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Nav2 Navigation 2
Nav2CAN Nav2 Context Aware Navigation
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QoS Quality of Service
RGB Red-Green-Blue
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ROS1 Robot Operating System 1
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RRT Rapidly-exploring Random Tree
SLAM Simultaneous Localization And Mapping
TBoF Trainable Bag of Freebies
VR Virtual Reality

iii



Contents

1 Introduction 1

2 Problem Analysis 3
2.1 Context aware navigation . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Human Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Scene understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Technical Analysis 16
3.1 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 CoHAN Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 PersonLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 YOLOv7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Design and Implementation 24
4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 People detection module . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Context module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Nav2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 CoHAN simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 ROS1 and ROS2 bridging . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Results 48
5.1 Module timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 CoHAN comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 People Detection module . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Nav2CAN on MiR100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Discussion and conclusion 62
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 68

iv



1 - Introduction
Context is defined by Merriam-Webster’s dictionary [1] as: the interrelated

conditions in which something exists or occurs. Therefore, context aware navigation
means to navigate while understanding the environment and the actors and ob-
jects within that environment.

Mavrogiannis et al. [2] describes navigation as the task of following a collision-
free route in an efficient manner from initial position to a goal. This means that
calculating and following a route while deviating to avoid collisions is the core
concept. When adding social or context aware navigation, the goal is to avoid the
obstacles, that is socially uncomfortable zones, from a human perspective. This
means that to efficiently be aware of social contexts the mobile robot must be able
to calculate the route that will adhere to social norms such that humans will be
comfortable around the robot. Therefore, using the current actions of humans to
plan paths that will try to avoid interruption is desired.

Figure 1.1: A projector used to show the planned path of the robot on the floor. This is used to
highlight the intended action of the robot to the user.

A previous project [3] by the authors of this work showed the importance of
using social aware navigation when deploying mobile robots in a human filled
environment. In that work, the focus was on integrating social aware navigation
on a mobile robot platform, that could use the location of a single human to ensure
that the human felt safe, comfortable and trusted the robot. The importance of a
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2 Chapter 1. Introduction

robust detection of humans along with a socially aware navigation would improve
how the human felt around the robot. Implementing an indication system, as the
one seen in figure 1.1, for the robot was part of the previous work, which showed
the importance of the communication between robot and human. However, it was
evident, that social aware navigation had its limitation due to implementation.

Figure 1.2: The Likert rating of different aspects of the system developed in a previous work. Here
A is a test using only the navigation from the mobile platform. B incorporates the indication of the
path without social aware navigation. C uses socially aware navigation without indication. D uses
both socially aware navigation and indication.

Figure 1.2 shows the different ratings of the system using different setups.
Here it was found that indication gave the larger improvement due to the expected
movement from the robot. Part of the reason for lower performance was due
to implementation, where the robot would move in an oscillatory manner. This
showed a need for a better implementation of robotic planning.

To achieve better planning it is important to understand how the planning
can take multiple aspects of the environment into consideration. Here both social
zones of humans as well as potential interactions between humans are of interest.
This means that the robot should be able to include areas of interaction when
planning the optimal path in a pursuit to not disturb people. As described by the
participants of the previous work, it is important for a robot to behave predictably
and consistently for humans to act around it.
This leads to the initial problem formulation that guides the problem analysis of
this thesis:

How can a mobile platform achieve context awareness to perform navigation in human
filled environments?



2 - Problem Analysis
To understand the needs within social interactions between humans and robots

it is important to understand the state-of-the-art research within the area as well as
connected fields that might influence the success of implementing context aware
navigation. Therefore, this chapter highlights different research within social
robotics, Human-Robot Interaction (HRI), context perception, and mobile robot
navigation and mapping.

2.1 Context aware navigation

When navigating in an environment that contains dynamic objects and, in partic-
ular, humans, it is important for a robot to be able to assess something about a
given context. These contexts can vary but generally include humans in one way
or another. As described by Lemaignan et al. [4], Artificial Intelligence (AI) must
be able to extract knowledge and create models of humans in a context to make
decisions that can be translated into actions. Often this knowledge of context is
gathered through multiple modalities which further require multiple methods for
perception and fusion of sensor data. For mobile robots, the robot must be aware
of social rules that humans act according to in order to be perceived as safe and
comfortable by the human.

Lemaignan et al. [4] describes the HRI as consisting of three challenges: Com-
munication, Joint action, and Human-Aware execution. Here the communication
can be in different modalities, such as speech or gestures. The joint action can be
handling an object in collaboration or moving safely and efficiently around a work
area. Human-Aware execution relies on the robot’s beliefs on the human actions
to achieve execution that is not interfering with the human action. Marques et al.
[5] proposes a proxemics-based approach for handling activity in the cost map of
the robot. This includes the detection of a human interacting with a given object
and increasing the affordance space.

Clavero et al. [6], uses adaptive proxemics to determine a social layer for the
costmap that changes depending on the context. This adaption is implemented by
changing the social zone to be either restricted or a collaboration zone, depending
on the context.

3



4 Chapter 2. Problem Analysis

2.1.1 Proxemics

As described above, proxemics can be an important factor when developing con-
text aware navigation. Therefore, a brief introduction to the concept of proxemics
and uses within robotics are described in the following.

The first definition of proxemics was described by Edward T. Hall [7] as: the
interrelated observations and theories of humans use of space as a specialised elaboration
of culture. This was a description of how humans use space around them and
how they perceive other people in the surrounding space. According to Hall, four
zones around a human can be described:

1. Intimate zone within 0.5m of the person. This zone is reserved for close
personal relationship where physical contact is possible if allowed by the
person. Invasion of the intimate zone can be considered as a threat and
cause discomfort for the person. Certain situations may limit the size of the
intimate zone due to spacial limitations.

2. Personal zone from .5m to 1.4m from the person. The personal zone a natu-
ral interaction can happen with other people where physical contact is pos-
sible.

3. Social zone from 1.4m to 4m from the person. Here social interactions can
happen while keeping physical distance.

4. Public zone more than 4m from the person. In this zone attention is not on
other people and their identity is unknown. Here interaction is not expected
due to the larger distance between people.

(a) Uniform social space (b) Social space (c) Social space with dominant side

Figure 2.1: Different social space representations based on proxemics theory. Proxemic zones are
not drawn to scale for visualisation purposes.
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Figure 2.2: Using the egg shaped proxemics to show the social interactions. Proxemic zones are not
drawn to scale for visualisation purposes.

The proxemics described by Hall [7] are concentric circles which may differ
depending on the situation, as described by Hayduk [8]. A version of this is
shown in figure 2.1. Here it is described how people require more space in front
of themselves, meaning that invasion of space from the front are viewed more
negatively. This results in a egg-shaped social zone similar to the one shown
in figure 2.1b. Gérin-Lajoie et al. [9] further argues that the social zones are
asymmetrical depending on the dominant side of the body as shown in figure
2.1c.

Barnaud et al. [10] try to determine parameters for the egg-shaped model by
using experimental data from Efran et al. [11] to which they fit Rapidly-exploring
Random Tree (RRT) based simulated paths using different parameters for the per-
sonal and different parameters and models for the interaction space. Comparing
their experiments with and without interaction space they conclude that omitting
the interaction space is only marginally decreasing the model fit and that therefore
the detection of the interaction between two humans might not be as important in
their specific application of passing a two person interaction in a corridor. Further-
more they confirm that the personal space should be egg shaped and elongated in
the direction the person faces to achieve human-like motion. Figure 2.2 shows the
social interaction using only egg shaped zones.

When people interact with other people they tend to establish new proxemics
zones that include space between them. Kendon [12] describes different spaces
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Figure 2.3: Social interaction F-formation. O space is in yellow between the participants, P space is
in green and is where the humans are located and r is around the humans in blue, where potential
participants can enter. The spaces are not drawn to scale but serves visualisation purposes.

that are relevant when observing different social interactions. Here the O space
and P space are described as the space for the activity and the space surrounding
the activity and the people, respectively. Additionally, the interaction will have an
r space around it, where the members of the interaction will be aware of others
who might join the social interaction. This setup is also known as the F-formation,
which can be seen in figure 2.3.

Greenberg et al. [13] describes how five dimensions can be used to describe
the interaction between human and other objects. These dimensions are Distance,
Identity, Location, Movement and Orientation. The distance describes the physi-
cal distance between human and object and is related to the zones of proxemics.
The identity describes the individual person and can be used to describe spatial
interactions between a person and an object. The location is used to determine the
type of interactions that are present in a given context. The movement is used to
describe the physical movement of human and object over time. The orientation is
used to describe what object the user is facing which in turn is used to determine
interactions.



7 Chapter 2. Problem Analysis

2.2 Semantic mapping

A method for understanding the context of human activity is to understand the
human semantics of a given area. This can be done with semantic mapping where
a given area is assigned a category. This category can then be used to assess the
context types that are expected or possible. Knowing the semantic of a given area
can help in achieving a more suitable navigation of a mobile robot by assuming
human interactions more generally in certain areas [14].

The methods for developing semantic maps varies with different use cases
and it is therefore relevant to understand different methods to choose a method
of approach when developing a new system using semantic mapping. For tasks
where the robot collaborates with a human it is important that the robot under-
stands the semantics of the humans when commanded to certain areas. This is
especially true when relying on Natural Language Processing (NLP) where the
robot must be able to perform a command issued by the human using verbal com-
munication [14]. When using semantic mapping in outdoor settings the semantics
of a given area can be used for outdoor localisation, assessment of traversability,
behaviour selection, etc. [15].

According to Kostavelis et al. [14], a problem within semantic mapping is that
of evaluating a given method due to a lack of a comparable ground truth. There-
fore, there is a need for commonly used datasets to compare different methods
reliably.

Garg et al. [16] proposes a taxonomy for robotic semantics that divides into
four categories that either extract semantics from a scene, uses semantics to achieve
a goal, or does a combination of both. These categories are as follows:

1. Static and un-embodied scene understanding: Using methods to extract in-
formation of a given scene from a static camera, separating it from a robotic
agent that is learning or using the environment. This is relevant due to the
use cases within robotics even if the research is proposed for other applica-
tions.

2. Dynamic Environment Understanding and Mapping: Using different types
of sensors on a mobile robot enables the possibility to determine the se-
mantics of a robots environment to determine the map using Simultaneous
Localization And Mapping (SLAM) techniques.

3. Interacting with Humans and the World: This area connects the ability to
perceive the environment with the ability to act within that environment.
This takes into consideration the difference between perceiving interaction
and perceiving in order to interact.
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4. Improving Task Capability: Using semantics in order to improve the ca-
pability of other tasks. This can be using semantics in order to improve
localisation of a robot in an outdoor setting.

2.2.1 Static and un-embodied scene understanding

Within semantic mapping an important aspect is that of recognising the environ-
ment as a given category. To this extent different methods have been utilised
to achieve this goal. Du et al. [17] presents a framework for utilising multiple
modalities to determine the semantics of a given area by combining Red-Green-
Blue (RGB) images and depth data.

Chang et al. [18] describes method for understanding the event present in a
given series of images or video to classify the context of the event. This can be
an event such as a birthday party or marriage proposal. Such systems can help in
natural language understanding of semantics in robot situations, as described by
Garg et al. [16].

An important part of scene understanding can be that of scene representation.
Here the application can vary and therefore the type of representation can be tai-
lored to a given scenario where pixel wise segmentation or region level semantics
can be useful for representation.

Another method of scene representation is scene graphs which describes the
relationship between objects in a scene. This can be used to determine how a scene
can be divided into areas of related objects [19, 20, 21].

2.2.2 Dynamic Environment Understanding and Mapping

In mobile robotics, SLAM has long been a subject of research due to the difficulty
of achieving perfect localisation in highly dynamic environments. Therefore, using
semantics to further understand a map for localisation can enable robots to localise
themselves within such a map [22, 23].

A hybrid map between geometric maps, generated by distance sensors, and
topological maps, developed with certain areas as nodes with edges between them,
can be used to achieve semantic localisation. Yue et al. [24] describes a method
for using multiple mobile robots to generate local semantics maps that can be
combined to a global semantic map.

