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Reading Guide

The purpose of the following chapter is to clarify and provide a description of terms
often utilised on this report. These descriptions can be seen in the following list:

• Virtual Machine (VM).

• GNS3: The network emulation platform used for the emulation, configuration and
testing of the DAMOCLES project.

• QEMU (Quick Emulator): An open-source machine emulator and visualiser. It is
used for emulating the hardware and devices of the DAMOCLES project. QEMU
is a type 2 hypervisor that runs within user space.

• TTPs: Tactics Techniques and Procedures.

• Kernel-based Virtual Machine (KVM): KVM is a Linux Kernel module. Essen-
tially it is a type 1 (bare-metal) hypervisor, that enables running multiple VMs on
a single machine.

• T-Pot: T-Pot is a honeypot platform that enables the deployment and monitoring
of over 20 honeypot software. To achieve this, T-Pot utilises Docker and Docker-
compose as well as the ELK stack.

• Docker: An open-source platform to build, deploy, run and manage containers.

• Docker Container: A standard unit of software that packages up code and all
the required dependencies so an application can be executed seamlessly from
one computing environment to another. To deploy Docker containers, the Docker
engine is employed.

• Docker Image: A Docker image is the blueprint which transforms into a Docker
container at runtime. It’s a lightweight, standalone, executable package of soft-
ware that includes everything needed to build a Docker container
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• Alpine Linux: A lightweight Linux distribution designed for (and not only) em-
bedded devices with limited computational capabilities. Due to its design, it also
commonly used in containers and virtual machines.

• Network Address Translation (NAT) Protocol

• Security Onion (SO): Security Onion or SO is a free and open platform for threat
hunting, security monitoring and logging. It employs a variety of tools like ELK,
Suricata, Zeek and CyberChef to achieve the aforementioned objectives.

• ELK stack: Often referred as Elasticsearch, the ELK stack comprises of three
main elements the Elasticsearch, Logstash and Kibana. It allows log aggregation
and analysis from systems and applications as well as the creation of visualisa-
tions for monitoring and security analysis.

• Command and Control Server (C&C or CNC): The server that acts as the main
control interface for the botnet.

• Loader Server: The server rensponsible for loading the botnet malware to the
brute forced device

• scanListener Utility: The said utility, listens for credentials of machines that have
been brute-forced by the bots.

• Mirai Botnet: Mirai is a botnet malware that infects embedded/IoT devices to
form the botnet.

• pfSense: pfSense is an open-source router/firewall operating system based on
FreeBSD. It can be installed in a variety of hardware and as a virtual machine.

• BusyBox: The BusyBox utility combines different common UNIX utilities in a
small executable package. Due to its small computational requirements it is often
utilized by small or embedded systems.

• Cockpit: Cockpit is a web-based GUI for servers. Its main purpose is to provide
a modern-looking and user-friendly interface to manage and administrate Linux
servers.

• Nginx: Nginx is an open-source HTTP web server and proxy software.

• OpenvSwitch (OVS): OpenvSwitch is an open-source distributed virtual multi-
layer switch. It is well suited to function as a virtual switch in emulated and simu-
lated environments.

• GUI: Graphical User Interface
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• Indicator of Compromise (IoC): Artifacts and forensics evidence present in a
system or network that indicate that the latter has either been breached or com-
promised.

• Indicator of Attack (IoA): Signs that malicious actions are ongoing or have al-
ready been carried out. IoAs are based on Tactics, Techniques and Procedures
(TTPs). IoAs are not tangible artifacts but instead are more focused on be-
havioural patterns and activity.

• Software Defined Networks (SDNs): A networking approach that utilises software-
based controllers to create and manage virtual and physical networks.

• Raspberry Pi (RPi): Small, single-board computer.

• Network Intrusion Detection System (NIDS).
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Chapter 1

Introduction

On average, 2200 cyber attacks happen every day, which is equivalent to one attack
every 39 seconds [1]. Some of the most infamous attacks include malware, Denial
of Service (DoS), phishing, and exploiting IoT devices [2]. Threat actors make use
of any vulnerability available to achieve their nefarious goals. This is why studying
vulnerabilities, threats and exploits is increasingly prioritised every year.

A viable solution adopted by researchers and industry professionals to provide best
practices regarding all aspects of security is through studying malware and attacks
through threat emulation scenarios. This approach gives them the ability to:

i Gain insights into the nature, Indicators of Attack (IoA) and the TTPs used by
threat actors,

ii Identify and investigate adversarial behaviours using Indicators of Compromise
(IoC),

iii Deploy and enhance proactive and reactive countermeasures,

iv Use the information gathered for CTI and OSINT purposes.

High on the list of popular malware reside botnets [2], which are known to infect thou-
sands of computers, controlled usually by one entity (bot master). The subject of bot-
nets is broad, due to their ever-changing nature, variate target types, as well as motives
and mondus operandi.

Project DAMOCLES aims to research and utilise popular botnets, using a holistic ap-
proach, e.g. by observing the malware’s behaviour, as well as by analysing their infras-
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tructure. As mentioned before, there are many reasons for cyber security experts to
study botnets. In that aspect, we aspire to contribute to this field of cyber security, by
demonstrating step by step our process of studying botnets, from the research phase,
to deploying an emulated environment, to exemplifying monitoring and analysis tools
and methodologies. Our approach is inspired - as will be apparent later in this project
- by the numerous security professionals who decided to share their experiences and
insights of researching botnets and/or testing them within their own emulations.

1.1 Problem formulation

As of the first quarter of 2023, DDoS attacks are still a preferred method of disrupting the
operations of a wide range of targets from industries such as healthcare and banking,
as well as universities and airports. Organised groups leverage both new and variants
of old botnets in order to overwhelm servers worldwide with traffic [3].

This real-life problem represents the premise, and the goal of this project can be sum-
marised with the research question below.

How can we analyse botnet behaviour and infrastructure within a dynamic network
environment?

Project DAMOCLES provides the means to monitor and analyse botnet malware, com-
ponents and their interactions, i.e. within a testbed.

To further narrow down the scope and shape the trajectory of this project, the following
sub-questions arose.

• What are the requirements for a dynamic network environment?

• What tools, techniques and technologies can we leverage to satisfy the aforemen-
tioned requirements in order to study botnet infrastructure?

• How can we monitor the traffic and log the behaviour of the botnet?

The rest of the report is structured as follows: Chapter 2 explains the methodologies
applied in our research approach. Chapter 3 presents the State of the Art for this
project by exploring the infrastructure and behaviour of botnet networks while setting
the requirements for studying botnets in dynamic network environments - testbeds.
Based on the State of the Art the design and architecture of the DAMOCLES testbed
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are discussed in Chapter 4. The implementation and the associated configuration of
the botnet deployment and the monitoring tools employed is laid out in Chapter 5. The
description of the threat emulation scenario and the analysis of the generated results
are presented in Chapter 6. Chapter 7 validates our results and discusses our future
work. Lastly, Chapter 8 summarises our findings and concludes the report.

1.2 Limitations

This project has encountered certain limitations throughout its course, due to the fol-
lowing reasons:

• Finding botnet source code proved to be challenging. Its scarcity and the fact that
most of the code is quite old provided a significant obstacle.

• Estimated time versus allocated time. Setbacks in terms of setting up and in-
stalling the appropriate components for project DAMOCLES. This is where keep-
ing a back-log and utilising the chosen process model has proven to be advanta-
geous.

• Modifying the malware source code and deploying the necessary systems for the
botnet to be fully operational (e.g. customising the victim systems to match the
botnet’s attack vectors).



Chapter 2

Methodology

This chapter presents the methodologies used throughout this project, such as the
process model followed, different diagrams to represent the system visually or system
requirement types. They are all described briefly, the focus being on the reason for
having them, as well as on how they are used.

2.1 Process model

Due to the learning process and the experimental nature of this project, the chosen
process model is Scrum, as it is a suitable agile methodology.

Scrum is a framework used within management of development projects, such as this
one. Some of the benefits of Scrum remarked within this project are as follows [4].

• Sprints - the time-based increments of work, which offer the advantage of deliver-
ing as much valuable results as possible, within the decided time frame.

• Transparency, inspection, and adaptation - the three pillars of Scrum [4].

– Adaption - the project can change and adapt in terms of requirements, for
example, as more information and experience are gathered.

– Transparency and inspection - through recurring status meetings, called Scrum
meetings, both the group members and the supervisor have an overview of
the current state of the project at the respective point in time.
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Moreover, to keep track of tasks and their status, Scrum is combined with the Kanban
framework [5]. The latter has been adapted to this project, using the following four
stages for tasks:

• To do,

• Researching,

• In progress,

• Done.

With their suggestive names, the tasks are organised in these four categories to show
whether they are planned to be done within the current sprint, are in process of re-
searching, being in progress of delivery or evaluated and done. This framework has
proved to be very effective and blends in nicely with the ’transparency’ and ’inspection’
concepts introduced by Scrum.

2.2 Literature review

This project builds upon previous works, which is why a literature review is conducted.
The chosen methodology is a Systematic Literature Review (SLR), following the steps
identified by the Charles Sturt University library. The reason for choosing it is because,
as the authors advertise, it features a comprehensive and flexible nature [6].

There are seven phases of SLR[6]:

i Identify your research question - define the scope of the report and propose a
research question that incorporates all the goals of the work;

ii Develop your protocol - identify the methodologies required in order to achieve
said goals;

iii Conduct systematic searches - develop a search strategy, then document and
review it;

iv Screening - asses and triage the papers/articles;

v Critical appraisal - examine the context and determine their trustworthiness;
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vi Data extraction and synthesis - extract the relevant information and make a table;

vii Writing and publishing - finalising the report using the newly acquired data.

The first two steps are covered in the first and current chapter of this report. The real-
life problem that DAMOCLES tackles is described and summarised with a research
question. This part represents the main goals of the project. The Methodology chapter
illustrates the ‘protocol’, which sets the tone of how the problem is approached.

Based on these initial ideas, the systematic search is conducted. Our strategy was to
decide on a lower-end publication year, find trusted databases for papers, and choose
relevant keywords. These decisions led to a preliminary list of around 40 papers. We
took into consideration mostly papers written after 2016, with a few exceptions, the old-
est one being from 2009. We chose 2016 because it coincides with the year that Mirai
was first encountered. The vast majority of the papers were found on IEEE, followed by
Scopus and Usenix. The keywords leveraged to search for papers were ‘IoT network
testbed’, ’botnet analysis’, and ’Mirai’.

The list of papers went through two triaging stages. The first one was part of screen-
ing, where we split the papers into two categories: ‘Testbed’ and ‘Botnet’. This was
performed so as to have an overview of which papers focus on deploying a testbed for
malware analysis and which of them are research papers on the subject of botnets. The
second stage has been to do a systematic examination of the papers, judging by the fol-
lowing aspects: read through the abstract and conclusion, check the year of publication
and the paper’s citations.

The selected papers that remained, counting 29, were thoroughly studied, as will be
apparent in Chapter 3. The information gathered is very valuable for forming a strong
theoretical basis both for the report and the testbed and experiments themselves, as in-
tended by the last step of the systemtic review. This methodology resulted in a thorough
exploration of the project’s key subjects. The systematic approach of SLR simplified up-
dating the literature review whenever new information was acquired.

2.3 State of the Art

In this project, the state of the art serves as a summary of the literature review, based
on the topics covered in the problem formulation. This section in the report represents a
theoretical basis for the development steps to follow. The information gathered here are
used to create requirements and to inspire design ideas for the system of this project.
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2.4 System diagrams

System diagrams are visual representations of working flows, presenting architectures
and connections between the components of a system. They prove to be very use-
ful when summarising the ideas revolving around the design and architecture of this
project’s system.

