
Towards De-anonymizing
Hidden Services

Master Thesis

MSc Cyber Security, 9th & 10th sem.

Clifford-Nelly Ndayikengurukiye

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg Ø

Department of Electronic Systems
Fredrik Bajers Vej 7B

DK-9220 Aalborg Ø
https://es.aau.dk

Title:
De-anonymizing Hidden Services

Theme:
Long Master Thesis

Project Period:
Spring semester 2022 & Fall semester 2023

Project Group:

Participants:
Clifford-Nelly Ndayikengurukiye

Supervisors:
Jens Myrup Pedersen
Shreyas Srinivasa

Copies:

Number of Pages: 79

Date of Completion:
June 2, 2023

Abstract:

This thesis explores the difficulties and limi-
tations of attempting to de-anonymize hidden
services. The method of attack proposed re-
lies on monitoring watermarked packets from
the target’s compromised guard.
Hidden services are a key feature of Tor
that offer anonymity by concealing the IP
addresses of services. The primary obstacle
arises from the inherent design principles of
the Tor network, which ensures user privacy
through multi-layered encryption.
Tor cells, the fundamental units of data trans-
mission within the network, are uniformly en-
crypted and share identical sizes, making it
difficult to differentiate between them based
on packet characteristics alone.
This research emphasizes the robustness of
Tor’s privacy mechanisms and highlights the
importance of addressing potential threats to
user anonymity.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement
with the author.

https://es.aau.dk

Nomenclature

Abbreviation Name

Tor The Onion Router
THS Tor Hidden Service
MitM Man-in-the-Middle
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
DoS Deniel of Service
HSDir Hidden Service Directory
E2EE End-to-end Encryption
E2E End-to-end
IP Internet Protocol
TCP Transmission Control Protocol
DHT Distributed Hash-Table
GUI Graphical User Interface
API Application Programming Interface
CSS Cascading Style Sheets
HTML HyperText Markup Language
TLS Transport Layer Security
PoC Proof-of-Concept
JS JavaScript
JSON JavaScript Object Notation
IEEE Institute of Electrical and Electronics Engineers
CLI Command-line Interface
C2 Command-and-Control
ISP Internet Service Provider
AI Artificial Intelligence
SOTA State-of-The-Art
RP Rendezvous Point
ORPort Onion Router Port
LAN Local Area Network
UFW Uncomplicated Firewall
IaaS Infrastructure-as-a-Service
VM Virtual Machine
AES Advanced Encryption Standard
DPI Deep Packet Inspection

iii

Contents

1 Introduction 1
1.1 Problem Statement . 3

2 Methodology 4
2.1 Approach . 4

3 Literature Review 7
3.1 Attack Vectors . 15

4 Infrastructure 18
4.1 Onion Routing . 18
4.2 Onion Services . 21
4.3 Application Architecture . 26

5 De-anonymization 31
5.1 Conceptualization . 31
5.2 Scoping & Requirements . 32
5.3 Design & Implementation . 33
5.4 Evaluation . 52

6 Discussion 53
6.1 Reflections . 53
6.2 Future Work . 54

7 Conclusion 56

Bibliography 57

A Relay Machine Info 60

B Relay Metrics 64

C THS Pages 70

D Relay Statistics 75

iv

Preface

Clifford-Nelly Ndayikengurukiye
<cndayi21@student.aau.dk>

Aalborg University, June 2, 2023

v

mailto:cndayi21@student.aau.dk

Introduction 1
Developed in the mid-1990s, Tor is an open-source software technology primarily used to
anonymize online communications[1]. The ubiquity of the Internet necessitates privacy.
Due to this, anonymity becomes paramount in online technological advancements. The
need for anonymity permeates online communications. The most prominent network of the
aforementioned is Tor.

The Tor network is geared towards anonymity allowing users to post and browse content online
anonymously. An anonymous network such as Tor enables users like human rights advocates
and whistle-blowers to promote and securely engage in anti-censorship causes. Although the
anonymity provided by Tor is positive, excessive illegal active becomes prominent as far as Tor
Hidden Services (THS) are concerned[2]. THSs are a key feature of the dark web. When a web
application is added to the Tor network it becomes a THS. In layman’s terms, a THS is an
anonymized application server.

As of 2015, Figure 1.1 shows that every day about 30000 THSs announced themselves to the
THS directories[3].

Figure 1.1: Number of THSs in 2015 [3].

THSs are considered to be a controversial aspect of the dark web and is the topic of much
debate[2]. The prominent cybersecurity company, Kaspersky, defines the dark web as follows:

"The dark web is the hidden collective of internet sites only accessible by a specialized web
browser. It is used for keeping internet activity anonymous and private, which can be helpful
in both legal and illegal applications. While some use it to evade government censorship, it
has also been known to be utilized for highly illegal activity[4]."

The anonymity the Tor network provides can facilitate the purchase of illegal items, substances
and services[2]. Furthermore, THSs are primarily meant to provide anonymity to darknet

1

Aalborg University

administrators and vendors. As entire transactions have End-to-end encryption (E2EE), Tor
has become a safe haven for nefarious activities. Therein lies the dilemma, however. By de-
anonymizing THSs, one may inadvertently put journalists and activists in politically hostile
territories at risk of discovery and thus undermine Tors initial purpose. The purpose in question
is articulated in the following statement.

"Just like Tor users, the developers, researchers, and founders who’ve made Tor
possible are a diverse group of people. But all of the people who have been involved in
Tor are united by a common belief: internet users should have private access
to an uncensored web[1]. "

Therefore, it must be stated that the approaches of de-anonymization presented in this paper
are purely meant to be viewed for research purposes.

In 2015, a study showed the amount of Tor traffic THSs were responsible for. The preliminary
results in Figure 1.2 showed that THSs cause somewhere between 400 to 600 Mbit of traffic per
second, or equivalently about 4.9 terabytes a day[3].

Figure 1.2: THS traffic in 2015 [3].

These statistics show the excessive usage of THSs and how they can be problematic in nature.
Law enforcement and hackers therefore continuously target these THSs. This thesis’ aim is to
analyze current de-anonymization methods and assess their effectiveness through trial and error.
In doing this, a comprehensive approach can be derived and potentially become reproducible
for future research.

2

1.1. Problem Statement Aalborg University

1.1 Problem Statement

The aim of this section is to clearly define a set of questions meant to be answered throughout
this paper. This will ultimately define the scope and parameters the paper must adhere to.
First, a broad, overarching and all-encompassing question must be defined.

• Which methodologies and techniques exist when de-anonymizing THSs, and how can such
methods be improved?

Next, a collection of smaller sub-questions will be defined to narrow down the scope of the paper
further.

• How does a THS operate on the Tor network?

• What can be gathered from previous research on de-anonymizing THSs?

• How do existing methods compare in terms of applicability and robustness?

• How can de-anonymization techniques be improved?

3

Methodology 2
This chapter describes the various processes and approaches used throughout this paper. The
search and evaluation of relevant literature will be described. This includes the presentation of
identified themes and literary gaps.

The conclusions drawn from the literary and practical approach will be further emphasized in
the literature review in Chapter 3.

2.1 Approach

This section will showcase the processes and approach in which, the de-anonymization of a THS
will take place. Additionally, the methodologies in which the literature review was conducted
will be described.

The literary approach to this thesis can be described as a comparative case study of the various
existing methods of de-anonymization. Although an analytical focus will be placed on each
literary source, they will merely serve as a basis for the upcoming practical portion of the paper.

2.1.1 Literary

In order to acquire and gauge the maturity of current academic literature, a literature review
is conducted. By conducting a literature review, an analytical process can commence in which
a range of academic sources are assessed so that themes and literary gaps can be derived. In
addition, a discussion would determine their significance to the problem scope.

By critically evaluating and analyzing the source material, a theoretical basis can be established
for potential attack vectors as seen in Section 3.1. Additionally, identifying current literary gaps
on the subject and discussing their significance ensures that the project contributes with new
knowledge to the field.

Search Process

Initially, a method of searching for academic sources had to be derived. This would follow an
evaluation of their quality and significance to the subject. Searches were done using prominent
means such as academic publishing search engines akin to Google Scholar [5] & IEEE. Applicable
search terms were used such as "De-anonymizing hidden services", "De-anonymizing Tor", "De-
anonymizing Onion Services", "Attacking the Darkweb", "Attacking the Darknet", "Attacking
Tor", "Attacking Onion Services", "Hacking the Darkweb", "Hacking the Darknet", "Hacking
Tor", "Hacking Onion Services", "Tor", "Onion Routing", "Darkweb", "Darknet", "Anonymity",
"De-anonymizing the darknet" & "De-anonymizing the darkweb".

4

2.1. Approach Aalborg University

During this process 20 relevant published papers were identified on the basis of the
following:

• Citation quantity: Papers were considered as long as the number of citations were
reasonable (over 10).

• Title relevance: Papers were considered as long as the titles were relevant to the
keywords searched.

• Publishing dates: Papers were considered as long as the publication date was recent
(after 2017).

The publishing date criteria was considered to ensure that older papers were filtered out. This
would ensure the technologies involved were not outdated. Similarly, the number of citations
criteria was used to gauge the validity of the papers e.g., a lesser paper would likely not be
continuously referenced by the scientific community. At that point, each of the 20 papers were
subjected to screening and evaluation.

Evaluation Process

This process consisted of evaluating an attack’s feasibility, discussing its relevance to the project’s
scope and an assessment of the paper’s quality. The relevance was determined by reading the
abstract and introduction of each paper, whereas, the quality was determined by reading their
methodology and conclusion.

This process is subjective and it should be noted that the evaluation only reflects the opinions
of the author. In addition, these opinions are not an objective classification of research quality.
Rather, this process should be identified as a specialized method to match a papers specific topic
to this project. Additionally, this approach is largely dependent on evaluating the quality and
significance of research papers in relation to the given context.

In most cases, establishing a citation criteria proved difficult, as papers often had few citations
despite having significant merits expressed in their results. On occasion, these papers were also
assessed. A combination of these evaluation parameters formed the first assessment. Following
the first assessment, a new evaluation system was used to deem each paper "accepted" or
"rejected", and if accepted, the paper’s attack methods would be fully examined.

Out of the 25 papers that were initially examined, 20 papers were accepted and 5 were deemed
either irrelevant to the project or of too low quality. This gave an initial acceptance rating of
80%. Each of the 20 accepted papers were then subjected to a complete review of the content.
At this point, a rating system for each attack method (presented in each paper) was evaluated
based on cost and impact. Cost, being in reference to the pricing and feasibility of each attack
method and impact, being in reference to the resulting damage (the level of de-anonymization
e.g., the amount of information extracted). An evaluation table in Section 3.1 further emphasizes
this selection process.

Finally, evaluating each paper in this way provided an overview of relevant findings and
established a general knowledge base. A discussion of which literary gaps had been identified
through analysis is shown in Section 3.1.

5

2.1. Approach Aalborg University

Summary

In summary, the literature search identified 25 relevant papers to the context of de-anonymizing
THS. 20 of these papers were accepted after the initial screening process and further analyzed
in detail. Attack methods described in the literature were assessed based on their resource
dependency (cost) and the severity of consequences that would arise from an attack (impact).
In addition, each attack was given a final rating ranging from low to high as summarized in
Chapter 3.

2.1.2 PoC

Figure 2.1 illustrates the methodology of which was followed throughout this project from a
practical perspective. The rest of this section describes each of the five phases in detail.

ScopingConceptualization Requirements Design &
Implementation Evaluation

Figure 2.1: Overview of project structure

By using the problem statement as a pillar, the general direction of the conceptualization and
scoping phases can be established.

The conceptualization phase is used to establish an initial idea to be manifested and serves
as a basis for the envisioned approach. As this project takes a red team perspective, the
development of a system to attack will ultimately be secondary. Through a high-level overview,
the attack methods proposed needed to solve the problem statement devised in Section 1.1.

The aim of the scoping phase is to create requirements that will determine the scope of the
project. These requirements pertain to both the system development and attacks. Furthermore,
the scope maps out the main focus areas of the project in addition to its limitations.

The limitations are described in the requirements phase. This phase will establish coherent
rules and objectives to be pursued throughout the process.

Having established concrete requirements for the system and attack scenarios, the design
& implementation phase is commenced. This phase ensures conceptual models will be
constructed respecting technological constraints and other measures in Section 4.3 and 5.1
respectively. Once designed, implementations of these models will be executed. Furthermore, a
step by step reenactment of the difficulties involved will be expressed.

Finally, an overall evaluation of the results will determine the projects outcome. Additionally,
a reflective view of the aforementioned difficulties will be taken followed by their evaluation.

6

Literature Review 3
The following section will describe detailed literature reviews of relevant source material on the
topic of de-anonymizing THSs.

A literature review serves the purpose of providing a reader the with an understanding of the
State-of-The-Art (SOTA) in the area. Ultimately, it serves as inspiration and helps devise
parameters the project can adhere to. In essence, the literature review enables the project to
continue, deviate or further the technological advancements of previous researchers. The reviews
in this section will focus on the attack methods presented in each paper. However, a method to
decide the value of related works must be determined.

The main factors to consider in such an undertaking would be resource availability and the
impact of the attack e.g., its effectiveness and the implications involved. Therefore, it has been
determined that conducting a cost benefit analysis would be the best course of action when
determining a papers value to the project.

Cost benefit should be interpreted in a way where any resource, be it time, money, technology or
man power is seen as a commodity that furthers the possibility of completing the projects central
goal. By reviewing the literature and assessing their methods and approaches, a cost benefit
comparison will clarify the parameters of what can be done. Given the resources available for
the project, a comparison to the literature being reviewed will provide insight into how to best
utilize resources. Each paper will be assessed based on the following criteria.

• Impact

• Cost

In this case, impact refers to the overall impact e.g., the quality and quantity of the extracted
information during the de-anonymizing process. The cost, however, will not be a precise
budgetary estimate but rather an evaluation of the number of required resources. The upcoming
attack methods will be critiqued and receive a rating within the two criteria. These ratings will
be one of the following:

• High

• Medium

• Low

These scores can be further described by the following table:

7

Aalborg University

Ratings

Score Impact Cost

High Fully compromised system (root privilege) Unavailable tools

Medium Semi compromised system (IP leakage) Payment for tools

Low No information disclosure Free tools

Ideally, an attack method would have a rating of "High Impact" and "Low Cost".