Different methods have been developed to determine the classification of an
area, such as using a Convolutional Neural Network (CNN) to determine the
ontology of a given area from the occupancy grid [25] or by using the objects in a
scene for classifying the environment [26].

An important aspect of performing semantic mapping is that of ensuring that
unseen areas and areas dissimilar to those of training data can also be classified,
as described by [27, 28, 29].
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A scene graph for interaction of an agent is of use when planning movement,
as described by [30, 31]. These scene graphs can then be used to determine rela-
tions between objects in a given area and determine the context for robotic use.
Especially spatial relations and affordance spaces are of interest when calculating
movement with or around such objects. Rosinol et al. [32] proposes Dynamic
Scene Graphs (DSG) which can determine spacio-temporal relations between ob-
jects within different areas to support moving agents, such as robots, in planning
actions and movements.

2.2.3 Interacting with Humans and the World

As described by Garg et al. [16], a robot must understand the semantics of the
world and the actions of the humans in that world in order to achieve a successful
mixing with humans. In this context successful refers to an interaction that is
perceived positively by the humans involved.

Carreira et al. [33] show the importance of gathering data in order to train
a robust network for spatio-temporal recognition of human actions. The Kinetics
Human Action Video dataset has since been updated multiple times to enable
even stronger training of spatio-temporal action recognition [34, 35, 36].

Fang et al. [37] uses reasoning about different objects for grasping to un-
derstand the possible interactions with object. This method can be used in col-
laboration with semantics to understand the context of a given situation for task
completion.

Dogar et al. [38] introduce goal directed behaviours, where the robot needs
to interact with its environment in order to achieve said goal. These behaviours
are based on linked affordances, as defined by J. J. Gibson [39].

Tellex et al. [40] introduces the concept of inverse semantics where the robot
recognises its inability to perform a given task and asks a human for help. This
enables the robot to resume autonomy when assisted by the human. Here NLP is
used to request help. This idea is extended by Gong et al. [41] to include temporal
and spatial aspects in the requests. This means that the robot is able to ask about
objects in certain locations or describe where a given object used to be located.

2.2.4 Improving Task Capability

For robot navigation, the use of semantics to improve the performance of differ-
ent types of tasks can be of great value. Therefore, understanding how to use
semantics is just as important as developing the systems for perceiving semantics.

One use of of semantics is within visual place recognition, where the type
of environment is used for localisation of the robot [42]. This can be used to
determine if the robot has seen the location before.
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Figure 2.4: An example of a mobile robot planning its path along the social zones of the human to
achieve a comfortable interaction. Proxemic zones are not drawn to scale for visualisation purposes.

2.3 Human Robot Interaction

When humans and robot work side by side, whether it being in industry, service,
or out in the open, it is important that the interaction is perceived positively by
the human(s) interacting with the robot. Therefore, it is essential to use metrics to
determine how the robot is perceived, as well as developing tools for improving
any issues that may cause a bad interaction. Savela et al. [43] describes how
acceptance of robots in social interactions is essential, especially when the robot is
used as assistance or as a co-worker. Fuji et al. [44] highlights the importance of
knowing the capabilities of a given robot for acceptance. Here the users describe
how they are unsure of using the robot due to unknown actions. It is therefore
important to ensure sufficient training of staff or developing a robot that exhibits
its capabilities. Law et al. [45] show how important the movement of a robot,
whether humanoid, animal-shaped, or any other shape, influences the trust of
said robot. It is found that movement that follows expected patterns and social
standards improves the trust and comfort around the robot which is important to
ensure that humans want to use the robot. An example of following social zones
can be found in figure 2.4.

Mavrogiannis et al. [46] describes the importance of understanding humans
as more than just dynamic obstacles in an environment to achieve more than just
collision avoidance. Assuming that the human will seek to avoid collision will
improve the trajectory of the robot, resulting in less oscillatory movement.

Babel et al. [47] takes another step in understanding human behaviour by
analysing potential conflicts between humans and robots when working in the
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same environment. The authors argue that a robot that always yields can become
inefficient in the long run and therefore must be able to interrupt the user. Differ-
ent methods have been tested for an assertive robot which shows that being polite
and using knowledge from psychology results in higher trust from the user [48].
Furthermore, it is found that adapting to the compliance of the user is important
in order for a successful collaboration between human and robot. Nomura et al.
[49] found that using culture appropriate methods for asking resulted in faster
and more accepted interactions. Therefore, it is important to ensure a polite robot
when being assertive of a certain task in order for a successful and positive inter-
action [50]. It can, however, be important to determine the sufficient amount of
politeness combined with requests in order to achieve an effective interaction [47].

Turnwald et al. [51] expand the collision avoidance problem during the
motion of a mobile robotic platform using human like motion planning based
on game theoretic decision making. Testing their planner using a Turing test
in Virtual Reality (VR) participants where not able to distinguish between the
planned motion and real human motion, whereas the participants could distin-
guish between human motion and established concepts of obstacle avoidance
based on e.g. social forces.

2.4 Scene understanding

To navigate in an environment filled with different dynamics objects and humans
moving around performing different tasks, scene understanding is necessary. This
means that a mobile agent must be able to identify objects in the environment and
determine the physical location in relation to each other. This is essential for both
object avoidance as well as finer interaction with humans and objects. Dovesi et al.
[52] propose a method for performing stereo matching and semantic segmentation
in a combined manner. Using this method they achieve semantic stereo matching
in real time on a Graphics Processing Unit (GPU) or with lower accuracy using
embedded devices, which enables the use in robotics applications.

Scene graphs can be used to describe relations between objects in an environ-
ment. Rosinol et al. [32] describes dynamic scene graphs as a way to describe
the relationship between dynamic objects as they interact in a given scene. This
includes potential actions which can be used for planning movement of a mobile
agent. As described by Chang et al. [21], the challenge in scene graphs is the
potential size of the graph. This is due to the fact that objects and humans can
have many relationships and therefore many edges will be drawn in the graph.
This can be especially challenging when working with objects that are far from
one another or unknown objects.

Wong et al. [53] describes the importance of understanding unknown objects
in a scene in order for the robot to behave in an expected manner. This means
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that dynamic objects that are not identified should still be treated in an appro-
priate way in a given environment. To achieve this an object is segmented into
an unknown class in order for the robot to enable interaction - a challenging but
important task.

2.4.1 Perception of human activity and groups

An important aspect of scene understanding in robotics is that of human activity
recognition. When a mobile robot traverses an environment with humans it is
therefore important to understand the activity that the humans to pass are per-
forming.

Kostevalis et al. [54] used a skeleton-based approach to understand the ac-
tivity of the human by combining the actions of the skeleton with the associated
object in a spatio-temporal network. A behaviour understanding pipeline is intro-
duced, based on a Dynamic Bayesian Network (DBN) that is based on Interaction
Units (IU)s (introduced by Ryu et al. [55]) that describe the transition of a state
from a defined start to a goal that are connected through a so called mental pro-
cess. In their implementation the state is the environment and the mental process
is an action of the user. Therefore they describe the behaviour by a series of IUs
and can therefore classify this series using the previously mentioned DBN.

Taylor et al. [56] describe the need for new algorithms to achieve activ-
ity recognition from a robot-centric perspective. This means that only sensors
mounted on a mobile robot should be used to determine the activity of the hu-
mans surrounding the robot without using outside information. This should en-
able the robot to determine the actions of the humans in order to interact and
collaborate. However, Taylor et al. [56] describe how current research is con-
ducted in well-controlled environments which means that only very specialised
tasks can be detected and interacted with by the robot. This means that the models
may not generalise well to open areas where humans may perform unpredictably
compared to the controlled environment. Therefore, it is important to develop a
method that can generalise to such situations without requiring large amount of
annotated data. Sadeghian et al. [57] uses social and physical cues to understand
the potential paths of humans walking in a scene. Vemula et al. [58] developed
Social attention to predict the trajectories of humans walking among each other.

Li et al. [59] describes the necessity to understand the social relationships
between humans in a scene to understand the interaction. This means that un-
derstanding the relationship will enable a system, such as a robot, to predict the
actions of interacting humans. Zhang et al. [60] high-light how CNN for object
detection and pose estimation to find the relationship between humans and ob-
jects. Ji et al. [61] describes a framework for understanding actions in a video by
by using a scene graph of objects.
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Song et al. [62] describes the use of skeletons from key point estimation to
understanding the action of a human even when occlusion occurs in the stream
of images. This is important when movement occurs because of the inevitable
occlusion found in dynamic environments.

2.5 Scope

From the analysis performed in this chapter, it is evident that there are many
approaches to context aware navigation. Therefore, it is important to define the
scope for developing such an approach.

As described by Youssef et al. [63], no strict definition of social robotics are
made. Some papers do not specify their definition while others use different defi-
nitions for various purposes. The properties usually associated with social robotics
are: autonomy, social awareness and reaction to social situations, communication,
sensing of human gestures and reaction to human activity. These properties point
the necessity of having social robots that can perform their service while adhering
to social norms.

In this project the limit will be on developing a pipeline that enables the use of
social robots in an industrial context where humans may be interacting with each
other in different locations and different group sizes. Here the robot must be able
to identify when a social interaction is happening between humans and plan its
route around that interaction even when the people are standing at further social
distance (as described in section 2.1.1). Furthermore, the robot should enable
planning around the social zones of the human where the plan is adhere to the
social zones as the environment allows it.

To ensure that the developed system will be relevant for newer generations
of robotics, it should be implemented with the current methods used for robot
communication. Therefore, the system should be implemented in a modular fash-
ion where different modules can be exchanged with others without changing the
modules. Therefore, this project seeks to implement the system as nodes using
Robot Operating System 2 (ROS2) to ensure that the developed modules can be
used in the foreseeable future. This means that the developed nodes should be
integratable into a navigation stack without limiting the use of path planners or
controllers.

As the detection of people in the environment is crucial to achieve context
aware navigation in a people filled environment, the detection of the people must
be able to detect humans in the surrounding area of the robot. Therefore, this
project will focus on developing a method for detecting humans with sensors
mounted on the mobile robot. However, due to the modular setup of the system,
the nodes responsible for detecting interactions between people should be agnostic
to the method of detecting people as this will depend of the robot setup. Therefore,
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the people detection module should be able to detect the humans in a global map
where the location and orientation of the human can be represented.

As the types of interactions can be very diverse it is important to limit the
types to those relevant for the project. Therefore, this project only considers
Human-Human Interaction (HHI) where between two and four people are stand-
ing across from each other or in an F-formation, as described in section 2.1.1. This
means that the system must be able to detect the humans and ensure that the
defined social zones are adhered to, when no interaction is present and otherwise
consider the interaction zones in the navigation.

The robot will be limited from interacting directly with the present humans
by communicating but will rather change its path as needed to avoid disrupting
interactions.

Furthermore, the robot should be able to handle changes in interactions and
must therefore be able to update the available area for navigation while traversing.
Therefore, the developed modules should be able to run at a similar rate to the
rest of the navigation control loop to ensure updated paths when necessary.

2.5.1 Requirements

The considerations above lead to the requirements of this project which should be
evaluated to determine the success of the implemented system. The requirements
are as follows:

a The system must be implemented using ROS2 and should be compatible
with the navigation stack by receiving velocity commands and supply sensor
readings.

b The nodes should run at a rate of at least 10hz to keep up with the calculation
time of the navigation stack. This means that the accumulated runtime of
the nodes should be less than 100ms

c The system must be able to detect the location and orientation of humans in
front of the robot between 1m to 5m to ensure safe navigation.

d The system must be able to develop proxemic zones for the detected people
to ensure navigation outside of these. Here the numbers described in section
2.1.1 are used.

e The system must be able to detect HHI and alternate its path to traverse
outside of the interaction zone.

The requirements lead to the final problem formulation which guides the
rest of the project. From this a technical analysis will be described in the following
chapter, which is used to highlight the used technologies to perform context aware
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navigation in an industrial setting. The highlighted technologies can be exchanged
for similar systems to change the performance of the robot in the future, if needed.
The final problem formulation reads as follows:

How can a modular system for context aware navigation be developed for edge com-
putation on a mobile robot?



