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1 Summary

The study focused on the application of transformer architectures in Goal-conditioned Reinforcement
Learning (GCRL), within both online and offline RL settings. An intrinsic reward mechanism for training a
Deep Reinforcement Learning (DRL) agent was also proposed.

The investigation began with the application of a transformer-based architecture in the online supervised
RL setting, utilizing the recent Goal-Conditioned Supervised Learning (GCSL) as a starting point.

The study was driven by the recognized capabilities of transformers in managing sequence dependencies,
a recurring issue in RL. Transformers, originally designed for natural language processing tasks, were
incorporated into the GCRL domain with the objective of identifying performant configurations of these
architectures.

The initial focus was on adjusting the transformer architecture to the specifications of the GCSL framework,
navigating the distinctive challenge of the online RL setting. The intriguing setting of GCSL, where the model is
not directly optimized to maximize a reward correlated with reaching goals, called for goal-reaching behavior
to emerge as a result of maximum-likelihood estimation with the appropriate architectural modifications and
training setup. The intention was to search for modifications to the existing decoder-only transformer within
the GCSL setting, and explore whether these changes led to improvements in the offline supervised RL setting.

Incorporating the transformer architecture into the GCSL model required a series of modifications. A
crucial discovery was the necessity for a delicate balance between optimization steps and data collection
frequency to prevent model collapse. Performance enhancement beyond the baseline was achieved through
the use of variance and covariance regularization and a gated fusion mechanism for merging goal information
with the sequence of state and action tokens.

Interestingly, modifications that proved effective in the online RL scenario did not universally guarantee
improvements in the offline setting. This was assessed within the context of the existing Decision Transformer,
designed for the offline supervised RL setting. Stable learning and slight performance improvements were
consistently contributed only by the gated fusion mechanism.

A shift towards a more discrete representation of the goal was noted through the use of the gated fusion
mechanism. A single reward token was used as the goal, in contrast to feeding returns-to-go at each timestep.
This approach provided a greatly simplified goal specification.

A new method for GCRL was proposed, involving training a goal-conditioned dynamics model along
with a conventional DRL agent. The agent was trained through an intrinsic reward, achieved by maximizing
the negative squared L2 norm between the actual next state’s representation and the representation given by
the goal-conditioned dynamics model. This method showed promising results in a simple 10x10 gridworld
environment, outperforming the discrete Proximal Policy Optimization (PPO) baseline. However, extending
these results to more complex environments such as the CarRacing environment was not possible.

The findings laid a foundation for several potential future research paths. One avenue is to evaluate the
scalability and performance of the modified Decision Transformer architecture on larger offline datasets, such
as the multi-task Atari dataset.
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Further exploration and extension of the novel GCRL approach in more complex environments, such as
the CarRacing environment, could provide valuable insights.

Finally, inspired by the work of Dehaene et al. [1], computational forms of consciousness were suggested
for exploration to address perceived gaps in intent and alignment in current RL models. Approaches that
generate detailed future expectations or align with the Global Workspace Theory were of particular interest.
This theory involves the selection, processing, and system-wide broadcasting of vital information to guide
behavior, potentially offering a more granular approach to environment navigation. This ambitious direction
poses challenges but could provide exciting avenues for future research and the development of consciously
aligned RL models.
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Nomenclature

DL Deep Learning
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DT Decision Transformer
FCN Fully Connected Network
FNN Feedforward Neural Network
GCRL Goal-conditioned Reinforcement Learning

GCSL Goal-conditioned Supervised Learning

MDP Markov Decision Process

RL Reinforcement Learning

SL Supervised Learning

SSL Self-supervised Learning

VICReg Variance Invariance Covariance Regularization

Mathematical Notation

x Scalar (integer or real)
x Vector
X Matrix
X Set

∇ f (x; θ) The partial derivatives of f (x; θ) with respect to θ
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Goal-conditioned Reinforcement Learning with Transformer Architectures and Intrinsic
Reward Design

Milad Samim

Abstract

This report delves into Goal-conditioned Reinforcement Learning (GCRL), primarily exploring the use of transformer-based archi-
tectures and an additional a proposal of simple intrinsic reward mechanism. GCRL holds the potential of enabling more data-driven
training of Reinforcement Learning (RL) agents, which are capable of solving a diverse set of goals. The exploration of transformer-
based architectures in this setting attempts to further the insights into adapting highly scalable architectures in GCRL.

The work proceeds in three main arcs. Firstly, we extend the recent Goal-conditioned Supervised Learning (GCSL) framework
with a highly scalable decoder-only transformer architecture akin to the Decision Transformer. GCSL is an atypical supervised
RL setting in that no expert demonstrations are provided for the agent but instead requires the goal-reaching behavior to emerge
from maximum likelihood estimation. Here we show that careful modifications are required to avoid model collapse and yield
performance beyond the baseline.

The second part aims to evaluate whether the modifications in the GCSL setting will transfer to the more classical offline setting
of supervised RL. In particular, we evaluate the proposed modifications on the Decision Transformer, which is targeted the offline
supervised RL setting. Through this work, we show that in general transference between the setting of online and offline supervised
RL is limited. Nonetheless, we find that the use of a gated fusion mechanism offers simplified goal-conditioning, with similar or
higher performance than the baseline.

The third part proposes an intrinsic reward mechanism through the discrepancy between the next state and a predicted next state
to train a GCRL agent. We show that the proposed approach learns to solve a simple goal-reaching gridworld faster than a baseline
Proximal Policy Optimization (PPO) agent.

Through the study, we show the difficulties and provide insights into adopting a transformer architecture in the setting of online
supervised RL. Further, we show that there is a limited transfer between architectural configurations between the online and offline
settings, whilst reaching a simplified goal-conditioning method for the Decision Transformer. Finally, the proposed intrinsic reward
shows promising results in a simple gridworld environment but fell short in more complex environments.

Keywords: Goal-conditioned Reinforcement Learning, Deep Learning, Offline Learning, Online Learning

1. Introduction

Since the seminal introduction of the Deep Q-Network
(DQN) by Mnih et al. [1], the field of deep reinforcement
learning (DRL) has made significant progress. This evolution
is evidenced by the successful application of deep learning
techniques in managing complex decision-making problems
with extensive state and action spaces. Some notable instances
of these advancements include achieving superhuman perfor-
mance in the game of Go by AlphaGo from Silver et al. [2],
and defeating professional StarCraft players as accomplished
by Vinyals et al. [3].

1.1. Difficulties with Reward Functions
Even though impressive achievements have been reached

with DRL, limitations still exist. In particular with the design
of reward functions. Reward functions are specified either in
a sparse or dense approach. In the dense setting, a reward
signal is given to the agent for every action it takes, whereas
the sparse reward offers a binary reward denoting the success

of the task upon completion [4]. Dense reward functions are
preferred, as they give rise to more efficient learning. The
explanation for this is straightforward, methods like DQN,
Proximal Policy Optimization (PPO) [5], Soft Actor Critic
(SAC) [6], and similar methods rely on randomness to ensure
sufficient exploration. When combined with complex environ-
ments, numerous explorative actions must be taken before the
agent receives sufficient feedback signals to discriminate be-
tween the actions to take, particularly in a sparse reward setting.

Unfortunately, dense reward functions are not themselves
without problems, as they are subject to reward hacking [7],
which results in the agent optimizing the reward function
by learning undesired behaviors. A well-known example of
this is the dust cleaning robot [8], which is rewarded for dust
collection. Rather, than learning to clean as expected the robot
will learn to initially collect some amount of dust followed by
repeatedly dumping and collecting the same dust. Thus, it is
not guaranteed that reward functions will give rise to behavior
that is aligned with the actual human intent [9]. Further, when
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moving beyond simulated environments with given reward
functions, the difficulty of administering a feedback signal for
every action is nontrivial. The difficulty of designing a dense
reward function in complex settings is the primary motivation
for sparse reward signals.

Many works have aimed to address the challenges of reward
functions from different angles, such as manually designed
curriculum [10, 11], where tasks are presented to the agent
based on a difficulty ordering, which allows the agent to
conquer simpler tasks, allowing it to benefit from the skills
obtained when exposed to tougher tasks. Another approach is
reward shaping [12, 13], which relies on augmenting a sparse
reward signal such that more frequent feedback information is
emitted, however, this would typically require domain-specific
insights. Yet another line of work aims to use forms of intrinsic
rewards [14, 15], a particular example here is [14], which
uses the uncertainty of the next state prediction as an intrinsic
reward to encourage exploration. As such the intrinsic reward
does not stand alone, but is still reliant on an extrinsic reward.

Another area of limitations is that current DRL agents
typically learn to master a specific task very well, but learning
new tasks requires new strategies or entirely new reward
functions to specify the tasks [16].

Goal-conditioned Reinforcement Learning (GCRL) presents
an approach to tackle the inherent complexities involved in
crafting reward functions. In this paradigm, explicit goals
become integral to the policy, serving as a beacon to guide
the agent’s actions toward intended outcomes. This method
potentially makes the learning process more streamlined by
providing the agent with a focused direction. Reward functions
still need to be specified, but are conditional on the goal, thus
when using deep neural networks to learn goal-conditioned
policies, there is potential for generalization and performance
transfer between solving various goals. Typically in GCRL
reward functions are specified as sparse indicator functions
detecting whether the goal is achieved [17], minimizing the
focus on handcrafting reward function. Instead, the challenge
of specifying reward functions is traded for the challenge of en-
abling a capacity of acting in goal-directed ways. Additionally,
GCRL has enabled supervised approaches [18, 19, 20, 21] to
exceed in RL tasks, opening up a new direction to train agents
without the need to specify reward functions.

Spurred by the potential of GCRL, this work aims to delve
further into this area, extending upon Levine’s [16] insights,
which motivate GCRL as an approach to obtain more data-
driven RL algorithms. The specific contributions are:

• Extending the existing work of Goal-conditioned Super-
vised Learning (GCSL) [18], by using a more scalable ar-
chitecture in the form of the transformer architecture [22]
instead of an ordinary neural network architecture.

• Augmenting the decision transformer [20] by using a
cross-attention gating [23] approach to embed the reward

conditioning into the transformer architecture.

• An approach of utilizing the difference between the imag-
ined and actual next-state latent representations as an in-
trinsic reward. Technically this involves training a dynam-
ics model to predict the next-state latent representation,
conditioning it on the goal rather than action information.
Subsequently, an RL agent is trained to minimize the dif-
ference between the imagined and actual next-state latent
representations as its reward function. The potential of the
approach is to replace hand-engineered reward functions
with a general task-agnostic reward function.

The following section frames and motivates the proposals of
this work and how they are connected.

2. Background and Motivation

Initially, the section will take off-set in the work [16] by
Levine, which proposes directions to address existing limi-
tations of current Reinforcement Learning (RL) approaches.
Following this, the notions of learning from offline data and
self-supervised RL and their connection to the two extended
works (GCSL, decision transformer) will be presented. After-
ward, a direction distinct from those proposed in [16] will be
considered to reflect, that there might be more fundamental
gaps to close, besides the more technical directions proposed
in [24]. The remaining subsections will motivate the three
proposals of this work and present the outcomes.

2.1. Addressing the Limitations: A Focus on Self-supervision
and Offline Data

The current limitations beg the question of, what could be
needed to move toward agents that can learn to act in complex
environments in diverse and goal-directed ways.