The following section describes various attack methods in addition to their ratings, reviews and
papers (papers in which the attack methods were presented).

Fingerprinting Attack

Paper (1): Circuit Fingerprinting Attacks: Passive De-anonymization of Tor
Hidden Services [6]
Impact: Low
Cost: Medium

The paper in question proposes two attacks, under two different threat models. Both attacks are
fingerprinting attacks that take advantage of compromised guards. The threat models deviate
when considering circuits that are established by either the client or the THS.

Ultimately, fingerprinting attack methods are passive. User involvement with hidden services
had been identified with a 98% true positive rate and less than 0.1% false positive rate with the
first attack, and 99% true positive rate and 0.07% false positive rate with the second. Although
the success rate when de-anonymizing clients seem promising, the focus does not appear to be
on de-anonymizing THSs.

By reconstructing Tor circuits, the attack methods allow for in-depth analysis of darknet
activity. Although, attempts are made to de-anonymize THSs, ultimately, no IP addresses
where discovered.

Paper (2): Analysis of Fingerprinting Techniques for Tor Hidden Services [7]
Impact: Medium
Cost: Low

This paper focuses on fingerprinting Tor traffic to de-anonymize THSs. It depicts a two-phased
approach for fingerprinting THSs that does not rely on malicious Tor relays. Instead, datasets
are utilized to determine the likelihood of a particular THS having been visited. Phase 1
concerns "Detection of Communication to Hidden Services" while phase 2 cencerns "Detection
of Particular Hidden Service Content".

8

Aalborg University

The paper preferences that these existing approaches do not scale when applied in realistic
settings. Furthermore, the feasibility of the approach will likely decrease in the future as a
result of the size of the hidden service universe.

Paper (3): POSTER: Fingerprinting Tor Hidden Services [8]
Impact: Low
Cost: Low

In this paper a two-phased fingerprinting approach is proposed. The first step being to recognize
Hidden Service clients and the second to estimate scalability by extending the hidden service
dataset.

By analyzing patterns such as packet sizes, their order, and direction this fingerprinting attack
is scalable to the Tor network. However, it does not rely on malicious Tor relays. This approach
is niche as it is only applicable for certain versions of Tor and less than 1.5% of connections to
THSs. Ultimately, the results were limited and did not go into much detail as to how this attack
was conducted.

Paper (4): Fingerprinting Hidden Service Circuits from a Tor Middle Relay [9]
Impact: Medium
Cost: Low

In this paper, fingerprinting attacks are being conducted on THSs from middle relays.
Additionally, a random forest classifier is utilized for an increased accuracy of 99.98%. This
is a unique approach that would garner further investigation, however, with limited results, the
paper does not go into much detail as to how this attack is conducted.

Napping Guard Attack

Paper: Napping Guard: De-anonymizing Tor Hidden Service in a Stealthy Way [10]
Impact: High
Cost: Low

This paper utilized a Napping Guard attack, in which, a covert channel is built. It can send
messages from a malicious guard to the client. The covert channel, allows the guard relay
to deliver the actual IP address of the THS to the client. By doing so it correlates the IP
address to the onion address. Although, its practical application was depicted as particularly
circumstantial, the covert channel was reliable with a precision and recall rate of 99.35% and
99.19% respectively.

SignalCookie Attack

Paper: SignalCookie: Discovering Guard Relays of Hidden Services in Parallel [11]
Impact: High
Cost: Low

9

Aalborg University

This paper proposes a new approach called the SignalCookie attack. The attack results in the
reveal of multiple hidden service entry relays in parallel. It utilizes Rendezvous Cookies and
circuit watermarks to deliver the THS’s identifiers to controlled relays. By exploiting a design
flaw that allows the Rendezvous Point to identify which hidden service creates circuit to it, the
Rend-Point can embed the identifier into the circuit as circuit watermark. By detecting the
circuit watermark, the controlled relay can recognize the identity of the hidden service.

As a newer method developed in 2019, they discovered 20% of entry relays serve 89.32% hidden
services. With a significantly lower level approach, it appears to be promising. It should be
noted, their experiment lasted between 7 and 17 months.

Descriptor Collecting

Paper: Trawling for Tor Hidden Services: Detection, Measurement, De-
anonymization [12]
Impact: Low
Cost: High

This paper attempts to de-anonymize THSs by collecting their descriptors. There is an attempt
to amplify these effects by utilizing botnets and C2 servers to flood requests. Ultimately, this
approach is resource demanding and of medium in benefits. They spent 100 USD to perform
this experiment. Furthermore, the experiment required two days worth of nonstop collecting of
data. These costs are not unreasonable, however, they are not ideal. Additionally, the added
task of researching botnet technology could be time consuming and may result in deviating from
the projects initial scope.

Collection of Attacks

Paper (1): De-anonymizing schemes of hidden services in Tor network: A survey
[13]
Impact: Low
Cost: Medium

Paper (2): Tor Hidden Services: A Systematic Literature Review [14]
Impact: Low
Cost: Low

These papers are accumulations of various attack methods on THSs. Overall, these methods
are low in cost, however, not necessarily reproducible. Although relevant, these methods do
not go in depth enough nor demonstrate any practical examples of de-anonymizing THSs. The
results are limited as the papers only serve as a collection of ideas. It is apparent the papers
only purpose is to serve as inspiration for researches as opposed to an in-depth guide. Many
of the ideas expressed in these papers are elaborated more extensively in other papers listed in
this literature review.

10

Aalborg University

CARONTE Tool

Paper: CARONTE: Detecting Location Leaks for De-anonymizing Tor Hidden
Services [15]
Impact: Low
Cost: Low

This paper utilizes the CARONTE tool to identify location leaks in THSs. It does not require
a data-set of potential servers in advance. After visiting the THS, CARONTE extracts Internet
endpoints and looks up unique strings from the THS’s content. In addition, it examines the
THS’s certificate chain to extract potential Internet endpoints e.g., server locations. Although
an interesting tool, CARONTE does not seem to be available at the time of writing this paper.

Sniper Attack

Paper: The Sniper Attack: Anonymously De-anonymizing and Disabling the Tor
Network [16]
Impact: High
Cost: Medium

This paper utilizes a Sniper Attack. A Sniper Attack is a low cost but destructive DoS attack.
Its level destruction is measured by its ability to reducing Tor’s bandwidth capacity by 35%.

It enables attackers to anonymously disable arbitrary Tor relays. The attack utilizes valid
protocol messaging to consume memory. This is done by exploiting Tor’s end-to-end reliable
data transport. Although an interesting project, this paper focuses to heavily on disabling THS
traffic as opposed to de-anonymization.

MitM Attack

Paper: Off-path man-in-the-middle attack on Tor hidden services [17]
Impact: Medium
Cost: Low

This paper performed a MitM attack by compromising the THS’s private key. The adversary
does not need to be in the communication path between the client and the service. The results
are limited as the paper does not go into detail of how it compromises the private key.

Although the paper focused on client deception, it did not fully neglect the de-anonymization
of THSs. The paper is not overly detailed as to how this attack is conducted. Finally, although
not outright stated, the paper did showcase potential avenues for de-anonymizing THSs.

11

Aalborg University

Inflow Attack

Paper: Inflow: Inverse Network Flow Watermarking for Detecting Hidden Servers
[18]
Impact: High
Cost: Low

This paper utilizes an inflow attack method. Inflow is a new technique to identify THSs based
on inverse flow watermarking. It is a new watermarking technique used to link illegal content
made available on Tor to the THS providing the content.

Inflow drops bursts of packets for short time intervals, ultimately resulting in time gaps in flows
observed on the receiving side of a traffic flow coming from the THS. The packets in question
are ACK packets. They are dropped in the opposite direction of the data traffic (from client to
guard) at pseudo random times. This occurs so a sequence of silent time-intervals can compose
a watermark and embed it. The watermark can be recognized by a detector that knows a secret
key and is placed along the path from THS to the THS’s guard. Finally, by controlling the
communication edges and detecting the watermarking gaps, Inflow can detect THSs.

The results obtained show true positive rates in the range of 90 to 98%. An effective and low
level approach, it additionally requires minimal resources.

Exploit Tor v2 Flaw

Paper: A Tool to Extract Onion Links from Tor Hidden Services and Identify Illegal
Activities [19]
Impact: Low
Cost: Low

This paper presents an attack method that exploits a flaw in the Tor v2 protocol to collect onion
links of THSs from the memory of a THS Directory. This paper is not particularly relevant as it
does not demonstrate the deanonymization of THSs but rather, whether or not illegal activities
are taking place and the type.

Bitcoin Transfer Analysis

Paper: Darknet and Bitcoin De-anonymization: Emerging Development [20]
Impact: High
Cost: High

This paper attempts to de-anonymize clients and THSs by analyzing bitcoin transactions. This
approach is practical, however, it is resource consuming and lands outside the scope of this
project. Additionally, bitcoin technology covers enough material to carry an entirely separate
project.

This would be a more complex avenue to take and would require an entire reshaping of the
exesting project. In addition to being time consuming, this would require researching and

12

Aalborg University

studying entirely new categories and topics in academic literature. Although, new research
material is advantageous, it would require expanding the initial scope to an excessive degree.

Journalism (No Method)

Paper: Investigative Techniques for the De-Anonymization of Hidden Services [21]
Impact: Low
Cost: Low

The paper is not particularly technical and approaches the topic from a journalist perspective.
It is reader friendly, however, it does not speak to the complexities of de-anonymization from a
researches perspective. The material in question appears to be meant for non-technical readers.
No attack methods are described in detail and no experiments appear to have been conducted.
Ultimately, this paper would not serve the this project as it does not provide or reference any
guides to be analyzed and deconstructed.

Design (No Method)

Paper: Exploring and Analyzing the Tor Hidden Services Graph [22]
Impact: Low
Cost: Medium

This paper analyzes topologies of Tor Web graphs. Although it does dabble in the concept of
de-anonymization. Its primary focus lies in creating visual illustrations of darkweb topologies
and other functionalities.

Signal Tracing Attack

Paper: Tracing Tor Hidden Service Through Protocol Characteristics [23]
Impact: High
Cost: Low

This papers approach lies in compromising adjacent Tor relays to de-anonymize a THS.

In this method, a malicious client establishes a circuit to the THS and sends signals on the
circuit. Once the guard of the THS detects the signals, the identity of the THS is disclosed. In
layman’s terms, Tor clients embed signals into Tor circuits connecting to THSs. When the Tor
relay nearest to the THS detects the signal, the identity of the THS can be revealed.

With 100% accuracy, a 99.25% true positive rate, and a 0% false positive rate, this approach
appears to be promising.

Exploit RRT Delay

Paper: De-anonymizing Onion Services by Introducing Packet Delay [24]
Impact: High
Cost: Medium

13

Aalborg University

This paper presents an attack method that de-anonymizes THSs by exploiting the delay in
Request-Response Time (RRT).

This method involves having the guard of a THS introduce a watermark containing the IP
address of the THS in the TCP packet’s RRT. The TCP packet transmits the watermark to
where the HTTP echo request was sent (from a client to where the RRT was captured and the
watermark was decoded). In order to decode the watermark, the normal RRT of the packets
on the Tor network was needed. Therefore, in order to get the data, HTTP echo requests were
also sent without the watermark.

The paper showcased a success rate of 88.80% where the watermark was decoded by the client.
While this method works, the THS needs to choose the guard that introduces the watermark.
The chances of that are approximately 0.005%, meaning it would need 20000 tries to break the
anonymity of a given THS if only one guard is used.

It is an interesting concept which warrants further exploration.

Keep Tor Circuits Alive

Paper: De-anonymizing Tor in a Stealthy Way [25]
Impact: Medium
Cost: Medium

This paper proposes two methods in which a Tor circuit is kept alive.

The first type is based on protocol-level strategy and attempts to keep connections alive by
fixing damaged cells in the network. This adds an additional layer of stealth to the approach.

In the second attack, the guard sends a signal to the accomplice exit node via special types of
outbound cells. This prevents the connection from being closed, thus making the attack stealthy
for more general situations.

By utilizing these methods, afterward additional analytical approaches can be conducted to
de-anonymize the THS.

14

3.1. Attack Vectors Aalborg University

3.1 Attack Vectors

This section will demonstrate how attack methods derived from the literature review can help
establish coherent and precise requirements.

3.1.1 Requirement Specifications

This section aims to establish requirement specifications that coincide with the projects scope
and problem statement specified in Section 1.1. These requirements will help bridge the gap
between conceptualization and Execution. The goal would be to ensure the attack scenarios are
carried out as simply as possible.

Requirements:

The following requirements pertain to the projects outcome and will dictate which attack
methods are most appropriate to use to achieve said outcome. In addition, the following
requirements will be objectives pertaining to the THS. Every requirement listed has been derived
based on the "Score Description" table from chapter 3. Ultimately, each requirement has been
selected to ensure the chosen attack method would receive the highest possible rating of Impact.
In layman’s terms, the following requirements must adhere to the definition of "High Impact"
expressed in the "Score Description" table from chapter 3.

• Leak any IP addresses associated to the THS.

• Gain access to the system.

• Escalate privileges while within the system.

• Extract data from the system.

15

3.1. Attack Vectors Aalborg University

3.1.2 Evaluation

In accordance with the aforementioned literature review and requirements, the following table
will evaluate every attack method in contention. Based on their the score of impact and cost,
the table will server as a visual illustration that will showcase which attack methods are to be
used moving forward.

1st Evaluation

Method Paper Impact Cost

Fingerprinting (1) Low Medium

Fingerprinting (2) Medium Low

Napping Guard Attack High Low

SignalCookie Attack High Low

Descriptor Analysis Low High

Collection of Attacks (1) Low Medium

CARONTE Low Low

Sniper Attack High Medium

MitM Medium Low

Inflow Technique High Low

Exploit Tor v2 Flaw Low Low

Collection of Attacks (2) High High

Bitcoin Transfer Analysis Low Low

Design (No Method) Low Medium

Signal Tracing Attack High Low

Journalism (No Method) Low Low

Fingerprinting (3) Low Low

Delay RRT Exploit High Medium

Circuit Keep Alive Exploit Medium Medium

Fingerprinting (4) Medium Low

16

3.1. Attack Vectors Aalborg University

Finally, as the ideal method of attack would garner a rating of High in impact and Low in cost,
the attack methods with this rating are placed in contention.