2.5 System requirements

As mentioned in the Problem Formulation, the scope of the project is to study and
analyse botnets, so as to understand how threat actors and their malware operate. In
order to accommodate this, an adequate testbed is needed. Thus, the requirements
for our system are based on the literature review and research done on the subjects of
botnets, as well as existing testbeds meant to evaluate botnets.



Chapter 3

State of the Art

This section serves as the theoretical background of this project. Primarily based on
the literature review, our State of the Art provides valuable insights on the topics of
botnets and subsequent testbeds used for analysing them. This information is further
used when gathering requirements and designing our system.

3.1 Botnets

The term botnet derives from the combination of words robot and network [7]. Botnets
are distributed networks of infected devices connected to the Internet (computers, IoT,
smart devices etc.) known as bots, zombies or agents [8] [9] [10]. A bot much like a
robot, will perform automated tasks specified by its operator. The said operator, widely
referenced as the bot master, bot herder or zombie master, compromises the said
devices, without the knowledge of their owners, and has the ability to remotely control
the behaviour of the zombie army with a specialised malware known as botnet malware
[9]. In contrast with other types of malware, a botnet malware is distinguished by its
Command and Control (C&C or C2C) communication capabilities. Once a device is
infected with botnet malware, the latter will contact and report to the last component
of the botnet, a special type of host, the Command and Control (C&C) server [11].
The C&C server is the heart of the botnet and is being utilised by the bot master to
communicate and issue commands to the bots. Moreover, it is used to maintain a health
status of the botnet and listens for new devices that have been infected and have joined
the zombie network. An overview of the botnet structure is apparent in Figure 3.1:

15
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Figure 3.1: Botnet structure

Botnets are characterised by their high rate of infection. They may range in size and
sophistication, with small botnets numbering a couple hundreds, while the bigger and
most famous ones have been found to compromise hundreds of thousand thousands
of hosts. For example Mirai, one of the most famous IoT botnets, has reached a steady
population of approximately 200,000 - 300,000 IoT infected devices at its peak [12].
For botnets to achieve propagation across networks, the botnet malware is designed
to be highly aggressive and self propagating. Namely, after the initial infection the
botnet malware in each host is instructed to spread the infection across a network
[8]. Moreover, botnets are not selective in terms of operational environments. From
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IoT devices and smart environments, to home computers and enterprise or industrial
infrastructure, bot masters will adapt and utilise devices based on their needs and the
vulnerabilities or exploits currently available [8] [9] [11].

Whilst botnets can be used for legitimate purposes, like assisting to IRC message oper-
ations [9], the high offensive capabilities as well as the enormous amount of bandwidth
and computational power they can offer to their operators has increased their utilisa-
tion for illicit operations over the years. In combination with the rise in usage of IoT
technologies and the security weaknesses they have introduced in the cyber world, the
catastrophic effectiveness of botnets have established them as one of the most preva-
lent cyber threats. Not only are these attacks a showcase of efficiency but they also
prove that even unsophisticated botnet designs can prove calamitous for home and en-
terprise infrastructure alike [8, 13]. The best example is the initial Mirai variant, in which
the botnet did not possess any persistence or other sophisticated mechanisms and still
managed to launch one of the biggest DDoS attacks to date.

To further explore the notions, techniques and tactics behind botnets and their infras-
tructure a deeper analysis is required. The following subsections will do just that, start-
ing with the botnet life-cycle.

3.1.1 Botnet life-cycle

To further understand the mondus operandi of botnets, one first needs to explore their
life-cycle. Based on the literature review of this project, we have encountered var-
ious publications providing different approaches. A summary of them can be seen
in Table 3.1. Despite some minor variations in naming conventions and the number
of stages, all the papers we have reviewed concluded that in general a botnet goes
through the following major stages during its life-cycle:

• The initial infection happens with the scope of recruiting more bots,

• The channel to C&C is established,

• The infected devices listening to instructions from the C&C to perform a malicious
action.

Apart from [10], the three other papers consider the maintenance and resilience of the
bots to be a part of the their life-cycle. Moreover, [14] includes the abandon step, for
devices that are considered unsuitable.
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Botnets: Lifecycle
and Taxonomy

[9]

A Systematic Study
on Peer-to-Peer

Botnets
[10]

Bots and botnets: An
overview of characteristics,

detection and challenges
[14]

A Survey of Botnet
and Botnet Detection

[15]

1. Spreading and
injection

1. Recruiting bot
members

1. Infection and propagation 1. Initial infection

2. C&C 2. Forming the botnet
2. Rallying
(forming the botnet)

2. Secondary injection

3. Botnet applications
(Illegitimate use of bots)

3. Standing by for
instructions

3. Commands and reports
3. Connections
(to C&C)

4. Resilience techniques 4. Abandon
4. Malicious C&C
(Broadcast commands)

5. Securing the botnet 5. Maintenance of bots

Table 3.1: Botnet life-cycle table

For the purpose of this project, our team will follow the botnet life-cycle stages visually
represented in Figure 3.2. Starting with the ’infection and propagation’ in hosts and
networks, to join and aid the ’rallying’ of bots, and all the way to leverage the botnet
to achieve various goals, this life-cycle model consists of the combined phases of the
life-cycle models, showcased in Table 3.1. The reason behind this decision is that a
life-cycle model which includes all the aforementioned phases creates a more compre-
hensive overview of both the malware utilised as well as the zombie network itself.
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Figure 3.2: Botnet life-cycle

i Infection and propagation: A botnet’s life-cycle starts with the infection and
propagation stage where bot masters leverage different tactics and techniques to
infect as many devices as possible and add them to the botnets ranks. These
tactics, techniques and tools closely resemble their malware counterparts and
include [9] [14] [16]:

• Phishing and Spear-Phishing through, for example, distribution emails,

• Network Scanning,

• Software vulnerabilities,

• Drive by compromise,

• Infected media (e.g. USB drives),

• Weak operational security like insecure passwords as well as,

• By leveraging other botnets.
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Based on the level of human intervention required, the infection and propagation
techniques can be divided in active and passive. In active propagation mecha-
nisms the botnet is autonomous and can self replicate without any user interaction
(e.g. Network Scanning). On the other hand, the passive ones require at least
some user interaction (e.g. Social Engineering).

ii Forming the Botnet: When a device has successfully been compromised, the
botnet malware introduces the newly infected bot into the botnet and communi-
cates for the first time with the C&C server. This process is commonly known
as ’bootstrapping” [10]. Depending on the architecture (Centralised or Decen-
tralised) the bootstrapping process varies. From hard-coded C&C information to
dynamic joining processes bot masters have been quite innovative in optimising
and securing the introduction of a bot to the botnet.

iii Command & Control: This is the main stage of a botnet’s life-cycle. Once the
botnet has been formed, the zombie army receives or retrieves instructions from
their master and executes them [9] [10]. The C&C mechanism is essentially the
heart of the botnet. It will determine the communication architecture and has
an impact on the resilience and robustness of the botnet [10]. The three main
communication architectures are [9] [14]:

• Centralized C&C,

• Decentralized - P2P C&C, and

• Hybrid C&C

The aforementioned architectures are going to be explored more in the following
Section 3.1.2. A plethora of communication protocols has been spotted to be
used for that purpose [9] [14]. From HTTP(S), Telnet, SMB, to IRC and IM, zombie
masters usually adjust the communication protocol based on their capabilities and
requirements. Despite the communication architecture and the protocols used,
the communication between the botmaster and the bots can be initiated using
one of the following ways:

• PUSH method: In the PUSH or command forwarding method, the botmaster
utilises a specific communication channel opened by the C&C - common
for all the zombie machines - to push commands to the bots. This option
allows for immediate execution on the bots. On the other hand, the bots stay
connected to the selected communication channel, and the master needs to
be either aware on the means required to reach all the bots [9] [14].

• PULL method: In contrast with the PUSH method, in the PULL method the
bots themselves initiate the communication to periodically (in a random or
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regular schedule - configured by the botmaster) check for new instructions
[17]. This happens in two modes of operation [9] [14] [18]:

– Interactive mode: In interactive mode the bot issues a request for a com-
mand from the botmaster or the C&C.

– Non-interactive mode: In non-interactive mode, the commands are stored
in a fixed location (independently of any query), for the bot to acquire
based on the PULL method schedule. Storage locations vary, e.g. web-
sites like PasteBin or Facebook, files in FTP servers or P2P networks
(Torrents) and even covert channels such as open ports in hosts and
unused header bits in network protocols such as TCP or IP.

Based on the aforementioned communications methods two models of communi-
cation direction can be defined. According to Hachem et. al [9] are:

• Inbound-only: There is no reverse communication from the bot towards the
C&C infrastucture. Essentially the botmaster or the C&C directly initiate and
maintain the connection to the bots. The PUSH method is indbound-only.

• Bidirectional: In this model the bot also transmits information and initiates
connections towards the C&C infrastructure. The PULL method is the prac-
tical application of the bidirectional model.

iv Botnet Applications: When the army bots has reached the desired (based on
the zombie master’s goals) numbers, the botmaster will proceed towards their
endgame. Namely, they will utilise their zombie army to perform illegal or destruc-
tive botnet operations such as [8, 9, 18, 19]:

• DDoS attack campaigns and service disruption,

• Remote control using the bots as Remote Administration Tools (RAT),

• Spamming campaigns (Spam bots),

• Phishing campaigns,

• Crypto mining and other financial breaches,

• Password attacks such as brute forcing and credential harvesting,

• Malware and malicious software distribution,

• As a general purpose Content Delivery Network (CDN) for illegal hosting of
various services,

• Espionage and information exfiltration using keylogging or other methods.

v Securing the Botnet - Botnet Resilience: As new countermeasures are in-
vented and defensive technologies are evolving, threat actors search for new and
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innovative ways to improve their capabilities and increase the effectiveness of
their tools [9] [18]. Whether by incorporating new technologies, using channels
not intended for communication or discovering new weaknesses, the said adver-
saries will constantly adapt to achieve their objectives and maximise their profit.
Thus a plethora of resilience techniques are used to ensure the operational state
of their infrastructure. Securing the botnet is an overall objective during the life-
cycle and the resilience methods employed are customised based on the which
stage the botnet is currently in. Based on the work from Hachem et al. [9], Khat-
tak et al. [16], and Vormayr et al. [18] we have constructed the diagram shown
in Figure 3.3, that incorporates some of the known resilience techniques for each
stage of the aforementioned life-cycle.

Figure 3.3: Botnet Resilience Techniques Diagram per Life-Cycle Stage [9] [16] [18].

As observed, the first line of defence for the botnet is formed during Infection
and Propagation. In this phase the attacker will attempt to conceal artifacts that
might trigger antivirus software or other countermeasures that might impede the
functionality of the botnet in the infected host. Going into botnet formation and
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communicating with the C&C infrastructure, the evasion techniques are mainly
focused on obfuscating the network traffic generated between the bots and the
C&C server. Finally, during the botnet application phase the resilience techniques
revolve around protecting the botmaster’s identity by (e.g. the stepping stones
technique that uses intermidiate proxy systems to hide the botnet operator).

3.1.2 Botnet architectures

There are three botnet architectures, differentiated by how the botnet spreads and how
the communication between C&C and bots happens. Namely, they are: centralised,
decentralised, and hybrid C&C architecture [20].

Figure 3.4: Centralised vs P2P architecture [14]

Centralised C&C

Considered to be the ’traditional’ architecture, this approach refers to a botnet that takes
commands from a central entity, i.e. the C&C server [21]. A botmaster is using this
server to recruit and register new bots, as well as to send out commands and updates
to existing ones [14].

This architecture further divides into two categories, characterised by the chosen com-
munication protocol: IRC-based & HTTP-based. In both cases, the bots connect to
an IRC server and respectively web server to receive instructions. The main differ-
ence, however, is that the infected devices that use the first protocol follow the PUSH
approach, whereas the latter follow a PULL approach. This refers to the fact that IRC-
based bots maintain a connection to the server and the HTTP-based bots contact the
server periodically [14].

