
Web Integration of a granular
synthesizer using RNBO in

Max/MSP

Project Report

Sarunas Kilius

Aalborg University

Copyright © Aalborg University 2015

Here you can write something about which tools and software you have used for typeset-
ting the document, running simulations and creating figures. If you do not know what to
write, either leave this page blank or have a look at the colophon in some of your books.

Aalborg University
http://www.aau.dk

Title:
Web Integration of a granular synthe-
sizer using RNBO in Max/MSP

Project Period:
Spring Semester 2023

Participant(s):
Sarunas Kilius

Supervisor(s):
Daniel Overholt

Copies: 1

Page Numbers: 27

Date of Completion:
May 25, 2023

Abstract:

Recent advancements in web technolo-
gies continuously makes it more pop-
ular to build web-based alternatives
to local applications. Similarly, audio
software is increasingly more preva-
lent as a website and is able to run
at native speeds due to developments
like WebAssembly. This paper ex-
plores how granular synthesis can be
implemented on a website using a
Max/MSP compatible tool RNBO. The
pipeline from a graphical RNBO code
to a functional website with granu-
lar sound synthesis is described. The
pipeline includes analysis of suitable
granular synthesis parameters; work-
ing with HTML, CSS and JavaScript
to build a website; processing audio
inside JavaScript to control audio in-
put, output and synthesizer parame-
ters; customising audio samples and
updating the user interface. In order to
evaluate the software, user testing was
performed on usability of the website,
performance and functionality of the
synthesizer.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

1 Introduction 1
1.1 Audio Processing in Web . 2

1.1.1 Faust . 2
1.1.2 Max/MSP and RNBO . 3
1.1.3 Pure Data and WebPD . 3
1.1.4 Gibber . 3
1.1.5 Web Audio Modules 2.0 . 3

1.2 State of the Art . 4
1.2.1 Grain Train . 4
1.2.2 FaceArp . 4
1.2.3 HTML5 Granular Synthesiser 4
1.2.4 Patatap . 5
1.2.5 Learning Synths . 5

1.3 Target Group . 5
1.4 Final Problem Statement . 6
1.5 Requirements . 6

1.5.1 Functional Design Requirement 6
1.5.2 Non-functional Design Requirements 6

2 Design 7
2.1 Granular synthesis . 7
2.2 Coding Environment . 8
2.3 Audio Samples . 8
2.4 User Interface . 8

3 Implementation 9
3.1 Max and RNBO . 9
3.2 Web Integration . 11

3.2.1 Generating HTML code . 11
3.2.2 Including the RNBO patch using JavaScript 11
3.2.3 Controlling Audio Output . 13

iii

3.2.4 Including the Audio Samples 13
3.2.5 UI changes . 13

4 Testing and Results 15
4.1 Usability Testing . 15
4.2 First Iteration . 15

4.2.1 Testing . 15
4.2.2 Results . 16

4.3 Second Iteration . 18
4.3.1 Results . 18

4.4 Interviews with musicians . 19

5 Discussion and Future Works 22
5.1 Granular Synthesis . 22
5.2 Web Integration . 22
5.3 UI and Aesthetics . 23

6 Conclusion 24

Bibliography 25

A 27

Chapter 1

Introduction

The theory of granular synthesis dates back to mid 20th century where a physi-
cist Dennis Gabor proposed that granular approach could be used to describe any
sound [10]. In 1971, Iannis Xenakis was able to analyse the composition for grains
of sound, where he suggested an implementation of Gabor’s model as an ana-
log synthesizer[15]. A few years later a Swedish composer and researcher Curtis
Roads implemented granular synthesis with the use of digital computers. The def-
inition for granular synthesis has been established as a process of separating an
audio sample into small segments, grains, and altering them individually to cre-
ate new soundscapes. The digitisation of music production allowed for granular
synthesis techniques to become more accessible and recognised as a means of mu-
sic production or sound design. It remains a unique method for time stretching,
pitch shifting, grain position modulation or spatialization of audio samples and is
widely used in both popular and experimental music.

While there are numerous standalone software applications and VST plug-ins that
perform granular synthesis and processing with an easily understandable user
interface, examples of such devices implemented on a website are limited to a
handful. In comparison to web based software, native applications and plug-ins
are more time and energy efficient and effective for professional music producers
and sound designers with a more advanced workflow, however, it requires access
to specific software as well as compatibility with the digital environment they are
being used in.