2nd Evaluation

Method Impact Cost

Napping Guard Attack High Low

SignalCookie Attack High Low

Inflow Technique High Low

Signal Tracing Attack High Low

In order to narrow down the existing selection, additional criteria are considered. For the next
selection process time will be considered. This is due to time management being a factor for
the project and if the same result can be achieved in less time, that would be an ideal outcome.

3rd Evaluation

Method Impact Cost Time

Napping Guard Attack High Low High

SignalCookie Attack High Low High

Inflow Technique High Low High

Signal Tracing Attack High Low Low

As an ideal approach emphasizes simplicity, the score most appealing would carry a rating
of High in impact, Low in cost and Low in time consumption. Although the SignalCookie
attack seemed promising, ultimately, this project will move forward attempting to replicate and
potentially improve the "Signal Tracing Attack" method. This is also a result of the other attack
method taking a more low-level approach.

17

Infrastructure 4
In this chapter, a step-by-step description of the Tor protocols functionalities will be provided
followed by documented work of the THS’s design, development and deployment.

4.1 Onion Routing

This section aims to describe how the Tor protocol utilizes multilayered encryption through its
relay nodes.

The foundation of Tor was built on onion routing[26]. Onion routers are Tor relays that direct
and redirect dark-net traffic. The Tor network is an overlay network that exists on top of the
Internet and consists of thousands of these relays. Each relay can be categorized in to one of
three categories, that being entry, relay or exit nodes respectively. Where an entry node or
"Guard" is an initial access point to the Tor network, a relay (or "middle") node relays network
traffic as an intermediate and an exit node is the last relay for packets to pass through before
reaching their destination. As Tor is open-source, anyone can operate it. Additionally, anyone
can operate as an onion router from their desktop computer.

4.1.1 Encryption

Each relay is responsible for a layer of encryption hence the term "Onion" routing. The
encryption method in question is Advanced Encryption Standard (AES) symmetric encryption.
Symmetric encryption means, the same encryption key is used for both encrypting and
decrypting messages.

Data is sent through the Tor network in an encrypted format with fixed size packets called
“cells”. Specifically, encrypted Tor messages are cells that are 512 bytes long. Onion routing
is based on the idea that cells can not be discerned based on their features. They constantly
remain the same length to decrease the probability of an attacker deducing how many hops in
the circuit a cell has taken. In layman’s terms, no additional headers are added to a cell that
could alter its size. Onion routers differentiate between reading or forwarding cells based on the
hash digest residing within the cell. The onion router examines the tail end of a cell, calculates
the hash and attempts to match it to its own digest. If the two do not match, the onion router
assumes it is still encrypted and forwards the cell to the next relay in the circuit[27].

Figure 4.1 showcases a client that has initialized a Transport Layer Security (TLS) handshake
with three separate relays respectively. Each handshake resulted in a shared symmetric session
key being generated. The clients packet is encrypted with each key and sent along the circuit.
This process is described in detail by figure 4.3.

18

4.1. Onion Routing Aalborg University

Figure 4.1: Layered encryption[28].

In order to generate these keys, Tor uses the Diffie-Hellman algorithm to establish session keys
between clients and onion routers.

By utilizing three separate symmetric keys, the client can compartmentalize network traffic
through a series of relay nodes. In other words, a relay node is not previewed to a client or
servers information as each relay only possesses information pertaining to the previous and
following relay.

Consider a scenario where a client (A) generates a circuit with the relays B, C and D. The
cell that the client sends will follow a trail of encapsulation. The process starts with an initial
encapsulation with the KAD session key, followed by its encapsulation with the KAC session key
and lastly its encapsulation by the KAB session key. The data received by each relay can be
described as the following (where M is the original cell):

1) Data received by B: KAB(KAC(KAD(M)))

2) Data received by C : KAC(KAD(M))

3) Data received by D: KAD(M)

When the encrypted cell is received by B from A, relay B would use KAB to decrypt the top
layer of encryption (reminiscent to peeling the outermost layer of an onion). At this point it
is forwarded to C where the procedure continues until the cell reaches the exit node D, and
subsequently the final destination, E.

19

4.1. Onion Routing Aalborg University

Transport Layer Security

All connections on Tor use TLS link encryption meaning, the communication between Tor relays
is protected by means of a TLS tunnel (e.g. Each relay maintains a TLS connection to every
other relay). TLS encryption occurs between the application layer and the transport layer of
the TCP/IP model as seen in Figure 4.2. In this layer, application data can be sent securely to
the transport layer. Due to the protocol operating between the application and transport layer,
TLS can support multiple application layer protocols.

Figure 4.2: TLS Layer

When encrypting, the TLS protocol goes through a few steps. First, the protocol conducts a
handshake to initiate the encryption as seen in Figure 4.3. This handshake establishes a set of
rules the client and server must adhere to in order to begin secure communications.

The rules in question pertain to those listed in figure 4.3. These rules include cipher specifications
(method of encryption e.g. AES etc.), certificate (the signed certificate), key exchange (Diffie-
Hellman etc.) and alert. Alert is utilized in cases when errors occur [29]. It should be noted
that Tor still uses the outdated TLS v1.2 even though TLS v1.3 was released in 2018.

As depicted in figure 4.3, TLS certificates contain a relays Identity Public Key and are signed
by a relays Identity Private Key (based on asymmetric cryptography).

When received, the relay uses the Identity Public Key within the certificate to verify the
signature. Every relay on the Tor network has both a Public and Private Identity Key. Although
Tor is based on symmetric encryption, TLS uses both asymmetric and symmetric encryption to
protect confidential data-in-transit.

Asymmetric encryption is used to establish a secure session between relays, while symmetric
encryption is used to exchange data within the secured session. The "Handshake" section in
Figure 4.2 is where asymmetric encryption occurs (signed by private key & verified by public
key) and the session keys are established (symmetric) right before the "Encryption" section.

A session key is generated between the client and each relay in a circuit respectively. In other
words, the client conducts separate handshakes with each individual relay in the circuit, encrypts
the cell with each established session key and then sends it along the chain.

20

4.2. Onion Services Aalborg University

Figure 4.3: TLS Handshake

Additionally, relays typically accept connections on TCP port 443 (HTTPS) since this port is
always open on the majority of firewalls. All in all, the Tor protocol anonymizes users by issuing
a series of nodes to relay encrypted cells between clients and servers.

4.2 Onion Services

This section will dive into the technological complexities of THS and explain how E2EE is
achieved.

Onion services are THS that can only be accessed through a Tor browser. The traffic is encrypted
from the client to the onion host. Running a THS gives users all the security of TLS with
the added privacy benefits of a Tor Browser. Although all connections in Tor use TLS link
encryption, THS use HTTP as opposed to HTTPS as the Tor system already provides E2EE
which would make an additional TLS layer redundant.

Additionally, a THS’s IP address is protected. THS utilize an overlay network on top of TCP/IP,
meaning a client and service’s IP addresses are not viewable.

Usually, a client would connect to a server’s IP address to access its contents, however, in the
case of THS, this cannot be done as the IP address is hidden.

In particular, a THS’s address is seemingly a randomly generated string ending in ".onion".

21

4.2. Onion Services Aalborg University

The Tor protocol cannot establish a direct connection between a client and service. The client
must introduce itself to the service by setting up a rendezvous point (RP) with the service over
the Tor network.

The following contains a detailed breakdown of how this occurs.

1) Introduction Points

Figure 4.4 depicts the beginning stages of Tor communication between a client and THS.
The various components in the illustration include three introduction points, a Distributed
Hash-Table (DHT) and various Tor relays. Excluding the client, every component resides
within the Tor network (green bubble). The DHT and introduction points are all connected
to the THS through relay nodes.

To establish contact between a client and service, various steps must be followed in
accordance with the Tor protocol. The first step in the protocol pertains to the service
in question. The service will contact a series of Tor relays and request they act as its
introduction points as seen in figure 4.4. It does this by establishing long-term circuits
to them. A circuit refers to a path of Tor relays, network-traffic travels along. The
service connects to the introduction points through a two-hop Tor circuit. As circuits are
anonymized, at no point is the service location revealed to the introduction points.

Furthermore, the service will receive additional protection by only allowing contact through
the three introduction points.

Figure 4.4: Introduction Points [30].

At this point the question becomes, how will clients be able to find these introduction
points? Tor provides additional features which allow services to assemble a service
descriptor. The service descriptor contains a list of IP addresses (from the service’s
introduction points) and the service’s Identity Public Key. This descriptor is signed with

22

4.2. Onion Services Aalborg University

the service’s Identity Private Key as seen in Figure 4.4. This information is encoded in
the service’s onion address.

Figure 4.4 shows, the service uploading the signed descriptor to a DHT (elaborated in
the next step). The DHT is part of the Tor network which makes it readily available for
clients. The upload is done using an anonymized Tor circuit which ensures the service
location is not revealed.

2) DHT

Figure 4.5 depicts the secondary stage of dark-net communication between the client and
THS. The introduction points are all connected to the THS through relay nodes. The
DHT, however, is connected to both the client and service respectively. Furthermore, the
figure showcases the passing of data from the DHT to the client. The data in question
pertains to the THS descriptor.

The previous step was set-up for the service so it could be accessed by clients.

For a client to view a service’s content, a Tor browser and an onion address are needed.
In this case, the client goes to the DHT and requests the signed descriptor of the service
as seen in Figure 4.5. The DHT provides a signed list of all the known relays, and in that
list are a set of certificates from each relay (self-signed by their Identity Key) specifying
their keys, locations, exit policies, and so on.

Figure 4.5: Distributed Hash-table [30].

When the client receives the signed descriptor, the descriptors signature is verified using
the Identity Public Key that is encoded in the onion address (figure 4.5). This ultimately
provides E2E authentication as the descriptor could only have been produced by that
service and no one else.

23

4.2. Onion Services Aalborg University

Now that the client has obtained the service’s authentic descriptor, the IP addresses of
the various introduction points can be extracted from them.

3) Rendezvous Point

Figure 4.6 depicts the third stage of dark-net communication between a client and THS.
The various components in the illustration include three introduction points, a RP and
various Tor relays. As previously stated, the introduction points are all connected to the
THS through relay nodes. The RP, however, is connected to the client alone. Furthermore,
the figure showcases the passing of data from the client to the RP and an introduction
point. The data in question partially pertains to the RP. The other portion of the data is
a shared secret. The figure additionally shows the service handling the data in question
after receiving it.

Before any data transfers can take place, the client must establish a circuit to a chosen Tor
relay and request it become their RP. Following that, the client passes a one-time shared
secret to the rendezvous and introduction points respectively. This will be essential during
the rendezvous procedure (Figure 4.6).

Figure 4.6: Rendezvous Point [30].

From the introduction point, the shared secret and rendezvous address are passed on to
the service. Here, multiple verification processes are ran to decide whether the source is
trustworthy or not as seen in figure 4.6.

24

4.2. Onion Services Aalborg University

4) Authentication Token

Figure 4.7 depicts the fourth and final stage of dark-net communication between a
client and THS. This time the RP, is connected to the client and service respectively.
Additionally, the figure showcases the passing of data from the client to the RP and the
service to the RP. The data in question pertains to the aforementioned shared secret.

Once the validity of the RP has been confirmed, the service establishes an anonymized
circuit and connects to the RP. After sending the shared secret to the RP, one final
verification is done. This is done by comparing the secret strings from both the client and
service respectively (the latter is also from the client but has been relayed through the
service) as seen in figure 4.7. In this instance, the shared secret from the client and service
operate as authentication tokens.

Finally, with an established secure connection, the RP can simply operate as an
intermediate relay where E2EE cells are sent from client to service and vice versa.

Figure 4.7: Authentication Token [30].

In conclusion, the completed connection between client and service consists of six relays.
Three out of the six relays were chosen by the client with the third being the RP and the
other three were chosen by the service resulting in secure location hiding for both parties.

25

4.3. Application Architecture Aalborg University

4.3 Application Architecture

This section describes the various criteria the THS must adhere to. Additionally, a descriptive
reenactment of the THS design, development and deployment will be described. The THS
in question had already been developed for a previous paper[31], therefore, most of the same
software is utilized.

4.3.1 Requirement Specifications

This section aims to establish requirement specifications that coincide with the projects scope
and problem statement specified in Section 1.1. These requirements will narrow the gap
between the conceptualization and implementation phase. The goal would be to ensure the
implementations simplicity and coherency.

Requirements:

• The THS must have all features of an application service hosted on the dark-net.

• The THS must have a login system for various users to insert data.

• The THS must handle user data with a database.

4.3.2 Design

This sections aim is to give a detailed description of the THS flow from a user perspective.

Figure 4.8: Flowchart

The THS is a dark-net web application with basic front-end
and back-end features. The application is a basic login system
with captcha, login, registration, home and user profile pages
respectively. It provides basic security functionality relative to
the offensive demonstration that is to take place. In accordance
with the aforementioned requirements, the application must have
features that would make information disclosure a possibility e.g,
database storage for user information. The flow in which a user
would interact with the application can be seen in Figure 4.8.

A sub-requirement for the application was to provide an attacker
with a storage element that could be exploited as mentioned in
3.1. Due to that fact, the application has basic security features as
to add to the authenticity of the demonstration. These security
features include hashed passwords and session cookies to avoid
URL bypassing.

An additional security feature reminiscent to that of a real world
THS is the captcha page. Captcha pages are used in THSs
to avoid bot activity. In the case of a THS, captcha pages
are usually complex and dynamic, however, for the purposes of
this demonstration, an overly complex captcha page was deemed
unnecessary. Therefore, a standard text based captcha was used.

26

4.3. Application Architecture Aalborg University

In this case, a new random string is generate any time a user inserts an incorrect string or the
page reloads. Naturally, the only way to bypass the captcha page is to insert the correct string.

4.3.3 System Components

This section will describe the inner workings of the application and its architecture.

The application was structured with a monolithic architecture as opposed to a cloud native
approach utilizing micro-services. It consists of client-side and server-side functionalities. The
server-side components include an Application Programming Interface (API) and a database
(Figure 4.9), whereas the client-side is front-end HTML.

Figure 4.9: Architecture[32]

The client-side manages all front-end activity, and provides users with a Graphical User Interface
(GUI). Coded in HTML and CSS, it handles anything a user would interact with while on the
site. Put simply, it is responsible for the applications visual aesthetics.