There are three different centralised topologies, as follows [9]:
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• The Single Star Topology (Figure 3.5 a) has one C&C server as the contact point
for all instructions to every bot.

• The Multiserver Star topology (Figure 3.5 b) includes several interconnected servers,
which act as one entity, due to scalability reasons.

• In the Hierarchical Topology (Figure 3.5 c), some bots have the role of proxies, so
that the location of the C&C server is known by less bots.

Figure 3.5: Centralized C&C topologies [9].

One critical problem with the centralised topologies is their single point of failure. Since
bots connect to a single, predefined C&C server via an IP address or a Domain, this
makes it easier for defenders to spot and block the communication or attempt to attack
of takeover the C&C server[10]. The most known example of a centralised botnet is
Mirai.

Decentralised - P2P C&C To battle the major disadvantage of a single point of failure,
deriving as a natural consequence from the properties of the centralised C&C archi-
tectures, botmasters have turned into decentralising technologies in an attempt to safe-
guard and improve the C&C infrastructure of their zombie armies. Instead of relying into
a few selected servers for command and control they utilise P2P network topologies,
where every bot is connected to at least another one, and each one of them has the
abilities to serve as C&C server [9][18]. Not only, does this type of botnet architecture
increase robustness and resilience against potential network failures and dismantle at-
tempts, but also allow low latency and more effective connections between the bots and
their commanding components. This is quite apparent in the case of fully meshed P2P
botnets where all the bots are connected together, as depicted in Figure 3.6.
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Figure 3.6: Fully meshed P2P botnet architecture [18].

Whilst this kind of architecture seems at first glance as a solid solution, it does have its
drawbacks. First of all P2P botnet topologies are difficult to construct, scale and main-
tain. Limitations include high number of connections between bots - especially for large
botnets -, operating system and network protocol (e.g. TCP) constraints, as well as
high coordination requirements and low stealth capabilities. Moreover, the distributed
nature of such botnets gives the ability to defender teams to potentially hijack a whole
botnet by compromising a single bot. As a consequence, fully meshed P2P botnets are
uncommon. The most significant disadvantages / challenges of the P2P architecture
though are [18]:

• the challenge of enabling each bot to discover its first peers,

• and the reliability of the P2P protocol used to distribute control commands.

As far as the former is concerned, two solutions have been introduced. The first, in-
dicates that a hardcoded list of the initial peers should be included in the executable
payload. This technique though, shifts the single point of failure from the C&C to the
peer list. The second option to avoid the said peer lists, is for the bot to scan randomly
for peers on the Internet [18].

For the latter, botmasters often employ existing protocols like WASTE, Gnutella and
Kademlia to issue commands. This is due to the fact that existing P2P protocols offer
the reliability needed and enable relaying features - since fully meshed P2P botnets are
quite scarce in the wild [18].

Prominent examples of P2P botnets are Zeus, Sality, Phatbot, Sinit, Conficker and
Zeroaccess.
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Hybrid C&C From the previous two architectures it becomes apparent that a botnet
with a dedicated network topology exhibits significant weaknesses, either by design
or by improper deployment. As such, a third architecture scheme was introduced, a
Hybrid botnet topology that incorporates the advantages of both worlds [18]. As seen
in Figure 3.7, these botnet topologies usually consist by different layers-parts each
representing another functionality requirement of the zombie army.

Figure 3.7: Hybrid botnet architecture [18].

These layers usually encopass [18]:

• A C&C layer where the command and control servers reside,

• A proxy layer, with bots connected to a P2P infrastructure, either for obfuscation
of the C&C components (fast flux networks) or for legacy purposes and,

• (optionally) A third - or even more - worker layer(s), consisting of bots that execute
the required actions, effectively enhancing the stealth capabilities of the botnet.

It is important to highlight that not all layers need to be implemented. This is determined
mainly by the needs and operational objectives of the botmaster. Moreover, it should
also be mentioned that the combination of different architectures as well as the intro-
duction of different layers has an impact on latency as far as command communications
are concerned. Examples of hybrid botnets are some version of the Zeus and Storm
botnets [18].
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3.1.3 Mirai

The Mirai botnet is notorious for recruiting IoT devices and using them to DDoS big-
name companies around the world [22]. In late 2016, Mirai has rapidly topped the list
of the largest attack, reaching a volume of 1Tbps. The botnet is active to this day [23].

Figure 3.8: Mirai architecture [12]

Mirai has a multi-server centralised C&C architecture, as can be seen in Figure 3.8. Its
life-cycle follows the following steps.

First, an infected machine randomises IP addresses and proceeds to scan the said
addresses in ports 23 and 2323 for Telnet - most variants scan also for vulnerable SSH
services in port 22. A few hard-coded IP addresses are excluded, such as private IP
addresses and the server of the American Department of Defence. Once a suitable
target is found, the bot brute-forces it using a short list of default credentials. If the
attack is successful, the bot shares the IP of the target and the credentials with a Report
server. Using these newly acquired information, the Loader server is instructed to infect
the target either via ’wget’ (HTTP download) or ’TFTP’ (Trivial File Transfer Protocol).
The malware installed on the targets is architecture-specific to the device [12].

Albeit that the malware is not persistent, Mirai obfuscates its activity by deleting the
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initial binary and renaming its process to a pseudo-random string. Moreover, it tries to
locate other competitors’ malware, like Qbot or certain Mirai variants, and delete them
[12].

Finally, all the infected machines are under the control of the bot master, which utilzes
the C&C server to order the botnet to perform a DDoS attack. There are several types
of DDoS attacks available, for instance UDP or XMAS floods [24, 12].

This is how the original version works. However, upon its source code reveal, the botnet
has been further developed by other authors. For instance, some versions include
improved resiliency and an expanded dictionary [12].

3.2 Testbeds

Modern technology faces a fast-pace development and increase in number, which is
why it is a very relevant topic nowadays. However, testing against different worst-case
scenarios such as failures or malware is not always feasible to be done within a real-life
network [25]. Thus, a digital alternative that many researchers and industry experts opt
for is a testbed [26].

This section presents the literature review we conducted on papers regarding network
testbeds. The conclusions drawn from this information is further used to gather require-
ments and design our own testbed in the following chapters.

3.2.1 Requirements for testbeds

Throughout our research, we encountered four papers that emphasise what require-
ments a network testbed should have, based on our literature review.

Security Impacts of Virtualization on a Network Testbed

This paper tackles important aspects of a secure and realistic network testbed. The
requirements that the authors presented are as follows [27].

1. Isolation - refers to isolating each experiment within a testbed from each other.

2. Fidelity - describes how realistic the simulation is.
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3. Repeatability - dictates that every experiment should be easily redone.

4. Scalability - presents the ability to not affect the behaviour of an experiment if the
number of components increases/decreases.

5. Containment - means that the testbed should be secure against external ma-
chines, as well as for the test malware to not escape and infect the host machine.

6. Extensibility - refers to the heterogeneity of the testbed in terms of protocol and
devices diversity.

EPIC Testbed

The researchers of this paper created the EPIC testbed to provide a solution for exper-
imenting with cyber attacks against a critical infrastructure. For this reason, they came
up with the requirements they considered to be vital for such an infrastructure [28].

1. Fidelity - the experiments conducted within the testbed should produce realistic
results.

2. Repeatability - the results of an experiment should also be consistent when re-
peated.

3. Measurement Accuracy - the measurements of the experiments should not influ-
ence its results.

4. Safe execution - careful consideration should be given when experimenting with
disruptive tests.

Internet of Things (IoT): Research, Simulators, and Testbeds

This paper provides a comparative analysis of IoT testbeds and common simulators
used. There are seven characteristics of comparison between testbeds identified [29].

1. Scale - in order for a testbed to be more realistic, this criteria assesses whether
more IoT devices can be added to the testbed.

2. Environment type - since ideally experiments should be conducted with real de-
vices for accurate outcomes, this criteria evaluates how realistic the testbed is.

3. Heterogeneity - diversity of nodes and communication protocols should be en-
sured.
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4. Mobility - testbeds should ensure support for then main issues that IoT devices
have.

5. Concurrency - multiple experiments should be conducted simultaneously on the
testbed.

6. Federation - support for integrating multiple testbeds in order to mitigate each
other’s liitations should be considered.

7. Primary use case - this characteristic evaluates the level of specialization.

Gotham Testbed

In the paper [30], the authors researched, designed, and implemented an IoT network
testbed for the purpose of analysing the Mirai botnet. Within their literature review, they
mention that most testbeds are limited and lack important criteria, such as heterogene-
ity. Thus, the authors created their own list of requirements.

According to [30], these are the defining criteria of a testbed and their subsequent
explanations:

1. Fidelity - creating a realistic testbed, by emulating for node hardware and be-
haviour, attack behaviour, and complex topologies.

2. Heterogeneity - ensuring diversity, in terms of types of devices, services, and
protocols, as well as in terms of attack.

3. Scalability - the ability of adding/removing components of the topology with ease.

4. Reproducibility - the configurations, scripts, and the topoilogy should have de-
tailed descriptions, so that they can be reproduced.

5. Measurability - the testbed should have the option to capture traffic packets and
to perform application-level logging.
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Table 3.2: Requirements table

Gotham Testbed
Security Impacts of
Virtualization on a
Network Testbed

EPIC Testbed
Internet of Things (IoT):
Research, Simulators,

and Testbeds
1. Fidelity 1. Isolation 1. Fidelity 1. Scale
2. Heterogeneity 2. Fidelity 2. Repeatability 2. Environment type
3. Scalability 3. Repeatability 3. Measurement Accuracy 3. Heterogeneity
4. Reproducibility 4. Containment 4. Safe execution 4. Mobility
5. Mesurability 5. Scalability 5. Concurrency

6. Extensibility 6. Federation
7. Primary use case

These requirements lists tackle important issues to be considered when creating a
testbed. Based on shortages that previous papers had when comparing/describing
testbeds, these papers attempted to improve and adapt their testbeds to the new tech-
nologies and cyber attacks relevant for each case.

Thus, for the purpose of this project, we created our own testbed requirements, inspired
by the research we conducted, as follows:

1. Fidelity - producing a realistic testbed and its subsequent outcomes.

2. Heterogeneity - ensuring diversity of both hardware and software.

3. Containment/Safe execution - hardening the environment, in order to protect both
the testbed from external factors, as well as the host from potentially harmful
experiments.

4. Repeatability - providing detailed descriptions of the work, so that both the testbeds
and the experiments can be reused.

5. Measurability - adding the option of packet capturing and application-level logging
for possible investigation.

As can be seen, all these requirements can be found in at least two of the papers in
Table 3.2. This proves that these requirements are relevant for network testbeds, and
especially for the ones focused on malware analysis, such as our own.
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3.2.2 Testbeds comparison

Throughout the research, seven threat emulation testbeds have been considered. The
testbeds analysed are EPIC [28], UiTiOt [25], Bot-IoT testbed [31], IoT Botnet testbed
[32], iBot [8], BotsideP2P [33], and Gotham [30]. The purpose of these testbeds is
to analyse malware and malicious behaviour, either in an virtualised environment or in
topologies with real hardware. A brief summary of how the testbeds conform with the
requirements set can be seen in Table 3.3.