Websites on the other hand are accessible by anyone with an internet connection
and do not require additional installation or updates. Web hosted audio software
does not rely on powerful local hardware and the processing is performed remotely
on a server, offering the almost the same experience regardless of device specifica-
tions. Web integration of existing audio software could also provide a playground
to easily test the capabilities of the application before purchasing and installing it

1

locally. Web based sound processing usually requires more extensive knowledge
of programming in several coding languages to be able to integrate the software in
a website the server for hosting the website has to be powerful enough to handle
complex audio processing. However, with machine learning being implemented
in JavaScript libraries and servers becoming more powerful, real-time audio pro-
cessing on the micro scale is more easily achievable on web based platforms. New
frameworks allow developers and music producers to implement their software as
a website without needing an extensive programming knowledge.

1.1 Audio Processing in Web

Audio web integration can be implemented via a few different approaches. The
most straightforward one is using HTML audio tag and controlling the sound
file with JavaScript. This however offers limited audio processing capabilities and
control over the playback. On the other hand, JavaScript tools like Web Audio
API are able to perform advanced audio manipulation in real-time and provide
features like mixing, routing, filtering or effects. As part of Web Audio API, the
AudioWorklet interface allows to process the sound on o a separate thread on the
web, and therefore perform with very low latency. Newer developments push
the capabilities even further. Web Assembly is a binary instruction format that is
able to run code written in C++, Rust and other languages once it is compiled in
Web Assembly. Web Assembly offers code execution at native speed and is able
to accelerate computationally intensive audio processing tasks. Web Assembly can
be used in parallel with Web Audio API or AudioWorklet to increase performance
and handle complex audio processing tasks.

Various different coding environments make use of these audio processing ap-
proaches and have possibilities to export the code for web deployment.

1.1.1 Faust

Faust is a programming language designed for real-time audio signal processing
and synthesis[9]. The programs compiled in Faust are comparable to handwrit-
ten C/C++ while simultaneously being simpler and more intuitive to learn. Faust
combines functional programming with algebraic block diagrams to compose func-
tions and is able to translate the code into various different languages and therefore
provide the possibility to compile for targets like audio plug-ins, standalone appli-
cations, mobile or web applications. Web integration is implemented by allowing
to export Faust audio code as JavaScript and WebAssembly modules.

1.1.2 Max/MSP and RNBO

Max/MSP is a visual programming language made for music and multimedia de-
velopment[14]. It’s graphical interface is used to build audio, video and interactive
systems by connecting pre-built objects. The coding is done in a graphical inter-
face, where the user is able to select object from the object library and add object
attributes and messages. RNBO is a Max compatible library that allows to ex-
port Max-like patches into several different targets like Rasberry Pi, Web, VST[4].
RNBO allows to compile the code as Web Assembly and this way integrate it into
a website using JavaScript. HTML and JavaScript frameworks can be included to
introduce advanced user interface or visual elements into the website.

1.1.3 Pure Data and WebPD

Pure Data is an open-source programming language for audio and multimedia
development[8]. It shares a similar graphical interface to Max/MSP and provides
a visual and interactive coding experience. A collaborative project called WebPd
introduces a possibility to export a Pure Data patch into JavaScript suitable for web
integration[12]. WebPd uses Web Audio API for audio processing on web, which
in comparison to Web Assembly is less computationally efficient and optimised for
advanced sound processing.

1.1.4 Gibber

Gibber[11] is a live coding environment specifically designed for audio and vi-
sual performances. The environment offers a variety of different sound synthesis
techniques, audio effects and sequencing options. Gibber is build on JavaScript,
primarily based around the audioLib.js library and uses no additional syntax,
therefore can easily be implemented in websites to create real-time audiovisual
processing.

1.1.5 Web Audio Modules 2.0

Web Audio Modules (WAMs) [1] is an open source framework aimed at creating
a Web Audio plugin standard. WAMs provide a way to develop and deploy au-
dio plugins that can be used in web based audio software by utilising Web Audio
API, AudioWorklet and WebAseembly and enabling real-time audio processing
on web. WAMs support implementation of plugins written in JavaScript, C/C++,
FAUST or CSound, and therefore are compatible with most major audio develop-
ment frameworks. Integrations like FAUST, JSPather, Sequancer.Party or Amped
Studio allow to quickly build custom plugins, collaborate with other producers or
include WAMs in a web-based DAW.

