
Summary
An appropriate mathematical formalism for modelling systems with mixed discrete and continuous dynamics is a hybrid
automaton. The hybrid automaton combine discrete control graphs with continuous dynamics defined by differential equations.
In this paper, we introduce an offline learning algorithm to automatically synthesise a hybrid automaton from time series.
The algorithm consists of several procedures. First, the time series is segmented using a Bottom-Up change point detection
algorithm. The segments are subsequently used in a structure learning process to build an initial graph structure detailing
locations and edges between them. The structure learning also associates each segment with a unique location. From the
set of segments associated with a location, the dynamics governing the location are learned using the SINDy algorithm.
Lastly, the guard conditions on the edges as well as the invariant conditions on the locations, are determined using one of
two methodologies. The novel method computes a convex hull on the points of the segments associated with a location and
is suitable for stationary data. The new time-based method introduced in this paper can determine conditions for models
learned from time series exhibiting upward or downward trends. It distinguishes between seasonal time conditions where the
switching conditions are determined by seasonal periods, and location time conditions which do not relate to seasonality, but
where the conditions are still governed by a time interval. The evaluation shows that the algorithm can learn simple models
with an accurate graph structure and appropriate dynamics from stationary time series using state-dependent conditions,
as well as from non-stationary time series exhibiting trends using the timed conditions. However, the algorithm is not able
to accurately synthesise complex systems with multiple locations, because the location dynamics have to be significantly
distinguishable for the change point detection to segment correctly, and for the structure learning procedure to identify the
locations as well as to associate the segments to locations.
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Abstract
A hybrid automaton is an appropriate mathematical formal-
ism for modelling systems with mixed discrete and contin-
uous dynamics. The hybrid automaton combines discrete
control graphs with continuous dynamics defined by dif-
ferential equations. In this paper, we introduce an offline
learning algorithm to automatically synthesise a hybrid au-
tomaton from time series. The algorithm consists of several
procedures, including segmentation of time series, structure
learning, and discovery of both dynamics and conditions.
We present a novel method for determining the conditions
of a model learned from stationary time series, as well as a
new time-based method for models learned from time series
that exhibit trends.

The evaluation shows that the algorithm can learn simple
models with an accurate graph structure and appropriate
dynamics from stationary time series using variable condi-
tions, as well as from non-stationary time series exhibiting
trends using the timed conditions. However, the results show
poor performance if the change point detection algorithm
is unable to accurately segment the time series, or if the
location dynamics are indistinguishable. Indistinguishable
dynamics between locations may cause the change point
detection to misidentify segments, and it may result in the
structure learning procedure being unable to identify the
locations as well as to associate the segments to locations.
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Tools and Contributions
The AI tool Git Copilot has been utilised during the develop-
ment of the codebase [1]. Copilot is an AI pair programmer

which helps write tedious and simple code in real-time. Fur-
thermore, it has been utilised as an extension to IntelliSense,
which can auto-complete multiple words at a time.

Wewould like to thank our supervisors Christian Schilling
and Kim Guldstrand Larsen for their continued contribution
throughout the semester.

1 Introduction
Many physical processes of today are controlled by computer-
based algorithms. The controller’s state moves discretely
between control modes, where each mode represents a com-
ponent with a unique evolution of the system state. A mode
in this context is a part of the system which combines with
other parts to form the whole system and is denoted as a
location in this paper.
An appropriate mathematical formalism for modelling

systems with mixed discrete and continuous dynamics is a
hybrid automaton. A hybrid automaton combines discrete
control graphs, also known as finite state automata, with con-
tinuously evolving variables [2]. Thus, a hybrid automaton
exhibits two kinds of state changes. Discrete jumps which oc-
cur instantaneously, and continuous flow which occur while
time elapses.

Figure 1. Automaton model of a thermostat. As to not con-
fuse the temperature with time, it is denoted as c.

An example of a potential hybrid automaton model of a
thermostat is shown in Figure 1. Themodel has two locations,
On and Off, representing the locations of the thermostat, and
a continuous variable c for the temperature. The guards
determine under which conditions the system may switch
between locations. From a simulation of the thermostat
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using the hybrid automaton model in Figure 1, we can obtain
a trace, which is a finite or infinite time sequence of states,
where each data state is the value of all the variables of the
system, at a time point.

(1,𝑂 𝑓 𝑓 , 20) → (2,𝑂 𝑓 𝑓 , 18) → (3,𝑂 𝑓 𝑓 , 16.33) → . . .

→ (6,𝑂𝑛, 24.33) → (7,𝑂 𝑓 𝑓 , 23.78) → . . .
(1)

The thermostat example shows, that a hybrid automaton
can represent a cyber-physical system with continuously
evolving variables. The first argument of the tuple in Equa-
tion 1 denotes the current time point, while the second and
third denotes the current location and the value of the vari-
able at the time point. Themain challenge is how to construct
the hybrid automaton, in particular when the system dynam-
ics are unknown. Modelling an unknown system is only
possible if there is some information about the behaviour
of the system. To gather information, we measure the vari-
able evolution of a system over time, thus generating time
series. A large part of the challenge when learning a hybrid
automaton model is to determine the switching conditions,
i.e., the relationship between the locations.
This paper is the second of two papers, which explores

the synthesis of hybrid automata from time series. The first
paper [3] had two primary focuses. Firstly, it details the de-
velopment of a codebase to construct a hybrid automaton.
Secondly, it evaluates different change point detection algo-
rithms to find the algorithm which best segments the time
series data. The change point detection algorithm with the
best performance was found to be the Bottom-Up clustering
algorithm. Each of the segments contains sequential data
which evolves according to the dynamics of a location. The
Bottom-Up algorithm can be used to effectively segment
varying types of time series.

This paper aims to develop an algorithm which can syn-
thesise hybrid automata from time series. This entails iden-
tifying the graph structure with locations and transitions,
as well as the conditions and dynamics. Our contribution
is the development of a unique framework for synthesising
hybrid automata from time series, as well as introducing
a new time-based method for determining conditions. The
following list summarises the overall steps in the learning
algorithm developed in this two-part project;

1. Split the time series into segments using a change
point detection algorithm

2. Perform a structure learning procedure to build a graph
structure and associate segments with locations

3. Determine the dynamics governing each location based
on the associated segments

4. Determine the invariant conditions for each location
and guard conditions for each transition

5. Construct the HA model
An overview of the entire process is shown in Figure 2.

Figure 2. Flow of algorithm.

This paper is structured as follows. Section 2 discusses the
related work in the field of hybrid and timed automaton syn-
thesis. Section 3 introduces the formalism of hybrid automata
and the notation used in this paper. Section 4 details how an
initial graph structure is constructed from the time series.
Section 5 explores how the dynamics may be determined
from segments associated with a location. Section 6 discusses
how invariant and guard conditions are determined, and
issues regarding data exhibiting trends. The section also
introduces alternative timed condition types. Section 8 eval-
uates the synthesised models based on distance measures on
obtained traces, graph structure, dynamics, and conditions.
Section 9 concludes the paper. Section 10 discusses the future
work of this project.

2 Related Work
The synthesis of hybrid automata is explored in a broad range
of fields. Generally, the problem is a part of the category of
model learning, however, in the field of control theory it is of-
ten known as system identification [4]. Many approaches for
system identification focus on input-output models, such as
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the autoregressive eXogenous (ARX) models and in particular
the piecewise (PWARX) and switched (SARX) versions.
Paoletti et al. [5] serves as an introduction to the identi-

fication problem for PWARX and SARX models. In general,
PWARX and SARXmodels can be considered restricted linear
hybrid automata with deterministic switching behaviour and
a state-space partition forming the locations. As a result, the
synthesis problem is essentially a parameter-optimization
problem and Paoletti et al. [5] reference several procedures
to solve it, such as clustering-based procedure [6], a Bayesian
procedure [7], a bounded-error procedure [8] and an alge-
braic procedure [9]. Most of these techniques for systems in
input-output form are proposed for offline identification.

In computer science, there are also several approaches de-
tailing how to learn a hybrid automaton from time series. As
for systems in state-space form, García et al. [10] proposes an
online approach to synthesise hybrid automata with affine
dynamics. An online approach in this context entails updat-
ing an existing automaton on new time series trajectories.
They summarize the synthesis problem as constructing a hy-
brid automaton, that 𝜖-captures the time series. This means,
that from a simulation of the automaton, we must be able to
obtain a trace such that the distance between the time series
and the trace is below an 𝜖 error bound. The check of whether
a hybrid automaton 𝜖-captures the time series is denoted
as a membership query. Based on the result of the member-
ship query, the automaton is either modified based on some
heuristics or left unchanged. The concept of membership-
based synthesis has been explored in previous papers by
the same authors, [11]. However, the approach described in
[11] is restricted to linear hybrid automata, i.e., constant dy-
namics, whereas the approach [10] concerns affine dynamics.