Table 3.3: Testbeds comparison

EPIC UiTiOt Bot-IoT testbed IoT Botnet
Testbed iBot BotsideP2P Gotham

Fidelity

- Emulates complex
networking models, both from
literature and real-world
infrastructure, using Emulab
- Simulates physical industrial
infrastructure, which does not
allow for testing layer 1 & 2
attacks

- Container-based testbed
for IoT networks
- Emulates wireless
network communication
with QOMET
- 100 nodes are simulated
using Docker Swarm
- No attack scenarios

- Not a realistic testbed topology
- Attack does not incorporate the
full botnet lifecycle
- The testbed does not
allow for testing layer 1 & 2
attacks
- Real IoT and conventional
but not real botnet malware is
tested

- Emulated RPis as IoT
devices, using QEMU
- A (modified) Mirai
attack simulation

- Only physical devices
used
- Simulated IoT devices
via RPis
- Both home and enterprise
network configurations

- All the equipment used is
running on real devices
- The custom botnet malware
possesses real world attributes
- The attack incorporates
the whole botnet lifecycle
- Low realism in terms of
the simulated network
topology

- 100 simulated devices
using Docker images

Heterogeneity

- Supports a big variety of
protocols and network
topologies such as Networked
Critical Infrastructures
- A plethora of attack scenarios

- Diversity in
terms of devices and
protocols that can be
deployed
- Multi-hop communication
for simulating large area
network coverage

- Both attack and legitimate
network traffic is generated
- Plethora of IoT and
conventional protocols and
services
- High variety of different
attacks was
emulated

- High device
diversity, but low
protocol heterogeneity
- Only one attack
scenario

- Restricted by real RPis
capabilities
- Only one attack
performed (DDoS)

- Small range of protocols
and services tested
- Small attack variety (Only
DDoS)
- Both normal and attack
network traffic is generated

- A variety of protocols and
devices are emulated with GNS3
(Versions of MQTT brokers,
CoAP clients, and
IP cameras)
- Multiple attack vectors

Containment - Not described

- Not described
- This testbed is not
designed for malware
analysis

- Not real botnet malware is
being used
- The emulation is running on the
Research Cyber Range lab of
UNSW Canberra-Internet
connection is available
only through 2 network
firewalls

-A secure and contained
environment
- No Internet connection,
custom-made DNS &
DHCP

- Local LAN, no Internet
connection

- Local network topology,
no Internet connection
- Usage of a customised
botnet malware based
on Kademlia DHT

- Not described

Repeatability
- Repeatable due to its
simulated nature and
emulation approach

- Repeatable - due
to its deployment in cloud

- Its simulated/virtualised nature
helps with repeatability

- Repeatable
- Information on all
issues faced and how
to overcome them

- Less repeatable
- Instructions on how to
recreate the topology ’at
home’, but requires
real devices

- Less repeatable
- Small amount of physical
devices required

- Repeatable
- One of its scopes
was to be reproducible

Measurability

- Network monitoring and
experiment measurement
using Zabbix
- Collection of data with a
variety of tools, such as
Iperf, TCPDump and Cisco
monitor features

- Measurements of time,
loss-rate, and bandwidth

- Full packet capture
available using a network tap
running on a linux VM

- Measurements of
traffic volume and
transmissions over time

- Packet capturing and
logging via Wireshark
& a honeypot

- Measurability is achieved
with logging both endpoint
and network flow data

- Various measurements
performed, in terms of memory,
time, and traffic captures
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3.3 Learnings

This section provides the key takeaways of the State of the Art, in terms of testbed
requirements and botnet observations. This information serves as a synthesis of the
literature review and how it is relevant for DAMOCLES.

3.3.1 Testbed Requirements

All these testbeds sought to reach their goals, even if it meant compromising on some
aspects. For example, iBot aimed to create a testbed comprising purely out of real
devices to deploy and analyse botnets. Thus, it compromised on heterogeneity, but
gained ground in fidelity and containment. By observing the general approaches of
these testbeds, project DAMOCLES gains a venture point. This information is the basis
of our testbed’s requirements, as follows.

• Fidelity

The trend of these testbeds leans towards emulation and lack real devices. This
is to be expected since it is much more feasible to deploy virtual topologies rather
than real ones. The DAMOCLES testbed aims to utilise both emulated and real
devices. Although this may lower the fidelity, this project rather focuses on hetero-
geneity.

• Heterogeneity

Overall, the studied testbeds utilise different methodologies for achieving their
goals, which inspired DAMOCLES to do the same. Our testbed focuses on ex-
ploring the variety of tools and technologies that can be utilised to study botnets.
Thus, by employing both real and emulated devices, as well as different strategies
for analysing the botnet’s behaviour, we aim to maximise heterogeneity.

• Containment

As seen in Table 3.3, the authors tend to describe insufficiently or even leave out
completely what and if they considered the containment of their environments,
although most of them are designed for malware analysis. In this project, contain-
ment is a significant aspect for the integrity and security of the experiments. This
will be apparent when describing the implementation phase.

• Repeatability
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Given that most of these papers focus solely on emulations, provide instructions
and/or a product ready for immediate use, repeatability is on high level. The ex-
ception is when only physical devices are used, because acquiring the necessary
equipment to recreate the testbed may not be feasible. The DAMOCLES testbed
includes both physical and emulated environments, as well as instructions of how
everything is set up. Repeatability is possible for DAMOCLES, albeit impractical i
terms of the physical topology.

• Measurability

Packet capturing is a common measuring method among the testbeds studied,
since it offers the possibility of analysing network traffic, which indicate compro-
mise. The other favoured methods include system performance assessments.
As this project focuses on studying malware, the measurability methodologies re-
volve around the botnets’ behaviour. Therefore, packet capturing and host moni-
toring and logging are the preferred over system performance.

3.3.2 Botnet observations

Mirai is one of the most notorious botnets and has been featured in numerous publi-
cations including most of the papers we found and analysed. The reason for so many
testbeds to experiment with it, as most of our inspirations did, is that there are many
samples available and codes leaked online of the original and later variants of Mirai.
This, alongside publications that describe Mirai thoroughly, make this botnet an ade-
quate component for academic experimentation, such as for project DAMOCLES.

In our testbed, the analysis of Mirai’s behaviour is mapped using the lifecycle resulted
from the literature review. This helps with examining the traffic and logs, and identify
the operations of this botnet. Therefore, to have the full picture of the entire botnet
infrastructure, DAMOCLES implements the source code and sets up all components,
from servers to bots and victims, rather than simply deploying the malware alone. This
approach provides more opportunities of studying and monitoring all the events.



Chapter 4

Design and architecture

This chapter illustrates the design and architecture of the testbed deployed. This
testbed serves the purpose of hosting scenarios of botnets being released within IoT
networks. The idea for the design and architecture are inspired by the research con-
ducted and presented in 3, as well as our own problem formulation.

4.1 General Architecture Diagram

This section presents the diagram of our testbed’s general architecture. The simulated
scenarios are controlled and hosted on a system made out of three parts:

• The Ubuntu server which contains the emulated network topology,

• The LAN that consists of real devices,

• The Remote workstations.

36
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Figure 4.1: General architecture diagram

The Ubuntu server serves as a host for GNS3 (the chosen emulation software), as
well as a monitoring system to capture packets and create logs for further analysis of
the scenarios.

GNS3 makes use of a Controller Server, which is the core of all services, managing
the connection between the GNS3 Clients and the topology. The virtual segment of
the topology will employ components as follows. The emulated IoT devices within the
topology utilise Docker for faster deployment of a large number of such devices. The
routers that make up the virtual networks are deployed through GNS3 appliances, which
are software pre-configured by GNS3 [34]. Lastly, the topology also includes virtual
machines. These VMs use virtualization technologies such as QEMU and KVM.

The LAN in the 4.1 represents a network of real devices, i.e. Raspberry Pis (RPi)
interconnected through a router. With the help of GNS3, this LAN is an active part of
the testbed.

Working with real devices is an important part of the topology, because, together with
the virtual networks, they provide heterogeneity to the scenarios.

The remote workstations represent means of deploying and managing the testbed
and all the scenarios. This happens with the help of GNS3 clients that communicate
directly with the GNS3 server remotely.
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4.2 Context Diagram

This context diagram illustrates the networking components of project DAMOCLES and
how they interact with each other. The center component that connects everything
together is the main router, which we call ‘main’ because it is part of a three-routers
LAN, and it serves multiple roles, as follows:

• Sets the other two routers as gateways for the attacker and respectively victim
LANs. This is part of configuring static rules which allow all the LANs to interact
with each other.

• Provides an Internet connection via NAT for the topology. This is needed for the
implementation phase.

• Bridges the connection to the host machine, so that management services are
available to the remote workstations directly.

• Bridges the connection to a LAN of real devices (Raspberry Pis). This way, the
emulated environment and the real one can communicate.

Figure 4.2: Context Diagram



Chapter 5

Implementation

In order to satisfy the requirements deriving specified in Section 3.3.1, the technologies
used in project DAMOCLES as well as the reasoning behind selecting them must be
explored. Thus, this chapter will serve as the technical basis for project DAMOCLES
and will also provide an analysis of the modifications made in certain aspects of the
tech stack.

5.1 Emulation Environment - Testbed

Initially, to solidify the explanation of the configurations provided in this chapter, a brief
overview of the testbed and the network topology must be provided. As mentioned in
Chapter 4 the emulation is hosted in an Ubuntu server workstation that has the GNS3
server software installed and deployed. The emulated network topology created in
GNS3 consists of:

• Three (3) pfSense routers (VMs) responsible for routing and interconnecting the
various LANs in the topology,

• Three (4) Open vSwitch virtual switches (Docker Containers) to connect multiple
emulated devices-appliances in the routers,

• Three (3) Cloud nodes to connect the emulated topology with external compo-
nents such as the Internet, a management LAN and the physical RPis,

39
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• Thirty-seven (37) Alpine Linux containers which will serve infection targets and
bots,

• Two (2) Debian-based T-Pot VMs that are responsible to deploy different honey-
pots and expose them to the botnet,

• Two (2) Kali Linux helper machines responsible to access the GUI provided by the
T-Pot VMs.

A complete representation of the network topology in GNS3 can be seen in fig. 5.1.

Figure 5.1: Project DAMOCLES’s network topology in GNS3.

5.2 Technical Documentation

This section presents the tools and technologies leveraged while implementing and
deploying the DAMOCLES testbed. The GNS3 emulation platform, its network compo-
nents, and the associated monitoring tools are thoroughly described in terms of their
custom configurations and the reasoning for selecting them.
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5.2.1 GNS3

GNS3 is an open-source software under the GNU GPLv3 license, used to implement,
emulate, and troubleshoot complex virtual and real networks [35]. GNS3 can also be
leveraged to create practical network labs and threat emulation scenarios. Its advan-
tages include support for emulation and simulation technologies (like VMs and Docker
Containers), as well as integration with a plethora of (virtual or real) devices and ven-
dors (e.g. Cisco), which are provided as appliances. In essence, that gives the ability
to the users to run actual software images in a virtualised environment and simulate
the features and functionality of real hardware like switches and routers [35]. GNS3 is a
quite mature software and can be deployed in various operating systems like Windows
and MacOS, but its natively supported only in Linux. Moreover, it supports both local
and remote server deployment options. The main components of the GNS3 software
are:

• The GNS3-all-in-one software that includes the GNS3 desktop and web GUI and
supporting dependencies to interact with the other core components,

• The GNS3 server, the process responsible for emulation and simulation of net-
work topologies created through the GUI.

We have chosen GNS3 as our testbed platform, based on the aforementioned advan-
tages, as well as the ease of deployment in Linux and the knowledge gained through
our literature review, especially the Gotham project [30]. For the installation, we have
followed the official GNS3 installation guide [36] and we have deployed the GNS3 server
instance using OpenVPN. This choice was made to ensure containment and avoid in-
secure access to our network topology.