1.2 State of the Art

1.2.1 Grain Train

GrainTrain is a web based granular synthesiser created for real-time performance
on both desktop and mobile platforms [2]. The main selling point of the software
is its unique user interface, where the user is able to draw waveform paths and
control grains using a multi-touch interface. The paper describes analysis of 20
different granular synthesisers in terms of their user interfaces and found three
main interaction paradigms: parameter control, keyboard performance, and wave-
form scrubbing. GrainTrain focuses on custom waveforms, where the user is able
to draw in a curve of a custom shape and length and the audio sample will be
stretched to facilitate the drawn-in curve. This allows for a creative and interac-
tive way to manipulate the audio samples by scrubbing through the paths using
the touchscreen. This technique along with the multi-touch technology creates
possibilities for unique performance techniques such as: superimposition of mul-
tiple waveforms, discontinuous scrubbing, ergonomic short-touch interactions or
intra-mixing. The system was designed using WebAudio API, the WebGL library
Three.js, HTML5 and CSS. While it was designed as a web application, internet
connection is only required while the application is loading. The user is able to
use locally stored audio samples without the need to upload it to any server.

1.2.2 FaceArp

Face Arp is a web based synthesiser created by Maciek Odrowaz utilising head
tracking to control the parameters of the synth [3]. It uses a machine learning
solution called MediaPipe Face Mesh, which takes a single 2D camera input and
estimates the 3D surface of a face. Head pan, tilt and roll as well as the position
of the mouth is calculated and used to control pan, note probability, cutoff fre-
quency and reverb of the synthesiser respectively. The actual synthesiser is created
using Max 8 and RNBO to make it usable as a Web application and the Face Mesh
solution is similarly integrated using its native Javascript API.

1.2.3 HTML5 Granular Synthesiser

Created by Ehsan Ziya and Chris Smith, Multi-Touch Granular Sampler 1.0 is a web
based synthesiser that uses preloaded samples to perform granular effects [13]. The
synthesiser works by scrubbing through the audio file with a cursor and adjusting
the parameters like attack, release, density, spread, pan and transposition. While
there is an option to upload custom sound files, it does not allow for recording and
exporting the performance. The device has a visual element showing the waveform
of the uploaded audio and the position of the grain when scrubbing through the

sample. The user interface and audio processing is created using Bootstrap 3,
jQuery Knob, Web Audio API and Procssing.js libraries.

1.2.4 Patatap

Patatap is an interactive audio-visual playground with audio reactive animations
triggered by keyboard buttons or screen taps [7]. On a desktop version, every
key is assigned a sound and an animation corresponding to the sound, while the
mobile app has this information assigned to different locations on the screen. The
instrument is also able to take midi input from external software or hardware to be
used for the audio visual performances. The creators Jono Brandel and Lullatone
aim to explore Visual Music and how sonic stimuli can influence visual stimuli and
vice-versa. The sounds and visuals were created by a team of music composers,
sound designers and animators. Unfortunately, the technologies used to create the
interface and process the sounds and visuals on the web were not disclosed.

1.2.5 Learning Synths

Learning synths is an interactive website created by Ableton for learning the work-
ings of a synthesiser [5]. The website showcases a subtractive synthesiser with
several oscillator options, and envelope, LFO, pitch and filter parameters. The syn-
thesiser is built as a Max patch and is exported as a web application with the help
of RNBO API. RNBO uses Web Assembly, a machine language optimised for the
browser, and Audio Worklets, sound processing technology to be able to smoothly
play the synthesiser on a website. RNBO is able to automatically convert the Max
patch into a Web Assembly code and run it as a website.

1.3 Target Group

A web based granular synthesizer has potential to appeal to a wide user base. The
synthesizer being hosted on a website would mean it is easily accessible regardless
of hardware or operating system, while at the same time needing no installation or
special equipment to use. Musicians and sound designers can make use of the syn-
thesizer to quickly create sound effects, atmospheric textures or rhythmic elements
when not having access to their usual audio software applications. Beginners and
people interested to learn more about sound synthesis or explore the granular ma-
nipulation of sounds can access the site and explore the capabilities of granular
synthesis.

1.4 Final Problem Statement

Based on technological research, a problem statement was formulated.

How can a web based granular tool be implemented to explore granular synthesis in real time?

1.5 Requirements

The technological analysis allowed to determine the requirements for the software.
The requirements are split into two parts. Functional requirements dictate the
requirements that are integral part of the design and operation of the software.
Non-functional requirements represent the ones that are not critical and are more
about improving the already functioning software.

1.5.1 Functional Design Requirement

• The software should utilise the techniques of granular synthesis as a basis for
sound processing.

• The software should be available as a website for easy access by anyone.