3 - Technical Analysis
The technical analysis seeks to cover the theoretical methods used in this

project. This means that this chapter describes the background of the methods
that are used or implemented in chapter 4.

3.1 ROS

Robot Operating System (ROS) is a middleware suite for software development on
robots [64]. It offers infrastructure and a large collection of open source developed
libraries for the use with all sorts of robots, be it for example manipulators or
mobile robots. The latest release version of ROS is "ROS2 Humble Hawksbill"
[65]. Here, ROS2 stands for the second generation of ROS.

Robot Operating System 1 (ROS1) has reached its final release with the ver-
sion "ROS Noetic Ninjemys" and will only be supported until may 2025 [66]. As
mentioned, the official development is being continued in the second generation
of ROS, ROS2.

The computation architecture in ROS2 is build on so called "lifecycle nodes"
[67]. These nodes contain the user application that are based on the programming
language specific API (python, C++ etc.), that are all linking to the same underly-
ing C library. These nodes can then be grouped in the form of a package in order
to install, use and share them [65].

The nodes are communicating using an asynchronous publisher/subscriber
structure using a DDS based middleware. Here, nodes can publish messages of
specific types on topics. These topics are then used to identify the message from
another node.

In addition to messages, ROS2 includes Services and Actions as a form of
communication between nodes. Services are implement as a request-response
type communication, such that nodes can actively request something from other
nodes without needing to send a message over the topic based asynchronous com-
munication. This also simplifies to associate a request and response.

Actions however, are another asynchronous communication method, whereas
they extend the request and response style of the services to request and response
and periodic feedback. Therefore actions are better suited for long enduring tasks
where one node needs to observe the progress of another.

Another structure offered by ROS is the library "tf2". tf2 is the second version

16
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of the geometric transformation library "tf" [68] and allows to build a tree like
structure of coordinate systems that are connected via geometric transformations,
called tf_frames and tf_transforms. As a consequence this allows to transform
sensor data from one tf_frame to another and with the implemented buffer of
tf_transformations also in time.

3.1.1 Nav2

ROS builds strongly on community based development that means however, that a
majority of the community packages is only available for older releases, as the de-
velopers are not forced to maintain and port their packages across releases. How-
ever the development of official packages like for example Navigation 2 (Nav2),
the successor of the ROS1 navigation stack [69], is only taking part in the latest
release versions. Nav2 offers a framework for grid map based navigation and sep-
arates it in to a planning and controlling stage. In contrast to the ROS1 navigation
stack [70], Nav2 relies on behaviour trees to manage situational navigation us-
ing for example recovery behaviours. This allows the navigation stack to achieve
long running task where multiple behaviours can be performed in parallel with-
out blocking each other. Additionally, the behaviour tree can supply feedback
to clients of the progress of a given task. This can be done both synchronously
and asynchronously. In the behaviour tree multiple action servers handle different
parts of the navigation where different modules, such as costmaps, can be added
or exchanged with others. This also allows for tuning of different parts of the
navigation stack which allows for modification in robot movement [71].

Furthermore, Nav2 supplies a great collection of continuously maintained
planners and controllers, whereas the local and global planners in the ROS1 navi-
gation stack are partly unmainted and or deprecated.

In order to develop software for robotic applications, analysis tools are of
great value. Here ROS offers a great selection of visualisation tools like RViz (in
ROS2 RViz2), plotjuggler and rqt based dashboards and control panels [72, 73, 74].

3.2 CoHAN Planner

Singamaneni et al. [75] developed the CoHAN Planner for Human-Aware naviga-
tion using ROS. The planner was designed to handle several different interactions
between humans and robots in both indoor and outdoor settings considering hu-
man motion and social aspects. The system has multiple modes of planning to ad-
dress the varying interactions between humans and robots. The authors showed
that the system performs well in different scenarios compared to similar local
planners.

CoHAN uses an architecture based on the ROS navigation stack. Here the
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stack is modified to include a Human Safety Layer and a Human Visibility Layer
in both the global and local costmap. Furthermore, a Human Path Prediction
module is implemented to predict the paths of humans for planning of robot
motion. The planner uses the HATEB local planner [76]. HATEB uses the state
of the human and the planner to determine the planning mode of CoHAN and
transition between planning modes. The modes of planning are as follows:

1. SingleBand mode: The initial state of the planner with just an elastic band
mode for the robot. The planner stays in this mode when no humans are
within a 10m radius of the robot.

2. DualBand mode: This mode is used to handle dynamic humans. This mode
enables the robot to handle changes in human path and considers the closest
two humans while planning.

3. VelObs mode: This mode uses the human aware criteria but only adds elas-
tic bands to humans if they have velocity.

4. Backoff-recovery mode: The final mode is used when there is no valid so-
lution to the planner unless an agent, either human or robot, clears the path.
This situation happens in corridors, where the robot can not traverse next to
the person safely. The system gives priority to humans and backs off until
the path is clear for the human.

To ensure navigation that is comfortable for the humans close to the robot,
the planner uses two additional social constraints, Visibility and Relative Velocity.

Visibility adds cost to the optimisation of the plan when the robot moves
behind the person and suddenly becomes visible. This is done to ensure that the
robot does not startle the human. The constraint is implemented by using a 2D
half Gaussian behind the person.

The Relative Velocity constraint adds cost to the plan depending on the rela-
tive velocity between human and robot in addition to their distance. This causes
the robot to have low velocity when closer to humans if a path with larger distance
is not possible. This helps force the robot to choose plans with larger distance.

3.3 PersonLab

Papandreou et al. [77] presented PersonLab, an approach for box-free bottom-up
pose estimation of multiple people in images. PersonLab is an efficient single-shot
model that handles both semantic-level reasoning and object-part associations.
The model uses a CNN to detect keypoints and predict displacement of these,
which allows for grouping keypoints into a person pose.
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Contrary to a top-down approach, where a person is first localised using
a bounding box detector, a bottom-up starts by localising individual keypoints
before grouping these into people instances.

PersonLab detects keypoints by using a encoder-decoder architecture to gen-
erate heat maps determining where keypoints are located in a given image. Using
local maxima of the heat-map allows for detection of different keypoints that can
be used for grouping of keypoints into poses. A pairwise connection of keypoints
is used to connect keypoints into poses, by pairing e.g. right elbow with right shoul-
der. To ensure that the same keypoint of a person is not detected multiple times,
keypoints of the same type are compared to each other and a non-maximum sup-
pression is performed for keypoints within a given radius.

Due to the bottom-up approach of PersonLab, the algorithm can handle oc-
clusion reliably by simply connecting visible keypoints only. This makes the algo-
rithm robust in visually noisy environments.

3.4 Tracking

As described by Li et al. [78], a reliable tracker is necessary to achieve information
on multiple tracked targets. Using methods such as a Kalman Filter (KF) is useful
for keeping track of a single object [79]. However, when tracking multiple objects,
it is important to ensure the right association between tracklets. Therefore, using
a method like the Munkres algorithm to assign detections to new tracks can be
useful.

The Munkres Algorithm and the KF are explained in the following sections.

3.4.1 Munkres’ algorithm

Munkres’ algorithm [80] is used for the assignment problem of minimising cost.
In this setup only one object can be assigned to one previous track which means
that each detection should be assigned just once. Performing this assignment in a
brute force manner requires n! operations making the scalability perform slow for
multiple objects [81]. Munkres’ algorithm performs the assignment in O(n3) time
by performing 6 steps on a m×n matrix with n tracklets and m detections. As the
algorithm was developed in 1957, it is assumed that the assignment is done by
hand, hence the language of the steps refer to this [81]:

1. For every row in the matrix, subtract the smallest element of that row.

2. Choose a zero (Z) in the resulting matrix. If there is no starred zeroes in the
row and column of Z, star it. Repeat for every element in the matrix.

3. Every column containing a starred zero is covered. If all columns are covered
the algorithm is done. Otherwise, proceed to step 4.
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4. Choose an uncovered zero and prime it. If no starred zero is found in the
row of the primed zero, go to the next step. Otherwise, cover the row and
uncover the column of the starred zero. Continue until all zeroes are covered.
Save the lowest uncovered value and go to step 6.

5. Create a series of zeroes alternating between primed and starred in the fol-
lowing manner: Z0 is the uncovered zero that was primed in step 4. Z1 is the
starred zero of the column of Z0, if one is available. Z2 is the primed zero in
the row of Z1. This continues until a primed zero has no starred zero in its
column. Then all starred zeroes are unstarred, each primed zero is starred,
all primes are erased, and every line is uncovered of the matrix. Return to
step 3.

6. The value found in step 4 is added to each element of the covered rows and
subtracted to each element of uncovered columns. Return to step 4.

When done, the starred zeroes indicates the location of the assignments in
the original matrix. With assignment between tracked objects and new detections
performed, the tracker can update the tracklets with for example Kalman filters,
as described in the following section.

3.4.2 Kalman filter

The Kalman filter keeps track of different states of an object. This is done by utilis-
ing a recurring method for estimating the dynamic state, especially when noise is
present in the measurements. By maintaining estimates of the state vector (x̂) and
the error covariance matrix (P) of a given system, the Kalman filter updates the
system over time with measurements and predictions. This is done by assuming
a normal distribution of the potential state of the system.

The filter uses two stages to estimate the state of the system, prediction and
update. Prediction takes the current state of the system and estimates the state
at the new timestep. This is done with x̂(k + 1|k) and P(k + 1|k). In the update
step the actual measurements of the system are compared with the estimate from
the prediction step to calculate the new position by determining the assumed
noise of the measurements. The Kalman filter then weights the prediction and
measurements using the calculated Kalman gain (K) to give the new state of the
system for the timestep [82].

Prediction As described above, the first stage of the filter, prediction, calculates
the estimated state of the system at the following timestep using the following
equations:

x̂(k + 1|k) = F(k)x̂(k|k) + u(k) (3.1)
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P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k) (3.2)

Where:

• x̂: State vector

• k: Kalman gain

• F: The state transition matrix

• u: Control vector adding any known changes to the system

• P: Covariance estimate matrix

• Q: Overall process noise in a covariance matrix.

Update The second stage of the filter, update, uses the measurements for es-
timating the state of the system by combining it with the prediction using the
following equations:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Ky (3.3)

P(k + 1|k + 1) = (I − (K · H(k + 1))P(k + 1|k) (3.4)

Where:

• y: Measurement residual

• I: Identity matrix

• H: Vector mapping matrix

The Kalman gain, K, is calculated by K = PH(k+ 1)TS−1, where S = HPHT +

R is a is covariance matrix that increases with increasing measurement noise in
matrix R. Furthermore, y is calculated as y = Z(k + 1)T − H(k + 1)x, where Z is
the measurement of the state.

3.5 YOLOv7

As described in section 2.4, it is important to enable a context aware system to
detect different objects in a scene to determine interactions. YOLOv7 [83] enables
detection of any arbitrary object that it has been trained for. YOLOv7 builds upon
the advances found in YOLOv4 [84] to achieve fast and accurate object detection in
images. The model enables real-time detection on edge devices and uses different
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Figure 3.1: The use of a soft label assigner to train both the lead and auxiliary head. The label
assigner can be changed to allow more relaxed constraints for the coarse label while providing a
harder label for the fine head. Inspired by [83].

methods for improving accuracy without sacrificing inference cost. These methods
are developed in YOLOv4 and improved for YOLOv7 and are known as Trainable
Bag of Freebies (TBoF). These include re-parametrisation where multiple trained
models are used to calculate the final set of weights for the model. This increases
training time but results in the same inference time, as the amount of trained
weights remains the same.

The YOLOv7 model further developed the Extended Efficient Layer Aggrega-
tion Network (E-ELAN), a new computational block that enables the network to
learn features more reliably by keeping the original gradient path while changing
the computational block. This enables the network to stack more blocks by ex-
panding the cardinality of the computational block which increases the number of
parallel convolutions in the block. This means that the block will perform com-
putations more efficiently by aggregating feature maps to enhance quality while
keeping computation at the same level.