The problem of synthesising linear hybrid automata from
time series has also been explored in [12], where they sep-
arate the problem into two phases. In the first phase, they
synthesise a discrete structure by mapping data points in
the time series to a set of symbolic locations. In the second
phase, they construct the parameter space, which is a poly-
hedron describing the fixations of continuous dynamics that
𝜖-captures the time series. This technique does not support
online environments, however, is more scalable in offline
environments than the two aforementioned papers [10, 11].
Our paper utilises a similar methodology as in the first phase
to construct a discrete graph structure from the data points
in the time series.
Other works detail how dynamical systems with differ-

ential equations may be learned, without using a hybrid
automaton as a model [13–15]. One paper addresses the de-
mand for massive data analysis in real-time by using a com-
pression method that approximates the time series stream

with multiple polynomials [16]. Another relevant article de-
tails how a sparse regression algorithm can be used to dis-
cover the equations governing the time series [17]. Although
this technique does not apply to hybrid systems, but to purely
continuous systems, it is widely used in several steps of the
overall algorithm detailed in this paper.

There has also been extensive research in formal mod-
elling and analysis of timed systems, in particular using
timed automata models, which are finite state machines
with real-valued clocks. An et al. [18] present algorithms
that learn a one-clock timed automaton. The first algorithm
guesses the clock resets automatically but is of exponential
complexity in the size of the learned automata. In the other
algorithm, the user has to provide the clock reset informa-
tion which yields a polynomial complexity. Maier et al. [19]
propose an online timed automata learning algorithm, which
iteratively updates the automaton based on if the new input
configuration has been observed previously, similar in con-
cept to the membership query mentioned earlier. Tapler et al.
[20] present a novel method for learning timed automata that
utilises genetic programming to generate a model consistent
with a set of timed traces collected via testing. Similarly,
Tapler et al. [21] use SMT solving to learn timed automata
consistent with observations in a set of timed traces, which
are gathered via active testing or passive monitoring. The
test-based approaches in [20, 21] learn timed automata from
black box systems, where the only information about the
behaviour of the system is given by observing the output
based on a test input.

In our work, we have full datasets obtained from the sys-
tems, and as such the test-based approach is not necessary
to gain information about the behaviour of the system. How-
ever, the concept of defining time-based constraints could
be valuable in hybrid automata as well, if the system state
switches based on a timer or a particular seasonal period.
Also, as we explore later in the paper, some types of non-
stationary time series obtained from systems cannot be mod-
elled when conditioning only on the variables. Furthermore,
we have not found any implementation in other works con-
cerning hybrid automata that integrates time-based con-
straints. As such, the utilisation of clocks in timed automata
serves as a motivation for integrating time-based constraints
into our hybrid automata synthesis process. Our work only
considers one clock as in An et al. [18] for simplicity, and
as with the rest of the synthesis process, we only consider
learning the time constraints in an offline environment as
opposed to Maier et al. [19].

Thework in this paper concerns the synthesis of hybrid au-
tomata from time series, although it differs from the related
work in the methods used to learn the dynamics, conditions
and structure of the model. This work is a new framework for
the entire synthesis process, however, it utilises two libraries
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in the algorithms. The first library contains the SINDy algo-
rithm which is utilised in the structure learning procedure to
measure the fitting error when determining which location
to associate a segment, and it is also used when learning
dynamics to calculate the governing equations from the seg-
ments associated with each location. The second library
contains the ODESolver which we use when simulating the
hybrid automata models. Otherwise, the entire codebase is
constructed by the authors of this paper and the algorithms
are unique for this work. As an addition to existing work,
we introduce timed conditions for the guards and invari-
ants of the hybrid automaton. We define two types of timed
conditions for different scenarios, and both can be used to
model stationary time series, or non-stationary time series
exhibiting trends, which is something we have not seen in
related work.

3 Preliminaries
This section covers the semantics of a hybrid automaton,
as well as some core definitions used throughout the paper.
Note, that we use similar semantics as in the paper from last
semester [3]. A hybrid automaton (HA) is a mathematical
model that describes the behaviour of a system. The model
may be visualized as a graph structure, as shown in Figure 1
and Figure 3. A HA consists of a finite set of discrete loca-
tions, each representing a component of the system. Each
location is associated with a set of differential equations
describing the continuous dynamics of the system when
that location is active. Furthermore, a location may have
an invariant condition, which is a condition that must be
satisfied while that location is active. Invariant conditions
are useful to enforce constraints on the behaviour of the
system. When an invariant condition evaluates to false, the
invariant is said to be violated.

The locations of a HA are connected by transitions, in this
paper denoted as edges, which allow the system to transi-
tion between locations and thereby change which dynamics
govern the behaviour of the system. The edges may be re-
stricted by guards, which specify under which condition
the transition can occur. When an expression of a guard on
an edge evaluates to true, we denote the edge as enabled. An
edge is only open for traversal when it is enabled. Addition-
ally, each edge may have an update function, which is a
function that is executed when the edge is traversed. It is
not a differential equation and is therefore able to make a
discontinuous change to the variables of the system. If the
invariant condition is violated, the system must change state
by traversing one of the enabled edges, or in the case that
no edges are enabled, the system halts.

A HA is thus a tuple 𝐻 = (𝑄, 𝐸,𝑋, 𝐹𝑙𝑜𝑤, 𝐼𝑛𝑣,𝐺𝑟𝑑,𝑈𝑝𝑑),
where 𝑄 and 𝑋 are the set of locations and real-valued vari-
ables respectively. We define a data state as a valuation of

all variables in 𝑋 and denote the set of all data states Σ𝑋 . A
system state is a pair (ℓ, 𝜎) with location ℓ ∈ 𝑄 and a data
state 𝜎 ∈ Σ𝑋 . 𝐸 ⊆ 𝑄 ×𝑄 ×𝐺𝑟𝑑 ×𝑈𝑝𝑑 is the set of edges of
the system. An edge 𝑒 ∈ 𝐸, where 𝐺𝑟𝑑 (𝑒) is its guard condi-
tion,𝑈𝑝𝑑 (𝑒) is its update function.𝐷𝑒𝑠𝑡 (𝑒) is the destination
location and 𝑆𝑜𝑢𝑟𝑐𝑒 (𝑒) is the source location. 𝑂𝑢𝑡𝐸𝑑𝑔(ℓ) is
the set of edges that have ℓ as the source. An edge may be
denoted 𝑆𝑜𝑢𝑟𝑐𝑒 (𝑒) → 𝐷𝑒𝑠𝑡 (𝑒). 𝐹𝑙𝑜𝑤 (ℓ) is defined as flow
of a location and denotes the differential equation describing
the continuous evolution of the data state on a location ℓ .
𝐼𝑛𝑣 (ℓ) is the invariant condition of location ℓ .

The system state may change in two ways; by an instan-
taneous transition after traversing an edge, or by the elapse
of time that changes only the values in Σ𝑋 according to
𝐹𝑙𝑜𝑤 (ℓ). A simulation 𝜌 refers to the process of running
or simulating the HA model. A trace 𝜏𝜌 is a finite or in-
finite sequence of data states describing the behaviour of
the HA during a simulation 𝜌 . 𝑆𝐻 denotes the set of traces
that corresponds to the simulations of the system 𝐻 . At any
time during the simulation, the configuration of the system
is completely determined by the system state. For a more
formal description of the semantics, refer to Alur et al.[2].

An edge may be enabled at multiple time points at a loca-
tion. Likewise, multiple edges may be enabled at the same
time on a location. Therefore, there must be a particular pol-
icy to determine which edge to take, and at what time to take
it in the intervals at which it is enabled. Depending on the
policy, this can resolve non-determinism in the HA. In our
previous paper, we argued that to model unknown systems
which may be non-deterministic, the choice of which of the
enabled edges to traverse, and when to traverse it in the
enabled interval, should be random. This policy allows the
model to explore the different possible simulations, and as a
consequence, 𝑆𝐻 may consist of different traces, even with
the same starting values in Σ𝑋 . Although non-determinism
may exist in a HA, the evolution of the data state in a location
is deterministic, according to 𝐹𝑙𝑜𝑤 (ℓ).

Synthesis of a HA refers to the process of constructing a
HA model from given specifications, constraints or require-
ments.

For this paper, we assume no prior knowledge of the sys-
tem and as such are not given any specifications or require-
ments. Instead, the synthesis problem in this paper is, that
specifications must be inferred from the time series of the
system. That involves learning the continuous and discrete
dynamics, as well as other design parameters that satisfy the
underlying constraints of the system.

This paper utilises running examples throughout, which
are used to illustrate the concepts and for evaluation pur-
poses. The first example is a thermostat, the hybrid automa-
ton of which is shown in Figure 1. It is a system with a
temperature variable and a location for On and one for Off.