• The software should provide several audio samples for the user to choose
from and perform granular processing.

1.5.2 Non-functional Design Requirements

• The software should have an easy to use and visually pleasing user interface.

• The software should have a visual element corresponding to the sound or
synth parameters.

• The software should have an engaging way to interact and control the syn-
thesizer.

Chapter 2

Design

Taking into account the design requirements mentioned in the previous chapter,
some considerations regarding the software were made. Several iterations of the
software were developed and presented for feedback to university peers involved
in music production, this way gathering information needed in order to improve
the software’s functionality and presentation. First, general decisions about the
development process were made and the first prototype was created.

2.1 Granular synthesis

As the synthesizer is expected to process sound using granular synthesis technique,
a closer look into different parameters was needed. Generally, the main parameters
involved are grain size, grain position, grain envelope, grain density and pitch.

• Grain size determines the length of each grain, i.e. short audio fragment in
the sample. Smaller grains will generate shorter and more transient sounds,
while larger grains will result in more sustained sounds.

• Grain position determines the starting point of each grain and its modulation
results in timbral and rhythmic changes of the sound.

• Grain density is the grain frequency and determines how textured and dense
or sparse and spaced-out the sound is.

• Grain envelope dictates the shape of the volume envelope for each grain.
These can typically be linear, exponential or logarithmic and ultimately con-
trols how sharp or smooth eachi grain is.

• Pitch of the grain can control tonal characteristics of the sound and be used
to create melodic and harmonic sounds. Pitch is determined by the playback
speed of the sound.

7

These characteristics were kept in mind when developing the synthesizer and its
control interface.

2.2 Coding Environment

Max/MSP coding environment was chosen for the development of the synthesizer
due to its graphical and beginner friendly interface as well as good documenta-
tion regarding granular synthesis. Max uses node infrastructure to build patches
by utilising pre-existing objects, messages and parameters. Every object is thor-
oughly documented and examples of their uses are available within the software.
RNBO library integration allows for easy export to multiple targets, including web
deployment. While the coding for RNBO is being done in a completely sepa-
rate instance from the Max main building environment, the objects, messages and
parameters are very similar for both architectures. Web export target in RNBO
translates the graphical code into WebAssembly, which is then included in a web-
site using JavaScript. RNBO provides a website template, with pre-written HTML,
CSS and JavaScript files, which are ready to be deployed as a website. However,
the template website is visually unattractive and computationally inefficient as it
uses the standard HTML UI and contains extra elements in order to facilitate any
patch. The files will have to be edited to eliminate

2.3 Audio Samples

In order to perform audio processing, several sound samples had to be included. It
was decided to choose a variety of audio samples differing in tonal, rhythmic and
timbral characteristics. Royalty free sounds were chosen from MusicRadar online
library. The selected sounds would be used to demonstrate the workings of the
synthesizer, and how it is applicable for different sound design purposes.

2.4 User Interface

In order to make the website visually appealing, an additional library was chosen.
The web template for RNBO provides a general HTML5 user interface, however, it
is visually outdated and not engaging. It was decided to update the user interface
with an additional CSS library to make it more engaging and visually interesting.

Chapter 3

Implementation

3.1 Max and RNBO

The first part in developing the synthesizer was creating the patch in Max cod-
ing environment using the RNBO architecture. The coding was done using the
software’s graphical interface - by loading pre-built objects, adding variables and
specifying parameters.

The first iteration of the synthesizer was a simple max patch, which allows to input
a frequency and outputs the signal of that frequency.

Figure 3.1: First iteration of the synthesizer in RNBO

9

The first iteration of the synthesizer was created using the groove∼ object, which
is able to play, loop and perform pitch transformations on an audio sample stored
in buffer∼ object. As seen in the figure 3.1, the groove∼ object references mybuff

which is the name of the buffer∼ object defined below. First parameter of the
synthesizer is its playback and it is created using toggle buttons to variate between
play and stop. Other parameters like looping, rate, the start of the loop and the end
of the loop were defined. The name, the minimum and maximum values and the
initial starting value were defined inside the RNBO environment and these values
showed up on the website once the patch is exported and included in the code. The
input audio sample was linked to the buffer element in JavaScript and the stereo
audio output is ensured using the out∼ 1 and 2 objects.