Furthermore, YOLOv7 has multiple heads for output prediction by enabling
multiple predictions during training. This improves training by having course
and fine predictions. The auxiliary head is found earlier in the network and uses
features found at this level to guide the lead head. The training process utilises
information obtained by the lead head to update the auxiliary head. This allows
the lead head to concentrate on residual information that has yet to be learned.
Figure 3.1 shows the label assigner that generated soft labels for training both the
lead head and the auxiliary head.

YOLOv7 manages to achieve a 75% reduction in parameters and 36% reduc-
tion in computation time compared to YOLOv4. For the tiny version of YOLOv7
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Figure 3.2: An example of YOLOv7 used on the Nav2 Context Aware Navigation (Nav2CAN) image
to detect the types on object present. As mobile robots are not part of the MS COCO dataset [85],
which YOLOv7 is trained on it is classified as a car with low confidence.

the reduction is 39% in parameters and 49% in computation time while achieve
the same Average Precision (AP), compared to YOLOv4-tiny. This means that
the YOLOv7 tiny version is even better suited for using on edge devices as the
the needed computation and memory is reduced. Using an optimised architec-
ture for edge computing can enable real-time computation which is necessary for
achieving a safe navigation with a mobile robot in a human filled environment.

An example of YOLOv7 used on the frontpage image of this project can be
seen in figure 3.2.



4 - Design and Implementation
This chapter describes the different modules designed and implemented for

this project. The system overview of this project, from now on referred to as
Nav2CAN, is shown in figure 4.1. Nav2CAN is separated into three modules the
People Detection Module (green), the Context Module (red) and the Nav2 navigation
stack (blue).

The setup of these modules and their communication with each other is de-
scribed in the following sections. Furthermore the hardware used to run Nav2CAN
on the edge is introduced.

Figure 4.1: Nav2CAN system overview

24
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4.1 Hardware

The hardware of the system is used to run different nodes of the setup. Here the
description is made in terms of the needed capabilities which enables alterations
or using a different type of unit if needed.

4.1.1 Jetson Orin

The Nvidia Jetson AGX Orin developer kit [86], is used in this project to perform
detection and tracking of people, as described in section 4.2. The series of Jetson
boards are developed to enable parallel computing on edge devices, such as on a
mobile robot. This means that deep learning techniques, such as CNN, can be run
at a relatively high rate while keeping power consumption low, compared to using
a desktop PC or similar. Furthermore, using the Jetson boards enables the use of
the Jetpack SDK for acceleration of software as well as using the jetson-inference
package for running optimised neural networks [87]. In order to communicate
with the nodes running on the remaining hardware, the Orin is running a docker
container with ROS2 Humble.

4.1.2 Robot controller

The navigation stack runs on an extra device. Here a laptop with an Intel i7
7700HQ running Ubuntu 22.04 and ROS2 Humble is used, as the integration of the
navigation stack on the Orin with all required dependencies is too time intensive
for the time spent on Nav2CAN.

4.1.3 Intel RealSense D435

The Intel RealSense depth cameras are developed to perform reliable depth mea-
surements using Infrared (IR) projection and IR imagers to enable the creation of
depth images. The Intel RealSense D435 has an RGB camera in addition to the
depth module to enable multi modal handling of data [88]. Furthermore, the Re-
alSense has the possibility of aligning the depth image with the RGB image and
applying different filters to the output.

4.1.4 MiR100 platform

For the real world part of this project the Autonomous Mobile Robot (AMR) used
is a MiR100 [89]. The platform is equipped with two SICK s300 laser scanners [90]
for 360° detection around the robot, which are also used for emergency stopping
if the robot gets too close to any objects. Figure 4.2 shows the robot used in this
project.
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Figure 4.2: The "Little Helper" robot base on a MiR100 platform. The platform is equipped with
a UR5 [91] (not used in this project) and modules for using the platform for different experiments.
The RealSense cameras are mounted on the front of the robot (shown in the red box). On top of the
robot is the laptop used for running the navigation stack for this project.

4.2 People detection module

The people detection module includes the functionality of recording, detecting
and tracking people in the environment. It is structured as shown in figure 4.3
and designed to process the data of multiple RealSense D435 cameras and track
the people surrounding them using the Multi Person Tracker node.

4.2.1 realsense2_camera node

The realsense2_camera node is part of the realsense-ros2 wrapper which wraps the
RealSense SDK 2.0 and thus offers control of the cameras using ROS2 [92]. By
launching the realsense2_camera node, the RealSense is automatically detected and
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Figure 4.3: Overview of the people detection module

launched with the configuration parameters specified in the launch file. Then the
node publishes in the case of this implementation the RGB image and the aligned
depth image as a ROS2 message of type sensor_msgs/Image.

4.2.2 Camera mounting

In order to use multiple RealSense D435 cameras, their geometric relations between
them need to be known for the entire system.

To define the position in the real world a bracket is developed that fixes the
translational relation between two cameras to 110mm as shown in figure 4.5, such
that the two cameras don’t interfere with each other. However since this only fixes
the translational relation the rotational relation has to be determined such that
sufficient coverage is achieved.

First the decision is made to have the Field of View (FOV) of the two cameras
cross each other in an effort to have more reliable detections in front of them as
both cameras will have more overlap in front of them. The overlap of the cameras
can be seen in figure 4.4.

The rotational relation between the cameras needs to be calculated. As men-
tioned in section 2.5.1, it needs to be assured, that a person can be detected, when
standing at a minimum 1m away from the cameras. This results in the calcula-
tion of the angle between the long side of the RealSense camera and the base plate
shown in equation 4.1. Where HFOVcamera describes the horizontal FOV of one
camera, wperson is the approximated width of a person, distcameras is the distance
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Figure 4.4: The FOV of the overlapping cameras. Blue indicates FOV of one camera while red
indicates the other. Purple is the FOV where both cameras overlap.

Figure 4.5: Mounting bracket for two RealSense cameras

between the cameras and distperson is the minimum required distance to said per-
son. This also allows to calculate the apprxiamte FOV of the resulting setup using
equation 4.2. This however is only an approximation since the cameras are not
located at the lower middle intersection point shown in figure 4.4.

α =
HFOVcamera

2
− arctan(

wperson−distcameras
2

distperson
)

=
54.732 ∗ π

180
2

− arctan(
0.5−0.11

2
1

) ∗ 180
π

= 16.33°

(4.1)

FOV ≈ (α + HFOVcamera) ∗ 2 ≈ 87.4° (4.2)
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The finished mounting bracket with the two cameras is then mounted on the
platform as shown in figure 4.2.

Finally the geometric relations can be implemented in the form of coordinate
systems or rather tf_frames such that points can be determined with respect to
any other tf_frame of the setup.

4.2.3 Multi Person Tracker

The Multi Person Tracker node offers the detection and tracking of people located in
the FOV of the RealSense cameras. This is done using the following functionalities.

• Keypoint estimation

• 3D point calculation

• Orientation and Position calculation of person

• Determining the 2D map pose of the person

• Tracking of the person

Each functionality will be described in the following subsections to give an
overview of the whole module.

Keypoint estimation

For detecting keypoints of people, this project uses poseNet [93] from the Jetson-
inference library [94]. poseNet uses TensorRT [95] to run an optimised network on
the GPU found on the Jetson Orin, described in section 4.1.1. poseNet can be used
with multiple pre-trained models from Nvidia or use a custom model. poseNet is
based on the PersonLab model, described in section 3.3.

3D point calculation

After estimating the position of the keypoints in the rgb image, the 3D cartesian
position of said keypoints has to be determined. The RealSense cameras has the
option of aligning their depth image to the rgb image before publishing both, as
described in section 4.1.3. This results in the ability to get the depth information
of a rgb pixel with the same coordinates in the depth image.

Having both, the X and Y position in the image plane and the depth allows
to transform the position into 3D cartesian space using trigonometry according to
figure 4.6. To reduce the effect of the rather noisy depth image of the RealSense
camera, not only one pixel of the depth image is taken into account, but rather the
median of the distances in a 3 × 3 square area around it.
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Figure 4.6: Depth to cartesian coordinates projection. The exemplary position of the keypoint
corresponds to a position in the upper left section of the camera image picture in red [3]

As shown in subfigure 4.6a, the distance Id to the imaginary image plane
can be determined using half of the imagewidth along with half of the field of
view α using equation 4.3. Then the angle γ can be determined using equation
4.4 and consequently the hypotenuse Idx can be calculated using the Pythagorean
theorem according to equation 4.5.

Id =
imagewidth/2

tan(α/2)
(4.3)

γ = arctan(
KPx

Id
) (4.4)

Idx =
√

KPx2 + Id2 (4.5)

Using Idx from equation 4.5 the angle δ can be determined according to subfigure
4.6b and equation 4.6

δ = arctan(
KPy
Idx

) (4.6)

Having determined both angles δ and γ based on the image plane, these can be
transferred to the cartesian space and applied to the median depth measurement
Depth of the keypoint to determine the cartesian coordinates.
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Figure 4.7: Calculation of the orientation of a person based on keypoints

According to subfigure 4.6c the distance D to the plane through the keypoint
that is orthogonal to the view direction of the camera can be determined according
to equation 4.7.

In addition the cartesian coordinate Z of the keypoint can be determined
according to equation 4.8.

D = cos δ ∗ Depth (4.7)

Z = sin δ ∗ Depth (4.8)

Finally the remaining cartesian coordinates X and Y can be calculated as pic-
tured in subfigure 4.6d using equations 4.9 and 4.10.

X = cos γ ∗ D (4.9)

Y = sin γ ∗ D (4.10)

Orientation and position calculation

The angle of the orientation is defined in reference to the camera frame and mea-
sured counter clockwise from the X − Axis as shown in figure 4.7a in a range of
0 − 2π.

Using the 3D position of the keypoints, the orientation of the detected person
can be calculated as shown in figure 4.7b. Here the angle β can be calculated
according to equation 4.13 using δX and δY from equations 4.11 and 4.12. arctan2
is used to distinguish the orientation of a person in the spectrum of a full rotation,
however that means, that the resulting angle β has to be transformed back into the
spectrum of 0 − 2π as shown in equation 4.14.

Subtracting this angle from 2π results in angle α and subtracting another 0.5π

from that results in the angle θ shown in figure 4.7b according to equation 4.15.
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δX = Xright−shoulder − Xle f t−shoulder (4.11)

δY = Yle f t−shoulder − Yright−shoulder (4.12)

β = arctan2(δY, δX) (4.13)

β =

{
β, if β ≥ 0

β + 2π, otherwise
(4.14)

θ = (π − β)− π

2
=

π

2
− β (4.15)

This method of finding the orientation of a person can just as well be applied
to other keypoints located on either side of the detected person. In this work, the
orientation given by the shoulders is always preferred. If the shoulders are not
being detected the right and left hip joint is taken alternatively.

If neither, both shoulders nor both hip joints can be found the angle will de-
fault to zero and the KF will be updated without a measurement of θ as described
in more detail in section 4.2.3. This however results in the state of the orientation
and the corresponding velocity being not as reliable as the position, since it is
likely that the person might be oriented in a 90° angle to the robot and thus only
one shoulder and hip can be seen and detected.

The 2D position of a person is calculated with the relevant keypoints, which
are neck, right and left shoulder and right and left hip joint. The resulting Position
is simply set to the mean position of these five points (or less if some are not
detected).

Occlusions may result in these points not being detected which will result in
people not detected. This can be due to the person being too close to the robot or
being occluded by objects in the scene.

2D map pose

To track the 2D pose (2D position and Orientation around the Z-axis) of all persons
in the environment without being affected by the movement of the robot, the
previously calculated pose that was relative to the tf_frame located at the camera
has to be transformed into the fixed "map" tf_frame, such that they can be tracked
there.

However, the detections are not always perfectly reliable, which leads to cases
where the same person is detected multiple times. If these detections would be
passed to the tracker without being filtered first, they would lead to additional
tracklets.