4



Framework for Synthesis of Hybrid Automata Master Thesis, June 2023, Aalborg, North Jutland, Denmark

The temperature increases at a constant rate in the On loca-
tion and decreases in the Off location. The thermostat is a
basic model with simple dynamics and few locations, where
the primary objective is to verify that the algorithm can learn
the graph structure and the conditions. The second exam-
ple is a model of a bouncing ball with one location and an
update function that triggers when the ball hits the ground
shown in Figure 3a. The bouncing ball only has one location,
however, the dynamics are more complex than the thermo-
stat. Thus, the bouncing ball example tests how well the
algorithm can learn complex dynamics. The third example
in Figure 3b is more advanced and represents a gear system
with three gears, neutral, and the ability to break. This model
has non-determinism in when to break, how long to break,
as well as how long to stay at a gear level. The gearbox ex-
ample is used to test the limits of the algorithm when facing
systems with multiple locations, complex dynamics which
are not significantly distinguishable, and a large degree of
non-determinism.

4 Structure Learning
In our previous paper, we have shown that the Bottom-Up
clustering algorithm may be used effectively to segment
varying types of time series [3]. Each segment consists of
sequential data which is assumed to be defined by the dynam-
ics of a future location in the HA. The Bottom-Up algorithm
returns a list of segments, but it does not associate any seg-
ment with a particular component nor show which segments
stem from the same component dynamics.
This section focuses on a subsequent analysis of the seg-
ments, where the goal is to detect similar segments and
associate them with a location, which represents a compo-
nent of the system. Furthermore, when mapping a segment
to a location, we keep track of the subsequent segment to
later define the edges connecting the locations. The analysis
makes it possible to build an initial structure of our hybrid
automaton, and thus we denote this part of the synthesis
as Structure Learning. This approach is inspired by the first
phase of synthesis in García et al. [12], where they also map
data points in time series to locations. We introduce the no-
tion Seg(ℓ), which denotes the set of segments of data from
the time series associated with a location.

4.1 SINDy
Sparse Identification of Nonlinear Dynamical Systems (SINDy)
is a sparse regression algorithm, first introduced by Brunton
et al. [17].
The algorithm retrieves a time history of the data, i.e., a

segment of data with time, and arranges it into two matrices
denoted as 𝑋 and ¤𝑋 where ¤𝑋 is the derivatives. Only the
data in 𝑋 are available, and ¤𝑋 is approximated numerically
through differentiation. SINDy utilizes a list of candidate
functions of each column in 𝑋 , denoted 𝜃 (𝑋 ). By default,

(a) Model of the bouncing ball example.

(b)Model representing a gear system that allows the car
to switch between gears.

Figure 3. Each node represents a location with a label, and
the predicate within is an invariant condition. The edges’
predicates are their guards. The notation "→ 𝑣 = −0.7 · 𝑣"
is used to denote the update function on the bouncing ball
model.[3]

𝜃 (𝑋 ) consists of constant, linear and polynomial terms. The
assumption is, that only a few of these describe the data
accurately. Thus, they set up a sparse regression problem to
determine the sparse vectors of coefficientsΞ = [𝜉1, 𝜉2, ..., 𝜉𝑛]
that determine which are active. The feature library 𝜃 (𝑋 ) is
used to find the fewest terms needed to satisfy ¤𝑋 = 𝜃 (𝑋 )Ξ,
where the few entries of Ξ is solved by sparse regression,
and denotes the terms in the right-hand side of the dynam-
ics. In the paper, the authors show that SINDy can learn
the governing dynamics of rich and chaotic systems such as
the Chaotic Lorenz System, partial differential equations for
vortex shredding behind an obstacle and equations for nor-
mal forms, bifurcations and parameterized systems. Figure 4
demonstrates the steps of the SINDy algorithm on the Lorenz
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equations. In step 1 the data is obtained from the Lorenz sys-
tem and the derivatives are arranged into the 𝑑𝑜𝑡𝑋 matrix
and the candidate library 𝜃 (𝑋 ) is constructed. From these,
step 2 determines which of the candidate functions are active
by using sparse regression to solve for the sparse coefficients
of the dynamics. In step 3, the sparse vectors of coefficients
are used to describe the actual dynamics of each variable in
the Lorenz equation.
Because SINDy can learn a large variety of both simple

and complex dynamics, it is used extensively in this paper.
PySINDy is a Python library implementing the SINDy al-
gorithm and it offers a suite of functions [22]. PySINDy’s
fit() function runs the SINDy algorithm and returns a
model which describes the data on which it has been fit-
ted. simulate() is another function, which takes a model, a
starting value, and a time period to simulate data using an
ODESolver and the governing equations of the model.

4.2 Associating Segments with Locations
The first part of structure learning entails associating each
segment with a location. The main idea is to associate a seg-
ment with a location ℓ𝑖 if the data in 𝑆𝑒𝑔(ℓ𝑖 ) are similar to
the data in the segment. The similarity is determined by a
fitting error between the segment and 𝑆𝑒𝑔(ℓ𝑖 ). Consider the
algorithm of the initial procedure shown in Code Listing 1,
which iterates through the segments and associates each
with a location.

1 Input: Segments of the time series , maximum error
threshold

2 Output: A list of locations , each containing a list
of segments

3 MapSegmentsToLocations(segments , max_error):
4 locations = []
5 for segment in segments:
6 if (locations == []):
7 locations.append(new Location(segment))
8

9 # Maps a location to an error score
10 location_errors = {}
11 for location in locations:
12 fit_error = FindFitError(segment , location)
13 location_errors.put(location , fit_error)
14

15 best_fit = min(location_errors)
16 if best_fit.value() < max_error:
17 location = best_fit.key()
18 location.AddSegment(segment)
19 else:
20 locations.append(new Location(segment))
21

22 return locations

Code Listing 1. Pseudo Code for mapping segments to a
location.

The algorithm iterates over existing locations (ℓ0, ..., ℓ𝑛) ∈
𝑄 at lines 11-13, to determine if the current segment is similar
to 𝑆𝑒𝑔(ℓ𝑖 ). Such similarity implies that data in the segment

may be described by the same dynamics as 𝑆𝑒𝑔(ℓ𝑖 ), where
index 𝑖 in ℓ𝑖 represents the location of the current iteration.
On line 9 FindFitError() returns an error score represent-
ing the similarity of the segment and 𝑆𝑒𝑔(ℓ𝑖 ). The error is
saved with the location in a dictionary on line 13. The next
section describes how the error is determined in detail. After
iterating through (ℓ0, ..., ℓ𝑛) ∈ 𝑄 , ℓ𝑖 with the best-fit score is
retrieved on line 15. Note, that best_fit is a key-value pair,
where the key denotes the location and the value denotes the
error. If the score is below a threshold max_error at line 16,
the segment is appended to 𝑆𝑒𝑔(ℓ𝑖 ). Otherwise, the segment
is mapped to a new location ℓ𝑛+1 which is then added to the
set of locations 𝑄 , at line 20. Note that for the first iteration
where locations are empty, a new location is created and
the segment is associated with it.

4.3 Determining the Error
The intuition behind FindFitError() is, that if the segment
and 𝑆𝑒𝑔(ℓ𝑖 ) are similar, then the governing equations of the
SINDy model should create a simulation that is close to the
data in the segment, given the same starting point. On the
contrary, if they are dissimilar, the values of the simulation
should differ from the segment, and the error should re-
flect that. Code Listing 2 shows the implementation which
initialises the relevant fitting data, fits a SINDy model and
calculates the error between the segment and the simulated
data.

1 Input: Current segment and ℓ𝑖

2 Output: Fitting error
3 FindFitError(segment , location):
4 fitting_data = []
5 for location_s in location.segments:
6 fitting_data.append(location_s)
7

8 model = PySINDy.fit(fitting_data)
9

10 segment_simulation = PySINDy.simulate(model ,
segment [0], segment.time)

11

12 error = CompareData(segment , segment_simulation)
13 return error

Code Listing 2. Pseudo Code for FindFitError function.

The fitting_data variable defined on line 4 is an array
of segments of data. On lines 5-6, fitting_data is further
populated with 𝑆𝑒𝑔(ℓ𝑖 ). On line 8, PySINDy’s fit function
is used to fit a model based on fitting_data. Using this
model, the simulate() function is used on line 10 with the
model to simulate data points from the starting values of
the variables in the segment, given the time points of the
segment. The data returned from the simulation is compared
against the actual data in the segment in CompareData() at
line 12. CompareDatamay in principle use different methods
of evaluating closeness, such as Mean Square Error(MSE).
In this case, the method utilised calculates the error as the
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Figure 4. Schemantics of the SINDy algorithm, demonstrated on the Lorenz equations. The trajectory on the Lorenz attractor
is coloured by the adaptive time step required, with red indicating a smaller time step. [17]

maximum distance between any two data points at a time
point in the segment and the simulation. This works under
the assumption, that the data does not contain significant
outliers. If outliers are expected, MSE is likely the better
option to evaluate the fit. The error is returned on line 13
and serves as the fit_error value in Code Listing 1. Note,
that 4.2 and Code Listing 2 only produce one location for
each unique set of dynamics. As such, two locations with
the same dynamics cannot be modelled with this process.