To address these questions Levine [16] puts forth a set
of suggestions to address this challenge. In [16], Levine
suggests that a methodology for achieving this could be
developed from current reinforcement learning algorithms for
learning-based control. Further, it is contended that such agents
necessitate a causal and generalizable comprehension of their
surroundings. Moreover, it is emphasized that relying solely
on human-engineered reward functions will not suffice; rather
more data-driven methods that can efficiently learn from offline
data should be incorporated. To tackle these constraints, [16]
advocates for the adoption of self-supervised reinforcement
learning techniques and the utilization of offline data, enabling
agents to learn from vast amounts of pre-existing information
and ultimately enhancing their adaptability and understanding
of various environments.
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2.2. Learning from offline data

The ability to learn from offline data, that is data, that is not
collected by the agent itself is known as offline RL, as opposed
to conventional online RL, where the agent learns from its
interaction in the environment. The aim of offline RL is not that
of behavioral cloning, but to learn from the static data in order
to perform beyond the data [24]. Offline RL does not come
without challenges and a particular one is the distributional
shift between the data experienced in training, and how the
environment will behave when behaving differently from the
static data [24]. Nonetheless, recent strides in offline RL have
been made [25, 26, 20]. A particular work here is the decision
transformer by Chen et al [20], which proposes to model RL
tasks as a sequence modeling task and use a transformer deep
neural network architecture [22]. The use of the transformer
architecture is in itself highly attractive, as it is proven to be
scalable to billions of parameters and trillions of data points
[27, 28, 29]. Further, the transformer architecture has been
used across multiple settings and modalities ranging from text,
images, and robotics [29, 30, 31, 32]. The inherent scalability
of the decision transformer is a contrast to conventional
approaches to RL, which has proven more tricky to scale up,
albeit doable as shown in [33].

2.3. Self-supervised Reinforcement Learning

Self-supervised learning (SSL) has been a cornerstone
of the recent successes of various models, including large
language models [29] and image generation models [34]. In
the context of reinforcement learning, Levine [16] suggests
that one way to frame a self-supervised RL objective is as the
problem of achieving a goal, which leads to the formulation of
goal-conditioned policies.

Hindsight Experience Replay (HER) [35], a technique used
in GCRL, capitalizes on the concept of reassigning reached
states as the agent’s intended goals. The approach of HER
streamlines the learning process for achieving analogous goals
in the future. In this vein, the paper, ”Learning to Reach Goals
via Iterated Supervised Learning” proposes the method goal-
conditioned supervised learning (GCSL) [18] demonstrates
learning without rewards in a constrained setting where goals
are provided as states in the state space, by using the idea of
hindsight relabeling. This work highlights the potential of goal-
conditioned self-supervised learning to create agents that can
solve multiple goals.

2.4. Other Directions to Search

In the pursuit of more capable human-like intelligence, it
may be that besides moving to an offline setting, which will
allow for vastly larger data sets and moving beyond handcrafted
reward functions, that still a qualitative difference remains. As
laid out by Dehaene et al. [36] current deep learning models
mostly perform unconscious processing (C0), rather than
conscious processing (C1 and C2). Dehaene et al. propose

that ”consciousness” encompasses two distinct information-
processing computations in the brain: the selection and global
broadcasting of information for flexible use and reporting (C1),
and the self-monitoring of these computations, resulting in a
subjective sense of certainty or error (C2). Unconscious pro-
cessing (C0) is characterised as where most of our intelligence
lies, as it involves the automatic, unconscious processing of
information that guides our actions and decisions. Examples of
complex unconscious processing are visual processing, audio
processing, and chess-game evaluation, as such it is argued
that even the association of reward or motivation falls into the
unconscious category. [36]

The emphasis on a computational view of consciousness
alludes that it is implementable. In a similar view Bengio in
”The Consciousness Prior” [37] proposes in an abstract sense
how computations in an information-processing system akin
to the Global Workspace Theory (GWT) presented by Baars
[38] could be composed. GWT is directly connected with the
C2 conscious process of Dehaene et al. [36] The theory posits
that conscious thoughts consist of specific information pieces
temporarily held in working memory, making them globally
accessible to unconscious brain computations. This creates
an informational bottleneck, through which consciousness
emerges and involves competition between unconscious pro-
cesses for entry into working memory. In a different approach
Lecun in [39] presents an architecture for how an intelligence
more like human intelligence could be arranged. The proposal
contains multiple components, but concretely with connection
to consciousness it hypothesized that the module named
”configurator” 1, could have a function assimilable to that of
C1 and C2.

Thus, it may not be enough to move to an offline setting to en-
able a more data-driven approach combined with an SSL train-
ing approach to enable universal goal direction, but perhaps a
concrete computational framework or module is needed to give
rise to more human-like capabilities. However, in this work, the
quest for computational forms of consciousness will be omitted,
and the concrete direction will be motivated next.

2.5. Direction of work
This work aims to explore the use of transformer-based ar-

chitectures in GCRL. The motivation for emphasizing the goal
conditioning echoes the intuition proposed in [16], that it per-
haps is a well-suited formulation of self-supervised RL, which
is not necessarily governed by a single extrinsic reward func-
tion.

2.5.1. Extending Goal-conditioned Supervised Learning with
the transformer architeture

To pursue this direction, the objective is to apply the
transformer architecture in the same setting as GCSL [18].

1The configurator central component, that takes input from all the other
components and ”configures” them for the task at hand by sending information
back out to the components [39]
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The method of GCSL was evaluated in five different online
RL goal-reaching environments: 2D navigation, manipulating
simulated Sawyer robotic arms to push an object to a goal
location, using the same arm for door opening, the classic
lunar lander environment, and a dexterous object manipulation
task, all are seen in Fig. 1. The environments are observed as
vectors describing the states, the goal state in all environments
is a particular state in the state space. The model in GCSL is
a simple two-layer feedforward neural network, which takes
both the current state and goal as input and emits an action.

What is interesting about the results of the GCSL setting
is that model succeeds in learning from its random behavior
and iteratively improves without a reward function. The
capacity to learn from their interaction is not a typical feature
of supervised RL methods (decision transformer [20, 21],
behavior cloning, RvS [19]), as they typically target the offline
setting, and require successful behavior to be prevalent in the
data set. Thus, the motivation in this direction is to see if
enabling a transformer architecture to be capable of learning
from random behavior, will yield insights that can be beneficial
in the more conventional offline setting for supervised methods.

Moving to a transformer-based difficult proved difficult, and
required adjustments to be made as opposed to how transform-
ers have typically been applied for sequential RL tasks. The
adjustments include the use of Variance Invariance Covariance
Regularization (VICReg) [40] a method developed for SSL, the
use of a target network as proposed in [1], the careful fusion of
goal information into the state representations, adapted from a
transformer applied on a multi-modal text-image QA task [23],
and a training strategy different from the typical transformer
training. With the adjustments we show that it is possible to
match or exceed the performance of the simpler network used
in [18], which already matched or exceeded the benchmark
methods PPO [5], TD3+HER [41, 35].

The outcome of this work is insights into the challenges of
adapting a more scalable architecture transformer for the online
goal-conditioned setting. Previous work has indicated similar
challenges when scaling up architectures in the online setting
[33]. Additionally, we acknowledge that the setting is con-
strained, in that the environments are fully observable MDPs
and that the goals are a part of the state space. Thus in partially
observable MDPs and with more complex goals the overall ap-
proach is likely not work. However, it shows that in shorter
trajectories of movement where there is a connection between
the initial state and the terminal state, it is possible to learn ac-
tions connecting the states, without reward but by maximum
likelihood estimation.

2.5.2. Extending the Decision Transformer
In the setting of offline GCRL, we investigate whether the

insights drawn from adapting the transformer to the online
setting without rewards are transferable. Specifically, we aim to
modify the decision transformer with the modifications found
to work in the previous setting. A primary difference is that in

the offline setting, the data set is static and contains in some
cases examples of expert-level performance, thus the model
is not forced to learn from its own initially random behavior.
However, the setting is more unconstrained in that the setting
may be any RL task and not just goal-reaching tasks. The goal
conditioning in the context of the decision transformer is more
precisely stated as reward conditioning, as the model during
training learns to predict autoregressively which actions to take
conditioned on the reward. Thus during inference, the agent
is conditioned or ”prompted” to generate trajectories of high
reward by feeding it high-reward tokens. The aim of evaluating
a modified decision transformer is to test whether, the model
will be able to achieve performance beyond the data set, as
the adaptions in the previous setting improved iteratively from
random performance.

What we find is that there is a gap between the online
and offline settings and that the modifications in general do
not transfer straightforwardly between the settings, similar
observations have been made in earlier work, which have
prompted tailored approaches to the offline setting [24, 25].
However, we find that using the gated fusion mechanism to
fuse the information of the reward conditioning with the state
and action representations yields more stability in some of the
evaluated environments, and is on par with the default decision
transformer in the remaining.

The remainder of the report will be structured by first pre-
senting the preliminaries in Sec. 3. Afterward, the work of
adapting GCSL into a transformer-based architecture will be
presented in Sec. 5, followed by the work of modifying the de-
cision transformer in Sec. 6. Following, in Sec. 7 the work
of training a GCRL agent through intrinsic reward will be pre-
sented. Lastly, there will be a conclusion and discussion of
possible future work in Sec. 8.

3. Preliminaries

In the following, an overview of the methods applied will
be explored. First, the general foundations of Reinforcement
Learning (RL) will be presented. Afterward, a brief presen-
tation of deep learning (DL) will be given, followed by deep
reinforcement learning (DRL). Next, the transformer architec-
ture will be presented. At last Variance Invariance Covariance
Regularization (VICReg), a method applied in the setting of
self-supervised learning will be examined.

3.1. Reinforcement Learning (RL)

The crux of RL is the ability of an agent to learn to maximize
a numerical reward signal through interaction with its environ-
ment. The classic graphical visualization of RL popularized
Sutton et al. [42] is illustrated by Fig. 2

Fig. 2 highlights that the agent interacts with the environ-
ment by taking actions At for which the environment will emit
a reward signal Rt+1 and transition to the next state S t+1. This
method of interaction is the primary method available to the
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Fig. 1: The environments used in evaluating GCSL. From left to right: 2D navigation, robotic pushing, lunar lander, robotic door opening, dexterous object
manipulation [18].

Agent

Environment

Reward

State

Action

Fig. 2: A high-level overview of the agent-environment interaction, where the
environment is modeled as an MDP. The agent in a particular state S t at time
step t takes an action At , which affects the environment. As a consequence, the
environment will emit a reward Rt+1 reflecting the reward of the agent’s action
At , and transition to the next state S t+1[42]. Figure and related text is adapted
from a previous work [43] (note figure originates from [42]).

agent to infer the value of its actions and the dynamics of
the environment. In certain environments for example chess,
the dynamics are fixed, and the learning will primarily focus
on learning the optimal actions. However in more complex
environments, for example maneuvering a robot in the real
world the dynamics are unknown, thus the agent may infer
only about the dynamics through interaction as well. Further,
as embedded into Fig. 2 the mathematical framework of
Markov Decision Processes (MDP) provides an approach to
formalizing RL.

On the basis of ’Reinforcement Learning: An Introduction’
by Sutton and Barto [42] an overview of MDPs and a mathe-
matical formulation of RL will be given next. Some parts of
the structure and outline of this section bear similarities to the
previous work [43].