Unlike the front-end that controls everything the user can see, the back-end is involved in data
storage, query handling, authentication security, and other server-side functions hidden from
the user.

The API is responsible for the back-end functionality. Figure 4.9 mainly illustrates the
virtualized back-end components. The term virtualized referring to the fact that the entire
service operates within a Docker container. By virtualizing the application, circuit analysis and
fingerprinting can occur within a controlled environment. Additionally, it makes the application
easier to migrate to new hardware.

Implemented with "Nodejs" and "Express", the API links the database to the front-end. It does
this by managing all HTTP requests between the two.

Finally, the database resides in the back-end of the application along side the API. The
application utilizes a Replit database service and has a key-value based data storage
infrastructure.

27

4.3. Application Architecture Aalborg University

4.3.4 Deployment

In this section, a clear depiction of the deployment methods used will be displayed.

Hidden Service

By forking an existing dark web repository[33] and making slight modifications, the application
could be deployed in a remote location. The following shows the applications file structure.

./
domain.sh
server.js
.torrc
.replit
node_modules
package.json
packagelock.json
public

pic.jpg
pic1.jpg
user.jpg
style.css

views
captcha.ejs
index.ejs
login.ejs
register.ejs
profile.ejs

README.md
replit.nix
run.sh
tor

hidden_service
authorized_clients
hostname
hs_ed25519_public_key
hs_ed25519_secret_key

The platform the application was deployed on was the online IDE, Replit[34]. Replit allows
developers to create projects and write code online.

In the aforementioned file structure, the most important files were the following:

• run.sh
This is the bash script that runs "server.js". This ultimately sets up everything and starts
the Tor service.

• domain.sh
Tor automatically generates a ".onion" domain when the site runs. The domain is a
random ‘56‘ character long string that can be customized. It is stored in the "tor/hidden-
service/hostname" file which can be extracted by running the "domian.sh" script.

28

4.3. Application Architecture Aalborg University

• .torrc
This file contains all general configurations and equates to "/etc/tor/torrc" in other linux
platforms.

• tor folder
The folder that is the container for the THS. (equivalent to /var/lib/tor/ in other linux
platforms)

• .replit
This is the Replit configuration file and Configures things like the run button etc.

• .replit.nix
The nix file contains the packages the service needs to run on Replit.

The specific configurations in ".torrc" are as follows:

1 HiddenServiceDir ./ tor/ hidden_service /
2 HiddenServicePort 80 127.0.0.1:80
3 EntryNode $fingerprint

Snippet 4.1: THS torrc Configurations

Entry Node

The entry node was each deployed on a Raspberry Pi. The Raspberry Pi would operate as a
remote server for the node as opposed to it being hosting with Replit’s cloud services. This
decision was based on the fact that, the Rasberry Pi offers more processing power in addition to
a variety of features Replit does not. However useful Replit is, it only offers a standard Linux
based CLI for development purposes.

In order to make the Raspberry Pi operate as a Tor relay, a few steps had to be taken:

1) Install Tor:

1 $ sudo apt update
2 $ sudo apt install tor

Snippet 4.2: Tor installation

2) Edit the torrc configuration file:

1 $ sudo nano /etc/tor/torrc

Snippet 4.3: Edit configuration file

29

4.3. Application Architecture Aalborg University

Add the following to the guards torrc:

1 ControlPort 9051
2 CookieAuthentication 1
3 ORPort 9001
4 Nickname aauentry

Snippet 4.4: Guard torrc Configurations

3) Restart Tor with the new changes added:

1 $ sudo service tor restart

Snippet 4.5: Tor Restart

Now that the THS’s guard has been deployed, a Proof-of-Concept (PoC) of the "Signal
Tracing" attack method can be conducted in the following chapter as described by Figure
4.10 and chapter 3.

Figure 4.10: Raspberry Pi Circuit[24]

30

De-anonymization 5
This chapter showcases a PoC of the "Signal Tracing" attack method and culminates in an
assessment of the findings.

5.1 Conceptualization

This section will describe the procedures and difficulties an attacker must be mindful of in order
to de-anonymize a THS.

As described in Chapter 3, the "Signal Tracing" attack method relies on an attacker
compromizing the THS’s guard. This is advantageous as the malicious guard is the only relay
in the circuit capable of divulging the IP address of the THS. This is due to its direct line of
communication to the THS.

Once a malicious guard has been established, the next step would be to ensure the THS prioritizes
the compromised relay and connects to it. This, however, is unlikely as Tor relays doe not
associate themselves unilaterally to singular Tor entities.

The initial idea was to specify a unique payload for an HTTP request (can be done through a
browsers "Inspect" feature) at which point, a monitoring tool running on the malicious guard
(akin to Wireshark) could filter the traffic for the aforementioned payload. By doing so and by
attributing the destination IP address to that of the THS, the successful IP leakage of the THS
would be the result.

Although this method is simplistic, there are alternate ways to match signals that could
potentially also be explored. One of which was specified in Chapter 3, where the authors of
the "Signal Tracing" attack method utilized complex algorithms in order to match signals at the
compromised guard.

Other methods include "Exploit RRT Delay" (Chapter 3) and other watermarking techniques.
A digital watermark is a form of information embedded within digital content that is used to
identify its origin, ownership, or authenticity. One can embed a signal by adding watermarks to
packets in HTTP requests.

Furthermore, methods to increase a relays "trust" could be explored. By increasing the "trust"
of the malicious guard, adjacent Tor entities may associate themselves with it. Although not a
guarantee, this would be one way of making the target latch itself to the compromised relay.

One method of increasing "trust" would be by simulating relay criteria. Essentially, this would
require spoofing a relays data to raise its consensus weight.

Other ways of completing these objectives will be explored throughout the process.

31

5.2. Scoping & Requirements Aalborg University

5.2 Scoping & Requirements

The aim of this section is to express the scope and parameters the de-anonymization process
must adhere to.

After conducting extensive research on existing attack methods to de-anonymize THSs, it has
become evident that the methods described are entirely too theoretical. Although most of
the papers mentioned in Chapter 3 were in-depth in terms of the statistics and mathematics
involved, they gave no mention to the tools used or anything akin to a step by step reenactment
of how these experiments were conducted, practically.

Therefore, this chapters scope will be centered around one question:

• How does one practically expose a THS’s IP address?

Additionally, the requirements have been selected to ensure the attack method in question would
be carried out as efficiently as possible.

• Launch a compromise guard.

• Connect the compromised guard to the THS.

• Monitor in-going and out-going traffic on the compromised relay.

• Specify a unique payload in the attackers HTTP requests.

• Filter traffic for the unique payload on the compromised relay.

• Increase the guards perceived validity.

32

5.3. Design & Implementation Aalborg University

5.3 Design & Implementation

This section will attempt to showcase a PoC of Hidden Service IP leakage and the tools required
to achieve that objective.

5.3.1 Connecting to Guard

Before testing can occur, initial set-up is required. As previously mentioned, the THS must also
configure its torrc file to the following:

1 EntryNode $FINGERPRINT

Snippet 5.1: THS torrc Conf

This will ensure the THS utilizes a specific guard when establishing circuits. However, in an
attempt to connect the service to the guard, an error occured (depicted in Figure 5.1). This error
describes the service’s attempt to utilize Tors relay allocation features as a potential security
breach and thus will not allow the user to proceed.

Figure 5.1: Connection Error

Consider a scenario where an attacker selects a rendezvous point which happens to be the THS’s
primary guard[35]. The THS would look through its preemptively built circuits and evaluate
whether any of them are extendable. Tor functions would state that none of the existing circuits
are suitable. This is the case as any potential circuit would cause a duplicate hop. In addition
to being a functionality issue, it also represents a security risk as an attacking clients choice of
rendezvous point could potentially leak information about a THS’s guard and thus the service
itself[35].

Alternative Sources

In order to solve this issue, a variety of options were considered. First, the original authors of
the "Signal Tracing"[23] paper were contacted. However, the email addresses specified in the
paper were seemingly no long active as the mails sent were cancelled.

At this point, ChatGPT was consulted. ChatGPT is an artificial-intelligence (AI) chatbot
developed by OpenAI and launched in November 2022. It utilizes large language models and

33

5.3. Design & Implementation Aalborg University

has been fine-tuned using both supervised and reinforcement learning techniques. By simply
writing a question, the AI chatbot provides a response within seconds. It is a useful source of
information (akin to Google.com) and is applicable in most fields. The following question was
asked:

• how do you make a hidden service connect to a specific guard?

The chatbot provided the following response:

"When setting up a Tor hidden service, it is not possible to choose a specific guard.
The Tor network uses a distributed and decentralized system where the choice of
guard is made by the Tor client software."

This initial set back required the project take a different approach. Luckily, the AI provided a
few suggestions:

"However, there are some ways to increase the likelihood of connecting to a specific
guard, such as: Using a Tor bridge or Using the Tor Control Protocol."

These options can be described as follows:

• Tor bridge: A Tor bridge is a private entry point that is not listed in the public Tor
directory. Bridges are ordinarily utilized so ISPs or governments trying to block access to
the Tor network can’t. They are especially useful when users do not want to be noticed
contacting a public Tor relays IP address. In this instance, the bridge would be used as
the primary guard of the THS.

• Tor Control Protocol: The Tor Control Protocol allows users to interact with the Tor
client software and configure certain aspects of its behavior, including which guard to use.
For this scenario the user would have to write a script running the Tor Control Protocol
to select a specific guard based on its fingerprint.

5.3.2 Tor Bridge Test

This project will attempt to move forward with the Tor bridge alternative. The decision was
based on the simplicity involved when converting an ordinary guard to a bridge. This ultimately
runs in contrast to the complexity required to develop a script utilizing the Tor Control Protocol.

In order to make the Raspberry Pis operate as Tor bridges, a few steps had to be taken:

1) Install Tor:

1 $ sudo apt update
2 $ sudo apt install tor

Snippet 5.2: Tor installation

34

5.3. Design & Implementation Aalborg University

2) Install the latest version of obfs4proxy:

1 $ sudo apt install obfs4proxy

Snippet 5.3: Install obfs4proxy

3) Edit the torrc configuration file:

1 $ sudo nano /etc/tor/torrc

Snippet 5.4: Edit configuration file

Add the following to the guards torrc:

1 BridgeRelay 1
2 ORPort 5000
3 ServerTransportPlugin obfs4 exec /usr/bin/ obfs4proxy
4 ServerTransportListenAddr obfs4 0.0.0.0:6000
5 ExtORPort auto
6 CookieAuthentication 1
7 Nickname aauentry

Snippet 5.5: Bridge torrc Configurations

4) Restart Tor with the new changes added:

1 $ sudo service tor restart

Snippet 5.6: Restart Tor

5) Check the bridge logs:

1 $ journalctl -e -u tor@default

Snippet 5.7: Log Check

6) Finally, specify the bridges fingerprint in the THS’s configuration file:

1 EntryNode $FINGERPRINT

Snippet 5.8: THS torrc Configurations

Now that the Bridge has been configured, the next steps can be taken.

Troubleshooting

By checking the logs, the guard was successfully turned into a private Tor bridge. Unfortunately,
the connection errors persisted. Finally, to ensure this was the right path, Tor developers
responsible for writing the error message were contacted. The following messages were sent:

35

5.3. Design & Implementation Aalborg University

"Hello,

I’m a Masters student writing my thesis on de-anonymization. I’ve been attempting to make
my hidden service use a specific guard, however, an error occurs which pointed me to this
thread. While looking into options, I discovered that by making my guard a Tor bridge, I
might be able to bypass these security features. This didn’t work and ultimately sent me
back to this thread. I was wondering if there was a tangible way to make my hidden service
use my guard. Whether it be by editing the torrc file or by injecting the relays fingerprint in
the hidden service directory. Specifics would be nice, thanks in advance."

Unfortunately, no maintainer responded to the emails nor the message left in the Gitlab
discussion thread.

It was later discovered that this error could be avoided by adding additional guard options to the
THS’s "torrc" configuration file. This method attempts to fix the aforementioned "RP=Guard"
problem. Although it is not a perfect option, it does provide a protective layer through
redundancy.

Through further experimentation, it became apparent this "security feature" was not as well
implemented as originally assumed. Not only could the previously mentioned error be avoided
by adding additional guard options, it could be bypassed by inserting the same guard ID (or
fingerprint) twice. Either of the following commands have this effect:

1 EntryNodes $FINGERPRINT , $FINGERPRINT
2 EntryNodes $FINGERPRINT1 , $FINGERPRINT2

Snippet 5.9: THS torrc Configurations

By using the first command, the THS infrastructure would appear as seen in figure 5.2. In this
case, the THS would use the same guard for each established circuit. This would mean, the
THS would connect to the RP and introduction points, respectively via the same guard.

Figure 5.2: THS connecting from a single guard

36

5.3. Design & Implementation Aalborg University

While resolving the previous issue, this method paved the way for a new error to present itself.
Figure 5.3 shows the new issue:

Figure 5.3: Missing Microdescriptors

The message reads "I learned some more directory information, but not enough to build a circuit:
We need more microdescriptors:"

This could be due to a number of reasons.

• Tor Bridge vs Traditional Guard: As the current guards in use are set up as Tor
bridges, there may be some configuration prerequisite required to make things function.
Therefore, the same experiment was conducted where two guards were deployed on
replit and their fingerprints were added to the THS torrc file. This made no difference,
unfortunately.

• Firewall issue: A Firewalls configurations could be interfering with the packets being
sent.

5.3.3 Firewall Checks

The first step in troubleshooting these issues is by conducting firewall checks. To do this, the
"iptables" settings will be configured. Iptables is a firewall utility for Linux-based operating
systems[36]. It is used to manage network traffic by setting up rules and policies for packet
filtering. Unlike "UFW" (Uncomplicated Firewall), "iptables" operates at the kernel level,
allowing it to examine and manipulate network packets as they pass through[36].

Iptables must be configured to allow Tor traffic to pass through the relay. To do this appropriate
rules to permit incoming and outgoing connections related to Tor must be created. The following
settings reveal how this is done:

1) Identify Tor ports: By default, Tor uses TCP port 9001 for incoming connections and
TCP port 9030 for directory connections. Therefore, these ports were first specified in
torrc.

2) Allow incoming Tor traffic: The following commands are used to create rules that
allow incoming connections on the Tor ports.