4.4 Finding Edges Between Locations
The edges are defined implicitly during structure learning.
A segment contains a pointer to its neighbour segment. For
segments 𝑠𝑒𝑔0, . . . , 𝑠𝑒𝑔𝑛−1, an edge 𝑒 is created from 𝑠𝑒𝑔𝑖 ’s
location ℓ𝑖 to 𝑠𝑒𝑔𝑖+1’s location ℓ𝑖+1. This facilitates the creation
of directed edges in the graph structure.

4.5 Example
Consider the thermostat example in Figure 1. For this sim-
plified example, assume that the two distinct locations have
already been identified with the algorithm, so the algorithm
is four iterations in. At the current iteration, the algorithm
then has to decide if the segment marked in red in Figure 5a

belongs to the Off location, the On location, or to a new
location.
The algorithm calls FindFitError() on each location,

measuring the error between the fit and the red segment.
Figure 5b shows the pseudo-result of fitting the red segment
to 𝑆𝑒𝑔(𝑂𝑛). It results in a large error, as denoted by the box
on the bottom. In Figure 5c, the red segment is fitted with
𝑆𝑒𝑔(𝑂𝑓 𝑓 ), and as evident by the box on the bottom, this
produces a low error. From this, the algorithm can infer that
the red segment can not be associated with the On location,
but it can be associated with the Off location. As the error is
sufficiently low, the algorithm does not create a new location
but instead associates the segment with the Off location.
Note, that the smooth curves in the figures in this paper are
only for simplicity. In practice, the segments contain time
series and thus the curves cannot be smooth.

7
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(a) Iteration of segments from a pseudo-
dataset. On and Off locations have already
been identified. The red-coloured segment
is the current segment in the example. The
x- and y-axis represent time and tempera-
ture, respectively.

(b) Fitting on the Off location with the red
segment.

(c) Fitting on the On location with the red
segment.

Figure 5. Example of how Code Listing 2 determines the fit
error of a segment on a location using the thermostat model
from Figure 1 as an example pseudo-dataset.

5 Learning Dynamics Governing the
Locations

This section explains how the set of segments in a location
is used to identify the governing dynamics.

5.1 The General Procedure
SINDy is useful for discovering governing equations from
one or multiple segments. In Section 4, SINDy is used to iden-
tify governing equations of 𝑆𝑒𝑔(ℓ𝑖 ), and then apply the model
to evaluate the fit of the new segment. A similar methodol-
ogy is applied when identifying the dynamics of a location.
All the segments of a location are used to fit a model using
SINDy, from which the coefficients of the governing equa-
tions describing the data in the segments are extracted. The
general procedure is described in Code Listing 3.

CreateLocationSINDyModel iterates over (ℓ0, ..., ℓ𝑛) ∈ 𝑄 .
The arrays seg_times and seg_data contain the time values
and data of 𝑆𝑒𝑔(ℓ𝑖 ), which are populated on lines 7-9. After-
wards, the arrays are used to fit a model using the PySINDy
library on line 10. Finally, CreateCallable builds a callable
function on line 14 which is saved in the location so that
it can be passed to the ODESolver as the dynamics of the
location.

1 Input: locations
2 Output: locations
3 CreateLocationSINDyModel(locations):
4 for location in locations:
5 seg_times = []
6 seg_data = []
7 for segment in location.segments:
8 seg_times.append(segment.time)
9 seg_data.append(segment.data)
10 model = PySINDy.fit(seg_times , seg_data)
11

12 coefficients = model.coefficients
13

14 location.dynamics = CreateCallable(
coefficients)

15 return locations
16

Code Listing 3. Pseudo Code for fitting SINDy model for
each location.

5.1.1 Dynamics Function. In our previous paper [3], we
covered how the ODESolver in the HA codebase uses callable
functions to describe the dynamics, although a lot of details
were omitted. The following details how the ODESolver uses
these functions to evolve the variables over time so that it
can be understood how these functions can be generated
from the coefficients of the governing equations.

TheHA implementation uses theODESolver from scipy.integrate
python library [23]. In the documentation, it states that the
dynamics are expressed as a function with two arguments.

8
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1 Input: t denoting the current time, x denoting the values of
the variables

2 Output: An array of the delta changes of the variables
3 func(t, x):
4 ¤𝑥0 = compute x[0] delta
5 ¤𝑥1 = compute x[1] delta
6 ...
7 ¤𝑥𝑛 = compute x[n] delta
8 return [ ¤𝑥0, ¤𝑥0 ,..., ¤𝑥𝑛]

Code Listing 4. ODESolver dynamics function outline.

Code Listing 4 describes the evolution of the variables in
x at a time point t. The evolution is expressed as the delta
changes of the values in the variables, which is the return
of the function. A more concrete example is the thermostat
described in this paper. Consider the simple dynamics for the
On location, which simply increments the temperature by 1
for every 1 t. The corresponding function can be expressed
as in Code Listing 5. Note, that as the thermostat only utilises
one variable, the x array only contains one element.

1 Input: t denoting the current time, x denoting the values of
the variables

2 Output: An array of the delta changes of the variables
3 OnDynamics(t, x):
4 ¤𝑐 = 1
5 return [ ¤𝑐]

Code Listing 5. ODESolver dynamics for the thermostat.

5.1.2 Different Representation. The above way of defin-
ing a function is cumbersome and difficult to automate with
an algorithm. Instead, it would be beneficial to consider a
more compact way of representing the dynamics using ma-
trices. Equation 2 is inspired by models in state space form,
which are often used to capture differential equations.[5]

¤𝑥 = 𝐴𝑥 + 𝑏 (2)

𝑥 is the continuous state and 𝐴 is a matrix containing the
coefficients for all the variables in 𝑥 . The coefficients are
obtained through the SINDy equations. The equations may
contain constants as well, and those are contained in the
vector 𝑏.

As an example, consider the bouncing ball model Figure 3a,
which has two variables, ℎ and 𝑣 , for the height and veloc-
ity, respectively. To model the dynamics when the ball is
bouncing, the equation should contain 𝐴 = [[0, 1], [0, 0]]
and 𝑏 = [0,−𝐺] where −𝐺 is the gravity constant, 9.82 𝑚

𝑠2
.

Notice that 𝐴 has an entry for each variable. The first entry
[0, 1] relates to ¤ℎ and together with the first entry in the vec-
tor 𝑏 the equation for ¤ℎ may be written as seen in Equation 3.
It indicates that the coefficient for ℎ is 0, the coefficient for 𝑣
is 1, and that 0 should be added when calculating the change
in ℎ.

¤ℎ = 0ℎ + 1𝑣 + 0 (3)

Likewise, the second entry [0, 0] relates to ¤𝑣 and together
with the second entry in the vector 𝑏 the equation for ¤𝑣 is
written as seen in Equation 4. It indicates that the evolution
of 𝑣 is entirely defined by the constant 𝐺 .

¤𝑣 = 0ℎ + 0𝑣 −𝐺 (4)
With the above formalisation, we may parse the coeffi-

cients extracted from PySINDy to construct the appropriate
𝐴 matrix and 𝑏 vector. Equation 2 appears to only support
linear dynamics. However, due to the flexibility of the Python
programming language, an entry in the𝐴matrixmay contain
a function with an expression containing the coefficient and
variable. As an example 2𝑥2 may be expressed as a function
𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : 2𝑥2.

5.1.3 Converting Coefficients to Matrix Representa-
tions. Code Listing 6 contains the pseudo-code for the con-
struction of the dynamics function for the ODESolver. On
line 2 the 𝐴 matrix and 𝑏 vector are constructed by parsing
the coefficients to the ConstructMatrices function. On line
3 the function ODEFunction is returned to be used as the
dynamics function. Note, how the function just applies Equa-
tion 2 to compute ¤𝑥 and 𝐴𝑥 is matrix-vector multiplication
and 𝑥 is inserted into the lambda functions of 𝐴.

1 Input: Current segment and ℓ𝑖

2 Output: Fitting error
3 CreateCallable(coefficients):
4 A,b = ConstructMatrices(coefficients)
5 return ODEFunction(t, x):
6 return Ax+b

Code Listing 6. Pseudo-Code for CreateCallable function.