Figure 3.2: Granular synthesizer in RNBO

While the first iteration synthesizer was able to perform similar functions to ones
of a granular synthesizer, it did not contain all the functionality of a granular syn-
thesizer and therefore another RNBO patch was created as seen in figure 3.2. While
similar in nature, the new patch also included the speed parameter which controls
how many grains per second are played, and also used the granulator∼ object
instead of the groove∼ object. This means that object offers audio processing on
a granular level, and features like grain overlap and grain envelope are consid-
ered. The initial values for speed and rate were chosen as 1 in order to play the

audio sample at its original speed and pitch when the sound is loaded. This allows
the user to understand what the sample sounds like originally before performing
granular processing.

The graphical RNBO patch was then converted to WebAssembly using the Web
Export target option and save as a JSON file locally.

3.2 Web Integration

3.2.1 Generating HTML code

The first step to creating the website was generating the basic structure in HTML.
The file index.html would be the home page of the website and included elements
like the title of the website, the header text as the name for the synthesizer, any
additional text to describe the synthesizer, the audio start and stop button and
parameter sliders for the RNBO patch. The HTML file also contained paths to the
CSS file for styling the website and JavaScript files for including the RNBO patch
and any additional functionality in the website.

Figure 3.3: HTML code for including the header text

3.2.2 Including the RNBO patch using JavaScript

In order to actually include the audio processing, a JavaScript (JS) application was
created. First of all, AudioContext - a Web Audio API interface, where all audio
processing is happening - was initiated. AduioContext was responsible not only for
sound processing but also outputting audio on a website. Stopping and resuming
the AudioContext will do the same to the audio output.

Figure 3.4: JS code for creating AudioContext

RNBO patch was included in the website by first fetching the patch by specifying
the path to the patch and then loading the RNBO script. This allowed to then
create the device, which would act as the RNBO patch.

Figure 3.5: Create the RNBO device in JS

In order to obtain information from the patch and control the sound using the
parameter sliders, the device was accessed in JavaScript. For each of the device’s
parameters, label, slider and text input was created. The name, minimum, max-
imum and default values for each parameter were accessed from the device and
assigned to the corresponding slider. The device was constantly being updated by
including the function to listen to parameter changes and this way perform sound
processing in real-time. Some code snippets are included in figures 3.6 and 3.7.

Figure 3.6: Setting name and value for each slider

Figure 3.7: Listening to parameter changes and updating the device

3.2.3 Controlling Audio Output

An option to control the sound output was added. In the HTML file, a button
element was created and then with the help of JavaScript altered to change its value
from ’Start Audio’ to ’Stop Audio’ once clicked. To connect it to audio output,
AudioContext was initiated and stopped as the button was clicked. Figure 3.8
shows how the button element is accessed in JavaScript and how it is value is
altered once it is clicked. The code checks the current value of the button and
changes ’Start Audio’ to ’Stop Audio’ and vice versa. Similarly, AudioContext is
being resumed it the value of the button is ’Start Audio’ and stopped if the value
is ’Stop Audio’.

Figure 3.8: JS code for toggling the value of the button and the status of AudioContext once clicked

3.2.4 Including the Audio Samples

The samples to be used for further processing were downloaded from royalty-free
sources and added to the domain. In order to enable sound selection, a drop-down
menu was created using HTML. A list of all sound file paths was generated in the
same order as it appears on the drop-down menu. Once the value of the drop-
down menu changed, the corresponding file path was selected and that audio file
was loaded into the device. The sample was connected to the audio buffer object
in the RNBO patch by first loading the sample as an ArrayBuffer, then decoding it
as an AudioBuffer and connecting it to the device as shown in figure 3.9.

3.2.5 UI changes

Finally, the user interface was updated by including a CSS library and changing
the padding, color, font and and border characteristics to make the UI a little bit
more interesting and cohesive. The initial and the updated user interfaces can be
seen in figure 3.10

Figure 3.9: JS code showing how as the value of the audio selection changes (function onChange),
another function (function samples) is initiated where knowing the current value of the selection the
corresponding audio sample is decoded and loaded into the device.

Figure 3.10: Old (left) and updated (right) User Interface

Chapter 4

Testing and Results

4.1 Usability Testing

In order to evaluate the software some user testing was performed. First, a us-
ability study was conducted in order to determine how functional, efficient and
user-friendly the software is. The study aimed to identify strengths, weaknesses
and potential areas for improvement to help make the software as intuitive and
straightforward as possible. The usability study was conducted only with 5 test
participants, as suggested by the research from Jakob Nielsen, who claimed that
5 people are optimal enough to determine the usability issues, while keeping the
evaluation costs low [6].