1 $ sudo iptables -A INPUT -p tcp --dport 9001 -j ACCEPT
2 $ sudo iptables -A INPUT -p tcp --dport 9030 -j ACCEPT

Snippet 5.10: Allow incoming

37

5.3. Design & Implementation Aalborg University

These rules specifically allow incoming TCP connections on ports 9001 and 9030.

3) Allow outgoing Tor traffic: The following commands are used to create rules that allow
outgoing connections from the Tor ports.

1 $ sudo iptables -A OUTPUT -p tcp --dport 9001 -j ACCEPT
2 $ sudo iptables -A OUTPUT -p tcp --dport 9030 -j ACCEPT

Snippet 5.11: Allow outgoing

These rules specifically allow outgoing TCP connections on ports 9001 and 9030.

4) Set the default policy: The following commands are used to ensure that the default
policy for incoming, outgoing, and forwarded packets are set to ACCEPT. This ensures
that if no specific rule matches, the packet is allowed to pass through.

1 $ sudo iptables -P INPUT ACCEPT
2 $ sudo iptables -P OUTPUT ACCEPT
3 $ sudo iptables -P FORWARD ACCEPT

Snippet 5.12: Set default policy

5) Save rules: In order to ensure the iptables rules stay update regardless of reboots, they
need to be saved to a specific file.

1 $ sudo iptables -save > /etc/ iptables /rules.v4

Snippet 5.13: Save changes

Unfortunately, the error persisted, meaning, new methods of troubleshooting had to be
considered.

Port Scans

As the ORPort (Onion Router Port: 9001) is the port a relay uses to connect to the Tor network,
a logical next step would be to check if these ports were open. This can done with tools like
Netcat or Nmap.

To check if the ORPort is open using nmap, a port scan on the target IP address can be used
to determine if the specified port is open or closed:

1 $ nmap -p <ORPort > <IP >

Snippet 5.14: Nmap scan

Additionally, to check if the ORPort is open using netcat, a simple TCP connection test can be
used to the specified port.

1 $ nc -vz <IP > <ORPort >

Snippet 5.15: Netcat test

38

5.3. Design & Implementation Aalborg University

Interestingly, the port appeared to be open initially. This resulted in the following response
from the nmap port scan:

1 $ nmap -p 9001 192.168.0.159
2 Starting Nmap 7.80 (https :// nmap.org) at 2023 -05 -14 15:18 CEST
3 Nmap scan report for 192 -168 -0 -159. ip. linodeusercontent .com

(192.168.0.159)
4 Host is up (0.061 s latency).
5

6 PORT STATE SERVICE
7 9001/ tcp open tor - orport
8

9 Nmap done: 1 IP address (1 host up) scanned in 0.36 seconds

Snippet 5.16: Netcat test

The following are the results from the ncat test:
1 $ nc -vz 192.168.0.159 9001
2 Connection to 192.168.0.159 9001 port [tcp /*] succeeded !

Snippet 5.17: Netcat test

It became apparent that these results only occurred when the raspberry pi’s private IP address
was used. When conducting the same tests using the public IP address, the port was shown to
be closed or filtered. This could only mean there was a firewall configured in the router ensuring
no Tor traffic from port 9001 could be retrieved (on this particular LAN (Local Area Network)).

This revelation made three options available.

• Reconfigure Routers Firewall

• Change ORPort (and possibly others)

• Deploy on cloud service

Reconfiguring the router is not an option as the current one in use is the property of multiple
residents. A new router could be configured for Tor dependencies, however, at this point in the
project exploring this new avenue would not be ideal due to time constraints.

Furthermore, changing default Tor ports could result in an entirely new subset of problems
relating to compatibility. Therefore, Linode’s services were used.

5.3.4 Linode Deployment

Linode is an IaaS (Infrastructure-as-a-Service) provider who offers virtualized computing
resources over the Internet[37]. These resources, include VMs (Virtual Machines), storage,
and networking infrastructure, to build and deploy applications and services[37]. As an IaaS,
Linode would not provide any pre-installed firewall configurations that could tamper with the
relay.

A Debian 11 instance was deployed and configured using the following steps:

39

5.3. Design & Implementation Aalborg University

1) Ensure the newest version of Tor is installed: Tor needs to be installed this way
due to Debian 11 installing older versions of Tor when using "apt". The versions shown
to be available with "apt-cache madison tor" are considered obsolete and would effect
the relay’s consensus weight.

1 $ sudo apt update
2 $ wget https :// dist. torproject .org/tor -0.4.7.13. tar.gz
3 $ tar -xzf tor -0.4.7.13. tar.gz
4 $ cd tor -0.4.7.13/

Snippet 5.18: Download Tor

2) Install missing dependencies: Running the binary on the "configure" file may be
unsuccessful due to missing dependencies. Therefore, the following installations are made:

1 $ sudo apt install build - essential libevent -dev libssl -dev zlib1g -
dev

Snippet 5.19: Install missing dependencies

3) Run binary on file named "configure":

1 $./ configure

Snippet 5.20: Run binary

4) Finalize installation by running make commands:

1 $ sudo make
2 $ sudo make install

Snippet 5.21: Installation

5) Create torrc file: Running the "tor" command may not work as it searches for the torrc
file when running. After running "make install" a tor configuration file is generate,
however, it may have a different name e.g. torrc.sample. Therefore, after making the
proper changes to torrc.sample, it should be moved to a file in the specified directory path
with the correct name.

1 $ sudo mv /usr/local/etc/tor/torrc. sample /usr/local/etc/tor/torrc

Snippet 5.22: Create torrc

6) Run Tor command to start Tor:

1 $ tor

Snippet 5.23: Run Tor

40

5.3. Design & Implementation Aalborg University

Performance Checks

The following checks are to ensure everything is running correctly:

1) Network checks: The following netstat command is used to list open ports and listening
interfaces related to Tor.

1 $ sudo netstat -plntu | grep tor
2 tcp 0 0 127.0.0.1:9050 0.0.0.0:*

LISTEN 522/ tor
3 tcp 0 0 127.0.0.1:9051 0.0.0.0:*

LISTEN 522/ tor
4 tcp 0 0 0.0.0.0:9030 0.0.0.0:*

LISTEN 522/ tor
5 tcp 0 0 192.46.236.98:9001 0.0.0.0:*

LISTEN

Snippet 5.24: Listening interfaces

Alternatively, the "lsof" command could be used. It lists open network connections and
filters the output to display only the lines related to Tor.

1 $ sudo lsof -i -P -n | grep tor
2 tor 522 root 6392u IPv4 729654 0t0 TCP

192.46.236.98:36962 - >79.211.46.157:9001 (ESTABLISHED)
3 tor 522 root 6393u IPv4 430474 0t0 TCP

192.46.236.98:38674 - >95.128.43.164:443 (ESTABLISHED)
4 .
5 .
6 .
7 .
8 tor 522 root 6858u IPv4 840348 0t0 TCP

192.46.236.98:9001 - >57.128.83.98:36918 (ESTABLISHED)
9 tor 522 root 6864u IPv4 839630 0t0 TCP

192.46.236.98:9001 - >194.104.156.9:21798 (ESTABLISHED)

Snippet 5.25: Network connections

2) Solve potential port issue: An additional error that could occur when running a Tor
relay is TCP port exhaustion[38]. TCP port exhaustion refers to a situation where all
available ports on a device are in use or unavailable for new connections. It primarily occurs
when a large number of connections are being made to the device simultaneously, exceeding
its capacity to handle incoming connections. This situation can lead to various issues,
including the inability to establish new connections, dropped or rejected connections, and
degraded performance.

The issue can be resolved by tuning sysctl (System Control).

By tuning sysctl one can expand the devices local port range. This can be done with the
following command:

1 $ sudo sysctl -w net.ipv4. ip_local_port_range ="15000 64000"

Snippet 5.26: Tuning sysctl

41

5.3. Design & Implementation Aalborg University

It should be noted that tuning sysctl as described is not permanent and will be lost upon
restart. In order to make this change permanent, the changes need to be added to the
configuration file /etc/sysctl.conf :

1 $ sudo nano /etc/ sysctl .conf

Snippet 5.27: Edit sysctl configuration file

The following line should be added to the end of the file:

1 net.ipv4. ip_local_port_range ="15000 64000"

Snippet 5.28: Tuning sysctl perminantly

Final torrc Configurations

Now that the correct installation method has been established, a method to determine which
relay configurations would result in the highest possible consensus weight, must be defined.

In order to determine a baseline of what high priority Tor relays had in common, the Tor metrics
website[39] was used. Tor metrics enables users to analyze live anonymity systems. For security
purposes, Tor metrics ensures that data analysis is performed with great care so that the users’
privacy is not put at risk.

A search was done of the top relays possessing the highest consensus weights and the torrc file
was configured to replicate their features:

1 $ sudo nano /usr/local/etc/tor/torrc

Snippet 5.29: torrc edit

The following configurations were set:

1 ORPort <public_IP >:9001
2 DirPort 9030
3 ControlPort 9051
4 HashedControlPassword <hashed_password >
5 ContactInfo <email >
6 RelayBandwidthRate <number >
7 RelayBandwidthBurst <number >
8 ExitPolicy reject *:*
9 Nickname <your_nickname >

Snippet 5.30: torrc settings

To calculate the Tor relay’s RelayBandwidthRate and RelayBandwidthBurst one must
consider the available network bandwidth for outbound and inbound connectivity.

42

5.3. Design & Implementation Aalborg University

Determining the maximum network bandwidth available can be done by consulting ones ISP
(Internet Service Provider) or network administrator. In this case, the website Public Cloud
Reference[40] by Cloud Mercato was referenced. Public Cloud Reference is a website that
collects and analyzes data from cloud providers.

The Debian 11 Linode instance used for this paper was a 4G RAM plan for $36 monthly. As
listed in the Public Cloud Reference, this particular plan has the following network bandwidth
data[40]:

Network Bandwidth

Bandwidth

Max 3940

Average 2874

Deviation 957.64

Min 1105

These statistics can be further illustrated by the following graph:

• Green is the upload speed

• Red is the download speed

Figure 5.4: Network Bandwidth Statistics[40]

Given the above information, you can estimate the RelayBandwidth configuration values:

43

5.3. Design & Implementation Aalborg University

• RelayBandwidthRate: This value represents the maximum average bandwidth per
second that the relay will allow for network traffic. It should be set to a value lower
than the average available network bandwidth to avoid congestion and to ensure stability
(e.g. 75% of the average available bandwidth).

RelayBandwidthRate = 0.75 ∗ 2874Mbps ∗ 1.000.000bytes

s
= 2.155.500.000bytes

s

• RelayBandwidthBurst: This value represents the maximum burst capacity the relay
can handle. This occurs above the RelayBandwidthRate for short periods and should
be set higher to accommodate short spikes in traffic (e.g. 20% higher than the
RelayBandwidthRate).

RelayBandwidthBurst = 1.2 ∗ RelayBandwidthRate = 2.586.600.000bytes

s

Finally, before running the "tor" command, adding a hashed password would provide additional
security. The hashed output should be inserted in the "HashedControlPassword" segment from
Snippet 5.30.

1 $ sudo tor --hash - password <your_password >

Snippet 5.31: Hash password

By using this command, one can generate a hashed password that can later be used in Tor’s
configuration file (torrc) to secure administrative access. The hashed password helps ensure that
only users with the correct password can access certain functionalities or perform administrative
tasks.

5.3.5 Tor Network Forensics

The first step in de-anonymizing a THS is to gain a clear picture of the traffic flow at every
essential component. Therefore, traffic must be monitored at the attackers device and the
malicious guard, respectively.

As a starting point, one must consider if there is a way to discern the difference between Tor
and ordinary clear-net traffic.

Initial tests with Wireshark show no signs of Tor traffic other than the tell-tale signs of TCP
and TLSv1.2 use, along with port 9001 and 9030. This is naturally due to the Tor protocols
layered encryption approach. These signs would only appear occasionally, however. This is the
result of what occurs at port 9030.

Port 9030 is utilized when the client is in contact with the directory server. If the attacker does
not have a list of Tor relays stored locally, they will receive the list from the directory server.
Therefore, the aforementioned tell-tale signs would only appear if the client was started for the
first time, or after a long time.

Additionally, port 9001 is the default Tor port, although, many relays run on port 443 or others
(This is configurable). Therefore, traffic will only be visible on this port, if the attacker contacts
a relay with the default port settings.

44

5.3. Design & Implementation Aalborg University

Monitoring traffic on the attacking device did bare fruit, however. Although, network transfers
that occur on the Tor network are encrypted, one can view un-encrypted network traffic destined
for the Tor network. This refers to the traffic sent between localhost TCP sockets. Anonymous
Tor browsing can be viewed, by loading a PCAP file with localhost traffic into NetworkMiner.
This technique is referred to as TorPCAP[41].

TorPCAP

The crux of this technique relies on capturing Tor traffic before it gets Encrypted.

The Tor browser on the attacking machine includes a variety of installations. These installations
include a SOCKS proxy listening on port 9150 on localhost. By utilizing the local SOCKS proxy,
the Tor Browser can connect to the Tor network and have its traffic encrypted and forwarded.
Therefore, by sniffing traffic on localhost, a forensic trail of dark-net traffic can be established.

Figure 5.5: TorPcap[41]

In order to gain a clear view of the traffic an additional step must be taken. A tool to parse
the SOCKS protocol is required. This is where NetworkMiner was introduced. NetworkMiner
utilizes SOCKS parse features which can extract and reassemble data going to and from the Tor
network.

The following images showcases some of the results of NetworkMiners contributions: Although,
NetworkMiner has an abundance of features, Figure 5.6 depicts a user logging their credentials.

Figure 5.6: Credential Spotting

Additionally, Figure 5.7 depicts a variety of requests being issued to the THS.

45

5.3. Design & Implementation Aalborg University

Figure 5.7: Parameter Names

The next step is to monitor traffic on the compromised relays.

Tool Selection

The following tools are to be considered when monitoring traffic on a Tor relay:

• Nyx: Nyx is a command-line tool for monitoring and managing Tor relays. It allows you
to view real-time statistics and traffic of your Tor relay. You can install it by typing "sudo
apt-get install nyx" in the terminal and then running it with the "nyx" command[42].