6 Invariants and Guards
This section describes how invariant and guard conditions
are determined for the locations of the HA. The invariants
and guards of ℓ𝑖 are determined by analysing 𝑆𝑒𝑔(ℓ𝑖 ), and
{𝑆𝑒𝑔(𝐷𝑒𝑠𝑡 (𝑒)) |𝑒 ∈ 𝑂𝑢𝑡𝐸𝑑𝑔(ℓ𝑖 )}.

6.1 Convex Hull Method
Firstly, the bounds from which the invariants and guards are
later determined are found. Invariants- and guard-bounds
are determined using a similar methodology as in other re-
lated papers concerning the synthesis of a HA [10–12]. In
the following, Chull, describes a convex hull. The invari-
ant bound of a location is described by a convex hull of
all points of 𝑆𝑒𝑔(ℓ𝑖 ) in Equation 5. Similarly, guard bounds
are described by a convex hull of all endpoints of 𝑆𝑒𝑔(ℓ𝑖 ) in
Equation 6. Note, that for multivariate data Equation 5 and
Equation 6 are applied for each variable, and the conditions
are a conjunction of the results.
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𝐼𝑛𝑣_𝐵𝑜𝑢𝑛𝑑𝑠 (ℓ𝑖 ) = 𝐶ℎ𝑢𝑙𝑙 ({𝑝𝑜𝑖𝑛𝑡𝑠 (𝑠) |𝑠 ∈ 𝑆𝑒𝑔(ℓ𝑖 )}) (5)

𝐺𝑟𝑑_𝐵𝑜𝑢𝑛𝑑𝑠 (ℓ𝑖 → ℓ𝑖+1) = 𝐶ℎ𝑢𝑙𝑙 ({𝑒𝑛𝑑 (𝑠) |𝑠 ∈ 𝑆𝑒𝑔(ℓ𝑖 )}) (6)

Figure 6. Example of a trace of the thermostat automaton.
The segments going downwards are the 𝑂𝑓 𝑓 location and
the segments going upwards are the 𝑂𝑛 location.

Consider the example Figure 6 describing a pseudo-dataset
for a thermostat. After segmenting the data, the structure
learning procedure identifies two locations, 𝑂𝑛 and 𝑂𝑓 𝑓 ,
and associates the relevant segments to each. The lower and
upper bounds for the invariant of 𝑂𝑓 𝑓 are seen to be 15 and
24, respectively. Similarly, the upper bound for 𝑂𝑛 is 24 and
the lower bound is 15.
Furthermore, the lower and upper bounds for the guard

from 𝑂𝑓 𝑓 to 𝑂𝑛 are seen to be 15 and 17, at time 6 and 24,
respectively, and the lower and upper bounds for the guard
from 𝑂𝑛 to 𝑂𝑓 𝑓 is seen to be 23 and 24, respectively.
One important note is that only the required invariants

and guards are created. If the values in the final point in at
least one segment are close to either of the bounds, then
an invariant condition is created using that bound. If the
bounds are not captured by any of the created invariants,
then a guard is created using that bound. This is done to
avoid creating unnecessary conditions, which may result in
a larger HA than necessary and to only have the conditions
for the relevant variables in multivariate systems.

In the example of the thermostat, this entails that the𝑂𝑓 𝑓

location ends up having the invariant 𝐼𝑛𝑣 (𝑂𝑓 𝑓 ) = 𝑥 ≥ 15
because at least one segment’s final value is close to the
lower bound of 15, but no segment is close to the upper
bound. Similarly, the guard of 𝐺𝑟𝑑 (𝑂𝑓 𝑓 → 𝑂𝑛) = 𝑥 ≤ 17 is

created, utilising its upper bound and not the lower bound as
that is captured by the invariant. Note, that conditions using
the lower bound utilise the greater than or equal to operator
(≥), and the opposite for conditions using the upper bound.
This results in the location𝑂𝑓 𝑓 having to switch location at
15 and the edge being open after 17.

6.2 Data with Trend
Some time series are non-stationary and the convex hull
method is only suitable for stationary data. For a stationary
time series, we expect the mean, variance and covariance to
be constant with time, which is not always the case. Consider
Figure 7 which describes the atmospheric𝐶𝑂2 concentration
from the Mauna Loa Observatory in Hawaii in the period
1958-2001 [24]. This is an example where the mean varies
(increases) with time, which results in an upward trend. The
following sections focus on non-stationary trending data
and leave the other cases for future work.

Figure 7. 𝐶𝑂2 concentration of the Mauna Loa Observatory
in Hawaii in the period 1958-2001.[24]

Figure 7 appears to exhibit seasonality, that is, periods
where the concentration decreases and periods where the
concentration increases, likely defined by the seasons in a
year. After segmenting the data and performing structure
learning, seasonality is likely captured by two distinct loca-
tions. Using the convex hull method on the segments results
in large intervals for the guards and invariants. The large
intervals cause several issues. For one, the guards are always
enabled and the invariants are never violated. Thus, when
modelled with a HA, a transition from one location to the
other can occur at any time, regardless of the season. Sec-
ondly, it is not possible to simulate further than the end of
the dataset, as the bounds in the conditions are fixed. Due
to these complications, the following section presents two
approaches to determining the invariants and guards in time
series exhibiting trends. The first method is useful when
modelling systems where the time series exhibits season-
ality, as shown in Figure 7. The second method is useful
when modelling timer-based systems with no relation to
seasonality.
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6.3 Seasonal Time Conditions
For Figure 7, it appears that the fluctuation in the𝐶𝑂2 concen-
tration is defined by seasonality, which can be approximated
into constant time intervals. It might be the case that the con-
centration decreases in the spring and summer, and increases
in the autumn and winter. Under that assumption, the evolu-
tion of the concentration can be modelled with two locations.
One representing the downward flow of the concentration,
and one representing the upward flow of the concentration.
The HA’s locations may be active at different parts of the
year, and thus the year may be defined as a seasonal period.
We denote time conditions based on seasonality as seasonal
time conditions. As an illustration of the seasonal time con-
ditions applied on the time series in Figure 7, consider the
model in Figure 8, which is a simplified and fictitious version.
In Figure 8 modulo is used to associate parts of the seasonal
period with a location. One location captures the spring and
summer, and another captures autumn and winter.
Importantly, the entire seasonal period must be covered

by the invariants of the locations to avoid the HA entering a
deadlock.

Figure 8. Example of a simplified 𝐶𝑂2 model with an up-
ward trend. The dynamics are made-up for this model. The
seasonality period is a year and each time unit is a month.

6.4 Location Time Conditions
For the non-seasonality-based time intervals, the modulo
approach does not suffice. To enable the use of location time
conditions a new concept loc-time is introduced. This concept
grows with time but is reset when transitioning between
locations. Furthermore, time will be denoted as total-time to
avoid confusion with loc-time.

Such conditions could be 𝑙𝑜𝑐-𝑡𝑖𝑚𝑒 ≤ 4 and 𝑙𝑜𝑐-𝑡𝑖𝑚𝑒 ≤ 100,
whichmeans that theHAneeds to change location after 4 and
100-time units, respectively, and we define these as location
time conditions. Location time conditionsmay be useful when
modelling systems that are governed by different dynamics
based on a timer. As a novel example, consider Figure 9 which
is a model of a thermostat exhibiting an upward trend. The
thermostat stays on for 7-8 seconds before switching off for
2-3 seconds. Although such a model does not make sense in
practice as the temperature increases indefinitely, it serves

as an illustration of how location time conditions may be
used to capture timer-based systems.

Figure 9. Example model of a thermostat with an upwards
trend.

6.5 Remarks on the Time-Based Condition Types
Location time conditions and seasonal time conditions can
coexist in a model, however, such implementation rarely
makes sense because they serve different purposes. Seasonal
time conditions are useful for systems where each location
covers a part of the seasonal period, whereas location time
conditions are useful for systems which do not relate to
seasonality. Thus, for principal reasons, the algorithm im-
plementing these concepts should diagnose which of the
timed conditions to use when modelling a particular system.
It should be noted, that while both of the time-based con-
dition types may be used when modelling time series with
trends, they can also be used when modelling stationary
time series. Thus, these new approaches solve the existing
problems with the convex hull approach, and also add new
ways to determine conditions from time only, for stationary
time series or time series exhibiting trends.

6.6 Timed conditions algorithm
Code Listing 7 presents the general outline for the algo-
rithm that determines the invariants and guards for a HA.
Initially, the time bounds are determined and afterwards, a
consistency check is performed to determine whether to use
seasonal time conditions or location time conditions.

1 Input: List of locations
2 Output: conditions
3 DetermineInvariantsAndGuards(locations):
4 bounds = FindBounds(locations)
5 use_seasonal = IsConsistentPeriod(locations)
6 if (use_seasonal):
7 conditions = SetSeasonalTimeConditions(bounds ,

locations)
8 else:
9 conditions = SetLocationTimeConditions(bounds ,

locations)
10 return conditions

Code Listing 7. The general outline for the algorithm that
determines time-based invariants.