5.2.2 Virtual Networks

To download the required dependencies and software for our emulation, as well as
to be able to manage the pfSense routers, and finally attack the physical LAN, we
have employed virtual networks created by the KVM hypervisor, leveraging the libvirt

virtualisation management system. The latter creates virtual networks using virtual
network switches. To make the process of creating these switches easier our team
used the Cockpit web-based graphical interface. Cockpit is a web-based graphical
interface for servers [37]. Not only does it allow us to manage the Ubuntu server more
efficiently but also to utilise various software packages. For the virtual switches, we
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have employed the cockpit-machines package and have created the following virtual
networks:

• The default network Figure 5.2, responsible to connect the devices hosted in the
GNS3 emulation environment to the Internet using a NAT virtual switch,

Figure 5.2: The default virtual network.

• The Internal network Figure 5.3, an isolated virtual switch that only allows the
virtualised devices to connect with the host. That allows us to access the GUI
management interface of each pfSense router and,

Figure 5.3: The Internal virtual network.

• The Physical Topology virtual network Figure 5.4, that connects the GNS3 ap-
pliances to the physical LAN. It is also a NAT virtual switch like the default virtual
network. The only difference is the device where the switch is created. In this



43

case it is created in an external Alfa AWUS036NHA - wireless B/G/N USB adap-
tor interface connected to the Ubuntu host.

Figure 5.4: The Physical Topology virtual network.

In Section 5.2.3 the implementation of the connections between the virtual routers in
the GNS3 network topology and the aforementioned virtual networks will be further
explored.

5.2.3 PfSense

As one of the most well-known open-source router/firewall software, pfSense was se-
lected as our main router device for our network topology. PfSense can be directly de-
ployed in a VM using its own FreeBSD-based ISO image, and its natively supported as
an appliance by GNS3. It provides a plethora of options and functionality, with both GUI
and console interfaces. From firewall configuration and rule options for the connected
interfaces, network and device diagnostics, to DHCP and DNS servers, pfSense’s capa-
bilities and reliability allowed us to create the suitable network conditions for our testbed
[38].

PfSense Configuration

Based on our current setup there are three pfSense router instances:

• Main Router: The main router plays the role of the liaison between all the LANs
in the testbed. For this router (pfSense2.6.0-1-main Figure 5.5) we have config-
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ured the following network interfaces from pfSense’s console, and assigned them
with IP addresses as seen in Figure 5.6.

Figure 5.5: The main router - pfSense2.6.0-1-main.

Figure 5.6: The main router’s interface configuration.

– The WAN-em0 interface serves as the connection of the testbed to either the
Internet or the physical topology. The interface is connected to each one
of them based on the needs of the project. As seen in Figure 5.7 the con-
nection is direct towards the two GNS3 Cloud Nodes (a Cloud Node allow
us to bridge actual network interfaces with a GNS3 topology). During con-
figuration the interface is connected to the Internet node. On the other
hand, during the botnet emulation the WAN interface is connected only to the
Physical Topology node to fulfil the testbed’s containment requirements.

Figure 5.7: GNS3 cloud nodes for project DAMOCLES.
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– The LAN-em1 interface is connected to an OVS switch connecting the topol-
ogy to the isolated network specified in Section 5.2.2, to give us the ability to
access the web interface of the pfSense routers. The web interface contains
most of the configuration needed for the emulation network to operate in a
realistic way.

– The IOT-opt1 and BOT-opt2 interfaces are used to create the Attacker and
Victim networks.

It is really important to mention here that pfSense depends heavily on firewall
rules [38]. What this essentially means is that for every network interface created
a set of appropriate rules must be set for connections to be established. Based
on each network interface the following rulesets have been configured:

– For the WAN interface, since it is connected to the above mentioned cloud
nodes we have left the default ruleset as can be seen in Figure 5.8 and
Figure 5.9.

Figure 5.8: The default rule options for the WAN interface.

Figure 5.9: The WAN interface ruleset.
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– For the other three network interfaces (LAN, IOT and BOT) we have allowed
all traffic. The ruleset is identical for each one of them and is depicted in
Figure 5.10.

Figure 5.10: The LAN, IOT and BOT interfaces ruleset.

Another role the main router plays in the emulated network topology is to publicise
the routes for each LAN (Victim and Attacker LAN). We have implemented this
functionality using static routes and gateway entries. Essentially, for each other
router we have specified a gateway entry, and we have created a static routing
rule for each subnet. The associated settings can be seen in Figure 5.11 and
Figure 5.12.

Figure 5.11: The gateway configuration in the main router.

Figure 5.12: The static routes configuration in the main router.

Lastly for each interface a different DHCP configuration has been selected. For
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the LAN interface the DHCP server was deemed unnecessary, whilst the DHCP
server was enabled for the IOT and BOT interfacces. These settings can be seen
in Figure 5.13, Figure 5.14, Figure 5.15.

Figure 5.13: The DHCP configuration for the LAN interface.

Figure 5.14: The DHCP configuration for the IOT interface.

Figure 5.15: The DHCP configuration for the BOT interface.

• Attacker LAN Router: This pfSense router (pfSense2.6.0-3 Figure 5.16) is ren-
sponsible for the creation of the LAN network that hosts the botnet C&C infras-
tructure and some victim machines. The configuration is fairly similar to the main
router and the interfaces created can be seen in Figure 5.17.
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Figure 5.16: The pfSense2.6.0-3 router.

Figure 5.17: The Attacker router interface configuration.

– The WAN-em0 interface serves as the connection to the main router, and as an
extension to the rest of the network topology. The main difference in configu-
ration with the main router is the WAN interface ruleset. The options depicted
in Figure 5.8 are now disabled to allow network traffic to flow through the WAN

interface into the main router (since all the routers inside the GNS3 topology
are operating in local IP address space). Moreover, it allows the Attacker

LAN router to acquire an IP from the DHCP server running in the main router.
As such the WAN interface ruleset now looks like this:

Figure 5.18: The WAN ruleset.
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– The LAN-em1 interface as with the main router, is also connected to the same
OVS switch connecting the topology to the isolated network specified in Sec-
tion 5.2.2.

– The CCLAN-opt1 interface is used to create the Attacker network. The set
of rules for the firewall are identical to the ones highlighted in Figure 5.10.
The DHCP server is also enabled for this interface.

• Victim LAN Router: The last pfSense router (pfSense2.6.0-1 Figure 5.19) is
rensponsible for the creation of the LAN network that hosts the two “victim” LANs.
The configuration is fairly similar to the Attacker router and the interfaces created
can be seen in Figure 5.20.

Figure 5.19: The pfSense2.6.0-1 router.

Figure 5.20: The Victim LAN router interface configuration.

• The WAN-em0 interface serves the same role and has the same firewall rules as
the Attacker router.

• The LAN-em1 is also identical to the one in the Attacker router.

• The IOTLAN-opt1 and IOTLAN-opt2 interfaces are used to create two Victim sub-
networks. The set of rules for the these interfaces are identical to the ones high-
lighted in Figure 5.10. A DHCP server is also enabled for each interface.
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5.2.4 Open vSwitch (OVS)

Open vSwitch (OVS) is a widely used, open-source software switch written in C that
enables the creation and management of complex networks. It is really powerful and
highly programmable offering different features [39]. It is ideal for virtual environments
and is also offered as an appliance in GNS3 in the form of a Docker container. For the
OVS switches we haven’t made any specific configuration since their default setup is
enough for our needs. We have only avoided to connect any devices in the em0 network
interface of each switch, as that interface is reserved for connections with management
software (e.g. OpenFlow controllers) [39].

5.2.5 Nginx Web Server

To be able to access files (e.g. .pcap files) saved in the Ubuntu server we have utilised
an Nginx web server running port 50000 of the host. Namely, we have configured the
Nginx server with the autoindex option enabled. Essentially, we are able to display a
directory listing using the Nginx autoindex module, effectively allowing remote down-
loading of files saved in the specified Nginx directory - in this case /var/www/html/.
The configuration in question can be seen in Figure 5.21.

Figure 5.21: The Nginx configuration in the Ubuntu server.

5.2.6 Physical Devices

For physical devices we have used Raspberry Pi (RPi) 4s with 2GB of RAM and 16GB
SD memory cards. On the RPis we have installed Ubuntu Desktop 23.04 (64-bit)
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OS for RPi 4/400 models using the Raspberry Pi Imager utility. The RPis are con-
nected to a mobile hotspot network, on which the Physical Topology virtual network is
also bridged through the Alfa AWUS036NHA - wireless B/G/N USB adaptor and not the
embedded Ethernet network card.

5.2.7 Backups

To ensure the viability and safety of project DAMOCLES a backup strategy has been
implemented. The strategy involves regular backups of our data to avoid any loss of in-
formation due to system crashes, or any other unforeseen circumstances. The following
programs have been used:

• Deja Dup: Déjà Dup is a simple, open-source backup tool, offered in the Ubuntu
package repositories[40]. We have used Deja Dup to take (manual) backups of
the home folders of each user in the server:

– /home/root

– /home/aau

– /home/gns3

These backups are saved in our team’s personal cloud storage.

• Timeshift: We have also used Timeshift [41] to keep backups of the entire sys-
tem. Timeshift is also open-source and provided as a packaged application for
Ubuntu systems. The backups are configured in a daily schedule with the five
latest saved in an external 5TB WD HDD.

Lastly, every week the latest 2 backup files from Timeshift are also saved in our team’s
personal cloud storage.

5.3 Measurability & Monitoring

As mentioned in Section 3.2, measurability and overall monitoring of the network topol-
ogy as well as of the actions performed in the context of the threat emulation, is an
integral part in studying and analysing malicious software in a dynamic network environ-
ment. In that aspect all the tools and techniques described on this chapter are deployed
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to serve this exact purpose. Since we are studying botnets whose main IoCs and IoAs
are deriving from network traffic, our monitoring tech stack is comprised mainly by net-
work traffic analysis tools and techniques (e.g. Network Intrusion Detection Systems -
NIDSs). In addition, we have also decided to deploy various honeypots. As we have
encountered a couple of times throughout the literature review, honeypots are suitable
options for logging the activity of the botnet on a host level. Thus, we have decided
to make use of their features to get more insights on how the infections and attacks
happen.

5.3.1 Wireshark

One of the most powerful and useful features of GNS3 client software (standalone client
and web client) is the seamless integration with the Wireshark network packet analyser.
Being the most popular software for network traffic analysis and visualisation, leverag-
ing Wireshark in our testbed allows us to [42]:

• Troubleshoot our emulated networks,

• Examine the behaviour of the botnet, debug its source code and customise it to
our testbed’s needs.

5.3.2 Capturing traffic in GNS3

To capture all the network traffic traversing through the links created in the testbed, our
team utilised the GNS3 API provided by the GNS3 server [43][44][45]. The API is used
to send requests to the GNS3 server. One of the features available through the GNS3
API is the ability to monitor all the communications between devices and networks de-
ployed in GNS3. We do that by making calls to two different APIs, one to acquire all
the links (/v2/projects/e343e760-e68f-4fbf-8d08-64c693344c0a/links) and one to
start or stop them (/v2/projects/e343e760-e68f-4fbf-8d08-64c693344c0a/links
/${value}/${start or stop}). The next code snippet contains the instructions used.
After the user runs the script with the appropriate options (start or stop), a request
is made to the /v2/projects/e343e760-e68f-4fbf-8d08-64c693344c0a/links API
endpoint to acquire the links used in the network topology. For every link acquired an-
other API request is made to /v2/projects/e343e760-e68f-4fbf-8d08-64c693344c0a/

links /$ {value}/${start or stop} API endpoint to start or stop the said link.

1 #!/bin/bash
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2

3 #Check if the user provided a start or stop option

4 if [[ "$1" != "start" && "$1" != "stop" ]]; then #

5 echo "No start or stop options provided. Please try again using the

correct syntax: ./ network_capture.sh <option >!"

6 else

7 start_or_stop="${1} _capture" #Set the variable to the correct option

8

9 #Print the correct message

10 if [[ "$start_or_stop" == "start_capture" ]]; then

11 echo "Starting network capture ..."