3.1.1. Markov Decision Processes (MDPs)
A MDP is a 6-tupleM = (S,A,T ,R, γ, ρ), where

• S is the set of states

• A is the set of actions

• T : S × A × S → [0, 1] is the transition function, de-
noting the conditional probability of the next state given
the current state and action, with the property that for all
(s, a) ∈ S ×A, we have

∑
s′∈S T (s, a, s′) = 1.

• R : S ×A × S → R is the reward function

• γ ∈ [0, 1) is the discount rate

• ρ : S → [0, 1] is the distribution of initial states

Given a MDPM the aim of the agent is to learn a behavior, that
will ensure the maximization of the reward. To formalize this
intuition we introduce the idea of a policy. A policy π Eq. (1) is
a function denoting the agent’s conditional probability of taking
a particular action in a particular state, that is π(at |st) ∈ [0, 1]
where at ∈ A, st ∈ S.

π : S ×A → [0, 1] (1)

Given a concrete policy π we can measure the expected dis-
counted cumulative returns J(π) by Eq. (2)

J(π) = E
s0∼ρ,at∼π(·|st),st+1∼T (·|st ,at)

 ∞∑
t=0

γtR(st, at, st+1)

 (2)

Now with the ability to discriminate between policies the aim
of an agent given a particular MDP M is to learn an optimal
policy π∗, which maximizes the expected discounted cumula-
tive returns as given by Eq. (3)

π∗ = arg max
π

J(π) (3)

The formalization of RL into an MDP together with Eq. (3)
provides an overview of the task and the aim. However, it is
not readily evident how to then endow the agent with the ability
to learn π∗ from its interaction with the environment. As such
the following introduces the notion of state-value functions, Q-
functions, and how its formulation as a recursive Bellman equa-
tion provides a method to estimate these functions.

3.2. State-value functions and Q-functions
In the following, we will assume that the states and actions

of the MDPs are discrete and finite.

The state-value function vπ : S → R denotes the expected
returns of following the policy π in the state s ∈ S and is given
by Eq. (4)

vπ(s) = E
at∼π(·|st),st+1∼T (·|st ,at)

 ∞∑
t=k

γtR(st, at, st+1) | sk = s

 (4)

The state-value function expresses the expected returns achiev-
able by following a particular policy at a given state st ∈ S,
however, this notion can be partitioned into the following parts.
At st we follow the policy π giving rise to the expected imme-
diate return E

at∼π(·|st),st+1∼T (·|st ,at)
[R(st, at, st+1)] and a part repre-

senting the discounted expected returns achievable in the next
state st+1, which we can express as the state-value of st+1. This
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gives rise to a recursive formulation as a Bellman equation of
the state-value function, which is given by Eq. (5)

vπ(s) = E
a∼π(·|s),s′∼T (·|s,a)

[
R(s, a, s′) + γvπ(s′)

]
(5)

=
∑
a∈A

π(a|s)
∑
s′∈S

T (s′|s, a)
[
R(s, a, s′) + γvπ(s′)

]
(6)

Given the recursive formulation of the state-value function,
it is now possible to envision an algorithm, which could use the
agent’s interaction with the environment to estimate the state-
value function. In particular the following iterative update rule
in Eq. (7) ensures convergence.

vπk+1 =
∑
a∈A

π(a|s)
∑
s′∈S

T (s′|s, a)
[
R(s, a, s′) + γvπk (s′)

]
(7)

Theorem 3.1 (Convergence of Iterative Value Function Up-
date). The sequence of iterative application of the update rule
Eq. (7) vπ0 , vπ1 , vπ2 , . . . will converge to the true value function
vπ given γ ∈ [0, 1) [44, 4].

However, given an estimate for the value of a particular
state, does not provide insights for which actions to select.

To formalize the value of taking a particular action in a par-
ticular state we use Q-functions, also known as action-value
functions. The Q-function qπ : S×A → R denotes the expected
returns of taking action a in state s, and then acting according to
policy π. Concretely Eq. (8) expresses the Q-function making
use of the definition of the state-value function from Eq. (4).

qπ(s, a) = E
s′∼T (·|s,a)

[
R(s, a, s′) + γvπ(s′)

]
(8)

The Bellman equation for Q-functions is given by Eq. (9)

qπ(s, a) = E
s′∼T (·|s,a)

[
R(s, a, s′) + γ E

a′∼π(·|s′)

[
qπ(s′, a′)

]]
(9)

= γ
∑
s′∈S

T (s′|s, a)

R(s, a, s′) +
∑
a′∈A

π(a′|s′)qπ(s′, a′)

 (10)

Now with the Q-function qπ, the agent will be able to evaluate
the Q-function for every action a ∈ A and then select the
action, which maximizes the expected return. However, the
Bellman equations for the Q-function and state-value function
merely provide an approach to approximate the function values
for a particular policy π and not necessarily π∗.

3.2.1. Learning Policies
In the following, we will assume deterministic policies, and

write a = π(s) to denote the action a selected in state s. We still
assume finite state and action spaces.

To discriminate between policies, we will define a partial or-
dering over the policies:

Definition 1 (Partial Order over Policies).
Let Π be the set of all policies.
Then the binary relation ≤ ⊆ Π × Π defined as π ≤ π′ ⇐⇒
∀s ∈ S. vπ(s) ≤ vπ′ (s) for π, π′ ∈ Π is a partial order.

To find the optimal policy it suffices to repeatedly improve
the current policy. To motivate the intuition, suppose an agent
has a current policy π, which is not optimal. Now suppose there
exists a policy π′, which is similar to π at all but one state s ∈ S,
such that π(s) , π′(s) and vπ(s) ≤ qπ(s, π′(s)). That is the
modified policy π′ selects an action in state s, which ensures at
least the expected returns of the previous policy. This intuition
can be extended to show, that the state-value function of the
modified policy vπ′ will be at least as good as the previous vπ
at all states, reaching a result known as the policy improvement
theorem.

Theorem 3.2 (Policy Improvement Theorem).

For π, π′ ∈ Π if ∀s ∈ S. vπ(s) ≤ qπ(s, π′(s)) =⇒ ∀s ∈
S. vπ(s) ≤ vπ′ (s), thus π ≤ π′. That is π′ is an improved policy
over π [42].

As such selecting an action in a particular state, which en-
sures that the expected returns are better than the previously ex-
pected returns as computed by the state-value function results
in policy improvements. This can be generalized into the idea
of a greedy policy π′, which considers such improvement for
any state. The greedy policy is given by (11).

π′(s) = arg max
a∈A

qπ(s, a) (11)

= arg max
a∈A

(
E

s′∼T (·|s,a)

[
R(s, a, s′) + γvπ(s′)

])
(12)

By construction, the greedy policy in Eq. (11) satisfies the
premise of the policy improvement theorem, as such guarantee-
ing that the policy can only be improved or remain stationary.
Specifically, at a certain point, the greedy policy will no longer
constitute an improvement of the previous policy, but a fixed
point will be reached, such that vπ = vπ′ as expressed in Eq.
(13).

vπ′ (s) = max
a∈A

(
γ E

s′∼T (·|s,a)

[
R(s, a, s′) + vπ′ (s′)

])
(13)

Eq. (13) is also known as the Bellman optimality equation for
state-value functions and expresses that at any point along a tra-
jectory the action, which maximizes the expected return is cho-
sen. That is upon convergence the reached policy is optimal.
In the context of finite state and action spaces a finite amount
of modifications can be made to any policy, and coupled with
the non-decreasing improvements of the greedy policy, the pro-
cess of policy iteration will converge as shown in [4]. However,
it remains, to show the uniqueness of the Bellman optimality
equation.

Theorem 3.3 (Uniqueness of the Bellman Optimality Equa-
tion). For any state-value functions vπi , vπ j if vπi , vπ j satisfies
the Bellman optimality equation Eq. (13) then ∀s ∈ S. vπi (s) =
vπ j (s). [44, 4]
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From Theorem 3.1, Theorem 3.2 and Theorem 3.3 an algo-
rithm for acquiring optimal policies known as policy iteration
can be devised. The algorithm starts initially with a random
policy, and thereafter it applies the value iteration update
rule to obtain the respective state-value function. Afterward,
the policy is improved by obtaining the greedy policy. This
procedure of policy improvement → policy evaluation →
policy improvement → policy evaluation . . . is iterated until
the greedy policy converges to the optimal policy.

However, the exact policy iteration procedure requires the
state and action spaces to be finite along with the transition dy-
namics to be known. In many scenarios, these assumptions do
not hold, and methods that generalize to larger state spaces and
action spaces are required. Further, in many real-world settings,
the transition dynamics are not known. To apply the ideas of RL
in those settings, function approximation is required, in partic-
ular through deep neural networks.

3.3. Deep Learning (DL)

Deep learning refers to the use of artificial neural networks
stacked in multiple layers. The word ”deep” refers to the
fact that multiple layers are used. Artificial neural networks
have their origin in biological neural networks, and early
implementations were intended to be computational models of
how learning could occur in the brain [45, 46].

Deep artificial neural networks can be described as a com-
position of nonlinear functions, where each function can be
viewed as constituting a layer. In particular, a single layer neu-
ral network can be expressed as the function f 1 : RN → RH1 ,
typically f 1(x) = σ1(W⊤1 x + B1), where W1 ∈ RN×H1 is the
weight matrix denoting and B1 ∈ RH

1 is the bias, x ∈ RN is
the input, and σ1 is a nonlinear activation function. Here the
weight matrix and the bias vector is the parameterization of f 1.
From a computational view, we can see that initially an affine
transformation is applied to the input followed by a nonlinear
function (known as the activation function). An example of an
activation function is the Rectified Linear Unit (ReLU) function
(14).

ReLU(x) = max(0, x) (14)

To obtain a deep neural network, multiple layers f 1, f 2, . . . , f n

are composed f = f n ◦ ( f n−1(◦ . . . ( f 2 ◦ f 1) . . .). The layers
which are not the first or last layers that is the layers 2, . . . , n−1
are known as hidden layers. The first and last layer is also
known as the input layer and the output layer respectively. In
practice, each layer can be more complex than affine transfor-
mations composed with a nonlinear function. For example,
operations known to be useful for image data are convolutions
and could be used instead of any particular layer [47, 45].

The neural network f : RN → RM is then viewed as a
parameterized function ŷ = f (x; θ), where θ are the parameters
of f . The parameters are then learned to approximate a
function f ∗. For example f ∗(x) = y could be a function, which
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h(3)
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...
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1

y(4)
2

y(4)
M

...

input
layer

hidden layers

output
layer

Fig. 3: A deep neural network with 4 layers mapping from f : RN → RM . xi
denotes the i’th entry of the input xi ∈ RN for 1 ≤ i ≤ N, y j denotes the j’th
entry of the output y ∈ RM . h(l)

k denotes the k’th entry in of the hidden vector
h(l) ∈ Rh

1, which is obtained by the l’th layer f l : hl−1 → hl for 1 ≤ l ≤ 4.
Special cases in the notation are h0 = N, h4 = M (the input and output di-
mensionalities). The visualization visualizes simple feed-forward layers, s.t.
f l(hl−1) = σl

(
W⊤l hl−1 + Bl

)
, where Wl ∈ Rhl−1×hl ,Bl ∈ Rhl are the paremeter-

ization of the l’th layer. The arrows visualize all entries of the previous hidden
state vector (or input) coming into each node and being multiplied by a weight
(the arrow) followed by the addition of a bias, the affine transformation is fol-
lowed by a nonlinear activation as usual.

assigns inputs x ∈ RN to class labels.