11



Master Thesis, June 2023, Aalborg, North Jutland, Denmark cs-23-mi-10-06

Code Listing 8 iterates through locations (ℓ0, . . . , ℓ𝑛) ∈ 𝑄

and find the minimum and maximum time spent in their as-
sociated segments 𝑆𝑒𝑔(ℓ𝑖 ). We distinguish between location
time bounds and seasonal time bounds. The location time
bounds consider the time units spent in a segment, whereas
the seasonal time bounds consider parts of a seasonal period.
Firstly, the location time bound is determined on lines 13-14,
where segment.loc_time denotes the amount of time in
the segment. Secondly, the seasonal time bounds are deter-
mined on lines 17-19, where segment.total_time denotes
the total time elapsed in the time series until that point.
Note, line 17 which skips the first segment, as its minimum
time is always equal to the start time of the time series. The
MOD_VALUE on lines 18-19 is a constant configured by defin-
ing the seasonal period. As an example, if the seasonal period
covers a day, one might choose to interpret a time unit as an
hour, which requires a seasonal period of 24. In future work
the seasonal period and the chosen time unit interpretation
should be analysed from the time series, however, in this
work, we predefine the constant according to the time series
in evaluation.

1 Input: List of locations
2 Output: seasonal and location time bounds
3 FindBounds(locations):
4 location_bounds = []
5 seasonal_bounds = []
6 for location in locations:
7 l_min_time = MAX_VALUE
8 l_max_time = MIN_VALUE
9 s_min_time = MAX_VALUE
10 s_max_time = MIN_VALUE
11 for segment in location.segments:
12 # Location time bounds
13 l_min_time = min(segment.loc_time.first ,

l_min_time)
14 l_max_time = max(segment.loc_time.last ,

l_max_time)
15

16 # Seasonal time bounds
17 if segment != location.segments.first:
18 s_min_time = min(segment.total_time.

first % MOD_VALUE , s_min_time)
19 s_max_time = max(segment.total_time.last %

MOD_VALUE , s_max_time)
20

21 location_bounds.append ((Null , l_max_time))
22 seasonal_bounds.append ((s_min_time ,

s_max_time))
23 return seasonal_bounds , location_bounds
24

Code Listing 8. The FindBounds function

After the bounds have been determined, IsConsistentPeriod
checks the segments in the locations for consistency in time.
Consistency in time means that for (ℓ0, . . . , ℓ𝑛) ∈ 𝑄 , the time
period in the segments 𝑆𝑒𝑔(ℓ𝑖 ) all start at approximately the
same time, and end at approximately the same time. It does

not have to be exactly the same time, as a small difference
can be adjusted with a guard. If the difference in time in
all 𝑆𝑒𝑔(ℓ𝑖 ) is above a threshold, location time conditions are
used instead.

6.7 Determining the Condition Expressions
When the bounds have been found, the condition expressions
are determined similarly to the state-dependent conditions
as explained in subsection 6.1. One difference is with the
seasonal time conditions where the interval spans the end
of the seasonal period and the start of the next.
Consider the invariants of the AutumnWinter location in

the model shown in Figure 8. The bounds of the system, with
a period time of 12 time units, are found to be [8.5, 3.5]. 8.5 is
the lower bound as it is found by analysing the start times of
𝑆𝑒𝑔(𝐴𝑢𝑡𝑢𝑚𝑛𝑊𝑖𝑛𝑡𝑒𝑟 ). Likewise, 3.5 is found to be the upper
bound, by analysing the end times of 𝑆𝑒𝑔(𝐴𝑢𝑡𝑢𝑚𝑛𝑊𝑖𝑛𝑡𝑒𝑟 ).
As a result, the invariant should be enabled when
𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒%12 is above 8.5 or below 3.5. The following con-
dition function is then generated: 𝐼𝑛𝑣 (𝐴𝑢𝑡𝑢𝑚𝑛𝑊𝑖𝑛𝑡𝑒𝑟 ) =

(𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒%12 ≥ 8.5) ∨ (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒%12 ≤ 3.5).

7 Complete Example
In this section, we provide a complete example of all the
steps involved in learning the thermostat model in Figure 1.
The time series obtained from a trace used in this example is
a short snippet of the first 25 time units from a simulation on
the pre-build model. An excerpt of the time series is given
in Table 1.

Time Temperature
0.00 20.00
0.12 19.87
0.18 19.74
0.24 19.61
0.30 19.47
... ...
24.76 18.96
24.82 18.83
24.88 18.66
24.94 18.54
25.00 18.38

Table 1. Example time series from the thermostat model.

7.1 Segmenting the Time Series
The first step is to segment the time series using the change
point detection algorithm detailed in our previous paper
[3]. The segmentation is shown in Figure 10, where each
vertical dotted line represents a change point. The resulting
five segments are represented by rows in Table 2 where the
columns represent the value of the first point and the last
point in the segments, respectively.
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Figure 10. Segments after applying change point detection
algorithm to the time series, a snippet of which is shown in
Table 1.

First Last
20.00 15.44
15.44 23.35
23.35 16.43
16.43 24.02
24.02 18.38

Table 2. Time series segments from the thermostat trace.

7.2 Structure Learning
The structure learning procedure iterates through each seg-
ment and associates similar segments to a location, while
keeping track of neighbouring segments to construct edges.
The result of applying the structure learning procedure is
shown in Figure 11.

7.3 Learning Dynamics
For each (ℓ0, ..., ℓ𝑛) ∈ 𝑄 , 𝑆𝑒𝑔(ℓ𝑖 ) is used to fit a model with
SINDy which in turn gives the governing equations for ℓ𝑖 .
The learned equations are shown in Figure 12.

7.4 Learning State-Dependent Conditions
The thermostat uses state-dependent conditions to determine
guards and invariants. Thus, the next step is to use Equation 5
and Equation 6 to determine the conditions for the HA. Note,
that for the guard calculation, we do not consider the last
segment as it contains no right-side neighbour segments.
The calculation is shown in Equation 7 and Equation 8.

As described in subsection 6.1, only the utilised invariants
and guards are created, eg. the invariant 𝐼𝑛𝑣 (𝐿0) = 𝑥0 ≤
24.02 is not created as no segment in 𝑆𝑒𝑔(𝐿0) ends close to
24.02. The final invariants and guards are shown in Equa-
tion 9.

Figure 11. Shows how the segments are associated with
each location.

Figure 12. Dynamics learned by fitting a model on 𝑆𝑒𝑔(ℓ𝑖 )
for (ℓ0, ..., ℓ𝑛) ∈ 𝑄 with SINDy.

𝐼𝑛𝑣_𝐵𝑜𝑢𝑛𝑑𝑠 (𝐿0) = 𝐶ℎ𝑢𝑙𝑙 ( [20, ..., 15.44], [23.35, ..., 16.43],
[24.02, ..., 18.38]) = [15.44, 24.02]

𝐼𝑛𝑣_𝐵𝑜𝑢𝑛𝑑𝑠 (𝐿1) = 𝐶ℎ𝑢𝑙𝑙 ( [15.44, ..., 23.35], [16.43, ..., 24.02])
= [15.44, 24.02]

(7)
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𝐺𝑟𝑑_𝐵𝑜𝑢𝑛𝑑𝑠 (𝐿0 → 𝐿1) = 𝐶ℎ𝑢𝑙𝑙 ( [15.44, 16.43])
= [15.44, 16.43]

𝐺𝑟𝑑_𝐵𝑜𝑢𝑛𝑑𝑠 (𝐿1 → 𝐿0) = 𝐶ℎ𝑢𝑙𝑙 ( [23.35, 24.02, ])
= [23.35, 24.02]

(8)

𝐼𝑛𝑣 (𝐿0) = 𝑥0 ≥ 15.44
𝐼𝑛𝑣 (𝐿1) = 𝑥0 ≤ 24.02

𝐺𝑟𝑑 (𝐿0 → 𝐿1) = 𝑥0 ≤ 16.43
𝐺𝑟𝑑 (𝐿1 → 𝐿0) = 𝑥0 ≤ 23.35

(9)

7.5 Final Model
The final step is to construct the HA using the locations
and edges from the graph structure, as well as the dynamics
and conditions. The final synthesised model is shown in
Figure 13. A simulation of the model produces the blue trace
in Figure 14, which is shown with the original trace.

L0
x0 >= 15.4

Δx0 = -9.532 1 + 0.401 x0 + -0.001 x0^2; 

L1
x0 <= 24.0

Δx0 = 0.995 1 + 0.001 x0; 

x0 <= 16.4x0 >= 23.3

Figure 13. Final model.