12 else

13 echo "Stopping network capture ..."

14 fi

15

16 # Extract the value from the line containing the link values and assign

it to the variable

17 curl -i -X GET ’http ://172.16.253.1:3080/ v2/projects/e343e760 -e68f -4fbf

-8d08 -64 c693344c0a/links ’ | awk ’/link_id/ {print}’ | grep -o ’".*"’ |

tr -d ’"’ | tr -d ’:’ | awk ’{gsub(" link_id ", "");print}’ | while

read -r line; do

18 value=$(echo "$line")
19

20 #Check if there are links

21 if [[ "$value" == "null" ]]; then

22 echo "No links found!"

23 exit 1

24 fi

25

26 #Start or stop the network capture for each link and print the result

27 curl -i -X POST "http ://172.16.253.1:3080/ v2/projects/e343e760 -e68f -4

fbf -8d08 -64 c693344c0a/links/${value }/${start_or_stop}" -d ’{}’ | awk ’

/link_id/ {print} /capturing/ {print}’ | tr -d ’,’

28 done

29 fi

For every link where network traffic is captured though, GNS3 produces a different
.pcap file though. To make the analysis easier as well to be able to analyse our results
in a more efficient manner, we have decided to merge the said .pcap files. The following
script does just that. It accepts as input a folder path and a name for the merged file,
and then it combines all .pcap files into one. The script uses the mergecap utility for
merging and the editcap utility to remove duplicate packets. It first creates a temporary
file, which is then processed with editcap to produce the final results. The merged file is
saved in “/var/www/html” and can be acquired directly from our simple nginx webserver
setup.

1 #!/bin/bash

2
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3 # Get the folder path and merged file name from the user

4 read -p "Enter the folder path where the .pcap files are located: "

folder_path

5 read -p "Enter the name for the merged file (without .pcap extension): "

merged_file_name

6

7 # Merge the .pcap files into one using mergecap

8 mergecap -w /tmp/tmp_merged_file.pcap $(find $folder_path -name ’*.pcap’

-print0 | xargs -0 -I {} echo -n "{} ")

9

10 # Remove duplicate packets using editcap

11 editcap -d /tmp/tmp_merged_file.pcap /var/www/html/$merged_file_name.pcap
12

13 # Remove temporary file

14 rm /tmp/tmp_merged_file.pcap

15

16 echo "Merged file saved as /var/www/html/$merged_file_name.pcap without

duplicate packets."#!/bin/bash

17

18 # Get the folder path and merged file name from the user

19 read -p "Enter the folder path where the .pcap files are located: "

folder_path

20 read -p "Enter the name for the merged file (without .pcap extension): "

merged_file_name

21

22 # Merge the .pcap files into one using mergecap and remove duplicate

packets

23 mergecap -w /var/www/html/$merged_file_name.pcap -d $(find $folder_path -

name ’*.pcap’ -print0 | xargs -0 -I {} echo -n "{} ")

24

25 echo "Merged file saved as /var/www/html/$merged_file_name.pcap without

duplicate packets."

5.3.3 Security Onion

According to Security Onion’s official documentation [46] “Security Onion is a free and
open platform for Network Security Monitoring (NSM) and Enterprise Security Monitor-
ing (ESM).” It uses automation and data correlation technologies to provide features
like [46]:

• Intrusion detection,

• Logging and network metadata,

• Full packet capture and network traffic analysis capabilities,
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• File analysis,

• Integration with popular security analysis tools like Suricata and Zeek NIDS, Wazuh,
MITRE ATTCK Navigator, Strelka, Cyberchef and ELK for analytics and graphical
environment etc.

Security Onion is a powerful and highly capable tool to analyse and explore data for
security purposes. This, in combination with the big variety of tools and automation
features have made us select it as our main analysis tool.

In terms of architecture Security Onion uses nodes and sensors in large (distributed)
deployments, but it can also be installed as a small VM. Security Onion has the following
deployment options [46]:

• Import: The simplest deployment option is Import. Import is a standlalone in-
stallation of Security Onion, equipped with enough tools to analyse .pcap and
.evtx files. It allows us to import such files and perform automatic analysis using
tools like Suricata and Zeek.

• Evaluation: Evaluation is more complicated than Import mainly because it em-
ploys a dedicated network interface to sniff traffic. According to the official docu-
mentation [46] “ Evaluation mode is designed for a quick installation to temporarily
test out Security Onion”.

• Standalone: This deployment option is similar to Evaluate but uses a different
scheme to parse logs from its nodes and sensors. This type of architecture is
recommended for testing and Proof Of Concepts (POCs) with low throughput.
Both the Evaluation and Standalone architectures are not highly scalable.

• Distributed: The most scalable architecture of all is Distributed. It includes a
main - manager node and one or more forward and search nodes that are re-
sponsible for running sensor components and ELK stack features. Despite being
cost-heavy this architecture boasts great performance and it is the recommended
type of installation.

For this project we have opted for the Import architecture for the following reasons:

• It is lightweight and requires little to no configuration and

• It includes all the necessary features, like Zeek and Suricata, to analyse the net-
work traffic produced by our testbed and provide meaningful insights.
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5.3.4 Honeypots

The honeypots deployed in project DAMOCLES are the following:

• T-POT

T-POT consists of numerous containerised honeypots and monitoring/visualising
software within one system [47]. The T-POT has been included as a project as
a Virtual Machine, pre-configured locally and exported to GNS3. The reason for
that is because it requires a custom installation and a fairly large amount of re-
sources. We proceeded with the stand-alone version, so that all its services are
in one system. Out of its features, we chose to utilise Cowrie and the Suricata
IDS integration.

Cowrie is a Telnet and SSH honeypot, meant to take logs on brute-force at-
tacks, as well as commands executed within its dummy shell [48]. The reason
for choosing this honeypot is its Telnet logging capabilities, which match an im-
portant phase of the Mirai botnet.

• DDoSPot

The DDoSPot is a honeypot designed to log UDP-based DDoS attacks. It features
DNS, NTP, and SSDP servers, so that, as far as the threat actors are concerned,
the interactions look real [49]. This honeypot is also a part of the T-POT system,
however, in DAMOCLES, it is installed separately on the Raspberry Pis. The
reason for this is that T-POT requires more resources than the RPis have, so
having only the containerised version of the DDoSPot running is more feasible.

5.4 Botnet and Victim Configuration

The integration of the victim nodes and the malware components in our testbed envi-
ronment is one of the most important stages in the implementation of the DAMOCLES
project. Essentially, the code of the Mirai binaries (bots) and its C&C components as
well as the configuration of the Alpine Linux docker containers has to be adjusted to the
needs and context of our network environment.
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Mirai Source Code

To deploy Mirai in our project, a thorough research was conducted on the botnet’s
leaked source code. We have acquired the following sources:

• The original Mirai leak from Anna-Senpai, posted in Github by Jerry Gamblin [50],

• A modified version of the code for virtual/simulated environments by Joshua Lee
[51] and

• The Mirai source code variations in RootSec’s DDoS Github archive [52].

Despite some differences on the deployment scripts as well as in the attacks and capa-
bilities included in the aforementioned variations all the source code studied, includes
the same components:

• The build.sh script responsible for compiling the various botnet components,

• A set of MySQL commands that setup the necessary databases and tables,

• The enc.c file which is responsible to obfuscate the botnet’s hardcoded informa-
tion through encoding,

• The single load.c file that can load the botnet malware once for a specific target,

• Other miscellaneous utilities like the cross-compiler binaries, the badbot.c, wget.c
and nogdb.c files,

• The source code for the C&C server under the cnc folder,

• The source code for the loader utility under the loader folder,

• The source code for the botnet malware under the bot folder and

• The source code for the scanListen utility in the scanListen.go file, which is re-
sponsible to listen for brute forced credentials.

Taking in consideration the above information, we have opted to utilise the Mirai Satan
variation, found in RootSec’s Github page [52]. The main reason behind this choice
was the fact that this variant of Mirai is newer based on the date uploaded in Github. In
addition, it is a less explored, and as such its analysis can provide some useful insights.



58

Mirai host VMs

The first step on deploying the Satan variation, was to deploy the hosting VMs in our
network topology. We did that by setting up two identical Ubuntu VMs, connected to
the Attacker LAN as depicted in Figure 5.22. The said VMs have static IPs (CNC VM:
192.168.102.101 - LOADER VM: 192.168.102.102).

Figure 5.22: The CNC and LOADER Ubuntu VMs in GNS3.

In the CNC VM we have also installed a MySQL server with the necessary databases
and tables using the following commands (included in the botnet’s setup instructions):

1 CREATE DATABASE mirai;

2

3 CREATE TABLE ‘history ‘ (

4 ‘id ‘ int (10) unsigned NOT NULL AUTO_INCREMENT ,

5 ‘user_id ‘ int (10) unsigned NOT NULL ,

6 ‘time_sent ‘ int (10) unsigned NOT NULL ,

7 ‘duration ‘ int (10) unsigned NOT NULL ,

8 ‘command ‘ text NOT NULL ,

9 ‘max_bots ‘ int (11) DEFAULT ’-1’,

10 PRIMARY KEY (‘id ‘),

11 KEY ‘user_id ‘ (‘user_id ‘)

12 );

13

14 CREATE TABLE ‘users ‘ (

15 ‘id ‘ int (10) unsigned NOT NULL AUTO_INCREMENT ,

16 ‘username ‘ varchar (32) NOT NULL ,

17 ‘password ‘ varchar (32) NOT NULL ,

18 ‘duration_limit ‘ int (10) unsigned DEFAULT NULL ,

19 ‘cooldown ‘ int (10) unsigned NOT NULL ,

20 ‘wrc ‘ int (10) unsigned DEFAULT NULL ,

21 ‘last_paid ‘ int (10) unsigned NOT NULL ,

22 ‘max_bots ‘ int (11) DEFAULT ’-1’,
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23 ‘admin ‘ int (10) unsigned DEFAULT ’0’,

24 ‘intvl ‘ int (10) unsigned DEFAULT ’30’,

25 ‘api_key ‘ text ,

26 PRIMARY KEY (‘id ‘),

27 KEY ‘username ‘ (‘username ‘)

28 );

29

30 CREATE TABLE ‘whitelist ‘ (

31 ‘id ‘ int (10) unsigned NOT NULL AUTO_INCREMENT ,

32 ‘prefix ‘ varchar (16) DEFAULT NULL ,

33 ‘netmask ‘ tinyint (3) unsigned DEFAULT NULL ,

34 PRIMARY KEY (‘id ‘),

35 KEY ‘prefix ‘ (‘prefix ‘)

36 );

In the LOADER VM we have deployed and configured an Nginx web server to host the
botnet’s malware binaries. The Nginx configuration is similar to the one in Section 5.2.5.

Mirai Source Code Adjustment

• C&C: The C&C server is written in the Go programming language. For the C&C
source code he have made only the following changes in the cnc/main.go file:

– We have inserted the credentials for the MySQL database and,
– have also specified the interface and port in which the CNC will be listening

for incoming telnet connections.

The changes are depicted in Figure 5.23.

Figure 5.23: The code adjustments in the cnc/main.go file.
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• Loader Server: For the loader server(written in C), the source code customisa-
tion revolves around the loading/“bootstraping” process. Namely, the changes are
made to the code module that downloads and executes the malicious binaries.
The file that includes the said module is the loader/server.c. Initially, the loader
utility will try to detect the architecture of the victim system, using the ELF magic
technique on the /bin/busybox binary file. ELF magic is used to identify ELF
files from merely the very first few bytes of a file. The problem with that config-
uration lies with how much information the server can handle since our topology
has close to no network delay. Since the original code uses the cat command
to acquire the ELF magic bytes the loader’s buffer is overflowed and the loading
process never finishes. Thus, we have replaced the cat command with the head

command to achieve similar results with less processing overhead. This change
can be seen in Figure 5.24.