To counteract this, a threshold of 0.5m has been determined, at which detec-
tions will be merged to their average 2D map pose. As 0.5m is the radius of the
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intimate proxemic zone the assumption can be made, that no other person should
be present within it in an industrial environment.

This allows to build a distance matrix between all detections that can be
thresholded and afterwards be used to find and merge the duplicate using a basic
average for X ,Y and θ respectively.

Tracking

Due to the noisy and partly unreliable measurements of the keypoints as well as
to keep track of the humans in the surrounding environment of the robot a tracker
has to be used.

As there is the possibility of multiple people in the environment, the tracker
consists of two parts – an assignment part to ensure that the same person is tracked
over time and a filtering part.

The assignment is done using Munkres’ algorithm [80] while the filtering is
performed using a KF [96] as explained in section 3.4.

Assignment

As highlighted previously the detections are assigned to the individual KFs using
the Munkres’ algorithm. As this algorithm computes the minimum cost assign-
ment in a cost matrix, the tracking algorithm needs to be extended with case
handling and a cost function.

The KF states consist of the X and Y position of a person, aswell as their
orientation. In addition to these states the KF has the rate of these as additional
states as described in section 4.2.3.

In this implementation the cost function Costdistance is represented as the eu-
clidean distance between the X,Y position of the KF state and detection since the
rates are likely to change quickly and the orientation measurement is not as re-
liable as the position measurement, as mentioned in section 4.2.3. Therefore the
cost function can be expressed according to equation 4.16.

Costdistance =
√
(Xdetection − Xstate)2 + (Ydetection − Ystate)2 (4.16)

The Munkres’ algorithm returns the best combination of an n × m matrix.
Therefore, it is possible that new detections will be assigned to tracklets, even
though they are unreasonably far away therefore, the entire assignment would be
skewed. Hence after generating the distance matrix D the minimum cost assign-
ment is compared to a configurable threshold TD. If the minimum cost of the
detection is higher than TD, the detection is removed from the distance matrix and
a new tracklet is initialised for the detection. In this project TD = 3m Afterwards
the Munkres’ algorithm can be run to generate the assignment combination with
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the lowest total distance between detections and tracklets. Which leads to the
following three cases:

1. The amount of detections and tracklets is equal: D is a square matrix and
all detections will have an assignment to a tracklet. Therefore the detections
can be directly set as a new measurement for the existing tracklets.

2. The amount of detections is higher than the amount of tracklets: All assigned
detections can be set as a new measurement for their corresponding tracklet.
Unassigned detections are initialized as new tracklets.

3. The amount of detections is lower than the amount of tracklets: All detec-
tions are assigned to tracklets. The remaining tracklets cannot be updated.

In addition to the cases above an additional constraint is necessary to remove
old tracklets, hence the Threshold TT is introduced which describes the amount of
time allowed a tracklet is kept after the last update. If the timestamp of a tracklet
surpasses TT it can be removed from the list of tracklets. In this project TT = 5s.

Filtering

The tracklets of this multi person tracker implementation are in the form of in-
dividual KFs as explained in section 3.4.2. However, the procedure of KFs can
be applied to numerous cases and therefore needs to be designed to handle the
specific case of people tracking in the case of Nav2CAN.

One of the requirements of the tracker in this project is to have both, 2D
position, as well as the orientation of all people in the field of view of the robot.

Therefore the states of the KF will be set to those. When considering moving
people however, the KF would stay still during the prediction step, if the rate of
the position and therefore the velocity is not tracked. Hence, the state vector is
enhanced with the rate of all three required states and can be expressed as shown
in equation 4.17.

x̂ =



X
Y
θ

Ẋ
Ẏ
θ̇


(4.17)

Both, X and Y and their velocities that are modelled with a constant velocity
model. Therefore, they are linear unbound continuous variables and hence can be
tracked with a KF.
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However, the orientation has a discontinuous phase. Therefore, if the angle
would be tracked based on an input angle in a range of 0 − 2π, the angle would
start to decrease after the measured person has turned past the limit of 2π instead
of increasing linearly. This can be counteracted by "unwrapping" [97] the mea-
sured angle and therefore adding an offset of k ∗ 2π such that the difference of the
state and the measured angle is never larger than π before updating the KF with
the measurement. Hence the angle can be tracked as being quasi continuous.

Since the robot in this work has only a limited FOV, it is likely, that the robot
looses vision to the person while it is in their vicinity. Thus it is important, that the
position of these humans will be predicted, even if they are not seen. It is however
unlikely, that humans behave based on a constant velocity model. Especially in
an indoor environment it is unlikely, that humans can keep moving without any
boundaries. Equally unlikely is that they will keep spinning in circles while not
being seen. Thus, a decay is applied to the velocity states. This leads to the human
position being predicted to slow down as soon as they are not seen anymore. This
decay is implemented according to equation 4.18 where decay is a scalar that is
being scaled by the predict frequency of the KF. In this project decay = 0.9 which
allows for a slow decay.

x̂ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 decay ∗ dt 0 0
0 0 0 0 decay ∗ dt 0
0 0 0 0 0 decay ∗ dt


· x̂ (4.18)

As mentioned in section 4.2.3, the orientation cannot alway be determined
since there are cases where not enough keypoints can be seen. In this case it
is important, that the KF is updated using an alternative measurement mapping
matrix H and measurement noise covariance matrix R, such that the theta state is
not affected by the unreliable measurement.

4.2.4 Publishing

The people detection module results in being the conversion between n streams
of RealSense cameras to a list of KFs. Since this module is packaged in the form
of a ROS2 node, a custom ROS2 message, is used for the communication to the
modules of the software stack that rely on the information.

This custom message is a re-implementation of the ROS package people_msgs
[98]. This package is however, not publicly available for ROS2 Humble and its
message types "people" and "person" have been implemented as a ROS2 message
and packaged into the package "multi_person_tracker_interfaces".
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Here the People message contains the information shown in table 4.1, whereas
the person message is represented by the structure shown in table 4.2. The struc-
ture of these messages enables the use of alternative algorithms for detection and
tracking as the output can be converted to this format.

Table 4.1: people ROS2 message

std_msgs/Header header
multi_person_tracker_interfaces/Person[] people

Table 4.2: person ROS2 message

geometry_msgs/Point position
geometry_msgs/Point velocity
float64 reliability
string[] tagnames
string[] tags

4.3 Context module

This module includes the necessary nodes to detect the context of a scene and
represent it in a way that is interpretable by conventional costmap based planners
available for Nav2.

4.3.1 Social map generator

The input for the interaction detection is designed to be a grey scale image such
that proxemics, as explained in section 2.1.1, are included in the input as further
explained in section 4.3.2.

Therefore a node is required that generates this output from the poses of all
people in the environment. Here the egg-shaped proxemic model introduced in
section 2.1.1 is taken as a starting point. The computation of these values are by
Gines Clavero et al. [99] as also shown in equations 4.19.
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Figure 4.8: Diagram of the context module. Rounded rectangles represents ROS2 nodes, whereas
parallelograms represents costmap plugins for the Nav2 navigation stack. Connections between
module components represent the relevant messages

value(x, y, theta) = e−(A(x−xi)
2+2B(x−xi)(y−yi)+C(y−yi)

2) (4.19)

Where:

A = cos(θ)2

2∗θ2 + sin(θ)2

2∗θ2
side

B = sin(2θ)2

4∗θ2 − sin(2θ)2

4∗θ2
side

C = sin(θ)2

2∗θ2 + cos(θ)2

2∗θ2
side

θside is the variance to left and right

θ is variance to the front or back depending on the pixel coordinate

The resulting value distribution is then thresholded according to equation 4.20
resulting in the cost distribution. Where the Gaussian function reflects a Gaussian
distribution at the origin with the variance of θside and value is the one calculated
according to 4.19 which results in the cost distribution shown in red in figure 4.10.
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The reason for the thresholded cost instead of the smooth asymmetric Gaus-
sian is to define values for the different proxemic zones instead of smoothing their
transition. Here the intimate zone gets a very high value of 253 so the robot can
never advance into that zone. The personal zone however, is divided into a fixed
cost section and a decaying section. The reasoning for this is that the advancing
of the robot into the personal zone should be discouraged by increasing the cost
at the edge of the zone. As the robot might be required to enter the personal zone
of a person in order to interact with them, the cost is not further increased within
that zone, such that robot can position itself anywhere within it. This is meant to
force the robot to take the shortest possible path through the personal zone to its
goal. An example of the generated map can be seen in figure 4.9.

Figure 4.9: An example of a generated social map of two people facing each other with overlapping
social zones. The centre of each person has a higher cost value which lowers as the colour turns
from white to grey.

To prevent the people flooding the entire costmap with low cost values as the
Gaussian decays, the distribution is clipped off at the edge of the personal zone
such that the robot is free in its movement.

cost =


maxcost, if value > Gaussian(0.5)

maxcost ∗ Gaussian(1.0), if value > Gaussian(1.0)

value ∗ maxcost, if value > Gaussian(1.5)

0, otherwise

(4.20)
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Figure 4.10: Slice along the y-axis of the cost distribution. Red is the thresholded cost, green the
values of the original cost distribution. The y-axis represents the cost value, whereas the x-axis
represents the distance in meters from the centre of the person

The social map has the task of representing the people, at the time of their
recording, relative to the current position of the robot. This introduces a time
requirement since the runtime of the detector pipeline and or the update frequency
of the costmap introduce delays during which the robot might be moving.

The social map is centred at the robots position but is not rotated but instead
aligned to the map frame. This results in the benefit, that interactions in the map
are not moving drastically when the robot rotates in order to avoid the people in
the environment. With good localisation, this simplifies the combination with the
local costmap as the local costmap is aligned to the odom frame. Therefore, both
"images" are already well aligned. With robot platforms that have bad odometry
the map and odom frame might be shifted and or rotated in relation to each other
requiring a transformation of the image, however in the case of this work the
localisation and odometry is good enough for the frames being well aligned.

Due to the alignment of the social map to the map frame, only the transla-
tional component of the tf_transformation between the robots base_link tf_frame
and the tf_frame the people where detected is required.

However, as mentioned earlier, the runtime of the individual nodes e.g. de-
tector and tracker will introduce a delay of the information and since the robot
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or the environment is non-static this would translate into a physical offset which
might hinder navigation.

Therefore, passing on a timestamp from the captured image, used for detect-
ing people and interactions, is necessary. This ensures that the detections can be
referenced at the time of capture and thereby located correctly relative to the robot
at current time.

As the proxemic zone is a grid of cost values, it is computationally intensive
to calculate. Thus the cost distribution is calculated during initialisation of the
node and then rotated and copied onto the social map according to the pose of
each detected person.

4.3.2 Interaction detection

The interaction detection developed in this project uses the YOLOv7 architecture,
as described in section 3.5. Here the tiny version of the architecture is used, as it
is developed for use on edge devices.

The model is trained using data generated from the people detector and social
costmap generator. The data is augmented to cover the whole map, as the data
was generated using a stationary setup which limited the FOV of the camera. The
setup is similar to the one shown in figure 4.4. This means that the data is aug-
mented to rotate the data around the centre of the map, where the robot is located,
to enable detection in the full map. with a resolution of 1 pixel corresponding to
5cm in the map, a map of 300px by 300px represents a map of 15m by 15m. This
means that a detection can be made within 7.5m of the robot, further than the
requirements described in section 2.5.1.

Due to the amount of images gathered from different distances with both in-
teractions and no interaction, the dataset amounts to more than 500,000 images
after augmentation. As the images were manually divided into the classes inter-
action and no interaction prior to augmentation, the data can be automatically
annotated using the features of the social zones. Figure 4.11 shows examples of
the images in the dataset.

The trained network is constructed as a ROS2 node that subscribes to the
generated social map and detects interactions within the map. The detections are
then re-published as a message of type BoundingBox as shown in table 4.3 such
that the detected interactions can be represented as explained in section 4.3.4.
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Table 4.3: BoundingBox ROS2 message

std_msgs/Header header
float64 center_x
float64 center_y
float64 width
float64 height

(a) Examples of images classified as people not inter-
acting. Here, the context is important as two people
can be standing close to each other in a short while
but are simply passing each other while moving.