A visualization of a deep neural network is given in Fig.
3. Note, that the input is not counted as a layer but marked
as (0). The network consists of four layers, the input layer
f 1 : RN → Rh

1 is the layer mapping from the input to the hidden
representation, the two hidden layers (layers between the input
and output layers) f 1 : Rh

1 → Rh
2 and Rh

2 → Rh
3 maps between

hidden representations, lastly the output layer f 4 : Rh
3 → RM

maps from the last hidden representation to the output represen-
tation.

To emphasize the expressiveness of deep neural networks,
the universal approximator theorem states that a neural network
of at least one hidden layer can approximate any function to
an arbitrary degree of accuracy given enough hidden units [48,
49]. However in practice deeper networks are preferred and as
mentioned in Goodfellow et al. [45], a deep architecture can
bring exponential gains computationally.

3.4. Deep Reinforcement Learning (DRL)
The following will discuss broadly the two branches of pol-

icy optimization and Q-function-based methods in the setting
of model-free RL 2. ”Deep” in DRL refers to the use of deep

2Model-free RL denotes the algorithms which do not use a model of the
environment dynamics or learn a model of the dynamics to plan the actions
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neural networks to represent the policy, the Q-function, or the
state-value function depending on the particular DRL method.

3.4.1. Q-learning
Q-learning-based methods use a neural network to represent

the q-function. The neural networks are trained to approximate
the Q-function of the Bellman optimality equation, by minimiz-
ing Eq. (15). Here α denotes the step size, rt denotes the ac-
tual reward the agent received. The target consists of the actual
reward added with the expected discounted rewards of follow-
ing the policy associated with the Bellman optimality equation,
which is given by γmax qt(st+1, a). This approach to estimating
Bellman equations is known as temporal-difference learning.
[4]

qt+1(st, at) = qt(st, at) − α

rt+1 + γmax
a

qt(st+1, a)︸                      ︷︷                      ︸
target

−qt(st, at)


(15)

Some practical implementations of Deep Q-learning methods
are DQN, DDQN, and Rainbow [1, 50, 51]. DQN is recognized
for being the catalysator of recent DRL methods and successes.
DQN was the first method to obtain super-human performance
on several Atari games.

3.4.2. Policy Gradient Optimization
Policy gradient optimization is a class of methods that

applies gradient-based methods to learn a policy. The policy
is represented by a deep neural network πθ parameterized by
θ. In a sense, policy-based methods are more principled as
they directly optimize the policy to maximize the expected
returns Eq. (2), as opposed to Q-learning methods. Q-learning
methods rather aim to solve the Bellman optimality equation
and indirectly lead to a policy which under certain assumptions
is optimal as described in Subsection 3.1.

When improving the policy, what we want is to maximize
the expected discounted cumulative reward, and given we will
not apply Bellman equations, it is required to represent the joint
probability of the transition dynamics and the policy more ex-
plicitly. Specifically, we introduce the notion of the probability
of a trajectory given transition dynamicsT , policy πθ and initial
state probabilities ρ by Eq. (16).

p(τ|θ) = p(s0)ΠT
t=0πθ(at |st)T (st+1|st, at) (16)

Additionally we will represent the undiscounted reward of a

trajectory Rτ =
∑T

t=0

(
E

st+1∼T (·|s,a)

[
γtR(st, at, st+1)

])
. Now the ob-

jective to maximize can be represented by Eq. (17)

J(πθ) = E
τ∼p(τ|θ)

[Rτ] (17)

to take, hence model-free. Model-free methods can be characterized as being
trial-error learners as opposed to planners [42].

Computing the gradients of the policy’s parameters θ with
respect to the expected returns Eq. (17) would not yield gradi-
ents, as the returns themselves do not depend on θ. However,
applying the Log-derivative trick allows modifying the expres-
sion such that the expression will depend on the policy’s param-
eters. The derivation is given by Eq. (19).

∇θJ(πθ) = ∇θ

[
E

τ∼p(τ|θ)
[Rτ]

]
(18)

= ∇θ

∑
τ

p(τ|θ)Rτ

 (Expand expectation)

=
∑
τ

∇θp(τ|θ)Rτ

(Bring derivative under the summation)

=
∑
τ

p(τ|θ)
p(τ|θ)

∇θp(τ|θ)Rτ

(Multiply and divide by policy)

=
∑
τ

p(τ|θ)∇θ log (p(τ|θ)) Rτ (Log-derivative trick)

= E
τ∼p(τ|θ)

 T∑
t=0

∇θ log (πθ(at |st))

 Rτ


(Return to expectation form)

(19)

From Eq. (19) an algorithm can be envisioned, which per-
forms a batch of rollouts and computes an average across the
gradients of the parameters of the policy with respect to the
expression given in Eq. (19).

In practice, various modifications are made to the vanilla
policy gradient method to minimize the variance and in general,
obtain more practical algorithms. A typical modification is to
change the sum of the experienced returns Rτ with different
measures of the expected returns. A particular example of such
an algorithm is Proximal Policy Optimization (PPO) proposed
by J. Schulman et al. [5] which changes Rτ with a measure
known as Generalized Advantage Estimation. Further, PPO
addresses that the vanilla policy gradient method is prone
to instability due to too large changes in the policy during
training. To address this issue PPO ensures that the new policy
remains ”proximal” to the previous policy by proposing a
clipped objective.

A key distinction between Q-learning methods and policy
gradient methods presented above is that Q-learning is an off-
policy method, while the policy gradient method is on-policy.
Off-policy refers to the fact that behavior policy, that is the pol-
icy that interacts in the environment can be different from the
target policy, which is the greedy policy associated with the
Bellman optimality equation. This fact is exploited in methods
such as DQN and DDQN by having a ϵ-greedy policy as the
behavior policy [1, 50]. On the other hand, the on-policy ob-
jective is directly related to a specific policy, thus the behavior
and target policy is the same. This explains why policy gradi-
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ent methods typically augment the objective by maximizing the
entropy of the policy [5, 6]. [4]

3.5. Goal Conditioned Reinforcement Learning

GCRL is an extension of RL that aims to tackle problems in
which an agent must adapt to achieve multiple different goals.
The key idea behind GCRL is to condition the agent’s policy on
a specific goal, allowing it to learn how to accomplish various
tasks in a more flexible and efficient manner [52, 35, 17].
In contrast to standard RL, which focuses on optimizing a
single reward function, GCRL incorporates a reward function,
which is conditional on the goal. This enables the agent to
acquire skills that can be reused and adapted across a range of
goals. The goals can be represented in various ways e.g. im-
ages, vectors, states, or even natural language descriptions [17].

GCRL can be described as augmenting the MDP with the
tuple (G, pg, ϕ,Rg) denoted Goal-augmented MDP (GA-MDP)
[17], where

• G is the set of goals

• pg : G → [0, 1] is the distribution of goals in the environ-
ment

• ϕ : S → G is a function which maps states to goals

• Rg : S ×A × S × G → R is the adjusted reward function,
which besides depending on the current state, the current
action, the next state, also depends on the goal given to the
agent

• S,A,T ,R, ρ, γ is defined as the default MDP formalism
given earlier

In many cases S = G and ϕ is the identity function. The goal is
to learn a policy π : S × G ×A → [0, 1], which maximizes the
expected cumulative returns over the goal distribution given by
(20) [17].

J(π) = E
s0∼ρ,g∼pg,at∼π(·|st ,g),st+1∼T (·|st ,at)

 T∑
t=0

γtR(st, at, st+1, g)


(20)

The environments considered in this work are episodic and
with a fixed goal sampled initially. The reward function is typ-
ically a sparse indicator function of the type given in (21) [17]

Rg(s, a, s′, g) = 1(ϕ(s′) = g) (21)

When γ ∈ [0, 1) the optimal policy learned from such
indicator reward function can be characterized as the policy,
which minimizes the number of steps before reaching the goal,
thus yielding the least discounted reward.

With the function ϕ it is possible to implement the key idea
of Hindsight Experience Replay (HER) [35], which introduced
the idea of relabelling. The motivation is that it is possible to
learn from failed trajectories, that is where the agent does not

reach the intended goal, but reaches another state. To learn
from failed trajectories the idea is to relabel the reached state
as having been the intended goal, and thus the agent will be
able to learn from the trajectory. Given, that in DRL the policy
is a deep neural net, the expectation is that the policy will be
able to transfer the skills learned between the relabelled states
and actual goals, given similarities in the environment.

Although a GA-MDP could be modified into a standard
MDP, by designing a special initial state, which samples a
goal, and conveying the goal information to the agent as part
of its input state representation, the GCRL formulation makes
explicit the communication of meaningful information in the
form of goals to direct its behavior.

One proposal to learn policies in the setting of GCRL, was
proposed by Schaul et al. [52] in the form of universal value
function approximation (UVFA), which extends value func-
tions to be goal-conditioned. Through such an approach ex-
isting DRL methods can be adapted to the GCRL setting. An-
other approach to learning goal-conditioned policies is through
supervised RL.

3.5.1. Supervised Reinforcement Learning

Supervised RL denotes the learning of policies by maximum-
likelihood estimation. The general appeal is the simplicity
of supervised learning methods as opposed to DRL methods
[19]. Recently a number of works have shown success in
formulating the RL task through a goal-conditioned imitation
learning task, which can be solved by maximum-likelihood
estimation [18, 20, 21]. The goal-conditioning has been shown
crucial to achieving good results and highlights the connection
to GCRL. However, the methods typically are limited to
training in the offline setting, requiring expert trajectories
such as the Decision Transformer. Albeit the work of GCSL
has shown that it is possible in certain environments to learn
interactively. In the following the setting of supervised RL will
be characterized as it provides a unified overview of the two
works GCSL [18] and the Decision Transformer [20] extended
in this work.

We assume to have a GA-MDP GM = (G, pg, ϕ,Rg,M),
where M is a MDP. During training we assume to have a data
set D = {τ1, . . . , τn}. Each trajectory is an episode of fixed
length H, such that τi = s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH for
1 ≤ i ≤ n and s j ∈ S, a j ∈ A, r j ∈ R for 1 ≤ j ≤ H. When train-
ing the policy the idea of relabelling [35] is applied. In particu-
lar in the case of GCSL the function ϕ is the identity function,
G ⊆ S, and Rg(s, a, s′, g) = 1(s′ = g). Then for any time point
t along trajectory τi, the tuple (st, at, g) will be sampled, s.t. g
is a relabelled future state sampled uniformly, that is g = ϕ(s′)
where s′ ∼ Uniform(st+1, . . . , sH). The goal-conditioned policy
πθ is then trained to maximize the log-likelihood given by Eq.
(22).
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max
θ

∑
τ∈D

H−1∑
t=1

E
g=ϕ(s′∼Uniform(st+1,...,sH ))

log πθ(at |st, g) (22)

Then when using the policy, it is assumed that a goal state
is available to feed to the agent, which is satisfied in the
environments used for GCSL.

In the context of the Decision Transformer, G = R and
ϕ(τt:H) =

∑H
t rt, as such the goal is the quantity denoting

the reward-to-go of the trajectory. Besides the goal being
characterized as the return-to-go, instead of a future state, the
goal-conditioned policy is trained similarly to Eq. 22. During
inference, the Decision Transformer can be directed to emit
actions, that result in high reward trajectories by feeding it high
reward-to-go quantities as the goal.