• Arm: Arm is another command-line tool that allows you to view and monitor traffic
on your Tor relay. It provides extensive statistics and allows you to configure your relay
settings. You can install it by typing "sudo apt-get install arm" in the terminal and then
running it with the "arm" command[43].

• Tor Metrics: Tor Metrics is a web-based tool that provides detailed statistics about the
Tor network, including the traffic and performance of individual relays. You can access it
at [44].

The following evaluation matrix is meant to showcase the process in which the dark-net
monitoring tool was selected. In this instance "Availability" refers to the labors that are required
to acquire the tool, "Attributes" refers to the number of features the tool has available and
"Documentation" refers to the amount of existing documentation.

Evaluation

Tools Availability Attributes Documentation

Nyx Medium High High

Arm Medium High Low

Tor Metrics High Low High

The different scores can be described by the following table:

46

5.3. Design & Implementation Aalborg University

Ratings

Score Availability Attributes Doc

High No payments or set-up required Monitoring, filtering & more A lot

Medium Free, yet some set-up required Monitoring & filtering Some

Low Payment & set-up required Monitoring None

Ideally, the tool of choice should have a rating of "High" in all categories.

As the evaluation matrix suggests, "Nyx" shall be the monitoring tool of choice for the remainder
of the paper.

However, after further research, it became apparent that the tools "Nyx" and "arm" are virtually
identical. That being said, the bulk of online documentation refers to "Nyx" when these tools
are mentioned.

Flags & Nyx Use-cases

By installing the "Nyx" dependency, Tor traffic passing through the relay can be viewed in
different formats including the graphs seen in figure 5.8.

1 $ sudo apt install nyx

Snippet 5.32: Intallation

Figure 5.8 shows the guards usage represented in Nyx. Ultimately, a Tor relays use-cases are
dictated by its acquired flags (as seen in figure 5.8). A Tor relay acquires different flags, such
as "Fast", "Running", etc., based on its performance and characteristics. These flags are
assigned by the Tor’s directory authorities. By deploying a Tor relay via Linode, one can receive
the following flags within a week: Fast, Running, Stable, HSDir, V2Dir, Valid & Guard.

Figure 5.8: Relay Bandwidth Graph

It should be noted that the Tor relay was configured to accommodate a guard as opposed to an
exit node. Therefore, the same rules do not necessarily apply for flags such as "Exit".

47

5.3. Design & Implementation Aalborg University

The following will briefly explain each flag received and how the Tor relay obtained them[45]:

• Fast: Tor relays are marked with this flag if they meet certain bandwidth requirements.
Specifically, they need to have a high enough observed bandwidth to handle Tor network
traffic effectively. The bandwidth measurements are collected by the directory authorities
and updated periodically (a couple of hours).

• Running: This flag simply indicates that a relay is currently operational and accepting
Tor connections. If the relay is online and functioning properly, it will receive this flag.

• Stable: To receive this flag, a relay needs to have been running continuously for a specified
amount of time, (typically around four days). This flag helps ensure that the relay has
demonstrated stability and reliability over an extended period.

• Valid: This flag is assigned to relays that meet certain criteria and pass basic checks.
It indicates that the relay is considered valid and can be included in the Tor network’s
consensus document, which is a shared view of the network’s relays maintained by the
directory authorities. This flag is typically one of the first flags a relay receives.

• V2Dir: This flag is given to relays that are capable of serving as a directory cache for
Tor clients. These relays maintain a copy of the Tor network’s directory information and
can respond to directory requests from clients. They play a role in distributing directory
information and reducing the load on the directory authorities.

• HSDir: This flag is assigned to relays that are eligible to store and serve as introduction
points for THSs. These relays store and provide information about THSs, allowing clients
to connect to them.

• Guard: Finally, this flag is given to relays that are deemed suitable for use as an entry
point (guard) into the Tor network. Guards are expected to have good uptime, bandwidth,
and stability. They serve as the first hop in the Tor circuit and are crucial for user privacy
and security.

Once the "Guard" flag in particular has been acquired, a stable connection to the THS can be
made as displayed in figure 5.9

Figure 5.9: THS establishing a connection to Guard

48

5.3. Design & Implementation Aalborg University

Now that a connection has been established, more details can be viewed through Nyx when
accessing the THS as a client. Nyx provides information about the relays involved in Tor
connections, including their IP addresses. These details can be viewed by entering the Nyx
"connections" option which shows all inbound and outbound network traffic for Tor.

Specifically, Nyx can show the IP addresses of the Tor relays that are part of the circuit the Tor
connection is currently using. It allows users to monitor the performance and status of these
relays, such as their bandwidth usage, uptime, and other relevant metrics.

Figure 5.10: Relay Connections

Nyx primarily focuses on providing a comprehensive overview of the Tor network and its
connections, rather than specifically analyzing traffic direction. That being said, it does have a
"sorting" option. Figure 5.11 reveals the order in which traffic is viewed by default in addition
to the Nyx tool’s ability create new orders.

A category of sorting which is notably absent is a size option. A size option would be
particularly beneficial when analyzing packet sizes for watermarks. This only applies for clear-
web applications, however. As mentioned section 4.1, Tor cells are packets sent through the Tor
network in an encrypted format with fixed sizes. Specifically, these encrypted messages are 512
bytes long. This ensures that the analysis of packet sizes becomes a non-factor.

Ordinarily, comprehensive forensics techniques such as Deep Packet Inspection (DPI) would
help in identifying embedded watermarks. Unfortunately, as the cells are all encrypted and have
fixed sizes, there is no discernible way to differentiate between Tor cells based on their features.

Therefore, Nyx’s sorting feature does not appear to be particularly useful for the purposes of
this experiment.

Figure 5.11: Traffic Sorting

49

5.3. Design & Implementation Aalborg University

5.3.6 Signal Detection

This section will describe the various methodologies in which signal embedding and detection
can occur. Ideally, by embedding a signal at the client-side of a THS interaction, that same
signal should be identified at the compromised guard.

Embedding

Figure 5.12 depicts an embedded watermark on a HTTP request. As the figure showcases, all
that is required for a user to do this is a Tor browser. By accessing the THS in the browser and
utilizing the Inspect feature (right clicking in the browser) one can modify HTTP requests
in the browser.

In this case the payload hello world was added to an ordinary HTTP request of the THS’s
captcha page. The phrase "hello world" would be the watermark in this case e.g. a unique
identifying piece of information pertaining exclusively to the packet in question.

By viewing the Network section of the inspector and specifying the aforementioned payload, the
newly modified HTTP request is sent.

Figure 5.12: Embedding Payload

Now that a watermark has been added to the request, a method of detection must be devised.
Ordinarily, performing DPI on the Tor relays incoming traffic would allow the attacker to derive
the THS’s IP address.

Matching

DPI involves examining the full packet payload, including the header and data sections, to
extract information and perform various actions based on the content.

Additionally, DPI goes beyond simple packet header analysis (e.g. source and destination IP
addresses, port numbers, etc.) and delves into the actual payload of the packets. By examining
the packet contents, DPI can inspect and analyze various protocols, applications, and even
individual payload data.

By utilizing the aforementioned TorPCAP method of forensics, the modified packet can be
spotted on the client-side. The first step is to specify the Wireshark filter:

1 data contains "hello world"

Snippet 5.33: Wireshark Filter

50

5.3. Design & Implementation Aalborg University

Viewing only localhost activity, the watermark is immediately detected as displayed in figure
5.13:

Figure 5.13: Monitoring Payload

This method of DPI cannot be used on the compromised Tor relays traffic, however. As described
in figure 5.5, viewing localhost data transfers only applies on the client-side. However, if viewing
packets in a similar manner on the THS’s guard were feasible, one could determine the THS’s
IP address simply by viewing the destination IP address of the packet.

51

5.4. Evaluation Aalborg University

5.4 Evaluation

This section aims to discuss the takeaways from the PoC and evaluate the different factors which
contributed to the projects outcome.

The objective of this PoC was to leak a THS’s IP address by exploring the possibility of detecting
watermarks via its compromised guard.

The assessments gathered revealed that embedded watermarks could not be detected by dark-
net monitors on the malicious guard. This was due to the encrypted Tor cells and their uniform
sizes. The fact that every cell’s length was identical made it challenging for the guard to discern
any differences. As a result, no IP addresses were leaked from the THS, indicating a setback
to achieve the intended goal. However, it is important to note that this PoC assumes the
Tor network operates correctly and does not consider potential vulnerabilities or attacks on its
encryption.

Nonetheless, this evaluation emphasizes the importance of the lessons learned from the project.

Despite the efforts made to detect watermarks on the THS’s guard, the indiscernible nature of
Tor cells proved to be effective in maintaining the anonymity of the THS. While this outcome
may be disappointing in terms of achieving the project’s objective, it is essential to recognize
the value of these findings and to highlight the robustness of the Tor network’s design and its
ability to protect user privacy.

Additionally, an emphasis must be placed on the limitations of existing research. The theoretical
nature and lack of detail regarding experimental procedures (tools used, successful screenshots
etc.) result in an inability to reproduce the attack methods.

These insights highlight the need for additional experimentation and documentation in this area.
The hope of this project is to enable researchers to develop more comprehensive documentation
and practical approaches for de-anonymization of THSs.

52

Discussion 6
This chapter will reflect on the findings from previous chapters and convey the difficulties faced.

6.1 Reflections

This section touches on the difficulties involved in conducting THS de-anonymization research.

Initially when conducting the experiment, it became apparent that its most time consuming
aspects pertained to the deployment of the malicious guard.

Troubleshooting the many errors found could be describe as nothing less than a "wild goose
chase". This was due to the abstract and vague descriptions of a Tor relay’s life cycle[46]. A
relay’s life cycle refers to the amount of expected waiting time during the various stages of
deployment. Particularly, it was difficult to gauge how long it would take for a relay to be listed
in the Tor Metrics website after deployment. When listed in Tor Metrics, one can be sure the
relay has been up and running. Therefore, it was difficult to know whether or not the relay was
connected to the Tor network and operating correctly. It should be noted for future researchers,
a relay should be visible in the Tor Metrics after a matter of hours (1-3 hours). Additionally,
the waiting period to receive the required guard flag is approximately 1 week (assuming it was
configured correctly).

Extensive time was spent on deploying the relay as it initially was deployed on Replit with the
following directory structure:

./
.torrc
.replit
README.md
replit.nix
run.sh

However, that idea was halted indefinitely as Replit restarts its services every time one exits the
running relay.

The Raspberry pi initially appeared to be the best option as it is design to run for long periods
of time while not requiring monthly subscription payments. Unfortunately, network firewalls
prohibited any Tor based experimentation.

Finally, after extensive testing on faulty systems, a cloud provider proved to be the option of
choice.

In addition to the aforementioned time delays, a lack of communication from the Tor research

53

6.2. Future Work Aalborg University

community was a clear detriment. Including the aforementioned comments left in the threads
of Tor developer forums, the following e-mail was sent out to the authors of papers researching
signal embedding or watermarking:

"Hi XXXX,

My name is Clifford and I’m a Masters student at Aalborg University campus Copenhagen
(Denmark). I’m currently writing my thesis on de-anonymizing hidden services.

I’ve read your paper on "XXXXXXXXXXXX" and had some follow up questions. I was
wondering if you were available for an online teams meeting. Any time would suit me.

Best regards Clifford-Nelly Ndayikengurukiye"

Unfortunately, there were no replies to any of the e-mails. The need to address these authors
was a necessity as no paper displayed a comprehensive PoC. When considering the papers,
each of them shared a common issue wherein, they all lacked sufficient detail in describing
their experimental methodology. This rendered them overly abstract and non-reproducible.
The absence of crucial information hampers the ability of other researchers to replicate the
experiment and validate its findings.

6.2 Future Work

This section will suggest potential avenues future researchers could consider when de-
anonymizing THSs.

What ultimately decides whether a relay can be trusted or not are the Tor directory authorities.

Directory authorities are trusted relays that maintain a list of other currently-running relays[47]
They periodically publish a consensus alongside other directory authorities. Their primary
responsibility is to create and maintain the network’s consensus.

The consensus is a document that lists all of the currently active Tor relays, along with their
various attributes and characteristics[48]. The consensus is updated regularly and is used by
Tor clients to select relays for their circuits.

To create the consensus, directory authorities "vote" independently on which relays should be
included in the consensus and how much influence each relay should have. The directory
authorities then compare their votes and create a final consensus that reflects the collective
judgment of the network.

Whether or not a relay can join the consensus is determined by its "consensus weight". Consensus
weight is a measure of how much trust a particular Tor relay has in the network’s consensus.
Consensus weights are assigned to each relay by the directory authorities.

Relays with higher consensus weights are considered to be more trustworthy and are more likely
to be added to the consensus and used by Tor clients to create circuits throughout the network.

A major success of this project was configuring the malicious guard effectively so one could
receive the highest possible consensus weight in the shortest amount of time. Therefore,
takeaways for future work may include ensuring the THS connects to the malicious guard
on its own accord.

54

6.2. Future Work Aalborg University

Naturally, a relay with a high consensus weight has a higher chance of being selected, however,
in a realistic setting, playing the odds is not a viable option.

Connecting itself would be ideal, however, there is currently no way to ensure a THS utilizes a
specific guard. If this project were to continue, injection attacks would be the most appropriate
option to accomplish this.

Another option would be to exploit a THS for application specific vulnerabilities. By doing this,
an attacker could gain access to the THS via a shell and discern the IP address from there. This
method is not optimal as it would vary from target to target as applications do.

In conclusion, when it comes to de-anonymizing THSs, it is evident that there are numerous
approaches and techniques available. The question then becomes, can an attack method be
executed practically?

55

Conclusion 7
This chapter will conclude the thesis and summarize its findings.

The lessons learned from this project are invaluable and can contribute to the broader
understanding of anonymity and security within Tor.

The projects initial goal was to de-anonymize a THS by exploring the detection of watermarks
from a compromised guard relay.

By ensuring the target utilized the same compromised guard for every constructed circuit, one
could have a direct line of contact to the THS. Therefore, when embedding watermarks in
client-side HTTP requests, the altered packet destined for the THS would be received by the
compromised guard before relaying it. Theoretically, the THS’s IP address could be leaked by
an attacker reviewing the headers of the watermarked packets if they had a direct link to the
THS. This must be done from the guard, however.