(b) Examples of images of people interacting. Here,
the context is important as two people must stay
close to each other for a longer time for it to be an
interaction, to distinguish from walking past each
other.

Figure 4.11: Examples of the images used in the dataset from both classes of interaction and no
interaction.

4.3.3 Social Layer

This layer makes use of the already computed social map from the social map
generator introduced in section 4.3.1. As briefly mentioned in section 4.3.1, a
transformation in the case of unreliable odometry would be required. As both, the
costmap and the social map are image like grids the social map can be overlaid
and thereby turned into a costmap with the pixel values representing the cost
for traversing. Figure 4.12 shows the visualisation of the costmap for two people
facing each other.
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Figure 4.12: An example of the costmap of two overlapping social zones visualised RViz. The
turquoise represents the inflation from the laser scan (pink half circles) of the two people with the
added social zone in read and purple around them. The changing colour represents the change in
cost values as the distance grows from the center of the person.

4.3.4 Interaction Layer

Similar to the social costmap layer, the interaction layer is also implemented as
a costmap_2d layer and therefore a plugin that can be added to any Nav2 based
navigation stack. The task of this layer is to draw elliptical cost distributions
based on the bounding boxes detected by the interaction pipeline introduced in
section 4.3.2. The shape of the elliptical zone is an approximation of the P space,
described in section 2.1.1. As it is unknown whether this layer is implemented
in the global, local or both costmaps, the coordinates of the center have to be
transformed into the global tf_frame of the affected costmap and the current time.
This avoids a swerving cost distribution that might largely hinder path planning
and navigation.

From the received bounding box, the ellipse is drawn into the map layer using
the spcified value in the Nav2 parameter setup. In this project this value is set high
to highly discourage the planner from entering an interaction zone. The generated
layer is then combined with any other layer in the costmap to ensure maximum
cost at every cell. An example of the resulting costmap can be seen in figure 4.13.
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Figure 4.13: An example of the costmap of an interaction zone of two people, visualised in RViz. The
location of the two people from the laser scan is shown with the the two half circles in purple while
the elliptical interaction zone is shown in turquoise. The constant colour represents the constant
cost of the interaction zones.

4.4 Nav2

The navigation stack of Nav2CAN, be it in simulation or with a real robot, is based
on the default configuration stack introduced in the nav2_bringup repository [100].
This configuration is shortly introduced in this section along with problems that
occurred during implementation.

4.4.1 Configuration

This subsection will shortly introduce the Nav2 configuration of Nav2CAN, as
shown in figure 4.14.

The planner of the navigation stack in this project is the default planner
nav2_navfn_planner/NavfnPlanner. This planner is then accompanied with the smoother
nav2_smoother::SimpleSmoother, in order to remove edges caused by the grid based
path finding techniques and to improve path feasibility.

This smoothed path is then send to the controller which in the case of Nav2CAN
is represented through a FollowPath behaviour for the previously mentioned smoothed
path. The path following is handled by the controller plugin dwb_core::DWBLocalPlanner.

Meanwhile, the plugins nav2_controller::SimpleProgressChecker and
nav2_controller::SimpleGoalChecker are monitoring progress and distance to the goal.
The resulting output of the controller are the command velocities, that however
are not directly sent to the robot but instead first to the velocity smoother
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Figure 4.14: Block diagram of the Nav2 navigation stack showing the interconnection between the
individual nodes. Topics to and from the individual nodes are not drawn.

plugin nav2_velocity_smoother, in order to reduce acceleration and jerky move-
ments to protect the hardware of the platform.

In case of failed planning or controlling, multiple recovery behaviours are
added to the behaviour server. These are:

• nav2_behaviors/Spin

• nav2_behaviors/BackUp

• nav2_behaviors/DriveOnHeading

• nav2_behaviors/Wait

• nav2_behaviors/AssistedTeleop

The two costmap layers discussed in section 4.3.3 and 4.3.4 can now be used
as plugins for the costmaps of the navigation stack.

The interaction layer is only added to the global costmap such that movement
through interactions can be discouraged by using an ellipse for the interaction
with a high cost. The resulting layers are therefore as follows:

• interaction layer

• static layer

• obstacle layer

• inflation layer
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The social layer can be added to the local costmap such that the controller can
steer the robot in accordance to the defined proxemic constraints. This results in
the following layer configuration:

• social layer

• static layer

• obstacle layer

• inflation layer

Finally the localisation of the navigation stack is represented by the adaptive
Monte-Carlo localisation based node AMCL. This node is localising a robot using
its odometry, a scan of the environment along with a map of it.

For the simulation part, the parameters from nav2_bringup have been modified
in accordance with the parameter found in the CoHAN Planner setup, such that it
is compatible with the simulated PR2 robot [101]. This means that the robot will
only be sufficiently tuned for navigation as this is not the focus of the project.
Furthermore, due to differences between navigation stacks in ROS1 and ROS2, the
performance of the two systems may differ in performance and visual feedback in
RViz.

The same navigation stack is deployed in order to be used with the MiR
platform. However, since the internal software is highly tuned for the platform
the internal localisation is used. This means, that the platform not only publishes
the required messages defined in section 2.5.1 but now also the internal map along
with the map -> odom tf_transform.

4.5 CoHAN simulation

The CoHAN Planner [75] was tested in simulation using MORSE [102] but also
provides a simulation in Stage [103]. Stage is a robot simulator that provides
computationally cheap methods for simulating multiple agents in an environment.
Furthermore, Stage provides the user with multiple devices for simple integration
of methods. A Stage world is defined by populating a world from an image with
actors in a script. Due to the simplicity of the simulation it can run on lower-
tier hardware, compared to graphics intensive simulators. Figure 4.15 shows the
world used from Stage.

Multiple different configurations of the modified world are presented in chap-
ter 5. This world is adapted from a world used by CoHAN simulation.
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Figure 4.15: An example of the test environment. The environment contains walls (grey), a simu-
lated robot (white, blue and green box) and two humans (blue circles). The location of people are
published on the ROS network to be detected by the robot when planning movement.

4.6 ROS1 and ROS2 bridging

As described in section 3.1, there are multiple differences between ROS1 and
ROS2. Thus bridging between the different versions is needed, when packages
are not yet available for ROS2

4.6.1 Simulation

As the simulation used by the CoHAN planner is developed for ROS Melodic,
the environment is kept the same for the comparison with the systems developed
in this project. Therefore, a bridge between ROS1 and ROS2 is used to pass the
necessary messages between the two. This is done using ROS1_bridge [104] on the
computer running the simulation. Using the parameter_bridge enables the selection
of topics to be bridged between ROS1 and ROS2. By choosing which topics are
passed between the two versions of ROS it is possible to limit the amount of
bandwidth to only the needed topics.

This means that the ROS1 simulation is run completely on the simulating
computer with the navigation stack provided from the CoHAN planner. For the
comparison only the simulation is run in ROS1 with the robot and the different
messages from the simulation is passed through the bridge to the ROS2 network.
Here the robot controller is running where the navigation stack used in this project
handles the control of the robot. The simulation provides the sensor messages of
the robot, that is odometry and laser scans, and receives in exchange command
velocities.
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Furthermore, using the ROS1_bridge enables running measurements in ROS2
during runs in both systems. This means that nodes for gathering data for trav-
elled distance and distance between robot and people can be run using ROS2 while
running the CoHAN planner in ROS1. These nodes use the topics published by
the Stage simulation, bridged from ROS1 to ROS2 and then collected for data han-
dling. Using the same method for gathering data in both scenarios ensures that
the values are comparable.

4.6.2 MiR100

Bridging is also required in the case of the MiR100 platform used in Nav2CAN.
This is caused by the platform internally using ROS1 as the middleware. However,
as the internal PC of the platform cannot be accessed the data is extracted using
the mir_driver that is part of the mir_robot project developed by Martin Günther
[105]. The mir_driver is a reverse ROS bridge for platforms developed by MiR. This
allows the direct access of the sensor data and internal information of the platform
such that it can be controlled from an external controller while disregarding parts
of the internal software stack.

However, the mir_driver is not yet available for ROS2 and therefore a ros1_bridge
that bridges between the mir_driver, running on ROS1, and ROS2 is required.

As explained in section 4.4 the decision was made to use the internal localisa-
tion algorithm of the MiR100 since it has been tuned by the manufacturer in order
to achieve the best performance. This means however, that the platform needs to
publish the tf_transform, as well as the internal map.



5 - Results
This chapter deals with running Nav2CAN in different setups, both simula-

tion and on a real robot. This is to showcase how the different modules developed
in this project perform in different scenarios. This means that some configurations
will change, depending on the used setup as the underlying robot will differ.

These tests are limited to show a proof of concept and will therefore not
address every edge case but rather the needed aspects to determine the success of
the developed modules in accordance with the requirements described in section
2.5.1. This means that some parts will be tested on their own while others will be
tested in connection with others. This is due to the modular development where
some parts are developed for individual use.

As described in chapter 4, the setup is tested on both a simulated environment
as well as a physical robot setup. It is however important to note that both of these
setups are using ROS1 and therefore need to be bridged to ROS2, as described in
section 4.6.

5.1 Module timings

In order to determine the runtime of Nav2CAN, it is important to know the run-
time of each module in the system. To do so, a timing has been implemented into
each of the nodes to calculate the time it takes to run the node once. The resulting
runtimes are an average of more than 1,000 individual timings. Accumulating the
node timings gives a good approximation of how long it takes for one image from
the RealSense to turn into interaction zones. Table 5.1 shows the different average
times of the nodes. Here it can be seen that the Interaction Detection and the Social
Map Generator are the slowest modules with 35.79ms and 36.75ms, respectively.
In order to measure the runtimes reliably, all timings have been performed while
all three modules of Nav2CAN are running. Furthermore, as the runtime of many
nodes can depend on the amount of people within the environment said timings
have been capture in normal conditions, here defined as a scene with zero, one
and two people.

48
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Table 5.1: Average runtime of each module in Nav2CAN

Module Average runtime (in ms)
Multi Person Tracker 14.02
Social Map Generator 36.75
Social Layer 1.91
Interaction Detection 35.79
Interaction Layer 0.19
Accumulated Time 88.66

5.2 CoHAN comparison

As stated in the CoHAN paper [75]:

Since the local planner runs a computationally expensive optimisation in each
control loop, extending the planning beyond two humans does not yield real-
time control of the robot. Hence we restricted our human planning to the two
nearest humans.

This means that the CoHAN planner is not developed for multiple people but
will handle the two nearest. It is therefore of interest to compare the performance
of the planner with Nav2CAN, the system developed in this project.

To compare the performance of this project with that of CoHAN, a simulation
is carried out using Stage, as described in section 4.5. Here the simulation is based
on the setup from the CoHAN planner [106]. This enables a direct comparison
between the two systems by recording the same metrics. For this comparison the
metrics will be:

• Length of the planned path.

• Minimum distance to a person during movement.

• Disturbance of social zones.

The environment will contain different areas with different sizes populated
with different amounts of people. The people will be standing in different config-
urations for interaction. An example of the environment from the Stage simulation
can be seen in figure 5.1. The purpose is to determine how the two planners han-
dle interactions between people and how the movement of the robot may disrupt
the interaction zones and thereby the potential comfort of the people.
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Figure 5.1: An example of the test environment. The environment contains walls (grey), a simu-
lated robot (white, blue and green box) and two humans (blue circles). The location of people are
published on the ROS network to be detected by the robot when planning movement.

5.2.1 Publishing people on the ROS2 network

As the humans used in the Stage simulation are published for the CoHAN planner
it is important to ensure that the people are published in a usable manner when
bridged to the ROS2 network. Due to the difference in message type between
ROS1 and ROS2 a publishing node is developed which ensures that the location
of people in the simulation are available for nodes running on ROS2.