Algorithm 1 illustrates the general training procedure of su-
pervised RL. The algorithm receives a data set as input, a GA-
MDP GM, a goal sampler f , and whether the setting is offline
or offline. For GCSL f takes a subsequence of a trajectory and
returns a uniform distribution over the states, whereas for the
Decision Transformer f takes a subsequence of a trajectory and
returns the distribution, which allocates all probability mass on
the returns-to-go of the subtrajectory. setting denotes whether
the setting is offline or online, for GCSL online is required, and
will ensure that the agent collects rollouts according to its pol-
icy. Further, in the online setting the initial input data set D is
generated from random interaction in the environment, andD is
a FIFO buffer containing a fixed number of trajectories (10,000
in the case of GCSL [18]). In the offline setting, D is assumed
to be a large data set containing successful trajectories.

Algorithm 1 Supervised RL

1: Input: Data set of trajectories,D = {τ1, . . . , τn}

2: Input: A Goal-Augmented Markov Decision Process GM
3: Input: A goal sampler f for relabelling
4: Input: Online or Offline setting, setting
5: Initialize policy πθ(a|s, g)
6: for i = 1, 2, 3, . . . ,N do
7: if setting is Online (for GCSL) then
8: Sample g ∼ pg, collect data with πθ(·|·, g).
9: Insert τ = (s0, a0, . . . , sH , aH) into D (FIFO)

10: end if
11: Randomly sample a batch of trajectories:
12: for j = 1 to k do
13: τ j ∼ D
14: end for
15: Sample time index for each trajectory, t ∼ [1,H], and

sample a corresponding outcome: g = ϕ(s′ ∼ f (τt:H))
16: Compute loss:

L(θ)←
∑

(st ,at ,g) log πθ(at |st, g)
17: Update policy parameters:
θ ← θ + η∇θL(θ)

18: end for
19: return Goal-conditioned policy πθ(a|s, g)

3.6. The Transformer Architecture

The transformer deep neural network architecture was
proposed by Vaswani et al. in the paper ”Attention Is All
You Need” [22], highlighting the importance of the proposed
attention mechanism. What is different from the transformer
architecture and many previous architectures is that it allows
for varying-sized sized inputs and can be set up to output
varying-sized outputs. Thus, rather than operating on fixed-
sized vectors or tensors, the transformer operates on a set of
inputs. Albeit, previously proposed recurrent neural network
(RNN) architectures such as LSTM [53] and GRU [54] also
possess the capacity to operate on varied-sized inputs, the
transformer solves two crucial limitations of the LSTM and
GRU networks. In particular recurrent neural network has
trouble with performing on longer sequences as the distant
information may fade away, on the other hand, the transformer
operates on the full set of inputs, thus avoiding information
loss. The other limitation that the transformer overcomes is
the avoidance of sequential computation, which is typically
the case for RRNs as they operate with the abstraction of
hidden states ht, which are dependent on the previous hidden
state ht−1. The transformer instead discards the sequential
computation, by relying on the attention mechanism to draw
local and global dependencies across the sequence, enabling
more parallelization on GPUs, thus also rendering it more
computationally attractive [22].

A visualization of the transformer in the original use case
of natural language translation is illustrated in Fig. 4. The
transformer operates on sequences of tokens {x1, . . . , xn}, where
xi ∈ Rdmodel for 1 ≤ i ≤ n. The tokens are vectors of a particular
dimensionality dmodel, and in the original work represented
a word-piece encoding of text, thus mapping sub-words to
vectors. The original transformer is composed of an encoder
fenc and a decoder fdec. The encoder maps the input sequence
to a sequence of hidden states {z1, . . . , zn}, where zi ∈ Rdmodel

for 1 ≤ i ≤ n. The hidden state is then used by the decoder.
In the context of the original transformer, the task was natural
language translation, thus the input to the encoder would be a
vector sequence representation of English text. The decoder
would initially be fed with a start-of-sequence (sos) token, and
would then output the next word. At the next iterative decoding

Transformer Encoder

The house is green

x1 x2 x3 x4

Transformer Decoder

La maison est verte

y2 y3 y4 y5

z1 z2 z3 z4

<sos>

y1

<eos>

y6

y3 y4 y5 y6y2

La maison est verte <eos>

Fig. 4: A visualization of the interface of the transformer architecture in the
context of the original proposed task of natural language processing. The en-
coder receives the English sentence ”The house is green”, which is converted to
their respective tokens x1, . . . , xr before being fed to the encoder. The decoder
receives the processed English sentence and is trained to autoregressivly predict
the next French token, hence the leftwards shift in the output of the decoder.
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it would be fed the sequence ”sos word1” and would emit the
second word and so on, until it has emitted an end-of-sequence
(eos) token, at which point the decoding would be terminated.
The decoder is then conditioned on the output of the encoder
{z1, . . . , zn} and its decoder input sequence {y1, . . . , yk}, where
yi ∈ Rdmodel for 1 ≤ i ≤ k.

3.6.1. Attention Mechanism
The key operation of the transformer is the attention mech-

anism. The attention mechanism operates on three sequences
{q1, . . . ,qn}, {k1, . . . ,kn} and {v1, . . . , vn}. The queries and keys
are of dimensionality dk, whereas the values may be of a differ-
ent dimensionality dv. Note that we can represent the sequences
compactly in matrices Q = {q1, . . . ,qn} s.t. Q ∈ Rn×dmodel . The
scaled dot-product attention proposed in [22] is now given by
Eq. (23).

Attention(Q,K,V) = softmax
(

QK⊤
√

dk

)
V (23)

The matrix product QK⊤ ∈ Rn×n will contain n rows, s.t. that
i-th row QK⊤i,: denotes the dot products of qi with all the key
vectors s.t. QK⊤i, j denotes the dot-product qi ·k j. The softmax is
applied row-wise, such that afterward each of the n rows sum to

1, that is
∑n

j=1 softmax
(

QK⊤
√

dk
V
)

i, j
= 1 for 1 ≤ i ≤ n. As such the

softmax maps the dot-products to row-wise simplex vectors.
The factor 1

√
dk

ensures that the dot-product is normalized
proportional to the dimensionality.

In practice MultiHeadAttention is used, that is the above at-
tention computation is duplicated h ∈ N times, h depends on
the size of the transformer, but in the original setup h = 8. The
MultiHeadAttention is given below:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)Wo

where headi = Attention(QWqi ,QWki ,QWvi )

Where Wqi ,Wki ∈ Rdmodel×dk ,Wvi ∈ Rdmodel×dv are the projection
matrices mapping the input sequences to the respective query,
key, and value spaces for each head ≤ i ≤ h (in practice a bias
term is often also used). Wo ∈ Rh·dv×dmodel is the output projec-
tion matrix, that ensures that the concatenated representations
from the attention heads get mapped to dmodel. The benefit of
using multiple heads is that each head will learn to attend to
different semantic aspects e.g. one may focus on short-term
dependencies another long term dependencies [22], in the
context of images each may learn to attend to various parts of
an object [30].

The name attention comes from the fact that each query will
obtain a new representation in terms of a convex combination
of the value vectors, exactly depending on how the query
”attends” to each particular key. This implies that there is a
relation between the keys and values, such that how much
the query qi attends to the key k j, should indicate the value

of information in v j for the query. Often the distribution
of attention over the keys will either follow a power-law
distribution and allocate most attention to few keys and in other
cases, it will resemble closer to a uniform distribution over the
keys [55].

3.6.2. Architecture overview
As mentioned earlier the transformer has an encoder and

decoder ( fenc, fdec). The encoder applies the MultiHead
attention operation as a self-attention mechanism. Concretely
that means that it feeds the input sequence X = {x1, . . . , xn}

as the queries, keys, and values, thus MultiHead self-attention
is MultiHead(X, X, X). In the context of X being an English
sentence, this enables each word to attend to each other word
in the sentence and obtain a representation based on the full
sentence. The decoder on the other hand operates both with
self-attention followed by cross-attention. In the context of the
original transformer (visualized by Fig. 4), the decoder was
fed the French sentence Y = {y1, . . . , yk}, thus the self-attention
will initially allow it to obtain a representation of each token
based on the full sentence. The cross-attention on the other
hand is defined by setting the queries to be the sequence of
the French sentence, while keys and values will be the English
hidden state sequence Z = {z1, . . . zn}. Thus, resulting in the
MultiHead cross-attention MultiHead(Y,Z,Z), enabling the
French tokens to attend to the full English sentence.

The full transformer architecture as proposed by Vaswani et
al. is illustrated in Fig. 5. Besides the attention mechanism
embedded into the MultiHead attention layers, the architecture
makes use of residual connections [56] and layer normalization.
Residual connections and layer normalization both address
challenges in training deep neural networks, offering benefits
such as improved convergence and performance. A crucial part
of the transformer is positional encoding of the input sequence,
as the transformer is permutation invariant with respect to the
ordering of tokens.

3.6.3. Masking
When training a transformer-based architecture the idea of

masking is crucial. Masking allows to limit, which tokens
each particular token can attend to. For example, the original
transformer was proposed for translation, thus the decoder
was trained by causal/auto-regressive masking, which ensures
that each token can not look ahead of its position, but only
backward. In particular, it was trained in an auto-regressive
way s.t. the token at the j-th position in the decoder sequence
was trained to predict the j + 1-th token. The encoder on the
other hand was trained with no masking, which models the use
case of translation, as the full input English sentence is given
without constraints, but the French sentence has to be decoded
iteratively from left to right.

The causal masking for the decoder can be defined as
mask ∈ {0,−∞}k×k, s.t. maski, j = 0 for j ≤ i and maski, j = −∞
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Fig. 5: The transformer architecture is composed of an encoder and a decoder.
The encoder and decoder are made up of N blocks of encoders and decoders.
Both the encoder and decoder apply an additive positional encoding to ensure
positional information of the sequence order is embedded in the sequence of to-
kens. The encoder block contains a MultiHead Attention layer, where the input
sequences are fed as the queries, keys, and values resulting in self-attention. It
is followed by an Add & Norm layer, which applies layer normalization and
adds the residual connection, which skips past the prior MultiHead Attention
layer and goes directly into the Add & Norm layer. Hereafter a feed-forward
network composed of 2 layers of affine transformations + nonlinear activations
is applied. Lastly, this is followed by a last Add & Norm layer. The decoder
block is constructed similarly, albeit it contains a MultiHead Attention layer
with cross attention as the keys and values come from the encoder. Lastly, a
linear transformation is applied to map the last token output of the decoder to a
vector of logits, the logits are mapped to a probability distribution by the soft-
max operation. (Design inspired from Fig. 1 from [22])

for i < j. That is the mask is a lower triangular matrix, with
the lower triangle filled with 0’s, and the upper part (excluding
the diagonal) is filled with ∞. Then the mask is added to
the attention matrix from the MultiHead self-attention layer
softmax( QK⊤

√
dk
+ mask). This will effectively ensure that the

query qi can only attend to keys k j, where j < i, so that the
decoder only looks backward when predicting the next token.

3.6.4. Architectural Variants
The original transformer proposed in [22] contains both

an encoder and decoder, however, certain models in particu-
lar recent generative pre-training (GPT) models [57, 58, 59,
29] only uses the decoder part and its causal mask to train
autoregressive-language models. It is not universally always

the best approach as benefits for the original approach and
other variants still exist [60], but in particular, the Decision
Transformer uses a similar decoder-only setup as GPT2. The
decoder-only setup is not exactly the decoder as visualized
in Fig. 5, as the cross attention (second MultiHead attention
block) is discarded and only the first MultiHead self-attention
block with masking is maintained, as such it is more akin the
encoder, but with causal masking. A third variant is a decoder-
only setup, with a more flexible masking approach, known as
Prefix Language Model (LM). A visualization of the variants
discussed is given in Fig. 6.