Figure 5.24: ELF magic using the head command in the loader/server.c file.

It’s also important to mention here that in all the variations of Mirai we have ex-
plored, the BusyBox utility is the main userland toolset employed to execute com-
mands in the victim devices. This is because BusyBox is specificaly designed to
provide common UNIX commands to embedded systems with little computational
power.

The last adjustment in the same file has to do with the permissions of executing
the malicious binary inside the Alpine Linux containers. The doas utility (equiv-
alent of the sudo command) is needed to the commands that will allow the ma-
licious binary to explode in the Alpine machines. This is a consequence of root
login being disabled by default and opening raw network sockets require root priv-
ileges. Thus all these commands in the code are run with doas Figure 5.25.
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Figure 5.25: Binary explosion using the doas utility in the loader/server.c file.

• Bot source code: The bot code is also written in C. For the bot malware code
the first step was to change the hardcoded IPs to our own C&C and Loader
servers. This information is saved in two variables in the bot/includes.h file
and the changes are highlighted in Figure 5.26.

Figure 5.26: The SCANIP and SERVIP variables in the bot/include.h file.

As a result of the previous changes, a modification on the bot/scanner.c is also
required and can be seen in Figure 5.27. This is to instruct the bot to utilise the
SCANIP to report brute force results.

Figure 5.27: The SCANIP setting in the bot/scanner.c file.

The last two adjustments in terms of the botnet configuration are also related
to the bot/scanner.c file. The first one has to do with the brute forcing speed
and efficiency. From the code analysis it became apparent that the Satan variant
uses a list of 209 authentication entries as its username/password wordlist. In
combination with the bot randomly trying combinations this is highly inefficient for
our emulation. As such we have limited the number of attempts to only 7, including
the combination set for the Alpine Linux machines, namely admin:admin.
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The last change is related to the scanning ranges. Essentially, Mirai to conceal
itself from the authorities avoids to scan specific IP ranges belonging mainly to
United States-based organisations. The ranges can be seen in Figure 5.28.

Figure 5.28: The IP address ranges avoided by Mirai.

To ensure containment and avoid scanning on the Internet we have modified the
IP ranges scanned to only our local LANs. Namely the modified Satan only scans
for devices in three subnets:

– 192.168.101.0/24

– 192.168.102.0/24

– 192.168.103.0/24

Bots - Alpine containers

As stated the Alpine Linux containers serve as the vulnerable devices of our scenario.
We chose to work with Alpines, since they are lightweight, easy to deploy, and they
mimic embedded devices which are a primary target for Mirai. The following docker file
showcases the configuration and the required dependencies:

1 FROM alpine:latest

2

3 # Set -up the networking file and include a MAC address for the machine

4 RUN sh -c ’if ! grep -q "hwaddress" /etc/network/interfaces; then \

5 echo -e "auto eth0\niface eth0 inet dhcp\n\thostname vonelbeland -telnet

-client -$(shuf -i 10000 -99999 -n 1)\n\thwaddress ether 00:$(shuf -i

10-99 -n 1):$(shuf -i 10-99 -n 1):C2:$(shuf -i 10-99 -n 1):D0" >> /etc

/network/interfaces; \

6 fi’

7

8 # if there is an Internet connection , update apk and download necessary

packages

9 RUN if wget -q --spider http :// google.com; then \

10 apk update && apk add --no -cache busybox -extras && \
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11 apk add doas && apk add shadow && \

12 ln -s /bin/busybox /bin/telnetd; \

13 else \

14 echo "No internet connection , skipping telnetd startup."; \

15 fi

16

17 # create the user admin

18 RUN adduser -D admin && echo "admin:admin" | chpasswd

19 RUN adduser admin wheel

20

21 # Set appropriate permissions to the files & folders

22 RUN find / \( -path /proc -o -path /sys -o -path /etc/hosts -o -path /etc

/resolv.conf \) -prune -o -type f -exec chmod 777 {} \; -o -type d -

exec chmod 777 {} \;

23 RUN find /usr/bin/doas -type f -exec chmod 7771 {} \;

24 RUN find /etc/doas.d/doas.conf -type f -exec chmod 700 {} \;

25

26 # Set permissions for the ’wheel ’ user group

27 RUN echo "permit nopass :wheel" >> /etc/doas.d/doas.conf

28

29 # Start the telnet server in foreground

30 CMD telnetd -F



Chapter 6

Analysis

This chapter presents the results of experimenting with the Satan botnet within the
DAMOCLES testbed. Starting with how the scenario unravelled, all the packet captures
and logs gathered from the monitoring tools utilised are thoroughly described.
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6.1 Scenario

Figure 6.1: Project DAMOCLES’s threat emulation scenario.

For our threat emulation scenario the following stages take place Figure 6.1:

• Using the Loader with a predefined list of credential combinations (cat infected.txt

| ./loader) and IP addresses the first bots are infected (Marked with a skull icon
in Figure 6.1). The Loader only accepts entries in the format IP username:password

as seen in Figure 6.2.

Figure 6.2: The initial infection list for the Loader.



66

Figure 6.3: Loading the first payloads.

• After the infection the C&C server will be notified (Figure 6.4 - ([DevilsLair] Sealed),
and the bots will start scanning for more vulnerable devices. When they success-
fully brute force another system the bots will report their findings to the scanListen

utility deployed in the Loader VM as seen in Figure 6.5. The said results will be
automatically saved in a .txt file (sl list.txt).

Figure 6.4: The bots’ initial communication with the C&C.

Figure 6.5: Successfully brute forced credentials reported back to the scanListen utility.
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Figure 6.6: The sl list.txt file.

• The list from the last step can be employed to directly infect more devices and
turn them into bots. When the desired amount of bots has been rallied, the attack
operations can be commenced (The arrows in fig. 6.1 indicate the emulation’s
targets). In Figure 6.7 the available attack options (mainly various DDoS attacks)
and their syntax are displayed.

Figure 6.7: The C&C server’s attack help menu.

For our emulation scenario we have chosen to implement the following DDoS attacks
against our targets:
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• The udpplain attack - a UDP flood DDoS - against the NTP service of the DDoSPot
running in port 123 in the first RPi,

• The udp attack - a UDP flood DDoS like before but with more options and lower
packets per second - against the SNMP service of the DDoSPot running in port
161 in the second RPi,

• The syn attack - a SYN flood DDoS - against the HTTP service running at port 80
in the Tpot-3 VM - IP: 192.168.102.12 and,

• The ack attack - an ACK flood DDoS - against the HTTP service running at port
80 in the Tpot-1 VM - IP: 192.168.101.196.

For all the attacks we have set the default flags and the attack duration to 120 seconds.
For more information regarding the attacks and their flags, one can consult the attack
instructions at [51]. In the following section the analysis of the results produced by this
threat scenario are explored.

6.2 Traffic Capturing

Upon running the traffic capturing script followed by the script that merges the resulted
files, a 29GB .pcap file was acquired, with around 6 million packets. The file is large
due to all the bots performing continuous scanning, as well as due to the DDoS attacks.
The experiment ran for a total of 17 minutes. The contrast between the small time-frame
and the substantial amount of packets captured is a good indication of how powerful a
botnet can become. The merged .pcap file has been reviewed both within Wireshark
and Security Onion.

6.2.1 Wireshark

Wireshark has mostly been used in the initial phases for management purposes, since
it does not offer automation features. As such, studying a file in detail, like the final
.pcap one which had 29GB in size, would have not been feasible. However, for smaller
amounts of packets, this tool proved to be very useful. A good example of how this
tool proved beneficial was to easily identify the Telnet traffic. Since this is in plain
text, we could follow the communication and the malware behaviour. A more detailed
representation of this can be found in Chapter 9, Apendix.
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6.2.2 Security Onion

Security Onion analysed the merged .pcap file in under an hour and caught most of the
network behaviour of the botnet. Security Onion has analysed 6,971,623 connections
in total.

Figure 6.8: The Security Onion main dashboard.

Starting with the information depicted in Figure 6.8, it is immediately visible that Zeek
has classified a portion of the network traffic as “weird”. Drilling down on that traffic,
Figure 6.9, and by filtering out the unnecessary information we can see that the majority
of connections is performed towards the Tpot VMs Figure 6.10. Analysing it further, it is
revealed that anomalous TCP traffic associated with SYN and ACK flood DDoS attacks,
is present. This is more apparent if the PCAP analysis service of Security Onion is used
to audit the traffic Figure 6.11. As such we are able to detect the DDoS attacks initiated
by the botnet against the Tpot VMs.

Figure 6.9: Zeek identifying 1,653,721 connections as “weird”.
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Figure 6.10: Connections initiated towards the Tpot VMs.

Figure 6.11: Raw ACK traffic.

Since no other events are directly apparent in the main dashboard, we proceed to check
the alerts blade. The alerts generated by Suricata can be seen in Figure 6.12.

Figure 6.12: The alerts generated by Suricata.

From an initial check, we are promptly informed about the botnet’s actions. The failed
user and root logins, in combination with alerts associating traffic to BusyBox com-
mands, and ELF binary downloads depict almost its whole lifecycle. From the loading
phase to scanning for other vulnerable devices, almost all the components of the botnet
are exposed. Lastly the two remaining alerts ET SNMP Attempted UDP Access Attempt
to Cisco IOS 12.1 Hidden ReadWrite Community String ILMI and GPL ICMP INFO
PING NIX are to be analysed. Despite the rules’ names, by going deeper into the alert
details one can immediately see that Suricata has detected unusual traffic towards the
physical RPis. Even though we cannot immediately correlate this traffic with UDP flood
attacks, the information generated by the DDoSPots hosted in the RPis will later verify
our suspicions.
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6.3 Honeypot System Logs

The honeypot systems, namely the two T-Pots and the DDoSPots, have also contributed
greatly to the analysis of the botnet. The logs have reflected the behaviour of the
malware towards the honeypots. In the case of T-Pot, the logs are visually represented
in the Dashboard provided by Kibana.

6.3.1 T-Pot

From the T-Pot, we have utilised the containers Cowrie and Suricata to get logs. A few
challenges have been encountered, as mentioned below.

Cowrie

The idea to employ the Cowrie honeypot came from the paper “iBot: IoT Botnet Testbed”
[8]. The iBot testbed also experiments with a Mirai variant and claims to use Cowrie for
logs. This is due to its Telnet and SSH capabilities which match Mirai’s target protocols.
However, in our case, the bots never managed to form a Telnet connection with the
honeypot in order to start brute-forcing it. Upon analysing the packets in Wireshark,
we noticed that the the communication would always be interrupted after the honeypot
prompted for credentials. Late in the project, we found the answer to this issue on a
forum. According to Github, the Mirai malware expects Telnet negotiation characters
at the beginning of the communication, which are not provided by Cowrie, hence the
connection is quickly dropped after that [53]. The Telnet negotiation characters refer
to a feature of this protocol through which the client and server agree on what sup-
ported features they have in common in order to proceed with the communication. This
explanation matches our conclusion upon debugging the source code.

Suricata logs

Suricata has been employed for logging events on the T-Pot machines, specifically the
DDoS attacks. The TCP floods directed towards port 80 by the bots are depicted in
Kibana, as can be seen in the figures below. Figure 6.13 illustrates the large number of
events logged during the DDoS attacks and the scans from the bots directed towards
the T-Pot in the victim LAN. There are 38 different IP addresses interacting with this
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machine. As per Figure 6.14, some of these source IP addresses can be seen, along-
side alert signatures generated by Suricata. The alerts flag the streams of packets with
“broken ack” and streams where “RST received, but no session”, caused by the DDoS
attacks. Moreover, “unusually fast inbound/outbound Telnet Connections” alerts were
triggered by the bots scanning for potential victims and coming across this T-Pot.