This node subscribes to the topic published for each individual person in the
simulation and creates a Person message for each which are published as a list
of People. This list can then be used in the different nodes to ensure that the
Nav2CAN system can detect interactions. As mentioned in section 4.2 a similar
node could be developed to translate the output for an alternative people detector.

5.2.2 Comparison scenarios

As it can be seen from the simulation image in figure 5.1, the environment is
simple and serves the purpose of comparing navigation around humans. The dif-
ferent comparison scenarios will contain between two and four humans in various
constellations and with different starting and goal positions of the robot. Each
scenario will be run between five and ten times times with both methods and the
average travelled distance and minimum distance to a person will be compared
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for each scenario. Five types of scenarios will be used and two starting and goal
positions for each scenario type to ensure that the robot handles the scenarios
similarly from both sides. The type of scenarios are as follows:

1. Two people standing face to face in the middle of a 4m wide area at personal
distance, as described in section 2.1.1.

2. Two people standing face to face in the middle of a 4m wide area at social
distance.

3. A group of three people standing in a 4m wide area in an F-formation, as
described in section 2.1.1.

4. A group of four people standing in a 4m wide area in an F-formation.

5. Two people standing at social distance in an open room.

Figure 5.2 shows a version of each of the comparison setups. Here the robot
must move from one side of the interaction to the other.

The following sections describes the outcome of the different comparisons to
determine different situations that are better suited for one system or the other.
Tables 5.2 and 5.3 shows the relevant values collected during runs to determine the
difference between the two systems. Furthermore, the following sections describe
how different social zones were or were not disturbed during the runs to deter-
mine any differences between the systems for interaction detection and handling.
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(a) Two people standing in a corridor to the side.
(b) Two people standing in the middle of a corri-
dor.

(c) A group of three people standing to the side in
a corridor.

(d) A group of four people standing in a wide cor-
ridor.

(e) Two people standing in an open room.

Figure 5.2: Different environment setups for comparison between CoHAN and Nav2CAN. The
robot indicates starting position and must plan a path to move on the other side of the people. Each
square represents a space of 1m × 1m.
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Two people at personal distance

The first scenario determines how the two systems handle two people standing at
personal distance while interacting in a corridor. Here, there is room for the robot
behind one person which can enable the robot to move behind said person while
avoiding the humans as obstacles.

As can be seen from figure 5.3 the paths chosen by both systems are similar.
Both systems plan a path behind one person, CoHAN at a distance of 0.89m and
Nav2CAN at 0.94m. This means that when moving behind a person, the two
systems perform similarly. It can be seen in the figure that the CoHAN local
planner tends to cut off slightly more of the distance to the person which results
in the closer distance. This also results in a slight shorter travelled distance of the
robot with 9.44m by CoHAN and 9.58m by Nav2CAN.

(a) Path planned by CoHAN. The red line shows
the global path while the dotted line shows the
local path. The two humans are represented as
green circles with their social zones (as used by
CoHAN) are shown.

(b) Path planned by Nav2CAN. The green line
shows the global path of the global path which is
followed closely by the controller. The pink oval
shows the interaction zone in the global costmap
while the people are only shown as red laser scans.

Figure 5.3: Scenario 1 - two people standing at personal distance in a corridor.

Two people at social distance

The second scenario highlight the difference in how the two system perform when
the interaction is at social distance and there is no longer room to traverse behind
a person.

Figure 5.4 shows the different planned paths from the two systems. CoHAN
plans to travel between the two persons, effectively disrupting the interaction.
Nav2CAN plans a route to completely avoid traversing between the two people.
This results in CoHAN getting within a distance of 1.00m of a person, effectively
disrupting the personal space in front of the person. On the other side, Nav2CAN
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chooses a path that results in a distance to the people not getting closer than 3.50m
to a person. This results in a travelled distance of 8.22m by CoHAN and 23.50m
by Nav2CAN.

(a) Path planned by CoHAN. The red line shows
the global path while the dotted line shows the
local path. The two humans are represented as
green circles with their social zones (as used by
CoHAN) are shown.

(b) Path planned by Nav2CAN. The green line
shows the global path of the global path which is
followed closely by a local planner. The pink oval
shows the interaction zone in the global costmap
while the people are only shown as red laser scans.

Figure 5.4: Scenario 2 - two people standing at social distance in a corridor.

A group of three people

In the third scenario a group of three people are standing in the corridor, facing
each other. This shows how the systems handle interactions of multiple people.
Due to the layout of the setup, the robot has a possibility to traverse behind the
people.

Figure 5.5 shows the planned path of both systems. Here it can be seen that
CoHAN again tries to move behind a person which results in a distance of 0.76m
to that person. This results in a travelled distance of 8.49m using the CoHAN
planner. The Nav2CAN regards the interaction as filling the whole corridor and
therefore chooses to plan away from the corridor, similar to scenario 2. This results
in a distance to the people of 2.88m with a travelled distance of 23.54m.
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(a) Path planned by CoHAN. The red line shows
the global path while the dotted line shows the
local path. The two humans are represented as
green circles with their social zones (as used by
CoHAN) are shown.

(b) Path planned by Nav2CAN. The green line
shows the global path of the global path which is
followed closely by a local planner. The pink oval
shows the interaction zone in the global costmap
while the people are only shown as red laser scans.

Figure 5.5: Scenarios 3 - three people standing in a corridor.

A group of four people

In the fourth scenario a larger group of four people is standing in the corridor.
Here there is no room to traverse behind people due to the formation of the group.

As can be seen in figure 5.6, the CoHAN planner plans the path in the middle
of the group, disrupting the interaction. This results in a distance to the closest
person of 0.72m while travelling a total of 8.46m. This results in moving into the
personal space of all of the people.

Nav2CAN again calculates a path that does not disturb the social interaction
and therefore takes another path as can be seen in the figure. This results in a
minimum distance to people of 3.00m with a travelled distance of 23.32m.
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(a) Path planned by CoHAN. The red line shows
the global path while the dotted line shows the
local path. The two humans are represented as
green circles with their social zones (as used by
CoHAN) are shown.

(b) Path planned by Nav2CAN. The green line
shows the global path of the global path which is
followed closely by a local planner. The pink oval
shows the interaction zone in the global costmap
while the people are only shown as red laser scans.

Figure 5.6: Scenarios 4 - four people standing in a corridor

Two people in an open room.

The fifth scenario determines how the planner perform when two people are
standing in an open room, leaving enough room to move further away from the
people. Here one person is standing close to the wall while the other has more
than sufficient room for passing behind them.

The path planned by the two systems can be seen in figure 5.7. Here it can be
seen that the CoHAN planner moves the robot behind the person close to the wall,
as it deems enough space available. This results in a distance of 0.84m between
robot and person. When some noise is introduced in the localisation of the robot,
the robot will in some instances try to travel further into the open room resulting
in a longer distance. This results in a average travelled distance of 7.73m for the
CoHAN planner in the fifth scenario.

The path planned by Nav2CAN directs the robot around the back of the per-
son in the room and thereby keeps a further distance to the people. The distance
is in regards to the social zone and therefore is 1.02m when closest. This leads to
a travelled distance of 11.77m on average.
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(a) Path planned by CoHAN. The red line shows
the global path while the dotted line shows the
local path. The two humans are represented as
green circles with their social zones (as used by
CoHAN) are shown.

(b) Path planned by Nav2CAN. The green line
shows the global path of the global path which is
followed closely by a local planner. The pink oval
shows the interaction zone in the global costmap
while the people are only shown as red laser scans.

Figure 5.7: Scenarios 5 - two people standing at social distance in an open room.

Table 5.2: Minimum distance (in meters) between person centre and robot centre during each sce-
nario.

Navigation system CoHAN Nav2CAN
Scenario
2 people - personal distance 0.89 0.94
2 people - social distance 1.00 3.50
3 people in a group 0.76 2.88
4 people in a group 0.72 3.00
2 people in an open room 0.84 1.02

Table 5.3: Average distance traveled (in meters) between person centre and robot centre during each
scenario.

Navigation system CoHAN Nav2CAN
Scenario
2 people - personal distance 9.44 9.58
2 people - social distance 8.22 23.50
3 people in a group 8.49 23.54
4 people in a group 8.46 23.32
2 people in an open room 7.73 11.77
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5.3 People Detection module

To test the people detection module with the physical robot, the hardware was
attached to the MiR100 platform, while keeping it stationary. A person was then
put in different locations in front of the cameras to test the reliability of the tracker
with both cameras. Here it was found both location and orientation were perform-
ing as shown in figure 5.8. It can be seen that the position is staying within 0.05m
and the orientation within 0.36rad. The shift in value happening in the middle of
figure 5.8 are caused by the test subject turning and thereby changing the phys-
ical location of the points utilised for calculation. This is due to the setup of the
detector and is to be expected for movement.

Figure 5.8: Detection of a person turning on the spot for reliability of the Multi Person Tracker. Here
the blue graph is the X-position in meters, orange is Y position in meters and green is the orientation
in radians. The x-axis represents time in seconds.

To ensure that the detector is able to detect people within the distances, spec-
ified in section 2.5.1, two tests were performed. In the first test, a test subject was
standing in front of the cameras closer than 1m and slowly walking backwards to
determine when the person was detected. From the graph in figure 5.9 it can be
seen that the detection is happening at a distance of 1.08m. From the graph it can
also be seen that the person is lost as soon as they get within 1.08m, which results
in the effective range of detection starting at that distance.

Similarly, the second test was performed to determine if the People Detector
can detect a person at 5m or further away. Here the person started walking into
the FOV of the RealSense cameras and walked further away before turning and
walking towards the robot. In figure 5.10 it can be seen that the person is detected
further away than 5.5m and keeps being detected while turning and walking back
towards the robot.
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Figure 5.9: The performance of the People Detection module when a person is moving within 1m of
the robot. Here the blue graph is the X-position in meters, orange is Y position in meters and green
is the orientation in radians. The x-axis represents time in seconds.

Figure 5.10: The performance of the People Detection Module when a person is further than 5m
away and moving towards the robot. Here the blue graph is the X-position in meters, orange is Y
position in meters and green is the orientation in radians. The x-axis represents time in seconds.
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5.3.1 Using people detection module with simulation

In addition to testing the people detection module on the stationary MiR100 plat-
form, a test to see how the people detection worked in collaboration with the
rest of Nav2CAN. This is done by using the RealSense cameras on a stationary
setup and running the simulation environment in Stage. Using this with a static
tf_transform between map and camera_link allows to publish the people, who are
standing in front of the camera, into the simulation. This allows to show a proof
of concept of Nav2CAN where both the social_layer and the interaction_layer can
be used for navigation. Figure 5.11 show examples of the costmaps from the sim-
ulation. The figure shows how the robot is able to navigate around the people in
the map.

(a) A person detected from the RealSense pub-
lished into the simulation for the robot to navigate
around.

(b) An interaction zone published into the simu-
lation with the robot staying at the border for the
interaction.

Figure 5.11: Examples of the costmap layers from a a person detected in the real world, used in the
navigation.

5.4 Nav2CAN on MiR100

As described in section 4.6 bridging between ROS1 and ROS2 and potentially a
robot can add a lot of complexity to a system. In the pursuit to perform bridging
between the MiR100 platform and the Nav2 stack with Nav2CAN it was found
that some topics had to be modified to perform correctly between the two. This
mainly applies to "latched" topics since the ros1_bridge has a bug that does not
republish said topics using the correct Quality of Service (QoS) profile on the
ROS2 side, resulting in the map onlly appearing once. This issue surfaced e.g. in
the case of the map topic. The solution to this is to run a ROS2 node before starting
the ros1_bridge that listens to the map topic and republishes the map using a QoS
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profile using transient-local durability and keep-all history.
This allowed to use the platform for default navigation, without any con-

text awareness. However, when introducing the detector module from section 4.2
as well as the context module from section 4.3 more issues surface. These are
tf_transformation issues where the other nodes do not have sufficient accessibility
to the transforms published by the platform, which might be caused by network-
ing issues. Therefore the location of the detected people cannot be transformed
into the map or odom frame rendering the functionality useless.