3.6.5. Processing Multimodal Tokens
To process multimodal tokens multiple approaches have been

proposed in previous works [23, 61, 32, 62, 63, 64]. Multi-
modality refers to the tokens representing data from multiple
distinct modalities such as text, images, audio, etc. Four par-
ticular examples will be discussed in the following, as they will
be applied in this work.

The first approach is the most straightforward approach,
which feeds tokens of different modalities as a single sequence,
without any further adjustments to a transformer architecture
as proposed in [62]. The second approach is based on con-
catenation [64], which was proposed in the context of goal-
conditioned supervised RL. Specifically [64] proposes to con-
catenate the vector representing the agent’s goal with the latent
vector representation of its vision-based input. This can be ex-
tended to the transformer setting by concatenating a goal vector
with every input token, that is given to the transformer.

The third approach considered is that of Feature-wise Lin-
ear Modulation (FiLM) [61], which was proposed to be used
in a transformer architecture to combine language instructions
with an agent’s visual state representation by Brohan et al. [32].
FiLM proposes to influence the output of a neural network by
applying a learned affine transformation, conditioned on some
input. In particular FiLM learns neural networks f and h, which
outputs γl = f (g) ∈ Rdmodel and βl = h(xi) ∈ Rdmodel , where l de-
notes the layer number. Then modulated features of the l-th
layer are given by Eq. (24).

FiLM(Fi,l|γl, βl) = γl ⊗ Fi,l + βl (24)

In the context of the transformer Fl = zi,l ∈ Rdmodel , such that
the hidden representations of a token i at a particular layer l is
modulated to account for additional information g. g is a vector
representing the information that should be embedded into the
transformer, which in the context of [32] was an embedding of
a language instruction.

The fourth and last form of multimodel token processing con-
sidered in this work is known as the gated fusion mechanism
similar to that used in [23]. To frame the technique suppose
we have a sequence of language and vision tokens: Hlanguage =

{zl,1, . . . , zl,n} and Hvision = {zv,1, . . . , zv,m} respectively. Then,
we obtain a representation of the language tokens in terms of the
vision tokens, by applying a single cross-attention mechanism.
In particular we set Q = Hlanguage, K = Hvision, V = Hvision and
obtain Hattn

vision ∈ R
n×dmodel , by Eq. (25).
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Hattn
vision = Attention(Q = Hlanguage,K = Hvision,V = Hvision)

(25)
Then the fused output sequence Hfuse ∈ Rn×dmodel is obtained by
Eq. (26). Here Wl,Wv ∈ Rdmodel×dmodel are learnable weights.

λ = Sigmoid
(
WlHlanguage +WvHattn

vision

)
Hfuse = (1 − λ) ⊗ Hlanguage + λ ⊗ Hattn

vision (26)

x1 x2 x3 x4 x1 x2 x3 y1 x1 x2 x3 y1y2 y2
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Fig. 6: Left: illustrates the original transformer architecture, the encoder re-
ceives the full sequence of tokens x1, x2, x3, x4 and uses no masking (illustrated
by the darker edges). The decoder receives access to the full output of the en-
coder, and its input sequence y1, y2, it is enforced a causal mask on its input
(illustrated by the shaded edges) and is trained to predict the next token. Cen-
ter: Illustrates the decoder-only setup used by existing GPT models. Here the
decoder is fed the full sequence, the x1, x2, x3 denotes the prompt, and y1, y2
denotes its generation, it is trained with causal masking, and is trained to predict
the next token. Note in the output, that the tokens are shifted left-wards, which
illustrates the auto-regression, the not tagged token output will be the predic-
tion for y3. Right: Denotes the decoder-only setup, with more flexible masking
known as Prefix LM, that enables full visibility among the prompt tokens, while
maintaining causal masking on the generative part. (Design is similar to Fig. 4
from [60])

3.7. Self-supervised learning: Variance Invariance Covariance
Regularization

SSL is an approach to train DL models, wherein the data
provides the supervision itself, instead of relying on human-
annotated labels. This is typically done by designing a pretext
task where the labels are generated automatically from the input
data. [65]

In a typical self-supervised learning task, an artificial system
is trained to predict or reconstruct parts of the input data. For
instance, a common pretext task in computer vision is to predict
patches of images given other patches [31, 30], or in natural
language processing, predicting the next word in a sentence [59,
57, 58, 29, 28, 60].

The main advantage of self-supervised learning is that it
can leverage large amounts of unlabeled data, which are more
abundant than labeled data, to learn useful representations.
These learned representations can then be used for various
downstream tasks with smaller amounts of labeled data, such
as classification or detection, often improving the performance
of these tasks. [65]

Within the subfield of SSL, various methods exist, however
in this work the method of Variance Invariance Covariance
Regularization (VICReg) [40] is applied to stabilize the
learning process of the transformer used in the GCSL setting.
The method is versatile and flexible. VICReg was initially
proposed in the context of learning representations of image
data.

In the context of image data, the VICReg methods work by
having an encoder network fenc, which maps the image to a
latent representation in the form of a vector of dimensionality
dhidden. To train the image encoder, an image i is sampled from
the data set D and then two distinct image-based transforma-
tions (cropping, rotation, etc. detailed description is given in
[40]) are sampled t, t′ ∼ T . Then two views of the image are ob-
tained x = t(x), x′ = t′(x). To encourage that the image encoder
is invariant to the transformations, the mean squared distance
between z = fenc(x1) and z′ = fenc(x2) is minimized. However,
without further consideration, the representations will collapse,
that is the network will learn to map every input to the same
constant vector. The collapse and the tendency of neural net-
works to minimize the loss function by bypassing the intention
of the designer is well known in SSL [65]. To avoid the col-
lapse problem besides the invariance term, VICReg proposes
variance and covariance terms. The variance and covariance are
computed across the batch thus we define the batches processed
by the image encoder as Z = {z1, . . . , zn},Z′ = {z′1, . . . , zn}. VI-
CReg proposes the training objective given by Eq. (27). λ, µ, ν
are the respective weights for the invariance part of the loss s (s
stands for similarity), variance part v, and the covariance part c

L(Z,Z′) = λs(Z,Z′) + µ
[
v(Z) + v(Z′)

]
+ ν

[
c(Z) + c(Z′)

]
(27)

As mentioned earlier the invariance part is to ensure that two
transformed views map to similar representations and is given
by Eq. (28).

S (Z,Z′) =
1
n

n∑
i

||zi − z′i ||
2
2 (28)

The variance term is used to ensure that the representations
do not collapse to a constant representation. This is imple-
mented by using a hinge loss, that ensures that the standard
deviation across the dimensions of the latent representation is
above a fixed threshold γv across the batch (γv = 1 in [40]).
The batches Z and Z′ each contain different images, thus the
variance term motivates each dimension of the learned repre-
sentation to vary depending on the image. The variance term is
given by (29). Here ϵ is a small scalar for numerical stabiliza-
tion, and z j is the vector consisting of each value at dimension
j across the batch.

v(Z) =
1

dhidden

dhidden∑
j

max
(
0, γv −

√
Var(z j) + ϵ

)
(29)
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It may seem that ensuring the invariance between similar im-
ages and variance between different images in the representa-
tion space may be enough to avoid collapse, but it does not
work empirically as shown in [40]. The network may learn a
few constant representations, which are large in terms of the ab-
solute values and will be able to minimize the loss of the objec-
tive. To address this, it is necessary to constrain the magnitude
of the learned representations. To do this VICReg proposes the
covariance term as the sum of the squared off-diagonal entries
of the covariance matrix C(Z). More specifically given by (30).

c(Z) =
1
d

∑
i, j

[
C(Z)i, j

]2
(30)

Where the covariance matrix is computed as by Eq. (31)

C(Z) =
1

n − 1

n∑
i

(zi − z)(zi − z)⊤ (31)

where z =
1
n

n∑
i

zi

When minimized the covariance term encourages the off-
diagonal entries to be close to 0, thus it forces the required vari-
ance from the variance term to be de-correlated from the other
images in the batch. In aggregate the three terms composed in
Eq. 27 are shown to be capable of learning representations com-
petitive with existing state-of-the-art methods [40]. As a note,
in practice, VICReg proposes to have an expander network, that
expands the dimensionality of the latent embeddings and then
applies Eq. (27) on the expanded representation, then for down-
stream tasks the expander is discarded. The use of an expander
network is shown empirically to yield better performance.

4. Goal Conditioned Reinforcement Learning with Trans-
formers

In the following, we aim to investigate the use of a
transformer-based architecture in the setting of Goal Condi-
tioned Supervised Learning (GCSL)[18]. In particular, we will
not propose novel modifications, techniques, or similar, rather
it is the combination of existing techniques covered in section 3
that is novel. Further, the key motivation is to observe whether
there will be a transfer between the online interactive setting
of GCSL, where the agent is given no expert trajectories, and
to the offline setting with expert trajectories. The online setting
in the context of supervised RL is intricate in that the model
is not directly optimized to maximize a reward correlated
with reaching goals. Instead, the goal-reaching behavior has
to be obtained through maximum-likelihood estimation, by
configuring the training procedure and architectural setup
such that the model converges to goal-reaching behaviors.
Thus, the GCSL setting is intended as an exploratory setting
to obtain a configuration of a transformer-based architecture,
that converges to such solutions in the respective environments
(visualized in Fig. 1). Following this, the intention is to
evaluate the obtained configuration in a more classical offline

supervised RL setting by augmenting the Decision Transformer
[20] with the found modifications.

The setup will be such that the experiments conducted in the
setting of GCSL will be presented in section 5, followed by the
evaluation in the offline setting performed in section 6.

We aim to answer the following three concrete questions:

1. What modifications are needed to adapt the transformer to
work in the setting of GCSL?

2. Will there be a performance improvement on the baseline
environments used in the original work? (visualized in
Fig. 1

3. Will the modifications lead to improvements in the setting
of offline data (Decision Transformer setting)?

5. Online data: Extending GCSL with a Transformer

We conduct experiments in two phases, with the first being
experimental, and the other phase being benchmarking. The
environments used in [18] are visualized in Fig. 1, for the ex-
perimental phase we conduct all our experiments in the Lunar
Lander environment to enable fast iterations, in the second
phase we benchmark the best-performing transformer model,
and the original GCSL model on the remaining environments3.

5.1. Experimental: Default transformer setup

To motivate the need for modifications to existing approaches
of applying transformers in the context of RL, we present a de-
fault setup and show that it fails in the setting of GCSL.

The initial proposed setup of the transformer architecture is
to use a decoder-only configuration, similar to GPT2 [58] and
the Decision Transformer [20]. The motivation here is that it is
a configuration, which is proven in the context of generating
actions from a sequence of past states and actions [20, 32, 21].
Additionally, the ability to apply masking to regulate infor-
mation available when generating a particular action makes
the transformer suitable for a convenient implementation of
relabelling. Visually the setup is illustrated by Fig. 7.