8 Evaluation
The following section evaluates the final models of systems
learned by our algorithm by comparing them to pre-build
models of the same system. We distinguish between non-
stationary time series, and stationary time series to evaluate
time-based conditions and state-dependent conditions. In
addition, we also synthesise the 𝐶𝑂2 time series in Figure 7
from the actual time series from [24]. This is done to see how
the whole procedure handles a real recorded dataset with
noise, outliers and trends. Note, that there is no evaluation
of the change point detection algorithm, which was done in
our previous paper [3].

8.1 Datasets
The evaluation includes five pre-defined models that are
used to generate traces. The thermostat system Figure 1,
the gearbox system Figure 3b and the bouncing ball system

Figure 14. Example of a trace from the model in Figure 13
against the original time series. Started at 𝑡𝑖𝑚𝑒 = 0 and
ended at 𝑡𝑖𝑚𝑒 = 25.

Figure 3a produce stationary traces, while the simplified
𝐶𝑂2 system ?? and the trending thermostat system Figure 9
produces traces with trends. All obtained traces contain 1000
points and at maximum 10 location switches.

8.2 Hyperparameters
The algorithm has one primary hyperparameter, which is
the max-error in structure learning used to determine if a
segment is associated with a location. The hyperparameter is
denoted as 𝑆𝑒 . If 𝑆𝑒 is too high, segments may be non-similar
but still associated with the same location. On the contrary,
if 𝑆𝑒 is too low, segments may be similar but associated with
different locations.

8.3 Evaluation Process
The goal is to evaluate the closeness of the synthesised mod-
els, to the pre-defined models. The synthesised models are
simulated, and the generated traces are compared to the
generated traces of the pre-defined models. For both the syn-
thesised model and the pre-defined models, the simulations
use the same time steps. For non-deterministic models, 10
traces are produced for each pre-defined model and an arbi-
trary trace is used to synthesise a model, which is simulated
5 times to obtain 5 traces. The 10 pre-defined traces define
one subset and the five traces obtained by the synthesised
model define a second subset. For deterministic models such
as the bouncing ball, only one pre-defined model trace is
compared against the 5 synthesised traces. The closeness of
the traces is evaluated using the Hausdorff distance measure,
which measures how far two sets are from each other [25].
The Hausdorff distance is the maximum distance of a set
to the nearest point in the other set, or more formally, a
maxmin function defined as in Equation 10, where we define
𝑑 (𝑎, 𝑏) as the absolute difference between 𝑎 and 𝑏.
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𝑑𝐻 (𝐴, 𝐵) = max
𝑎∈𝐴

(min
𝑏∈𝐵

(𝑑 (𝑎, 𝑏))) (10)

For multivariate data, the Hausdorff distance is summed
for each variable and divided by the number of variables. The
traces are compared and evaluated, but the graph structure,
dynamics and conditions are also important factors. This is
because non-determinism in the models can make the trace
significantly different from the pre-defined model traces,
even though the model is correctly synthesised. Thus, a
figure of the synthesised model is saved for manual review.

The evaluation process is a grid search on 𝑆𝑒 with the val-
ues [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144] inspired by parts of the
fibonnachi sequence. The process is shown in Code Listing 9.

1 Evaluation ():
2 for S_e in [1,2,3,5,8,13,21,34,55,89,144]:
3 # Stationary datasets
4 for s_traces in [thermostat , gearbox , b-ball]:
5 model = train(s_traces [0], S_e)
6 result = eval(s_traces , model)
7 save(model , result)
8 # Non -stationary datasets (with trend)
9 for n_s_traces in [trend -thermostat ,

simple_CO2 , CO2]:
10 model = train(n_s_traces [0], S_e)
11 result = eval(n_s_traces , model)
12 save(model , result)
13

14 eval(s_traces , model):
15 test_traces = generateTestTraces(model)
16 return calculateHausdorff(s_traces , test_traces)

Code Listing 9. The general outline for the evaluation.

8.4 Results
In the following, the best results from the grid search evalua-
tion as well as the results from the 𝐶𝑂2 dataset are detailed.

8.4.1 State-Dependent Condition Models. The station-
ary time series are used to evaluate state-dependent con-
ditions. The traces are obtained using the thermostat, the
bouncing ball and the gearbox pre-build models.

Bouncing Ball Evaluation. Figure 15a shows the trace
comparison for the bouncing ball example. The 21 in the
title signifies the error threshold for the change point de-
tection algorithm, the 5 signifies 𝑆𝑒 and the _0 means that
the pre-build model trace is shown with the 0th synthesised
trace, out of the 5. Initially, the traces are similar, however,
towards the end of the synthesised trace, it appears to devi-
ate from the pre-build model trace which is evident by the
Hausdorff distance of 35.42. Looking at the model structure
in Figure 15b, the issue may be identified as the guard con-
dition. The bouncing ball model should only jump when it
touches the ground at height zero, however, the synthesised
model guard condition indicates that it can jump between
zero and 1.1. This is even more evident when evaluating

multiple synthesised traces, as seen in Figure 15c. This is
a byproduct of the structure learning, as the change point
detection may be slightly imprecise and may miss by a point,
this is further explained in our last paper [3]. Consequently,
the missed point may appear in the previous segment and
thus it is required to cut off one point from the ends of all
segments to ensure good results. However, this causes some
of the condition bounds to be slightly offset from the correct
value.

Note, that our algorithm cannot create update functions,
therefore the bouncing ball’s update function has been man-
ually inserted. In Figure 15b the constant −0.7 on the update
function is a dampening factor on the velocity.

(a) Bouncing ball result.

(b) Bouncing ball model structure. No conditions utilise
the x1 variable, which represents the velocity, as no seg-
ments end close the bounds of the velocity, as explained
in subsection 6.1.

(c) All bouncing ball evaluation traces.

Figure 15. Bouncing ball trace evaluation and learnedmodel.

Thermostat Evaluation. The thermostat result is shown
in Figure 16a and the overall Hausdorff score is 0.26. There
is non-determinism in when to switch between locations,
which is more evident when looking at all the comparisons
in Figure 16c. However, the model structure in Figure 16b is
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similar to the pre-buildmodel whichmeans that the locations,
edges and conditions were learned correctly. The dynamics
appear to be close as well.

(a) Thermostat result.

(b) Thermostat model structure.

(c) All thermostat evaluation traces.

Figure 16. Thermostat trace evaluation and learned model.

Gearbox Evaluation. The synthesised gearbox model is
seen in Figure 17b and it does not resemble the original

model in Figure 3b. It only has three locations compared to
5, and location L0 may transition into itself. The dynamics
of L0 appear to represent the three gears in one location,
which is likely due to the similar dynamics. L2 appears to
represent the neutral location, and L1 appears to represent
the breaking location. The model may transition from the
breaking location to the gear location, denoted by the guards
on the edges from L0 to L1. Thus, the general outline of the
model is learned with the gear, breaking and neutral state,
but the edges identified during structure learning are not
accurate. As an example, it is not possible to leave the neutral
location.

When investigating the problem, we found that the change
point detection is generally able to divide the trace into seg-
ments for the neutral location and segments for the breaking
locations. This is expected as both the neutral location and
the breaking location have distinct dynamics. However, the
change point detection was generally not able to distinguish
between the three gear levels, and at most times would create
one, sometimes two and rarely three segments to represent
the trace throughout the gear shifts. The issue trickles down
into the structure learning procedure, where the segments
are associated with a location based on similarity. Less seg-
ments, as well as indistinguishable dynamics, creates more
similarity in the segments which reduces the number of
locations identified in the structure learning procedure. Fur-
thermore, an edge is only created from a location to the
location containing the right-side neighbour segments in the
segmented trace. When L0 have an edge going to itself, it
denotes that two consecutive segments are associated with
the same location, which should not be possible because
the change point detection denoted them as stemming from
separate dynamics. In this case, the change point detection
algorithm can distinguish between the dynamics, however,
the structure learning procedure can not.
The problem with large models is two-fold. Firstly, it is

required that the change point detection can segment the
data accurately. Secondly, the structure learning procedure
must be able to associate the segments to the appropriate lo-
cations. The dynamics and conditions are determined based
on the segments associated with each location. If the first
two procedures provide inaccurate results, the rest of the
procedures are prone to error. Because the dynamics are
based on all the segments in a location, a few misplacements
in the structure learning procedure may still provide some-
what accurate dynamics. However, one misplacement creates
an edge, and thus misplaces the edge, which explains the
edges going from and to the same location, and why it is not
possible to transition from the neutral location to the gear
location. This is likely to be an issue in most complex sys-
tems with multiple locations without significant distinction
in dynamics. Also, the original trace in Figure 17a is likely
too short for the algorithm to synthesise the model correctly.

16



Framework for Synthesis of Hybrid Automata Master Thesis, June 2023, Aalborg, North Jutland, Denmark

The obtained trace is compared in Figure 17a and Fig-
ure 17c, and the Hausdorff distance is 3.84.