4.2 First Iteration

4.2.1 Testing

The survey was created using google forms due to its accessibility, ease of use and
ability to generate charts from the results and export them as a spreadsheet. The
first part of the survey contained the questions regarding the musical background
of the test participant:

• Do you have any experience with music production or sound design?

• Have you used a virtual or a physical synthesizer before?

• If yes, have you used a synthesizer on a website?

• Do you know about granular synthesis and have you had any experience
with it before?

15

The questions helped to understand how familiar the participants were with sim-
ilar software in order to identify if the usability issues stem from being lack of
experience with musical instruments or granular synthesis.

To actually test the usability of the website the following statements regarding
user-friendliness, simplicity and ease of use were presented. A 5-point Likert scale
from Strongly Disagree to Strongly Agree was presented.

• I think that I would like to use the website frequently.

• I found the synthesizer to be unnecessarily complex.

• I found the synthesizer was easy to use.

• I think that I would need assistance to be able to use this synthesizer.

• I thought the functions in the synthesizer were well integrated.

• I thought there was too much inconsistency in the synthesizer.

• I would imagine that most people would learn how to use the synthesizer
very quickly.

• I found the synthesizer very cumbersome / awkward to use.

• I felt confident using the synthesizer.

• I needed to learn a lot of things before I could start using the synthesizer.

4.2.2 Results

The following results were obtained from the user usability questionnaire. The
usability statements were presented using the Likert scale and therefore were easily
quantified - Strongly Disagree resulting in value of 1 and Strongly Agree in value
of 5. The numerical values for answers to statements that were phrased negatively
were subtracted from 6. Assigning the numerical values to questions allowed to
perform better analysis of the overall usability of the software by summing up the
values for each. It is important to note that when talking about positively and
negatively rated statements, they are considered from the usability perspective,
e.g. a the rating for the negatively phrased statement will be considered positive if
the answers were mostly disagreeing with the statement.

The questions which were answered most positively were: I found the synthesizer to
be unnecessarily complex and I found the synthesizer was easy to use.

Figure 4.1: Most positively rated statement

In contrast, the questions answered most negatively were I would like to use the
website frequently, I needed to learn a lot of things before I could start using the synthesizer
and I thought the functions in the synthesizer were well integrated.

Figure 4.2: Most negatively rated statement

From the available data about musical background, there seemed to be little cor-
relation between familiarity with music production and high ratings for usability.
The participant with most negative usability rating had little to know experience
with music production and granular synthesis, while the most positive rating came
from a participant with almost the same musical background.

At the end of the questionnaire an open ended question to provide feedback was
asked and all answers were positively reflected on the usability of the website,

while at the same time acknowledging that the simplicity of the website might be
more suitable for beginners.

4.3 Second Iteration

In order to try and increase the usability score for the software, small changes were
made to the website and the usability test was performed again. An additional info
symbol was added to the website with a short description about granular synthesis
and parameters of the synthesizer. To keep the simple and stripped back layout
of the website, the information would only show up as the mouse hovers over the
info symbol.

Figure 4.3: Updated website with the information about granular synthesis and parameters

4.3.1 Results

The results from the updated software were overall more positive in all aspects
with biggest increase in statements I think that I would need assistance to be able to
use this synthesizer, I thought there was too much inconsistency in the synthesizer and I
would imagine that most people would learn how to use the synthesizer very quickly.

While the most negatively rated statements remained the same, the most positive
statements were I would imagine that most people would learn how to use the synthesizer
very quickly and I thought there was too much inconsistency in the synthesizer.

Figure 4.4: Most positively rated statement

Overall, it the addition of informational text in the website resulted in more pos-
itive ratings for the software usability, however, the difference was not significant
enough to claim the changes were the determining factor.

4.4 Interviews with musicians

As a final evaluation practice, three people involved in music on a professional
level were asked to use the website and answer questions regarding not only us-
ability but also the sound quality, synthesizer capabilities, features and real-time
performance.

Study participants were presented a similar questionnaire-like system, first asking
about musical background and involvement with granular synthesis. All partici-
pants expressed that they are familiar and have used granular synthesis enough to
understand the standard features and capabilities of a granular synthesizer. The
participants’ professional musical background and experience with digital synthe-
sizers proved to provide valuable and constructive feedback about the software.

The participants were once again presented with statements and asked to choose
between Strongly Disagree to Strongly Agree. The following statements were pre-
sented to the test participants:

• I thought the synthesizer was responsive and and worked well in real time
without significant latency.

• I thought the sound was not clear and there was unwanted artefacts and
distortion present.

• I thought the synthesizer was able to transition smoothly between the differ-
ent parameter settings.