The figure illustrates that transformer receives a trajectory
τ = st, at, . . . , st+H of fixed length H. Further, it is trained
autoregressively such that, the token sk will be mapped as the
prediction of ak+1 for t ≤ k ≤ t + H. Besides, applying a causal
mask, a time point k ∈ {t, . . . , t + H} will be sampled, and then
every token between sk up to the token st+H will be masked.
Thus, the only information available to the model to decode the
connecting trajectory is the information before time point k and
the state st+H . As such the future state st+H will act as a goal.
A similar form of masking named Random Masked Hindsight
Control has been proposed concurrently by [66], albeit in the

3We do not use the dexterous object manipulation environment (see Fig. 1),
as the action space is significantly different from the remaining environments.
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Fig. 7: The proposed default transformer configuration used in the setting of
online supervised RL (GCSL). The transformer receives a sequence of H states
and actions. The relabelling of a future state as a goal state is obtained, by
allowing every state to attend to the last state here S t+H , while masking all
information between the relabelled state S t+H and a randomly selected time
point here t+1. The model is trained to autoregressively decode the next action,
specifically the token st will be mapped to the prediction of at .

offline setting.

Unfortunately, our results show that in the online setting, this
approach will fail, as shown by Fig A.19 available in Appendix
Appendix A. The graph of this experiment is not particularly
interesting as the proposed model simply flatlines in terms of
learning to reach closer and closer to the goal throughout the
training. However, the interesting aspect is that loss goes down
rapidly throughout training, from this we deduce that the model
converges, but that it is misaligned with the intention of it be-
ing capable of reaching the goal states. Upon inspection, we
see, that the model will learn to always predict the same action.
Given that the setting is online, the model is able to influence its
own training data set, thus by learning the generated behavior
of predicting the same action, it can afterward easily maximize
its prediction quality. Such behavior is reminiscent of the col-
lapse problem in SSL discussed in section 3.7. To combat this
effect, we introduce the following two ideas to regularize the
learning process:

• The use of a target network, proposed by Mnih et. al [1]
(DQN paper)

• The use of Variance and Covariance regularization from
Bardes et al. VICReg [40].

The use of a target network is known to stabilize learning
in the online setting. The target network is an exponential
moving average of the network. Here we propose to use the
target network in the interaction with the environment, this
will ensure that the target actions to predict are not generated
exactly by the underlying model itself. The use of Variance and
Covariance is an attempt to address the collapse into a constant
action, by attempting to decorrelate the latent embeddings
obtained through the transformer. Unfortunately, none of the
modifications works either.

From this initial experiment, we conclude that the ap-
proaches shown to work with stable offline data do not
guarantee success in the online setting. Further, we develop the
intuition that the simpler baseline architecture has two direct
differences as compared to the transformer setup. In particular,

the network takes only a single state and the goal as input,
rather than a sequence, which allows the goal information to
be more discernible and avoids dilution, as when having a
full sequence. The other key difference is that the transformer
decodes all the actions in the sequence, thus with a sequence
length of 50, it will converge much faster toward the distribu-
tion in its buffer. This will disturb the interaction between how
fast the model converges toward the behavior seen in its buffer,
and the collection of new data. To remedy these two aspects
we propose adjustments in the next subsection.

5.2. Experimental: Regularized Transformer

From the intuition developed from the previous experiments,
we propose to use the transformer in a highly constrained con-
figuration. The Fig. 8 illustrates the simplified setup, where the
notion of sequences is discarded and only a single state st and
goal-state sk, where t < k is sampled from the trajectory during
training. As such the setup minimizes the dilution of the goal
information as the token st which maps to the action prediction
is constrained to only attend to itself and the goal state. Ad-
ditionally, the transformer only decodes the action for the state
st, thus the interaction with the optimization frequency and the
data collection is similar to the baseline.

st st+k

Transformer Decoder

at

Fig. 8: A constrained configuration of a decoder-only transformer, where it is
fed only state st and a future goal-state sk s.t. t < k, and is trained to emit a
single action at .

We maintain the modifications of adding a target network
and using Variance and Covariance regularization and eval-
uate the various ablations with and without these modifica-
tions. As illustrated by Fig. 9 we see that models are able
to avoid collapse and learn a goal-reaching behavior compa-
rable to the baseline GCSL. The top figure illustrates the av-
erage final distance to the goal position on evaluation runs
as a function of training timesteps. The bottom figure illus-
trates on the y-axis the proportion of rollouts, which reach
within a predetermined distance of the goal state, while the
x-axis similarly denotes training timesteps. Further, what
we see is that the models with variance and covariance reg-
ularization (Transformer S Single Dec VR) and the model,
which additionally adds the use of a target network (Trans-
former S Single Dec TGT VR) performs better than the base-
line (≈ .1 higher success ratio on the bottom plot in Fig. 9.).

15



Fig. 9: Decoding a single action with a decoder-only transformer, which only
receives the current state and a goal-state does not collapse. Top figure: y-axis
denotes the final distance to the goal state. The x-axis denotes the number of
training steps. Bottom figure: y-axis denotes the evaluation success ratio, that
is the proportion of rollouts that end up within a predetermined distance of the
goal state. The x-axis denotes the number of training steps. S denotes that
the model size used is small. Single Dec denotes that the model only outputs
a single action. TGT denotes that a target network is used. VR denotes that
variance and covariance regularization is used.

This is however a limited setting, as we do not exploit the
full potential of the transformer, which was built for sequential
data inputs. Thus for the next set of experiments we return to
the sequential input.

5.3. Experimental: Sequential Transformer with Careful Goal
Mixing

Architecturally we return the sequential configuration illus-
trated in Fig. 7. However, we only decode a single action.
Further, we aim to explore different ways to merge the goal in-
formation into the sequence of past states and actions. As the
base configuration, we use variance and covariance regulariza-
tion as it showed the best performance in the previous experi-
ment. Thus we evaluate the following configurations:

• Transformer Base: denotes the setup shown in Fig. 7, with
single action prediction. Further, it uses variance and co-
variance regularization

• Transformer Base Concat: adds to the base model
concatenation-based merging of the goal token with the
state and action tokens.

• Transformer Base FiLM: adds to the base model FiLM-
based merging of the goal-state into the representation of
state and action tokens.

• Transformer Base Gate: adds to the base model the use of
a gated fusion mechanism to merge goal information into
the representation of state and action tokens.

Fig. 10: Illustrates the performance of various approaches to merge the goal
information with the sequence of states and actions fed to the decoder-only
transformer. A description of the respective axes of the subplots is given in the
description of Fig. 9

From Fig. 10 (top and bottom subfigures and axis are sim-
ilar to the previously discussed Fig. 9) it can be seen that
all approaches manage to avoid collapse. Further, all variants
have performance similar to the baseline model GCSL, except
for Transformer Base Gate, which has improved performance
compared to the baseline (≈ .15 − .2 higher success ratio com-
pared to GCSL). From this experiment we learn, that modeling
a sequence of states and actions is possible in the online setting,
and can increase performance with modifications. In the next
subsection, we benchmark the best-performing model Trans-
former Base Gate and GCSL on the remaining environments
and provide a summary.

5.4. Benchmark results and Summary

From Fig. 11 it can be seen that the proposed model Trans-
former Base Gate (denoted as Transformer in the figure), per-
forms better than the baseline GCSL on three environments,
and is on par in the last. We are now ready to answer two of the
three questions posed as the motivation for extending GCSL
with a transformer.

1. What modifications are needed to adapt the transformer to
work in the setting of GCSL?

From the experiments, we conclude that it is necessary to en-
sure that the learning process does not converge too fast toward
the distribution of behavior in the buffer, especially early, when
the behavior is random. To combat this, we set the frequency
of training updates to data collection similar to the baseline, by
only training from the prediction of a single action prediction
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Fig. 11: Benchmarking shows the transformer with variance and covariance
regularization, a fusion gating mechanism to merge goal information into the
transformer, and the adjusted training procedure of only training on the pre-
diction of a single action yields performance that is on par or better than the
baseline GCSL network. The four benchmarks are the Door environment:
which consists of opening a door with a Sawyer arm, Pusher environment: A
Sawyer arm has to push a small object to a predetermined position, Pointmass
Rooms: simple goal-reaching environment with 4 rooms, Pointmass Empty:
simple goal-reaching environment with no rooms. Environments are visualized
in Fig. 1. On each subfigure: the y-axis denotes the success ratio, and the x-axis
denotes the training timesteps.

produced by the transformer. Further, to achieve performance
beyond the baseline GCSL we find it necessary to apply vari-
ance and covariance regularization, along with using a gated
fusion mechanism to merge the goal information with the se-
quence of state and action tokens.

• Will there be a performance improvement on the baseline
environments used in the original work? (visualized in
Fig. 1)

As illustrated by Fig. 11 with the above-mentioned modifi-
cations it is possible to exceed the performance of the baseline
GCSL approach.

The third question to be addressed in the following section is
directly aimed at evaluating whether the modifications found to
work in the online setting will transfer additional performance
to the offline setting.

6. Offline data: Modifying the Decision Transformer

Through the experiments conducted in this section, we aim
to address question 3.

• Will the modifications lead to improvements in the setting
of offline data (Decision Transformer setting)?

By modifications, we refer to the following: variance and
covariance regularization and the use of the gated fusion
mechanism to merge goal information into the input sequence
fed to the transformer. The effect of decoding a single action
will also be evaluated, albeit intuitively it will not be beneficial
as the data is stable in the offline setting.

From the work of the Decision Transformer, we select
the three offline environments Hopper, HalfhCheetah, and
Walker2d originally proposed in the ’Datasets for Deep Data-
Driven Reinforcement Learning’ D4RL [67], which contains
multiple data sets for evaluating offline RL agents. The envi-
ronments are visualized by Fig. 12.

(a) Hopper (b) HalfCheetah (c) Walker2d

Fig. 12: Illustration of different Mujoco environments used for training and
evaluating locomotion tasks. (a) Hopper, (b) HalfCheetah, and (c) Walker2d.
Each environment presents a unique challenge for the robot to learn specific
locomotion skills while maintaining stability and achieving the task objective.
In these environments, the robots are rewarded for effectively moving forward
while ensuring stability and avoiding falls.

Each of the three environments comes in three categories:
medium-replay, medium, and expert, which denotes the quality
of the trajectories as compared with the performance with a
state-of-the-art RL agent is capable of achieving in the respec-
tive environments. For computational efficiency, we will evalu-
ate the ablations of the proposed modifications on the Hopper
medium-replay data set. An evaluation of the proposed model
consists of training exclusively on the available offline data for
100,000 training steps (similar to the Decision Transformer),
and evaluation is done every 1,000 steps of training by perform-
ing 100 rollouts in the actual environment. We plot on every
figure expert-normalized score = 100 · score−random score

expert score−random score ,
as proposed in [67], similarly to the Chen et al. [20] we use
the expert score and random score listed in the D4RL dataset
[67]. Similarly to the previous experiments, we run each
experiment for three runs. Additionally, the action space is
continuous, thus the log-likelihood maximization objective
is changed with the Mean Squared Error objective similar
to the Decision Transformer baseline. Lastly, we highlight
that the Decision Transformer, which as discussed earlier
uses the returns-to-go Rt =

∑H
t rt as the goal, will place the

returns-to-go as breadcrumbs along the input sequence. In
particular the Decision Transformer feeds sequences of the
form Rt, st, at,Rt+1, st+1, at+1, . . . ,RH , sH , aT . On the other
hand, when using the gated fusion mechanism, we feed
sequences of the form st, at, st+1, at+1, . . . , sH , aT and use R0
as the goal token. Thus, it can be seen as a more general
form of conditioning in that R0 does not have the same dense
information of the underlying MDP, which is provided in the
Decision Transformer configuration.