Due to time constraints and the sheer amount of connections that had to
be bridged, Nav2CAN was unable to be tested onboard the system during this
project. It was found during the bridging of simulation that the robot controller
should only publish sensor data and subscribe to velocity commands while the
rest of navigation should be performed on the Nav2 stack.

As the MiR platform is closed off from changing parameters within the sys-
tem, the possibilities are limited to not bridging topics between ROS1 and ROS2
and ensuring that every necessary topic, such as transformations, sensor fusion,
and a map, is run within ROS2. Running ROS2 nodes for all these systems is time
consuming to implement and was therefore not performed during this project. In-
stead, the authors of this project would recommend to use robotic platforms that
support ROS2 when developing a project for Nav2 or ensuring that the bridging
is possible in a similar manner as done in the simulation, described in section 4.5.



6 - Discussion and conclusion
In this chapter the discussion and conclusion of this project is found. Here

the different methods used and compared are discussed for potential benefits and
disadvantages of using Nav2CAN. Furthermore, this chapter contains the conclu-
sion of the project where the final system is compared to the requirements of the
project.

6.1 Discussion

The discussion seeks to examine the results of the different implemented system
and how it performs in the described scenarios. Furthermore, the improvements
that can be made to the system along with adaptions to make it perform better in
certain environments and contexts are addressed.

As described in chapters 1 and 2, context-awareness in mobile robotics is
described as the ability to understand and respond to a given scenario in the
operational environment. This includes the static environment, dynamic obstacles,
and humans. Understanding and reacting to humans in the environment means
that the robot is programmed to adhere to social norms where the actions of the
robot can be anticipated by the users. Additionally, the robot must be able to adapt
to the actions of the surrounding users. This is desirable to ensure that robot is
utilised instead of being seen as an uncomfortable tool by the users.

Many approaches to context awareness have been described, each with differ-
ent focuses that are often limited to a given type of environment. Nav2CAN seeks
to achieve a more comfortable navigation of mobile platforms by understanding
social zones along with HHI to achieve non-disturbing navigation. By imple-
menting additions to the Nav2 stack, used in ROS2, Nav2CAN seeks to enable
compatibility with a wider range of planners.

6.1.1 Modularity

As described in chapter 4, Nav2CAN is implemented in a modular setup, meaning
that different modules can be used independently as long as the requirements for
the modules are met. This means that the system is developed for detection of
social zones using any type of sensor as long as the resulting data represents
the human in the map using location and orientation. This also means that any
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transformations between robot and map must be reliable enough for the robot to
locate the detected people accordingly.

The Context-Aware module, described in section 4.3, is developed for F-
formation interactions with a limited amount of humans. However, the setup
can be used to implement additional types of interaction by re-training the inter-
action detector with additional data, potentially adding new classes for different
interactions. In doing so new shapes of interaction zones can be implemented to
suit a given need for implementation.

6.1.2 Timing

An important part of having a navigation system performing reliably is having it
running at a high enough rate to achieve real time navigation. As described by
the authors of CoHAN [75], an update rate of the navigation stack of 10hz results
in real time operation. This aligns with the requirements of this project for update
rate, described in section 2.5.1.

As described in section 5.1 the combined runtime of all developed modules
in Nav2CAN accumulates to 88.66ms which results in an update rate of more
than 10hz. Accounting for overhead in the ROS communication, this results in a
sufficiently fast system. It is important to emphasise that the modules are running
asynchronously and some modules may perform multiple iterations within the
88.66ms. This means that the social map generator may produce multiple maps
before an interactions has been detected. This is by design to ensure that the social
zones are update frequently, leading to a safer and more comfortable navigation
while achieving interaction detection at a sufficient rate.

The Interaction detector is one of the slowest modules due to the fact that it
is run in PyTorch [107] and therefore not as optimised as the detector in the Multi
Person Tracker. This can be optimised by converting to TensorRT [95] which is
optimised for use on Nvidia hardware. This could results in a significantly higher
performance rate.

As explained in section 4.3.1, the Social Map Generator generates images,
however it is running on the CPU of the controller and is implemented as a ROS2
python node, which both adds computational overhead. Rewriting this node in
C++ and/or GPU accelerated execution could result in significant improvements
of the computation time.

As the timings are performed in a combination of the modules detecting be-
tween none and two people, the averages might depend on this amount of people
in the scene. It would therefore important in the future to know any limitations
for the modules when multiple people are present to the scene.

To achieve a high computation rate, the hardware used in this project enables
GPU acceleration which results in faster computation for parallel processes. This
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enables the computation to be done on the edge instead of in the cloud. This
however, means that Nav2CAN requires certain hardware to achieve the presented
runtime.

6.1.3 Comparison

As more and more mobile robots become available, more potential interactions
and encounters between people and robots may occur. Therefore, it is impor-
tant that the design of navigation is considered heavily when implementing such
robots. As described in chapter 5, CoHAN and Nav2CAN use different ap-
proaches to navigate in human filled environments. Different types of compar-
isons are carried out to determine any similarities and differences between the
systems.

It can be noticed in the different scenarios that the social zones of the two sys-
tems vary, which is a result of design for implementing the systems. For CoHAN,
the design favours a 1m distance to the front of the person while trying to limit
the distance to the back of a person within 1m with lower cost. For Nav2CAN,
the implementation of social zones adheres to the zones described in section 2.1.1,
meaning that more space is preferred in front of a person. This leads to different
behaviour when movement is not possible behind a person. As can be seen in sec-
tion 5.2.2, when two people are standing close in personal distance to each other,
both systems plan a path behind one person, keeping different distances with Co-
HAN moving closer. When there is no longer room behind people or the space is
limiting the movement, CoHAN will still try to plan its path close to the humans,
even driving straight between people, while Nav2CAN will plan a different path
if possible.

The results given in table 5.2 shows the minimum distance between human
and robot in a given scenario using the two different navigation systems. As
these are measured from centre of robot to centre of person, the actual distance
between the edge of the robot and the outer of a person can be lowered by 33.4cm,
which is the minimum radius of the PR2 robot. This means that CoHAN get as
close as 39cm to a person while Nav2CAN gets within 60cm of a person. As
CoHAN manages to achieve this distance in front of a person, this can be seen as
uncomfortable and could result in people not wanting to use such a system within
a closed facility.

It is also worth mentioning that the interaction detection has only been trained
on two-person interactions but generalised to four-person detections as shown
in section 5.2.2. This also highlights the great benefits of using a CNN for the
detection of interactions, as unforeseen situations can still be classified with similar
looking formations.

When comparing CoHAN to Nav2CAN it is important to consider the poten-
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tial use in the future. As CoHAN is developed using ROS1 which is nearing its
end-of-life phase in 2025, it is important to develop for the future. Furthermore,
some underlying systems for CoHAN are not maintained which might result in
an unusable system in the future. Nav2CAN is developed using the (at time of de-
velopment) newest version of ROS2. ROS2 has no known end-of-life date, which
might result in a usable system for longer with potential for further improvement
and added functionality in the future.

6.1.4 Physical setup

As described in section 5.3, the detection of people can be performed at a distance
of 1.08m and goes beyond the desired distance of 5m. This closest distance is
relevant to ensure a safe navigation around people by detecting a human before
the robot gets too close. It is however important to consider the physical location of
cameras on the robot as well as their orientation to achieve a satisfying detection.
This means that the cameras can be tilted up or down to change when a person
is within FOV as well as considering the use of cameras with larger FOV. As
described in 4.2.2, the overlap of multiple cameras in front of the robot ensures
reliable detection where the robot will move, however tilting one or both RealSense
cameras may result in even better detection, closer than 1m.

Based on the problems described in section 5.4 and the time constraints as-
sociated with the Nav2CAN project the implementation has not been completed
on the MiR100 platform, as workarounds would have required an unreasonable
amount of time. Therefore, some interactions were not tested in the closed en-
vironment of the laboratory. However, using the simulation as well as testing
individual modules has shown promising utilisation of Nav2CAN as a plugin for
Nav2.

6.1.5 Future work

As Nav2CAN was developed during one semester, many different additions and
improvements can be made to further increase the functionality of the system.
Some of these potential improvements are described briefly in the following:

Detection all around the robot As the people detection module, described in
section 4.2, is developed for using RealSense cameras, the system is limited to
the amount of cameras connected to the robot. This means that one must acquire
enough cameras to cover all angles around the robot to use the system for de-
tecting humans. Alternatively, different approaches for detecting human in the
environment can be used, either on their own or as an addition to the RealSense
cameras. Such systems could be a leg detector that would help detect humans
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using the laser scanners on the robot. This would give locations of the people, po-
tentially with a rough estimate of the orientation of these. This however might not
be sufficient for detecting interactions as the orientation might be too unreliable.

Another approach could be to use surveillance cameras within the robots
environment to provide location and orientation of people. This could be used to
provide the location and orientation of all people at once with the robot applying
those within planning range. This would mean that a global path could adhere to
more humans or achieve fewer interruptions of human interaction. Additionally,
using surveillance has the potential to allow detection of individuals who might
otherwise be obstructed from the viewpoint of the robot and would therefore
go unnoticed. This approach is similar to the setup described in section 5.3.1.
Surveillance further limits the issues of the robot not being able to detect humans
that are too close to the robot, as discussed above.

Asking for permission to pass In certain situations, the planner may be unable
to provide a path that will not disrupt interaction - this can be in tight corridors or
with a larger group of people. In such situations, the robot should be able to ask
for permission to move within the interaction zone. Such a system requires the
robot to change the interaction zone in such a way that a navigate-able area opens
up for the planner after an explicit permission is given from the humans. Such a
permission can be recognised through different modalities and should therefore
be able to handle speech and gestures along with other potential interactions, such
as a pressed button. As Nav2 utilises a behaviour tree this would enable a node
to implemented for checking when permission should be granted.

Interaction Variety As mentioned previously, both the Social Map Generator and
the Interaction Detection can be expanded with more possible interactions. This
would allow navigation that is aware of not only HHI, but potentially also Human-
Object Interaction (HOI) and HRI to be even less disruptive for humans working
in the environment. Additionally more information about the humans themselves
could be included into the Social Map Generator for example their velocities and
further proxemics introduced in section 2.1.1. This might make the detection of
interactions more robust.

Inclusion of temporal information When detecting interactions of humans in
the environment, the inclusion of temporal information might be of great benefit.
This would allow to remove false positives when people are e.g. only passing
each other. This could help refining the detection process for a more crowded
environment where people may move close to each other often without interaction.
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6.2 Conclusion

In a previous work [3], the authors of this project have shown that indication of a
robot’s intended path greatly improves the comfort of humans around the robot.
Nav2CAN builds upon the findings of that work by introducing a modular system
for awareness of HHI for Nav2, according to the problem formulation defined in
chapter 2:

How can a modular system for context aware navigation be developed for edge com-
putation on a mobile robot?.

Interacting with the environment in a context aware manner includes two parts:

• Detection of the environment

• Reacting based on the detections

Nav2CAN introduces an approach to both of these in a modular and extendable
fashion, such that they can be repurposed or exchanged based on the application.
As Nav2CAN seeks to apply context awareness to the navigation of a mobile
platform, more requirements are introduced in section 2.5.1.

In accordance with the requirements, Nav2CAN is able to detect and track
the pose of humans in a range of 1.08m up to more than 5m in a field of view of
87.4° in front of the robot. Furthermore Nav2CAN is able to detect interactions
based on proxemic zones, leading to an accumulated runtime of 88.66ms.

Nav2CAN is not the first work in the field of human- or social-aware naviga-
tion and is therefore compared to the established human aware navigation frame-
work CoHAN Planner [75] in section 5.2 to identify strengths and/or weaknesses
of either solution. These comparisons highlight that while CoHAN planner is able
to handle static and dynamic people it lacks the awareness of interactions and
disrupts these. Nav2CAN on the other hand, is able to detect and act on humans
and HHIs in real time as shown in chapter 5.

In summary, Nav2CAN provides a modular and adaptable set of plugins for
Nav2 to enable real-time and safe context aware navigation of mobile robots in the
presence of humans.
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