• I thought the synthesizer didn’t provide adequate parameter control.

• I thought the synthesizer performed well across different parameter combi-
nations.

• I thought the synthesizer’s parameters were difficult to handle and control
intuitively.

• I thought the user interface was easy to navigate and understand.

• I thought the synthesizer was able to handle different sounds (percussive,
melodic, ambient) well.

• I thought the synthesizer was lacking features.

• I would imagine synthesizer being useful for professional sound designers.

• I would imagine the synthesizer being useful for beginners exploring granu-
lar synthesis.

• I would consider using the synthesizer for my practice.

Overall the responses from the test participants were positive and the participants
most positively rating the user interface and the performance aspect of the synthe-
sizer, claiming that the software worked with little latency or unwanted artefacts.
The participants also thought that the synthesizer was able to handle different
types of sounds well and performed well across different parameter combinations.

Figure 4.5: Most positively rated statement

On the other hand, the respondents expressed agreement that the software was
lacking in features and parameter control. While every participant agreed that the
software would be useful for beginners exploring granular synthesis, professional
use of the synthesizer seemed less likely.

Figure 4.6: Most negatively rated statement

In the window asking to provide additional feedback, all participants responded
about the need to include custom samples. Other suggested additions were record-
ing and exporting the performance, adding automation, controlling several param-
eters at the same time. One of the respondents expressed that additional param-
eters like grain spread or pan could be added. Overall, the software was seen as
something more useful for educational purposes or non-professional music pro-
duction and something less likely to be used by industry professionals.

Chapter 5

Discussion and Future Works

5.1 Granular Synthesis

Overall, the software was able to perform granular synthesis well, with little la-
tency or unwanted distortion. The synthesizer provided basic functionality for a
granular synthesizer, with features like grain size, grain frequency, grain position
and pitch. Additional parameters like grain spread, randomisation and pan could
be added in the future to make the synthesizer more attractive to music produc-
ers and sound designers. The software could also include an option to import
custom audio samples, record an audio sample from the microphone or exported
the performance as an audio file. The expressiveness of the synthesizer could be
improved by including new methods to interact with the parameters, e.g. hand
posture estimation to be able to play the instrument or simply an XY pad to control
two parameters at the same time.

5.2 Web Integration

The synthesizer was successfully hosted on a website and was able to function with
no performance issues. The WebAssembly framework allowed the patch to run
smoothly in the browser even as the most extreme parameter settings. However,
the pipeline from building the RNBO patch to having a fully functional website is
still not suitable for complete beginners and knowledge of coding languages like
HTML and JavaScript as well as web audio frameworks like Web Audio API was
required. While the RNBO developer community provided a website template, it
was difficult to utilise properly without more extensive JS knowledge, especially is
changes to the user interface of some aspects of the software were required. Due
to the novelty of RNBO web integration features, a lot of the documentation is still
not available to be able to quickly deploy custom websites from the RNBO patch.

22

5.3 UI and Aesthetics

The user interface of the software was positively rated by the test participants due
to its simplicity and ease of understanding. With a variety of different JavaScript
libraries and frameworks available, the UI could be more improved to look more
modern and attractive to the user. While a visually stripped-down and aestheti-
cally minimal website seems to be a popular visual choice by designers, addition
of a visual element corresponding to the audio could make it more intuitive and
engaging. Several JavaScript libraries and frameworks like p5.js, WebGL, three.js
are available for developing 2d and 3d graphics and animations. By accessing
the parameters of the RNBO patch and linking them to the graphical elements, a
simple audio visualiser could be created.

Chapter 6

Conclusion

This paper explores the possibilities of implementing granular synthesis as a web-
site by using the RNBO architecture in Max/MSP. More superficially, the possi-
bility to export RNBO patches and quickly deploy it as websites is analysed. A
pipeline from a RNBO patch to a fully functional website is discussed and the
necessary tools and knowledge needed to deploy such website is examined. A
graphical RNBO code is exported as WebAssembly and included in a JavaScript
code to create a device analogous to the RNBO patch.

The software developed during the course of this project resulted in a granular
synthesizer functioning on a website. Overall, the synthesizer was able to run
smoothly and produce clear sound with no unnecessary artefacts, clicks or dis-
tortion. The synthesizer was responsive to the parameter changes and performed
with little latency. The created user interface was simple yet functional and easily
understandable. Given the feedback from the test participants, the web integration
of the granular synthesizer can be considered successful due to its good perfor-
mance. However, the current software is considered more suitable for exploration
by students or sound enthusiasts rather than a legitimate alternative to existing
granular synthesizer used by professional music producers and sound designers.
With the addition of features like custom audio samples, expressive parameter con-
trol or audio reactive visuals, the software could attract more advanced musicians
looking for an engaging way to synthesise sounds.