From the ablation experiments provided in Figure 13, we
observe that only the approach of using the gated fusion mech-
anism yields reliably better performance than the baseline.
Thus, we proceed with comparing the Transformer Gated with
the baseline Decision Transformer (named DT in the figures).
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Fig. 13: The figure illustrates the expert normalized returns (y-axis) on the
Hopper environment when the models are trained on the medium-replay data
set. The x-axis denotes the number of training timesteps. The figure illustrates
all the ablations of the Decision Transformer evaluated. DT is the baseline
Decision Transformer. VR denotes that variance and covariance regularization
is applied. Single Dec denotes that the model is trained to only predict a single
action. Gated denotes that the gated fusion mechanism is applied.

From Fig. 14 we see the performance in the Hopper envi-
ronment, when trained on the three respective offline data sets
medium, medium-replay, and expert. In general, we see that the
proposed Transformer Gated performs better, and specifically
is much more stable during the training process as compared
to the baseline Decision Transformer. When assessing the per-
formance on the Walker2d environment from Fig. 15 and the
HalfCheetah environment from Fig. 16, the performance dif-
ference is not as markedly discernible but is on par or slightly
above in most environments.

Summarily for the answer to question 3, we find that only the
gated fusion mechanism transferred performance to the offline
setting successfully.

7. Goal-Conditioned Reinforcement Learning through In-
trinsic Reward

This part of the work moves towards a model-based RL
approach and incorporates an intrinsic reward. Many previous
works exist in each of these two categories, some of which are
[68, 69, 70, 71]. In this study, we aim to investigate a goal
direction network’s integration with an RL agent, facilitated
through an intrinsic reward mechanism. Broadly, our approach
entails training the goal direction network to produce a latent
representation of the next state. The RL agent, in turn, strives
to align the actual next state with this imagined one. We use the
difference, measured as the squared L2 norm, between these
two states as a negative reward. Consequently, this creates a
feedback loop where the agent is incentivized to take actions
that minimize this difference.

Our work presents a contrast to prior work involving Goal-
Conditioned Supervised Learning (GCSL) and the Decision
Transformer. While GCSL’s ability to learn online seems
largely dependent on the simplicity of the environments, our

Fig. 14: Top: Hopper Medium, Middle: Hopper Medium-Replay, Bottom:
Hopper-Expert. The y-axis on each subfigure denotes the expert-normalized
scores evaluated on 100 rollouts every 1,000 steps of training, the x-axis de-
notes the training timesteps.

approach attempts to be more robust by leveraging traditional
Deep Reinforcement Learning (DRL) principles. Specifically,
we focus on maximizing rewards that align with specific
goals. Unlike the Decision Transformer, which assumes
specific types of trajectories based on state-action pairs and
rewards, we consider trajectories characterized by goals and
observations. We believe this shift offers potential advantages,
particularly the ability to train the goal direction network from
observation-based data like videos. This action-agnostic design
could provide flexibility, maintaining usability even when the
action space of the agent platform changes.

This exploration investigates the interaction of two distinct
neural networks, the RL agent and the goal direction network,
communicating via a feedback loop. This approach mitigates
the need for hand-engineered, task-specific reward functions,
instead proposing a universal reward function facilitated by
a goal-direction network. This approach is founded on the
intuition that if an agent has both the capacity to identify its
goal and to evaluate the value of its actions relative to that
goal, the reward function implicitly emerges. The agent would
then naturally adjust its actions to maximize the likelihood of
reaching its stated objective. However, this shift does not elim-
inate complexity; it redirects the challenge toward developing
and training a sophisticated goal-direction network, capable of
effectively directing the agent’s actions. Despite the potential
advantages, there are significant limitations to consider. The
goal direction network, formulated as a dynamics model, might
not always generate the most effective representation of the
agent’s goals. It might either over-encapsulate unnecessary
details or under-specify important ones. Additionally, the
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Fig. 15: Top: Walker2d Medium, Middle: Walker2d Medium-Replay, Bottom:
Walker2d Expert. y and x-axis similar to Fig. 13

network might struggle to generate meaningful next-state
representations when faced with novel states, potentially
impacting its generalizability.

Our method proposes an adaptation of the existing envi-
ronment model learning approach [68], incorporating specific
modifications. The objective is to train a suite of neural net-
works using observation-based data, which could also be action
labeled, structured in the form τ = g, s0, s1, . . . , sH . Here, g sig-
nifies a goal that either articulates the agent’s intent or defines
the trajectory’s quality. The neural networks in consideration
are:

• A state encoder: state encoder(st) = zt where zt ∈ Rd.
This can be potentially trained using self-supervised learn-
ing methods such as autoencoders [72, 31].

• A goal-conditioned dynamics model: P(zt, g) = ẑt+1 which
predicts the next latent state given the current state and the
goal.

• A goal-conditioned RL agent: π(zt, ẑt+1) = at, responsible
for determining the actions within the environment.

Once the state encoder and the goal-conditioned dynamics
model have been trained, the next step involves training the
GCRL agent within the environment, guided by the reward
function specified in Eq. (32). ẑt+1 denotes the prediction of the
next latent state as obtained by the goal-conditioned dynamics
model P. zt+1 denotes the embedding of the actual next state.

Fig. 16: Top: HalfCheetah Medium, Middle: HalfCheetah Medium-Replay,
Bottom: HalfCheetah Expert. y and x-axis similar to Fig. 13

rt = −||ẑt+1 − zt+1||
2
2

= −||P(zt, g) − state encoder( E
a∼π(·|zt ,ẑt+1),st+1∼T (·|st ,at)

[st+1])||22

(32)

The RL agent can only influence the reward function through
the actions it takes, as P(zt, g) is fixed when training the RL
agent, and the transition dynamics T are given from the MDP
defining the environment. Additionally, this highlights why it
is not possible to simply train a neural network to minimize Eq.
32, as the gradients will not be able to be computed through
the world, that is T , instead an RL formulation is required.

To validate the proposed method, we train an agent capa-
ble of solving a 10x10 goal-reaching gridworld. Fig. 18 il-
lustrates a gridworld with an agent and a goal position. The
state encoder is trained to learn the discrete cell position given
the 2d grid board as input. The goal-conditioned dynamics
model is trained to predict the next cell position given the cur-
rent cell position of the agent and the final goal position. As the
RL agent, we use a discrete PPO agent [5].

In Fig. 17 the proposed setup named Intrinsic PPO manages
to solve a 10x10 goal-reaching gridworld environment, earlier
than the baseline PPO. The baseline goal-conditioned PPO is
trained with the sparse indicator reward Eq. (21).

Despite the encouraging result in the simpler gridworld en-
vironment, our attempts to adapt the method to more complex
environments, such as the CarRacing OpenAI gym environment
[73], have yet to yield successful results.
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Fig. 17: Intrinsic PPO: uses the proposed goal direction network and a goal-
condition PPO agent. PPO is the default discrete PPO agent. The y-axis shows
the episodic return, where 1 denotes successfully reaching the goal cell. The
x-axis shows the number of training steps.

Fig. 18: Visualization of a gridworld goal-reaching environment. The agent
and goal are spawned randomly at their respective cell positions. The agent can
move up, down, left, and right. The aim is to reach the goal position.

8. Conclusion and Future Work

To the best of our knowledge, this work presents the first
use of a transformer-based architecture in online supervised
RL, by extending GCSL [18], which used an ordinary neural
network. We found that it was possible only with careful
modifications. In particular, we found, that it was crucial
to maintain a frequency between the optimization steps and
the data collection to avoid model collapse. Further, to
obtain improvement beyond the baseline we found it required
to use variance and covariance regularization [40], along
with the use of a gated fusion mechanism [23] to merge the
goal information with the sequence of states and actions tokens.

When exploring the transferability from the modifications
found to work well in the online supervised RL setting to the
offline setting, we found that the modifications in general did
not guarantee improvements. In particular, we only found
the use of the gated fusion mechanism to yield a more stable
learning process with slightly higher performance compared
to the baseline Decision Transformer [20], on the D4RL data
sets [67] considering the Hopper, HalfCheetah, and Walker2d
environments. More consequently the work presents a direction
for a more discrete representation of the goal, in that we only
feed a single reward token as the goal, as compared to [20],
which performs best when feeding the returns-to-go at every

time step. The benefit of this is simplified goal specification.

Lastly, we proposed the idea of training a goal-conditioned
dynamics model coupled with a classical DRL agent, such that
the agent can be trained by the intrinsic reward of maximizing
the negative squared L2 norm between the representation of
the actual next state and the next state representation given
by the goal-conditioned dynamics model. We evaluated its
performance on a simple 10x10 goal-reaching gridworld
environment and found it to perform better than the baseline
discrete PPO. However, despite our best efforts, it has not
been possible to extend the method to the more challenging
CarRacing environment.

For future work, the following directions seem promising. To
evaluate the scalability of the proposed Decision Transformer
architecture with the gated fusion mechanism in the setting of
offline data, it would be enticing to evaluate it on the multi-task
Atari data set used by the Multi-Game Decision Transformer
[21]. Besides providing insights into the scalability of perfor-
mance on larger data sets, the multi-task challenge is a stride
toward a single agent capable of handling and reaching many
diverse goals.

Another direction of work more attainable would be to con-
tinue the work on the proposed approach of GCRL through in-
trinsic reward, by extending and exploring it more thoroughly
in more complex environments such as the CarRacing environ-
ment.

Finally, it might be worth considering the potential benefits
of exploring computational forms of consciousness [37, 36, 39].
This interest arises from an observable gap in the current mod-
els – a seeming lack of intent or alignment. Our proposed goal-
direction network is a step in the direction of enabling a more
explicit intent. Yet, there could be more valuable approaches to
this challenge. One such method might involve generating de-
tailed expectations about the future, such as anticipated joint
positions and associated sensor observations, and then using
this information for action guidance. Alternatively, an approach
akin to the Global Workspace Theory or what by Deheane et
al. [36] is characterized as C1, could be considered. Here in-
formation from various unconscious processes is gathered, the
most pertinent information is selected and funneled through a
kind of ’working memory bottleneck’, and then this informa-
tion is broadcast to the rest of the system, such that it can guide
a broad variety of behaviours [36]. Rather than solely rely-
ing on high-level latent representations of the entire state, these
approaches could leverage more granular foresight or synchro-
nized system-wide intent to navigate environments. While it’s
a challenging prospect, it could be an interesting direction for
future research.

9. Code Availability

• The code used for all experiments GCSL, Decision
Transformer, and the proposed intrinsic reward approach
is available here: https://github.com/miladsamim/
gcrl.
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• The original source code GCSL is available at: https:

//github.com/dibyaghosh/gcsl

• The original source code for the Decision Transformer
is available at: https://github.com/kzl/decision-
transformer.
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Appendix A. GCSL Experiments

Appendix A.1. Transformer experiments

Fig. A.19: Applying the decoder-only transformer with causal and hindsight masking. L denotes a larger model (more parameters), as compared to size S. Full
denotes that every action at every time step is being decoded. TGT denotes the use of a target network, similar to the notion of target network in DQN [1]. VICREG
denotes, that variance and covariance are applied to decorrelate the embeddings. GCSL is the baseline comparison. Top figure: y-axis denotes the final distance
to the goal state. The x-axis denotes the number of training steps. Bottom figure: the y-axis denotes the Evaluation success ratio, that is the proportion of rollouts
that end up within a predetermined distance of the goal state, the x-axis denotes the number of training steps. Overall, the results show that the default proposed
decoder-only transformer regardless of model size and regularization methods does not work in the online setting.
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