The PoC revealed that watermarks could not be detected by relays due to the encrypted Tor
cells being of a uniform size. This finding highlighted the robustness of the Tor network’s design
and its ability to protect user privacy. While this result may not align with the project’s initial
goal, it emphasizes the effectiveness of the existing security measures within the Tor network.

In conclusion, the project’s setbacks serve as a reminder that practical challenges often differ from
theoretical expectations. It highlights the importance of conducting thorough and replicable
experiments to bridge the gap between theory and practice. In addition, it is apparent there
is a lack of detailed and reproducible documentation within the field. By sharing the lessons
learned and the limitations encountered during this project, researchers can contribute to the
collective knowledge and aid further investigations into de-anonymization techniques.

On a final, it is crucial to acknowledge that de-anonymization must always be conducted
within the boundaries of legal and ethical frameworks. Privacy rights, freedom of expression,
and the need for responsible disclosure must be respected and upheld. It is imperative for
law enforcement agencies and security researchers to find a balance between uncovering illicit
activities and ensuring the protection of individual rights and civil liberties.

56

Bibliography

[1] Open Source. History. url: https://www.torproject.org/about/history/.

[2] Dr Mike Pound. TOR Hidden Services - Computerphile. 2017-06. url: https://www.
youtube.com/watch?v=lVcbq_a5N9I&t=548s (visited on 2017-06-09).

[3] Open Source. Some statistics about onions. 2015. url: https://blog.torproject.org/
some-statistics-about-onions/.

[4] Eugene Kaspersky. What is the Deep and Dark Web? url: https://www.kaspersky.
com/resource-center/threats/deep-web.

[5] Google. Google Scholar. url: https://www.scholar.google.com (visited on 2022-10-17).

[6] Albert Kwon. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden
Services. 2015. url: https : / / www . usenix . org / conference / usenixsecurity15 /
technical-sessions/presentation/kwon (visited on 2022-11-05).

[7] Andriy Panchenko. Analysis of Fingerprinting Techniques for Tor Hidden Services.
2017. url: https : / / dl . acm . org / doi / abs / 10 . 1145 / 3139550 . 3139564 ?
casa_token=uanxg_Z3lbUAAAAA:P8uRGiIGt_Zp2460lXqKyCQpgiWmmb5N6adBCrY_Ml5-
aHNowvuaxQHHROuj6NxNN1SeOFvA9WuR (visited on 2022-11-05).

[8] Asya Mitseva. POSTER: Fingerprinting Tor Hidden Services. 2016. url: https://dl.
acm . org / doi / abs / 10 . 1145 / 2976749 . 2989054 ? casa _ token = MsnBItE4GpkAAAAA :
diavFdfoRsfGsRwpPnF3ObnWlPobJxB0nu9b7ECEWGLLw2ncXXLMmqsf60RGNokDk1wmAcXyn0a-
Eg (visited on 2022-11-12).

[9] Marc Juarez Miro. Fingerprinting Hidden Service Circuits from a Tor Middle Relay. 2017.
url: https://www.research.ed.ac.uk/en/publications/fingerprinting-hidden-
service-circuits-from-a-tor-middle-relay (visited on 2022-11-12).

[10] Muqian Chen. Napping Guard: Deanonymizing Tor Hidden Service in a Stealthy Way.
2020. url: https://ieeexplore.ieee.org/abstract/document/9343014?casa_token=
7 - cvHB4VK6AAAAAA : jVNbSfVGEqcC6F _ S12BsyIbjf5c0nG7g6vjBYSJJUkJZIoOT18Zwuz _
fNorVXYDEBfLEEZA9 (visited on 2022-11-05).

[11] Muqian Chen. SignalCookie: Discovering Guard Relays of Hidden Services in Parallel.
2019. url: https://ieeexplore.ieee.org/abstract/document/8969639?casa_token=
8q6afyFpDXUAAAAA:fwl_RGZKR0YVG-U4dNBmxTdSVQCsoAaA6GxFF1gu7i9rFR0jHM3qHvnGBbhFsapFP_
FjpzAn (visited on 2022-11-05).

[12] Alex Biryukov. Trawling for Tor Hidden Services: Detection, Measurement, Deanonymiza-
tion. 2013. url: https://ieeexplore.ieee.org/abstract/document/6547103?casa_
token=9SMp1Sloz54AAAAA:i522FNoVpOqHTxdA1S4SnLgCV6uytsL2b0Td2RZv5LbnBu0QZwWyslHAwaBm6L9m7P1PSN4X
(visited on 2022-11-05).

[13] Sabita Nepal. Deanonymizing schemes of hidden services in tor network: A survey. 2015.
url: https://ieeexplore.ieee.org/abstract/document/7057949?casa_token=
WjWdwIVr41sAAAAA:DQ5Cg5TTpbKxTprQSRJTrxKiNcqA8XQO8yzVJEmplioJ0rYaK- bJb4Q_
J8_RiK0opsWAiw2O (visited on 2022-11-05).

57

https://www.torproject.org/about/history/
https://www.youtube.com/watch?v=lVcbq_a5N9I&t=548s
https://www.youtube.com/watch?v=lVcbq_a5N9I&t=548s
https://blog.torproject.org/some-statistics-about-onions/
https://blog.torproject.org/some-statistics-about-onions/
https://www.kaspersky.com/resource-center/threats/deep-web
https://www.kaspersky.com/resource-center/threats/deep-web
https://www.scholar.google.com
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/kwon
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/kwon
https://dl.acm.org/doi/abs/10.1145/3139550.3139564?casa_token=uanxg_Z3lbUAAAAA:P8uRGiIGt_Zp2460lXqKyCQpgiWmmb5N6adBCrY_Ml5-aHNowvuaxQHHROuj6NxNN1SeOFvA9WuR
https://dl.acm.org/doi/abs/10.1145/3139550.3139564?casa_token=uanxg_Z3lbUAAAAA:P8uRGiIGt_Zp2460lXqKyCQpgiWmmb5N6adBCrY_Ml5-aHNowvuaxQHHROuj6NxNN1SeOFvA9WuR
https://dl.acm.org/doi/abs/10.1145/3139550.3139564?casa_token=uanxg_Z3lbUAAAAA:P8uRGiIGt_Zp2460lXqKyCQpgiWmmb5N6adBCrY_Ml5-aHNowvuaxQHHROuj6NxNN1SeOFvA9WuR
https://dl.acm.org/doi/abs/10.1145/2976749.2989054?casa_token=MsnBItE4GpkAAAAA:diavFdfoRsfGsRwpPnF3ObnWlPobJxB0nu9b7ECEWGLLw2ncXXLMmqsf60RGNokDk1wmAcXyn0a-Eg
https://dl.acm.org/doi/abs/10.1145/2976749.2989054?casa_token=MsnBItE4GpkAAAAA:diavFdfoRsfGsRwpPnF3ObnWlPobJxB0nu9b7ECEWGLLw2ncXXLMmqsf60RGNokDk1wmAcXyn0a-Eg
https://dl.acm.org/doi/abs/10.1145/2976749.2989054?casa_token=MsnBItE4GpkAAAAA:diavFdfoRsfGsRwpPnF3ObnWlPobJxB0nu9b7ECEWGLLw2ncXXLMmqsf60RGNokDk1wmAcXyn0a-Eg
https://dl.acm.org/doi/abs/10.1145/2976749.2989054?casa_token=MsnBItE4GpkAAAAA:diavFdfoRsfGsRwpPnF3ObnWlPobJxB0nu9b7ECEWGLLw2ncXXLMmqsf60RGNokDk1wmAcXyn0a-Eg
https://www.research.ed.ac.uk/en/publications/fingerprinting-hidden-service-circuits-from-a-tor-middle-relay
https://www.research.ed.ac.uk/en/publications/fingerprinting-hidden-service-circuits-from-a-tor-middle-relay
https://ieeexplore.ieee.org/abstract/document/9343014?casa_token=7-cvHB4VK6AAAAAA:jVNbSfVGEqcC6F_S12BsyIbjf5c0nG7g6vjBYSJJUkJZIoOT18Zwuz_fNorVXYDEBfLEEZA9
https://ieeexplore.ieee.org/abstract/document/9343014?casa_token=7-cvHB4VK6AAAAAA:jVNbSfVGEqcC6F_S12BsyIbjf5c0nG7g6vjBYSJJUkJZIoOT18Zwuz_fNorVXYDEBfLEEZA9
https://ieeexplore.ieee.org/abstract/document/9343014?casa_token=7-cvHB4VK6AAAAAA:jVNbSfVGEqcC6F_S12BsyIbjf5c0nG7g6vjBYSJJUkJZIoOT18Zwuz_fNorVXYDEBfLEEZA9
https://ieeexplore.ieee.org/abstract/document/8969639?casa_token=8q6afyFpDXUAAAAA:fwl_RGZKR0YVG-U4dNBmxTdSVQCsoAaA6GxFF1gu7i9rFR0jHM3qHvnGBbhFsapFP_FjpzAn
https://ieeexplore.ieee.org/abstract/document/8969639?casa_token=8q6afyFpDXUAAAAA:fwl_RGZKR0YVG-U4dNBmxTdSVQCsoAaA6GxFF1gu7i9rFR0jHM3qHvnGBbhFsapFP_FjpzAn
https://ieeexplore.ieee.org/abstract/document/8969639?casa_token=8q6afyFpDXUAAAAA:fwl_RGZKR0YVG-U4dNBmxTdSVQCsoAaA6GxFF1gu7i9rFR0jHM3qHvnGBbhFsapFP_FjpzAn
https://ieeexplore.ieee.org/abstract/document/6547103?casa_token=9SMp1Sloz54AAAAA:i522FNoVpOqHTxdA1S4SnLgCV6uytsL2b0Td2RZv5LbnBu0QZwWyslHAwaBm6L9m7P1PSN4X
https://ieeexplore.ieee.org/abstract/document/6547103?casa_token=9SMp1Sloz54AAAAA:i522FNoVpOqHTxdA1S4SnLgCV6uytsL2b0Td2RZv5LbnBu0QZwWyslHAwaBm6L9m7P1PSN4X
https://ieeexplore.ieee.org/abstract/document/7057949?casa_token=WjWdwIVr41sAAAAA:DQ5Cg5TTpbKxTprQSRJTrxKiNcqA8XQO8yzVJEmplioJ0rYaK-bJb4Q_J8_RiK0opsWAiw2O
https://ieeexplore.ieee.org/abstract/document/7057949?casa_token=WjWdwIVr41sAAAAA:DQ5Cg5TTpbKxTprQSRJTrxKiNcqA8XQO8yzVJEmplioJ0rYaK-bJb4Q_J8_RiK0opsWAiw2O
https://ieeexplore.ieee.org/abstract/document/7057949?casa_token=WjWdwIVr41sAAAAA:DQ5Cg5TTpbKxTprQSRJTrxKiNcqA8XQO8yzVJEmplioJ0rYaK-bJb4Q_J8_RiK0opsWAiw2O

Bibliography Aalborg University

[14] Diana L. Huete Trujillo. Tor Hidden Services: A Systematic Literature Review. 2021. url:
https://www.mdpi.com/2624-800X/1/3/25 (visited on 2022-11-12).

[15] Srdjan Matic. CARONTE: Detecting Location Leaks for Deanonymizing Tor Hidden Ser-
vices. 2015. url: https://dl.acm.org/doi/abs/10.1145/2810103.2813667?casa_
token=41krh19r4g0AAAAA:1zppUIMwjbgaw2ICxaVVM-nMk3UbXWAjtpPmAgK2k5Ygy54o4mAfkxZxs_
KqsaRoF4jGiCDOoKFt (visited on 2022-11-05).

[16] Rob Jansen. The Sniper Attack: Anonymously Deanonymizing and Disabling the Tor
Network. 2014. url: https : / / apps . dtic . mil / sti / citations / ADA599695 (visited
on 2022-11-05).

[17] Amirali Sanatinia. Off-path man-in-the-middle attack on tor hidden services. 2017. url:
https://www.ccs.neu.edu/home/amirali/publications/tor_mitm_nesd.pdf (visited
on 2022-11-05).

[18] Alfonso Iacovazzi. Inflow: Inverse Network Flow Watermarking for Detecting Hidden
Servers. 2018. url: https://ieeexplore.ieee.org/abstract/document/8486375?
casa _ token = Akr41j9m3jUAAAAA : w8Js61nmxpVLXSPPyxMV0Z8ml0K - nU _ 3MoatfsC -
LSCwdcJ2EJDEa6BbD9JAfc_8DObresbadQ (visited on 2022-11-05).

[19] Varun Nair. Inventive Computation and Information Technologies. 2022. url: https :
//link.springer.com/chapter/10.1007/978-981-16-6723-7_3 (visited on 2022-11-
12).

[20] Wenlin Han. Darknet and Bitcoin De-anonymization: Emerging Development. 2020. url:
https://ieeexplore.ieee.org/abstract/document/9161431 (visited on 2022-11-12).

[21] Marco Simioni. Investigative Techniques for the De-Anonymization of Hidden Services.
2021. url: https://ieeexplore.ieee.org/abstract/document/9382354?casa_token=
EnGJ6EP-SggAAAAA:QAThU6106ViopH3Pnw87ejnuuUnrxXuvS1nDuT30wXDQPfZijp4Uh6Vx7VShX-
I-kpl-aMt_Cw (visited on 2022-11-12).

[22] Massimo Bernaschi. Exploring and Analyzing the Tor Hidden Services Graph. 2017. url:
https://dl.acm.org/doi/abs/10.1145/3008662?casa_token=aNgijYZTOWYAAAAA:
Nkgkk1TnwII1OAXOj8x2huA0wcuk7NH3c6HJeHY_rbeweDWJjKA5sU2uZHHPcTdfIX7IdHUFOoOiSA
(visited on 2022-11-12).

[23] Yi Qin. Tracing Tor Hidden Service Through Protocol Characteristics. 2022. url:
https : / / ieeexplore . ieee . org / abstract / document / 9868859 ? casa _
token = TXeIX6L6v10AAAAA : CCyUzHYqsfrhN - i7bPQkfP4mWqsOq0qqAgrO6hOvALnxYXq -
MZUiHetMOuU0uGZuLsZLsewMGQ (visited on 2022-11-12).

[24] Johannes Ödén. Deanonymizing Onion Services by Introducing Packet Delay. 2022. url:
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1664834&dswid=
6533 (visited on 2022-11-12).