(a) Gearbox result.

(b) Gearbox model structure.

(c) All gearbox evaluation traces.

Figure 17. Gearbox trace evaluation and learned model.

8.4.2 Timed Condition Models. We evaluate the trend-
ing thermostat, which contains location time conditions, and
the simplified 𝐶𝑂2 model which contains seasonal time con-
ditions.

Trending Thermostat Evaluation. The trending thermo-
stat result is shown in Figure 18a. Like the thermostat exam-
ple, the trending thermostat has a degree of non-determinism
as evident by the difference in traces in Figure 18c. How-
ever, the Hausdorff distance is 0.13 so the synthesised model
can capture the non-determinism. The model structure in
Figure 18b contains appropriate location time conditions, so
the switching conditions are entirely dependent on time, as
intended.

(a) Trending thermostat result.

(b) Trending thermostat model structure.

(c) All trending thermostat evaluation traces.

Figure 18. Trending thermostat trace evaluation and learned
model.

Simplified 𝐶𝑂2 Evaluation. The simplified 𝐶𝑂2 result is
shown in Figure 19a with a Hausdorff distance of 1.36. As
with the thermostat, there is a degree of non-determinism in
the model which is evident in Figure 19c. The learned model
structure in Figure 19b contains the correct dynamics and the
model learned to use appropriate seasonal time conditions,
as intended.
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(a) Simplified 𝐶𝑂2 result.

(b) Simplified 𝐶𝑂2 model structure.

(c) All simplified 𝐶𝑂2 evaluation traces.

Figure 19. Simplified 𝐶𝑂2 trace evaluation and learned
model.

8.4.3 Pre-BuildModel Conclusion. In general, the learn-
ing algorithm can synthesise simple stationary models with
state-dependent conditions, however, it has difficulty synthe-
sising complex models such as the gearbox example. This is
due to the many locations in those models, which require the
change point detection to segment correctly, and the struc-
ture learning procedure to detect the number of locations
as well as associate the segments to the locations. In order
for the change point detection and the structure learning

procedures to be successful on complex models, the dynam-
ics of each location have to be significantly distinguishable,
otherwise, several locations are likely to be viewed as one.
The evaluation shows that the algorithm can synthesise

simple systems based on location time conditions or seasonal
time conditions. Thus, the algorithm also supports simple
systems which exhibit trends.

8.4.4 Real𝐶𝑂2 Dataset. The𝐶𝑂2 model learned from the
dataset in Figure 7 is seen in Figure 20b. There are no sea-
sonal time conditions on the model, and the dynamics do
not capture any long-term upward trends. As in the gear-
box example, this issue is in the first steps of the algorithm.
In the 𝐶𝑂2 model, the greatest issue is the segmentation,
which is seen in Figure 21. To illustrate the point, consider
Figure 22 which is a small excerpt of the trace in Figure 21.
The 𝐶𝑂2 concentration appears to be noisy and while the
oscillation seems to be consistent throughout the trace, the
data in each variation is not. Unlike the thermostat which
increases linearly until its peak, the 𝐶𝑂2 trace has several
smaller up and down periods before reaching the peak or
the bottom. Due to these complications, the change point
detection cannot perform an accurate segmentation of the
trace. As a result, the structure learning procedure associates
contradicting parts of the trace to the same location. As in
the gearbox example, such misplacements may cause loca-
tions to have edges going to themselves such as for L0 and
L1 in Figure 20b.
The reason there are no seasonal time conditions on the

model is because of the consistency check, which determines
whether seasonal time conditions are chosen. If the segments
in the locations are not in approximately the same time pe-
riod of the season, then it is not possible to approximate an
accurate seasonal period, and thus, the seasonal time condi-
tions are omitted. When it is decided to omit the seasonal
time conditions, the algorithm uses location time conditions
instead as seen in Figure 20b. Consider𝐺𝑟𝑑 (𝐿0 → 𝐿1) which
describes the minimum time of a segment on L0 to be 1.4,
and the maximum time to be 5.5. All the guards have similar
large time intervals, which signifies that there is no consis-
tency in the time periods in each segment. To synthesise
the𝐶𝑂2 dataset using seasonal time conditions, the inconsis-
tency should be solved by further tuning the change point
detection for better segmentation on that particular dataset.

The traces obtained from Figure 20b are compared to the
original trace in Figure 20a and Figure 20c with a Hausdorff
distance is 18.53.
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(a) Real 𝐶𝑂2 model structure using location time condi-
tions.

(b) Simplified 𝐶𝑂2 model structure.

(c) All simplified 𝐶𝑂2 evaluation traces.

Figure 20. Simplified 𝐶𝑂2 trace evaluation and learned
model.

9 Conclusion
This paper details a learning algorithm for modelling hybrid
systems from time series using hybrid automata.

The first step of the algorithm consists of segmenting the
time series using the Bottom-Up change point detection al-
gorithm, which was detailed and evaluated in our previous
paper [3]. Afterwards, a structure learning procedure groups

similar segments into unique locations and also keeps track
of the neighbouring segments to determine the edges con-
necting the locations. The structure learning procedure only
produces locations with unique dynamics. As a consequence,
it is not possible to learn a model with multiple locations
with the same dynamics. From the graph structure and the
segments of data associated with each location, the differen-
tial equations describing the dynamics governing a location
can be learned using the SINDy algorithm.
The paper details two implementation strategies for de-

termining the guard conditions on the edges, as well as the
invariant conditions on the locations. The first strategy uses
a convex hull to compute the state-dependent conditions
and works well for stationary data. The second strategy is a
new time-based methodology introduced in this paper and
revolves around creating conditions for time series exhibit-
ing upward or downward trends. It distinguishes between
seasonal time conditions and location time conditions. The
seasonal time conditions are suitable for models where a
location is always active at a certain time interval in the
seasonal period. The location time conditions do not relate
to seasonality but instead denote an upper limit on the time a
location can stay active and is useful when modelling timer-
based systems. Both timed-type conditions may be used for
stationary or non-stationary data.
The evaluation shows that the algorithm can synthesise

simple models with an accurate graph structure and dynam-
ics as well as state-dependent conditions and both types of
timed conditions. The algorithm is not able to accurately
synthesise complex models with multiple locations, as the
location dynamics have to be significantly distinguishable
for the change point detection to segment correctly, and for
the structure learning to identify the appropriate locations.
When trying to learn the real 𝐶𝑂2 dataset, we also find that
the change point detection does not segment correctly, possi-
bly due to the amount of noise in the dataset. In conclusion,
the overall algorithm is conceptually sound and produces
good results for simple models, but further work is required
for the change point detection and structure learning proce-
dure to support more complex datasets and systems.
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Figure 21. Real 𝐶𝑂2 segmentation.

Figure 22. Excerpt of the 𝐶𝑂2 segmentation.
20
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10 Future Work
The following details proposals for improvements and addi-
tions to the codebase and algorithms.

10.1 Automatically Detect if a Time Series is
Stationary

Wedistinguish between stationary time series and time series
with trends for the synthesis process. As of right now, each
time series is manually labelled by the authors as one of the
two. In future work, an analysis should be performed on
the time series to automatically label it before the synthesis
process begins.

10.2 Determining the Seasonal Period for Timed
Conditions

Currently, the seasonal period and a single time unit in the
period, are predetermined based on the authors’ knowledge
of the time series. Ideally, those variables would be automat-
ically configured by performing an analysis of the data. The
structure learning procedure builds the graph structure and
denotes the locations as well as their associated segments of
data. From this, a subsequent analysis could be performed,
which approximates the seasonal period accordingly.

10.3 Support for Other Types of Non-Stationary Data
Only non-stationary data which exhibits trend are supported
in the current synthesis process. Future work includes sup-
port for other types of non-stationary data, such as when the
variance of a series is a function of time as seen in Figure 23a,
or when the covariance is a function of time as in Figure 23b.

10.4 Update Functions
The current synthesis process cannot learn update functions,
which limits the number of systems that can be modelled. In
the future, detecting and learning update functions should
become a part of the synthesis of the HA model.

One possibility is to use the SINDy algorithm to learn the
update functions, by fitting a model on the points before and
after the update. This has been shortly tested which gave
promising results, but was not developed further.

10.5 Experimenting With Other SINDy Candidate
Functions

SINDy offers a suite of libraries with different candidate
functions to use during the sparse regression. It is also pos-
sible to define custom candidate functions. Other candidate
functions could have been integrated into our codebase to
support a larger variety of dynamics. The current implemen-
tation utilises the default library of constants, linear, and
polynomial functions. [26]

(a) Variance of the series is a function of time.

(b) Covariance is a function of time.

Figure 23. Describes two forms of non-stationary data.
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