking squeue and scontrol
to confirm their presence. The output of the slurm-config was also
examined.

Power Measurement Tool Testing
The power measurement tool was tested by setting up a digital
wattmeter and observing the output while running HPCG. Simul-
taneously, the IPMI sensors were monitored and the results were
noted. This process ensured that the power measurement tool was
accurately capturing the energy consumption.

Conclusion
The testing process was successful, with all tests passing. The tests
were run at every pull request, ensuring that the code remained
functional throughout the development process. A linter and a
formatter were also used to maintain code quality and consistency.
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Figure 19: Gantt diagram of my process
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Over the course of the project, 19 pull requests were made and 80
unit tests were conducted, demonstrating a rigorous and thorough
testing process. This comprehensive testing approach ensured that
all components of the project worked individually and together as
a system, providing confidence in the reliability and accuracy of
the final product.
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