24

Bibliography

[1] Michel Buffa et al. “Web Audio Modules 2.0: An Open Web Audio Plugin
Standard”. In: Companion Proceedings of the Web Conference 2022. 2022, pp. 364–
369.

[2] Anıl Çamcı. “GrainTrain: A hand-drawn multi-touch interface for granular
synthesis”. In: Proceedings of the International Conference on New Interfaces for
Musical Expression. 2018, pp. 156–161.

[3] FaceArp: Web synthesizer with face tracking control. https : / / github . com /
maceq687/FaceArp. (Accessed on 04/24/2023).

[4] Learning Synths and RNBO. url: https://rnbo.cycling74.com/explore/
learning-synths-and-rnbo.

[5] Learning Synths and RNBO | Cycling ’74. https://rnbo.cycling74.com/
explore/learning-synths-and-rnbo. (Accessed on 04/24/2023).

[6] Jakob Nielsen. Why you only need to test with 5 users. 2000.

[7] Patatap - Artistic & Studio Work of Jono. https://www.jono.fyi/Patatap.
(Accessed on 04/24/2023).

[8] PD community site. url: https://puredata.info/.

[9] Shihong Ren et al. “FAUST online IDE: dynamically compile and publish
FAUST code as WebAudio Plugins”. In: WAC 2019-5th Web Audio Conference.
2019.

[10] Curtis Roads. Microsound. The MIT Press, 2004.

[11] Charlie Roberts and JoAnn Kuchera-Morin. “Gibber: Live coding audio in
the browser”. In: ICMC. Vol. 11. 2012, p. 6.

[12] Sebpiq. SEBPIQ/WebPd: Run your pure data patches on the web. url: https:
//github.com/sebpiq/WebPd.

[13] Web Audio Granular Synthesiser. http://zya.github.io/granular/. (Ac-
cessed on 04/24/2023).

[14] What is Max? url: https://cycling74.com/products/max.

25

https://github.com/maceq687/FaceArp
https://github.com/maceq687/FaceArp
https://rnbo.cycling74.com/explore/learning-synths-and-rnbo
https://rnbo.cycling74.com/explore/learning-synths-and-rnbo
https://rnbo.cycling74.com/explore/learning-synths-and-rnbo
https://rnbo.cycling74.com/explore/learning-synths-and-rnbo
https://www.jono.fyi/Patatap
https://puredata.info/
https://github.com/sebpiq/WebPd
https://github.com/sebpiq/WebPd
http://zya.github.io/granular/
https://cycling74.com/products/max

[15] Iannis Xenakis. Formalized music: thought and mathematics in composition. 6.
Pendragon Press, 1992.

Appendix A

The code for the synthesizer can be found here: RNBO granular synthesizer

27

https://codesandbox.io/s/fhczyi

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Audio Processing in Web
	1.1.1 Faust
	1.1.2 Max/MSP and RNBO
	1.1.3 Pure Data and WebPD
	1.1.4 Gibber
	1.1.5 Web Audio Modules 2.0

	1.2 State of the Art
	1.2.1 Grain Train
	1.2.2 FaceArp
	1.2.3 HTML5 Granular Synthesiser
	1.2.4 Patatap
	1.2.5 Learning Synths

	1.3 Target Group
	1.4 Final Problem Statement
	1.5 Requirements
	1.5.1 Functional Design Requirement
	1.5.2 Non-functional Design Requirements

	2 Design
	2.1 Granular synthesis
	2.2 Coding Environment
	2.3 Audio Samples
	2.4 User Interface

	3 Implementation
	3.1 Max and RNBO
	3.2 Web Integration
	3.2.1 Generating HTML code
	3.2.2 Including the RNBO patch using JavaScript
	3.2.3 Controlling Audio Output
	3.2.4 Including the Audio Samples
	3.2.5 UI changes

	4 Testing and Results
	4.1 Usability Testing
	4.2 First Iteration
	4.2.1 Testing
	4.2.2 Results

	4.3 Second Iteration
	4.3.1 Results

	4.4 Interviews with musicians

	5 Discussion and Future Works
	5.1 Granular Synthesis
	5.2 Web Integration
	5.3 UI and Aesthetics

	6 Conclusion
	Bibliography
	A