Figure 6.13: Suricata events

Figure 6.14: Suricata Alert Signatures
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6.3.2 DDoSPot

This honeypot served as the main target of the bots, being installed on the RPis. As
DDoSPot supports UDP-based DDoS attacks, the bots were instructed by the C&C to
perform UDP floods. This is apparent in the logs from the honeypot. The first attack
was deployed towards the NTP feature of DDoSPot in port 123, as can be observed
in the Figure 6.15. The “malformed packet” errors are due to the nature of the attack.
In the case of Figure 6.16, the logs are created when the threshold is reached for the
traffic received in port 161, also known as the “GenericPot” service. The information
logged about the attacker machines is its IP and source port.

Figure 6.15: DDoS attack logs - NTP, port 123

Figure 6.16: DDoS attack logs - GenericPot, port 161



Chapter 7

Discussion

Having analysed the network behaviour and host logs from our tools of choice, this
section dives into the evaluation of the overall performance of the experiments, with re-
spect to the goals of the project, research made, and requirements set. These results
are then mapped to the botnet lifecycle developed in Chapter 3, in order to gain a com-
plete overview of the events obtained through the analysis. Finally, the shortcomings of
the project are discussed and future plans are decided.

7.1 Botnet lifecycle

This section presents the findings acquired through analysis, plotted to the phases of
the botnet lifecycle we created based on our literature review.

1. Infection and propagation

As observed through studying the source code, Mirai, and respectively Satan,
utilise a pseudo-randomising function to create IP addresses and scan them for
potential Telnet and/or SSH open ports. As we have observed in the analysis,
the bots are very efficient in terms of identifying targets and then brute-forcing
them. One infected machine would have been enough to infect all other LANs in
the topology, however, we infected one in each LAN for the sake of speeding up
the process. After brute-forcing, the acquired credentials and IP address of each
victim is sent to the Loader server, which proceeds to infect the machine with the
malware, based on its architecture.
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2. Forming the botnet

The newly infected machines ‘sign contracts’ with the C&C server, which practi-
cally means the bots are ready to receive commands. These contracts can be
broken if the connection to the bot is lost. This has happened during experimen-
tation, when the hardware resources of the Ubuntu server have been used at
capacity.

3. C&C

We have experimented with four of the multiple DDoS options available from Sa-
tan. All the attacks exceeded the expectations, judging by their effectiveness. As
previously mentioned, the amount of packets generated in such a short time is
impressive.

4. Botnet applications

All the DDoS attacks were performed successfully by the infected bots. The attack
that proved to be the most severe has been the SYN flood, which resulted in
around 3 million connections towards a T-Pot machine.

5. Securing the botnet

While studying the source code, a few methods for securing the botnet and mal-
ware resilience became apparent.

• Satan uses custom encoding to obfuscate information such as operational
details, attack functionality, C&C infrastructure details etc.

• The malware utilises the killer module to reduce system capabilities, by
killing processes running in specific ports and preventing said processes
from restarting.

• The killer module also scans for adversary malware.

7.2 Requirements Validation

Since the implementation, deployment, and the analysis of the scenario have been
discussed, an evaluation of the agreed-upon requirements is in order. This is, of course,
relative to the initial idea formulated through the problem formulation.

• Fidelity

As decided at the time, DAMOCLES makes use of both real and emulated envi-
ronments. Slightly compromising on fidelity was the goal from the beginning, in
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this sense. However, utilising the Satan source code has allowed us to gain a bet-
ter understanding and recreate a scenario closer to reality. Also, the source code
has very little modifications to work within this project’s testbed. This increases
the fidelity level substantially.

• Heterogeneity

Heterogeneity has been achieved through exploring multiple technologies, namely
Docker, KVM, and QEMU for emulations, Pfsense and Open vSwitch for network-
ing, RPis in terms of real hardware, and finally utilising Wireshark, Security Onion,
and honeypots for monitoring and logging botnet behaviour.

• Containment

Several containment measurements have been considered: studying and modi-
fying the source code so as to scan and attack only our desired targets, isolating
the topology from the Internet, and also making the remote server run behind
OpenVPN. This is an important step when handling real malware.

• Repeatability

As initially discussed, the virtual environment can be reproduced, either as a
ready-product or by following all the instructions provided in this report. The real
topology on the other hand may be inconvenient to recreate, since it required
specific devices, like RPIs, wireless network cards and mobile hotspots.

• Measurability

A lot of effort was put into the logging and monitoring the botnet’s behaviour, given
the main research question of this project. Thus, several options for observing the
malware and the botnet infrastructure have been employed.

Overall, DAMOCLES fulfils all the requirements that have been deemed relevant from
the beginning. Albeit that this project has been flexible in terms of adapting to new
challenges when needed, this is why choosing the adequate methodologies, like the
process model and type of literature review, is important.

7.3 Future work

This section approaches potential opportunities for refinement, which, due to the lack of
time, have not been carried out. One aspect where DAMOCLES could improve would
be to expand the heterogeneity of devices. Not only to experiment with simulating IoT
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behaviour, but also with other operating systems and environments. On the same note,
a larger variety of targets implies testing with more botnets. Due to the ever-changing
nature of botnets, more and more hardware and features could be studied.

On the other hand, the monitoring tools could be tweaked to better identify and illustrate
the behaviour of botnet malware. As has been mentioned before, some challenges
have been faced while working with tools like Cowrie and Security Onion. However,
they could have been addressed by choosing a newer variant of a botnet in the case
of Cowrie, whereas for Security Onion, a solution would be to configure and utilise
different rule sets for Suricata and Zeek, to detect all the IoCs within the traffic.



Chapter 8

Conclusion

The prominent threat that botnets pose to cyber infrastructure makes studying them
more relevant than ever. Project DAMOCLES’ goal is to take on this challenge by
answering the main research question:

How can we analyse botnet behaviour and infrastructure within a dynamic network
environment?

To break down all the aspects of this real-life problem, three sub-objectives were de-
fined: specifying the requirements for a dynamic network environment, setting up and
deploying a botnet infrastructure capable of realistically emulating a threat scenario in
a controlled manner, and gathering useful insights from analysing the data collected by
employing modern analysis tools and techniques.

Early in the project we leveraged the benefits of systematic literature review. In doing
so, we have gained a more holistic overview of the key aspects to consider for de-
ploying a realistic, yet controlled network environment. By studying various testbeds
we have successfully identified the desired features that aligned with the approach of
DAMOCLES: Fidelity, Heterogeneity, Containment, Repeatability, and Measurability.

The following stage of the project involved implementing the previously conceptualised
system, with respect to the requirements identified. Thus, fidelity has been achieved
through recreating an entire botnet infrastructure within an environment comprising of
real and emulated devices. Heterogeneity was fulfilled by exploring varied technologies
and methodologies all throughout the implementation phase. Working with real bot-
nets can be challenging, so containing the malware has been attained through meticu-
lous examination of the source code and environment. As a good practice, automating
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and documenting the system ensured that DAMOCLES can be recreated and/or ex-
panded in the future. Lastly, a lot of emphasis has been granted to different methods
of analysing network traffic and logging the behaviour of botnets. Thus, experimenting
with various tools has demonstrated this project’s ability to maximise measurability.

As a final step and good measure, we analysed and validated the results of running the
envisioned scenario. Therefore, we can conclude that the research question, alongside
the associated sub-question, have been fulfilled.
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Appendix

9.1 Apendix A - Thesis Contract

Project Title: Building a dynamic environment to study botnet malware
Starting: 1 September 2022
Deadline: May 2023
ECTS: 50
Courses: Advanced Topics in Cyber Security, Privacy Engineering (elective).

Supervisors: Marios Anagnostopoulos

Project Description: This master thesis focuses on botnet malware analysis, within
a dynamic IoT network environment. Specifically, we will investigate the available tools,
tactics, techniques, and procedures utilised by bot masters throughout the botnet life-
cycle against the said infrastructure.We will develop a custom testbed, emulating vari-
ous network topologies and attack scenarios. Moreover, our team will explore different
botnet malware and employ a variety of tools to carry out attack campaigns. Some of
the key areas covered within this thesis will be the implementation and hardening of
the testbed environment, as well as capturing and analysing network traffic, as a result
of the botnet behaviour. The contribution of this research is to create a reproducible
testbed with a relevant dataset for botnet analysis.

Plan for thesis supervisor and lab work: Weekly or bi-weekly meetings with Marios
have been agreed on based on the workload. We, Loredana and Nikolaos, will work on
a daily basis onsite (in the study hall for Cyber Security on the 3rd floor, at Frederikskaj
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12), unless otherwise agreed on in private.

Approved by the supervisor and the Study Board’s Head of Studies.

Appendix B - Preliminary Testing

This section will showcase some of our initial experiments in GNS3.

Connect physical devices to the GNS3

In order to connect the physical Pi to the GNS3 emulated topology we follow the steps
below:

• We will utilize the Cloud node.

• The Cloud node should not be created to the GNS3 VM, but instead it should be
deployed in the local computer. The reason for that is to be able to utilize the
physical interfaces of the host machine.
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To connect to the physical Pi in the above topology - where the Pi is connected to
the hotspot created by the Windows host - we will utilize the Hotspot adapter of the
Windows host where the LAN between the host and the Pi is created. The configuration
should look like this:
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It’s crucial to remember to enable the “Show special Ethernet Interfaces” option, so as
to add and connect the Hotspot adapter.

• It does not matter in which VMnets the Pfsense interfaces are connected. Namely,
GNS3 requires host only networks without automatic DHCP settings so as to
create bridges between them - a bridge in this context is the ability to share a
network connection. Essentially GNS3 bridges all the VMnets together so as to
simulate that all the guest reside in the same LAN.

• The Cloud is bridged to the Local Area Connection* 2. Consequently a bridge is
created between the other parts of the topology and the physical devices.

• The network configuration of the Pfsense VM in VMware is as follows:
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Note that the 3rd network adapter is useless, it is there only for testing purposes. Next
we manually configure the Pfsense firewall, so all its interfaces have the appropriate IP
addresses:



89

For that purpose, we utilized the 2) Set interface(s) IP address option. The WAN in-
terface is used to connect the Pfsense router to the Hotspot LAN where the PI is con-
nected.

On the other hand, for the LAN interface we can set a custom subnet and range of
IP addresses. The LAN interface holds the rest of the emulated topology. Finally
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we set custom IP addresses to the emulated VPCs. For that purpose we use the ip
≺ip address≻/≺subnet mask≻ default gateway command:

The results of the ping commands to test the emulation are apparent in the following
figure:

Useful Commands

To find the IP address of a VPC in GNS3 we use the show ip command:
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- To set the IPs of VPCs use the following command: ip ≺ip address≻/≺subnet mask≻
default gateway command

Issues - Troubleshooting

• Bridge mode breaks the Virtual Network Adapters → Use bridges to connect ev-
erything together though!!!

• Use the Cloud node to connect the emulated topology with physical devices.

• Bridged VMnets are not able to be used in GNS3

• REMEMBER!!: Do not assign automatic DHCP settings in the VMnets:
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That way the VMs are not IP depended to any VMnet. As such GNS3 can create
bridges between the VMnets specified in the VMware preferences of GNS3.
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• The Pfsense router needs manual assignment for both the WAN and LAN inter-
faces. The interfaces can be connected to any VMnet configured by GNS3.

• A single switch was not able to connect the Pi with the emulated VPCs.

Apendix C - Wireshark

These are a few examples of useful information gathered from Wireshark. The first two
figures represent Telnet trafic in plain text, which makes following the communication
easy. The third picture represents a snippet of a DDoS attack.



94

Figure 9.1: Telnet traffic (1)
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Figure 9.2: Telnet traffic (2)
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Figure 9.3: DDoS attack
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