[25] Jianjun Lin. Deanonymizing Tor in a Stealthy Way. 2019. url: https://ieeexplore.
ieee.org/abstract/document/8958750?casa_token=tU7Tn8dzrKgAAAAA:BU3encUg_
fILDYIOTzI8hik8q8nW98jUbCXEWTo79Akk1G68b7NmQdLbZ7coeGHb_khrOq2caw (visited on
2022-11-12).

[26] Autumn Skerritt. How Does Tor Really Work? The Definitive Visual Guide. url: https:
//skerritt.blog/how-does-tor-really-work/.

[27] Dr Mike Pound. How TOR Works - Computerphile. 2017-05. url: https://www.youtube.
com/watch?v=QRYzre4bf7I&t=1s (visited on 2017-05-31).

58

https://www.mdpi.com/2624-800X/1/3/25
https://dl.acm.org/doi/abs/10.1145/2810103.2813667?casa_token=41krh19r4g0AAAAA:1zppUIMwjbgaw2ICxaVVM-nMk3UbXWAjtpPmAgK2k5Ygy54o4mAfkxZxs_KqsaRoF4jGiCDOoKFt
https://dl.acm.org/doi/abs/10.1145/2810103.2813667?casa_token=41krh19r4g0AAAAA:1zppUIMwjbgaw2ICxaVVM-nMk3UbXWAjtpPmAgK2k5Ygy54o4mAfkxZxs_KqsaRoF4jGiCDOoKFt
https://dl.acm.org/doi/abs/10.1145/2810103.2813667?casa_token=41krh19r4g0AAAAA:1zppUIMwjbgaw2ICxaVVM-nMk3UbXWAjtpPmAgK2k5Ygy54o4mAfkxZxs_KqsaRoF4jGiCDOoKFt
https://apps.dtic.mil/sti/citations/ADA599695
https://www.ccs.neu.edu/home/amirali/publications/tor_mitm_nesd.pdf
https://ieeexplore.ieee.org/abstract/document/8486375?casa_token=Akr41j9m3jUAAAAA:w8Js61nmxpVLXSPPyxMV0Z8ml0K-nU_3MoatfsC-LSCwdcJ2EJDEa6BbD9JAfc_8DObresbadQ
https://ieeexplore.ieee.org/abstract/document/8486375?casa_token=Akr41j9m3jUAAAAA:w8Js61nmxpVLXSPPyxMV0Z8ml0K-nU_3MoatfsC-LSCwdcJ2EJDEa6BbD9JAfc_8DObresbadQ
https://ieeexplore.ieee.org/abstract/document/8486375?casa_token=Akr41j9m3jUAAAAA:w8Js61nmxpVLXSPPyxMV0Z8ml0K-nU_3MoatfsC-LSCwdcJ2EJDEa6BbD9JAfc_8DObresbadQ
https://link.springer.com/chapter/10.1007/978-981-16-6723-7_3
https://link.springer.com/chapter/10.1007/978-981-16-6723-7_3
https://ieeexplore.ieee.org/abstract/document/9161431
https://ieeexplore.ieee.org/abstract/document/9382354?casa_token=EnGJ6EP-SggAAAAA:QAThU6106ViopH3Pnw87ejnuuUnrxXuvS1nDuT30wXDQPfZijp4Uh6Vx7VShX-I-kpl-aMt_Cw
https://ieeexplore.ieee.org/abstract/document/9382354?casa_token=EnGJ6EP-SggAAAAA:QAThU6106ViopH3Pnw87ejnuuUnrxXuvS1nDuT30wXDQPfZijp4Uh6Vx7VShX-I-kpl-aMt_Cw
https://ieeexplore.ieee.org/abstract/document/9382354?casa_token=EnGJ6EP-SggAAAAA:QAThU6106ViopH3Pnw87ejnuuUnrxXuvS1nDuT30wXDQPfZijp4Uh6Vx7VShX-I-kpl-aMt_Cw
https://dl.acm.org/doi/abs/10.1145/3008662?casa_token=aNgijYZTOWYAAAAA:Nkgkk1TnwII1OAXOj8x2huA0wcuk7NH3c6HJeHY_rbeweDWJjKA5sU2uZHHPcTdfIX7IdHUFOoOiSA
https://dl.acm.org/doi/abs/10.1145/3008662?casa_token=aNgijYZTOWYAAAAA:Nkgkk1TnwII1OAXOj8x2huA0wcuk7NH3c6HJeHY_rbeweDWJjKA5sU2uZHHPcTdfIX7IdHUFOoOiSA
https://ieeexplore.ieee.org/abstract/document/9868859?casa_token=TXeIX6L6v10AAAAA:CCyUzHYqsfrhN-i7bPQkfP4mWqsOq0qqAgrO6hOvALnxYXq-MZUiHetMOuU0uGZuLsZLsewMGQ
https://ieeexplore.ieee.org/abstract/document/9868859?casa_token=TXeIX6L6v10AAAAA:CCyUzHYqsfrhN-i7bPQkfP4mWqsOq0qqAgrO6hOvALnxYXq-MZUiHetMOuU0uGZuLsZLsewMGQ
https://ieeexplore.ieee.org/abstract/document/9868859?casa_token=TXeIX6L6v10AAAAA:CCyUzHYqsfrhN-i7bPQkfP4mWqsOq0qqAgrO6hOvALnxYXq-MZUiHetMOuU0uGZuLsZLsewMGQ
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1664834&dswid=6533
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1664834&dswid=6533
https://ieeexplore.ieee.org/abstract/document/8958750?casa_token=tU7Tn8dzrKgAAAAA:BU3encUg_fILDYIOTzI8hik8q8nW98jUbCXEWTo79Akk1G68b7NmQdLbZ7coeGHb_khrOq2caw
https://ieeexplore.ieee.org/abstract/document/8958750?casa_token=tU7Tn8dzrKgAAAAA:BU3encUg_fILDYIOTzI8hik8q8nW98jUbCXEWTo79Akk1G68b7NmQdLbZ7coeGHb_khrOq2caw
https://ieeexplore.ieee.org/abstract/document/8958750?casa_token=tU7Tn8dzrKgAAAAA:BU3encUg_fILDYIOTzI8hik8q8nW98jUbCXEWTo79Akk1G68b7NmQdLbZ7coeGHb_khrOq2caw
https://skerritt.blog/how-does-tor-really-work/
https://skerritt.blog/how-does-tor-really-work/
https://www.youtube.com/watch?v=QRYzre4bf7I&t=1s
https://www.youtube.com/watch?v=QRYzre4bf7I&t=1s

Bibliography Aalborg University

[28] Ashwin S. How to Stay Anonymous on the Internet using TOR Network? url: https:
//www.hacker9.com/can-hide-online-using-tor-network/.

[29] Dr Mike Pound. TLS Handshake Explained - Computerphile. 2020-11. url: https://www.
youtube.com/watch?v=86cQJ0MMses (visited on 2020-11-06).

[30] Open Source. How do Onion Services work? url: https://community.torproject.org/
onion-services/overview/.

[31] Clifford-Nelly Ndayikengurukiye. Pentesting a Vulnerable Hidden Service. Academic
Paper. 2022.

[32] "Tien Nguyen". Node.js Express Login example with MySQL database. url: https://dev.
to/tienbku/node-js-express-login-example-with-mysql-database-2n51.

[33] Arnav Kumar. Deploy Your Node.js (or any) Apps to Dark Web! It’s so Easy! url: https:
//dev.to/arnavkr/deploy-your-nodejs-or-any-apps-to-dark-web-its-so-easy-
26el.

[34] "". Replit. url: https://en.wikipedia.org/wiki/Replit.

[35] Roger Dingledine. Client’s choice of rend point can leak info about hidden service’s guard
relay. url: https://gitlab.torproject.org/tpo/core/tor/-/issues/14917.

[36] "". iptables. url: https://en.wikipedia.org/wiki/Iptables.

[37] "". about. url: https://www.linode.com/company/about/.

[38] "". My relay or bridge is overloaded what does this mean? url: https : / / support .
torproject.org/relay-operators/relay-bridge-overloaded/#metricsport.

[39] "". Top Relays by Consensus Weight. url: https://metrics.torproject.org/rs.html#
toprelays.

[40] "". Linode 4GB by Linode. url: https://pcr.cloud-mercato.com/providers/linode/
flavors/g6-standard-2/performance/network-bandwidth.

[41] Leon Kowalski. TorPCAP - Tor Network Forensics. url: https://www.netresec.com/
?page=Blog&month=2018-12&post=TorPCAP---Tor-Network-Forensics.

[42] "". Welcome to Nyx. url: https://nyx.torproject.org/.

[43] "". Man Pages. url: https://manpages.ubuntu.com/manpages/bionic/man1/arm.1.
html.

[44] "". Analysis. url: https://metrics.torproject.org/.

[45] "". Tor directory protocol, version 3. url: https://github.com/torproject/torspec/
blob/main/dir-spec.txt.

[46] "arma". The lifecycle of a new relay. url: https://blog.torproject.org/lifecycle-
of-a-new-relay/.

[47] "". Directory Authority. url: https://support.torproject.org/glossary/directory-
authority/.

[48] "". consensus. url: https://support.torproject.org/glossary/consensus/.

59

https://www.hacker9.com/can-hide-online-using-tor-network/
https://www.hacker9.com/can-hide-online-using-tor-network/
https://www.youtube.com/watch?v=86cQJ0MMses
https://www.youtube.com/watch?v=86cQJ0MMses
https://community.torproject.org/onion-services/overview/
https://community.torproject.org/onion-services/overview/
https://dev.to/tienbku/node-js-express-login-example-with-mysql-database-2n51
https://dev.to/tienbku/node-js-express-login-example-with-mysql-database-2n51
https://dev.to/arnavkr/deploy-your-nodejs-or-any-apps-to-dark-web-its-so-easy-26el
https://dev.to/arnavkr/deploy-your-nodejs-or-any-apps-to-dark-web-its-so-easy-26el
https://dev.to/arnavkr/deploy-your-nodejs-or-any-apps-to-dark-web-its-so-easy-26el
https://en.wikipedia.org/wiki/Replit
https://gitlab.torproject.org/tpo/core/tor/-/issues/14917
https://en.wikipedia.org/wiki/Iptables
https://www.linode.com/company/about/
https://support.torproject.org/relay-operators/relay-bridge-overloaded/#metricsport
https://support.torproject.org/relay-operators/relay-bridge-overloaded/#metricsport
https://metrics.torproject.org/rs.html#toprelays
https://metrics.torproject.org/rs.html#toprelays
https://pcr.cloud-mercato.com/providers/linode/flavors/g6-standard-2/performance/network-bandwidth
https://pcr.cloud-mercato.com/providers/linode/flavors/g6-standard-2/performance/network-bandwidth
https://www.netresec.com/?page=Blog&month=2018-12&post=TorPCAP---Tor-Network-Forensics
https://www.netresec.com/?page=Blog&month=2018-12&post=TorPCAP---Tor-Network-Forensics
https://nyx.torproject.org/
https://manpages.ubuntu.com/manpages/bionic/man1/arm.1.html
https://manpages.ubuntu.com/manpages/bionic/man1/arm.1.html
https://metrics.torproject.org/
https://github.com/torproject/torspec/blob/main/dir-spec.txt
https://github.com/torproject/torspec/blob/main/dir-spec.txt
https://blog.torproject.org/lifecycle-of-a-new-relay/
https://blog.torproject.org/lifecycle-of-a-new-relay/
https://support.torproject.org/glossary/directory-authority/
https://support.torproject.org/glossary/directory-authority/
https://support.torproject.org/glossary/consensus/

Relay Machine Info A
AauGuardMasterRelay - Machine Statistics

Figure A.1: Relay VM Analytics (1)

60

Aalborg University

Figure A.2: Relay VM Analytics (2)

Figure A.3: Relay VM Network Traffic

61

Aalborg University

MasterRelayAauGuard - Machine Statistics

Figure A.4: Relay VM Analytics (1)

62

Aalborg University

Figure A.5: Relay VM Analytics (2)

Figure A.6: Relay VM Network Traffic

63

Relay Metrics B
AauGuardMasterRelay - Specifications

Figure B.1: Relay Configurations[39]

64

Aalborg University

Figure B.2: Relay Properties[39]

65

Aalborg University

MasterRelayAauGuard - Specifications

Figure B.3: Relay Configurations[39]

66

Aalborg University

Figure B.4: Relay Properties[39]

67

Aalborg University

AauGuardMasterRelay - Graphs

Figure B.5: Data Usage Evolution[39]

Figure B.6: Flag Assignment Evolution[39]

68

Aalborg University

MasterRelayAauGuard - Graphs

Figure B.7: Data Usage Evolution[39]

Figure B.8: Flag Assignment Evolution[39]

69

THS Pages C
Captcha Page

Figure C.1: Captcha Page

70

Aalborg University

Home Page

Figure C.2: Home Page

71

Aalborg University

Sing-up Page

Figure C.3: Sign-up Page

72

Aalborg University

Login Page

Figure C.4: Login Page

73

Aalborg University

Profile Page

Figure C.5: Profile Page

74

Relay Statistics D

Figure D.1: Advertised vs Observed[44]

75

Aalborg University

Figure D.2: Bridges vs Relays[44]

Figure D.3: Tor versions used for relays[44]

76

Aalborg University

Figure D.4: IP versions in use[44]

Figure D.5: Relay Deployment based on Platform[44]

77

Aalborg University

Figure D.6: Flag Types in use[44]

Figure D.7: .onion v2 traffic in 2023[44]

78

Aalborg University

Figure D.8: .onion v3 traffic in 2023[44]

Figure D.9: Amount of .onion v3 in 2023[44]

79

	Front page
	Title page
	1 Introduction
	1.1 Problem Statement

	2 Methodology
	2.1 Approach

	3 Literature Review
	3.1 Attack Vectors

	4 Infrastructure
	4.1 Onion Routing
	4.2 Onion Services
	4.3 Application Architecture

	5 De-anonymization
	5.1 Conceptualization
	5.2 Scoping & Requirements
	5.3 Design & Implementation
	5.4 Evaluation

	6 Discussion
	6.1 Reflections
	6.2 Future Work

	7 Conclusion
	Bibliography
	A Relay Machine Info
	B Relay Metrics
	C THS Pages
	D Relay Statistics

